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Abstract

An increasing number of embedded applications is being implemented on heterogeneous
Multi Processor Systems on Chip [MPSoC]. Embedded streaming applications, such as
multi-radio modems, are a specific category of embedded applications that typically
perform a sequence of transformations (data processing) on one or more streams of in-
put data. These applications often need to satisfy hard real-time requirements such as
guaranteed minimum throughput and maximum latency. To establish hard real-time
guarantees for each application independently on a shared resource MPSoC, we need to
bound the influence of resource sharing among the jobs in these applications. This can
be done by scheduling the jobs of multiple applications such that each job has a sepa-
rate execution budget. Real-time schedulers based on budget scheduling, such as Time
Division Multiplexing (TDM), bound the influence of resource sharing independently of
the execution times and execution rates of the jobs of different applications. One can
establish hard real-time guarantees of individual applications based on the worst-case
temporal analysis of the application under the effect of resource arbitration.

TDM arbitration allows resource sharing amongst jobs of different applications where
each application may have independent hard real-time requirements. The analysis of
temporal behavior of an entire application, based on the worst-case temporal behavior
of its jobs, is used to establish hard real-time guarantees such as minimum throughput
and maximum latency. The graph obtained by representing each job in an application
with a response model that represents the worst-case temporal behavior of the modeled
job, we obtain the worst-case temporal behavior for the entire application.

Data-flow modeling is extensively used in literature to model the temporal behavior of
embedded applications. The data-flow paradigms fit well with these application domains,
as they can represent the inherent concurrency, the pipelined behavior, and data-oriented
style of radio-streaming algorithms, while at the same time allowing analysis and synthe-
sis. The existing data-flow based modeling techniques for TDM arbitration over-estimate
the worst-case temporal behavior of jobs in an application. Since each job is pessimisti-
cally represented using the current modeling scheme, the resultant graph obtained by
replacing each job in the application by its response model, compositionally leads to
a very high over-estimation of the temporal behavior of the entire application. The
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analysis of this over-estimated representation of the temporal behavior of an application
will, again, provide rather pessimistic guarantees on throughput and latency which may
not satisfy the application’s requirement. To establish guarantees that satisfy the hard
real-time requirements of an application results over-allocation of resources for the jobs
in the application. Pessimism in resource allocation may lead to under-utilization of the
system resources and unnecessary rejection of applications that could have been accom-
modated in the system. We observe that there is a need for a accurately modeling the
worst-case temporal behavior of TDM arbitration and enable optimized resource alloca-
tion. Optimized resource allocation provides accurate real-time guarantees and avoids
unnecessary rejection of applications that can be accommodated within the system.

We propose three models in this thesis, (a) the Latency-Phased-Rate (LPR) model, the
Latency-Cyclic-Rate (LCR) model and the Multi-Rate Data-Flow (MRDF) model.

e LPR-model: TDM can be shown to have a cyclic pattern over a fixed number
of replenishment periods. We model this pattern using single-rate data-flow by
capturing the execution behavior for each replenishment period separately.

e LCR-model: Instead of defining the cyclic patters over a fixed number of periods,
the LCR-model is used to define the cyclic patterns in terms of the job iterations.
The execution rate of each iteration is individually modeled.

¢ MRDF-model: The MRDF-model is a multi-rate model that describes the ac-
tual provisioning and consumption of the allocated resource by each individual
iterations of the job.

We demonstrate that each of the proposed models are conservative in defining the worst-
case temporal behavior of jobs scheduled using TDM arbitration. We show this by
demonstrating that, even in the worst-case, the modeled finish time of each job itera-
tion using the proposed models, is an upper-bound to the actual finish time of the job
iterations. Unlike some existing models, we do not make any assumptions on the char-
acteristics of TDM arbitration, such as on the size of the slice allocated to a job, making
our models more generic. Furthermore, we enumerate the model characteristics per pro-
posed model with respect to the existing state-of-the-art models, namely the LR-model
[0, and Staschulat’s LR-model [2]. With respect to the existing state-of-the-art models,
we demonstrate that the models proposed in this thesis are more accurate in defining
the worst-case temporal behavior of TDM arbitration.

We also address various other issues regarding each of the models. We address the com-
plexity of our models in terms of size and analysis time. At the end of our dissertation,
we present several challenging topics for future work. We address the issue of extend-
ing the proposed models, for a broader class of budget schedulers and also provide an
illustrative example. Lastly, we address the issue of modeling a special case of TDM
arbitration, i.e. TDM with static-ordering.
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Chapter 1

Introduction

An increasing number of embedded applications is being implemented on heterogeneous
Multi Processor Systems on Chip [MPSoC]. These applications often need to satisfy hard
real-time requirements such as guaranteed minimum throughput and maximum latency.
For cost efficiency reasons, multiple applications share resources on a single MPSoC. For
instance, a multi-radio modem has to process multiple streams of input independently
with each stream having its own latency and throughput requirements [3],[4]. The in-
dependent analysis of the worst-case temporal behavior of individual applications, for a
given shared resource environment, allows us to establish guarantees on the minimum
throughput and the maximum latency for each application. This project focuses on de-
veloping modeling techniques that accurately capture the worst-case temporal behavior
of an application in a resource-shared environment.

1.1 Context

The use of embedded systems has become widespread in todays world, with devices
ranging from mobile phones and cameras to control systems in nuclear power plants.
An embedded system is designed to perform one or a few dedicated functions often
with real-time computing constraints. Nowadays there is a visible shift from the use of
simple single processor systems to complex heterogeneous multi-processor system on chip
[MPSoC] devices. For cost effectiveness reasons and for greater functionality, multiple
applications are mapped on a single MPSoC platform. This requires a proper resource
sharing mechanism to ensure that the processing requirements of individual applications
are satisfied.

Embedded streaming applications are a specific category of embedded applications that
typically perform a sequence of transformations (data processing) on one or more streams
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Figure 1.1: Multiple radio streams with independent hart real-time requirements running on an
MPSoC (figure taken from [5])

of input data. For example, Figure[[.I]shows a crude architecture of a multi-radio modem
[B] describing a sequence of jobs (data transformation processes) for the multi-radio
application. A radio application, for instance, can be broadly divided into three stages,
namely the filter stage, the modem stage, and the codec stage. Each stage performs a
specific processing on the received input signal and produces a corresponding output.

Such applications often need to satisfy hard real-time requirements such as guaranteed
minimum throughput and maximum latency. For instance, multi-radio modems have to
process multiple streams of input independently with each stream having its own latency
and throughput requirements [3 4. In Figure we can see that there are multiple
input radio streams received by the RF/IF transceiver and sent to the A/D converter.
Similarly at the output side there is a processed output stream per input stream sent by
the D/A converter to the RF/IF transceiver. Each input-output stream may have its
own throughput and latency requirement.

A streaming application is composed of multiple jobs that communicate with each other.
Each job performs a specific transformation (data processing) on the stream of input
data, either from an external source or from the output stream of a previous job. Each
job is mapped to a specific resource of the MPSoC, and the jobs communicate with
each other through FIFO channels or buffers. Jobs mapped to the same resource require
some form of resource sharing mechanism to ensure that the processing requirements of
individual jobs are satisfied.

To establish hard real-time guarantees for each application independently on a shared
resource MPSoC, we need to bound the influence of resource sharing among the jobs
in these applications. This can be done by scheduling the jobs of multiple applications
such that each job has a separate execution budget. A Budget Scheduler can guarantee
a minimum amount of time to every scheduled job in a maximum interval. Real-time
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schedulers based on budget scheduling bound the influence of resource sharing indepen-
dently of the execution times and execution rates of the jobs of different applications.
Time Division Multiplexing [TDM] is a budget scheduler that divides a fixed time frame,
referred to as replenishment period, into various slots and each slot is assigned to a sin-
gle job. All iterations of a job can execute only in the time slots, referred to as slice or
budget, assigned to it. A TDM scheduler is simple to implement with negligible run-
time overhead, since it allows only time-driven context switches. Time-driven context
switching enables the analysis of the temporal behavior of a single job independently of
all the other jobs sharing the same resource [6]. Figure illustrates TDM arbitration
as the service time (shown as the pie slice) received in a fixed interval of time (visualized
as one rotation of the time wheel).

PERIOD (#)

Each job receives a fixed &
independent execution slice
within every period.

Figure 1.2: Time Wheel of a TDM Arbitration Scheme. Each job receives a fixed and independent
execution slice per replenishment period

To establish real-time guarantees, we require some modeling mechanism that isolates
the temporal behavior of applications. A streaming application can be represented as
a graph of communicating single-threaded jobs [6, [7]. The vertices of the graph repre-
sent individual jobs while the edges of the graph describe the communication channels
between jobs. To isolate the temporal properties of an application we transform the ap-
plication graph into a temporal analysis graph such that each job actor in the application
graph is replaced by a graph component, called response model. A response model of a
job represents the worst-case temporal behavior of that job under the effect of resource
arbitration. The graph obtained by replacing each job for its response model can be used
for conservative temporal analysis of each application separately. That is, if we compo-
sitionally represent the worst-case temporal behavior of each job in an application, we
can derive the worst-case temporal behavior of the entire application.

Data-flow models have been extensively used to represent applications graphs and re-
sponse models for embedded streaming applications. Data-flow modeling paradigms fit
well with these application domains, as they can represent the inherent concurrency, the
pipelined behavior, and data-oriented style of radio-streaming algorithms, while at the
same time allowing analysis and synthesis [9]. Figure shows a data-flow model for a
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Figure 1.3: A data-flow based representation of a sample embedded streaming application
(WLAN) (figure taken from [g])

wireless LAN application. In a data-flow based representation, the worst-case response
time of each job in an application can, for instance, be represented as a separate ac-
tor (vertex). An application abstracted as a data-flow based temporal analysis graph
where the worst-case temporal behavior of each job is represented as a separate actor,
can compositionally describe the worst-case temporal behavior of the entire application.
From the analysis of this derived worst-case temporal behavior of an application, we
can establish some hard real-time guarantees on the application such as its guaranteed
maximum latency or minimum throughput.

1.2 Problem Description

Data-flow has been extensively used in literature for modeling and analysis of appli-
cations, as it can easily isolate the temporal behavior the applications from their im-
plementation detail. The worst-case response time of a job scheduled using TDM is
the total time taken to execute a single iteration of the job after the effects of TDM
arbitration (i.e. scheduling, pre-emption, etc) are taken into account. Bekooij et al [0]
proposed a single actor response model in which each actor represents the worst-case
response time of a job scheduled using TDM arbitration. But these different effects of
resource arbitration need not collectively affect each iteration of a job in an application.
Thus this collective worst-case response time for a single job is a highly over-estimated

bound.

Wiggers et al [I] also show that the temporal behavior of a restricted class of budget
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schedulers can be bounded by modeling the effect of latency and rate of execution. They
use a two-actor SRDF model called Latency-Rate [LR] model. The budget schedulers
whose behavior can be captured using the LR-model are called Latency-Rate Servers
[I0]. It is shown in [I] that TDM arbitration also belongs to the class of latency-rate
servers. The LR-model, claims to be a tight conservative approach to describe the worst-
case temporal behavior of TDM arbitration. Worst-case behavior of TDM arbitration
implies the worst-case temporal behavior of jobs scheduled using TDM arbitration, and
we use these phrases throughout our work interchangeably. It is conservative because
the model always provides an upper-bound to the worst-case temporal behavior of a
job. The model claims to be tight because there are instances when the modeled bound
is equal to actual worst-case temporal behavior of job execution instead of being an
over-estimation of the worst-case. However, we observe that such instances are rather
rare, and more often than not, the LR-model significantly over-estimates the worst-case
temporal behavior of TDM arbitration.

Staschulat et al [2] proposes a LR-based model for a memory arbiter that considers the
history of memory accesses. However, the model assumes that the allotted slice within
one replenishment period is an integral multiple of the worst-case execution time of that
job. This poses restrictions on the size of the slice allotted to the job. Such restrictions
may give an accurate worst-case analysis for the obtained schedule, but the restricted
slice size may itself produce poorer arbitration performance.

The state-of-the-art models [6 8 [I] provide pessimistic estimates for worst-case tempo-
ral behavior of jobs scheduled using TDM arbitration. Since each job is pessimistically
represented using the current modeling scheme, the resultant graph obtained by replac-
ing each job in the application by its response model, compositionally leads to a very
high over-estimation of the temporal behavior of the entire application. The analysis
of this over-estimated representation of the temporal behavior of an application will,
again, provide rather pessimistic guarantees on throughput and latency which may not
satisfy the application’s requirement. To establish guarantees such that they satisfy the
hard real-time requirements of an application will inevitably require over-allocation of
resources (larger slice sizes) for the jobs in the application. The over-estimation causes
pessimistic allocation of resources to guarantee the throughput and latency requirements
of the application. Pessimism in resource allocation may lead to under-utilization of the
system resources and unnecessary rejection of applications that could have been accom-
modated in the system.

1.3 Project Goals

The focus of this project is to improve upon the existing approaches used for modeling
the worst-case temporal behavior of a single job scheduled using TDM arbitration. The
intention is that if the worst-case temporal behavior of each job in an application is



6 Chapter 1. Introduction

modeled more accurately, then we can derive a more accurate estimate of the worst-case
temporal behavior of the entire application. More accurate estimations enable optimized
resource allocation for TDM arbitration. This in turn improves the overall system uti-
lization and avoids unnecessary rejection of applications that can be accommodated in
the system. It is also important that the modeling technique should be generic i.e. it
should not make unnecessary assumptions on the characteristics of TDM arbitration.
The goal of this project can be stated as ”To design a data-flow based modeling tech-
nique that captures the worst-case behavior of jobs scheduled using TDM arbitration,
such that:

e it provides more accurate estimation of the worst-case behavior of a TDM scheduled
job as compared to the existing state-of-the-art models.

e it is conservative i.e. it will define an upper-bound to the worst-case temporal
behavior of jobs scheduled using TDM arbitration.

e it is generic i.e. it should not make unnecessary assumptions on the characteristics
of TDM arbitration, such as slice sizes”.

1.4 Approach

The execution of a continuous sequence of consecutive job iterations on a TDM scheduled
resource, can be shown to have a cyclic pattern over a fixed number of iterations. We
propose to model this cyclic pattern using data-flow. This enables us to accurately
specify worst-case behavior of TDM arbitration. We do not pose restrictions on the size
of the slice allocated to a job. This allows us to model jobs having arbitrary executions
and allotted an arbitrary TDM slice, enabling optimized resource allocation for TDM
arbitration.

An alternative approach is to have a general characterization of slice consumption per re-
plenishment period. This approach appears to be well suited for multi-rate environment
(discussed in chapter . It models the actual consumption of each slice by individual
job iterations.

1.5 Contribution

In this project, we propose three different data-flow based models to capture the worst-
case behavior of TDM arbitration. We propose two single-rate data-flow models and one
multi-rate data-flow model. A brief description of each model is given below:
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1. The first model is a single-rate data-flow based model with an initial assumption
that the execution time of a single job iteration is smaller that the size of a single
slice. For this setup of TDM arbitration, we demonstrate that the model provides
a conservative estimation that is tighter than the existing state-of-the-art models
i.e. the LR-model [I]. We then show that we can extend this model to capture the
effect of TDM arbitration for jobs with arbitrary execution times. However, when
we extend this model to larger execution times, we demonstrate that the modeled
estimations are comparable to the LR-modeled estimations but not always better.

2. To overcome the disadvantages of the previous model, we propose a new approach
to model the cyclic pattern of execution. We define a new single-rate model that
is an improvement of the previous one such that it does not make any assumption
on the execution time of a single job iteration. We demonstrate that this model
provides an accurate estimation of the worst-case temporal behavior of an arbitrary
TDM setup.

3. Our last model is a multi-rate data-flow model that is a more generic character-
ization of slice consumption per replenishment period. We show that this model
is well suited of multi-rate environments but can also be expanded to adapt to
single-rate environments. This model intuitively provides an accurate estimate of
the worst-case temporal behavior of TDM arbitration.

1.6 Outline

The remainder of this thesis is organized as follows. In chapter [2] we describe the basic
concepts of data-flow modeling and data-flow based representation of embedded stream-
ing applications. In chapter [3| we describe the concept of resource sharing via TDM
arbitration. We formalize the worst-case temporal behavior of TDM arbitration and
show how the existing state-of-the-art approaches conservatively model this behavior.
Chapter [4] describes the inadequacy of the state-of-the-art models in accurately captur-
ing the worst-case temporal behavior of TDM and the resulting pessimism in the overall
system utilization. We then propose three different approaches in chapters B, [6 and [7]
and demonstrate the obtained improvement in accuracy. The discussion and potential
future scope of the proposed approaches is presented in chapter [8] Finally, we conclude
in chapter [J]
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Chapter 2

Single-Rate Data-Flow

In this chapter, we introduce the concepts of single-rate data flow and data-flow based
modeling and analysis, which are required to understand the issues addressed in this
project. The concepts presented in this chapter do not provide a complete description
of the data-flow formalism, but only the aspects that are relevant to the use of data-flow
for temporal analysis of resource arbitration. A detailed account of data-flow formalisms
is provided in Sriram et al [I1].

There are many flavors of data-flow formalisms used to model and analyze signal pro-
cessing and multimedia streaming applications. Data-flow paradigms fit well with these
application domains, as they can represent the inherent concurrency, the pipelined be-
havior, and data-oriented style of radio-streaming algorithms, while at the same time
allowing analysis and synthesis [9]. We first provide a brief introduction to data-flow.
We then explain a flavor of data-flow formalisms, namely Single-Rate Data-Flow and
how it can be analyzed. We also give a brief description of some other flavors of data-
flow formalism. Next, we describe how an application can be modeled as a singe-rate
data-flow graph and how these application graphs can be extended to capture the effects
of resource arbitration. Finally, we give a brief description of the various techniques
used to analyze the obtained graphs and establish hard real-time guarantees such as the
minimum throughput and maximum latency.

2.1 Introduction to Data-Flow Graphs

To start with, we define a directed graph as an ordered pair (V, F), where V' is a set of
vertices and E is a set of edges. A single edge is expressed as an ordered pair (v, v2)
with v1,vy € V. We say that an edge e = (v1,v2) € E is directed from v; to vy. We
may also say that v; is the source of the edge e while vy is the sink of the edge e. In
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a directed graph there may not be more than one edge with the same source and sink
vertices.

A data flow graph is a directed graph, where the vertices (actors) represent functionally
deterministic computations and edges represent FIFO queues that direct data values
from the output of one computation to the input of another. The data values are
represented by containers called tokens. The actors have the capability of performing
a computation (or firing) by consuming tokens from the incoming edges and producing
tokens on the outgoing edges. There is an initial distribution, called delay, of tokens
defined for all the edges in a data flow graph

The firing rule of an actor defines what happens upon a single firing of that actor. A
firing rule is defined in terms of the number of input token consumed per incoming edge,
the number of outgoing tokens produced per outgoing edge, and the time (called firing
time) required for a single firing of a particular actor. The firing time is defined as
the time difference between consuming input tokens and producing output tokens in a
single computation or firing of an actor. The number of input tokens per incoming edge,
required for an actor to fire, is called the firing condition of that actor. Throughout this
thesis, we consider the firing of data-flow actors to be self-timed, i.e. an actor fires as
soon as its firing conditions are met.

2.2 Single-Rate Data-Flow Graphs

2.2.1 Overview

A Single Rate Data-Flow (SRDF) model, also referred to as Homogeneous Synchronous
Data-Flow [12], is one of the simplest data-flow models that can be effectively used to
express the temporal behavior of concurrent jobs [9]. The SRDF formalism has the
advantage that it can be used for static analysis by converting the graphs into maz-plus
equations [I3] [I4]. Almost all the work in this project uses the SRDF formalism.

2.2.2 Formal Definition of Single-Rate Data-Flow Graphs

SRDF graphs are expressed as a 4-tuple G = (V, E, d, t). Vertices of the graph are a finite
set of actors V' and represent deterministic computational functions (jobs). The directed
edges E = {(v;,vj)|vi,v; € A} represent first-in-first-out communication channels. Data
is transported in discrete containers (tokens). There is an initial placement of tokens
across the edges, called delay, and defined as d : E — N. Every firing (execution) of
an SRDF actor consumes (removes) one token from every incoming edge and produces
(places) one token on every outgoing edge. This is called the firing rule of SRDF actors.
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Figure 2.1: Single-Rate Data-Flow Graphs

We assume that the firing of actors is self-timed, i.e. an actor fires as soon as there
is at least one token on every incoming edge of that actor. This is called the enabling
condition of the actor, i.e. an actor is enabled and can fire if there is at least one
token present on each incoming edge of that actor. The time between consumption and
production of tokens, i.e. the start time and finish time of firing for a single actor is
defined as the firing time ¢(v;) of actor v; such that ¢t : V" — R.

2.2.3 Temporal Analysis of Single-Rate Data-Flow Graphs

The temporal behavior of single-rate data-flow actors is defined in terms of the start
time and finish time of a firing of that actor. If s(v;,j) and f(v;,j) are the start time
and finish time, respectively, of the j-th firing of an actor v; € V, we define the finish
time f(v;, ) as f(vi,J) = s(vi, J) + t(v;) where t(v;) is the firing time of the actor v;.

Since SRDF-actor firings are considered to be self-timed, the start time of an actor firing
is when its firing conditions are satisfied, i.e. there is at least one token present on each
incoming edge of that actor. Let us understand how the firing conditions are satisfied

by considering the examples shown in Figure

(@) (b)

Figure 2.2: Sample SRDF graphs

Figure (a) shows a simple SRDF graph with two actors A and B and edges (A, B)
and (B, A). The delay of the graph is defined such that there is a single token on the
edge (B, A) i.e. d(B,A) = 1, while there are no tokens present on the edge (A, B) i.e.
d(A, B) = 0. Let us now simulate the actor firings to establish a formal definition on the
temporal behavior of the graph. At the start of the system, only actor A can fire, as its
firing condition has been satisfied by the initial delay. The finish time of its first firing
is given as f(A,1) = s(A,1) +t(A) = t(A), as the start of the system is also the start
time of the first firing of A, i.e. s(A4,1) = 0. As soon as actor A finishes its first firing
it produces a token on the edge (A, B), thus satisfying the firing condition for actor B.
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Actor B can fire as soon as there is token on its incoming edge (A, B), i.e. start time
of B is expressed as s(B,1) = f(A,1). The finish time of the first firing of actor B can
now be defined as f(B,1) = s(B,1)+t(B) = f(A,1) +t(B). As there was only a single
token on edge (B, A) at the start of the system, A can no longer fire after its first firing
until a token is produced by B on the edge (A, B). Therefore, the second firing of A can
only start the first firing of B has finished, i.e. s(A,2) = f(B,1) and f(A,2) = f(B,2).
Notice that each subsequent firing of A waits for the firing of B to produce a token
an vice-versa. The firing dependency of A and B is defined by the delay present on
the edges connecting the two actors. We can formally define the temporal behavior for
the given graph as f(A,7) = f(B,j — 1) +(A) and f(B, j) = f(A,j) + t(B). We can
generalize this behavior for any two actors v; and vg in an SRDF graph (V,E,d,t), where
vi,v2 € V and (v1,v2) € E as:

f(va,3) = f(v1,5 — d(v1,v2)) + t(va). (2.1)

Figure 2.2(b) shows another instance of an SRDF graph, again with two actors A and
B, and three edges (A, A), (A, B), and (B, B). The delays are defined as d(A, A) = 1,
d(A,B) =2, and d(B, B) = 1. The firing condition for actor A is that consecutive firings
are non-overlapped. In other words, A begins a firing as soon as its previous firing finishes
ie. f(A,5) = f(A,j—1)+t(A). Meanwhile, actor B has two incoming edges (B, B) and
(A, B) which collectively define its firing condition. The firing constraint for edge (B, B)
is that consecutive firings of B have to be non-overlapped i.e. f(B,j) > f(B,j—1)+t(B).
We express the constraint as an inequality since there may be other constraints on the
firing of B due to the other incoming edge (A, B). There are two tokens present on the
edge (A, B) at the start of the system. This allows actor B to fire twice without any
constraint due to this edge. The third firing however will be constrained such that it will
require the first iteration of the A to finish and produce a token on the edge (A4, B). We
can generalize this as f(B,j) > f(A,j — 2) + t(B). The firing condition of B is that it
can fire as soon as all the incoming edges of B have at least one token present on them.
Therefore, we can express the firing condition as a max-expression:

f(B,j):maX(f(B,]—1),f(A,]—2))+t(B) (22)

The above two examples, give a brief description of the analysis of single-rate data-flow.
The readers should note that, although we start by describing the temporal behavior of
SRDF graphs in terms of start time and finish time of actor firings, we actually define the
behavior in terms of just the finish time. The start time of an actor firing can be derived
from the corresponding finish time due to the relation f(v;, 7) as f(v;, 7) = s(vi, ) +t(v;),
where v; € V. Although, the temporal behavior of data-flow graphs is predominantly
defined is literature using start times, we do not follow the same approach. This thesis
performs analysis of the temporal behavior of graph components (i.e. our proposed
models) representing the worst-case temporal behavior of a job scheduled under the
effect of resource arbitration. The graph component typically has a single start actor
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whose incoming edge represents the arrival of a job iteration, and a single finish actor,
whose firing will produce a token representing the output of the job and indicating that
the current job iteration has finished. In other words, we define the temporal behavior
of a the graph components in terms of the arrival time of the input tokens to the graph
component and the finish times of the output tokens of the graph component. This has
been explained in detail in chapter

2.3 Other Flavors of Data-Flow

Till now we have talked about the single-rate data-flow formalism and its analysis. We
will now give a brief description of some other flavors of data-flow. Our work does not
primarily rely on these formalisms, although we later discuss the use of our proposed
analysis models for resource arbitration in these data-flow formalisms as well.

2.3.1 Multi-Rate Data-Flow Graphs

Multi-Rate Data-Flow [MRDF], also called Synchronous Data-Flow [12], is a data-flow
formalism that is a generalization of the SRDF formalism. It poses the restriction on
the firing of actors, that the number of tokens consumed and produced for a single firing
of an actor is fixed and known apriori. The number of tokens produced or consumed by
each MRDF actor on each of its edges is annotated in a MRDF graph by numbers at
the edge source and edge sink respectively, as shown in Figure [2.3

Figure 2.3: Multi-Rate Data-Flow Graphs

MRDF graphs are expressed as a 5-tuple (V, E, f,d,t). V represents the set of ac-
tors of the graph. E defines the set of directed edges in the graph expresses as {e =
(v1,v2)|v1,v2 € V}. The firing rules are defined as f : E— Nx N, such that f(e) = (p, c)
defines that for each firing of the source actor of the edge e will produce p tokens on
this edge, while each firing of the sink actor of the edge e will consume ¢ tokens from
this edge. There is an initial placement of tokens across the edges (delay) defined as
d: E — N. The time between consumption and production of tokens, i.e. the start time
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and finish time of firing for a single actor is defined as the firing time ¢(v;) of actor v;
such that t : V — R.

2.3.2 Cyclo-Static Data-Flow Graphs

Cyclo-Static Data-Flow [CSDF] [17] is an extension to Multi-Rate Data-Flow, such that
the CSDF actors can have a static-ordered list of consumption and production rates per
incoming edges and outgoing edges respectively. CSDF actors may also have a static-
ordered list of firing times. These static-ordered lists define a repeating sequence of
the firing behavior of a CSDF actor. The work presented in this thesis does not focus
on or use cyclo-static data-flow. Therefore, only a brief description of CSDF graphs is
provided. Formalism on cyclo-static data-flow and its uses can be found in [I5}, 16}, [I7].

t(A) = [5,3] t(B) = [2,2,3]

Figure 2.4: Cyclo-Static Data-Flow Graphs

2.3.3 Converting MRDF and CSDF graphs into SRDF graphs:

There are many algorithms existing in literature [I1] 2] [I§], to convert multi-rate and
cyclo-static data-flow graphs into single-rate data-flow graph. Let us illustrate the un-
derlying concept of converting MRDF graphs to SRDF graphs. We use this conversion
technique to analyze the proposed MRDF-model in chapter [7]

To understand the conversion of MRDF graphs into SRDF graphs, we first describe the
concept of a repetition vector. The repetition vector of a data-flow graph defines the
number of firings for each actor in the graph after which the number of tokens on each
edge of the graph remain unchanged [II]. In other words, the repetition vector of a
graph with s actors is described using a column vector ¢ of length s, such that if each
actor i is fired a number of times equal to the i-th entry of ¢, then the number of tokens
on each edge is the same as the initial delay defined for that edge.

Figure (a) shows a MRDF graph with two actors A and B such that for every two
firing of the actor A there are three firings of the actor B. The repetition vector for this

graph can be expressed as:
L (2
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@ (b)

Figure 2.5: Converting a multi-rate data-flow graph to a single-rate data-flow graph

To convert this MRDF graph into an SRDF graph we replicate each actor by the number
of firings specified in the repetition vector, i.e. g(A) = 2 and ¢(B) = 3 are the number of
firings of A and B, respectively, as defined in ¢. We now have two SRDF actors Ay, and
Ay for the single MRDF actor A such that each SRDF actor of A represents a separate
firing in the repetition vector for A. Similarly, B, B2, and B3 are the SRDF actors for
B.

To complete the MRDF to SRDF conversion, we must connect the single-rate actors
such that the tokens produced and consumed by every firing of each actor in the SRDF
graph, remains identical to the firings in the original MRDF graph [II]. Figure (b)
shows the SRDF equivalent of the MRDF graph shown inf Figure (a).

2.4 Using Single-Rate Data-Flow to represent Embedded
Streaming Applications

SRDF Graphs have been extensively used in literature to represent streaming applica-
tions running on an MPSoC platform [3, [, @ [7 [, 8 [I]. A streaming application
is made up of multiple single-threaded jobs communicating with each other. We can
represent such an application as an application graph within the constructs of data-flow.
Each job of the application is represented as a separate actor, while the communication
between the jobs is represented via the edges connecting these actors. The firing time of
actors describes the worst-case execution times of the corresponding jobs. For instance,
Figure shows a wireless LAN application modeled as a data-flow graph.

An application graph can be further extended to capture a variety of application de-
tails, such as constraints on buffer sizes for the communicating jobs [9], [I9], [20], and
representing the effect of resource arbitration [6l [7, I 21 8] 111, 21 221 23].

This thesis focuses on modeling only the effect of resource arbitration, particularly arbi-
tration via Time Division Multiplexing [TDM]. Chapterprovides a detailed description
of modeling and analysis of TDM arbitration using data-flow. Let us consider, for now,
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Figure 2.6: Representing a WLAN application using a data-flow graph (figure taken from [g].
Same as figure [1.3)

that the effect of TDM arbitration on a job can be represented via a SRDF-based re-
sponse model of that job. This response model defines a upper-bound on the worst-case
temporal behavior of a job scheduled using TDM. Figure shows an arbitrary job
x in an application, represented as a single-actor, being replaced by a response model
consisting of two actors xy, and xr used to describe the worst-case temporal behavior of
resource arbitration on the job x. This response model in commonly called the Latency-
Rate [LR] model [I0]. The features of this model have been discussed in detail in chapter

OG-0 = OG-0

Figure 2.7: Replacing a job actor in an application by its response model to capture the effect
of resource arbitration

We can compositionally model the worst-case temporal behavior of communicating jobs
by representing each job by its response model. The graph obtained by replacing each job
for its response model can be used for conservative temporal analysis of each application
separately. Figure 2.8 shows how to extend an application graph to capture the effect
of resource arbitration by replacing each job actor in the graph by its corresponding
LR-model.
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Figure 2.8: Extending an application graph to capture the effect of resource arbitration

2.5 Temporal Analysis of Embedded Streaming Applica-
tion

The graph obtained by replacing each job for its response model can be used for con-
servative temporal analysis of each application separately. This section gives a brief
overview of some of the techniques used to perform temporal analysis of the application
graphs. The modeling approaches presented in this thesis can be used by these analysis
techniques to establish real-time guarantees for an application such as guaranteed min-
imum throughput and guaranteed maximum latency. The focus of this thesis is not to
improve the analysis techniques themselves, but to improve the modeling of worst-case
temporal behavior of applications such that it facilitates more accurate analysis.

2.5.1 Simulation based Analysis

Application graphs can be analyzed by simulating the self-timed execution of the appli-
cation graph to get a finite state space. The state-space consists of a finite sequence of
state transitions followed by a sequence that is periodically repeated ad infinitum [24].

Since the application graph is considered to be strongly-connected, every actor depends
on tokens from every other actor in the graph. This guarantees that there is a bound
on the difference in the number of firings of actors, relative to the corresponding entries
in the repetition vector. Therefore, the number of tokens that may accumulate on any
edge is bounded. Also the amount of auto-concurrency is bounded such that only a finite
number of actors can fire simultaneously. Since both the number of simultaneous actor
firings and the number of tokens on any edge in the application graph are bounded, the
number of states of an SDFG in self-timed execution is finite. The continuous self-timed
execution will now have to re-visit some states in some periodic fashion, signifying that
the execution has some periodic regime.

We can compute the throughput of an actor a during a simulation run ¢ such as the
average number of firings of the actor a per time unit in ¢ Since the simulations can run
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infinitely, we compute this average as:

Fla (2.4)

Simulation based tools have been extensively used for throughput calculation in [19]
211 22, 23] 24]. Some approaches [2I] 22] make use of response modeling of each job
in the application such that each job is represented by its worst-case response model.
Others [19] 23] 24], use simulation tools that do not use a unified model for representing
an application and the worst-case effect of resource arbitration within the same graph.
Instead the application graph is constructed in which each actor represents the worst-
case execution time of the corresponding job. An additional independent binding aware
time function is used to keeps track of the simulation time wheel, in the case of TDM
arbitration, to capture the effect of resource arbitration.

Practically, most of the simulations for application graphs take a very short time to
establish throughput guarantees. But theoretically, although the state space of the
simulation is finite, it cannot be bounded in polynomial space. In [24], it is shown
that the periodic behavior (number of state transitions) of a graph is a multiple of
the repetition vector of a graph. Furthermore, the throughput of a graph computed
using simulation based analysis gives the throughput for that simulation run only. The
justification provided is that since data-flow is monotonic, simulating the worst-case
arrival times of job iterations will provide the worst-case throughput of the graph [23].

2.5.2 Static Analysis

Analysis of the temporal behavior of the obtained response model via data-flow analysis
enables us to define the minimum guaranteed throughput and maximum latency of the
system. In [25], it is shown how latency constraints can be converted into throughput
constraints as long as the best-case temporal behavior of the source of the system is char-
acterized. To compute throughput of the given system we first compute the Maximum
Cycle Mean (MCM) of the obtained response model. We stick to the MCM computation
as already described in [8]. The cycle mean of a cycle ¢ in a timed SRDF graph is defined
as

ZaieV c tai
e = SO (2.5)
EEEE(C) d(e)

where V(c) is the set of all nodes traversed by cycle ¢ and E(c) is the set of all edges
traversed by cycle c.
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The MCM g of a timed SRDF graph G is defined as:

o tas
w(G) = max Zalev(c)

Zcrlo) B 2.6
ceC(G) D eers(c) A(€) (26)

where C(G) is the set of cycles in graph G. The inverse of the MCM of a timed SRDF
graph provides a fundamental upper bound to its minimum throughput [26]. We say that
an application has a guaranteed minimum throughput described by this bound for the
current setup of TDM arbitration. In practice the static analysis of an application takes
longer than simulation based analysis. However, many algorithms used to compute the
MCM of data-flow graphs have polynomial complexity [27]. Also, static MCM analysis
provides worst-case guarantees of throughput and latency irrespective of the arrival times
of job iterations [26].
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Chapter 3

Resource Arbitration via Time
Division Multiplexing

Till now we have presented the use of data-flow in generating application graphs for
streaming applications. We will now look in detail to the use of data-flow to capture
the effect of resource arbitration, particularly Time Division Multiplexing [TDM], of a
single job. We first briefly present the mapping of embedded streaming application to
the resources on an MPSoC platform and the need of resource arbitration. We then
describe the use of TDM arbitration as a means of facilitating effective resource sharing
among jobs mapped to the same resource. We then formalize the wost-case temporal
behavior of job iterations scheduled using TDM arbitration. Finally we present the
existing state-of-the-art data-flow models used for capturing this worst-case behavior.

3.1 Overview

An embedded streaming application for an MPSoC platform constitutes of multiple
communicating jobs such that each job is mapped to a specific resource on the MPSoC
platform. Figure [3.1] shows a sample embedded streaming application mapped to a
MPSoC. The jobs are mapped to three different resources, such that jobs B and C are
mapped to the same resource R2, while jobs A and D are mapped to resources R1 and
R3 respectively.

For cost-effective reasons, multiple applications are deployed on a single MPSoC platform
such that resources on the MPSoC are shared by jobs that may belong to different
applications. All the jobs mapped to the same resource run on that resource via some
arbitration mechanism. Time Division Multiplexing is a simple resource arbitration
mechanism in which each job is allotted a fixed amount of time, called slice, within a
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Figure 3.1: Application as a SRDF graph and mapped to MPSoC

fixed time frame, called replenishment period. This replenishment period is the same for
all jobs, but the slice sizes may be different for different jobs. There may also be slices in
a replenishment period in which no job is executing. Figure depicts a simple TDM
scheduling scheme, called a time wheel, for the resource R2 (refer Figure . Figure
[3:2] depicts resource allocation for jobs B and C' in their respective slices, while the rest
of the replenishment period may be assigned to a job of another application or may
remain idle. In a streaming application, all jobs have to be iteratively performed for
each data item in the input stream. Therefore each job executes for multiple iterations
(once for each input data item). In TDM arbitration, all iterations of a job must execute
only during the slice allocated to that job within a single replenishment period. At the
end of the slice, the execution of the current iteration of that job is pre-empted, and is
only allowed to resume execution at the start of the next slice in the next replenishment
period.

OTHER
JOBS / IDLE

Figure 3.2: A sample TDM time wheel

3.2 Formalizing the behavior of TDM arbitration

We formalize the temporal behavior of TDM arbitration by expressing the finish time of
an iteration in relation to the the finish times or start times of the previous iterations. A
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sequence of consecutive job iterations is where every iteration, except the first iteration
in the sequence, arrives before its previous iteration finishes executing. The execution
of each iteration will have to wait until all previous iterations have finished executing.

Consider that for a sequence of n consecutive job iterations, s, is the arrival time of
the first iteration in the sequence and f,, is the finish time of the last iteration in the
sequence. If each job iteration takes t4 time to execute, n - t4 is the total execution
time required. This amount of time can be expressed in terms of the slice size as
|Z4] - S+ (n-ta % S) ie. we will require | %% ] complete slices and and additional
(n-ta % S) time for the remaining execution. We require |44 | periods for each slice
that is consumed completely, and if n-t4 % S # 0 then an additional waiting time of
P — S is required before the job is allotted a slice to complete the remaining (n-t4 % S)
of the execution time. We define the execution of a sequence of n consecutive iterations
as.

i = s+ |24 - P ifn-ta %S=0 (3.1)

T se | HA P (P-S)+(n-ta%S) ifn-ta% S#0 '

Equation [3.1] gives a formalization for the worst-case finish time of each iteration of a
continuous sequence of consecutive job iterations by expressing the finish time of that
iteration as the finish time of the sequence and updating the length of the sequence
accordingly. Although this formalization seems straight-forward, to the best of our
knowledge, the worst-case temporal behavior of TDM arbitration defined via Equation
[3] cannot be found in literature.

3.3 Response Modeling of TDM Arbitration using data-
flow

We will now discuss the existing approaches to model the worst-case effect of TDM
arbitration. There have been many response models proposed to capture the worst-case
temporal behavior of jobs scheduled using TDM arbitration. Let us look at some of
them one by one.

3.3.1 Single-actor Response Model

The most simplistic approach is to model the temporal behavior of the job as the worst
case response time [6]. Consider an arbitrary job with execution time t, for a single
iteration of the job. The job is alloted a slice of size S per replenishment period P. We
can represent the execution time in terms of the slice size as t, = [%]- S+ [t, % S]. We
express that the maximum time required for completing a single iteration of the task
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is %] P+ [ty % S] from the time the iteration starts executing. It is also possible
that a job iteration arrives (marked by the arrival of the corresponding input data item)
outside the allotted slice for that job. It will then have to wait for the next slice assigned
for that job to start executing. In the maximum initial waiting time is P — S, i.e. when
the job iteration arrives just after the job slice has ended. Therefore we can express the
total response time of this model as (P — S) + [%&] - P+ [t, % S]. Bekooij et al [6] uses
this value to model the worst-case temporal behavior of a job scheduled using TDM by
representing a job x as a single actor v, with firing time:

Hus) = (P — S) + L%j P+t % S| (3.2)

Figure 3.3: A job in an application represented using a single-actor response-model

Since a job iteration can execute only after all previous iterations have finished, [6] adds
a self-edge to a job actor with a single token delay. Figure shows a single job z of
an embedded streaming application represented using a single-actor response-model v,,.

The temporal behavior of this response model defines the upper bound on the worst-case
temporal behavior of the job. Consider, that the availability or arrival of data input for
the job is represented by arrival of tokens on the incoming edge of actor v,. There may
be multiple inputs from different sources for a job, but let us consider for now, that
this can be represented a single edge. The arrival time a(7) for the i=th input token
on this edge, is the time at which the firing condition posed by all incoming edges from
all external sources is satisfied. Similarly, there may be multiple outputs produced by
the job meant for multiple jobs. This can also be represented by a single outgoing edge,
such that the the i-th job iteration finishes at time f (1) and produces of the i-th output
token on this outgoing edge. We can now describe the temporal behavior of this model
according to the firing constraints posed by the two incoming edges of the single actor.
The self-edge restricts a firing of the actor, i.e. the execution of a single iteration of
the job, to start only after the previous iteration has finished. This is expressed as
f(i) > f(i —1) + t(vy). The other firing constraint is due to the edge on which data-
inputs arrive. This constraint can be expressed as f(i) > a(i) + t(vz). The combination
of these two constraints define the overall behavior of this model as:

f(i) = max(a(i), f(i — 1)) + t(vs)
ty

= max(a(i), f(i— 1))+ (P —S5) + [5)- P+ [te % 5] (3.3)
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Bekooij et al 6], illustrate that the single-actor response model is an upper bound to the
worst-case temporal behavior of TDM arbitration and argue that it is conservative. In
section [3.4] we discuss how we can formally prove the conservativity of a model. The full
proof of the conservativity of the single-actor response model is provided in Appendix

A2

3.3.2 Latency-Rate model:

In [8 [, it is shown that jobs represented by a single actor response model have very
pessimistic estimates. Instead, they describe the worst-case response time on the basis
of two different effects of TDM arbitration, i.e. latency and rate. The latency defines the
maximum time (including waiting time for allocating a slice) before which a job iteration
will finish execution. The rate defines the response time of consecutive job iterations
once it has started execution. Latency and rate have been modeled as a combination
of two actors in [I] and used to capture a more accurate worst-case influence of a TDM
scheduler.

PERIOD (P)

t,. P
tx)=P-S  tlxp) = xs

(@) (b)
Figure 3.4: (a)Sample TDM Schedule. (b) LR-model for a TDM scheduled job

Consider a job z that has been allocated a slice S on a resource with replenishment
period P. In Figure b), the temporal behavior of the job on a TDM scheduler is
modeled using two data-flow actors xy, and xr. The production and consumption of
data containers by job x is modeled by the production and consumption of tokens in
the constructed data-flow model. The enabling condition of job z is equal to the firing
rule of actor . The firing times of the two actors are defined as t(zy) = P — S and
t(zg) = % where ¢, is the execution time for a single job iteration, and P and S are
the replenishment period and allotted slice respectively.

Similar to the single-actor response model, the arrival time of a job iteration is modeled
as the arrival time of an input token on the incoming edge of the actor x,, and the finish
time of a job iteration is modeled as the finish time of the actor xg. As the execution
of the data-flow actors is self-timed, actor x; can fire as soon as a token arrives on its
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incoming edge. Therefore, we can represent the start time of the i-th firing of x, as the
arrival time a(7) of the i-th input token, i.e. f(xp,i) = a(i)+t(x4) . Similarly when the
actor x g finishes its i-th firing, it produces the i-th output token on the outgoing edge of
xr and represents the finish of the ¢-th job iteration. Therefore the modeled finish time
£(i) of the i-th iteration is also the finish time of the i-th firing of zg, i.e. f(zg,i) = f(i).
If we observe the firing constraints of the actors, they all can be represented in terms of
either the arrival time or finish time of some job iteration. We can, therefore, express
the modeled temporal behavior of the job only in terms of the arrival and finish times
of job iterations, and ignore the start times and finish times of individual actors in the
model.

The bound defined by the LR-model can be attributed to two firing constraints. The
first is the self-edge on the actor g giving us the constraint f(i) > f(i —1)+t(xg). The
second firing constraint can be viewed as a chained constraint in which xg fires as soon
as a token is produced by xr, and zj, in turn will fire only when a token arrives from
its incoming edge. The firing constraint due to this chain can be expressed as the sum
of the firing times of both these actors, i.e. f(i) > a(i) 4+ t(xL) + t(xgr). The temporal
behavior of this model can now be defined as:

A

fi) = max(a(i) +t(ay) + t(zr), f(i = 1) + t(xp))

= max(a(i) + (P - S) + P St fli—1)+ P ‘St””) (3.4)
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Figure 3.5: Representing a single job actor as an LR-model to capture the worst-case effect of
TDM arbitration

The LR-model, provides a tight conservative estimate of the worst-case temporal behav-
ior of TDM arbitration. The full proof of the conservativity of the LR-model is provided
in Appendix [AZ3] However, in section [£.I] we illustrate the existing pessimism in the
LR-model and the need for more accurate analysis of the worst-case temporal behavior
of TDM arbitration.

3.3.3 Staschulat’s LR-Model

Based on the latency-rate model [, Staschulat et al [2] proposed a model that accurately
models the response time of a memory arbiter. The general assumption he makes is that
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the time required for a single memory access is fixed such that a fixed number of memory
accesses can occur within a single slice. That is to say that the size of the slice allotted
for a memory access job is a integer multiple of the time taken by a single iteration of
the job. Under this consideration, the modeling of the rate of service for a job can be
further split into actual slice consumption and inter-slice waiting time.

tlxw) = P— ty

Figure 3.6: Representing a single job actor as a Staschulat’s LR-model to capture the worst-case
effect of TDM-based memory arbiter

Figure [3.6] shows an instance of Staschulat’s model for a memory arbiter. Consider a
memory access job z that has been allocated a slice S on a resource with replenishment
period P. The temporal behavior of the job on a TDM scheduler is modeled using three
data-flow actors xy, xw, and zr. xw and xpr together represent the rate of service
provided by TDM arbitration. The delay n specified on the edge (zyw,xzr) defines the
number of job iterations that can be completed within a single slice. This relation is
expressed as n - t, = S where t, is the execution time for a single iteration and S is
slice size. The firing times of the actors are defined as t(xy) = P — S, t(xgr) = tzép and
t(xw) = P — ty, where t, is the execution time for a single job iteration, and P and S
are the replenishment period and allotted slice respectively. The temporal behavior of a
LR-model for a TDM scheduled job is illustrated in Section 4.1.1

The bound defined by this model is a combination of three firing constraints. Similar
to the previous models, there is a constraint due to the the self-edge (i.e. f(i) > f(i —
1) + t(zg)) and another constraint based on the arrival of incoming tokens (i.e. f(i) >
a(i) + t(xr) + t(zgr)). A third constraint is defined by the loop between actors zp and
xw. As there are n tokens initially placed on the edge (xw,xRr), the first n firings
of xr are not constrained by this loop. The n + 1-th firing of xr will, however, be
constrained to fire only after the first firing of the actor xy produces a token, which
in turn is constraint by the first firing of actor xr. We can express this constraint as
f(@) > f(i — n) 4+ t(zw) + t(xg). The temporal behavior thus modeled is given as

f(i) = max f(z —1) +t, (3.5)
i
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Staschulat’s LR-model is an accurate representation of the worst-case temporal behavior
of the modeled TDM arbitration setup. The full proof of the conservativity of Staschu-
lat’s LR-model is provided in Appendix [A4] In section we show that Staschulat’s
LR-model has very restrictive applicability such that it can only model exceptional cases
of TDM arbitration. This model is, thus, suitable for very few applications such as for
modeling memory arbiters.

3.4 Conservativity of data-flow based models for TDM ar-
bitration

The models explained in section claim to capture the worst-case temporal behavior
of a job scheduled using TDM. The temporal behavior of a job iteration is defined in
terms of the arrival time, i.e. the time at which the job iteration is ready to execute,
and the finish time, i.e. the time at which the job iteration completes its execution. By
definition, modeling the worst-case temporal behavior of a job scheduled using TDM
arbitration implies that, given the worst-case arrival time of a job iteration, the model
defines the worst-case finish time bound of that iteration. In other words, the actual
finish time of a job iterations is, in the worst-case, equal to the finish time obtained
using these models. This property of modeling an upper-bound for the finish times of
job iterations is called comservativity and is defined as:

Definition 1. A data-flow model is conservative if, whenever the modeled arrival times
a are an upper bound to the actual arrival times a, the modeled finish times f are an
upper bound to the actual finish times f. Formally, this means that:

Viso a(i) < a(i) = Viso f(i) < f(i) (3.6)

In section [3:2] we have formalized the worst-case temporal behavior of the actual ex-
ecution on job iterations. To claim that them models proposed in [@], [, and [2] are
conservative, we need to show that the temporal behavior defined by these models are
an upper bound to the worst-case temporal behavior defined in section such that,
Equation [3.6) holds. In Appendix[A] we provide the complete proof for the conservativity
of each of these models.

3.5 TDM arbitration and Static-Ordering

Until now, we have discussed the resource sharing of jobs using TDM arbitration such
that each job is allocated an independent slice to execute in irrespective of whether the
jobs mapped to the same resource belong to the same or different applications. The
main problem with such a strategy is that the bounds on the worst-case response times
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of actors executing on independent TDM slices completely overlook the fact that, within
a application, we have more information about the interdependence of jobs [§]. For
instances, a set of jobs may be mutually exclusive. In an SRDF application graph, this
can be observed when the job actors belong to the same single-delay cycle.

(n) ()
(&)
® | © @)

(@) (b)

Figure 3.7: (a) Jobs are assigned independent slices. (b) Jobs are in a static-order and are
assigned the same slice (figure taken from []])

Allocating a different slice to each of these jobs wastes resources. Instead, if all share
the same slice, each job can use the whole slice when enabled [§]. As we assume static
processor allocation, we know that actors allocated to the same processor are already
forced to execute in mutual exclusion. This is called static-ordering of jobs in an appli-
cation. Mixing TDM with static-ordering assigns a TDM slice for a group of mutually
exclusive jobs in a static-order instead of assigning each job with a separate slice. Figure
shows an instance where three jobs mapped to the same resource are (a) assigned
independent slices; and (b) are grouped is a static order and assigned a single slice of
size equal to the three independent slices.

Moreira et al [§] show the advantages of incorporating static-order in TDM arbitration
and modeling this resource arbitration mechanism using the LR-model. In chapter
we address the issue of modeling TDM with static ordering using the data-flow models
proposed in this thesis.
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Chapter 4

Problem Description

This chapter gives an account of the problems with the state-of-the-art models in defining
the worst-case temporal behavior of a job executing on a TDM scheduled resource. We
illustrate how the existing models are inadequate in accurately capturing the worst-
case temporal behavior of TDM arbitration. The existing approaches are either too
pessimistic such as the LR-model [I], or they can only model exceptional cases of TDM
arbitration such as Staschulat’s LR-model [2].

We first illustrate the pessimism in defining the worst-case temporal behavior of TDM
arbitration using the LR-model. The worst-case temporal behavior of TDM arbitration is
defined as the worst-case finish time of job iterations scheduled using TDM arbitration.
We show that the LR-model significantly over-estimates the worst-case finish time of
the iterations of an arbitrary job. Compositionally, if each job in an application is
represented by a pessimistic model, the overall worst-case temporal behavior obtained
has a high degree of pessimism. This pessimism affects the analysis of the hard real-time
guarantees of the application, thereby requiring over-allocation of resources to satisfy
these requirements. Over-allocation of resources will lead to low system utilization and
also unnecessary rejection of applications that could have been accommodated in the
system.

Following this, we show that Staschulat’s LR-model is restricted to exceptional cases of
TDM arbitration. This model makes the basic assumption that the size of slice allocated
to a job is an integer multiple of the execution time of a single job iteration. This model,
can therefore be used to model only a confined class of applications such as memory
arbiters. Although the model accurately defines the worst-case temporal behavior of a
job satisfying this assumption, we cannot use this model for a broader class of TDM
arbitration.
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4.1 Pessimism in the LR-model

In this section we will first illustrate some simple cases that highlight the pessimistic esti-
mation of the worst-case temporal behavior of TDM arbitration using the LR-model. We
then identify and generalize the cause of this pessimism and show that it can potentially
lead to very high degree of over-estimation.

4.1.1 Illustration of the problem

Consider a TDM scheduler with a replenishment period P = 100 that schedules a job
with execution time t4 = 4 in a slice S = 10 per replenishment period. To make the
analysis simple we assume that each job iteration can execute as soon as the previous
iteration finishes, i.e. all iterations are assumed to be ready to execute at the start of the
system. The slice allocated in every period is just before the start of the next period, as
shown in Figure We consider this particular slice allocation as it has the maximum
initial waiting time before a slice is allocated and , thus, is identified as the worst-case.

ACTUALSLICE

ALLOCATION

SIMULATED

EXECUTION k| |2 = |
0 100 200

Figure 4.1: Actual temporal behavior for the given TDM schedule

t(A)=P—S=90

Figure 4.2: Modeling the temporal behavior for the given TDM schedule

Figure shows the LR model for this example. To capture the effect of initial waiting
time as part of the latency, we use actor Ay, with firing time t(Ar) = P — .S = 90. The
rate is modeled as the actor Ar with firing time t(Ar) = % = 40. Table compares
the actual finish time of each iteration with the finish time of the corresponding output
token defined by the LR-model, assuming that all the input tokens are available at the
input FIFO of the actor Ay, at the start of the system. This assumption is equivalent

to all job iterations being ready at the start of the system.
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Iterations — 1 2 3 4 5 6 ...
Actual Finish Time 94 98 192 196 | 200 | 294 ...
LR-Modeled Finish Time | 130 | 170 210 250 | 290 | 330 ...

Table 4.1: Actual and LR-modeled finish times for TDM arbitration

Now consider the same TDM period and slice size setup for another job with execution
time tp = 15. Figure [4.3] shows the time line of the execution of consecutive job itera-
tions. Figure [£.4] shows the LR-model for this example. Table .2] compares the actual
finish time of each iteration with the finish time modeled using the LR-model for this
job.

ACTUALSLICE
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EXECUTION 1 112 2
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Figure 4.3: Actual temporal behavior for the given TDM schedule

t(B)=P—5=90

_tyP
t(Bp) = ¢ =150

Figure 4.4: Modeling the temporal behavior for the given TDM schedule

4.1.2 Analyzing the pessimism in the LR-model

As can be seen from both the examples, the LR-model highly over-estimates the finish
time of each iteration. The finish time bounds for the LR-model, are governed by
the firing time of the rate actor, given by %‘ - P, which generalizes the overall rate of
execution of consecutive iterations. Since the replenishment period is always greater than
the allotted slice(i.e. P > S), we can observe that the modeled bound overestimates the
required time for execution by a factor of %. This factor becomes more significant for
larger differences between the slice and the replenishment period, leading to pessimistic
estimation of the temporal behavior. If each job in an application is represented using the
LR-model, the overall pessimism gives a high over-estimation of the temporal behavior
of the entire application. This causes over-allocation of resources to satisfy the real-time
requirements of the application.
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Iterations — 1 2 3 4 5 6 ...
Actual Finish Time 195 | 300 | 495 600 | 795 | 900 ...
LR-Modeled Finish Time | 240 | 390 540 690 | 842 | 990 ...

Table 4.2: Actual and LR-modeled finish times for TDM arbitration

4.2 Restricted Applicability of Staschulat’s LR-Model:

Staschulat’s LR model makes the basic assumption on the characteristics of TDM arbi-
tration setup that the slice allocated to the job is just enough to complete a fixed number
of task iterations. The number of iterations accommodated in a single slice is defined by
the delay on the edge (zw,zRr) expressed as d(zw,xr) = n. For a slice size S allocated

to a job with execution time t,, we compute the value of n as % As the delay on an

edge has to be an integer, the value of n = 2 is an integer, i.e. S is an integer multiple

22
of t;.

Figure 4.5: Staschulat’s LR-model

Due to this restriction, Staschulat’s LR-model is only applicable when the TDM setup
satisfies the above criteria. Under this assumption, however, it must be noted that
Staschulat’s model provides accurate estimates of the worst-case temporal behavior of a
job scheduled using TDM arbitration. The results and proof of this accuracy is provided

in [2].

The initial assumption made by Staschulat’s LR-model limits its use to a small number
of applications that satisfy this assumed criterion, for example, a memory arbiter. In
most applications, however, execution of a complete iteration of a job cannot be accom-
modated in a single slice, to have an efficient resource sharing mechanism among the
jobs sharing that resource. The execution of a job iteration is spread across multiple
slices and this cannot be modeled using Staschulat’s LR-model. Although some jobs
in an application may be accommodated is a single slice, the restriction on the size of
the slice allocated may result in sub-optimal performance of TDM arbitration and may
possibly not satisfy the required real-time guarantees.
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Modeling TDM Arbitration:
Latency-Phased-Rate Model

In this chapter, we present our first approach to improve the estimation of the worst-
case temporal behavior of a job scheduled using TDM arbitration. We first give a brief
overview of our approach. We then illustrate an instance of our model and observe
the modeled temporal behavior for a job. This illustration gives an intuitive idea of
our approach. Next, we formalize the construction of this model. We then analyze
this construction to derive the bound given by the model on the worst-case temporal
behavior of TDM arbitration.

5.1 Overview

We initially assume that the execution time of a single job iteration is smaller that the
size of a single slice. The execution of continuous iterations of a job using TDM can
be shown to have a cyclic pattern over a fixed number of replenishment periods. Our
approach is to model this pattern using single-rate data-flow by capturing the execution
behavior for each replenishment period separately. This enables us to accurately specify
worst-case behavior for each period rather than generalizing over all periods, as done in
[6l B, O]. The obtained result shows a tighter approximation of resource requirements
enabling improved resource utilization. Unlike some existing models [2], we do not pose
restrictions on the size of the slice allocated to a job. This enables optimized resource
allocation for TDM arbitration. We then show that we can extend this model to capture
the cyclic pattern for jobs with arbitrary execution times and slice allocation. As the
job execution in each replenishment period of the cyclic pattern can be considered as a
separate phase, having its own rate of execution, we call our model the Latency-Phased-
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Rate (LPR) model.

5.2 Sketch of the proposed approach

Consider the same example as depicted in section Figure shows a time line
of the simulated execution. The first iteration executes after waiting for its slice and
executes completely from time 90 to 94. The second iteration starts immediately at time
94 and finishes at time 98. Now the remaining slice (98 to 100) is not enough to execute
the third iteration completely. The third iteration has to halt execution at the end of
slice at time 100 and resumes execution only after it receives the next slice at time 190
and finishes execution at time 192. The fourth iteration has enough slice time left and
finishes execution at time 196. The fifth iteration has just enough slice remaining to
execute completely within the same slice and finish execution by time 200. This pattern
repeats itself from the sixth iteration onwards.

MODELED SLICE
ALLOCATION

T
PHASE SLICES

MODELED :
EXECUTION . PP

0 100 200

Figure 5.1: Modeled temporal behavior for the given TDM schedule

The arrival time and finish time of a job iteration are the only relevant aspects of the
temporal behavior, irrespective of when the execution actually happens. This allows us to
shift the partial execution of the iteration from the slice in which it started executing, and
join it to the slice in which it completes. For instance, the execution of the third iteration
that starts in the first slice, can be modeled as an extended part of the second slice, as
shown in Figure We now model the execution pattern as the number of iterations
that finish execution in a particular period within the modified slices. Each modified
slice, which we refer to as phase slice, represents a different phase in the execution
pattern. Each phase slice can be derived based on the amount of time remaining in the
previous slice after executing the last iteration that finishes execution in that slice.

The LPR-model for the current example is shown in Figure We model each phase
as a separate actor sequentially linked to each other forming a cycle. The number of
iterations that can execute in a phase is given by the initial tokens present on each link.
There is an initial waiting time for the first job iteration of the entire cyclic pattern,
and is modeled using a separate actor. The execution of an iteration is modeled with a
self-looped actor such that only a single iteration can execute at a time. Table shows
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Figure 5.2: Proposed data-flow model

the temporal behavior defined by the LPR-model in comparison to the LR-model [].

Iterations — 1 2 3 4 5 6 ...

Actual finish time 94 98 192 196 | 200 | 294 ...
LR-modeled finish time 130 | 170 210 | 250 | 290 | 330 ...
LPR-modeled finish time 94 98 192 196 | 200 | 294 ...

Table 5.1: Comparison of obtained finish times using LR-model and our model

5.3 Construction of the model

Formally, a job executing on a TDM scheduled resource is described as a 3-tuple (P, S, t,)
where P is the replenishment period of the TDM arbitration, S is the size of the slice
allocated to the job and t, is the execution time of a single job iteration. The temporal
behavior has a cyclic pattern of length g periods expressed as:

B lem(S,t;)

- (5.1)

We say that the sum of the slices, given by ¢ - .5, is just sufficient to completely execute
m job iterations, where m = % Each job can be modeled as an SRDF graph
component G(P, S,t;) = (V, E,d,t). V is the set of actors of the model given by:

V={zl <i<qg+1}u{w}, (5.2)
where each phase actor z; € V describes a separate phase of the cyclic pattern. The
latency actor w is used to represent the effect of the initial waiting time on the latency

of a job iteration.

The edges are defined such that the phase actors form a cycle, and there is an edge from
the latency actor w to each of the phase actors. There is also a self-edge from the actor
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x1 to itself.
Ex={(zit1,2:)[1 <1 < ¢} U{(21,241), (21, 21)} U{(w,z)[1 i < g+ 1} (5.3)

We now add initial tokens (delay) d on each edge, such that d(x;11,z;) for 1 < i < g
represents the maximum number of job iterations that can execute in the i-th phase,
given by:

d(xj’xi) =

{fJ_L(Zt?SJ forl<i<gandj=i+1, (5.4)
1

fori=j=1.

The delay for all other edges in the LPR-model, i.e. the edges connecting the latency
actor w to the phase actors xy...x441, is set to 0.

d(w,z;) =0 for 1 <i<g+1. (5.5)

The firing time of the latency actor is given by t(w) = P — S. The firing time ¢(x;) of
each phase actor x; € V defines the start time of the phase slice based on the amount
of execution time leftover from the previous phase slice after last iteration that finishes
executing in that phase slice, expressed as:

ty fori =1,
(i—1)P—[(i—1)-S % t]

t(xi) = —((i—=2)-P—[(i-2)-5 % t]) for 2 <i<gq (5.6)
(@)-P—1[(q)-S % ta]

[ —((¢g=1)-P—[(¢g—1)-S%ty]) —t, fori=q+1.

We have defined the the set of actor V and the edges F connecting the actors in the
LPR-model in Equations[5.2]and 5.3 respectively. Equation [5.4]defines the delay for each
edge e € E in the LPR-model, while Equation defines the firing time of each actor
v; € V for the LPR-model. Thus, we provide a formal definition for the construction of
the LPR-model as (V, E, d,t) for the TDM arbitration setup for the job (P, S,t,).

5.4 Analyzing the modeled bound for the worst-case tem-
poral behavior

In this section we now analyze the LPR-model construction described in the previous
section. We first establish the bound defined by the LPR-model for the worst-case
temporal behavior of TDM arbitration. We then demonstrate that the LPR-model is
conservative. We then compare the LPR-model with the state-of-the-art model [I] 2].
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Initially we assume that the execution time of a single job iteration is smaller than the
allocated slice. We later show how to extend the LPR-model to conservatively capture
the worst-case temporal behavior of TDM arbitration of jobs with arbitrary execution
times.

5.4.1 Establishing the LPR-modeled bound for the worst-case tempo-
ral behavior of TDM arbitration

We assume the self-timed behavior of the data-flow actors, i.e. an actor fires as soon as
its enabling condition is satisfied. Based on the model construction in section we
can now derive a constraint on the finish time of the first iteration in each phase as:

7i) > max fa(i— (V=15

1<5<q tm

D+ P =5+0G-DP =[G =1)-5%t] +1:} (57)

There are total of 4= S M = m tokens in the cycle of phase actors. This gives us

a constraint for the start of the next cycle given by:

~

f(@)> fti—m)+q- P, (5.8)

lem(S,ts)
12

where m = and 7 is the first iteration in the new cycle.

The actor z1 has a self loop with a single token, ensuring non-overlapped execution of
job iterations. This bounds the finish time of a job iteration to finish at least ¢, time
after the finishing of the previous iteration, expressed as:

f) = fi—1)+ (5.9)

The above construction generates a maz-expression to bound the firing of the i-th iter-
ation of the job given by

maxi<j<q{a(i — Y725 )) + (P - )+
P (]’_1>'P_[(j_1)'s%tac}+t;r}

f(i) =max q . (5.10)
f(l - 1) + tw?
where ¢ = % Thus, we establish the LPR-modeled bound for the worst-case finish

time for each iteration of a TDM scheduled job.
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5.4.2 Conservativity of the model

We now prove that our model is conservative in defining the worst-case temporal behavior
of TDM arbitration. The formal definition of conservativity as it is used in data-flow
graphs [6] usually guarantees both the over-approximation of the behavior of a single
job, as well as the compositionality of over-approximations when jobs are combined in a
larger model. In section [3.4] we have defined the conservativity property of a data-flow
model for TDM arbitration. Recall, that the model is conservative if:

Viso a(i) < a(i) = Viso f(i) < f(i), (5.11)

where a(i) and f(i) are the actual start time and finish time, respectively, of the i-th
job iteration, while @(i) and f(i) are the corresponding LPR-modeled start and finish
time respectively.

Theorem 1. The graph G(P, S,t;) as defined in the previous section, is a conservative
model for a TDM-scheduled job with worst-case execution time t,., that is assigned a slice
S per period P.

Proof. We have formalized the worst-case behavior of TDM arbitration in section [3.2]
as:

(5.12)

[ Sn+Ln;IJ‘P ifn-t, % S=0
" et B P (P S) 4 (ot %) ity %SO

where s, and f, are the start time and finish time respectively, of a consecutive sequence
of multiple job iterations of length n. In order to prove conservativity of the LPR-model,
we show that worst-case temporal behavior of TDM arbitration defined by the LPR-
model is an upper bound to this formalization defined in section [3:2] We show that each
iteration can be associated (represented in the model) with a token present on the cycle
of phase actors in the proposed model. The execution behavior of a job iteration can be
enumerated as follows:

Case I: If a job iteration arrives in isolation i.e. if the arrival of the i-th job iteration is
after the finishing of its previous iteration (a(i) > f(i — 1)), it can be considered as the
first job iteration of a consecutive sequence (i.e. n = 1). We say that the start time of
the sequence is given by, i.e. s, = a(i). The finish time f, of the sequence is also the
finish time of the i-th iteration f(7). Since we know that ¢, < S, we can define the finish
time as f(i) = a(i) + (P — S) + t,. We can associate this iteration to the first token of
the first phase, i.e. putting j = 1 in Equation [5.7 This bounds the finish time of the
iteration as f(i) > a(i) + P — S + t,. As a(i) < a(i), we say that:

Fi) = ali) + (P —S) +t, <a(i) + P — S +1t, = f(i) (5.13)
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If the i-th iteration of the job belongs to a consecutive sequence of job iterations i.e.
[a(i) < f(i—1)], such that the (i — k)-th iteration is the first iteration of the consecutive
sequence, we sub-divide its execution behavior into three categories based on the value
of k.

Case II: The i — k-th iteration is the first iteration in the consecutive sequence [i.e.
a(i — k) > f(i — k — 1)] such that [k < % — 1]. The start time of the consecutive
sequence is the arrival time of the (i —k)-th iteration (i.e. s, = a(i—k)) where the length
of the sequence is n = (k + 1). Since k < % — 1 we know that (k+1) % S # 0.
The finish time of the sequence is the finish time of the i-th iteration (i.e f, = f(i)))

and is defined as:
f@ =i~ k) + | BELE P (P8 4 (1)1 %) (5.14)

If the i-th iteration is the first iteration of a j-th phase slice, we associate it with the
leading token of that phase actor. The (¢ — k)-iteration is then associated with the first

token of the cycle. We can express this association as k = L%J, i.e. the leading

token of the j-th phase actor is L%j tokens after the first token in the cycle. From
this association we can say that % <(j-1)< % Equationgives the bounds:
; ., G-1-S

f) =a(i—|[ i D+P=9+0G-DP—-[(-1S5 % ts] +1s (5.15)

Using the relations between k, S, and t;, we can derive that L%j -P<(j-1)P
and (k+1)-t; %S <[(j—1)S % tz] + t5. Due the association k = L%J, we know

that a(i — k) < a(i — L%J) Adding all these inequalities we get the required bound
expressed as:

fi) = a(lk)+LWJ-P+(PS)+((k+1)-tx%8)
< ali- L2024 (Po8)+ (G- )P (G- 1S %t +to
< ) (5.16)

Consider now that the ¢-th iteration is not the first iteration of the j-th phase slice. We
define a w such that (i — u)-th iteration is the first iteration in this phase. Using the

association that k —u = LMJ we repeat the entire procedure described for Equation

(16 to get: N

Fli—u) < fi—u). (5.17)
The self loop of actor ;1 gives the constraint f(i) > f(i — 1) + t. If applied u times,
this constraint gives us the bound f(i) > f(i — u) 4+ u-t,. As the i-th iteration executes
in the same slice as the (i — u)-th iteration, we can derive that f(i) = f(i —u) + u - t,.
Using Equation [5.17 we can now say that:

FG) = fli—u)+u-te < fli —u) +u-ty = f(i). (5.18)
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Case III: The (i — k)-th iteration is the first iteration of the sequence such that [k =
lem(S,ta)
le

sequence n = (k +1) = lcmgiz), we know that (k4 1) % S = 0. The finish time

fn = f(i) of the sequence is then defined as:

— 1]. The start time of the sequence is s, = a(i — k). Since the length of the

(k+1)-t,

£0) = ati = ) + =

- P (5.19)
We use the same approach that was used to derive Equation for the u-th token in
the j-th phase. The i-th iteration is now associated with the last token of the cycle,
which is also the last token of the g-th phase slice (i.e. j = ¢). We can now derive that
(g—1)S %ty + (u+1)-t, =5, where (i — u)-th token is associated with first iteration
of the ¢-th phase slice. Using this in Equation [5.15 we model the finish time of the i-th
iteration as:

fi) = - =B sy + - P s
_ d(z’—L(]_ti) S ) 4q. P (5.20)
As g = lcm(g,tz) = (k+;)'t”” and a(i — k) < a(i — LWJ, we get:
sy =ai—0+ EEL p oo (UL E ) p o) o

Case IV: The ¢ — k-th iteration is the first iteration of the sequence such that [k >
W] The execution behavior of the i-th iteration can be defined such that there

lem(S,te)
2~
the (i —m)-th iteration. We then say that the start time of this consecutive sequence is

Sp = f(i —m) with length m. We now define the finish time f,, = f(i) of the sequence
as f(i) = f(i —m) + = . P We associate the i-th iteration with the first iteration of a
new cycle, bounded by the cyclic constraint defined in Equation[5.8f We can inductively
show that f(i —m) < f(i —m). Since ¢ = % = e we get:

will be m = job iterations left to execute consecutively after the finishing of

m -ty

o P<fli-m)+q P=f() (5.22)

f() = f(i—m)+

O]

Through the above enumeration, we have covered all possible cases of the worst-case
temporal behavior of a job scheduled using TDM. We have shown in each case that the
LPR-modeled finish time of job iterations are conservative with respect to the corre-
sponding actual finish time.
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5.4.3 Comparison with the LR-model:

Our model is truly tighter than the LR-model [I] such it is always more conservative
than our approach. We show this by proving that the LR-model gives an upper-bound
to the temporal behavior modeled by our model. The LR-model defines the worst-case
temporal behavior of TDM arbitration as:

P-t, . P-t,
,f/(’L—].)‘f‘ S )

(i) = max(d' (i) + (P - S) + (5.23)

where f’(i) and d/(i) define respectively the modeled finish time and modeled arrival
time of the i-th iteration in the LR-model.

Theorem 2. The LPR-model gives a tighter estimation on the worst-case finish time
than the LR-model, i.e.

Proof. We again enumerate all the possible cases for the worst-case temporal behavior
modeled using our approach in comparison to the LR-model [I].

1. For isolated iterations, it is trivially proven that a(i) + (P —S) +t, < a/(i) + (P —
S)—i—Pti” given that a(i) = /(i) and P < S = t, < Pt””.

2. For consecutive iterations with length & > %, the LR-model [I] can be shown

to give the constraint f'(i) = f'(i — m) +m - £l where m = % which is
equivalent to f = f(i —m)+q- P.
3. For all consecutive iterations of length £ where 1 < k < %, the bound is

given by the LR-model [I] is shown as f'(i) = f'(i —k)+ k- Zl= = /(i — k) + (P —
S)+(k+1)- %. To show that Equation gives us a tighter bound than the
LR-model we try to prove by contradiction that.

Pt

(G=DP = =18 %t +te>(k+1) —

(5.24)

where Ljftl)'sj =k (e B <(j-1)< % ). Expanding (j —1)S % t, in
)> kJrl)

Equation we derive that (j — S o thereby giving us a contradiction.
Therefore we show that (j —1)P — (j —1)S % tp +t: > (k+ 1) - Ptz.

These enumerations show that for all cases of worst-case temporal behavior of TDM,
our model gives tighter estimates as compared to the LR-model. O
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5.4.4 Comparison to Staschulat’s LR model

Let us now compare the LPR-model with Staschulat’s LR-model [2]. Staschulat’s LR-
model assumes that size of the slice allocated to a job is an integer multiple of the
execution time of a single job iteration. The LPR-model does not make this assumption,
and is a more generic approach to model the temporal behavior or jobs scheduled using
TDM arbitration.

However, under the assumption made by Staschulat’s LR-model, we can show that its
model construction directly coincides with the LPR-model. Consider a TDM setup of
period P and slice S for a job with execution time ¢, such that % =n. Figure shows
Staschulat’s LR-model for this setup.

tlxw) = P— tx

Figure 5.3: Staschulat’s LR-model

In the proposed approach for the LPR model, we first identify the length of the cyclic
pattern as ¢ = % periods. As S is the integer multiple of ¢, we can say that the
cyclic pattern is of the length ¢ = 1 period. The number of phase actors for this model
is ¢+ 1 with firing times t(z1) = t; and t(x2) = P — (S % tg) —tz). As S % t, = 0, this
firing time is reduced to t(z2) = P — t5. The firing time of initial waiting time actor w
is unchanged ,.e. t{(w) = P — S and the actors are connected as shown in Figure

The number of tokens on the edge (x2,x1) is given by d(z2,21) = %

The only difference between Staschulat’s LR-model and the LPR-model is the additional

tlx) = P— tx

Figure 5.4: LPR-model under the assumptions in Staschulat’s LR-model
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edge (w, z2) in the LCR-model. We observe that the firing constraint on the edge due to
edge (w,x2) is a(i—n)+ P — .S, while the firing constraint due to edge (z1,z2) is f(i—n).
The overall firing constraint on the actor o is expressed as max(a(i—n)+P—.S, f(i—n).
We can show that the finish time f(i — n) of the (i — n)-th iteration itself has the
constraint f(i —n) > a(i —n) + P — S. Therefore, the firing constraint due to (w, z2) is
implicitly always satisfied by the firing constraint due to the edge (x1,x2). We can now
safely remove the edge (w,x2) from the model without affecting the modeled temporal
behavior. The obtained LCR-model in now exactly the same as Staschulat’s LR-model.
We can conclude that the LCR-model is a generalized version of Staschulat’s LR-model.

5.4.5 Modeling arbitrary execution times:

We have shown that we can conservatively model the worst-case temporal behavior of a
TDM scheduled job with execution time ¢, for a single iteration and allocated slice size
S, such that t; < S. We now remove this restriction to model arbitrary execution times
allocated a slice such that S < P, where P is the replenishment period.

Theorem 3. The worst-case effect of TDM arbitration on a job, for an arbitrary ex-
ecution time t, and a slice size S, can be modeled using a virtual slice 8" = y - S and
virtual period P’ =y - P, where y € N such thaty-S >t, > (y—1)-S.

Proof. We can show using induction that forall 1 < i < lcmf&iz), the worst-case temporal

behavior of TDM arbitration given by Equation for (P,IS ) is conservatively modeled
for (P',S"). The entire proof is provided in Appendix [B.3]

We observed that this approach to extend the use of our model has a negative impact
on the accuracy of the model. In most cases, the proposed LPR-model would show
improved accuracy in estimating the finish times of job iterations, in comparison to the
LR-model. In some cases, however, it was observed that the model looses accuracy
and the estimates on the finish time of certain job iterations may be worse than the
LR-model. The complete proof of this anomaly has been provided in Appendix[B.4 O

We can conclude that the LPR-model is a definite improvement for modeling the worst-
case temporal behavior of TDM arbitration under the assumption that the execution
time of a single job iteration is less than or equal to the slice size. In the reverse case,
however, our solution may not be optimal.

Multi-Rate and Cyclo-Static Data Flow:

We now illustrate that our model can also be used in multi-rate [I2] and cyclo-static
[15] environments, i.e. we can represent multi-rate data-flow based job actors using the
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LPR-model. The arrival time is modeled as the time when all the firing conditions are
met. The model does not restrict these conditions from requiring different number of
tokens per incoming edge. The model can thus handle both multi-rate and cyclo-static
consumption rates. Similarly, our model can also handle different production rates per
outgoing edge. However, cyclo-static data flow actors are allowed to have different
execution times per firing. As our model assumes a fixed execution time for all firings,
it cannot handle varying execution times.

Figure 5.5: Representing a multi-rate job actor using the LPR-model

Figure [5.5) shows how a multi-rate actor can be represented using the LPR-model. The
consumption rules defined on the incoming edges of job A are modeled as the consumtp-
tion rules for the actor w in the LPR-model. Similarly the production rules defined for
the outgoing edges of A are modeled as the production rules for the outgoing edges for
actor 1 in the LPR-model.

5.5 Experimental Results

In this section, we quantify the difference between the LPR-model and the LR-model of
[, by comparing the over-estimation for a random set of arrivals of job-iterations. The
over-estimation by a model is calculated as the percentage error in the model-defined
response times from the actual response time. The response time of an iteration the
difference between its arrival time and its finish time. We distinguish three categories of
inter-arrival rates, as shown in Table based on the TDM period and the execution
time of a job. It is evident that our model has much tighter estimates of the worst-case
temporal behavior of TDM arbitration.

Figure a) illustrates the over-estimations made by the LPR-model and the LR-model
with respect to the amount of service provided for a single random run. The LR-model
displays an erratic and high over-estimation while the LPR-model shows a more stable
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Inter-arrival Rates | | LR-Model | LPR-Model
Long (rate > P) 50% — 70% < 1%
Medium (P > rate > t;) | 60% - 90% 20% — 30%
Small (¢, > rate) 18% — 25% < 1%

Table 5.2: Comparison of overestimation for different arrival rate categories

S sy 15 oo
- - -= | PR - MODEL

0.8+
0.6+
0.4

0.2

OVERESTIMATION
2
OVERESTIMATION

0.0+ 0.0- T T T T
0 5 10 15 20 '30:100 30:200 30:300 30:400 30:500
ITERATIONS SLICE vs PERIOD
(a) (b)

Figure 5.6: Comparison of over-estimations of the modeled response times

and tight overestimation.

Figure [5.6[b) illustrates the over-estimation of the different models for different slice to
period ratio. We plot the average over-estimation made by each model in each case.
Again, we observe that the over-estimation of the LPR-model is much tighter than the
LR-model.

5.6 Summary

In this chapter we described a single-rate data-flow model for estimating the worst-
case temporal behavior of TDM arbitration. The execution of continuous iterations
of a job using TDM can be shown to have a cyclic pattern over a fixed number of
replenishment periods. Our approach models this patterns using data-flow by capturing
the execution behavior for each replenishment period separately. We initially assume
that the execution time of a single job iteration is smaller that the size of a single slice.
Thereby, we relax the restriction of Staschulat’s LR-model [2] which requires that the
size of the slice should be only an integer multiple of the execution time of a single job
iteration. For this setup of TDM arbitration, we demonstrate that the model provides a
conservative estimation that is tighter than the existing state-of-the-art models i.e. the

LR-model [I].

We then show that we can extend this model to capture the effect of TDM arbitration
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for jobs with arbitrary execution times. We do this by modeling TDM arbitration using
a virtual slice and period setup such that a single slice can accommodate the execution
of a single job iteration. However, when we extend this model to larger execution
times, we demonstrate that the modeled estimations are comparable to the LR-modeled
estimations but not always better. We may conclude that in such cases the proposed
approach is not optimal.



Chapter 6

Modeling TDM Arbitration:
Latency-Cyclic-Rate Model

In the previous chapter, we presented a modeling approach that provides an improved
estimation of the worst-case temporal behavior of TDM arbitration as compared to the
LR-model [I]. However, the modeled bound is still an over-estimation to the actual
worst-case execution of job iterations scheduled using TDM arbitration. Also, in the
case when the execution time of a single job iteration is greater than the size of a slice,
the model loses accuracy in its estimation. Thus, the requirement to design a generic
approach to model TDM arbitration is not completely satisfied. To overcome the short-
comings of the previous model, we re-draw our approach to propose a more generic
model, called the Latency-Cyclic-Rate (LCR) model.

In this chapter, we first give an overview of the new approach. We then illustrate with
an example, the new approach to model the cyclic execution pattern for this example.
We then formalize the construction of the LCR-model and analyze the modeled bound
for the worst-case temporal behavior of TDM arbitration. We demonstrate that the
approach presented in this chapter, is in fact an accurate estimation of the worst-case
temporal behavior of TDM arbitration. We then discuss the features of the LCR-model
with the state-of-the-art models and the model proposed in the previous chapter.

6.1 Overview

In this chapter, we present another approach to model TDM arbitration using single-
rate data-flow. The approach is similar to the previous model such that we still try to
capture the cyclic pattern in the execution behavior of job iterations. The difference
is we model the execution behavior of individual iterations rather than capturing the
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execution of these iterations according to individual slices in the cyclic pattern.

6.2 Sketch of the proposed approach

Consider the second example as depicted in section [f.1.1] Figure[6.1]shows a time line of
the simulated execution. The first iteration executes after initially waiting for the first
slice and executes for the entire slice from time 90 to 100. At the end of the slice at time
100 the execution of this job iteration is pre-empted and has to wait for the next slice to
resume execution. The next slice allocation is from time 190, at which the execution of
the first iteration resumes and finishes execution at time 195. The second iteration starts
immediately from time 195 until the end of the slice time 200. The second iteration must
wait for the next slice allocation and starts executing at time 290 and finishes exactly
at the end of the slice at time 300. This pattern repeats itself from the third iteration
onwards.

ACTUALSLICE
ALLOCATION

SIMULATED
EXECUTION 1 112 2

0 100 200 300

Figure 6.1: Modeled temporal behavior for the given TDM schedule

SERVICE RATE FOR 15T ITERATION
SERVICE RATE FOR 2ND ITERATION

SIMULATED
EXECUTION 1 112 2
N I g | : |
MODELED
EXECUTION
0 100 200 300

Figure 6.2: Modeled temporal behavior for the given TDM schedule

As explained in the previous approach, the arrival time and finish time of a job iteration
are the only relevant aspects of the temporal behavior, irrespective of when the execution
actually happens. Instead of modeling the actual execution of the iterations and the
intermittent times separately, we club the entire time, from the start of the execution
of an iteration to its finish, as the total service time for that iteration. This allows
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us to define the rate per iteration of the job execution for the entire cyclic pattern, as
shown in Figure [6.2] The service rate of each iteration in the cyclic pattern is modeled
as a separate node in the data-flow model as chained dependency on the service rate of
the previous iteration, as shown in Figure [6.3] Table [6.1] shows the temporal behavior
defined by the LCR-model in comparison to the LR-model proposed in [IJ.

l%‘].fu %S~

Fhah )
VAN T

- AV 3 \%
\“_/.l. \-\-\Jn..
lz';”JJu (2.4 %S| — [%‘J.P
F(Ea%S)—(P—5)
Figure 6.3: Proposed data flow model
Iterations — 1 2 3 4 5 6 ...
Actual Finish Time 195 | 300 | 495 600 | 795 | 900 ...

LR-Modeled Finish Time 240 | 390 540 690 | 842 | 990 ...
LCR-modeled Finish Time | 195 | 300 | 495 600 | 795 | 900 ...

Table 6.1: Comparison of obtained finish times using LR-model and our model

6.3 Constructing the proposed data flow model

Formally, a job executing on a TDM scheduled resource is described as a 3-tuple j4 =
(P, S,t;) where P is the replenishment period of the TDM arbitration, S is the size of
the slice allocated to the job and ¢, is the execution time of a single job iteration. The
temporal behavior has a cyclic pattern of length ¢ periods expressed as:

lem(S,t;
,_ lem(S.1,)

- (6.1)

We say that that the total execution time q.t,, require exactly ¢ slices to complete exe-
cution. Each job can be modeled as a SRDF graph component G(P, S,t,) = (V, E,d,t).
V' is the set of actors of the model given by:

V= {m|l <i<g+1}U{w}, (6.2)

where each rate actor x; € V describes the service rate for a specific iteration in the cclic
pattern with the exception of the actor x,41. The rate actor x4 is an additional actor,
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placed to complete the cyclic behavior to be modeled. The latency actor w is used to
represent the effect of the initial waiting time on the latency of a job iteration.

The edges are defined such that the phase actors form a cycle, and there is an edge from
the latency actor w to each of the phase actors. There is also a self-edge from the actor
x1 to itself.

Ea={(is1, )1 <i < g} U{(z1,2941) } U{(w,23)[1 <i < g+ 1} (6.3)
We now add initial tokens (delay) d on each edge. Each token in the cycle of z; € V
rate actors corresponds to a single job iteration. Hence there will be a single token on
each edge in the cycle. The delay can be expressed as:
1 foru=z;11 &v=x;and 1 <i<gq,
d(u,v) =<0 foru=uz1 &v=u, (6.4)
0 foru=w&v=x;and 1 <i<gq.
The firing time of the latency actor is given by t(w) = P — S while the firing time #(x;)

of each phase actor x; € V defines the execution behavior of the associated job iteration,
expressed as:

pP—-S for v € {w,x441},
|Ee] - P+[ity % 5]
t(v) = —L%J-FW-[(Z'—U'%%S] forv=2&1<i<g,
[Ee] - P+ ity % 5]

—L%J'P+[(i—1)'tz%5]_(P_S) for v = z,.

(6.5)

We have defined the the set of actor V and the edges F connecting the actors in the
LCR-model in Equations[6.2] and [6.3| respectively. Equation[6.4] defines the delay for each
edge e € E in the LPR-model, while Equation defines the firing time of each actor
v; € V for the LPR-model. Thus, we provide a formal definition for the construction of
the LCR-model as (V, E,d,t) for the TDM arbitration setup for the job (P, S,t,).

6.4 Analyzing the worst-case bound of the constructed
model

In this section we now analyze the LCR-model construction described in the previous
section. We first establish the bound defined by the LPR-model for the worst-case
temporal behavior of TDM arbitration. We then demonstrate that the LCR-model is
conservative. We then compare the LCR-model with the state-of-the-art model [T, 2].
We do not make any assumptions on the execution time of a single job iteration or the
size of the allocated slice. This makes the LCR-model a truly generic model.
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6.4.1 Establishing the LCR-modeled bound for the worst-case tempo-
ral behavior for TDM arbitration

Similar to the previous approach, we again derive a maz-equation for the worst-case
temporal behavior of TDM arbitration represented using the LCR-model. There are
q+ 1 paths from the actor w to the actor 1. Additionally there is a cyclic path from the
actor z1 to itself via all the other rate-actors, i.e. the path {z1, 2441, 2, ..21}. Summing
up the firing times of all actors in each path, we derive the max-equation as

maxi<j<q{a(i — ) + (P —8) + [V | P [(G+1) - . % S]},
f(z) =max < a(i— (¢ —1)) + qgf” - P,
fli—q)+ % P.

(6.6)
where ¢ = . The above equation defines the LCR-modeled bound for the worst-
case temporal behavior of a job scheduled using TDM arbitration.

lem(S,te)
2%

6.4.2 Conservativity of the model:

We now prove that our model is conservative in defining the worst-case temporal behavior
of TDM arbitration. The formal definition of conservativity as given in section [3.4] is
expressed as: )

Vizo a(i) < a(i) = Vizo f(i) < f(2) (6.7)

where a(i) and f(i) are the actual start time and finish time, respectively, of the i-th
job iteration, while a(i) and f(i) are the corresponding LPR-modeled start and finish
time respectively.

Theorem 4. The graph G(P,S,t,) as defined for the LCR-model, is a conservative
model for a TDM-scheduled job with worst-case execution time t,, that is assigned a
slice S per period P.

Proof. We have formalized the worst-case behavior of TDM arbitration in section [3.2
as:

(6.8)

I = sn+ | %] P ifn-t, % 5=0
" s B PH(P=S)+(n-t, % S) ifn-t, %S0

where s, and f,, are the start time and finish time respectively, of a consecutive sequence
of multiple job iterations of length n. In order to prove conservativity of the LCR-model,
we show that worst-case temporal behavior of TDM arbitration defined by the LCR-
model is an upper bound to this formalization defined in section [3.:2] We show that each
iteration can be associated (represented in the model) with a token present on the cycle
of rate actors {z1,--- ,z, + 1} in the proposed model. The execution behavior of a job
iteration can be enumerated as follows:
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. For a sequence of consecutive iterations whose length is given by n <

1. We can say that n-t, % S = 0 only when n.t, is an integral multiple of lem(S, t,,)

lem(Ste)

with the smallest value of this multiple is given by n = We say that in

te
! te A . .
a sequence of n = % consecutive job iterations the start of the sequence is

given by s, = a(i — (nz — 1)) and the finish time of the sequence is given by the
finish time of the last iteration i.e. f, = f(i). We can now express the finish time

of the sequence as:
n-t;

1) = ati = (0= 1) +

In the max-plus bound of our model in Equation [5.10, we get

P (6.9)

2. . q-t
f@)=a(i—(¢g—1))+ SI - P (6.10)
We know that n = % = ¢ and that a(i) < a(i), we can say that:
ot ot .
f6) = ali—n)+ = - P <ali - q) + 5= - P = f(i) (6.11)
All sequences of length n > lcmgf’tz) can be expressed as consecutive sequences
of length n' = lcmg%x) = ¢ from the finish of the (i — n’)-th job iteration. Since

n' - t, % S =0 we express this behavior as:

n -ty

S

This behavior can be realized in our model with the bound:

f@)=fGi—n')+ P (6.12)

fli) = - a)+ 157

P (6.13)

lem(S,te)
. we

know that n.tA % S # 0, we can consider that (i — k)-th job iteration is first
iteration in the consecutive sequence and the ¢-th iteration is the last iteration in
the sequence (i.e. s, = a(i — k) and f, = f(i)). The length of the sequence is
given by n = k 4+ 1 where k < lcmgiz)
temporal behavior of this sequence as:

— 1. We can now express the worst-case

k41)-t,
f(i):a(i—k)Jr(P—S)JrL(JrS)J-P+(k+1)~tx%S (6.14)
This behavior is realized in our model with the bound:
 + 1) -1, .
max {ati - )+ (P—8)+ (LD p G %8, (615)
1<j<q S

Whereq:%—landj:k.
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O]

Corollary 1. If the modeled arrival time of job iterations are same as the actual arrival
times of the job iterations, then the graph G(P,S,t;) as defined for the LCR-model, is
an exact representation a TDM-scheduled job with worst-case execution time t,, that is
assigned a slice S per period P.

Viso a(i) = a(i) = Viso f(i) = f(i) (6.16)

Proof. We observe from the above conservativity proof that, for each enumeration, the
modeled bound exactly coincides with the formal definition of the worst-case temporal
behavior of a job scheduled using TDM arbitration. We can, therefore, conclude that
our model is an accurate representation of the worst-case temporal behavior of TDM
arbitration of a job. O

6.4.3 Comparison with the LR-model

In chapter 4] we have already discussed that the LR-model is pessimistic in defining
the worst-case temporal behavior of TDM arbitration. In other words the finish-times
of job iterations estimated by the LR-model are an over approximation of their actual
finish times. This also implies that the temporal estimation made using the LR-model
will be less accurate than the LCR-model, as the LCR-model is in fact an accurate
representation of the worsy-case temporal behavior of TDM arbitration.

6.4.4 Comparison with Staschulat’s LR-model

Staschulat’s LR-model assumes that size of the slice allocated for a job is an integer
multiple of the execution time of a single job iteration. The LCR-model does not make
this assumption, and is a generic approach to model the temporal behavior or jobs
scheduled using TDM arbitration. Our model can accommodate arbitrary execution
times and arbitrary slice sizes.

However, under the assumption made by Staschulat’s LR-model, we can show that its
model construction coincides with an optimized version of the proposed model. Consider
a TDM setup of period P and slice S for a job with execution time ¢, such that % =n.
Figure shows Staschulat’s LR-model for this setup.

lem(S,te S

In our approach, we show that the cyclic pattern repeats after ¢ = —. =L =N

job iterations. Our model represents the execution each iteration using a separate actor.
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txw) = P— tx

Figure 6.4: Staschulat’s LR-model

The firing time for the actor of all but the last iteration, according to Equation [6.5], is
given by:

o) = |592) Pt liote %]
(i_l)'tz .
[ P - ) 5 % S) (6.17)

where 1 < ¢ < n. As we know that n = ti, we can conclude that i-t, < Sfor 1 <i<n.

Therefore we can reduce Equation to i.ty—(i—1).t, or just t,. For the n-th iteration
we define the firing time of its corresponding actor in the model is defined by

n-t,

taa) = "5t P+ln-t: %S

_L(n _Sl)'tz

|- P+[(n—1)-t. % S]— (P - S). (6.18)

Again, as we know that n = %, this expression also gets reduced to t,. We now have
a model with n actors with firing time ¢, for the n iterations in the cyclic pattern and
two additional actors w and x,4; with firing times ¢(w) = t(x,41) = P — S, as shown

in Figure [6.5]

For each actor z; where 1 < i < n there is an incoming edge (x;41, ;) with delay
d(zi+1,2;) = 1. There is an additional edge for each of these actors from the actor
w with no delay. According to optimization techniques for data-flow described in [I1],
we can represent this sequence of n identical actors with a single actor z’ having firing
time t, and a self-edge with a single delay, and an edge from actor x,41 with delay
d(xpt1,2") = n. Also the firing time of the actor 2,41 is now the sum of all the actors in
the cycle and deducting from this some the firing time of actor #’. The can be expressed
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t(xn1) = P— tx

Figure 6.6: Optimization of the LCR-model under the assumptions of Staschulat’s LR-model

as )1 cicpen H@i) — (@), As 37 i,y = P the firing time of actor ;41 is expressed
as t(xp41) = P — ty. The optimized model is shown in Figure

As also explained in the LPR-model, the firing constraint due to the edge (w,xy,41)
is implicitly always satisfied by the firing constraint due to the edge (2, zp41), and
hence can be removed from the model without affecting the modeled temporal behavior.
We can observe that this model directly coincides with Staschulat’s LR-model. We can
conclude that the LCR-model is truly a generic model as it does not make any assumption
on the characteristics of TDM arbitration. Also, under the assumptions considered by
the other approaches, the LCR-model is a superposition of these models.

Multi-Rate and Cyclo-Static Data Flow:

We now show that our model can also be used in multi-rate [I2] and cyclo-static [15]
environments. The arrival time is modeled as the time when all the firing conditions are
met. The model does not restrict these conditions from requiring different number of
tokens per incoming edge. The model can thus handle both multi-rate and cyclo-static
consumption rates. Similarly, our model can also handle different production rates per
outgoing edge. However, cyclo-static data flow actors are allowed to have different
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execution times per firing. As our model assumes a fixed execution time for all firings,
it cannot handle varying execution times.

Figure 6.7: Representing a multi-rate job actor using the LCR-model

Figure [6.7] shows how a multi-rate actor can be represented using the LCR-model. The
consumption rules defined on the incoming edges of job A are modeled as the consumtp-
tion rules for the actor w in the LPR-model. Similarly the production rules defined for
the outgoing edges of A are modeled as the production rules for the outgoing edges for
actor x1 in the LPR-model.

6.5 Summary

In this chapter, we propose a new approach to model the cyclic patter of execution of
a job under the effect of TDM arbitration. The proposed LCR-model overcomes the
disadvantages in the LPR-model (proposed in chapter |5)) such that it does not make
any assumption on the execution time of a single job iteration. The LCR-models the
execution rate of each individual iteration instead of the modeling the execution rate
per phase slice of the cyclic pattern.

We demonstrated that this model provides an accurate estimation of the worst-case
temporal behavior of an arbitrary TDM setup. We also conclude that the LCR-model is
better than the existing state-of-the-art models and the proposed LPR-model. We also
demonstrated that under the assumptions on TDM arbitration made by Staschulat’s LR-
model [2], the LCR-model obtained for the same TDM setup can be further optimized
using data-flow optimization techniques [II] to obtaing a reduced model, that directly
coincides with Staschulat’s LR-model. The LCR-model is, therefore, a generic model
that captures he worst-case temporal behavior of job iterations scheduled using TDM
arbitration.



Chapter 7

Modeling TDM Arbitration:
Multi-Rate Data-Flow Approach

Till now we have presented single-rate data-flow approaches to model the worst-case
temporal behavior of TDM arbitration. In this chapter, we use a different flavor of data-
flow, namely multi-rate data-flow, to capture the effect of TDM arbitration on a job.
We first recapitulate the concept of multi-rate data-flow, and give a brief introduction
to our approach. We then illustrate with an example, the use of multi-rate data-flow to
capture the effect of arbitration of a job using TDM. Following this, weco formalize the
construction of the proposed multi-rate data-flow model. In the analysis of this model,
we argue that the MRDF-model is conservative. Due to lack of time, we are not able to
present a formal proof of its conservativity and accuracy, which is left as future work.
Next, we describe the conversion of this model into a single-rate data-flow model and
address the effects of this expansion. We also address some approaches to optimize this
expansion. We then compare of our multi-rate model with respect to the other models
proposed in this thesis, and the state-of-the-art model existing in literature.

7.1 Overview

Let us briefly re-visit the concepts of multi-rate data-flow. Multi-Rate Data-Flow graphs
(MRDF graphs) are a generalization on Single-Rate Data-Flow (SRDF) graphs such that,
the number of tokens consumed and produced for all firing of a multi-rate actor is fixed
to a non-negative integer. MRDF graphs are more expressive than SRDF graphs, as
they can model complex behavior in a more condensed form. For instance, consider that
we have two jobs A and B such that for every execution of the job A there are three
executions of the job B. Figure (a) shows the use of single-rate data-flow to models
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this behavior, while Figure (b) models this behavior using multi-rate data-flow. The
SRDF equivalent of MRDF graphs is an exponential expansion of the MRDF graph
having a large number of redundant actors [11 12].

v A A A A )
=) (e

(@) (b)

Figure 7.1: For every execution of job A there are two executions of job B.

In chapters [5] and [6] we presented two approaches that capture the cyclic pattern of
execution of consecutive job iterations and obtain a bound on this behavior using single-
rate data-flow. In this chapter, we present an approach which captures the effect of
TDM arbitration on individual iterations of a job.We can make use of the expressiveness
of multi-rate data-flow to capture the actual consumption of the slice per replenishment
period, by the iterations of a job as and when they arrive. Instead of modeling a job
iteration as a single token, we split it into multiple tokens according to the total execution
time of a single job iteration. Each token represents to a fixed amount of execution time
of an iteration and is modeled such that it consumes the equivalent amount of time from
the alloted slice. The availability of slice time for execution is replenished after every
period. On the output side, all tokens of a single iteration are consumed in a single firing
to produce an output token.

7.2 Sketch of the proposed approach

Consider a simple TDM scheduler with a replenishment period P = 10 that schedules a
job with execution time ¢, = 5 in a slice S = 3 per replenishment period. Like in the
illustrations for the other models, we assume that each job iteration can execute as soon
as the previous iteration finishes, i.e. all iterations are assumed to be ready to execute
at the start of the system. The slice allocated per period, is located just before the start
of the next period, as shown in Figure

ACTUALSLICE
ALLOCATION
SIMULATED
EXECUTION 1 1|2 2 2| 3 3
0 10 20 30 40 50

Figure 7.2: Actual temporal behavior for the given TDM schedule

The above scenario can be modeled by our MRDF-model as shown in Figure Each
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input token arriving on the incoming edge of the actor w models the arrival of a job
iteration. Let us consider, for now, only a single iteration represented as a single token
on the incoming edge of the actor w. The firing condition for w requires a single input
token on its incoming edge to fire. Upon firing, actor w will produce 5 tokens (since the
execution time of a single iteration is also 5) according to the production rule defined on
edge (w,z1). According to the consumption rules defined on edges (w,z1) and (x2,x1),
each firing of actor x; consumes a single token from both these edges. Also for each
firing of x1 a single token is produced on edges (x1,w’) and (x1,23), as defined by the
production rules of these edges respectively.

t(x;)= P—1=9

Figure 7.3: Multi-rate data-flow model for a job scheduled using TDM

Since the job iteration is already ready at the start of the system, actor w fires im-
mediately and produces five tokens on edge (w,z1) at time 7. The first three tokens
will be consumed one after the other (due to the self edge on x; with a single delay)
at time 7,8, and 9. Similarly, upon the three consecutive firings of x;, output tokens
will be produced on the outgoing edges (z1,w’) and (z1,x2) at time 8,9, and 10. At
time 10, there are no more tokens present on the edge (x2,1), even though there are
still two tokens from the first iteration to be consumed on the edge (w,z;). The first
firing of the actor z9 will commence at time 8, when the first token is produced on the
edge (z1,z2), and produce a token at time 17. Similarly the second and third firing of
x9 will produce tokens on the edge (x1,x2) at times 18, and 19. The tokens produced
on the edge (x1,x2) at times 17, and 18 will be consumed by x; as soon as they are
produced and correspondingly produce tokens on edges (z1,w’) and (z1,x2) at time 18
and 19. At time 19, a total on five tokens are present on the edge (z1,z2) (i.e. tokens
produced at times 8,9,10,18, and 19). All five tokens are consumed in a single firing of
the actor w’, with a firing time ¢(w’) = 0, an produce one output token at the end of the
firing. The purpose of modeling the actor w’ is only to combine the individual tokens,
produced as the result of execution of a single job iteration, into a single output token
that corresponds to the finish of a single iteration. To summarize the modeled execution
behavior, the first iteration executes for the entire first slice, from time 7 to 10, and then
resumes execution in the second slice at time 17 and completes execution at time 19. We
can observe that this execution behavior directly coincides with the actual execution of
the first iteration according to Figure Table shows the actual finish times and
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the modeled finish times of each iteration for the current example.

Iterations — 1 2 3 4 5...
Actual Finish Time 19 38 50 69 88 ...
LR-modeled Finish Time 23.66 40.33 56.99 73.66 90.33 ...
MRDF-modeled Finish Time 19 38 50 69 88 ...

Table 7.1: Comparison of obtained finish times using LR-model and our model

7.3 Construction of the proposed model

The MRDF model can be represented as a 5-tuple (V, E,d, f,t). The set of actors
V' constitutes of 4 actors w,xq,z2,w’. The edges for the model are given by E =
(w,x1), (z1,22), (T2, 21), (x1,w"). The delay for the edge (x2,x1) is given by d(z2, 1) =
S where S is the size of the slice allocated for the job. The delay for all other edges
in the model in 0. The firing constraints for the edges (w,z1) and (z1,w’) is expressed
as f(w,z1) = (tz, 1) and f(z1,w’) = (1,t,), where t, is the execution time for a single
job iteration. The firing constraint for other edges is set to (1,1). Figure shows the
stated construction.

Figure 7.4: Multi-rate data-flow model construction for a job scheduled using TDM

7.4 Discussion

In this section, we now present a discussion on various issues of the proposed multi-rate
model. We first analyze the model construction and argue that it is conervative. We
then show that the given model can be converted into a single-rate data flow model
and discuss the effects of this conversion on the size of the obtained single-rate graph
and its analysis. We then present a few optimization techniques to address the issues
of this multi-rate to single-rate conversion of our model. Lastly, we discuss the model
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presented in this chapter to the other models presented in chapters [5] and [6] and the
state-of-the-art models present in literature.

7.4.1 Analysis of the correctness the constructed model:

We argue that the constructed model has a direct co-relation the consumption of slice
by individual job iterations. The entire proof for the correctness of the model is not
presented in this thesis due to lack of time and is left for future work. We consider,
however, that the behavior of the model is intuitive enough to argue that it accurately
models the worst-case temporal behavior of TDM arbitration.

7.4.2 Converting the MRDF-model to a SRDF-model:

We have explained in the section that MRDF graphs can be converted to SRDF
graphs using conversion algorithms [I1] [[2]. Using this conversion technique, we can
expand our MRDF model for the example shown in Figure [7.3] into a SRDF model,

shown in Figure

Figure 7.5: SRDF model equivalent of the MRDF model

The repetition vector for the MRDF-actors w, x1, x2, w’ can be stated as

7= (7.1)

Each actor is replicated q(v;)|v; € V' times according to the repetition vector ¢. The
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edges and delay are distributed such that the firing of the actors in the SRDF model, is
identical to the firing of the corresponding actors in the MRDF-model.

7.4.3 Optimizing the obtained SRDF model

In section[7.4.2] we observe that converting the proposed MRDF model into an equivalent
SRDF model results in a huge expansion of the graph. Also the example used for
illustrating the model is rather simple. The actual execution times of a job iteration
and the slice size are much larger for the jobs of actual applications. Expansion of the
MRDF-models for these jobs will result in a huge state-explosion problem. We now
suggest some basic optimization techniques to address the problems of expanding the
proposed MRDF-model.

Eliminating unwanted edges from the SRDF expansion:

The graph obtained by expanding the MRDF-model is quite complex. Let us now try
to optimize this graph. If there are multiple paths between two actors, we only consider
the longest path (in terms of firing time). It must be noted that, for our model, we
perform optimizations on paths that have zero delay on them (i.e we do not consider
optimizing that have non-zero delays). We suspect that further optimizations of our
model is possible, but this has not been addressed due to lack of time. Observe in
Figure there are edges from the actor w to each of the x1 actors. The z; actors
themselves are connected in a chain. If we consider all the paths from actor w to actor
x15, excluding the ones that have non-zero delays on them, we observe that the longest
path is {w,z11,212,213,214,215}. We can, therefore remove all the edges in other
paths which are not present in the longest path. The same trick can be applied for all
the paths from the actor z; ; to the actor w’. Figure shows the optimized single-rate
expansion for the multi-rate model described in Figure [7.3

We also observe that the actor w’ in the SRDF expansion serves no purpose as it simply
transfer tokens from its incoming edge to its outgoing edge without consuming any
additional time. We can, therefore, remove this actor from the SRDF expansion without
affecting the behavior of the model.

Optimizing the initial MRDF model:

The number of nodes in the SRDF expansion depends upon the number of tokens pro-
duced by actor w per firing in the MRDF model. In other words, the number of nodes
in the SRDF expansion depends upon the number of segments in which we divide the



7.4. Discussion 65

Figure 7.6: Optimized SRDF model equivalent of the MRDF model

the total execution time for a single iteration. By reducing the number of tokens pro-
duced per firing of the actor w in the MRDF model, we can reduce the size of the SRDF
expnsion.

Currently, we divide the execution time into the finest resolution possible, i.e. the each
token represents one unit of the execution time of a single job iteration. If each token
represents a larger segment, say z time units, of the total execution time of a job iteration,
the total number of tokens per firing is reduced to %” As each segment will take more
time to execute and also consume a larger portion of the slice, we change the firing to of
actor x1 such that ¢(z1) = z and the delay on the edge (z2,21) such that d(z2,z1) = g
It should be noted that the delay on an edge is a non-negative integer, hence the size
of the segment (i.e. the value of z) is such that S % z = 0. The maximum size of z,
using this approach is expressed as z = ged(S, t,) where ¢, is the total execution time
of a single job iteration and S is the slice size allocated to the job. Figure shows the
optimized MRDF model. Expanding the optimized MRDF-model will result in fewer

nodes in the expanded single-rate model equivalent of the optimized multi-rate model.

Figure 7.7: Optimized multi-rate data-flow model construction for a job scheduled using TDM
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7.4.4 Comparison with other models

The MRDF-model is an intuitive approach to model the execution behavior of individual
job iterations, under the effect of TDM arbitration. Meanwhile, the previous models
presented in chapters [f] and [6] try to model the cyclic pattern of behavior consecutive
sequences of job iterations.

The proposed MRDF model is, intuitively, an accurate model representation of the
worst-case temporal behavior of TDM scheduled jobs as compared to the LR-model [I],
which is an over-estimation of the temporal behavior of TDM arbitration. Under the
assumptions made in [2], we claim that the proposed MRDF model can express the
same behavior as Staschulat’s LR-model [2]. If we assume that the slice size S is an
non-negative integer multiple of the execution time ¢, of a single job iteration, we can
say that z = ged(S, ;) = t,. Using the optimization presented in section we get
the firing time of actor x; as t(x;) = z = t,. The production rule for the edge (w,x;)

(and consumption rule for the edge (z1,w’)) is defined as t?”” = i—i = 1. Lastly, the delay

on the edge (z2,21) is defined as d(z2,21) = g = % The optimized model now obtained
directly coincides with Staschulat’s LR-model. Thus, we can conclude that the proposed
MRDF model is a multi-rate data-flow extension of Staschulat’s LR-model such that it

can model arbitrary execution times for arbitrary slice allocation.

7.5 Summary

In this chapter, we presented a different approach to model the worst-case temporal
behavior of TDM scheduled jobs, i.e. using multi-rate data-flow. Instead of modeling
a job iteration as a single token, we split it into multiple tokens according to the total
execution time of a single job iteration. Each token represents to a fixed amount of
execution time of an iteration and is modeled such that it consumes the equivalent
amount of time from the alloted slice. The availability of slice time for execution is
replenished after every period. On the output side, all tokens of a single iteration are
consumed in a single firing to produce an output token.

We argued about the correctness and the accuracy of the model through an illustrative
example. We addressed issues, such as expanding the multi-rate model into an equivalent
single-rate data-flow model and also on various optimizations possible on the models.
We also compared the multi-rate model to the other models proposed in this thesis and
the existing state-of-the-art models. We argue that the proposed MRDF model is more
accurate the the LR-model [I]. We also claim that Staschulat’s LR-model [2] can be
perceived as a special instance of the proposed MRDF model.
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Discussion and Future Scope

In this chapter, we address some observations made during the course of this project and
certain key areas that should be explored further as future work. We first describe the
complexity of the generated graphs using the models proposed in this thesis in compari-
son with the existing state-of-the-art models, namely the LR-model [I] and Staschulat’s
LR-model [2]. We then address the issue of using the proposed models for TDM arbi-
tration with static-ordering. Lastly we address the issue extending the use of our model
to a broader class of budget schedulers.

8.1 Complexity of the Generated Graphs

We now present the complexity of the proposed models in comparison with the existing
state-of-the-art models. in capturing the worst-case behavior of jobs scheduled using
TDM arbitration. We address the complexity of the models with respect to two factors,
namely the size of the generated graph and the techniques used to analyze the generated
graphs.

8.1.1 Size Complexity

The worst-case execution behavior of jobs under TDM arbitration is observed as a cyclic
pattern that repeats after a fixed number of consecutive job iterations. The LR-model
defines a linear bound on the this cyclic pattern of TDM arbitration by generalizing
the execution rate of consecutive job iterations. It is further observed that, the bound
defined by the LR-model is the tightest possible linear bound on this worst-case temporal
behavior.
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The models proposed in this thesis define a periodic non-linear bound, enabling more
accurate estimation of the worst-case behavior of the jobs scheduled using TDM. The
accuracy of these models comes at the cost of using more actors to capture the worst-
case behavior of TDM arbitration. For instance, the LPR-model proposed in chapter
defines the cyclic pattern in terms of phased-slices such that the number of actors used
for describing the total phase-slices is given by ¢ = M + 1, where S is size of the
slice allocated to the job with execution time ¢, for a single job iteration. The there is an
additional actor for modeling the initial waiting time. The total number of actors used
in the LPR-model for a job is given as M + 2. We can say the the size complexity
of the LPR-model is linear in the executlon time t, of a single job iteration.

The LCR-model defines a non-linear bound for the worst-case temporal behavior of jobs
under TDM arbitration, based on the rate of execution of each individual iteration in
the cyclic pattern. The number of actors for defining the cyclic pattern is one more than
the number of iterations in the cyclic pattern expressed as g = lcm(s te) + 1 and the total
number of actors in the model, including the actor for the initial Waltlng time, is given

M + 2. We can say the the size complexity of the LCR-model is linear in slice
size S allocated for a job.

The number of actors used in both the proposed SRDF models, i.e. the LPR-model and
the LCR-model, depends on the size of the slice allocated for the job and the execution
time for a single job iteration. In the case the execution time of a job iteration is more
than the size of slice allocated per replenishment period, it is observed that the LCR-
model will require lesser number of actors than the LPR-model, while if the execution
time of a single iteration is less than the slice size, the LPR-model will have lesser number
of actors for that job.

In the case of the multi-rate data-flow model proposed in chapter [7, the model in its
multi-rate form will always have a four actors. The SRDF expansion equivalent of
the MRDF-model will have a single actor for modeling the initial waiting time, multiple
actors for modeling the actual execution of the jobs, and a collector actor w’. We observe
that the SRDF equivalent of the MRDF-model is an exponential expansion of the original
model. The single-rate expansion of the MRDF-model depends on the production rule
of the actor representing the initial waiting time, (see figure In section we
show that the collector actor can be eliminated from in the expanded SRDF equivalent
of the original model without affecting the behavior of the model. In section [7.4.3] we
addressed the issue of optimizing the MRDF-model such that we can reduce the size of
the equivalent SRDF expansion. We proposed that the number of tokens produce by
the actor w (the actor that model the initial waiting time) is set to m where t, is
the execution time of a single iteration of the modeled job and S is the size of the slice
allocated per replenishment period for this job. The number of actors then required to
model the execution of the job iterations is expressed as 2 X (m) and the total
number of tokens in the expanded SRDF equivalent of the MRDF-model is given by

ty
1+2 % (gt
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8.1.2 Analysis Complexity

In sections [2.5.1] and 2.5.2] we described two techniques, namely simulation based anal-
ysis and static analysis, for analyzing the temporal behavior of data-flow modeled em-
bedded streaming applications. The time taken by both techniques directly depends
upon the number of actors and the number of paths across these actors. Each of the
models proposed in this thesis have more number of actors and paths with respect to
the existing state-of-the-art models [I], [2]. Intuitively, it is expected that the temporal
analysis of an applications graph, obtained by representing each job in the application
one of the proposed models instead of the existing state-of-the-art models, would take
longer. The empirical quantification of this time, however, is not presented as part this
project due to lack of time. This quantification is left for future work.

8.2 Applicability of the proposed models for other budget
schedulers

It is shown in [I] that TDM arbitration belongs to the class of budget schedulers, called
latency-rate servers, such that its behavior can be captured using data-flow based models
called Latency-Rate models [I0]. This latency-rate model has been used extensively in
literature for modeling the temporal behavior of different latency-rate servers, such as

T, 2] 22].

This project focuses on the data-flow based temporal analysis of TDM arbitration to
establish hard real-time guarantees for independent application running on a shared re-
source MPSoC. We have shown that the modeling techniques presented in this thesis are
a more accurate representation of the worst-case temporal behavior of TDM arbitration
as compared to the existing state-of-the-art- techniques.

We suspect that our techniques can also be extended to capture the worst-case temporal
behavior for a broader class of latency-rate servers. For instance the data-flow model for
the high priority job in Priority based Budget Scheduling (PBS) [2I] is shown in Figure
a). The advantage in PBS is that the high priority job has a much smaller initial
waiting time and then has a generalized rate of execution given by % where t, is the
execution time for a single job iteration which has an allocated budget (or slice) B per
period P. The modeled behavior is claimed to be a tight conservative (over-) estimate of
the worst-case temporal behavior of jobs scheduled using PBS. An accurate estimation
can be obtained using, for instance, the LCR-model (Figure[8.1(b)) or the MRDF model
(Figure (c)) proposed in this thesis by only changing the firing time of the actor w to
t(w) = B, and replacing the slice allocation S with the budget allocation B in the rest
of the model.
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Figure 8.1: Data-flow based modeling of Priority based Budget Scheduling

Intuitively, we observe that the pessimism present in the LR-model is due to the gen-
eralization of the the rate of execution across all job iterations to establish a linear
worst-case bound on the temporal behavior of resource shared jobs. Meanwhile, the
models proposed in this thesis do not model this generalization such that we define a
more accurate non-linear bound that coincides with cyclic pattern of the actual worst-
case temporal behavior of these jobs. Further study may lead to more conclusive results
and we strongly recommend that this extending the use of the proposed models for other
budget schedulers should be investigated.

8.3 Using the models for TDM with Static-Ordering

In section 3.5} we described the concept of TDM arbitration with static-ordering in which
a group of mutually exclusive jobs of an application, that are mapped onto the same
resource, are grouped together in staic-order and given a single slice per replenishment
period. Moreira et al [§] shows that the response times of jobs scheduled via TDM
with static-ordering is much better than if they had an independent slice allocation. In
Moreira et al [§], it is also shown how TDM with static-ordering can be modeled using
the LR-model. For instance, Figure shows the slice allocation for a group of two
static-ordered jobs and its corresponding LR-model.

We suggest to model this group of static-ordered jobs as a single job that has a cyclo-
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Figure 8.2: Modeling TDM with static-order using the LR-model

static regime of execution time. In other words we represent this group of jobs as a single
job having a fixed order of varying execution times. We can then redefine the worst-case
behavior of this job under the effect of TDM arbitration as:

j .
o 3n+{MJ‘P if Y icjcnts %S =0
n — J . T . .
snt+ |2 P (P—8) 4+ (D1t % S) i Yy th % S #0
(8.1)

8.3.1 Extending the MRDF-model for TDM with static-order

We suggest that the MRDF-model proposed in chapter [7] can be extended to a CSDF-
model, to capture the worst-case temporal behavior of jobs under the effect of TDM
with static ordering. This is shown in Figure Further verification and validation on
the correctness of the obtained CSDF-model is left for future work.

%0 tw)=P -5 (xp)=1 {l\@
Lo I CY- IRV Y o>
< \0‘\\ : /o 7

a0 )= A~
s tw) =0 %)

d(xy,x,) = S
1

tlx,)=P—-1

Figure 8.3: Modeling TDM with static-ordering using the proposed MRDF (CSDF) -model
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8.3.2 Extending the LCR-model for TDM with static-ordering

We suspect that the LSPRI-model proposed in chapter [6] can also be extended by making
the following changes in the model construction.

The firing time of the latency actor is given by t(w) = P — S while the firing time #(x;)
of each phase actor x; € V defines the execution behavior of the associated job iteration,
expressed as:
(P—S _ for v € w, xg41,
.t .
| Z= | P [T yei th % S
o J. .
t(v) = S|ZEme B Py % S) forv=a&1<i<gq,,
o
| Zszn ) p oy ~ta % S
Z j<n— tg? j
fLiléij 2P+ [Zlgjgn—l th % S]—(P—2S) forv=ux,.

(8.2)

lcm(S,ZlSant%)
Zigjznte
is only suspected to be correct. We recommend a detailed future study to establish

adequate claims on this approach.

where n = . We would like to inform here that the proposed construction



Chapter 9

Conclusions

An increasing number of embedded radio applications for MPSoC hardware is modeled
using data-flow to establish hard real-time guarantees such as minimum throughput
maximum latency. The influence of resource sharing amongst multiple applications by
using budget based schedulers such as TDM is usually bounded. This thesis proposes
various modeling techniques that make use of data-flow graphs to capture the worst-
case temporal behavior of jobs scheduled using TDM arbitration. The existing modeling
techniques [0l [I], are pessimistic in capturing this worst-case temporal behavior thus pro-
viding weaker guarantees. Stronger guarantees can be established via the state-of-the-art
modeling approaches by over-allocating resources to the jobs of an application. This re-
sults in under-utilization of system resources, and may cause unnecessary rejection of
applications that could in fact be accommodated within the given MPSoC framework.
Models such as in [2], enable more accurate estimation of the worst-case temporal be-
havior of TDM arbitration. The model, however, is only applicable to exceptional cases
of TDM arbitration, as the model makes the assumes that the size of the slice allocated
for a job is an integer multiple of the execution time of a single job iteration.

The main focus of this thesis was to use data-flow to design a conservative model that
accurately capture the worst-case temporal behavior of jobs scheduled using TDM arbi-
tration. The project goal is stated as:

”To design a data-flow based modeling techniques to capture the worst-case behavior of
jobs scheduled using TDM arbitration, such that:

e it provides more accurate estimation of the worst-case behavior of a TDM scheduled
job as compared to the existing state-of-the-art models.

e it is conservative i.e. it will define an upper-bound to the worst-case temporal
behavior of jobs scheduled using TDM arbitration.
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e it is generic i.e. it should not make unnecessary assumptions on the characteristics
of TDM arbitration, such as slice sizes”.

In this thesis, we presented various data-flow based models, namely the LPR-model,
the LCR-model, and the MRDF-model, that provide more accurate estimation of the
worst-case temporal behavior of TDM arbitration in comparison to the existing state-
of-the-art [0 [§ [l 2I]. Unlike [2], we do not make assumptions, or pose restrictions, on
the characteristics of TDM arbitration such as size of the slice allocated for a job. This
makes our proposed models more generic and applicable for arbitrary TDM setup. We
enlist the characteristics of each of the proposed models as:

1. LPR-model: The LCR-model is a single-rate data-flow model for estimating the
worst-case temporal behavior of TDM arbitration. The execution of continuous
iterations of a job using TDM can be shown to have a cyclic pattern over a fixed
number of replenishment periods. Our approach models this patterns using data-
flow by capturing the execution behavior for each replenishment period separately.
We initially assume that the execution time of a single job iteration is smaller that
the size of a single slice. Thereby, we relax the restriction of Staschulat’s LR-model
[2] which requires that the size of the slice should be only an integer multiple of
the execution time of a single job iteration. For this setup of TDM arbitration,
we demonstrate that the model provides a conservative estimation that is tighter
than the existing state-of-the-art models i.e. the LR-model [IJ.

We then show that we can extend this model to capture the effect of TDM ar-
bitration for jobs with arbitrary execution times. We do this by modeling TDM
arbitration using a virtual slice and period setup such that a single slice can ac-
commodate the execution of a single job iteration. However, when we extend this
model to larger execution times, we demonstrate that the modeled estimations
are comparable to the LR-modeled estimations but not always better. We may
conclude that in such cases the proposed approach is not optimal.

2. LCR-model: The LCR-model is a new approach to model the cyclic patter of
execution of a job under the effect of TDM arbitration. The proposed LCR-model
overcomes the disadvantages in the LPR-model such that it does not make any
assumption on the execution time of a single job iteration. The LCR-models the
execution rate of each individual iteration instead of the modeling the execution
rate per phase slice of the cyclic pattern.

We demonstrated that this model provides an accurate estimation of the worst-case
temporal behavior of an arbitrary TDM setup. We also conclude that the LCR-
model is better than the existing state-of-the-art models and the proposed LPR-
model. We also demonstrated that under the assumptions on TDM arbitration
made by Staschulat’s LR-model [2], the LCR-model obtained for the same TDM
setup can be further optimized using data-flow optimization techniques [I1I] to
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obtaing a reduced model, that directly coincides with Staschulat’s LR-model. The
LCR-model is, therefore, a generic model that captures he worst-case temporal
behavior of job iterations scheduled using TDM arbitration.

3. MRDF-model: The MRDF-model uses multi-rate data-flow to model the worst-
case temporal behavior of TDM scheduled jobs. Instead of modeling a job iteration
as a single token, we split it into multiple tokens according to the total execution
time of a single job iteration. Each token represents to a fixed amount of execution
time of an iteration and is modeled such that it consumes the equivalent amount of
time from the alloted slice. The availability of slice time for execution is replenished
after every period. On the output side, all tokens of a single iteration are consumed
in a single firing to produce an output token.

We argued the correctness and the accuracy of the model through an illustrative
example. We addressed issues, such as expanding the multi-rate model into an
equivalent single-rate data-flow model and also on various optimizations possible
on the models. We also compared the multi-rate model to the other models pro-
posed in this thesis and the existing state-of-the-art models. We argue that the
proposed MRDF model is more accurate the the LR-model [I]. We also claim that
Staschulat’s LR-model [2] can be perceived as a special instance of the proposed
MRDF model.

To show that the models are conservative we first formalized the worst-case tempo-
ral behavior of TDM arbitration. Although this formalization is rather intuitive and
straight forward, such formalization of the worst-case behavior of TDM arbitration is
not presented in literature to the best of our knowledge. We must then demonstrate
that a model defines an upper bound to this worst-case temporal behavior and is, thus,
conservative. The existing state-of-the-art models do not demonstrate conservativity via
this approach, but rather they sketch the worst-case temporal behavior of TDM arbitra-
tion and argue that these models are conservative. This thesis provides a formal proof
of their conservative properties in Appendix [A] Similarly we also present the proof for
conservativity of the models proposed in this thesis in Appendix [Bland also demonstrate
that the proposed models are more accurate than the existing state-of-the-art.

We addressed various issues regarding the the proposed model. We discussed that the
improved accuracy in the estimation of the worst-case temporal behavior of TDM arbi-
tration via our models comes at the cost of increased complexity of the data-flow model
both in terms of size of the generated data-flow model and the time required to analyze
these models. Due to lack of time, we do not quantify this increase in the complexity,
and leave it for future work. In case of the MRDF-model, we also presented the some
optimization techniques that reduce the complexity of the model and its SRDF expan-
sion. We also addressed the issue of extending the proposed modeling techniques for
a broader category of budget schedulers and illustrated the use of our models for the
Priority based Budget Schedulers [2I]. Lastly we also address the issue of extending the
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proposed models to capture the effect of TDM arbitration with static-ordering.
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Appendix A

Conservativity of the
state-of-the-art models

A.1 Basic Definitions

Let us first familiarize ourselves with some basic terms and definitions that we will use
to formulate our proofs. We assume that each iteration is invoked by arrival of a new
input data container, and finishes on producing an output data container. These basic
definitions allow us to formalize the modeled behavior of worst-case TDM arbitration.

e P replenishment period of the TDM scheduler

S time slice alloted to a job
e {4 execution time of each iteration of an arbitrary job A

e a(i) the actual arrival time of the i-th job iteration marked by arrival of the i-th
input container

e f(i) the actual finish time of the i-th job iteration marked by production of the
i-th output container

e G(i) the modeled arrival time of the token representing i-th input container
o f (7) the modeled finish time of token representing the i-th output container

Let us also re-state the worst-case temporal behavior of TDM arbitration formalized
in section 3.2} We formalize the temporal behavior of TDM arbitration by expressing
the finish time of an iteration in relation to the the finish times or start times of the
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previous iterations. A sequence of consecutive job iterations is where every iteration,
except the first iteration in the sequence, arrives before its previous iteration finishes
executing. The execution of each iteration will have to wait until all previous iterations
have finished executing.

Consider that for a sequence of n consecutive job iterations, s, is the arrival time of
the first iteration in the sequence and f, is the finish time of the last iteration in the
sequence. If each job iteration takes t4 time to execute, n - t4 is the total execution
time required. This amount of time can be expressed in terms of the slice size as
2] S+ (n-ta % S) ie. we will require || complete slices and and additional
(n-ta % S) time for the remaining execution. We require L%J periods for each slice
that is consumed completely, and if n-t4 % S # 0 then an additional waiting time of
P — S is required before the job is allotted a slice to complete the remaining (n-t4 % S)
of the execution time. We define the execution of a sequence of n consecutive iterations
as.

fn_{snﬂngAJ.P ifn-ta%S=0 (A1)

Snt A P+ (P—=S)+(n-ta%S) ifn-ta%S#0
Definition 2. A data-flow model is conservative if, whenever the modeled arrival times

a are an upper bound to the actual arrival times a, the modeled finish times f are an
upper bound to the actual finish times f. Formally, this means that:

Viso a(i) < a(i) = Viso f(i) < f(3) (A.2)

We will now show that the each of the state-of-the-art models [6l [l 2]. We show that
the finish times modeled by these models of each job iteration is an upper bound to the
actual finish times of job iterations as per Equation

A.2 Conservativity of the Singe-actor response model

Bekooij et al [6] propose a single-actor response model for modeling the worst case
temporal behavior of TDM arbitration as shown in Figure The model bound for
this worst-case temporal behavior is expressed as:

fi) = max(ai), f(i — 1)) +t(vs)

. ty
= max(a(i), f(i—1))+ (P —-95)+ ng P+ [ty % 9] (A.3)
To show that the single-actor response model defines an upper bound to the worst-case

temporal behavior of TDM arbitration we enumerate the following cases:
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Figure A.1: Representing a job using the single-actor response-model

1. Consider a sequence of consecutive job iteration such that the (i — k)-th iteration
is the first iteration of the sequence, i.e. s, = a(i — k). The length of the sequence
is n = k 4+ 1. Consider, for now, that the length (k + 1) < lcml(tiz) such that
(k+1)-ty % S # 0. The finish time of the sequence f,, is the same as the finish
time of the i-th job iteration and expressed as:

(k+1)-t,

£0) = ali = k) + (P = 8) + [

| Pt (k+1)t, %S (A.4)

The single-actor response model gives the constraint for consecutive job iterations
expressed as f(i) > f(i—1)+(P—S)+|%] - P+[t, % S]. Applying this constraint
(k4 1) time we derive the modeled finish time of the i-th job iteration as:

f(z'):d(z‘—k)+(k+1)-[(P—S)+L%J-P+tx%S] (A.5)

To show that f(i) < f(i) we show that the predicate

Uf+;>'tq Po[(k4 1)t % 5] < (k4 1)-[(P=8)+ | 2] - P+t % ),

(A.6)

(P=5)+|

is satisfied. To prove this, we split the above inequality into three parts.
o Trivially we can show that (P —95) < (k+1)-(P—5).

e For (k+1) < %, we know that L%j = (k+1)-%]. Multiplying
this inequality by P we get L%j P=(k+1)-|%]-P
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e Similarly, the inequality (k+1) [tz % S] < (tz % S) - (k+ 1) can be reduced
to(k+1)- %] < L%J For (k+1) < %, this is trivially satisfied.

2. Consider a sequence of consecutive job iteration such that the (i — k)-th iteration is
the first iteration of the sequence, i.e. s, = a(i — k). The length of the sequence is
n = k+1. Now consider that the length (k+1) = lcmgiz) such that (k+1)-t, % S =
0. The finish time of the sequence f;, is the same as the finish time of the i-th job

iteration and expressed as:

. ) k+1)-t
£6) = ati— by + | s
The single-actAor response model gives the constraint for consecutive job iterations
expressed as f(i) > f(i—1)+(P—S)+|%]-P+[tz % S]. Applying this constraint
(k + 1) time we derive the modeled finish time of the i-th job iteration as:

|.P (A.7)

Fli) =i~ )+ (k4 1) [(P = 8) + 2] - P+ 12 % (A.8)

To show that f(i) < f(i) we show that the predicate

E+1) -ty ta
{(+;J-P§%+U¢@—SHﬂSkP+%%SL (A.9)
is satisfied. We know that a(i — k) + L%J P <a(i—k)+(P-5)+ L%J :
P+ (k+1)-t, % S. As we have already shown that (P — S) + L%J - P+
[(k+1)-ty % S) < (k+1)-[(P—S)+ %] - P+ty % 5], it is trivial to show that
[HHg ] P < (k+1)-[(P = S) + %] - P +1: % S].

3. Consider that the (i—k)-th iteration is the first iteration of the consecutive sequence

such that the length of the sequence n =k +1 > % In such cases we can
consider the sequence to start from an iteration such that s, = f(i —n’), where
n' = % The new length of the sequence is n’ such that n’ - t, % S = 0.
The finish time of the sequence f, is the same as the finish time of the i-th job

iteration and expressed as:

n -ty

fl@) = fli—n)+1 |-P (A.10)
The single-actor response model gives the constraint for consecutive job iterations
expressed as f(i) > f(i—1)+(P—S)+|%]-P+[t. % S]. Applying this constraint
n’ time we derive the modeled finish time of the i-th job iteration as:

tx

ﬂn:ﬂrww+ﬂ¢w—squyp+u%ﬂ (A.11)
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inductively, we say that f(i—n) < f (i —n'). Adding these two inequalities we can
conclude that f(i) < f(q).

We have already shown that L”/stzj P </ [(P=S)+ %] - P+t, % 5] and,
/
n

The above enumeration covers all cases of the worst-case temporal behavior of TDM
arbitration such that we conclude for all cases that f(i) < f(i). Hence the single-actor
response model is conservative.

A.3 Conservativity of the LR-model

Wiggers et al [I] propose a Latency-Rate model for modeling the worst case temporal
behavior of TDM arbitration as shown in Figure The model bound for this worst-
case temporal behavior is expressed as:

fli) = max(a(i) +t(zr) +t(zr), f(i — 1) + t(zR))

= max(a(i)+ (P —-95)+ Pétw,f(i —-1)+ Pétx

[

t,.P
S

) (A.12)

t(x))=P—-5  t(xp) =

Figure A.2: Representing a job using the LR-model

To show that the LR-model defines an upper bound to the worst-case temporal behavior
of TDM arbitration we enumerate the following cases:

1. Consider a sequence of consecutive job iteration such that the (i — k)-th iteration
is the first iteration of the sequence, i.e. s, = a(i — k). The length of the sequence
is n = k+ 1. Consider, for now, that the length (k + 1) < % such that
(k+1) -tz % S # 0. The finish time of the sequence f,, is the same as the finish
time of the i-th job iteration and expressed as:

(k+1) -ty

& PH(k+1) %S (A.13)

f(@) = a(i = k) + (P = 5)+|
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The LR-model defines the constraints for consecutive job iterations expressed as
f@)> fi—1)+ %. Applying this constraint (k+ 1) time we derive the modeled
finish time of the i-th job iteration as:

F) > ali—k) + (P—S) + (k+1)- %P (A14)
To show that f(i) < f(i) we show that the predicate
(P-S)+ LW;)'%J P+[(k+1)-t, % S] < (P—-S)+ (k+1)- t*‘ép, (A.15)
is satisfied. To prove this, we reduce this predicate as:
LWJ PA[k+1) 1. %] < (1<:+1).t”’“’k'g
S (k1) -t % S| < (k+1)- txép _ L(“;)'tﬂ P (A.16)
(A.17)
Multiplying both sides by S we get:
S [(kt1) to % 8] < (k+1)p-P— L(’”;)'tﬂ .S.P
=8-[(k+1)-t, % S| < ((B+1) L( ) T1.8)-P
=S [(k+1)-t: % ]<[(k+1) ty % S]- P (A.18)
A19)

As S < P the above inequality is satisfied.

. Consider a sequence of consecutive job iteration such that the (i —k)-th iteration is
the first iteration of the sequence, i.e. s, = a(i — k). The length of the sequence is
n = k+1. Now consider that the length (k+1) = M such that (k+1)-t; % S =
0. The finish time of the sequence f,, is the same as “the finish time of the i-th job
iteration and expressed as:

(k+1)-t,

f@)=a(i—k)+| 5 |-P (A.20)

86



The LR-model gives the constraint for consecutive job iterations expressed as
f@) > f@@ — 1)P'Stz. Applying this constraint (k 4+ 1) time we derive the mod-
eled finish time of the ¢-th job iteration as:

fli)=ali— k) + (P =) + (k1) T (A21)
To show that f(i) < f(i) we show that the predicate
LWJ-Pg(P—S)—i—(k—Fl)-P;gC, (A.22)

is satisfied. We know that a(i — k) + L%J -P<a(i—k)+(P—-95)+ {(H;)'tzj .
P+ (k+1) -ty % S. As we have already shown that (P — S) + L%J - P+
[(k+1)-t, % 5] < (P—S)+ (k+1)- Bde, it is trivial to show that | e |. p <

(P—S)+(k+1) Bl

. Consider that the (i—Fk)-th iteration is the first iteration of the consecutive sequence
such that the length of the sequence n = k+1 > %
consider the sequence to start from an iteration such that s, = f(i — n’), where
n' = lcmgiz) The new length of the sequence is n’ such that n’ - t, % S = 0.

The finish time of the sequence f, is the same as the finish time of the i-th job
iteration and expressed as:

. In such cases we can

, , n' -t

f@) = fli—n)+ =5
The LR-model gives the constraint for consecutive job iterations expressed as
f@) > f(@ — 1)%. Applying this constraint (k + 1) time we derive the mod-
eled finish time of the i-th job iteration as:

|.P (A.23)

f@)=fti—n')y+n"- P ;9‘? (A.24)
As we know that, inductively, f(i —n’) < f(i —n') - we can show that
fli—n')+n'- P;th <fli—n')y+n'- P;w
= /() < (). (A.25)
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The above enumeration covers all cases of the worst-case temporal behavior of TDM
arbitration such that we conclude for all cases that f(i) < f(i). Hence the LR-model is
conservative.

A.4 Conservativity of Staschulat’s LR-model

Staschulat et al [2] propose a model for memory arbiters based on the latency-rate model
with some additional considerations. Staschulat’s LR-model considers that the size of
the slice assigned for a job is an integer multiple of the execution time of a single job
iteration, i.e. S % t, = 0 and S = m. Figure E The bound defined by Staschulat’s
LR-model for the worst-case temporal behavior of TDM arbitration is expressed as:

~

i
f(i) =max?{ f(i —1) +t, (A.26)
f .

tlxw) = P— tx

Figure A.3: Representing a job using Staschulat’s LR-model

To show that Staschulat’s LR-model defines an upper bound to the worst-case temporal
behavior of TDM arbitration we enumerate the following cases:

1. Consider a sequence of consecutive job iteration such that the (i — k)-th iteration
is the first iteration of the sequence, i.e. s, = a(i — k). The length of the sequence
is n = k+ 1. Consider, for now, that the length (k + 1) < M such that
(k+1) -tz % S # 0. The finish time of the sequence f, is the same as the finish
time of the i-th job iteration and expressed as:

f(z’):a(z’—k)Jr(P—S)JrLWJ-P+(k:+1)-tx%8 (A.27)
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Staschulat’s LR-model defines the constraints for consecutive job iterations ex-
pressed as f(i) > f(i — 1) + t,. Applying this constraint (k + 1) time we derive
the modeled finish time of the i-th job iteration as:

A~

F) > ali—k)+ (P —8)+ (k+1)-t, (A.28)

To show that f(i) < f(i) we show that the predicate

(k+1)-t,

(P—8)+ [

| P+[(k+1)-t, A S]<(P—-8)+(k+1)-t, (A.29)

is satisfied. Let us look at only the lefi-hand side of this inequality. The con-
sideration for Staschulat’s LR-model is that S % t, = 0. Hence, we say that

lem(S,ty) =S. Ask+1< W, we say that k < %, ie. % < 1. We can

now show that L%J =0and (k+1) -ty % S = (k+1)-ty. The left-hand side
is now reduced to (P — S) + (k + 1) - t;, which is the same as the right hand side.
Hence the above predicate is satisfied.

. Consider a sequence of consecutive job iteration such that the (i —k)-th iteration is
the first iteration of the sequence, i.e. s, = a(i — k). The length of the sequence is
n = k+1. Now consider that the length (k+1) = W such that (k+1)-t, % S =
0. The finish time of the sequence f, is the same as the finish time of the i-th job

iteration and expressed as:

F() = ali — k) + L(’”;)‘tw |-pP (A.30)

Staschulat’s LR-model defines the constraints for consecutive job iterations ex-
pressed as f(i) > f(i — 1) + t,. Applying this constraint (k + 1) time we derive
the modeled finish time of the i-th job iteration as:

A~

f@)>ali—k)+(P—-S)+(k+1) -ty (A.31)
To show that f(i) < f(i) we show that the predicate

(k+1) -ty

[ P S (P S) + (k4 1), (A.32)
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is satisfied. Let us first consider the right-hand side of the above inequality. We
know that k +1 = lcmgix) . Therefore we can say that (k+1)-t; = S or
P—-S+(k+1)-t, = P. Slmﬂarly, the left-hand side of the inequality can be
expressed as % - P = P. As both the left-had side and right-hand side of
the inequality are same, we can conclude that the above predicate is satisfied.

3. Consider that the (i—k)-th iteration is the first iteration of the consecutive sequence
such that the length of the sequence n = k+1 > M.
can consider the sequence to start from an iteration such that s, = f(i —n'),

where n’ = lcmgs ite) — t— = m. The new length of the sequence is n’ such that

n' -ty % S = 0. The finish time of the sequence f,, is the same as the finish time

of the i-th job iteration and expressed as:

In such cases we

n -ty

f@@) = fi—n) J-P

_ lem(Sits) _
te t

For n’ we can say that L”/%j - P = P. The above expression now
reduces to:

f@)=f(i—n")+P (A.33)

Staschulat’s LR-model defines the constraints for consecutive job iterations ex-

pressed as f(i) > f(i —m) + P where m = % =n'. As we know that , inductively,

fli—n') < f( m), where n’ = m - we can show that f(i—n/)+P < f(i—m)+P,
ie. f(i) < f(i).

The above enumeration covers all cases of the worst-case temporal behavior of TDM
arbitration such that we conclude for all cases that f(i) < f(i). Hence Staschulat’s
LR-model is conservative.
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Appendix B

Analysis of the LPR-model

This chapter provides a detailed proof about the various issues of the LPR-model. We
first provide a proof of the conservativity of the model. We present the proof that we can
cosnservatively model arbitratry execution times and slice sizes using the LPR-model.
The behavior of the LPR-model in the case when the execution time of a single job
iteration is greater than the slice size is not necessarily better than the LR-model. We
provide a detailed proof of this anomalous behavior.

B.1 Basic Definitions

We will adhere to the basic definitions stated in Appendix

B.2 Conservativity of the LPR-model

In this section we show that the LPR-model is conservative in describing the worst-case
temporal behavior of a job scheduled using TDM arbitration. The LPR-modeled bound
for the worst-case temporal behavior of TDM arbitration is expressed as:

maxy<j<g{ali — [ Y725 ) + (P - 8)+
f(i) = max { (G—=1)-P—[(G—1)-8 % ta] + 1.}
fli—m)+q- P,

fli—1)+t,,
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We enumerate all the cases of the worst-case temporal behavior of TDM arbitration
(refer equation [A.1)) and show that the model defined

1. For execution of a task iteration in isolation [a(i) > f(i — 1)], since a(i) < a(i), we
can bound the execution behavior such that

a(i)+t, +(P—S5)<a(i)+t:+(P—25) (B.2)

2. Equation [5.19| defines the execution behavior of consecutive sequences of task iter-
ations Where k> lcmiﬁ We can replace n = lcmiﬁ in the expression ”St’” - P
xT

to reduce it to ¢ - P where ¢ = lcm(TSt””) We can therefore bound Equation
such that:

n-ty A

fln 1)+ P < fn—1) 4 g P (B.3)

3. By, construction, the total number of tokens within the cycle of the ¢+ 1 rate nodes

is equal to 4= S e M tokens. Therefore for all k£ such that 1 < k < M,
there is an assomated “token in the dataflow. To show that our model bounds
execution behavior of consecutive sequences of task iterations given by Equation

5.14 where k < % we consider two situations:

e Firstly, we consider the situation where the token associated with i-th it-
eration of the task is the leading token on the edge E(Rji1, Rj) ie. it is
the L(j -5 |-th token in the entire cycle from node R;. By construction,
we can assomate the arrival of (i — k)-th iteration of task execution with
(i — Y525 |)-th token [ie. a(i — k) < a(i — Y725 ))]

k=022 (B.4)
g UTS iy (B.5)
=Bl oy B (B.6)

For k < % < S -ty and t; < S, we can state that kt < .S, and conclude

that k-t k-t
clx clx < (7 1 B.

<@G-1)< (’Hé) we can say that:

Lk;zJ B L(k+;)-tx

| =1 (B.8)
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From Equations and we can deduce the following expressions:

k+1)-t, .
Dy (B9
Multiplying both sides by P, we get
EL(S)J-P:(j—l)~P (B.10)

Similarly, we can also multiply both sides of Equation by S to get:

k+1)-t, .
R
1)- x .
=(k+1) t, — {(k—'—s)tj S=k+1)-t,—(-1)-8
=[(k+1) -t % S]=(k+1)t,+(H—-1)-S
Subtracting both sides from t, we get:
=ty —[(k+1)t: % S]=te —(k+1)-t,+(—-1)-8 (B.11)
=t,—[(k+1)-t, % S)=(U—-1)-S—k-t, (B.12)
On a parallel line, using Equation we can that
G-10-S—kto=(-1-5- (Y-8 (B.13)
=(j—1)-8S—k-ty=[G—1)S % t,] (B.14)
We can conclude from Equations [B.12) and [B.14] that
teo—[(E+1) -t %S =[(—1)-S % ts] (B.15)
Therefore,
te—[(G—1)-8 %o ty] =[(k+1) -ty % 5] (B.16)

By adding Equations[B.10|and [B.16] we see that (j —1)- P — [(—1)-5 % ta] +
ty=(k+1)-P+[(k+1)-t, % S]. Since a(i — k) < a(i — [ Y725 ) we finaly
deduce that

a(z‘—k)+[Wj-P+((k-tx+l)%S)+(P—S)§

D+E=8)+0G-DP -1 -1S % ta] + 1o
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e We now consider the case when the token associated with the ¢-th iteration is
not the leading token. This situation in the dataflow model can be expressed
mathematically as

G-1-5
2

8k

2%

1) (B.17)

Let u be such that u = k — L%J), that is the token associated with the
i-th iteration is the u-th token on the edge E(Rj41, R;). Due the dataflow
constraint that f(i) > f(i — 1) + ¢, posed by the self loop at node R — 1, the
constraint on the finishing time of the (i — u)-th iteration can be expressed

as:

f@)y=Ffli—w+u-t, (B.18)

Also the finishing time of the (i —u)-th token is the leading token on the same
edge, its finishing time is given by

: G-1-S

fli—u) = a(i—| D+te+(P=8)+(-1)P-[(G-1)S % t;] (B.19)

xT

Using Equation B.19] in Equation [BI8] we get

SJ)+(u+1)tx+(P—S)+(j—1)P—[(j—l)S%tx] (B.20)

There are (k — u + 1) task iteration from start of iteration (i — k) to end of
iteration (i — u) such that its execution behavior is expressed as:

(k—u+1)-t

fli—u) =a(i—k)+| 3 2| P+[(k—u+1)-t, % S)+(P-S) (B.21)

We can prove according to the previous case that f(i —u) < f(i —u) we can
say that

Fli—u)+u-ty < fli—u)+u-t, (B.22)
By expanding f(i — u) and f(i — u) in the inequality we get
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WJ-P+[(k—u+1)~tx%5]+(P—S)

G-1-5
2%

a(i—k)+ |

+u -ty <ali— | D+ w+ Dtz +(P=-S)+ (G —-1)P

—[(j —1)S % t,] (B.23)

Substituting the right hand side according to Equation

(k—u+1)- -t

a(i —k)+ | 3

| Ptlk—u+1) -ty %S|
+(P = S) +u -ty < f(i) (B.24)

We also know that there are u task iterations left after the finishing of the
(i — u)-th iteration, such that the finishing time of the —-th iteration is given

as:
U -ty

S

F@O=fl—w)+ % Prju-t, %S|+ P—S (B.25)

The difference (Hé)'tx — (k_ugl)'t” is “&=. Since L%j >k > {%J and

u=k— L%J, we can say that u < L%J — L%j fe. u< % Therefore:
-t
Ll (B.26)

S

Using Equation we can derive that %] - P =0 and that u-t, % S =
u - t,. We can now re-write Equation as:

£y = ali—ky+ (B p w8
HOE P uct, % 8]+ P S (B.27)

Again, please note that we need to consider the worst case waiting time of
(P —S) only once. Using Equation in Equation we conclude that

F@) < f0) (B.28)
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B.3 The LPR-model extension for arbitrary execution times
and slice sizes

The LPR-model initially assumes that the execution time of a single job iteration is less
that the slice size allocated to that job. We now show that we can extend the LPR-model
to capture the behavior of larger execution times as well. Consider a TDM setup for a
job with execution time t, and allocated a slice of size S per period P such that t; > S.
We can express the execution time as t, = k-5, where £ € R and k£ > 1. To capture the
worst-case temporal behavior of this setup using the LPR-model, we replace the period
and slice values in our model by a virtual slice and virtual period value. Let P’ and S’
represent the virtual period and virtual slice such that P’ = [k]- P and S’ = [k]-S. We
claim that by replacing P with P’ and S with S’ in the LPR-model we can conservatively
model the job with execution time ¢, > S. To show this we simple need to show that
the worst-case temporal behavior defined using equation using the values P’ and S’
is an upper bound to the behavior defined using the values P and S. Let us enumerate
the cases as follows:

1. For a continuous sequence of length n job iterations, where n.t; % S = 0 we define
the worst case behavior for the TDM period-slice pair (P, S) as

n-t,

S

foo=sn+| ]-P (B.29)

Similarly for the TDM period-slice pair (P’,S’) we define the behavior as:

fn = Sn—i—L = J.P/
n-t;
= sutlpygl WP (B.30)

As we can show that LﬁﬂtTSJ -[k] > [®&=], we say that

n-ty

S

n-ty,

55

St | (k] P> sy 2] P (B.31)

2. Similarly, for a continuous sequence of length n job iterations, where n.t, % S # 0
we need to satisfy the predicate:

J P (P =8+ (0t % ) 2 || P (P=8)+ (nt % S) (B.32)

We can split this predicate such that
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e We have already shown that L[’Hﬁ”sj (k] > [ 28]
e Next, we can trivially show that (P’ — S") = [k](P — S) > (P — S) where
k>1.

e Lastly we need to show that n-t, % S’ > n-t, % S. Expanding the inequality

we get:
n -ty n-t;

S’ S’
Reducing this equation we get L[Z']t_fsj - [k] < | ™% ]. We can show that this
always holds.

n-ty —| |8 >nt,—| ]9 (B.33)

By combining these three cases we can conclude that the above predicate is satis-
fied.

The above enumeration shows that for all cases the TDM behavior modeled using the
virtual period-slice pair (P’,S’) is an upper bound to the TDM behavior modeled using
the actual period-slice pair (P — S). As the LPR-model is conservative for the (P’,S")
pair, it is implicitly also conservative for the (P, S) pair of the TDM setup.

B.4 The LPR-model anomaly

In Appendix we demonstrated how we can model execution times that are larger
than the size of the allocated slice, using the LPR-model. However, we observe that
this extension to the LPR-model causes deterioration of the accuracy of the model. The
LPR-model may provide a more pessimistic estimate than the LR-model. We will now
just show the counter-condition in which we observe this anomaly.

Consider a continuous sequence of job iteration of the length expressed as L%J + 1. If

A~

f(i) defines the finish time of the i-th iteration using the LPR-model and f’(i) defines
the finish time of the same iteration using the LR-model, if the LPR-model is tighter
than the LR-model then f(i) < f’(i). To prove this, we need to satisfy the predicate:

joP =[-8 %ty + P — 8 4ty < (Lj;S/J +1)- t””ép (B.34)
z
Solving the above predicate, we reduce it to:
(+1)- [:1 < (ij' _[?J +1), (B.35)
where k£ = % For k£ > 1, this predicate is not satisfied. Hence we can conclude that
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the extension proposed for the LPR-model to represent the worst-case behavior of jobs
whose execution time is grater than the size of the allocated slice, is not better than the
LR-model.
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