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Summary

Brain-Computer Interfaces, or BCls, allow the use of neurophysiological signals of the
brain to control external devices without using any other part of the body (Birbaumer &
Cohen, 2007). Recently, it has been suggested that BCIs can be used in rehabilitation. In the
case of stroke patients, there is some evidence that imaginary movements might be helpful
by providing a means for practice when no actual movement can be performed (Mulder,
2007), and BCIs can provide feedback for this imaginary-movement practice.

A common problem after a stroke is the loss of the ability to walk. Therefore, a BCI
using imaginary walking or attempted walking could help patients to relearn how to recover
this ability. The present study proved the feasibility of decoding walking using EEG. Two
different types of Event-Related Spectral Perturbations were used to distinguish walking
from no-walking in both actual walking and imaginary walking. Furthermore, an online
BCI for walking was implemented successfully with classification rates analogous to the
offline classification. Importantly, the results were robust for different levels of automaticity
in the walking task (simple walking, complex walking, and backwards walking).

In order to maximize the system performance, several tasks and features were chosen
and compared, namely, task (simple and complex walking), spectral modulations (inter-
stride modulations and intra-stride modulations) and frequency band (mu, beta and mu-
beta). The mubeta band improved performance when compared with the mu and beta bands
separately. However, neither differences in the automaticity of walking nor in the spectral
modulations were found. Only the effect of walking modality and spectral modulations
was significant, showing that inter-stride modulations are better features during imaginary
walking, whereas the the intra-stride modulations yield better results during actual walking.

The interactions among task, performance and three subjective measures (sense of
agency, satisfaction and learnability) were also assessed. However, no significant effects of
task and performance on the sense of agency, satisfaction and learnability were found.

Herein, recommendations are provided for the design of a BCI for rehabilitation. Inter-
stride modulations could help during early stages in the rehabilitation process, whereas intra-
stride could be more useful to tune practice according to the gait cycle phases. Furthermore,
the mubeta band proved to be more suitable to achieve high performance. However, due to
the high variability between subjects, it is recommended to choose the best frequency band
per user.
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1. Introduction

Most children have dreamed about being a superhero granted with special abilities
and powers: the power to fly, super-strength, telekinesis, perhaps even the ability to read
minds. Such extra-sensorial and extra-motor powers seem to be confined to our imagination.
However, they are not impossible anymore: advances in technology now make it possible
for these dreams to come true. Technological extensions of the body can grant us abilities
that previously would have been impossible. In fact, evidence of these extended capabilities
already exists: airplanes have granted us the ability to fly, and vehicles have let us lift
enormous weights. However, the control of such abilities still depends on physical interaction,
using these technological extensions as elements external to our bodies.

Furthermore, the usage of such external tools is usually complicated. Interaction is so
complex, that it requires investing a huge amount of time on intensive training before being
able to optimally use such tools. Due to the inherent complexity of such technologies, the
feeling that humans are directly controlling the actions of the machine (i.e., sense of agency)
and that the technology itself is part of their own body (i.e., sense of ownership) is almost
imperceptible. To solve this problem, there are some trends in Human Computer Interaction
which suggest several alternatives to diminish the complexity of the interfaces. Most of them
coincide in their emphasis on simple, one-purpose, location specific, interconnected devices
(Buxton, 2001; Clark, 2003). Andrew Clark (2003) suggested that as tools become easier
to use and more transparent, they become natural extensions of our body and of our mind
and therefore, humans can be considered Natural-Born Cyborgs.

On the other hand, the possibility remains of fusing such interfaces and functionalities
as extensions of our minds, literally. What would you feel if you could lift objects from a
certain distance, with the sole will of your mind? What about controlling new stronger arms
and legs as if they were your natural limbs? What would happen if you could see and hear
more frequencies of sound and light, besides the ones that our natural senses allow? What
about warping all your senses and your will to a faraway place? ...Perhaps a virtual one?

The first step towards the implementation of a direct extension of our mind and bodies
has already been taken through the introduction of so-called Brain-computer Interfaces
(BCIs). BCIs are a direct link between devices outside the body and mental activity (van
Gerven, Farquhar, Schaefer, Vlek, Geuze, Nijholt, Ramsey et al., 2009). They allow the
use of neurophysiological signals of the brain to control external devices (Birbaumer &
Cohen, 2007). BCIs have the potential of providing a good alternative for improving the
sense of agency and ownership provided by technology. However, their development is still
rudimentary, and there is still much work left in order to reach a perfect coupling between
human minds and machines.

Nowadays, BCIs are typically used for communication and control (Wolpaw, Bir-
baumer, McFarland, Pfurtscheller and Vaughan, 2002). One example of BCI for communi-
cation is the so-called ‘visual speller’. This is a device that allows people to spell a word
by selecting letters from a grid. The interface consists of a matrix of letters which flash in
rows and columns. When the desired letter flashes, a P300 evoked potential is generated
300 ms after the presentation of the stimuli, making it possible to estimate which letter the
user is attending to (Wolpaw et al., 2002). On the other hand, BCIs for control have been
used with the explicit purpose of compensating for loss of motor ability in disabled patients.
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A BCI could, for example, allow patients to drive external devices such as a wheelchair
or prosthesis (Millan, Renkens, Mouriio and Gerstner, 2004; Enzinger, Ropele, Fazekas,
Loitfelder, Gorani, Seifert, et al. 2008).

Since a BCI can provide feedback of imaginary and attempted movements when no
actual movement can be executed, it has been suggested that it can be used in rehabilitation
of stroke patients as well (Daly & Wolpaw, 2008; Vries & Mulder, 2007; Enzinger et al., 2008;
Mulder, 2007; Prasad, Herman, Coyle, McDonough, & Crosbie, 2010; Cramer, Orr, Cohen,
& Lacourse, 2007). By providing feedback of an attempted movement, BCIs can facilitate
practice of a lost brain functionality. There is some evidence that the use or disuse of a brain
representation can influence cortical representations (Mulder, 2007). Therefore, as a result
of constant training and facilitation of this training, reorganization of neural structures could
be enhanced and lost motor abilities could be relearned.

A common problem after a stroke is the loss of the ability to walk. A BCI using
imaginary walking or attempted walking could help patients to recover this ability through
relearning. The aims of this study are twofold. First, use EEG signals in order to determine
whether a (healthy) person is walking or not, for actual walking. Second, to build a BCT for
imaginary walking, with similar brain signals. Different features and tasks will be compared
in order to choose the combination that provides the best system performance. Furthermore,
interactions between tasks, performance and the subjective assessment of the user about the
usability and the sense of agency of the interface will be explored. Recommendations for
further improvements of such BCI will be generated, focusing on necessary adaptations of
the BCI for improved performance, while providing a good sense of agency and usability.

The structure of this report is as follows: in Section 2, a detailed description of the
methodologies used to implement a BCI are provided. Section 3 describes current evidence
of the impact of BCIs in rehabilitation and Section 4 introduces relevant features of EEG
signals during human gait. Section 5 describes the research questions and hypothesis of
the current study. Section 6 describes a feasibility study of the classification of the EEG
during walking, and the technical details for such classification. Section 7 describes the main
experiment of this study, where the BCI was tested in an online setup and its subjective
qualities were assessed. Finally, Section 8 and 9 provide a general discussion of the results
and conclusions, respectively.
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2. The Brain-Computer Interface cycle

Despite the broad range of applications and paradigms that are used for implementing
BClIs, most implementations follow a common set of steps. Gerven et al. (2009) proposed a
cycle for a BCI interface (Figure 1), from the measurement of the signal, to its transduction
into observable phenomena. In this cycle, the first stage corresponds to the sensing of
mental activity while the user engages in a cognitive task. Then, the signal is preprocessed
in order to filter noise and extract the characteristic features of the signal that will be used
for classification. Next, machine learning algorithms are used to make a prediction about
the intention of the user. Finally, this prediction is used to give feedback to the user, or to
regulate the task at hand. The outcome signal can also be used to control a specific device.
Since the user becomes aware of the device behavior, he is enabled to adjust his mental
activity, towards the desired end.

In the following sections, each step of the BCl-cycle is described in detail.

Measurement. The required neurophysiological measurements of the brain are
recorded using two different types of methods. Invasive methods require the implantation of
electrodes on or in the brain. An example of an invasive method is the electro-cardiogram
(ECoG), which provides a good signal-to-noise ratio and good detection of high frequen-
cies. Other examples are the “Single microelectrode” (ME) and the “Micro-electrode array”
(MEA), which consist of a single or multiple electrodes implanted in the brain, respectively.
These methods are capable of detecting many forms of electrical potentials, single or multi-
neuron spiking, as well as local field potentials. Both methods have fairly good temporal
and spatial resolutions; however, they also have disadvantages such as the maintenance of
the electrodes and difficulties with the communication of the internal device with external
processing units (Gerven et al., 2009).

Prediction

Feature
extraction

Preprocessing| i~ """ ] i,
! : ;

Measurement Modality

Figure 1. : The BCI cycle as proposed by Gerven et al. (2009). While the user performs a
cognitive task his brain activity is measured. The signals acquired are then preprocessed to
remove confounds. Then, the interesting characteristics for classification (features) are ex-
tracted. Next, a prediction is made about the nature of the features. Finally, this prediction
is given as feedback or it is used to modify the user’s task.
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Non-invasive methods record the signals from outside the brain. Examples of non-
invasive techniques are the Electroencephalogram (EEG) and the Magnetoencephalogram
(MEG) technologies. The temporal resolution of both systems is very good when measuring
mental activity in the brain. However, they do not provide a good spatial resolution and they
are susceptible to eye and muscle movements. Another example is the functional Magnetic
Resonance (fMRI), which measures brain activity comparing the blood-oxygen level among
tasks. The fMRI achieves better spatial resolution than the EEG or MEG, at the cost of
losing temporal resolution (Juola, 2009).

Due to its temporal resolution and relative portability, EEG is particularly suitable
for BCL. Its working mechanism is based on using electrodes to measure electrical activity
generated in the brain and transmitted on the scalp. These potentials are neurophysiological
signals that can be used to identify patterns useful to build a BCI.

Preprocessing. Before the signal measured by the EEG can be used, it has to be
‘cleaned.” In order words, the signal of interest has to be identified and confounds have
to be removed. This is called preprocessing and implies the removal of faulty channels and
outliers. Also, the signal is usually ’detrended’ to remove trends in the measurements caused
by changes in the conductance between the electrode and the skin. Further preprocessing
includes the rejection of artifacts such as eye blinks, saccades and other EMG components
detected by the EEG electrodes.

Feature extraction. The next step is to identify the characteristics of the EEG signal
that are interesting for the problem at hand. Signatures are the association of a brain signal
with a mental state that uniquely caused it (Gerven et al., 2009). These signatures have
been classified into evoked and induced potentials. Both of them are responses locked to
a stimulus; the difference between them is that the evoked potentials are responses phase-
locked in the time domain and the induced potentials are locked in spectral power (i.e., in
the frequency domain) to the event (Gerven et al., 2009).

An example of induced response potentials are Event-Related Spectral Perturbations
(ERSP). Within this category, Event-Related Spectral Desynchronizations (ERSD) and
Event-Related Spectral Synchronizations (ERSS) are of special interest because they are
related to motor activity and movement preparation (Pfurtscheller, Stancak and Neuper,
1996; Pfurtscheller, Brunner, Schlégl and Lopes da Silva, 2006). ERSDs are induced po-
tentials that correspond to a decrease in spectral power during planning and execution of a
movement. ERSDs are followed by an ERSS, which is the increase in spectral power after
the movement (Pfurtscheller, Brunner, et al., 2006).

ERSD in the mu-rhythm frequencies (described in proceeding paragraphs) in humans
has been linked to somatosensory stimulation or movement. Evidence for this has been
found especially for hand movements (Pfurtscheller et al., 1996). Interestingly, ERSDs
and ERSSs are present not only during actual movement, but also during imagery tasks
(Pfurtscheller, Brunner, et al., 2006; Neuper et al., 2005). Motor imagery refers to the
cognitive image of performing a movement, without executing the actual movement. If the
imagery is performed in a first person perspective, it is called Kinesthetic Motor Imagery
(KMI) and there is some evidence that it elicits stronger desynchronizations than Visual
Motor Imagery (VMI), which is the imagery of seeing oneself walking (i.e., from an outside
perspective) (Neuper, Scherer, Reiner and Pfurtscheller, 2005).
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Since motor imagery can elicit specific changes of potentials in the brain, it is a prime
candidate for implementation of BCls. Furthermore, it can be used at will, giving the user
of the BCI the power of steering the interaction. The mu-rhythm and beta-band rhythms
are of special interest for identifying motor imagery. Mu-rhythm refers to an oscillation of
about 8-14 Hz in the EEG signal, whereas beta-rhythm refers to an oscillation from 12-25
Hz. Modulations in both frequency bands can be seen not only with actual movement, but
also if one imagines a movement (Pfurtscheller et al., 1996; Prasad et al., 2010). However,
mu-band ERSDs for foot movements are more difficult to detect because the foot area is
located within the mesial wall in the interhemispheric fissure. Beta-band oscillations are
also generated in the somatosensory cortex, but in contrast to mu-rhythms, they are easier
to detect, and time courses of recovery after desynchronization are faster in beta than in
mu-rhythms (Pfurtscheller et al., 1996).

Prediction. Once the features are selected, they are fed into a classifier. A classifier is
an algorithm that assigns an external observation to one of several classes (Miiller, Kraule-
dat, Dornhege, Curio, and Blankertz, 2004). The rule to do this classification is found by
analyzing the data and fitting a model that indicates a boundary between classes. A simple
approach, is to use a linear regression to fit the data and use a threshold function to dif-
ferentiate between different classes. If there are only two classes, logistic regression can be
used (Russell & Norving, 2010).

Such models are usually built by reducing the error between values predicted by the
model and the actual data. However, this might not always be beneficial. Especially in
small samples, deviations might be large, and by reducing the error to explain the variances
in the sample (Miiller et al., 2004), the classifier might overfit the data. As a result, it will
not generalize to other samples of data. To solve the overfitting problem, a regularization
parameter can be added to the regression problem (Miiller, Krauledat, Dornhege, Curio,
& Blankertz, 2004), which introduces restrictions (through penalizations) on how much
data is required to switch the classification threshold. The more data is available within a
boundary, the more confident the classifier is that it belongs to a certain class and the lower
the penalization due to few data points.

Feedback. Finally, the result of the prediction can be used to control an external
device or can be shown to the user as feedback, so that he can adapt to the outcome of the
classification. The range of modalities in which the feedback can be provided is wide and
should be designed according to the specific application of the BCI.

When such feedback is provided, the BCI is considered as “online.” In contrast to an
offline setup where all data is gathered first and classification is done afterward, an online
BCI should do the classification in real-time and should be robust to changes in the mental
activity of the user and his adaptation to the feedback itself.

In summary, BCIs work in a closed loop which starts with measuring the brain activity
of a person while he engages in a cognitive task. Then the signal is preprocessed and the
relevant features extracted. Based on those features, a classifier can learn about the user’s
brain signals and make a prediction about the intentions of the user and provide feedback
according to the results. Since the user is part of this loop, both machine learning and human
learning are complementary; the proceeding section will explain how this interdependence
can be useful for rehabilitation of stroke patients.



A BRAIN-COMPUTER INTERFACE FOR WALKING USING EEG 11

3. The role of BCI in rehabilitation

A BCI using imaginary movements could help in rehabilitation, not only by providing
the means of bypassing spinal cord injuries, but also helping both Spinal Cord Injury (SCI)
and stroke patients maintain and recover their brain functionalities by giving direct feedback
of imagined movements.

Motor impairment and functional disability are the major consequences of Spinal
Cord Injury (SCI) and stroke. The damaged spinal cord of SCI patients obstructs the
communication between the brain and several parts of the body, depending on the level of
the injury. On the other hand, a stroke is related to a distortion of the capacity of the brain
to process neural information after a disturbance in the blood supply to the brain.

Even though both problems may result in motor impairments, the brain functionality
in patients with SCI is assumed to be intact and capable of driving limb movements (Cramer
et al., 2007; Enzinger et al., 2008), while in a stroke, the motor impairment is caused by
brain damage (Vries & Mulder, 2007). Consequently, rehabilitation strategies for these
impairments follow different paths. Rehabilitation after a stroke is mainly based on therapy
and practice. In this case, functional recovery is attributed to the processes of reorganization
and substitution in the damaged brain. For SCI, rehabilitation could use BClIs, which allow
the use of neurophysiological signals of the brain to control external devices (Birbaumer &
Cohen, 2007), and could therefore be used to bypass damaged areas in the spinal cord and
drive prosthesis or even the patients’ muscles.

Even if the damage that caused the impairment is not localized in the brain, some
abnormalities have been described in the brain motor functions of SCI patients, including
reduced activation, abnormal activation patterns and higher thresholds and latency for motor
evoked potentials (Enzinger et al., 2008; Cramer et al., 2007). These abnormalities suggest
that indeed the disuse of a brain functionality can influence cortical representations. In
other words, reorganization of neural structures takes place as the result of deprivation of
sensory input due to movements (Sadato et al., 1998; Halligan et al., 1993), and constant
training is required in order to maintain the brain’s motor system functionalities in good
shape.

Unfortunately, for an injured patient it is not always possible to practice the required
movements, either because he cannot move or because movements are painful. There is some
evidence that imaginary movements might be helpful by providing a means of practice when
no actual movement can be performed Mulder (2007). The use of motor imagery would be
beneficial for rehabilitation because it is a direct representation of the movement that the
patient would like to recover.

Motor imagery training could be enhanced by providing the patient with feedback
of the movement. There are several types of feedback, including proprioceptive and visual
feedback. In stroke physiotherapy, a therapist helps the patient move the paralyzed limbs,
enhancing proprioceptive feedback. Another example from therapy is the Lokomat System
(Hocoma Inc.), which is a device designed to help injured patients simulate the movement
of walking with slightly better results than traditional therapy (Mayr, Kofler, Quirbach,
Matzak, Frohlich & Saltuari, 2007). The simulation of movement is achieved by using a
treadmill with weight support and motorized boots. Visual feedback can also be provided by
the Lokomat Pro, which shows visual cues of walking on a screen with a virtual environment,
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in which the patient walks and completes some tasks. This augmented feedback enhances
the patient’s active participation in the task.

Despite the potential of BCI and its possible benefits in rehabilitation, few studies have
explored its feasibility. One example is the study by Prasad, Herman, Coyle, McDonough,
& Crosbie (2010), where a game-based neurofeedback BCI was used to enhance movement
recovery in stroke patients. The lack of feasibility research is mainly due to the difficulty in
identifying signatures in the brain signal.

Some attempts to create a BCI for virtual walking using mental imagery of the hands
and feet have been successful (Pfurtscheller, Leeb, et al., 2006); however, they required
extengive training of three subjects, from which only one showed an steady increase in his
control of the interface. Furthermore, they do not use imaginary walking to produce the
walking movement in the virtual environment.

Since imaginary movements can activate sensory-motor areas in the brain (Mulder,
2007), they are considered embodied. A task that is more natural to the body -such as
the simple act of walking- could improve the sense of agency of the patient as well as the
quality of the feedback he can gain from using a BCI. Accordingly, cortical representations
of walking during human gait have to be considered. To this aim, the next section will
provide a brief introduction to human gait and its cortical representation.
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4. EEG during Human Gait

The Gait Cycle . Whittle (1996) defined walking as "a method of locomotion involving
the use of the two legs, alternately, to provide both support and propulsion,” and, when
talking about normal gait, the difference with running is that at least one foot is in contact
with the ground at all times. However, describing normal gait is difficult because there are
large differences in walk patterns depending on sex and age.

Furthermore, he defined the gait cycle as the time interval between two successive
occurrences of one of the repetitive events of walking.” Thus, in order to define a gait cycle,
a start reference should be taken into account. Usually, an initial contact of a foot with
the ground is considered the starting point of the gait cycle, and it continues until the
same foot touches the ground again. Between these two contacts, several phases have been
identified. Namely, initial contact, opposite toe off, heel rise, opposite initial contact, toe
off, feet adjacent and tibia vertical. For the purposes of this study, only toe offs and heel
strikes will be considered for each foot: only left toe off (LTO), left heel strike (LHS), right
toe off (RTO) and right heel strike (RHS) are considered.

Figure 2 shows the different phases of a gait cycle for forward and backward walking.
The start of the gait cycle was set to left toe off (LTO) in forward walking and left toe
strike (LTS) in backward walking. As can be observed from this figure, backward walking
has analogous gait-cycle phases to forward walking. In fact, Grasso, Bianchi and Lacquaniti
(1998) compared the kinematics and kinetics of both directions of locomotion. According
to their results, the kinematics (i.e., the spatial trajectory followed by the limbs during
walking) of forward walking are very similar to those of backward walking when mirrored
in time. However, the kinetics (i.e., the muscle activation during walk) of such movements
are different.

Several measures have been used to characterize the timing of the walking process.
Three of them are stride length, cadence, and walking speed (Whittle, 1996).

e The stride length corresponds to two consecutive steps (i.e., one gait cycle). On the
other hand, the step length corresponds to the distance from one foot strike to the next,
regardless of which foot touched the ground.

Forward

Lo LHS RTO RHS

Backward

TS RHO RTS LHO

Figure 2. : Gait cycle phases. Four phases are considered within a step. In forward walking:
left toe off (LTO), left heel strike (LHS), right toe off (RTO) and right heel strike (RHS). In
backward walking: left toe strike (LTS), right heel off (RHO), right toe strike (RTS) and left
heel off (LHO). The figure above shows the correspondence of phase between forward and
backward walking. Forward walking is quite similar to backward walking when mirrored in
time. When a LTO occurs in forward walking, a LTS occurs in backward walking.
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e Cadence is the number of steps taken in a given time (usually minutes), thus, it is
a measure of time for half-gait cycles. An alternative is to measure cadence in steps per
minute (heretofore referred to as stepping frequency).

e The speed of walking is the distance covered by the whole body in a given time and
is usually measured in meters per second.
Given these definitions, the relationship among step length, stepping frequency and speed
of walk can be simplified to the definition of velocity: the speed of walking is given by the
product of stepping frequency and step length (Whittle, 1996).

Measuring EEG during walking . The ultimate goal of this study is to use a BCI to
provide feedback about imaginary walking movements, which could be applied in rehabili-
tation to improve the process of learning to walk again. To develop such a brain-computer
interface, it is crucial to identify the correlations between patterns of movements during the
human gait cycle and EEG potentials.

The main challenge of using EEG during actual walking is to remove movement ar-
tifacts inherent in the walking process and EMG artifacts generated from face and neck
muscles. Several attempts to remove these kinds of artifacts have been made for spoken
language production (De Vos, Ri¢s, Vanderperren, Vanrumste, Alario, Van Huffel, & Burle,
2010) and walking (Gwin, Gramann, Makeig and Ferris, 2010; Gwin, Gramann, Makeig and
Ferris, 2011; Severens, Nienhuis, Desain and Duysens, 2012). In these studies, the aim was
to uncorrelate artifactual components from the EEG signal of interest.

Gwin et al. (2010) used Independent Component Analysis (ICA) to separate the mea-
sured signal into maximally independent components and subsequently applied a component-
based template regression to identify and spatially filter gait-related movement artifacts. In
a second study, Gwin et al. (2011) confirmed the potential of ICA to identify artifactual
components. Here, they used current dipole estimation for every component using an in-
verse modeling approach. Components that exhibited significant coupling with intra-stride
changes of spectral power were located in the anterior cingulate, posterior parietal, and sen-
sorimotor cortex, suggesting that EEG recordings could identify cortical involvement during
human gait. In particular, peaks in the beta and alpha bands’ spectral power were found in
the heel-strike and (approximately) in the middle of the double support phases, respectively.

Both studies demonstrated the potential of using ICA to remove gait-related arti-
facts. However, this requires a considerable amount of data, and the processing required
to calculate all components is time-consuming. Furthermore, it has to be combined with
other algorithms or visual selection to detect which components are useful. Unfortunately,
in an online BCI context, time is not an abundant resource, and therefore, other alternatives
should be considered.

Aiming to remove muscle artifacts from EEG recordings of spoke language production,
De Vos et al. (2010) proposed the use of a Blind Source Separation (BSS) technique called
Canonical Correlation Analysis (CCA) and compared it to other techniques such as ICA.
CCA is a statistical method used to estimate the correlation between two variables. EEG
and EMG components can be separated by combining CCA with the assumptions that (1)
EEG and EMG sources are uncorrelated and that (2) EEG sources, contrary to EMG, are
individually uncorrelated. In their particular application, De Vos et al. (2010) showed that
indeed BSS-CCA outperformed ICA in preserving the shapes of the ERP after removing
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artifactual EMG components.

In another study, Severens et al. (2012) showed that CCA can also be successfully
applied to disentangle EEG from EMG during walking. After removing EMG artifacts,
the synchronizations between the gait cycle and the spectral power of the beta band, as
showed by Gwin et al. (2011), were confirmed. During the study of Severens et al. (2012),
participants had to walk at different speeds, and the tasks also included stepping in place. It
was shown that the intensity of activity is greater in heel-strike and toe-off phases of the gait
cycle, and also that uncommon walking activity such as stepping in place and walking fast
involves stronger modulations of cortical activity. This might suggest that cortical activity
depends on experience and familiarity with the movements (Peters, 2011; Severens et al.,
2012).

In summary, the results of Gwin et al. (2011) and Severens et al. (2012) suggest that
it is feasible to use EEG as tool to measure cortical activity during walking, and that there
is cortical involvement during gait.

Severens et al. (2012) found two types of modulations in spectral power. The first
is an overall power decrease in the mu and beta bands along the whole time span during
which steps were performed (i.e., inter-stride modulations); the second refers to spectral
modulations (SM) in the same frequency bands coupled to the gait-cycle (i.e., intra-stride
modulations). Figure 3 shows a schematic representation of such modulations, where the
orange line shows the inter-stride spectral modulation and the red one the intra-stride spec-
tral modulation. These two modulations show that there is cortical involvement during gait,
which could be used as a feature to implement a BCI for walking.
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5. The current study

As previously described, the main idea behind BCIs is to use machine learning tech-
niques in order to identify signatures in the measured brain activity. Ideally, the BCI would
be able to automatically learn and adapt to the user, so that the training required from
the user is reduced to a minimum and the achieved classification performance is maximized
(Miiller et al., 2004).

Nevertheless, state-of-the-art BCls are still slow, require extensive training from the
user, and have to be calibrated for every subject. One of the main causes of these limitations
is the variability in the signals used for BCI,which vary widely between and within subjects
due to several factors such as trends in the measurements, degree of practice, fatigue and
motivation (Birbaumer, Ghanayim, Hinterberger, Iversen, Kotchoubey and Kiibler, 1999).

In fact, for each new iteration in the BCI cycle, the brain signatures that are used
for classification change due to the feedback given in the previous iteration. An alternative
approach used in BCI implementations, called neurofeedback training, directly relies on
the ability of people to produce changes in their brain activity. Ideally, cognitive tasks
used in neurofeedback training should let the subject voluntary control brain activity. With
enough training, these control tasks may become automatic, and could be performed without
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Figure 8. : Modulations in spectral power during gait. Two types of modulations in spectral
power have been identified. The first is the Inter-stride modulation, depicted in orange.
The second is the Intra-stride modulation, depicted in red. The Inter-stride modulation is
a negative offset from a baseline spectral power that corresponds to a standing period (i.e.,
no walking). The Intra-stride modulation is mounted on the inter-stride modulation, and
it has increases and decreases of spectral power coupled with the gait cycle phases. The
phases of the gait cycle are represented by the green lines in the plot: starting with left toe
off (LTO), heel strike (LHS), right toe off (RTO), and right heel strike (RHS).
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conscious effort or attention (Curran, 2003; Elbert, Rockstroh, Lutzenberger and Birbaumer,
1980). User learning and user adaptation to the interface are key factors in the performance
of the BCI. It is the human’s capability to adapt that allows for another application of
BClIs: they can be used as a tool for practice by providing feedback of the user’s mental
state (Nauper et al., 1999).

Other factors can also alter the performance of the BCI. There is some evidence
that the automaticity or the mental effort required to do a task also modifies the quality
of the signature measured from the brain. For instance, Miiller-Putz et al. (2007) found
some evidence that SCI patients showed better imagery vividness than able-bodied subjects,
maybe because they required more mental effort. Also, Severens et al. (2012) found some
evidence that spectral power modulations during gait were stronger when the movement was
less automatic. Consequently, less automatic movements could improve the performance of
the machine learning algorithm by making the boundary between classes more prominent.

For the purpose of rehabilitation, it is desired that the patient relearns how to control
his brain activity in order to recover a lost ability. However, even when the goal is to learn
how to control one’s brain activity, given the difficulty of making accurate predictions of
a mental state or instruction through a BCI, there is usually a chance that the prediction
will be wrong and that the instructions given by the user will be misinterpreted by the
prediction algorithm. This implicit error might alter the experience of the user by giving
him the feeling that he is not the one controlling the interface. According to cognitive
neuroscience, this experience of controlling one’s actions and -through this control- affecting
the external world is called ’sense of agency’ (Coyle, Moore, Ola, Kristensson and Fletcher,
2012;Gallagher, 2000). As a result of a decreased sense of agency, the patient’s motivation
to practice using the interface might decrease. Consequently, a balance between machine
learning, neurofeedback training and task design should be considered when designing a BCI
for rehabilitation.

Based on these considerations, the aim of the present study is to build a BCI to
determine if a person is actually walking or not, and to assess the tradeoff between the
achieved system performance, and the sense of agency, learnability and satisfaction of the
user. Different features and tasks will be explored in order to improve performance.

With this aim, two experiments were conducted. The first experiment used a compar-
ison of forward and backward walking to prove the feasibility of using EEG to differentiate
walking and no-walking conditions using cortical activity (either in actual or imaginary
walking). Furthermore, different features and tasks were tested to determine which method
provides best system performance.

It was expected that the less automatic the movement, the more modulation in mu
and beta bands of activity over the motor cortex, resulting in increased classification perfor-
mance. Backwards walking and complex walking, being less automatic, could increase the
performance of the BCI when compared with forward walking and simple walking. However,
it might improve performance at the expense of usability and the sense of agency.

A second experiment was designed to test the BCI in an online setup. During this
experiment, simple walking and complex walking (i.e., walking at varying speeds) were com-
pared while assessing sense of agency, learnability and satisfaction. Again, simple walking
was less automatic than complex walking, and therefore better classification rates were ex-
pected. Furthermore, the sense of agency, satisfaction and learnability were assessed using
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a questionnaire about the feedback provided. It was expected that:

e The higher the system performance, the better the sense of agency.

e The satisfaction and learnability will decrease with the complexity of the tasks.
However, there might be a mediating effect of system performance: the better the perfor-
mance, the better the satisfaction.

Recommendations for further improvements of the BCI will be presented with the aim
of adapting the BCI to maximize performance, while providing a good sense of agency,
learnability and satisfaction at the same time.
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6. Feasibility anlaysis: forward versus backward walking

The goal of this experiment is to prove that walking (either actual or imaginary)
can be distinguished from no-walking in an offline BCI setup. Different tasks (forward
and backward walking) will be compared in order to determine the relationship between the
classification performance and the automaticity of the movement. Different frequency bands
will also be tested in order to determine which one provides best system performance.

Methods

Experiment Design. The experiment used a 2x2 within-subjects design. The two
factors were the type of task (forward vs. backward walking) and the walking modality
(actual walking vs. imaginary walking). These four conditions were presented in eight
blocks. In every block, each condition occurred once, in random order. In other words, all
participants went through a total of eight repetitions of every condition (32 trials in total).

Four walking tasks were executed by the participants: forward walking, imaginary
forward walking, backward walking and imaginary backward walking. A trial overview is
shown in Figure 4. Every trial consisted of five seconds of standing (i.e., baseline period),
followed by the presentation of the instructions on screen (one second). In the forward and
backward walking conditions the treadmill was then turned on at a constant velocity of 3
km/h. The walking task lasted 45 seconds plus nine seconds at the beginning, which is the
time the treadmill takes to reach the desired speed. After the walking period, 10 seconds
were given to let the treadmill stop completely.

Participants. Twelve healthy volunteers with no history of major lower limb injury and
no known neurological or locomotor deficits participated in this study. The mean age of the
participants was 29 (SD=5.94) years. Before the start of the experiment, the participants
were asked to read and sign a standard informed consent form, approved by the Ethical
Committee for Behavioral Scientific Research of the Faculty of Social Sciences, Radboud
University Nijmegen.

Experimental Setup. EEG was recorded using a TMSI-REFA 72-channel amplifier
(Twente Medical Systems International, the Netherlands) and a 64-channel electrode array in
a 10-20 electrode placement system. The ground electrode was placed on the AFz-electrode

I
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Figure 4. : Trial overview. A trial started with a baseline (standing) period that lasted five
seconds, followed by on-screen instructions about the next condition. Then, nine seconds
were required to start the treadmill. The subject walked or imagined himself walking for 45
seconds and, finally, 10 seconds were required to stop the treadmill during actual walking
conditions.
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Figure 5. : Plugin-Gait Model. Sixteen reflective markers were placed on the lower limbs;
their locations were determined relative to the position of a bone as indicated in the picture.
The markers were stuck directly on the skin with a double-sided tape.

location. The TMSI REFA amplifier sampled the EEG signals at 500 Hz. Prior to the
measurement, electrode gel was used to ensure that the impedance was less than 50 kilo
ohms for each channel. The positions of 22 reflective markers were recorded using a ten-
camera motion capture system (Vicon, Vicon Motion Systems Inc.). Marker positions were
sampled at 100 Hz. The markers were placed according to the Plugin-Gait Model. Sixteen
markers were placed on the lower limbs as indicated in Figure 5, and six markers were placed
on the cap to track the movements of the head during walking.

Subjects walked on a programmable treadmill at a velocity of 3 km /s, facing a monitor
screen placed 40 cm above the floor and 150 cm away from the treadmill. In order to
walk backwards, participants had to turn around (for both actual and imaginary walking).
Identical screens were placed at both ends of the treadmill, to facilitate change of direction,
as shown in Figure 6. In order to reduce movement artifacts, the EEG cap cable was clipped
to a cable that hung on the ceiling with a device that could move along with the subject,
and then connected to the amplifier (see Figure 6).

The control of the flow of the experiment was programmed using Brainstream (DCC,
Radboud University Nijmegen, http://www.brainstream.nu), a Matlab application (The
Mathworks, Natick, MA).
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Cameras — 2-way movemen

Figure 6. : FExperiment setup. Green blocks represent Vicon cameras to track the reflective
markers attached to the subject. Dim blocks are nearer to the observer perspective. Two
screens showing the same stimuli were placed at both sides of the treadmill. The EEG cable
connecting the cap and the amplifier was hung to the ceiling with a special device, as a
means of reducing movement artifacts.

Stimuli. Visual stimuli consisted of a green fixation cross during the baseline period,
an instruction about the condition, and a black fixation cross during the task. Between
trials, the researcher asked the participants to turn around when the next condition was in
a different direction than the previous one. Every condition was practiced once before the
start of the experiment.

Procedure. After a brief introduction about the experiment was given, participants
were asked to sign the informed consent form. Subsequently, the participant’s height and
weight were measured. Then, the EMG electrodes, EEG cap and the reflective markers were
put in place. Measures of the leg length, knee width and ankle width were taken, in order
to model the position of the limbs with the Vicon System. The Vicon system was calibrated
by taking static video samples of the subject. Position of the markers was then checked by
the experimenter, and corrected if necessary.

Next, participants were asked to walk on the treadmill for a few minutes to reach
a comfortable step length while the experimenter adjusted the metronome speed to the
stepping rate. The metronome was adjusted for forward walking and it was kept the same
for backward walking. A metronome was adjusted to the stride frequency of the participant,
and it was played both during the baseline period and the task period.

Participants were instructed not to chew and to blink as little as possible during
the trials. A set of written instructions for each condition was given to the participants.
They were explicitly encouraged to imagine themselves (kinesthetic imagery) walking dur-
ing the imaginary conditions. They were also instructed to synchronize their walking to
the metronome (which was already adjusted to their comfortable cadence), both during
imaginary and actual walking.
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Analysis

The position of the markers was recorded, modeled and labeled using the Vicon Nexus
1.7.1 Software. Each marker was labeled automatically by the software, according to a pre-
defined model: the model for the legs was the plugin-gait model, and a custom-made model
was used for the head consisting of one different label for each marker. All trials were in-
spected visually and any labeling errors were fixed manually. If a marker was missing during
one or more capture frames, the gaps had to be filled by choosing one of the trajectories
suggested by the Vicon Nexus Software. Two types of interpolation were suggested by Vi-
con Nexus: either spline interpolation, or a Nexus-generated trajectory based on a selected
marker located in the same bone as the missing marker. The second interpolation method
was preferred because the spline fill algorithm is susceptible to erratic motion in the last
frames before and after the marker gap. The spline method was used only when no markers
were available in the same segment. Missing markers in the limbs were caused by occlusion
of the camera view with the treadmill’s side handrails, with the amplifier, and with its sup-
port (Figure 6). After labeling and reconstructing the model, the information was exported
to a c3d file with the Vicon Nexus software.

The EEG data was first imported to Matlab using the BioSig toolbox (Graz Technical
University) and was further processed using Matlab (Matworks Inc.). Additional prepro-
cessing and classification toolboxes were developed in-house at the Donders Institute, and
can be provided upon request.

A program to classify walking and no-walking was implemented for Intra-stride spec-
tral modulations and another was created for Inter-stride spectral modulations, as described
in the proceeding subsection. Representative data for no-walking was taken from the baseline
period; for walking, representative data was used from the trial period after the instruction.
The data was analyzed using a classifier with different frequency bands as features. These
frequency bands were the mu rhythm (8-12Hz), beta rhythm (12-25Hz) and both rhythms
together (8-25Hz).

All classifiers were applied separately to the data of each condition of the experiment
design (i.e., walking vs. no-walking was assessed for forward walking, backward walking,
imaginary forward walking and imaginary backward walking data independently). As a
result, the analysis yielded to 24 classification rates per participant (i.e., 2 tasks x 2 walking
modalities x 2 spectral modulation categories x 3 frequency bands).

Classification. The data was analyzed offline according to the flow diagram shown
in Figure 7. The first step was to import the EEG data into Matlab. In order to reduce
processing times, the data was downsampled from 500 Hz to 250Hz. Afterwards, the data
was sliced according to the 32 trials of the experiment, and was analyzed separately for
different conditions. From this point, the preprocessing steps for the Inter-stride modulations
was different from the Intra-stride modulations.

Inter-stride classification. Fach trial was sliced into epochs of 2.5 s, and each epoch
as then labeled as walking (1) for the period after the instruction, or no-walking (-1) for
the data taken from the baseline period. Next, a Common-Average Reference (CAR) was
calculated, the data was detrended and bad channels and outliers were excluded. Then, the
data was re-referenced using CAR and then EMG artifacts were removed using Canonical
Correlation Analysis (CCA) with 0.7 as the minimum correlation threshold and 1.5 as the



A BRAIN-COMPUTER INTERFACE FOR WALKING USING EEG 23

ocessi 3
Epr— Preprocessing Intra
/ .
' RawData » Linear detrend || CAR re- | Remove bad trials
referencing
Preprocessing Inter v
EMG removal CAR re- Remove bad
Read Data Split trials Set-up labels using CCA referencing channels
e into 255w -1 Nowalk *
epochs 1 Walk Satu "
et-up labels
‘ Surface Laplacian Hwf S!ce eocchs it -1 Mo walk
‘ {one step) 1 Walk
Downsampling ¢
CAR re-
referencing [ Linear detrend Select frequencies of Rescale ste Determing
¢ nterest escale step spectrogram
Save ¥ |_|
Remove bad Remove bad —
trials | ®| channels ¢ Prediction
Load and set up labels v p| Fold generation | | 5o cing folds [ Train
/ 7 EMG removal CAR re- Leave one out Classifier
|‘ Load Data |' using CCA referencing
\ \
| \ v
Conv ¢
Surface - “pggtlpslale;ot'?'er ¥
E W - ~
Select trials - Laplacian density { Results \
A vy
¥
Select
frequencies of
nterest

Figure 7. : Classification flow diagram. Trials of different conditions were analyzed separately
using two different classifiers. The first was designed for Inter-stride spectral modulations,
and the second for Intra-stride modulations. The main difference between both implemen-
tations was the preprocessing, as epochs were sliced differently.

standard deviation threshold. Next, Surface Laplacian was used to improve the EEG spatial
resolution and to recalculate the values of the electrodes that were previously removed and
the Spectral Power Density per frequency bins of 2 Hz was calculated using overlapping
Hanning windows and the Welch method. Afterward, the frequency band of interest was
selected. Finally, a linear logistic regression classifier was trained and tested using leave-
one-out cross-validation.

Since the duration of the baseline was only five seconds and the trial itself lasted 45
seconds, the amount of data for the no-walking condition was less than the data for the
walking condition. As a consequence, the classifier weights were adjusted to account for the
smaller amount of information available for the no-walking class.

Intra-stride classification. The intra-stride classification is similar to the inter-stride clas-
sification, except that the epochs were sliced differently. Here, the trials were sliced into
epochs of the same duration of a gait cycle, as detected from the markers for motion track-
ing. A function was designed to detect online heel-strike and toe-off occurrences based on
the kinematics of the feet and position of the markers. For actual walking conditions, the
detected heel-strike and toe-offs were used to determine the phases of the gait cycle. How-
ever, in imaginary conditions, movement is not performed and these labels are not available.
Therefore, the metronome was used to generate time points of the step rhythm of the par-
ticipant in the imaginary conditions.

Since stride length varies from one gait cycle to another, every epoch was rescaled using
spline interpolation so that every gait cycle could be comparable with the next. However,
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a disadvantage of rescaling is that the frequency content of the signal is altered. Because of
this, the order of the preprocessing steps changed. First the signal was detrended, CAR was
applied, bad channels and outliers were removed, the signal was re-referenced again, cleaned
from EMG artifacts using CCA, the surface Laplacian was calculated and only then was the
signal sliced into epochs and a label of no-walking (-1) was assigned to the data corresponding
to the baseline period, and walking (1) to the data measured after the condition’s instruction.
Following this process, the data was detrended once more and transformed into the frequency
domain using a Short-Time Fourier Transform algorithm with overlaping Hanning windows.
Afterwards, the steps were rescaled and normalized so that time in every epoch represented
the percentage of completion of the gait cycle. Then, the frequency band of interest was
selected and finally, a linear logistic regression classifier was trained and tested using leave-
one-out cross-validation. Analogous to the inter-classification, the classifier weigths were
modified to account for the disbalanced amount of data available for the two classes.

Additionally, the grand average of the data after the preprocessing stage was calculated
and plotted. Plots of the EEG spectrum over all participants were analyzed for every
electrode. Furthermore, the Areas Under the Curve of the Receiver-Operating Characteristic
curve were also calculated after the preprocessing stage and plotted per subject. By looking
at these plots it is possible to assess if the classifier was trained on motor activity and if it
was influenced by motion artifacts and residual EMG artifacts.

Dependent variables. First, performance was defined as a balanced Classification Rate
(CR), in which the mean classification rate of one class is averaged with the mean clas-
sification rate of the second. CR rates were calculated per participant, across all blocks.
Confidence intervals for the classification rates were calculated using a binomial proportion
confidence interval as described by Miiller-putz, Scherer, Brunner, Leeb and Pfurtscheller
(2008).

SPSS 19 was used as a statistical package for data analysis. The effects of the task,
walking modality and the features used on the classification performance of the two types of
classification was assessed using a repeated measures ANOVA. Performance was the depen-
dent variable and four within subjects factors were added to the model: task (forward vs.
backward), walking modality (actual vs. imaginary walking), frequency band (mu vs. beta
vs. mubeta) and the type of spectral modulation used for classification (intra vs. inter).

Contrasts within the repeated measures ANOVA factors were used to assess the hy-
potheses proposed. It was expected that Actual walking would yieled better system per-
formance, because ERSDs are stronger than in Imaginary walking. Backward walking was
expected to afford better performance because the less automatic the movement, the more
modulations can be observed in the spectral power of the EEG.

Contrasts were also used to do pair-wise comparisons of the performance among dif-
ferent frequency bands. Finally, differences in performance between the two classifiers was
also assessed.

Results

This section is divided in two parts. First, plots of the EEG spectrum and AUCs after
the preprocessing stage will be described, to check that the signals used for classification
are EEG, and not EMG artifacts. Second, the CRs of the tested combinations of tasks and



A BRAIN-COMPUTER INTERFACE FOR WALKING USING EEG

Dﬂ

K]

3 m"’
I°l
0

(- (3

o
AN
o
o
N

I
=y

bl
3
=
N

!
[e]
&

o

o

N

no-Walk
subProb

I 3F

Q
N

o
9
N

bl
9]
|

(REE

_n
<}
K

<l
2

[e}
b
2

o
bm

bl
@

bl
o
-3

pel
32
g

o
@

e}
el
k3

Il
(D E

o
E3

I

4
®

- n
N

I

.0 lo .-n
N N Q

v

o
o
N

(-

25

(a) No walking (b) Walking

Figure 8. : Grand average spectral power in the mubeta band for the inter-stride modulation
in Backwards Walking. A relative change of spectral power can be observed when comparing
both plots. Over all electrodes, the power during walking periods was less than in no-walking
periods.

features will be presented, and significant differences in performance will be highlighted to
answer the question of what combination of tasks and features provides the best performance.

After the preprocessing stage of the classification algorithm, the frequency content
of the signals that were used for classification were inspected. The grand average over all
participants showed both the inter-stride (figure 8) and the intra-stride spectral modulations
(figures 9 and 10). These figures show both the spectrograms per electrode, of the no-walk
class in the right and of the walk class in the left. The inter-stride change of spectral power
is shown for backward walking and it is visible when comparing figure 8 (a) and (b). This
ERSD is visible as a widespread decrease in power in the walking class with respect to the
non-walking class. It is most visible near the motor cortex, lateralized around electrode C4
(and in CP5 to a lesser extent) .

Intra-stride modulations are also visible when comparing walking and no-walking.
Figure 9 shows the spectrum for forward walking plotted with a relative baseline. As can
be seen, during the walking class, there are regular modulations of power across the whole
scalp, and they are specially visible at the C2 and CP5 electrodes. In contrast, these modu-
lations are not present in the no-walking class. Interestingly, by eye inspection, intra-stride
modulations are more noticeable during forward walking than during backward walking.

On the other hand, the intra-stride modulations are not as clear for Immaginary Walk-
ing. Figure 10 shows the case of Imaginary Forward Walking. Small modulations can be
seen near the C4 and CP2 electrodes, approximately in phase with the modulations observed
in actual walking conditions, but the magnitude of the power modulations across the scalp
is almost zero.

The AUCSs of the spectral densities were also explored to assess in more detail the dif-
ferences in spectral power between the positive and the negative classes. These differences




A BRAIN-COMPUTER INTERFACE FOR WALKING USING EEG 26

F F
Fpt = Fp2 (%) Fpt = Fp2 (%)
0.15 [ﬂ 0.15
AF7 AF8 AF7 AF8
AF3 AF4 m AF3 AF4 ll‘
7 & H 2 7 11
lﬁ F3 Ft F2 F2 F4 ﬁ 04 ﬁ F3 F1 Fz F2 F4 [Fi m o1
M EERB 11 i E 0
@ Fe5 FC3 FCl FC: FC2 FC4 Fce ‘ FC5 FC3 FCi FCz FC2 FC4 FC6
B Em @ [ i i 1]
7 cs c3 c1 cz c2 c4 c6 8 7 cs c3 c1 cz c2 c4 ce 8
= = - 3
& o E @ E /' 0 0 0 0 0 5
CP3 CP1 CPz CP2 CP4 CP3 CP1 CPz CP2 CP4
TP7 cPs m CrPeé P8 0 7 SRS ’1‘ ﬂ] EB CPe P8 0
B el MW oo Hdag
5 P3 P1 Pz P2 P4 . ps P3 P1 Pz P2 P4 s
R B EEREEE R T N0 NG g
m PO3 POz PO4 0.05 PO3 POz PO4 -0.05
o por POS = POB pog o por PO POB pog
Lol B B il HH
g 100 o1 oz o2 g 18 o1 oz 02
e e B
RescTime (percnt) F ﬂ ol -0.1 RescTime (percnt) H] -0.1

(a) No walking (b) Walking

Figure 9. : Grand average spectral power in the mubeta band for the intra-stride modulation
in Forward Walking. Intra-stride modulations can be observed during walking, especially in
the C2 and CP5 electrodes. Note that this is a plot relative to the baseline, and the color
scale represents relative changes.
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Figure 10. : Grand average spectral power in the mubeta band for the intra-stride modula-
tion, Imaginary Forward Walking. Slight intra stride modulations can be observed specially
in CP2 and CP4 in the walking period. Note that this is a plot relative to the baseline, and
the color scale represents relative change.
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Figure 11. : AUCs for backwards walking subject 5. Both Intra and inter analysis show that
the relative change of power is more prominent around the C4, FCz and CP5 electrodes.

are the ones that the classifier will probably consider, so they hint whether or not classifi-
cation could use the ERSDs of interest. An AUC value of one is related to more power in
the walking class than in the no-walking one, and an AUC value of zero to more power in
the no-walking class than in the walking class.

Figure 11 shows the AUCs for Backward Walking. As can be observed from the
picture, the ERSD change was stronger around FCz in the beta band and C4 and CP5 in
both mu and beta bands.

Consistently with the inter-stride AUCSs, the intra-stride version also showed that the
relative change of power between walking and no-walking periods was bigger in the area of
the CP4 electrode and its surroundings. Also, around CP5 the relative change was slightly
of higher magnitude than in other areas of the head.

Average classification performance per subject per condition per spectral modulation
and frequency band varied considerably between and within subjects (figure 12). For the
inter-stride version, averaged CRs ranged from 53% to 86%. Error bars in figure 12 (left)
also show that for two subjects classification rates reached 90%. In these two conditions, for
the intra-stride classifier, CRs also varied considerably, ranging from 52% to 82%, and the
maximum CR trial-wise was around 89%, whereas the smallest CR was almost at chance
level. In the inter-stride classification, eight out of 12 participant had CRs significantly above
chance level for all frequency bands, whereas for the intra-stride seven out of 12 performed
above chance level (95% confidence intervals).

From these plots, it seems that CRs for intra-stride modulations are worse than those
for the inter-stride. Figure 13 shows the average CRs per type of classifier, grouped per
condition. From here it can be observed that indeed the inter classification seems to perform
better than the intra, but only in Imaginary conditions. For Actual conditions, intra-stride
modulations seem to give better performance. Furthermore, this pattern was consistent for
all frequency bands. A repeated measures ANOVA revealed that this interaction of walking
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Figure 12. : Offline classification rates per subject for Imaginary Forward walking
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Figure 13. : Offline classification rates for Intra vs. Inter classifications in the three frequency
bands

modality and spectral modulation had a significant effect on classification performance,
F(1,11)=13.001, p<0.01, n2=0.0697.

As seen in figure 13, regardless of the condition and type of classification, classification
performance for the three frequency bands is quite similar, although the mubeta band seems
to perform consistently better than the other two. Indeed, the main effect of the frequency
band used as a feature on performance was significant, F(2,22)=6.039, p<0.5, n?=0.017.
Pairwise comparisons revealed that the mu and the beta bands significantly differed from
the mubeta band, but not between each other.

In the inter-stride classification, CR for Backward Walking is slightly higher compared
to Forward Walking, but not in the imaginary walking modality. For the intra-stride classifi-
cation, this performance did not change much between task modalities. Differences between
the different levels of task and spectral modality were not significant (all p>0.05).

Results show that the main effect of the walking modality significantly affected the
performance, F(1,11)=15.377, p<0.01, °=0.288. This can also be confirmed from the plots
in figure 13, as actual walking was more easily detected in both classifier types.
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Conclusions

Classification of walking versus no-walking was successfully implemented based on
the two types of spectral modulations proposed. Furthermore, classification rates were
significantly above chance for most subjects.

Because actual walking can elicit stronger modulations than imaginary walking, walk-
ing modality was a factor that influenced performance significantly, as expected. Differences
between different frequency bands were also found. In most of the cases, the combined mu
and beta bands gave better results than did taking them separately. Contrary to the initial
expectations, no significant differences between tasks were found, this is, backward walking
did not differ in classification rate from forward walking.

As can be seen from the error bars in figure 12, there was high variability within-
subjects, and from figure 13, variability was also large between-subjects. This is a well
known problem in BCI, and might imply that even if a feature outperformed another, not
all subjects can benefit from this choice.

Despite these differences, a grand average of the EEG power spectra showed that both
types of modulations are located approximately on top of the motor cortex area and the
posterior parietal area. Although both types of modulations are stronger on top of the motor
cortex, the most prominent modulations were observed in areas related to hand movement.
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7. Online BCI: simple versus complex walking

The previous experiment proved the feasibility of classifying EEG measurements into
walking or no walking for both actual and imaginary walking. The aim of this experiment
was to extend the findings of the previously implemented BCI to an online setup, and to
assess the relationship between the performance of the BCI, the automaticity of the task
(i.e., simple and complex walking), and three subjective qualities, namely, sense of agency,
learnability and satisfaction. Furthermore, an offline analysis of the data was performed, in
order to compare the classification results with the previous experiment.

Methods

Ezperiment design. Two interdependent variables were considered for the online setup
in a 2x2 within-subjects design: walking modality (i.e., actual vs. imaginary walking)
and task (i.e., simple walking vs. walking at varying speeds). These four conditions were
presented in 16 blocks. In every block, each condition occurred once, in a counterbalanced
order. All participants went through a total of 16 repetitions of every condition (64 trials
in total). The first half of the blocks were used as input data to train the classification
for every subject, and the second half were used to test the classification performance of
the BCI. During the second half, participants received feedback about the outcome of the
classification.

Two blocks out of the eight blocks available for feedback were used as “challenge”
blocks: during the imaginary conditions of that block, the participant was instructed to
alternate between walking and no-walking at will. The purpose of this was twofold. First,
it let the participant have a better feeling of the interface in a less controlled scenario.
Second, it was used to prevent the participant from changing between walking and no-
walking without explicit instruction due to skepticism that the interface is working. The
order of the challenge blocks was counterbalanced within the feedback blocks. Challenge
trials were not included in the data analysis.

For offline performance analyses, an extra variable was included: frequency band of
the selected features (i.e., mu and beta band). Dependent variables were classification rate,
as a technical measure of performance, and the sense of agency, satisfaction and learnability
as part of the subjective assessment of the BCI.

Four walking tasks were executed by the participants: simple walking, imaginary
simple walking, complex walking and imaginary complex walking. A trial overview is shown
in figure 14. Every trial consisted of 10 seconds of standing (i.e., baseline period), followed
by the presentation of the instruction on screen (1 second). In the simple walking conditions
the treadmill was then turned on at a constant velocity of 3 km/h. During complex walking
the velocity of the treadmill changed four times. Both velocity and time intervals for each
velocity were randomized. Velocities varied from 2.5 km/h to 4.5 km /h in steps of 0.5 km /h,
time intervals varied from 6 s to 12 s. Together, the four velocity intervals lasted 35 s . The
walking task lasted 30 seconds plus five seconds at the beginning, which is the time the
treadmill takes to reach the desired speed. After the walking period, 10 seconds were given
to let the treadmill stop completely.

Participants. Eleven healthy volunteers with no history of major lower limb injury
and no known neurological or locomotor deficits participated and completed the first half of
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Figure 14. : Trial overview. A trial started with a baseline (stand) period that lasted 10
seconds, followed by instructions on screen about the next condition. Then, 9 seconds
were required to start the treadmill. The subject walked or imagined himself walking for 30
seconds and finally 10 s were required to stop the treadmill during actual walking conditions.

this study, and nine out of the 11 also completed the feedback blocks. The mean age of the
participants was 25 (SD=2.19) years. Before the start of the experiment, the participants
were asked to read and sign a standard informed consent form, approved by the Ethical
Committee for Behavioral Scientific Research of the Faculty of Social Sciences, Radboud
University Nijmegen.

Experimental Setup. The experiment setup was similar to the setup of the previous
experiment (as described in section 6 ), with some minor changes. The first difference was
that instead of the whole Plugin-Gait Model, only seven markers were placed on the shoes
of the participants: the RANK, RTOE, RHEE, LANK, LTOE and LHEE of the Plugin-Gait
Model were used. An additional marker was added in the left shoe, as asymmetry between
both feet improved the online labeling of the Vicon Nexus software during the online setup.

Subjects walked on a programmable treadmill at a velocity programmed according to
the speed of the walking condition, facing a monitor screen placed 80 cm above the floor
and 150 ¢m away from the treadmill. In order to reduce movement artifacts, the same clip
setup was used as in the previous experiment (see figure 6).

The control of the flow of the experiment was programmed using Brainstream (DCC,
Radboud University Nijmegen, http://www.brainstream.nu), and an application in Matlab
(The Mathworks, Natick, MA).

Stimuli.

o Offline training
The visual stimuli consisted of a virtual treadmill, as depicted in figure 15. In the baseline
period (no-walking) it was shown as a static picture without colors (figure 15-a). During
the walking period, the light stripes moved towards the participant in an animation loop.
Stepping instructions were given as color cues. The central stripe of the treadmill flashed
in orange to indicate that a heel strike with the right foot should be made, and it flashed in
blue to indicate a left heel strike.

The distance between bars was adjusted to the step length of the participant and the
frequency of the orange-blue cues was set to the stepping frequency of the participant, as
determined before the experiment (See previous section).

e Feedback
During the feedback part of the experiment, classification rates were color coded on top of the
visual stimuli for stepping (figure 16). The class predicted by the classifier was determined
by the color of all stripes (orange was no-walking, blue was walking). The transparency of
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(a) Static feedback. No walking (b) Animation. Walking period
period

Figure 15. : Stimuli during the offline training part of the experiment. The leftmost figure
shows the virtual treadmill during the standing phase, without cues for stepping. The two
rightmost figures show two frames of the animation for walking. The stripes moved towards
the user in an animation loop and the middle bars flashed in orange when the participant
had to do a heel strike with his right foot, and blue when he had to do it with his left foot.

the bars was also modulated by the predicted probability that the class was indeed walking
or not walking. The more transparent the color, the more close was the prediction to chance
level. The more opaque the stripes became, the higher the probability the predicted class
was correct.

In the baseline period (no-walking) it was shown as a static picture with colors indi-
cating the outcome of the classification. During the walking period, the colored stripes were
animated, and the same stepping cues were provided to the participant, in addition to the
classification feedback (figure 16).

Procedure. The experiment consisted of three parts. During the first part, the par-
ticipant went through eight blocks of four conditions each. This part will be referred as
the 'offline training’ of the experiment. The information obtained was used in the second
part to build a classification model to distinguish between walking and no-walking. This
period (heretofore referred to as ’train classifier’), lasted around 20 minutes in which the
participant could take a rest. In the last part (called 'feedback’), the participant tried out
the interface. Basically, the participant did the same task as in the offline training, but now
on top of the visual stimuli, feedback was given about the classification rate of the classi-
fier. After each condition, participants completed a questionnaire of nine questions about
sense of agency, satisfaction and learnability had to be completed. The feedback part of the
experiment also consisted of eight blocks of four conditions each, and the particiapant had
an extra questionnaire after the 4th and 8th blocks. If requested by the participant, a short
break after the 4th feedback block was taken.

Analogous to the first experiment, participants received a description of the experi-
ment, and signed a informed consent form. Then, the participant’s height was measured
and the EMG electrodes, the EEG cap, and the reflective markers were put in place. The
Vicon system was calibrated by taking static video samples of the subject.

Next, participants were asked to walk on the treadmill for a few minutes to reach a
comfortable step length while the experimenter adjusted a metronome speed to determine
their cadence. Stride length was calculated using the speed of the treadmill (3 km/h) and
their stepping frequency.
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Figure 16. : Feedback Stimuli. During the feedback part of the experiment, the participants
saw the classification rate color coded on top of the animation used to indicate the stepping
rate. When all the stripes were orange, the classifier guessed no-walking, and when blue,
it guessed walking. Furthermore, the more transparent the stripes became, the less certain
was the classifier of its classification. In the top two figures, no-walking was guessed, and
in the top left, the predicted probability of no-walking was higher than in the top right.
Analogously, in the bottom figures, walking was guessed, and in the bottom left one the
probability of the person walking was higher than in the bottom right one.

Finally, participants were instructed not to chew and to blink as little as possible dur-
ing the trials. A set of written instructions for each condition was given to the participants.
They were explicitly encouraged to imagine themselves (kinesthetic imagery) walking dur-
ing the imaginary conditions. They were also instructed to synchronize their walking to the
visual stimuli, both in imaginary and actual walking. Before beginning the actual experi-
ment, participants practiced the four conditions at least once, and as many times as they
requested.

Measurements. A questionnaire of nine items was designed to measure sense of agency,
satisfaction and learnability. Each dimension was represented by three questions: a proto-
typical item and two synonyms. The prototypical question for sense of agency was based
on the questionnaire designed by Wegner, Sparrow and Winerman (2004). The satisfaction
question was based on a usability questionnaire and was of the type “How satisfying was
your experience with the interface?”. The prototypical question for perceived learnability
was also based on usability questionnaires and was of the type “To what extent do you think
you would need further practice in order to master the interface or not?”

Participants answered the questionnaire in a continuous scale of 10 cm, once after
each trial, and were explicitly asked to answer the questions thinking only about the trial
they just experienced.
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Analysis

Since intra classification was less effective for imaginary walking in the previous ex-
periment, it was decided that for the online setup, only inter-stride classification would be
used. Also, after four pilots runs it became evident that intra-classification was difficult to
implement online using the Vicon Nexus 1.7.1 Software. Motion tracking of the feet using
the Vicon system was not suitable for detecting heel strikes in real time. The labeling of the
markers was not done consistently and it had to be checked after the experiment. Further-
more, the time required to train an intra-stride classifier is approximately four times that
required for its inter-stride counterpart, which is lengthy for an online setup.

Online BCI implementation. The data analysis began in the second part of the ex-
periment. The data gathered during the first eight blocks was used to train three classifiers,
one for each of the three proposed frequency bands: mu, beta and mubeta.

Afterwards, the three classifiers were compared and the frequency band that gave the
best performance for that specific user was chosen and used during the online classification
showed to the participant during the last eight blocks. In other words, the online classifier
used the classifier recommended for that specific participant from his own data during the
offline training part. This method was chosen because of the large differences in classification
rates between subjects during the previous experiment.

As in the previous experiment, the EEG data was first imported to Matlab using
the BioSig toolbox (Graz Technical University) and was further processed using Matlab
(Matworks Inc.). Additional pre-processing and classification toolboxes were developed in
house at the Donders Institute and can be provided upon request.

The offline inter-stride classifier developed during the previous analysis was used dur-
ing the train classifier part of the experiment. The data used for offline classification was
gathered during the first eight blocks. Next, the classifier weights were extracted as a re-
gression equation that could generate decision values for online classification.

During the online experiment, data was recorded in 2.5 second segments. Each seg-
ment was then analized following all preprocessing steps as described in figure 7 for the
inter-stride classification. Finally, the decision value was calculated using the preprocessed
data and the classifier weights extracted during the train classifier analysis.

Each decision value was mapped to a p value ranging from 0 to 1 with the logistic
function, where 0 represented the walking class, 1 the no-walking class and 0.5 chance level.
In other words, p represents the probability that a piece of data belongs to one class or
another.

The p value was used to calculate the level of opacity of the stripes in the feedback
animation, hence, the BCI cycle was complete and feedback was given to the user approxi-
mately every 2.5 seconds.

Classification rates were calculated by considering first the CR of the no-walking part
of the trial (baseline), and then averaging it with the CR of the walking part (after the
instructions), which allowed for a balanced loss classification rate to be obtained.

Subjective Assessment. The scores of each dimension of the questionnaire were ag-
gregated into one measure. By averaging the three equivalent questions per questionnaire.
Afterwards, both the scores of the questionnaires and the classificarion rates per trial were
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grouped into conditions and averaged over blocks. Next, the effects of task and walking
modality on the classification performance, sense of agency, satisfaction and learnability
were assessed using a repeated measures ANOVA. Finally, the effects of performance on
each one of the dimensions of the questionnaire were assessed using pairs of correlations.

Classification rates were also grouped per condition, averaged over participants, and
plotted to inspect possible trends in the performance over blocks.

Offtine performance analysis. After the experiment, the training data was used to
check the effects of task, walking modality and frequency band on the classification rates.
Also, the spectrograms and AUC’s were inspected to check for correct artifact removal and
the localization of the ERDs used for classification.

Results

First, results of the online performance analysis are given, as well as the results of the
analysis of the relationship between performance and the subjective measures. Next, results
of the offline analysis of performance are given.

Online performance analysis and subjective assessment. Figure 17 shows the average
online classification rates per participant. Large error bars illustrate high within-subjects
variations. Mean classification rates per participant range from 52% to 96%. In average,
classification seems to be best for Simple walking, followed by Complex walking. The imagi-
nary conditions seem to have similar classification rates among them, although for Imaginary
complex walking between-subjects variability is larger than for imaginary simple walking.
Indeed, a trend was found in the effect of walking modality on performance: contrasts re-
vealed that Actual walking has significantly better performance than Imaginary walking,
F(1,8)=3.766, p<0.05, n>=0.1128. However, the effects of the task on performance were not
significant (p>0.05). From the three frequency bands available, the mu band was chosen as
the best feature option for 3 subjects (33%), the beta band for one (11%), and the mubeta
band for five subjects (55%).

Sense of agency was rated, in average, as 75% for Actual walking conditions and 69%
for imaginary conditions. Satisfaction was rated as 74% for actual walking conditions and
69% for imaginary walking. Sense of agency was positively correlated with satisfaction in
the four conditions (p<0.01). Finally, learnability was rated as 52% for Actual walking
conditions and 50% for Imaginary conditions. A trend of the influence of tasks on the sense
of agency was observed F(1,8)=4.163, p=0.076,7°= 0.018. However, effects of the task and
walking modality on the sense of agency were not significant. For satisfaction, no effects of
task and walking modality were found. Finally, the effect of performance on the sense of
agency, satisfaction and learnability was assessed using correlation pairs - none of them was
significant.

In order to explore possible learning trends reflected in the classification rates obtained
by the participants along blocks, CRs were grouped by condition and averaged over partici-
pants. Figure 18 shows the resulting plot. Over the eight consecutive blocks a slight increase
in performance for simple walking can be observed, whereas for complex walking classifica-
tion rate seems to decrease. For the Imaginary simple walking condition, performance seems
to increase, but for complex walking the opposite effect can be seen.



A BRAIN-COMPUTER INTERFACE FOR WALKING USING EEG

Online Classification

[

Trﬂ I

0.95

09

0.85

o
=2}

0.75

Classification Rate
=]
~

o6 - BN R Riv|

0.

)

0.5

[

05

Parhmpant

.

36

Figure 17. : Online average classification rates per participant and condition. The last group

represents the mean classification rates overall participants.
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Figure 19. : Grand average spectral power in the mubeta band for the inter-stride modulation
in Imaginary Simple Walking. The relative drop of power of the walking period with respect
to the no-walkig period is centered in the Cz electrode, where the feet representation in the
motor cortex is located.

Offtine performance analysis. After the online experiment, the grand average of all
participants’ spectral power plots was calculated on the train data. Figure 19 shows mul-
tiplots for the no-walking class (left) and the walking class (right) in the simple walking
condition. ERSDs can be seen around the feet area on the motor cortex (Cz electrode),
this is, the spectral power is less in the walking period (and it is widespreaded over more
electrodes) than in the no-walking period. A similar pattern is observed in the spectrograms
of the other three conditions.

By examining the AUCs, it is easier to see the relative change of spectral power from
no walking to walking. Figure 20 shows the AUCs for subject 9, Complex walking is depicted
in the left and Imaginary complex walking in the right. For both conditions, the percentage
of change of spectral power during the ERSD was more prominent around the CPz electrode,
as well as around some electrodes in the parietal area. Interestingly, in some electrodes in
the occipital and frontal areas, an ERSS can be observed. For subject 9, it can be observed
that the change in power is more prominent in complex walking than in Imaginary complex
walking.

As in the previous experiment, average classication performance per subject per con-
dition and frequency band varied considerably between and within subjects (figure 21).
Classification rates ranged from 58% to 97% in imaginary simple walking, and from 65% to
99% in Imaginary complex walking. The large error bars also show that there were large
within-subjects changes in performance. In both conditions, classification rates for nine out
of 11 participants (81%) were above chance level (95% confidence intervals).

Figure 22 shows the CRs averaged over participants. In line with previous results, the
mubeta frequency band performs better than the other two, except during simple walking,
were the mu band is slightly better. Indeed, the effect of the frequency band used as a feature
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Figure 22. : Average classification rates per condition and different frequency bands. Clas-
sification rates for complex walking are slightly higher to their simple walking counterpart,
for both walking modalities. Furthermore, the mubeta band achieves higher classification
rates than the other two frequency bands.

for classification was significant, F(2,20)=4.29, p<0.05, n?=0.009. Pairwise comparisons
showed that the mu band performed significantly different from the mubeta band and that
the beta band differred significantly from the mubeta band.

A trend was found in the effect of walking modality on performance. Contrasts were
used to test the hypothesis that Actual walking has better performance than Imaginary
walking, which resulted as significant F(1,10)=4.869, p<0.05, n?=0.031.

Although, the influence of the task on performance was not significant, CRs for the
complex walking condition are slightly higher than those for simple walking.

Conclusions

Whereas the BCI for walking was succesfully adapted to an online setup for the inter-
stride classification, the intra-stride version had real-time requirements for labeling and
processing that could not be met with the software and hardware available. Furthermore,
classification rates for the inter-stride classification were similar to those obtained offline.

Classification rates per subject did not change significantly from one block to another,
suggesting that no significant improvement due to human learning can be gained within one
session. However, some interesting trends can be observed from figure 18. In actual walking
conditions, simple walking seems to increase performance in the long term, whereas complex
walking decreases it. The inverse happens for imaginary walking conditions: simple walking
performance decreases slightly over time, whereas the classification rates of complex walking
improve. Despite these trends, average classification rates did not differ from one task to
another.

Furthermore, perceived learnability was not significantly different from one condition
to another. Neither were satisfaction and sense of agency (besides a small trend on the type
of task). This suggests that the task does not influence the subjective assessment of the
BCL
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Even though mean scores for sense of agency, satisfaction and learnability were, by
eye, similar to mean classification rates, they were not correlated to performance !. In other
words, changes in the sense of agency, satisfaction and learnability are not related to changes
in performance.

Even though the sense of agency was not related to changes in performance, it is
interesting that the sense of agency did not change from actual walking to imaginary walking:
this suggest that a link between one’s intentions and the interface was created. Despite
the interesting results, it must be noted that the sample size was small, especially for the
subjective assessment.

Overall, the mubeta band achieved better performance than the mu and beta bands
separately, confirming results from the previous experiment. This result indicates that
the differences among both bands are complementary and that the more information the
classifier has, the better the achieved classification rates.

As expected, Actual walking yielded better classification results than imaginary walk-
ing because modulations are stronger. However, this effect is small (about 3%). It is possible
that the sample size (11 participants, offline analysis) was not large enough to find the effect.
However, it is promising that the achieved performance in imaginary walking is similar to
that in actual walking.

The grand average of the spectrograms for this experiment showed an ERSD sur-
rounding the Cz electrode where the feet area is located. This effect was confirmed by the
AUC plots, which showed that differences in spectral power between walking and no walking
periods are larger around the CZ electrode. However, the AUC plots also showed increases
in spectral power in the walking periods with respect to the no-walking around frontal and
occipital electrodes and bigger in magnitude during actual walking conditons. This might be
related to residual movement artifacts causing differences between walking and no walking
especially in the neck area. Since complex walking implies an actual movement, the differ-
ence between spectral power in walking and no-walking picked up in the back electrodes is
more prominent.

!The correlation could be overestimated because of the within-subjects design.
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8. General discussion

The main goals of this study were to prove the feasibility of using walking imagery
and EEG to implement a BCI for walking, and to determine which combination of tasks and
features could maximize the performance of the BCI while providing a good sense of agency,
satisfaction and learnability. In order to achieve this, a BCI was successfully implemented
using different combinations of features (espectral modulations and frequency bands), tasks
(forward and backward walking) and walking modalities (actual and imaginary walking).
The BCI was tested offline using the data from the first experiment. Afterwards, the same
processing pipeline was used to implement an online BCI for complex walking and simple
walking. During the online experiment, sense of agency, satisfaction and learnability were
assessed.

Despite the large variability among and within subjects, average classification rates
were above chance level for most participants, demonstrating that we were successful in our
goal of making a BCI for walking. Such variability should be considered when designing new
BClIs, in order to choose the best combination of relevant features for every subject. For
instance, the online version of the BCI was based on the best frequency band per subject.
Among the aforementioned frequency bands, the mu and beta bands together gave better
results than when tested separately. A possible explanation is that the more information
available, the better the classifier can discriminate between the two classes.

An initial concern was the measurement of EEG during walking and the removal of
artifacts such as EMG and artifacts induced by movement. In order to partially solve this
issue, CCA was applied to the data at a preprocessing stage, with satisfactory results as can
be seen in figure 9, this process was fast and worked well enough.? Usually, EMG artifacts
are high frequency components coupled to the gait cycle, similar to the EEG. However, in
this plot it can be seen that the signals detected by most occipital electrodes are filtered
and that the modulations picked up by the EEG are clearly represented above the motor
and the parietal cortex.

Even though CCA was useful in removing EMG artifacts, some artifacts might remain
due to movement, as shown by the differences between the spectrograms and AUCs of
walking and no-walking in the occipital electrodes in both experiments. As Severens et al.
(2012) already suggested, an alternative would be to track head movements and uncorrelate
them from the EEG signal. This could be considered for further analysis of the current data.
A second alternative would be to train the classifier using less and more central electrodes to
ensure that only signals of interest are being considered for classification. Previous studies
have already showed that, with enough training, a person is capable of adjusting his mental
activity to control a BCI even with only one electrode (Wolpaw & McFarland, 2004).

In order to select the important electrodes for classification, the localization of the
ERSDs of interest is also important. Our results suggest that cortical activity varies along

*Note: care must be taken in interperating the off-line results as they may be over-estimated as the EMG
removal filter was estimated on all the data before the classifiers cross-validation loop was used to estimate
performance. This may lead to a double-dipping problem. According to Kriegeskorte et al. (2009), double
dipping is the use of the same data set for selection and selective analysis which often yields overestimated
classification rates. However, whilst a concern, as the on-line results (where this is not a problem) were
similar to the off-line results we do not believe this is a significant issue. Follow-up studies should take this
into account and include the CCA inside a nested cross-validation for offline analysis.
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the gait cycle (as previously described by Gwin and colleagues (2011) and Severens et al.
(2012)), and that these variations are located approximately in the vicinity of the primary
motor cortex and the posterior parietal areas. Posterior parietal cortex has been linked to
selective and rhythmic attention, combination of sensorimotor and visuomotor information,
and bimanual coordination (Gwin et al., 2011; Lange et al., 2005).

Another promising result is that the achieved performance in imaginary walking is
similar to that of actual walking, which confirms theories that motor imagery is represented
as an actual movement, to some extent (Lange et al., 2005). This is, participants were able
to achieve classification rates of 70% in average for imaginary conditions within one session.
Therefore, using motor imagery of walking, being a more intuitive movement, results in
better classification performance when compared to the use of other imaginary movements
such as simple hand and feet movement as the movements used by Pfurtscheller, Leeb, et
al. (2006).

Despite both types of spectral modulations were stronger in electrodes located on top
of the motor cortex, the most prominent changes in the forward versus backward experi-
ment were usually located in areas related to hand movement. This might be because the
representation of one foot in the brain is opposite to the other, and the projection of the
current dipoles generated by them is attenuating each other and thus, the differences of po-
tential detected by the EEG are those that are projected with different angles (Pfurtscheller,
Brunner, et al., 2006). Another possibility is that walking is a whole-body movement that
is not limited to the feet and, therefore, hand movement might be playing a role in the
clagsification. Indeed, a potential disadvantage of the inter-stride spectral modulations is
that it is based on a motor ERSD, which any kind of movement can generate. Therefore, by
using inter-stride modulations there is no guarantee that the BCI is really working for foot
imagery. In contrast, intra-stride modulations are coupled to the gait cycle, but are much
weaker in magnitude than the inter-stride modulation, and resultingly are more difficult to
measure.

Although no significant differences between the two types of classification were found,
the interaction of spectral modulation type and walking modality was significant: intra-
stride classification seems to work better for Actual walking, and inter-stride classification
for Imaginary walking. This might be because the subject did not perform the task correctly.
Probably people are unable to imagine every phase of the gait cycle while keeping the step
frequency of the metronome (or the visual stimuli, in the second experiment). Thus, intra-
stride modulations are not clear during imaginary conditions. Furthermore, during actual
walking conditions the phases of the gait cycle were reliably identified using the Vicon
reflective markers and, in contrast, during imaginary walking conditions it was up to the
ability of the participant to synchronize every step with the metronome. If the stepping rate
was not locked to the stimuli, then the intra stride modulations would be dephased from
each other as well, and would be cancelled out during the averaging. This may inidcate
that performance could be better with better trained subjects who can imagine detailed feet
movements according to a predefined rhythm.

Advantages and disadvantages of both types of spectral modulations during walking
can be considered when designing a BCI for rehabilitation. Intra-stride modulations were
better for classifying actual walking, whereas inter-stride modulations were better for imagi-
nary walking. This finding suggests that an inter-stride modulated BCI could be used at the
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beginning of the rehabilitation process to detect any kind of imagery or attempted movement
that the patient can elicit. In this way, the timeless inter-stride modulations will help the
patient in the early stages of rehabilitation, and as his motor control improves, the practice
could be tuned with intra-stride modulations that could give time-sensitive feedback and
consider individual phases of the gait cycle. Further research should be conducted in order
to improve both types of classification and to match their special qualities to develop a BCI
that could help patients relearn to walk. For example, a patient suffering from a stroke
would have limited -if any- motor abilities in his legs. In order to recover this functionality,
the rehabilitation process suggests constant practice. Right after the stroke, motor activ-
ity in the brain would be limited, therefore, inter-stride modulations would be suitable to
detect ERSDs related to attempted movements, even if the attempt was not accurate. As
the training process goes on, the patient will gain mastery in imagining movements and he
will regain movement as well, little by little. Once at this stage, the patient could use the
intra-stride version of the BCI to practice every step according to the gait cycle. At the
latest stages of the rehabilitation, if the patient can already produce some movements, the
proposed BCI could also be used to give feedback during actual walking.

For the rehabilitation process, it is important that a BCI provide senses of agency,
enabling the patient to attribute the BCI feedback to his own efforts. The results of this ex-
periment also showed that the sense of agency did not differ much between different walking
modalities: although a change in feedback is caused just by imagining a movement, to some
extent, participants attributed the change to themselves. This phenomenon is evidence in
support of using motor imagery for rehabilitation. Imaginary and actual walking could be
considered as interchangeable, and their consequences in the world are both attributed to
the self will power (Wegner et al., 2004; Gallagher, 2000).

Other effects of task and performance on the sense of agency, satisfaction and learn-
ability were not significant. Even within the few significant results described above, the
effect sizes were relatively small. The first possible explanation is the small sample size used
during this experiment. Another limitation of this study was that the questionnaire used
was not validated beforehand. It would have been benefitial to test more subjects or to do
more pilot runs to test the questionnaires. However, given the length of the experiments and
the time available for this project, a whole validation of the questionnaire and methodology
would not have been possible.

Given that setting up a BCI and testing it is time-consuming, and tiring for end-users,
an alternative could be to simulate the BCI application, so that it can be tested quickly
and improved according to the user’s needs during the design process. For instance, Boland,
Quek, Tangermann and Williamson (2011) suggested performing fast prototyping of BCIs
using simulations of the expected BCI accuracy. By using these simulations, experiment set
up times could be reduced and therefore, times between each iteration of the design cycle
could be optimized.

Future work could also include decoding of the direction of the movement or the
walking speed. Direction could be decoded by looking at the lateralization of the inter-
stride modulations, whereas the speed could be inferred from the intra-stride modulations.

The high offline classification rates achieved for forward and backward walking were
consistent with the ones obtained in the offline and online analysis of the simple and complex
walking. This suggest that the BCI is robust for different walking tasks and modalities.



A BRAIN-COMPUTER INTERFACE FOR WALKING USING EEG 44

9. Conclusions

The present study proved the feasibility of decoding walking and walking imagery
using EEG. Two different types of ERSPs were used to distinguish walking from no-walking
in both actual walking and imaginary walking. Furthermore, an online BCI for walking
was implemented successfully with classification rates analogous to the offline classification.
Importantly, the results were robust for different levels of automaticity in the walking task
(simple walking, complex walking, backwards walking).

In order to maximize the system performance, several tasks and features were cho-
sen and compared: task (simple and complex walking), spectral modulations (inter-stride
modulations and intra-stride modulations) and frequency band (mu, beta and mubeta). The
mubeta band improved performance when compared with the mu and beta bands separately.
However, no significant differences were found between either the automaticity of walking
or the spectral modulations. Only the interaction between walking modality and spectral
modulations was significant for the first experiment, showing that the inter-stride modula-
tions are better at classifiying during imaginary walking while the intra-stride modulations
are better at classifying during actual walking.

The interactions between task, performance and three subjective measures were also
assessed. However, no significant effects of task and performance on the sense of agency,
satisfaction and learnability were found, probably due to the small sample size.

Recommendations for the design of a BCI for rehabilitation were also given. Findings
of the current research suggest that the intra-stride and inter-stride classification methods
could constitute two phases of patient rehabilitation. Inter-stride modulations could help
during early stages in the rehabilitation process, whereas intra-stride could be more useful
to fine tune practice according to the gait cycle phases. Furthermore, the mubeta band
proved to be more suitable to achieve high classification performance. However, due to the
high variability between subjects, it is recommended to choose the best frequency band per
user.
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Appendixes

A. Forward versus Backward Walking

Instruction forms . Welcome and thank you for participating. In this experiment
we are looking at EEG brain signal differences between forward and backward walking.
Therefore, 1 will ask you to walk into this treadmill in both directions. This research will be
helpful for rehabilitation as well as for Brain-Computer Interfaces, this is, people could move
virtual avatars, prosthesis, etc. with their minds. This is another reason why you will also
be asked to imagine yourself walking backwards and forward while we take the appropriate
measurements.

You will use an electrode cap, which has some electrodes on it. After you put it on,
each electrode will be filled with gel, in order to improve conductivity. You will also be
required to wears shorts, in order to place reflective markers on several places from the hips
to your feet. In the schema below you can see the location of your body where the markers
will be placed. As you can see, the references are your bones, so the researchers will locate
the appropriate bones first, they will make some crosses where I'll put them later. Four
electrodes will also be placed in your neck to measure electrical signals from your muscles,
this will help us to reduce noise in the EEG signal.

In light of this explanation, please sign the informed consent form in next page. With
this form you acknowledge that you know your basic rights as a participant: the data
from this experiment, including the video recording, will be treated with confidentiality and
respect and it will only be used for research purposes. If at any point during the experiment
you do not want to continue, you can quit without consequences. If you don’t have any
more questions I would like to ask you to read the form and sign it.




MODEL 1
INFORMED CONSENT*
for participation in the scientific study:
Sensorimotor cortical activity during human gait: forward versus backward walking

- | am satisfied with the information about this experiment. | have read the written information (version code: 1)
carefully. | was given the opportunity to ask questions about the experiment, and my questions were answered
to my satisfaction. | have carefully considered my participation in the experiment. | understand that | have the
right to withdraw my participation in the experiment at any moment without having to give a justification.

- | consent with participation in this experiment.

- | consent that the data collected during this experiment and made anonymous can be used for
publication.

Name
Date of birth

Signature : Date:

- Signatory declares that the person named above has been informed both in writing and in person about the
experiment. Also, he/she declares that the participant may terminate participation in the experiment at any time
without consequence.

Name
Function

Signature : Date:

* This form is intended for research on people of 18 years and older able to give informed consent. In this type of research,
it is mandatory for the person concerned to give his or her consent personally.
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General instructions

Please stand on the treadmill and look to the fixation point on the screen. During
the trial, please blink as less as possible, and please don’t chew. Also, please try to keep
your head as still as possible, this is, try NOT to move much. This is important because
the described movements (blinking, chewing and moving the head) would create noise in the
recordings.

At the beginning you will see a green cross, please stand still and wait for the instruc-
tion on screen. Four conditions are possible, and for each one of them you will have to do
as described below.

Forward Walking

You will see an instruction on the screen. When the black fixation cross appears the
treadmill will start moving. Please start walking and look at the fixation cross also on the
screen. Try to keep your head still and your stride length constant. This is, the size of your
steps should remain more-less the same. You will hear a metronome during the whole trial,
which has been adapted to your walking speed. Try to synchronize your toe off with the tick
of the metronome, this is, every time you hear a tick, try to lift your foot from the ground.

Backward Walking

Please turn around. You will see an instruction on the screen. When the black fixation
cross appears the treadmill will start moving. Please start walking and focus on the fixation-
cross presented on screen. Try to keep your head still and your stride length constant. This
is, the size of your steps should remain more-less the same. You will hear a metronome
during the whole trial, which has been adapted to your walking speed. Try to synchronize
your toe touching the ground with the tick of the metronome.

Imaginary Forward Walking

A black fixation cross will appear right after the instruction on screen. Then, start
imagining that you are walking while looking at the fixation point on the screen. You will
hear a metronome with two different ticks. The loud tick will correspond to the left foot, and
the soft one to the right foot. You can use the metronome as a guide to imagine that your
feet are touching the ground, one after the other. Imagine that you are moving your feet
and legs as in the forward walking trial. One step after the other, imagine the rhythm you
used, the constant stride length. Please imagine that you are walking in first person, this is,
imagine the movement as if you were walking on the treadmill as in a real movement (not
just imagining looking at yourself walking). Please remember that this is just imaginary
walking, so don’t contract or move any muscles at all.

Imaginary Backward Walking

Please turn around and stand on the treadmill. A black fixation cross will appear right
after the instruction on screen. Then, start imagining that you are walking while looking at
the fixation point on the screen. You will hear a metronome with two different ticks. The
loud tick will correspond to the left foot, and the soft one to the right foot. You can use the
metronome as a guide to imagine that your feet are touching the ground, one after the other.
Imagine that you are moving your feet and legs as in the backward walking trial. One step
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after the other, imagine the rhythm you used, the constant stride length. Please imagine
that you are walking in first person, this is, imagine the movement as if you were walking on
the treadmill as in a real movement (not just imagining looking at yourself walking). Please
remember that this is just imaginary walking, so don’t contract or move any muscles at all.
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B. Simple versus Compler Walking

Instruction forms . Welcome and thank you for participating. In this experiment
we are looking at EEG brain signal differences between walking and no walking in four
different conditions. Therefore, I will ask you to walk into this treadmill. This research will
be helpful for rehabilitation as well as for Brain-Computer Interfaces, this is, people could
move virtual avatars, prosthesis, etc. with their minds. This is another reason why you will
also be asked to imagine yourself walking while we take the appropriate measurements. The
experiment will have three parts. During the first, we will gather some information of how
your EEG looks like during walking, so that in the second part, the computer can build a
model to distinguish between walking and no walking. In the second part, you do not have
to do anything, so it is break time. During the last part, you will have the opportunity to
try out the interface. By doing the same task as in the first part, the computer will try
to guess if you are walking or not, or if you are imagining yourself walking or not. After
each condition, we will ask some questions about what do you think and how do you like
the interface. You will use an electrode cap, which has some electrodes on it. After you
put it on, each electrode will be filled with gel, in order to improve conductivity. You will
also be required to wear reflective markers on your shoes or bare feet (this is your choice).
Four electrodes will also be placed in your neck to measure electrical signals from your
muscles, this will help us to reduce noise in the EEG signal. In light of this explanation,
please sign the informed consent form in next page. With this form you acknowledge that
you know your basic rights as a participant: the data from this experiment, including the
video recording, will be treated with confidentiality and respect and it will only be used for
research purposes. If at any point during the experiment you do not want to continue, you
can quit without consequences. If you don’t have any more questions I would like to ask
you to read the form and sign it.



MODEL 1
INFORMED CONSENT*
for participation in the scientific study:
Brain-Computer Interface for Walking

- | am satisfied with the information about this experiment. | have read the written information (version code: 1)
carefully. | was given the opportunity to ask questions about the experiment, and my questions were answered
to my satisfaction. | have carefully considered my participation in the experiment. | understand that | have the
right to withdraw my participation in the experiment at any moment without having to give a justification.

- | consent with participation in this experiment.

- | consent that the data collected during this experiment and made anonymous can be used for
publication.

Name
Date of birth

Signature : Date:

- Signatory declares that the person named above has been informed both in writing and in person about the
experiment. Also, he/she declares that the participant may terminate participation in the experiment at any time
without consequence.

Name
Function

Signature : Date:

* This form is intended for research on people of 18 years and older able to give informed consent. In this type of research,
it is mandatory for the person concerned to give his or her consent personally.
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General instructions

Please stand on the treadmill and look to the middle of the virtual treadmill on the
screen. During the trial, please blink as less as possible, and please don’t chew. Also, please
try to keep your head as still as possible, this is, try NOT to move much. This is important
because the described movements (blinking, chewing and moving the head) would create
noise in the recordings.

At the beginning you will see a static version of the treadmill, please stand still and
wait for the instruction on screen. This instruction will describe which of the four possible
conditions is next. For each one of them, you will have to do as described below.

Simple Walking

You will see an instruction on the screen. When the virtual treadmill appears, the
treadmill will start moving as well. In the treadmill you will see that two of the stripes are
changing colors. Please start walking and try to synchronize your steps with the colors on
the screen. When the orange stripe appears, please try to do a heel strike with your right
foot, this is, every time you see the orange stripe appear, try to touch the ground with your
right heel. Similarly, when the blue stripe appears, please try to do a heel strike with your
left foot. Try to keep your head still, and look to the same point during the whole trial.

Complex Walking

You will see an instruction on the screen. The mechanism will be the same as in simple
walking, with the sole difference that the velocity of the treadmill will be changing. After
the name of the condition, the virtual treadmill appears, the treadmill will start moving as
well. Try to synchronize your heel strikes of the right foot with the orange color, and the
heel strikes of the left foot with the blue color. Again, try to keep your head still, and look
to the same point during the whole trial.

Imaginary Simple Walking

A virtual treadmill will appear right after the instruction on screen, however, the
treadmill will not move. Then, start imagining that you are walking while looking at the
colors of the stripes on the screen. You can use the colors as a guide to imagine that your
feet are touching the ground, one after the other. Imagine that you are moving your feet and
legs as in the simple walking trial. One step after the other, imagine doing a heel strike with
the right foot when seeing the orange color, and a heel strike with the left foot when looking
at the blue stripe. Please imagine that you are walking in first person, this is, imagine the
movement as if you were walking on the treadmill as in a real movement (not just imagining
looking at yourself walking). Please remember that this is just imaginary walking, so don’t
contract or move any muscles at all.

Imaginary Complex Walking

Analogously to the imaginary simple walking condition, a virtual treadmill will appear
right after the instruction on screen and the treadmill will not move. Then, start imagining
that you are walking while looking at the colors of the stripes on the screen. You can use
the colors as a guide to imagine that your feet are touching the ground, one after the other.
Imagine that you are moving your feet and legs as in the complex walking trial. One step
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after the other, imagine doing a heel strike with the right foot when seeing the orange color,
and a heel strike with the left foot when looking at the blue stripe. The frequency of the
changes in the color of the stripes will vary, so that you have to imagine yourself walking
faster or slower, according to what you see. Please imagine that you are walking in first
person, this is, imagine the movement as if you were walking on the treadmill as in a real
movement (not just imagining looking at yourself walking). Please remember that this is
just imaginary walking, so don’t contract or move any muscles at all.

Feedback instructions

Now we are going to test the interface. The instructions are the same as for the train
block, but now the guess of the classifier will be color coded on the screen. Walking is
represented with light blue and no walking with orange. You will see that all the stripes of
the treadmill are changing between these two colors according to the guess of the classifier
on what you are doing. In other words, you should see the stripes in orange before the
instruction, because you won’t be walking, and blue after the instruction, because you will
be walking. If the classifier is pretty sure about its guess, then you will see solid colors,
and you will see the colors become transparent as the classifier becomes unsure about the
condition.

Even though the colors of all the stripes are changing, you will still see that two stripes
are changing between orange and blue, as before. Please use them to guide your steps while
walking or imagining yourself walking, just as you did in the training part.

Please remember to look to the middle of the virtual treadmill on the screen. During
the trial, please blink as less as possible, and please don’t chew. Also, please try to keep
your head as still as possible, this is, try NOT to move much. This is important because
the described movements (blinking, chewing and moving the head) would create noise in the
recordings.

Questionnaire . (Next page)



Block:
Condition:
Trial:

How much control did you feel that you had over the movement?
Notatall | | Very much

To what extent you think you would need further practice in order to master the interface or not?

Not at all } } Very much

How satisfying was your experience with the interface?
Notatall |

satisfying

ﬁ' Very satisfying

To what degree did you feel you were causing the movement?
not at all |L j' Very much

Was the level of control you perceived over the trial constant or not?

Not constant IL jl Very constant
atall

How content are you with the interaction?

Not at all L [y tent
ery conten
content f -1 Very

Did you feel an increase or a decrease of the control you had over this condition?
decrease } | Increase

To what extend you enjoyed or not the interaction?

| Enjoyed it very
I much

Not enjoyed }
itatall

Did you feel as if your skill in generating signals decreased or increased over the trial?

not at all ,L j' Very much




