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Abstract

If someone wants to localize a person or object in a building, then in the worst case all rooms
must be visited in order to find the person or object. An electronic means to support indoor
localization would be useful. The existing Global Positioning System (GPS) does not cover
indoor areas for localization. This is a pity since it is known from the U.S. Environmental
Protection Agency, that people spend almost 90 percent of their time indoors.

A solution to the indoor localization problem is proposed in this thesis. The goal is to
develop a real time localization system which is applicable for tracking persons or objects
in an indoor site. Other applications can be navigating in a mall or hospital.

It is assumed that the localization area is equipped with AME ZigBee devices. ZigBee is
a low data rate, low-power and secure radio protocol. For example, AME designed ZigBee
devices used for wireless socket switches. In the context of indoor localization, AME ZigBee
socket switches are called reference nodes. Also, it is assumed that the person carries a
tag. The tag, denoted as blind node, is a battery powered AME ZigBee device. The blind
node the node that is supposed to localize itself.

The localization technique used by GPS is multilateration. Based on distances to reference
positions, goniometry is used to calculate a location. Unfortunately, distances between two
ZigBee radios cannot be determined accurately enough. The transmit time of a ZigBee
message could be used for distance determination, since a signal propagates with the speed
of light. However, transmit time (magnitude of nanoseconds) cannot be measured accu-
rately enough. Also the power of a signal correlates to distance, but is also not applicable
because of reflections causing multipath propagation. This means that signal paths do
not all end up at the receiver: thus multilateration is not applicable for localization using
ZigBee.

Fact is that as long as the environment stays static, the reflections are also static. The
localization scheme proposed in this thesis is based on static reflections. The expected
received power of each position in a localization area is extracted by a training phase
which is done a priori. The training phase is done using multiple blind nodes, and results
in a model containing values for the expected received power per reference node, for each
position in the localization area. In the localization phase, the measured received power
values from messages of reference nodes are used to compare to the model, to determine a
location. The proposed localization system performs with a median error of at most 3m.
Using multiple radios at the blind node improves the median error to at most 2m. An
implementation of a single radio blind node has been made.

The Achilles heel of the system is that major changes in a localization area can disturb
localization significantly, i.e. only small movements of obstacles are allowed.
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1 Introduction

During the last decade, location based services have become more and more important.
Location based services include navigation, location based marketing, and asset track-
ing. For outdoor environments, there is the Global Positioning System (GPS). However,
environments like parking lots, logistic terminals, shopping malls and other indoor envi-
ronments are not covered by GPS. Inspired by the lack of an indoor Realtime Location
System (RTLS), this thesis is written.

The thesis proposes an indoor localization system based on ZigBee, a wireless sensor net-
work (WSN) technology. A WSN consists of spatially distributed electronic devices which
can communicate over short distances. A device in a WSN, denoted node, is equipped with
a radio transceiver to communicate with other nodes. Based on presence of neighboring
nodes, a mobile node can localize itself. The proposed localization system localizes people
and objects in an indoor site, with median accuracy of 2-3m in 2D space.

In the remainder of this thesis, a mobile device which is supposed to locate itself is named
a blind node. A blind node “listens” to the network in order to determine its location. The
other nodes in a network are assumed to have a static location and are called reference
nodes.

The remainder of this section describes the problem statement and lists the requirements
for the localization system to be designed. Related work in the field of localization is
outlined, and the research direction for the thesis is motivated. The contributions of the
thesis are summarized and the outline of the remainder of this document is given.

1.1 Requirements

An RTLS is a system that provides realtime identification of the location of objects or
persons. The problem is that there is not yet a robust, accurate system which can localize
persons in the range of ZigBee wireless sensor networks in an indoor environment. The
need for an indoor RTLS is reinforced by the fact that people spend 80 % - 90 % of their
time indoors [12].

The location system developed during the thesis meets the following requirements.

1. The system must be suitable for realtime person location tracking. This requires an
accuracy of approximately 3m in office environments.

2. Adoptability of the system of existing AME ZigBee devices, to maximize the scope
of application. Obviously, the AME ZigBee network should retain its operation.
Hardware changes to existing reference nodes is not allowed, but software updates
ware allowed.

Company confidential - 1 -



Indoor localization using ZigBee August 18, 2011

3. The system must support tracking of multiple persons or objects.

4. The blind node’s environmental knowledge is minimized. Only the location of refer-
ence nodes, or a training phase extracting site metrics is allowed to be assumed. The
installation of the system may take at most one day for sites comparable to the AME
building (5000m2 of office space). Again, the reason is to maximize the application
scope.

5. Enhancements for specific locations, e.g. no-go areas or hot-spot tracking are desired.

6. This requirement is derived from Requirement 3 (Scalability in nr. of blind nodes),
since the network load is limited. The calculation of the location of a blind node
must be done by the blind node itself. That means that there is no offline processing.
This is to allow scalability in number of blind nodes and to minimize costs.

As Requirement 1 (Suitable for realtime person tracking)states, the system should enable
localization for person tracking in an office environment. AME’s building is used for testing,
which is a two floor building. Thus, the system should be able to distinguish areas, where
a floor or hall can be interpreted as an area.

The intended hardware for a blind node is an AME Sensor Node. A AME Sensor Node
is an AME ZigBee operated device intended to be carried by people or objects. The
dimensions are dimensions are 78x48x20mm. The embedded software of the AME Sensor
Node can be updated over-the-air. An additional PCB can be mounted to the AME Sensor
Node. For example, the additional PCB can contain an additional ZigBee radio to improve
localization accuracy.

1.2 Related work and chosen research direction

Since realtime indoor localization is a new and hot topic in current research, there are
no books available describing indoor localization techniques. There are more and more
conferences concerning localization, like the International Conference on Positioning and
Context-Awareness (PoCA) held on March 24th 2011 in Brussels, Belgium and the Inter-
national Conference on Indoor Positioning and Indoor Navigation (IPIN) to be held on
21-23 September 2011 in Guimarães, Portugal.

At the moment of writing, articles are being released concerning context awareness and lo-
calization. In scientific research, a lot of effort has been invested in localization using Wi-Fi,
WSN, FM, (Ultra Wide Bandwidth) UWB, ultrasound and even using temperature. Using
UWB, the company Ubisense (http://www.ubisense.net) offers a commercial RTLS for
automotive and aerospace manufacturing. The system has “sub-meter” accuracy in 3D.

However, there is not yet a localization technique for WSN’s that is widely accepted, nor in
industry, nor in science. For WSN’s there is a localization technique called fingerprinting,
which is the basis for this thesis. Chapter 2 describes the state of the art localization
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techniques. Often research of localization in WSN’s focusses on high accuracy systems
requiring expensive dedicated hardware. In a lot of cases, this leads to superfluous accuracy
in an unrealistic lab environment. For example, in [9] and [10], the authors assume a line of
sight between blind nodes and reference nodes. This cannot be assumed in practice since
objects and humans interrupt the line of sight. Also, Schwarzer et al. [13] use dedicated
hardware which enables 2D localization with 0.16m accuracy. This dedicated hardware is
not desirable because of costs and non-adoptability by existing WSN nodes.

The goal of this thesis is to present:

A scalable indoor location tracking system with room-level accuracy (3m)

The context of scalable is the number of blind nodes. This means that the network traffic
should stay constant, when adding a blind node to the network.

1.3 Contributions

In addition to the field’s knowledge this thesis has proposed a scalable, practically applica-
ble localization system. In short, the proposed system offers a scalable solution to indoor
localization which can be adopted in existing AME ZigBee networks. Besides over-the-air
fingerprint database and algorithm updates, a blind node’s localization median accuracy
can be increased to 2m using additional antennas. A detailed description of the contribu-
tions of this thesis can be found in Section 6.1.

1.4 Outline

The remainder of this thesis is as follows. Chapter 2 describes related work in the field of
indoor localization in WSN. It turns out that signal strength is applicable to existing AME
ZigBee products. Detailed experiments are described in Chapter 3. Based on the findings
concerning signal strength, Chapter 4 describes the localization scheme presented by this
thesis. The proposed localization scheme is evaluated in Chapter 5. Finally Chapter 6
provides some discussion and concludes this thesis.
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2 Localization techniques in WSN

Since the early 90s, research in indoor localization has been done. This section describes
an overview of existing localization techniques. Localization techniques can be divided into
two classes called range and range free methods [4]. Range methods use distances between
mobile node and reference positions to calculate the location by goniometry. The class
of range free methods is not based on distances; they use for example area probability in
order to calculate a location.

According to [15], a blind node in a localization system can be an active or passive mobile
device.

(a) Active blind node (b) Passive blind node

Figure 1: Active- and passive mobile node.

In Figure 1a, an active blind node is shown, where the blind node periodically broadcasts
a message. The reference nodes receive these messages and send them to a central server
which calculates the location. Depending on the application, the calculated location is sent
back to the blind node. Figure 1b shows a passive blind node, which receives messages
from reference nodes. The reference nodes send periodically their identity or position.
In this case, a blind device determines its location by itself. In contrast to the active
configuration, a blind node operating as an passive blind node will lead to less network
overhead. An passive operating blind node is preferred, in order to fulfill Requirement 3
(Scalability in nr. of blind nodes). Note that there are variants where there is two-way
communalization [19].

Because of Requirement 6 (Calculations by blind node) given in Section 1.1, the localization
methods described in this section are described from the perspective that the blind node
operates as a passive mobile device.

This section describes the main range methods, which can be divided in Time of Flight
(ToF) based methods and signal power based method. The range free methods considered
are Angle of Arrival and a signal power fingerprinting method. This sections ends with a
survey and assessment of these existing localization techniques.
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2.1 Range methods

The basis for range methods is the knowledge of absolute distances to reference locations.
When a distance of d meters from the blind node to a reference location is known, one
can draw a circle around the reference location, indicating all locations which are located
d meters from the reference location. The intersecting point of the circles is the location
where the blind node is located.

Figure 2: Trilateration uses distances to reference nodes.

Figure 2 illustrates a situation where the distances d1, d2 and d3 to reference locations
respectively R1, R2 and R3 are known. Trilateration determines the blind node’s location
to be the intersecting point of the circles. Since two circles can have two intersection, at
least one additional circle is needed. Therefore a minimum of three distances to references
nodes is required to determine the location of the blind nod. Because of inaccuracy of single
distance estimations, multilateration is a generalized version of trilateration supporting
multiple reference positions, to achieve more localization accuracy [14].

The range methods described in this section determine distances from the blind node to
reference nodes. Note that the following conditions must hold in order to use multilatera-
tion.

• Location of reference nodes must be known.

• Location of reference nodes must be static.

For range methods, Time of Flight based methods and the signal power method are de-
scribed in the following subsections.
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2.1.1 Time of Flight based methods

A relatively accurate localization system is the Global Positioning System (GPS), for ex-
ample used in car navigation. There are 31 GPS satellites placed around the globe at a
height of 20.000 km, transmitting RF signals. The physical distance to satellites can be
determined based on time measurements and the transmission speed (speed of light, c0). If
the distance to three or more satellites is known, multilateration can be used to determine
the location. Similar time based techniques can be used in WSN’s.

Roundtrip Time of Flight (RTOF) is a derivative of ToF, since it does two time measure-
ments. RToF measures the Roundtrip Time τB and the processing time τR as illustrated
by Figure 3.

RB

τB τR

Figure 3: Roundtrip Time of Flight.

The difference τB− τR equals twice the propagation time. The distance between blind and
reference node can be calculated using Equation 1.

d =
τB − τR

2
· c0 (1)

In the RTOF technique, there is two-way communication between the blind node and the
reference nodes. This means that the blind node is not clearly in an active of passive
mobile device.

Previous work in [19] shows distance RToF based estimation with an error of 1.6m. ToF
methods are certainly applicable methods for distance estimation between nodes in a WSN.
However, they require high precision time measurement. The speed of signal propagation
is equal to c0, resulting in small transmit times. Commonly available ZigBee architectures
do not support the required time accuracy.

Similar to ToF in WSN, localization systems based on the ultrasound technology typically
use ToF. Unfortunately ultrasound radios are not standard supported by ZigBee compliant
Intergraded Circuits (IC’s), thus Requirement 2 (Adoptability of existing AME ZigBee
devices) prohibits use of ultrasound.
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Although there is no widely accepted localization technique for WSN, the company Nan-
otron [16] offers a distance measurement which can be generalized to 2D or 3D localization.
The technique of Nanotron comes back to RToF, but differs in frequency modulation. It is
a variant using double RToF, also known as Symmetric Double Sided Two Way Ranging
(SDS-TWR). Both blind and reference node are measuring time spans and compute their
mutual distance using Equation 1. The calculated distances are averaged in order to es-
timate the distance. This leads to an accuracy of distance estimation within 1m, even in
the most challenging environments.

Figure 4: Symmetric Double Sided Two Way Ranging uses double RToF.

Figure 4 shows a scheme of SDS-TWR. As with RToF, a blind node has two-way commu-
nication with reference nodes. This limits scalability due to network traffic growth, when
adding a blind node to the network.

SDS-TWR provides protection against noise by the Chirp Spread Spectrum (CSS) mod-
ulation technique. CSS is a spread spectrum technique that uses a wideband frequency.
The wider the signals bandwidth, he narrower the correlation peaks. Making the corre-
lation peak as narrow as possible increases the time resolution of the method [16]. Also,
Nanotron’s technique is not applicable for this thesis since the available Nanotron IC
(nanoLOC TRX Transceiver) on the market does not support ZigBee. Since the nanoLOC
TRX Transceiver operates in the same frequency band as ZigBee (2.4GHz), one could
implement the ZigBee stack. However, implementing the ZigBee stack is very time con-
suming. Besides the lack of support for ZigBee, the Nanotron system requires additional
hardware for reference nodes which was prohibited by Requirement 2 (Adoptability of
existing AME ZigBee devices).

2.1.2 Signal power

An RF signal sent at a certain carrier frequency is always sent with a certain amount of
power. Propagating through air, the signal’s power decreases. As a consequence, signal
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power correlates to the distance between sender and receiver. This implies that distances
can be determined based on received signal power.

The theoretical correlation between received signal power, denoted Received Signal Strength
(RSS) in dBm, and distance d is described by [1] in Equation 2.

RSS(d) = −(10n · log10 d+ A) (2)

In the formula, n denotes the signal propagation, which is influenced by thickness of walls
and other environmental conditions. For ease of modeling, n is often treated as constant.
For a given deployment, the variable n can be determined experimentally. Errors in n can
cause inaccurate distance calculation. Parameter A denotes the received signal strength at
one meter distance. This parameter can also experientially be determined. Parameter d
denotes the distance between sender and receiver in meters. Based on distance calculation
using Equation 2 and multilateration, localization can be done.

Assuming this theory holds in practice, Lau and Chung positioned their blind node in line of
sight (LoS) to reference nodes [9]. In both indoor and outdoor environments, experiments
they have done resulted in a 2D localization error of 3m.

The localization error of 3m is acceptable, but the assumption that reference nodes are
placed in line of sight is not. If there is no LoS to reference nodes, the drawback arises
that a signal’s power is affected by reflections and interferences, which causes inaccurate
distance estimations.

2.2 Range free methods

Range free localization methods compute a location, not using distance estimation. This
means that not all range free methods do require knowledge of the location on the reference
nodes. The following sections describe the Angle of Arrival and an RSS fingerprinting
method. Angle of Arrival is a novel technique using rotating antennas [10]. Signal power
fingerprinting compares RSS measurements to a model. Other range free methods are not
known at the moment of writing.

Both range free methods assume that the location of the reference nodes is static. Moreover,
the Angle of Arrival method assumes that the location of the reference nodes must be
known.
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2.2.1 Angle of Arrival

The Angle of Arrival (AoA) method determines angles in order to calculate the location
of the blind node. Using directional synchronously rotating antennas at reference nodes, a
blind node can determine angles of arrivals. This can be explained by means of Figure 5.

Figure 5: Angle of arrival (AoA).

The reference nodes are equipped with directional antennas, which are rotating at equal
speed. The time difference of arrival of beams from reference nodes is proportional to the
angle the blind node makes in for example 4BR1R2. Goniometry can be used for location
estimation. Note that locations of reference need to be known. The work of [10] resulted in
a localization error of roughly 2m, in 2D space. The work is limited to simulation only.

Although the idea of directional rotating antennas is innovative, the practical objections
are unacceptable. These objections include the need for mechanical rotating antennas and
communication of blind node and reference node with the line of sight assumption. Also,
clock synchronization is needed which implies additional network traffic [7].

2.2.2 Fingerprinting signal power

It is generally known that signal power relates to distances. However, it is not generally
known that signal power can also be used for fingerprinting.

In the fingerprinting technique, for each location (x, y) in the localization area there is a
set of expected signal power values for all reference nodes. A set of expected signal power
values for a given location, is called a fingerprint.
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The set of fingerprints of all locations in the localization area is called the fingerprint
database. The fingerprint database is built a priori by a training phase, or calculation [3].
A blind node can localize itself using the “live” signal power values measured from messages
from neighboring reference nodes. These live signal power values are compared to the
fingerprint database, in order to find the best matching fingerprint from the database.
Then, the best matching fingerprint corresponds to the location of the blind node.

Part of the work of Weyn [17] implements fingerprinting. The author combines GPS, Wi-Fi,
and GSM for localization for both indoor and outdoor application. For indoor environments
the Wi-Fi technology is used for fingerprinting. A blind node in the proposed solution can
localize itself within 3m in 2D.
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2.3 Survey

The most important requirement for this thesis is adoptability of the system, i.e. how easy
can it be used in existing AME ZigBee networks? The comparative study is summarized
by Table 1. Assuming all localization techniques described are suitable for person tracking
(Requirement 1 (Suitable for realtime person tracking)), the following table is made.

Table 1: Comparison of localization techniques

Range methods Range free methods

Name / property ToF based
methods

Signal
power

AoA Fingerprinting
signal power

no need for additional hardware 7 3 7 3

hardware for reference nodes

no need for clock 3 3 7 3

synchronization

accuracy (dimension) 3m (2D) 3m (2D) ? 3m (2D)

ignore location of 7 7 7 3

reference nodes

additional network load ?? ? ? ?

notes LoS simulation a priori work

The localization techniques are assessed based on the requirements. Requirement 2 (Adopt-
ability of existing AME ZigBee devices) prohibits the use of additional hardware of refer-
ence nodes, and this requirement also includes the ease of installation. For ease of instal-
lation, it is preferred that the locations of reference nodes are not required to be known,
and a priori work is not desired. Requirement 6 (Calculations by blind node) is derived
from Requirement 2 (Adoptability of existing AME ZigBee devices) and tries to minimize
the additional network overload. The need for clock synchronization is directly related to
network overload and additional hardware, since clock synchronization comes with a price
in terms of network overload and additional hardware [18]. Requirement 3 (Scalability in
nr. of blind nodes) implies that the network load should not increase too strongly when
a blind node is added to an AME ZigBee network. Table 1 includes the network load. A
single star (?) indicates that blind nodes can operate in the passive configuration, which
minimizes network load. A double star (??) indicates the that there is more network load
caused by two-way communication between a blind node and reference nodes. This means
that ToF based methods are ruled out.
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Note that Requirement 5 (Enhancements for specific location) is assumed to hold for each
localization technique considered, because enhancements can be seen as post processing.
Namely, detection of hot-spot tracking or detection of prescience in no-go areas is applicable
after locations have been determined.

Localization techniques requiring additional hardware for reference nodes are excluded by
Requirement 2 (Adoptability of existing AME ZigBee devices). This makes the choice for
the localization technique more easy. Either ranging using RSS or fingerprinting using RSS
meet the requirements. The advantage of ranging using RSS would be that there is no a
priori phase. However, it requires knowledge of the location of the reference nodes, but
the fingerprinting database needs to be known. Seems similar. A detailed literature study
concerning localization techniques in WSN can be found in [5], which was written during
the preceding phase of this thesis. Note that RSS fingerprinting was not included in that
document.

Up to here, both ranging using RSS and fingerprinting using RSS are possible solutions
for solving the indoor localization problem. In order to choose between them, Chapter 3
analyzes signal transmit power.
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3 Signal Transmit Power

From the survey of localization techniques in WSN described in Chapter 2, signal strength is
a preferred metric for a solution of the localization system developed in this thesis. There
are two ways described to use signal power in localization. Either as a range method
where distances between ZigBee devices are estimated in order to use multilateration for
localization, or as a range free method in the sense of fingerprinting.

A ZigBee radio is able to send and receive radio waves in the 2.4Ghz frequency range. A
radio can generate an electromagnetic wave with a certain power. Signal power reduces
when the wave propagates through air or other matter.

The remainder of this section goes into the theoretical model of signal power. The correla-
tion between signal power and distance is explored. It comes out that the model does not
apply in practice. When the correlation between signal power and 2D surface is explored,
it comes out that a fingerprinting technique is the right possible solution to the problem
defined in Chapter 1.

3.1 Model

Usually in scientific research, a good model contributes to a good insight in the prob-
lem. The model described in this section is a first order representation of radio signal
propagation. It does not take reflections and isotropy into account. An isotropic antenna
broadcasts power equally in all directions.

If a radio signal propagates the absolute path from sender S to receiver R, as depicted by
Figure 6, then the following theory applies.

RS

Figure 6: Radio propagation.

The correlation between signal power RSS and distance d is defined by [1] in Equation 3.

RSS(d) = −(10n · log10 d+ A) (3)

In this equation, parameter A represents the RSS value measured at 1m from the sender.
Parameter n represents an environment constant and depends on matter of propagation
and obstructions. Both A and n can be determined experimentally. A can be determined
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by measuring the signal power at one meter distance from the sender. Knowing A, n can
be determined using Equation 3. A graphical representation of the inverse function is given
by Figure 7.
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Figure 7: RSS versus distance, where n = 2 and A = −40.

Because of the logarithmic component in Equation 3, variance in an RSS measurement gives
more inaccurate distances for lower RSS values. Namely, the flatter the curve the more
accurate the distance estimation. This means that higher RSS values are more accurate
than lower RSS values, and thus closer distances are more accurate.

3.2 Practice Compared to Model

In order to verify if the model described in the previous section applies to practice, exper-
iments have been executed. The equipment for the experiments is described below. The
first experiment verifies if the signal power to distance mapping can be used for distance
estimation. The goal of the second experiment is to determine to what extend the AME
ZigBee product called “Circle” is isotropic.

The experiments were done in an outdoor environment at an open football field. This is
because a football field is an open site, without any possible disturbances of other radio
transmitters. It turned out that a football field is not a non-reflective site, as described in
the following sections.

The vendor of ZigBee IC’s Ember (www.ember.com) offers an implementation of the ZigBee
stack. Ember’s ZigBee stack includes a signal strength measurement. Ember defines the
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Received Signal Strength Indicator (RSSI) to be the value representing the energy level
in dBm at the radio’s receiver; “The RSSI measurement is based on the peak (highest)
energy level detected by the radio on the current frequency over the first eight symbol
periods (about 128 µs) of the current packet being received”. For experimental usage,
ping messages are used. A ping message is a basic message in the application layer,
containing no data or payload. A ping message can be used to request or advertise presence
information.

In the remainder of this document, the RSSI measurement supported by the Ember stack
will be denoted as RSS measurement.

3.2.1 Equipment

The experiments have been done using the following equipment.

(a) Circle (b) Stick

Figure 8: Examples of AME ZigBee products.

A Circle (Figure 8a) is an AME ZigBee device which can be placed in a wall socket to
measure and communicate power consumption. Circle devices are used as reference nodes.
A Stick (Figure 8b) is an AME ZigBee device which can communicate Circle’s measurement
data to a Personal Computer.

The measurements described in the following sections are done using one Circle and one
Stick. The Circle devices are intended for use as reference node. The Circle was configured
to send ping messages. The Stick was configured to measure signal strength of received
ping messages coming from the Circle. The RSS values are sent via serial communication
to a notebook PC, which is able to record incoming messages. Since only two devices were
used, routing was disabled. The disabling of routing is important since RSS measurements
are done on the last hop of transmission.
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3.2.2 Isotropy

The goal of the isotropy experiment is to analyse to what extend the orientation of a
Circle influences an RSS measurement, i.e. the uniformity of power in all directions. The
isotropy model has been extracted by means of measurements in all spatial dimensions
(x, y, z). Ideally, the ZigBee device distributes its power uniformly in all directions.

X

Z

Y

Figure 9: Dimensions of a Circle.

Both Circle and Stick were placed at the same height of 0.5m, just as illustrated by Figure 6.
At a distance of 1m, the RSS measurements of ZigBee packets coming from the Circle were
done by the Stick. In each of the three dimensions, the Stick performed RSS measurements
at twelve positions. At least 200 RSS measurements have been done at each position. In
36 measurement positions, the Stick was placed orthogonal to the Circle.
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Figure 10: Received Signal Strength at 1m. Angle in degrees.

The light blue lines indicate minimum and maximum RSS measured at the corresponding
position. The average RSS measured is indicated by the dark blue line. It is easy to see
that the power distribution of the Circle is not uniform in all directions. The variance in
the RSS measurements is up to 20dBm, which already indicates that distance mapping
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from RSS measurement is hard. The variance is seen as noise in the measurement, since
all other factors are constant.

When a Circle is mounted in a wall socket, then the part of Circle which is “seen” has
relative low variance of 3dBm. The part of a Circle which is seen when mounted in a wall
socket is clockwise from 0◦ to 180◦ in the XY pane Figure 10b), and clockwise from 180◦ to
0◦ in the ZY pane (Figure 10c). However, the targeted localization scenario is when a blind
node does an RSS measurement on a message received from an arbitrary Circle; the blind
node does not know the orientation of the Circle with respect to his own position. This
means that although the isotropic graphs of Figure 10 look good from a sight perspective,
the orientation does influence the RSS measurement.

Based on the isotropy model extracted from a Circle, it can be stated that RSS values are
orientation dependent and have an average spread of 6dBm. This implies that orientation
should be taken into account, when an RSS measurement is done.

3.2.3 1 Dimension (Distance Correlation)

In order to verify the RSS versus distance correlation defined by Equation 3, the following
experiment has been executed at a football field. RSS measurements have been done using
the setup as used in the isotropy experiment, at a distance ranging from 0m up to 20m.
The orientation of the Circle with respect to the Stick was at a position of 90◦ in the ZY
pane. The Stick was orthogonal oriented with respect to the Circle.

At a resolution of 1m, the measurements were performed. Just as in the isotropy experi-
ment, at least 200 RSS measurements were done at each of the 21 locations. The result of
the extracted signal power to distance correlation is compared to the theoretical correlation
in Figure 11.

The average of the RSS measurements is plotted and compared to the theoretical curve.
Note that Figure 11 has reversed axes compared to Figure 7. This is because the red graph
is not injective, since it has multiple distances for particular RSS values. For example, an
RSS value of -68dBm maps to 7m and 9m.
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Figure 11: RSS measurements at football and theoretical model

Unfortunately, the RSS does not correlate with distance as the theoretical curve. Moreover,
the correlation between RSS and distance is not injective in practice. It can be concluded
that a higher RSS value gives rise to a closer distance, as the theoretical model of Sec-
tion 3.1 describes. The steep part of the graph (RSS values > -52dBm) is injective, and
enhancements have been tried to spread this steep part, in order to achieve an injective
function. This has been done by increasing the output power of the Circle, using differ-
ent antennas for the Stick averaging RSS values from multiple Stick’s and using different
orientations of the Stick [5].

Since the relation between RSS and distance is not injective, it is not possible to determine
an accurate distance based on an RSS measurement.

To understand why practice does not meet theory, reflection is added to the model.

Reflection
Since a 1 dimensional experiment is done with the Circle and the Stick in an open field, the
model shown in Figure 12 would apply. Reflection via ground is added to the model. The
left blue dot represents the Circle, whereas the right blue dot represents the Stick. Over
the air communication is reflected via the ground. It is assumed that all other reflections
do not end up at the blind node.

RS

Figure 12: Reflection via ground.

The height of Circle and Stickwas equal and constant. The distance between reference and
blind node was varying over the x-axis. It is assumed that there is only one reflected signal
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in an ideal situation. The absolute difference between the length of the direct signal and
the length of reflected signal z can be defined as follows.

∆ = 2 ·
√
h2 +

(x
2

)2
− xm (4)

Then, we determine the wavelength by the following formula.

λ =
v

f
=

299.792.458m/s

2.4Ghz
= 0.125 m (5)

Then, the difference between x and z in terms of lambda is formulated by the following.

∆λ =
∆

λ
(6)

This difference in terms of lambda is related to the attenuation of signal strength measured
at the blind node. Namely, the attenuation factor is defined as follows.

k = cos(2π ·∆λ) (7)

This attenuation factor applies to the power measured at the receiving node. Therefore,
the measured signal power in dBm is transformed into power in Watt by the following
formula.

P = 10
(x−30)

10 (8)

Where x is the power in dBm, and P the power in W .

Thus, the theoretical and practicable correlation between RSS and distance are transformed
to lineair power, and multiplied by the attenuation factor. This results in the following
graph, knowing that the height was 0.5m.
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Figure 13: Reflection theory.

The green line denotes the theoretical power in nW with attenuation from the modeled
reflection signal. The red line represents the measured power in nW from the 1 dimensional
distance experiment.

In the initial distance experiment the football field was chosen to be the site for the ex-
periment. It was thought that the football field was a “clear” site without disturbances.
However, it is proved that the reflection via the ground is there, which makes the RSS to
distance mapping to be no longer injective. This means that a particular RSS value can
be mapped to multiple distances. This disables the possibility for distance determination
using RSS. This implies that the range method using multilateration based on RSS cannot
be applied.

3.2.4 2 Dimensional

From the previous section it is known that the measured received signal strength is influ-
enced by reflections via ground. This disables the possibility to map RSS measurements to
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distances, thus multilateration using RSS measurements cannot be a solution tot the local-
ization problem. Moreover, the reflection theory described in the previous section does not
include reflections ceiling, walls, closets and other obstacles in an indoor environment.

Still we continue exploring to a RSS based localization scheme. The exploration is done
under the assumption that reflections are static. By static is meant that if an RSS mea-
surement is done at two movements in time, then it is expected that the measurements
results are equal.

The assumption that RSS measurements are static in time is verified by a simple experi-
ment. This verification is done as follows. The experiment verifying the RSS to distance
correlation (Section 3.2.3) is done twice. If both experiments give equal results, then the
assumption holds. The result is shown in Figure 14.
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Figure 14: Verification if RSS measurements are static in time.

The plot shows two experiments. Experiment 1 is equal to the RSS-at-football-field graph
from Figure 11. Experiment 2 is executed exactly equal to Experiment 1. We can see
that both graphs follow the same curve, except from 7m to 10m. Indeed, 8m is exactly
the distance where the attenuation is the strongest according to Figure 13. Difference in
the experiment results from 7m to 10m can be explained by the fact that attenuation is
very local, which means that little variance in position of measurement causes relative high
variance in RSS measurement. Since positioning of the measurement device (Stick) is done
by hand and using a tapeline, the chances are that there is little variance in positioning
in comparison to the first experiment. Therefore we conclude that the RSS measurements
are static in time.

Knowing that RSS measurements are static in time, an RSS value can be compared to
a predefined value in order to scat possible locations. Therefore an investigation has
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been done to extract RSS measurements at different locations in AME’s warehouse. The
warehouse contains metal racks accommodating electronic related supplies. Because of
the racks, ceiling and ground, and other obstructions; there are a lot of reflections. The
dimensions of the warehouse are 29m x 30m x 4m. One Circle is mounted at position
(6.3m, 5.2m), at a height of 2.9m. Following the model of previous section (Equation 3),
the theoretically expected RSS value at each position in the warehouse is calculated. The
set of expected RSS values for each position is called a signal map. A plot of the theoretical
signal map is shown in Figure 15. Note that for ease of interpretation of the Figure, the
RSS values are all increased by 100. For generation of Figure 15, Equation 3 has been
used substituting n = 1.3 and A = −52. These values for n and A have been determined
experientially using the same method as the 1D experiment, but performed indoors.
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Figure 15: Theoretical Received Signal Strength + 100 of a Circle placed at (6.3m, 5.2m)
at a height of 2.9m.

In the following, this 2D model is compared to practice. Since it is requires too much time
to sample RSS measurements at each position in the warehouse, interpolation has been
applied. The interpolation method is described in Chapter 4.
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Figure 16: Measured Received Signal Strength of a Circle placed at (6.3m, 5.2m) at a
height of 2.9m.

Comparing theory to practice (i.e. comparing Figure 15 to Figure 16), we can see that in
practice the function of RSS is not a monotonic. It is very likely that the non-monotony
is because of reflections and not always having LoS between Circle and Stick. We can also
see in practice, that the RSS values can be either higher or lower than expected by the
theoretical model. This is because reflections can attenuate the RSS measurement, but
reflections can also strength the RSS measurement. Namely, strengthening can be occur if
the signal paths arrive equally phased.

3.3 Conclusion

In order to come up with a solution to the localization problem, RSS seems to be a preferred
metric as concluded in Chapter 2. It is shown that orientation of a Circle influences the RSS
measurement, since a Circle does distribute its signal power equal in all three dimensions.
This means that RSS measurement of signals coming from a Circle should take orientation
into account.

Secondly, from Chapter 2 we know that RSS can be used in either a range or range free
fashion. In practice, RSS cannot be used as a range method since reflections cause signals
to be received from multiple paths. This results in an injective RSS to distance mapping,
which disables clear distance calculation based on RSS. The reflection theory has been
verified in outdoor experiments. However, it is shown that RSS measurements are static
in time.
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The static nature of RSS measurements can be used for comparison to a predefined value.
The next section proposes a localization scheme based on stateliness of RSS measure-
ments.
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4 Localization Scheme

Based on our claim that RSS measurements are static in time, this thesis proposes a training
based localization system. Training based localization consists of two phases, a training
phase and a localization phase. A training phase is done before the actual localization is
done. The first phase, the training phase, results in a database containing signal maps for
each reference node. In the second phase, the localization phase, the “live” fingerprint,
containing RSS measurements from neighboring nodes, is compared to the fingerprints in
the database in order to determine a location.

Training based localization requires undesired a priori work. Namely, before localization
can happen the a priori training phase must be done. This is undesired since it makes the
installation of the localization system take more time. On the other hand, a training based
localization scheme does not require knowledge of the position of reference nodes while
range localization methods do. Thus, considering Requirement 2 (Adoptability of existing
AME ZigBee devices), the engineer installing the localization system at a site does not
have to care about exact positions of reference nodes, as long as they are roughly equally
distributed along the localization area. Since most AME ZigBee networks are typically
roughly equally distributed Circles, they are suitable for use as reference node.

Note that the signal maps described in the previous section are treated in a continuous
fashion, e.g. for each location (x, y) an expected RSS value is present. In this thesis,
the matching algorithms for comparing fingerprints are explained assuming that x, y ∈ R.
The resolution r of x and y is proportional to the database size. For example, having
r = 100cm enables a finite signal map for a localization area. Then each location (x, y)
and its corresponding fingerprint are represented by a tile. A tile covers the area from
(x, y) to (x+ r, y + r).

The remainder of this section describes the two phases of training based localization. Anal-
ysis focusses on ease of training, localization accuracy, and running time of the localization
algorithm.

4.1 Training Based Localization

The training phase is schematically illustrated by Figure 17.

training 

data

process + 
interpolation

fingerprint 
database

Figure 17: Training phase of training based localization.
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The training is done by an installation engineer. The generation of the fingerprint database
from training data is done by interpolation. The training phase results in a set of signal
maps, called a fingerprint database. For recapitulation: a signal map is a set of ex-
pected RSS values for all locations in the localization area, for a given reference node.
In other words, the fingerprint database contains for each location (x, y), a fingerprint
Sx,y = (s1x,y, s

2
x,y, . . . , s

i
x,y, . . . ) where six,y represents the expected RSS value for a reference

node i.

matching 
algorithm
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x2,y2
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Figure 18: Localization phase of training based localization.

The fingerprint database constructed by training is used by a blind node in the localization
phase as depicted in Figure 18. In the localization phase, the live fingerprint is compared
to the fingerprints from the database in order to judge possible locations. Judgement is
done by giving a weight to a possible location. Sorted by their weight, the top k locations
form the outcome of the localization algorithm.

The postprocessing of the set of weighted locations depends on the target application. For
example, a weighted average of the top k positions can be calculated, in order to come to
a single location. Another possibility is that the application gives reason to limit speed.
Speed limitation can be done by storing the previous localization outcomes and limit the
euclidian distance of successive localization outcomes. This thesis focusses on the location
calculation itself. This means that there is no focus on postprocessing. Therefore the
weighted average location of the top k tiles is used.

Assumptions
For the proposed localization scheme, the following assumptions are made.

1. The position and orientation of reference nodes is equal in training phase and local-
ization phase. Reference nodes are not moved or removed.

2. Reference nodes are roughly equally distributed along the localization site. Target
distribution is one reference node per 70m2.

3. The hardware of the blind node is equal in training and localization phase.
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4. Each second, a reference node sends asynchronously a beacon message at the MAC
layer.

5. Only changes in furniture of the localization area are allowed. A rebuilding gives rise
to a new training.

The assumptions give rise to explanation. Signal maps are generated from RSS measure-
ment at a different moment in time than localization takes place. RSS measurements will
only reproduce if the reference node is positioned at the same location and orientation
(assumption 1) and the blind node is equal in terms of hardware (assumption 3). It is
assumed that the density of reference nodes is at least one reference node per 70m2, as
is in AME’s building. In order to enable RSS measurements, a reference node sends pe-
riodically a beacon message (assumption 4). A beacon message is a 1-hop message only
received by a neighboring Ember ZigBee device if it is configured to receive it. By neigh-
boring, the area of direct communication is meant. We have tried to send beacon messages
at the application layer, but this results in overflowing buffers of reference nodes, which is
prohibited by Requirement 2 (Adoptability of existing AME ZigBee devices).

Changes in the localization site can affect signal power distribution of reference nodes.
Therefore only changes in the furniture of the localization area are allowed; otherwise the
RSS measurements will not reproduce. In practice, this means that a rebuilding gives rise
to do a new training, as is explained in Section 5.2. Namely, a rebuilding means that the
reflections in a building are heavily changed which causes different signal power distribution
of a reference node. Note that only one assumption has been made about the environment,
fulfilling Requirement 4 (Blind node has no environmental knowledge).

4.2 Training Phase

The goal of the training phase is to construct a fingerprint database, which can be used
during localization. This section describes how the fingerprint database is constructed out
of training data.

A fingerprint database consists of signal maps. As Requirement 4 (Blind node has no
environmental knowledge) states, the installation of the localization system is intended to
at most one day. Therefore a relatively low-time-consuming training phase is proposed,
where not all locations of the localization site are physically visited.

The fingerprint database to construct can be built by either calculating the signal maps [3],
or by extraction while physically visiting parts of the localization area. The drawback of
calculating signal maps is that the location, orientation and reflections need to be taken
into account. The model for calculation becomes complex. Therefore this thesis proposes a
novel training. Since the goal of the accuracy of the proposed system is room-level accuracy,
only the contours of the loculation site must be physically visited. The advantage of visiting
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the contours is that each room is treated separately, as will be explained in the remainder
of this section.

An installation engineer is visiting the contours, while carrying one or more blind nodes.
Visiting the contours, the blind nodes send all their RSS measurements to a PC. Because of
assumption 4, reference nodes are autonomously sending beacon messages, which enables a
blind node to perform RSS measurements from beacons received from neighboring reference
nodes. When all contours are visited, the interpolation of RSS measurements to signal maps
is calculated by the PC.

For the remainder of this section, it is assumed that walking contours is done by straight
tracks. This is for ease of explanation. Furthermore, the manner of building a signal map
from training data is explained for one single reference node.

The explanation of the training phase goes by a small fictive office localization site, see
Figure 19.

Figure 19: An example of a localization area.

In this case, the contours of the office are walked in five tracks, represented by blue straight
lines in Figure 20a. While walking these tracks, RSS measurements done by the blind
node are sent to a PC and stored on hard disk. The mapping of RSS measurements to
a location on the map is done linearly in time, see Figure 20b. For each track the start
and end location is known. In practice, this can for example be done by the installation
engineer by clicking on a map using a PC application.
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(a) tracks walked (b) RSS measurements
mapped to locations

(c) positions triangulated

Figure 20: Interpolation steps.

The third step is to interpolate the RSS measurements. Because a triangle is one of the ba-
sic shapes in geometry, we have chosen to interpolate RSS measurements using the closest
three training RSS measurements. This is achieved using Delaunay triangulation [11]. De-
launay triangulation is a useful technique for quickly generating non-overlapping triangular
meshes that reflect the nearest neighbor.

In order to construct a signal map, we must have a generic method to compute an RSS value
for a given location. Whenever we want to interpolate an RSS value at a given position, we
just lookup the circumscribed triangle. Then, the Barycentric coordinates of the triangle
are used to compute the interpolated RSS value [11]. The Barycentric coordinate system
specifies vertices of multidimensional triangles. Besides x and y, our third dimension is
RSS.

(x1,y1,RSS1)

Y

RSS

X

(x2,y2,RSS2)

(x3,y3,RSS3)

(xi,yi,RSSi)

Figure 21: Interpolation is done using Barycentric coordinates.

A triangle with Barycentric coordinates (x1, y1, RSS1), (x2, y2, RSS2), (x3, y3, RSS3) is shown
in Figure 21. The coordinates of the triangle are RSS measurements from training tracks,
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just as in Figure 20c. Compared to Figure 20c, Figure 21 adds the RSS dimension. To
compute the interpolated RSS value at the location (xi, yi) indicated by the red line, we
compute [11]:

b = (x2 − x1) · (y3 − y1)− (x3 − x1) · (y2 − y1) (9)

b1 =
(x2 − xi) · (y3 − yi)− (x3 − xi) · (y2 − yi)

b
(10)

b2 =
(x3 − xi) · (y1 − yi)− (x1 − xi) · (y3 − yi)

b
(11)

b3 =
(x1 − xi) · (y2 − yi)− (x2 − xi) · (y1 − yi)

b
(12)

Substituting the coordinates of the triangle in Equations 9, 10 and 11 we compute the
contribution of each RSS measurement (vertex of the triangle) according to euclidian dis-
tance in x and y dimension. Then, an interpolated RSS value can be computed using
Equation 13.

RSSi = RSS1 · b1 +RSS2 · b2 +RSS3 · b3 (13)

Note that this interpolation technique only applies to locations that fall inside a triangle.
This means that locations outside the enclosing polygon of the RSS measurements (see
Figure 20c) cannot be interpolated.

4.2.1 Non overlapping signal maps

All RSS measurements from any reference node done during a training track are mapped
to a location in the localization area. The set of RSS measurements of different references
nodes typically have different enclosing polygons, which results in not entirely overlapping
signal maps of reference nodes. For ease of explanation there are only two reference nodes
considered, let’s say the green and red reference node. Let us consider a fictive rectangular
localization area as depicted by the circumscribed square in Figure 22.
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Figure 22: The covered area of signal maps are not entirely overlapping.

The training tracks walked are represented by the four blue lines forming a rectangle. A
dot represents an RSS measurement performed during the walk of the corresponding track.
The color of the dot identifies the reference node of the RSS measurement. The enclosing
polygon of the dots of a color represent the covered area of the signal map of a reference
node. As one can see, the red and green polygons do not entirely overlap. This is due
to mapping of RSS measurements to a location. The mapping depends on the time of
arrival of the beacon message, which is sent asynchronously. Thus RSS measurements are
individually mapped to a unique location. Having non overlapping signal maps means that
there are locations where there is an expected RSS value for the red node but not for the
green node and vice versa.

Moreover in a real situation, it can be that there is only one expected RSS value at a given
location. Having only one expected RSS value at a location is too little, because some
comparison algorithms favor locations with few expected RSS values over locations with
more expecters RSS values. An example is the RADAR localization matching algorithm,
as will be explained in Section 4.3.1. We cannot just take the intersection of the enclosing
polygons, since an individual reference node does not cover the whole localization area; this
would imply that the intersection can be ∅. To solve the problem of non-overlapping signal
maps, we have chosen to have a minimum m of expected RSS values for a fingerprint. This
means that for every fingerprint in the fingerprint database, we have at least m expected
RSS values. Fingerprints having less than m expected RSS values are not contained in the
fingerprint database.

4.2.2 Averaging out errors

We know RSS measurements are theoretically static in time. However, in practice there is
variance in RSS measurements as we have seen in the experiments from Chapter 3. The
fingerprint database should contain an average RSS value in order to represent the most
likely expected value for an RSS measurement.
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Therefore, a multiple of k blind nodes can be used during training. For each reference
node, the interpolation should then be executed for each of the k blind nodes. The average
of the outcome of the interpolation executions should be contained in the signal map
of the reference node. We experienced that k = 3 is sufficient, as will be explained in
Section 5.1.

4.2.3 Conclusion

From Chapter 3 we know that for RSS measurements, the orientation of the sender should
be taken into account. This is implicitly done by the proposed training phase. Namely
during training, at different locations RSS measurements are performed at different ori-
entations of the reference node with respect to the blind node. To conclude, the training
tracks walked are used to linearly map RSS measurements to locations in the localization
site. The positions of these RSS measurements are triangulated using Delaunay triangu-
lation. Using Barycentric coordinates with x, y, and RSS dimensions; at each position
(x, y) in the enclosing polygon we can compute an interpolated RSS value for a given ref-
erence node. This interpolated RSS value is the expected RSS value for the given reference
node. Using this interpolation, the signal maps for the reference nodes are built. A better
fingerprint database can be build using multiple blind nodes during training. The problem
of non-overlapping signal maps can be solved by using a minimum number of RSS values
in each fingerprint in the database.
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4.3 Localization phase

The actual localization is described in this section. In the localization scheme proposed,
the live RSS measurements are combined to a fingerprint. This live fingerprint is compared
to the database using an matching algorithm, see Figure 23. The result of the matching is
list of weighted possible tiles. Postprocessing is not described in this section, since it is out
of scope of the localization phase. The remainder of this section compares two matching
algorithms known from literature. The comparison focusses on localization accuracy and
running time.

matching 
algorithm

live
fingerprint

fingerprint 
database

x1,y1

x2,y2

xn,yn

Figure 23: Localization phase without post processing.

Most of the matching algorithms known from literature assume that there is a fingerprint
database containing a fingerprint for each tile in the localization site, as this thesis also
does. Other matching algorithms assume only individual fingerprints for specific locations
in the localization area (thus without interpolating RSS values for all tiles). The matching
algorithms known from literature are listed.

RADAR The RADAR matching algorithm is a basic matching algorithm that judges the
likelihood of possible tiles based on nearest neighbor matching in signal space [2].
RADAR is known as the foundation of fingerprinting localization.

ABP The Area Based Probability (ABP) algorithm estimates statistical maximum likeli-
hood [6].

SPM Single Point Matching (SPM) uses threshold bounding of fingerprints [6].

In [8], Kleisouris et al. show an experimental algorithm survey including all three localiza-
tion algorithms RADAR, ABP, and SPM. For ABP and SPM signal maps were used, as
this thesis also does. For RADAR they used a set of training points, which is a subset of a
signal map. Their experimental setup also differs from the proposed system of this thesis.
Namely, they used a blind node in an active manner (as explained in Chapter 2). This
means that one beacon message sent results in a number of RSS measurements, whereas
in our case one beacon message sent results in one RSS measurement. The authors used
the single top tiles from the algorithms outcome.
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The accuracy of a localization system is usually expressed in a Cumulative Distribu-
tion Function (CDF). A CDF shows the cumulative probability of the localization er-
ror. The localization error is defined to be the euclidian distance in two dimensions
(E =

√
(x− xreal)2 + (y − yreal)2). A CDF can be seen as the “error so far” function

of the probability distribution. Kleisouris et al. show that usage of multiple antennas at
the reference nodes can increase the localization accuracy, as depicted by the CDF of the
localization accuracy in Figure 24. Note that since the authors used active blind nodes,
their reference nodes are equipped with multiple antennas, in contrast to our passive blind
nodes. This is a major difference compared to our solution, but we think having multiple
antennas is worth analyzing.

better performance than using only single antenna as
presented by the error CDFs in Fig. 3c. However, it is not
clear whether using three antennas can definitely outper-
form the two antenna cases in the 802.15.4 network.

We further studied the localization performance for

RADAR when modeling the RSS as a Gaussian distribution,

which was discussed in Section 2.3. The resulting localiza-

tion errors are presented in Fig. 4 for the 802.11 and 802.15.4

networks. We see that the error CDFs follow the same trend

as using real data, but with qualitatively worse performance

for the single-antenna case. This indicates that when using a

fingerprint matching method for localization, modeling the

RSS as a Gaussian distribution provides consistent results

with real experimental data.

3.2.3 Localization Stability

Fig. 5 presents the localization stability for RADAR for both

the 802.11 network and the 802.15.4 network. Examining the

distance CDFs at the ðx; yÞ plane for the 802.11 network, as
shown in Fig. 5a, we found that the total percentage of the
small-scale movements of the mobile device being localized
back to the original center position (distance 0 ft in Fig. 5a),
increases from 13.7 percent, for a single antenna, to 26.7 per-
cent, when averaging the RSS from three antennas at one
landmark position. A 100 percent improvement is achieved in
this case. Further, the stability at the 50th percentile moves
from 19 ft (1-antenna) to 11 ft (3-antenna- avg), indicating a
42 percent improvement, whereas the 90th percentile
achieves a comparable 30 percent improvement.

Further, similar trend of stability improvement in the
802.15.4 network under the case of 3-antenna-avg is observed
in Fig. 5c as in the 802.11 network. The improvement of the
mobile device being localized back to its original center
position is about 80 percent. The absolute stability improve-
ment of the 802.15.4 network is worse than the 802.11
network with about 20 percent improvement at both the 50th
and 90th percentile errors.

Moreover, as shown in Figs. 5b and 5d for the 802.11 and
802.15.4 networks, respectively, the stability of the mobile
device movement along the z-axis exhibits similar behavior.
This is very encouraging as better localization stability
strongly indicates that using multiple low-cost antennas for
improving localization performance is effective.

3.3 Area-Based Probability

3.3.1 Algorithm

ABP utilizes an Interpolated Map Grid (IMG) to interpolate
the signal map to cover the entire experimental floor. The
floor is divided into a regular grid of equal-sized tiles.
Because direct measurement of the fingerprint for each tile
is expensive and prohibitive for fine-grained tiles, we use an
interpolation approach. The goal of using an IMG fitting is
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Fig. 3. RADAR: localization error CDFs for networks 802.11 and
802.15.4. (a) 802.11: Desk, Center; (b) 802.11: Floor; (c) 802.15.4:
Desk, Center; (d) 802.15.4: Floor.

Fig. 4. RADAR: localization error CDFs when modeling RSS as a
Gaussian distribution. (a) 802.11; (b) 802.15.4.

Fig. 5. RADAR: localization stability for networks 802.11 and 802.15.4.
(a) 802.11: ðx; yÞ plane; (b) 802.11: z-axis; (c) 802.15.4: ðx; yÞ plane;
(d) 802.15.4: z-axis.

(a) RADAR

to derive an expected RSS fingerprint for each tile from the
data set that would be similar to an observed one.

ABP returns a set of tiles bounded by a probability that the

mobile device is within the returned tile set. The probability
is called the confidence � and it is adjustable by the user. We

used a tile size of 10 in� 5 in, which is comparable to the
distance between the antennas at a landmark location (1 or
2 ft). ABP assumes the distribution of RSS for each landmark

follows a Gaussian distribution with mean as the expected
value of RSS reading vector s. The Gaussian random variable
from each landmark is independent. ABP then computes the

probability of the mobile device being at each tile Li, with
i ¼ 1:::L, on the floor using Bayes’ rule:

P ðLijsÞ ¼
P ðsjLiÞ � P ðLiÞ

P ðsÞ : ð2Þ

Given that the mobile device must be at exactly one tile
satisfying

PL
i¼1 P ðLijsÞ ¼ 1, ABP normalizes the probability

and returns the most likely tiles/grids up to its confidence �
[7]. In order to normalize for accuracy and stability results,
we select the tile with the median localization error from the

tile set. In all results we show next, the value of the
confidence level is � ¼ 0:75.

3.3.2 Localization Accuracy

Fig. 6 shows the localization error CDFs of ABP when using

multiple antennas for both the 802.11 network and the
802.15.4 network. In Fig. 6a, for the 802.11 network, the

3-antenna-noavg case tops out the performance. Comparing
to the 1-antenna case, we observed that the median error
moves from 7 ft to 2 ft and the 90th percentile error moves

from 16 ft to 4 ft under the 3-antenna-noavg case. Thus, the
location accuracy has an improvement over 70 percent for

both the median as well as the 90th percentile error when
using three antennas at a given location.

Further, in Fig. 6c, the error CDF curves of the multiple-
antenna nonaveraging cases are close to each other and
clearly outperform the single-antenna case and the multi-
ple-antenna averaging cases. Comparing to the 802.11
network results in Fig. 6a, the localization performance
under the single-antenna case and the multiple-antenna
averaging cases is worse in the 802.15.4 network. However,
ABP achieves similar performance for these two networks
under the multiple-antenna nonaveraging cases; in Fig. 6c,
the median error moves from 6 ft (1-antenna) to 2 ft
(3-antenna-noavg) and the 90th percentile error moves from
26 ft (1-antenna) to 3 ft (3-antenna-noavg). Thus, in the
802.15.4 network, the location accuracy has an improvement
over 60 percent for the median error and 88 percent for the
90th percentile error under the 3-antenna-noavg case.

Examining the z-axis, the error CDFs for the floor level
in Figs. 6b and 6d, for the 802.11 network and the 802.15.4
network, respectively, have qualitatively similar perfor-
mance to the desk-level results shown in Figs. 6a and 6c.
Again, the 802.11 and 802.15.4 networks are consistent in
achieving the best performance by using the RSS readings
from each antenna at a given landmark location. Moreover,
we noticed that the CDFs of the single-antenna and the
averaging antenna cases at the floor level in the 802.11
network, Fig. 6b, only have slightly longer tails than those
at the desk level. On the other hand, the corresponding
CDFs in the 802.15.4 network, Fig. 6d, suffer much longer
tails. However, we observed that in both the 802.11 and
802.15.4 networks the CDFs of the multiple-antenna
nonaveraging cases do not present long tails. This is a
strong evidence that employing multiple antennas helps
smooth out the signal variability and, thus, reduces the
maximum localization errors.

Finally, Fig. 7 presents the localization errors using the
Gaussian data set for the 802.11 and 802.15.4 networks. We
observed consistent better performance under the cases of
multiple antennas. The performance of the 3-antenna-noavg
case using the Gaussian simulated data is even better than
using the real experimental data.

The above results in location accuracy show that when
using the approach of an interpolated signal map with grid
size smaller than the distance between two adjacent antennas
at a landmark location, each antenna is treated as a separate
landmark; the 3-antenna-noavg case has the best performance
and improves the localization accuracy over 70 percent.
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Fig. 6. ABP: localization error CDFs for networks 802.11 and 802.15.4.
(a) 802.11: Desk, Center; (b) 802.11: Floor; (c) 802.15.4: Desk, Center;
(d) 802.15.4: Floor.

Fig. 7. ABP: localization error CDFs when modeling RSS as a Gaussian
distribution. (a) 802.11; (b) 802.15.4.

(b) ABP

Hence, by using signal map interpolation, we achieved better
location accuracy improvement than using the raw finger-
prints in the signal map directly (as RADAR does).

3.3.3 Localization Stability

Fig. 8 shows that using multiple antennas, including the cases
of 2-antenna-noavg, 2-antenna-avg-plus-1, and 3-antenna-
noavg at a given location helps improve localization stability,
with the 3-antenna-noavg case providing the most stability
improvement. Notably, the total percentage of testing points,
under small-scale movements, localized back to the original
localization result (i.e., location estimation at the center)
increases from less than 5 percent for a single antenna to over
14 percent for the case of 3-antenna-noavg. Similar to RADAR,
this is an over 100 percent stability improvement. Further,
examining Fig. 8a in the 802.11 network, the stability distance
at the 50th percentile moves from 8 ft for the case of 1-antenna
to 2 ft for the 3-antenna- noavg case, resulting in a stability
improvement of 73 percent. We also observed over 70 percent
improvement for the 90th percentile. In the z-axis, as shown in
Fig. 8b, employing multiple antennas at a given location again
provides consistent improvement in localization stability.

Further, the results for the 802.15.4 network, presented in
Figs. 8c and 8d, confirm the same observation of stability
improvement as in the 802.11 network, although the localiza-
tion stability of the single-antenna and the multiple-antenna
averaging cases is slightly worse than in the 802.11 network.

3.4 Simple Point Matching

3.4.1 Algorithm

SPM also utilizes an interpolated signal map. The strategy
behind SPM is to find a set of tiles that fall within a
threshold of the RSS for each landmark independently, and
then return the tiles that form the intersection of each
landmark’s set. More formally, SPM first finds n sets of tiles,

one for each landmark j ¼ 1 . . .n, that “match” all finger-
prints Si ¼ ðsi1; . . . ; sinÞ for the object to be localized. The
matching tiles for each landmark j are found by adding an
expected “noise” level, �, to sij and then returning all the
floor tiles that fall within the expected threshold sij � �.
SPM then returns the area formed by intersecting all
matched tiles from the different landmark tile sets.

For the algorithm to be eager, i.e., to find the fewest high
probability tiles, it starts from a very low �. However, it then
runs the risk of returning no tiles when the intersection
among the landmarks is empty. Thus, on an empty
intersection, the algorithm additively increases �, i.e., it
tries �; 2� . . . until a nonzero set of tiles results.

3.4.2 Localization Accuracy

Fig. 9 presents the localization error CDFs of SPM for both the
802.11 network as well as the 802.15.4 network. Examining
Fig. 9a, the 3-antenna-noavg case achieves the best perfor-
mance, especially reducing the large localization errors when
the probability is greater than 0.8. The performance of the
multiple-antenna averaging cases is qualitatively worse than
the single-antenna case. Comparing to the 1-antenna case in
Fig. 9a, under the 3-antenna-noavg case we found that the
median error improves by 40 percent (moving from 5 ft to
3 ft) and the 90th percentile error improves by 50 percent
(moving from 10 ft to 5 ft). The results shown in Figs. 9c and
9d for the 802.15.4 network present consistent performance
improvement when using three antennas separately at a
given location.

Further, we observed similar performance improvement
in the corresponding error CDFs along the z-axis for both
the 802.11 and 802.15.4 network in Figs. 9b and 9d.
Moreover, the results in Fig. 10 indicate that modeling the
RSS as a Gaussian distribution provides qualitatively
similar performance to the real experimental data, with
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Fig. 8. ABP: localization stability for networks 802.11 and 802.15.4.
(a) 802.11: ðx; yÞ plane; (b) 802.11: z-axis; (c) 802.15.4: ðx; yÞ plane;
(d) 802.15.4: z-axis.

Fig. 9. SPM: localization error CDFs for networks 802.11 and 802.15.4.
(a) 802.11: Desk, Center; (b) 802.11: Floor; (c) 802.15.4: Desk, Center;
(d) 802.15.4: Floor.

(c) SPM

Figure 24: CDFs for localization in WSN [8].

The authors considered six antenna configurations. The configurations differ in the amount
of antennas of reference nodes taken into account, and the way the different antennas are
combined. Namely, combining can be done by either averaging RSS values for a reference
node or having a separate signal map per antenna of a reference node.

This thesis only considers the 1-antenna, 2-antenna, and 3-antenna configuration (respec-
tively comparable to 1-antenna, 2-antenna-avg and 3-antenna-avg in Figure 24). This is
because of practical reasons. The targeted hardware design for a blind node only consists
one ZigBee radio. An additional PCB with another (two) ZigBee radio(s) can be mounted,
but this additional PCB has not yet been designed. Besides, we consider a maximum of
one fingerprint database. This is also because of practical reasons. Namely, computation
power and storage space of an embedded device are limited.

Considering the single antenna configuration (e.g. 1-antenna in Figure 24), RADAR’s
median localization error (probability = 0.5) is 20ft (6.1m), and the 80th percentile error
of the localization has an error of < 30ft (9.1m). In contrast to RADAR, APM and SPM
perform better as can be concluded because of the steepness of Figure 24b and Figure 24c.
Namely, the 50th percentile error of both ABP and SPM is < 5ft (1.5m), and the 80th
percentile error is < 15ft (4.6m) and < 7ft (2.1m) respectively. SPM seems to perform
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the best among the three algorithms. Also, when averaging RSS measurements from two
(2-antenna-avg) or three antennas (3-antenna-avg), SPM performs the best.

Because RADAR is the foundation fingerprint matching algorithm and SPM is the best
performing algorithm according to Kleisouris et al., both algorithms are chosen for further
analysis in this section.

4.3.1 RADAR

The RADAR method used for this thesis is known as Gridded RADAR[6]. Gridded
RADAR assumes that there is an interpolated signal map for each reference node. Other
fashions of RADAR assume for example a small set of training points instead of an inter-
polated signal map, as Kleisouris et al. do. The fingerprint matching algorithm RADAR
originally comes from Bahl and Padmanabhan in [2]. The basic concept of the original
RADAR algorithm is that it searches for the fingerprint with the smallest euclidian dis-
tance in n-dimensional space, where n is the number of reference nodes. That is, it views a
fingerprint from the database as points in n-dimensional space, where each reference node
forms a dimension.

For a live fingerprint S = (s1, s2, . . . , si, ...) containing live RSS measurements, the euclid-
ian distance Ex,y to a fingerprint Fx,y = (f 1

x,y, f
2
x,y, . . . , f

i
x,y, . . . ) can be calculated using

Equation 14.

Ex,y =
√

(f 1
x,y − s1)2 + (f 2

x,y − s2)2 + · · ·+ (fnx,y − sn)2 (14)

For each fingerprint in the database, RADAR calculates Ex,y. The tiles of the fingerprints
with the least euclidian distance are returned by the algorithm. This means that if a
fingerprints in the database with less expected RSS values are favored, since there are less
dimensions which can increase the Ex,y.

Optional penalties can be given to missing RSS measurements in the measured finger-
print. For example, missing RSS measurements in the live fingerprint can be replaced by
a predefined value.

The running time of RADAR is proportional to the size of the database, since it only
iterates once through the fingerprint database. We experienced that the AME Sensor
Nodecan iterate through our database in les than 1.25sec, having 10000 fingerprints with
30 expected RSS values. Although the localization accuracy experienced by Kleisouris
et al. is not as desired, RADAR still remains a contender for further use in this thesis.
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4.3.2 SPM

SPM also utilizes signal maps. The strategy behind SPM is to find a set of tiles that fall
within a threshold (or match) of the live RSS measurement. This is done for each reference
node independently. Then the intersection I of the reference nodes sets is returned. Thus
SPM first creates n sets of tiles (one for each reference node). The matching tiles for a
reference node i are found by adding an expected “noise”, δ, to the expected RSS value
six,y (at a tile x, y) and then returning all tiles of fingerprints that fall within the expected
threshold six,y±δ. SPM then determines I. If I = ∅, then SPM is redone with an increased
δ; otherwise I is returned. The weight of returned tiles is inversely proportional to δ.

Because SPM is a recursive algorithm, it iterates at least once through the database. If a
certain δ does not give a localization outcome, the next iteration starts. Theoretically, this
can repeat until infinity. Limiting the number of recursive calls, creates the risk that the
algorithm does not produce a localization outcome. However, SPM’s localization accuracy
as shown in Figure 24c looks promising. Therefore SPM is also still a contender for further
use in this thesis.

4.3.3 Conclusion

Comparing RADAR and SPM based on localization accuracy, SPM outperforms RADAR.
However, the risk of SPM is that it does not give a localization outcome after a finite number
of iterations. Another drawback of SPM is the running time which can be significantly
larger than RADAR’s running time. Since both algorithms have their advantages and
disadvantages, there is not yet a choice made for one of them. The following chapter will
analyse accuracy of RADAR and SPM.
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5 Evaluation

This chapter evaluates the localization accuracy of the proposed localization scheme. The
evaluation is done using a benchmark routine under different conditions. The influence of
a rebuilding on signal maps has been explored.

5.1 Benchmarking

For benchmarking, training data has been collected throughout the AME building. Dur-
ing training the assumptions were as stated in Section 4.1. All RSS measurements were
collected carrying blind nodes at hip height, which was 1.10m. The evaluation of the local-
ization system is done offline. Several parameters of the system are investigated to verify
localization error. These parameters include matching algorithm, resolution of database,
offices / larger rooms, and multiradio configuration.

The following subsections describe the setup of the benchmarking and the localization
accuracies in different conditions.

The RADAR algorithm used in this chapter gives a penalty to missing measurements. A
missing RSS value in the live fingerprint is replaced by a value of -97dBm. For SPM, δ is
chosen to grow linearly, i.e., it tries 1, 2 . . . 10.

5.1.1 Setup

Training tracks have been walked in order to built fingerprint databases with different
resolutions. Benchmark tracks are similar to training tracks, but used for localization
instead of building a fingerprint database. Both training tracks and benchmark tracks were
walked using three Stick’s. Each Stick was logging RSS measurements to serial output, in
order to let the PC log them to harddisk.
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Figure 25: Training tracks walked at the first floor of AME’s building.

Figure 25 shows the building plan of AME’s first floor. In total 32 reference nodes are
mounted above the ceiling, indicated by red dots. Training tracks walked are indicated by
blue lines. As one can see, the contours of the offices along the right, the floor around the
stairwell, and the canteen (room 1.06) are visited during training. The larger room in the
upper left corner is trained along metal racks and a production line (both not illustrated
in Figure 25).

Benchmark tracks are walked along the offices, and larger rooms 1.02 and 1.06. This is done
since we think it is a good representation of the different rooms there are. The benchmark
tracks are indicated by light green and dark green lines. The light green lines represent
benchmark tracks along the offices. The dark green lines represent benchmark tracks for
larger rooms. Benchmark tracks are stored similar to training tracks. Thus start and end
location of each benchmark track is known. RSS measurements done during a benchmark
track are also linearly mapped to a position and to a time, similar to reference tracks (for
more information about training tracks refer to Section 4.2).

Company confidential - 38 -



Indoor localization using ZigBee August 18, 2011

The actual benchmarking is done a benchmark routine. The parameters for the benchmark
routine are the algorithm (RADAR or SPM), ∆t, the multiradio configuration (1-antenna,
2-antenna, or 3-antenna), the fingerprint database and the benchmark track. For the
2-antenna and 3-antenna multiradio configurations, RSS measurements from multiple ra-
dios are averaged. For this survey, we choose r = 100cm and ∆t = 2sec. Parameter ∆t
represents the size of the time-window, i.e. RSS measurements falling in the window are
combined to a fingerprint. The window moves over the RSS measurements of the bench-
mark track. The RSS measurements falling in each window are combined to a fingerprint.
For each window, the real location is determined to be on the line segment between be-
gin and end of the benchmark track. The real location is calculated proportional to the
window’s position with respect to length of the track. The euclidian distance in x and y
dimension between the real location and the outcome the location algorithm.

We want to get a single location to determine the localization error. But, the outcome of
a localization algorithm is not a single location but a set of tiles. This means we need to
postprocess the set of tiles into a single location. A way to postprocess the set of tiles is
to average the locations of the top k tiles. The centroids of the top k tiles returned by the
algorithm are then averaged proportional to their weight.
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Figure 26: CDF for different amounts of tiles averaged.

An investigation has been made which k would be suitable. A bunch of benchmark tracks
are combined in order to investigate a value for k. For k = 1, 5, 10 the benchmark routine
has been executed. The result can be seen in Figure 26. As one can see, the single top tile
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gives inaccurate location results, compared to the weighted averaged top five tiles and top
ten tiles. The drawback of the taking the top ten tiles is that locations along the edges
of the localization area can be averaged out (not visible in Figure 26). We have chosen to
average over the top five tiles, because the localization accuracy is similar to the average
of the top ten tiles, which is better then the localization accuracy of the top tile.

5.1.2 Initial benchmarking

The initial benchmarking is used to verify if improvements have positive effect. All bench-
mark tracks from Figure 25 are used for this initial benchmark. The versions of the
localization algorithms used are those described in Section 4.3. The errors for all local-
ization calculations in all windows in all benchmark tracks are combined in a CDF, see
Figure 27.
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Figure 27: CDF of RADAR and SPM, using r = 100cm.

In the 1-antenna configuration, SPM performs better than RADAR. Namely, the median
error (probability = 0.5) for SPM is < 2.7m, whereas the median error for RADAR is
< 2.8m. Also the 80th percentile, SPMs accuracy is < 5.8m against RADAR accuracy
of < 6.8m. In the 2-antenna configuration, the 50th percentile error is < 4.2m. From
then on, SPM prevails. In the 3-antenna configuration, the difference between RADAR
and SPM is even smaller. It can be stated that RADAR and SPM perform similar in
the 3-antenna configuration. The 50th percentile error is < 2.2m, and the 80th percentile
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error is < 3.6m. It was indeed expected that combining radios should indeed perform
better than the 1-antenna configuration. Considering the localization accuracy only, SPM
is preferred over RADAR.

The finding that SPM performs better than RADAR confirms the findings of Kleisouris
et al. However, we did not achieve a localization accuracy as good as theirs. An explanation
for this finding is that our setup differs to the setup of Kleisouris et al. For SPM, they
used a fingerprint database with smaller tiles of 10in x 5in (25.4cm x 12.7cm). Another
difference in setup is the amount of RSS measurements. Their server waits for at least 350
RSS values for each antenna in order to construct a fingerprint. In our setup, it can be that
there is just one or none RSS measurement in the live fingerprint. A third difference in the
setups is that we recorded the begin and end location of training and benchmark tracks
by clicking on a map on a PC. The inaccuracy of clicking of this map is not compensated.
In their setup, they used nine fixed accurate placements at each position to benchmark
the system. Besides, we averaged the top five locations whereas Kleisouris et al. used
the top weighted location. Moreover, for RADAR they used a set of training fingerprints
at precisely known locations, whereas we used interpolated fingerprints along the whole
localization site. This means that our database contains fingerprints for each individual
location, whereas their’s did not. This can be the explanation why their results for SPM
in 1-antenna are better (80th percentile error of 2.1m) than our results (5.8m).

5.1.3 Office area versus larger rooms

The CDF shown in the previous section (Figure 27) was based on all benchmark tracks.
This section distinguishes the light green tracks (denoted by office area) and the dark
green tracks (denoted by larger rooms). We expect the localization accuracy in larger
rooms to be less accurate, because training in larger areas is relative less intensive than in
the office area. The localization accuracy in office area and larger rooms is investigated for
all 1-antenna, 2-antenna, and 3-antenna multiradio configurations.
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Figure 28: CDFs of RADAR, office area versus larger rooms, r = 100cm.

As we can see in Figure 28, all 1-antenna, 2-antenna, and 3-antenna perform better in
the office area than in the larger rooms. The 80th percentile error for 1-antenna is almost
< 7.5m in the larger rooms, whereas it is only < 5.5m in the office area (36 % more
accurate). For the 2-antenna configuration we also can see that in the office environment
more accuracy can be achieved than in the larger rooms, < 5.0m compared to < 3.5m for
the 80th percentile error (43 % more accurate). Finally, the 3-antenna configuration has
similar behavior. The 80th percentile error of the larger rooms is < 4.5m, while it is only
< 3.0m for the office environment (50 % more accurate). Thus, the 80th percentile error
for the office areas is on average 43 % more accurate than in larger rooms.
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Figure 29: CDFs of SPM, office area versus larger rooms.

For SPM (Figure 29), similar conclusions can be made. The 80th percentile error of 1-
antenna is < 5.0m in the office area, while it is < 6.5m in the larger rooms (30 % more
accurate). For 2-antenna it also holds that office area has a better accuracy (< 4.0m) than
in the larger rooms (< 5.0m, 25% more accurate). The 3-antenna performs with a 80th
percentile error of < 3.0m in the office area, compared to < 5.0m in the larger rooms (67
% more accurate). Thus, the 80th percentile error for the office areas is on average 41 %
more accurate than in larger rooms.

Both SPM and RADAR have better localization accuracy in all three antenna configu-
rations. For RADAR and SPM respectively, the 80th percentile localization error in the
office environment is on average 43 % and 41 % better than in the larger rooms (averaged
of the three radio combinations). This means that whenever a localization site is trained
more intensively, a better localization accuracy can be achieved.

5.1.4 Signal map resolution

In the initial benchmarking, we shown that the localization algorithm SPM performs similar
to or better than RADAR in all 1-antenna, 2-antenna, and 3-antenna configurations.
Nevertheless, it has been shown by Kleisouris et al. that SPM can perform better. One of
the differences between the setups of Kleisouris et al. and the setup used for this thesis,
is the size of tiles. The resolution of the fingerprint database is obviously influencing the
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localization accuracy. Using our benchmark routine, we benchmarked different fingerprint
databases with resolutions of 40cm, 100cm, 200cm, 300cm, 400cm, 500cm and 1000cm, in
the 1-antenna configuration. The same benchmark is done as in the previous cases, only
the database’s resolution differs, see Figure 30 and Figure 31.
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Figure 30: CDFs of RADAR in different resolutions, using 1-antenna configuration.

Considering Figure 30, we can see that up to the 50th percentile, the databases with
resolution of 40cm, 100cm and 200cm have the smallest localization errors. From 50th
percentile to 95th percentile, the database with resolution of 200cm performs best.

For RADAR using 1-antenna, a database with resolution of 200cm is preferred. For SPM,
see Figure 31, the databases with resolution of 40cm, 100cm, and 200cm perform the
best.
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Figure 31: CDFs of SPM in different resolutions, using 1-antenna configuration.

It can be stated that the database resolution has influence on the localization error. How-
ever, both RADAR and SPM perform good with the database with a resolution of 200cm.

Since we are averaging the top five tiles, we can explain by means of Figure 32 that a
too large tile size results in an inaccurate location estimate. In this fictive case the blind
node’s location is assumed to be at the black dot. Furthermore, we consider a little tile size
represented by the red tiles and a large tile size represented by the blue tiles. Note that
the outcome of the matching algorithm is assumed to be similar for both the red and blue
configuration (since both red and blue tiles surround the blind node similarly). For each
color, every weighing of the centroids of the five tiles results in a location estimate which
is inside the enclosed square of the tiles of that color. Since the blue tiles are larger, most
possible outcomes (of the weighing of the centroids of the blue tiles) are clearly further
away from the real location of the blind node than in the red case. Moreover, the maximal
possible localization error made by either red or blue is represented by green dots. It is
clearly visible that the maximal error of weighing of the blue tiles is bigger. This explains
why a tile size of 1000cm× 1000cm performs worse than a tile size of 300cm× 300cm.
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Figure 32: Too big tiles are more inaccurate.

It can also be explained why too small tile sizes give inaccurate localization estimates.
Namely, a fingerprint database with a resolution of 200cm, has let’s say k fingerprints
in the fingerprint database. If we concern the same localization area, then a fingerprint
database with a resolution of 40cm has thus k · (200/40)2 = k · 25 fingerprints in the
database. Whenever a database is larger, the chance is bigger that the 5 tiles selected
are worse since there are more options in the database. Therefore too small tile sizes
(40cm) cause bad localization accuracy. We think the optimum tile size also depends on
the density of RSS training points. Calculating signal maps is based on training points
distributed over the localization area. If the density of training points is higher, then the
r of the fingerprint database can be smaller.

5.1.5 Adapting RADAR and SPM

The benchmark of RADAR and SPM has shown that the achieved localization accuracy is
not as good as Kleisouris et al. localization. Differences are described in the Section 5.1.1.
In order to reduce the localization error, the following reasoning gives an optimization.

It is known from Chapter 3, that higher RSS values are more accurate than lower RSS
values. This can be taken into account by modifying the algorithm. For RADAR, this
is done by multiplying the error of each RSS value Ex,y with a factor. The factor is a
function of the RSS value measured. The function is proportional to the theoretical RSS
to distance correlation, see Figure 33a.
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Figure 33: Functions improving RADAR and SPM.

A similar factor for SPM is determined as illustrated by Figure 33b. Using experimental
guesses for curve fitting in Microsoft Excel, the function is obtained. Again, lower RSS
values get a larger δ. Note that the function is slightly flatter than the function for
RADAR. This is because the factor for SPM is multiplied by the iteration number. If the
factor could reach zero, then the δ can become zero which would mean that almost no tiles
are selected.

Using the factors for RADAR and SPM in the way described, is applied and benchmarked
in the same way as in previous benchmarks. The benchmark is done for the 1-antenna and
3-antenna configurations. The resulting CDFs are shown by Figure 34.
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Figure 34: CDFs for improved RADAR and SPM, using r = 100cm.

As we can see, the improvements indeed decrease the localization error for the 1-antenna
configuration. For RADAR, the 80th percentile error reduced from < 7m to < 6m. SPM’s
localization accuracy is also improved. The 80th percentile error reduced from < 6m to
< 5.5m. For the 3-antenna configuration, it cannot be stated that RADAR’s or SPM’s
localization accuracy improved. RADAR’s CDF did not improve or deteriorate. Moreover,
the improvement for SPM seems to have negative influence. A possible explanation for
the fact that the improvement does not work out for 3-antenna is that RSS measurements
are averaged among the antennas. Therefore the fingerprint which is compared to the
database in the 3-antenna configuration is more accurate than the fingerprint of the 1-
antenna configuration, which could imply that relaxing requirements for matching (e.g.
the improvement) does not help anymore.

5.2 Maintenance

Since applicability is a key indicator for practical use, it is investigated how a rebuilding
affects signal maps of reference nodes. Obviously, if RSS measurements do not reproduce
anymore, the localization system will reasonably fail to operate. Changes in the localization
area can cause that RSS measurements do not reproduce anymore.

A case study is done how a rebuilding changes the signal map of a reference node. Then,
it is reasoned how changes in the signal map can be detected. If detected, the installation
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engineer will have to cope with a retraining of the localization site.

On forehand, one can imagine that the a rebuilding changes the signal power distribution
of reference nodes. During the thesis phase, there was a rebuilding at AME.

Up

Up

1.06

Up

1.02

A

B

Figure 35: Blue shaded walls and roofs have changed during the rebuilding.

For this section, only room 1.06, the offices along the right and the corridors are consid-
ered.

Figure 35 shows the parts of the building that were rebuilt. Room 1.06, the canteen, was
changed to a lab environment with Electrostatic Discharge (ESD) floor. For safety reasons,
this required construction of new walls, indicated by surrounding blue lines. A new canteen
is placed where the terrace at the first floor was located. This means that this roof terrace
was roofed and walls were placed. The new canteen is depicted by the blue square in the
figure.

For two reference nodes A and B, it is investigated how the signal maps have changed due
to the rebuilding. Obviously, the orientation and position of A and B is equal before and
after rebuilding. Before and after the rebuilding took place, signal maps are built for A
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and B. The signal map from before rebuilding is subtracted from the signal map after
rebuilding. The signal maps built before rebuilding were built using RSS measurements
from a Stick, and the signal maps built after rebuilding were built using RSS measurements
from the target hardware, called the AME Sensor Node.

Node A was placed at (28.6m, 42.6m) at a height of 2.7m and a node B was placed at
(43.3m, 1.6m) at a height of 2.7m, as depicted by Figure 35. Node A is located tens of
meters from the rebuilding, whereas node B is located exactly in the part of the building
which was rebuilt. The expectation is that the signal map of node A was not too much
influenced by the rebuilding, and that the signal map of node B was emphatically influenced
by the rebuilding.

The result of subtracting the signal map from before the rebuilding from the signal map
from after rebuilding, is drawn in Figure 37 and Figure 38. For both figures, the color
mapping depicted by Figure 36 applies. Thus, a green or yellow color represents the case
that the RSS value is higher after rebuilding. The orange color represents that there is not
too much difference after rebuilding. The red color indicates that the RSS value before
rebuilding is higher than after rebuilding.

Figure 36: Color mapping for Figure 37 and Figure 38.
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Figure 37: Difference of signal map of node A.

Figure 37 shows the difference of signal maps of reference node A. As one can see, the
yellow color dominates, which means that the RSS values expected after rebuilding are
higher. This comes due to the fact that the training after the rebuilding was done with
an AME Sensor Node which has different hardware than the Stick. Namely, the AME
Sensor Node is equipped with a more sensitive ZigBee radio than the Stick. Besides the
yellow color, we can see few other differences, indicted by red and green spots. This can
be explained by movements in the localization site. Namely, all employees are rearranged
over the offices during rebuilding. This rearrangement includes movements of small office
cupboards. Since difference of the signal maps does not show high variation, we think this
does not indicate big changes in the localization site.
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Figure 38: Difference of signal map of node B.

Considering the difference of signal maps of node B (Figure 38), we see more variation in
the difference of signal maps from before and after the rebuilding. One can see meshes
of orange and yellow, and a number of red and green spots. This certainly indicates that
there have been big changes. Indeed, the rebuilding affects the part of signal map where
rebuilding took place, but also the offices and other surrounding area.

Concluding this section, rebuilding strongly influences signal maps of neighboring nodes.
This means that whenever a big change in the localization area takes place, the signal maps
of these reference nodes should be rebuilt. This can be done by retraining. The question is
when to decide that a new training is desired. The answer to this question is left as future
work.
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5.3 Conclusion

The proposed localization system is evaluated by benchmark routine. Based on practical
RSS measurements, the system is benchmarked. The metrics of interest are the resolution
of the database (since this is lineair in the size of the database), the multiradio configura-
tion, and the corresponding localization accuracy.

It was shown that the 1-antenna combination is outperformed by 2-antenna and 3-antenna,
thus multiradio is preferred. Including basic improvements, the RADAR matching algo-
rithm performs with an 80th percentile error of < 6m, for the 1-antenna configuration.
SPM performs better, having an 80th percentile error of < 5m. Combining three Zig-
Bee radios (3-antenna configuration) gives a better localization accuracy. Namely, using
RADAR or SPM gives an 80th percentile error of < 4m.

When only localization accuracy is the metric of interest, SPM is preferred. However, SPM
is a recursive algorithm which implies that the fingerprint database can be iterated multiple
times before any localization result is there. In contrast to SPM, RADAR guarantees
that the database is iterated exactly once (which takes 1.25sec in our basic experiment,
mentioned in Section 4.3.1). If SPM needs let’s say three iterations, then the running time
of SPM would be 1.25 × 3 = 3.75sec, which is not realtime in our opinion. Based on
this guarantee and the fact that the implementation of RADAR is slightly easier (since it
does not have to maintain sets of tiles), RADAR is chosen for first implementation of the
embedded software of the AME Sensor Node.

A trade-off between localization accuracy and running time can be made. For 1-antenna
RADAR is as good as SPM, but since we are committed to running time and having a
localization result, we prefer RADAR.
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6 Discussion

The goal of this thesis was to present a scalable indoor location tracking system with room-
level accuracy (3m). The term scalable was in the context of number of blind nodes. The-
oretically, infinitively many blind nodes can be used by the proposed localization scheme.
A blind node only “listens” to reference nodes, thus no network load is added when a
blind node is localizing. The goal of 3m localization accuracy is achieved for the 75th per-
centile error, using the 3-antenna configuration of either SPM or RADAR (see Figure 34
in Section 5.1.5). However, this goal is not yet met for the AME Sensor Node.

To adopt the system in an existing AME ZigBee network, we only have to update the
embedded software of the existing nodes. All AME ZigBee products can be used as refer-
ence node, regardless of their signal power distribution. Both adoptability (Requirement 2
(Adoptability of existing AME ZigBee devices)) and embedded localization (Requirement 3
(Scalability in nr. of blind nodes) and Requirement 6 (Calculations by blind node)) are
completely fulfilled.

The blind node’s environmental knowledge is minimal, i.e. it only knows expected signal
strengths along the localization site (Requirement 4 (Blind node has no environmental
knowledge)). Even the location of reference nodes is not known by the blind node.

The blind node’s hardware is based on the AME Sensor Node. It is perfect for person
or object tracking since its dimensions are limited (fulfilling Requirement 1 (Suitable for
realtime person tracking)). It has been shown that a rebuilding affects signal maps of
reference nodes. The signal maps of reference nodes near the rebuilding are highly affected.
The signal maps of reference nodes tens of meters distanced from the rebuilding.

The localization scheme has been completed and benchmarked. The postprocessing can
be extended in the future. One can easily let the system react on situations for specific
locations (Requirement 5 (Enhancements for specific location)).

6.1 Contributions

The localization system presented in this thesis differs from other WSN localization tech-
niques in a couple of ways.

At first, the scalability of the system is a point to highlight. Where other WSN based
localization system use a central server [2], in the presented solution blind nodes can
localize themselves without sending any message to the network. A blind node only needs
to “listen” to the network in order to calculate its location. This means that any number
of blind nodes can be used to localize itself. This is just like the GPS system, where
infinitively many blind nodes (car navigation, aircrafts, tracking devices etcetera) can
localize themselves without sending messages back to the GPS satellites.
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Adoptability is also a key property of the proposed system. In order to use an existing
AME ZigBee device as a reference node, the device only needs to periodically send “beacon
messages”. A beacon message is a 1-hop beacon message sent at the MAC layer of the OSI
model, which is beneath the network layer. This implies that a blind node can listen to
beacon messages from reference nodes of other networks. Besides having a static location,
sending messages is the only assumption made for existing AME ZigBee devices to operate
as reference node. Note that the size, application and even network of reference devices can
be arbitrary. Only a software update is needed in order to let an arbitrary AME ZigBee
device function as a reference node.

The localization accuracy is improvable without changing reference nodes. Usual local-
ization techniques require adjustments of hardware or software of reference nodes. The
localization system proposed by this thesis can be improved by only adding one or more
ZigBee radios to the blind node. The hardware design of the blind node enables support
for mounting an additional printed circuit board (PCB), where an additional ZigBee radio
can be connected to. In case of adding two ZigBee radios to a blind node, the median
localization accuracy can increase from 3m to 2m. This is when using an adapted version
of the SPM algorithm. Also, over-the-air updates of embedded software of a blind node
are possible, which gives possibility to improve the accuracy later on.

In short, the proposed system offers a scalable solution to indoor localization which can be
adopted in existing AME ZigBee networks.

6.2 Future work

It has been shown that a rebuilding affects the signal maps of reference nodes. However, the
influence of changes in the localization site are not fully explored. Namely, the Achilles heel
of the system is that major changes of the localization area can cause the system to fail. An
interesting topic is the maintenance of the fingerprint database. Industrial environments
can change frequently, which implies that a retraining must be done. The question is to
what extend a rebuilding or change in localization site will affect the localization accuracy,
and moreover how this can be detected. An idea is that (some) reference nodes are getting
functionality to detect major changes in the signal maps. For example, if a reference node
also measures RSS values from neighboring nodes, it can verify whether RSS values vary
over time. If (a group of) reference nodes has detected that there is significant change in
RSS values, a retraining should be done.

Improving localization accuracy can also be investigated. As Kleisouris et al. show, ac-
curacy can be improved by assuming a gaussian distribution of RSS measurements over
the localization site. Besides, speeding up the sendrate of reference nodes sending beacons
will reasonably lead to better accuracy. A blind node then will receive more RSS values,
averaging out errors. The blind node which is currently targeted to be an AME Sensor
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Node, is equipped with an accelerometer. This accelerometer can be used for postprocess-
ing. The mathematical derivation of acceleration is speed and can be derived to distance.
Then, the location calculation can be enhanced by taking distance into account.
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