EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Replenishment strategy for supply chain collaboration under pull control policy in the fast
moving consumer goods industry

Ye, Y.

Award date:
2012

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student

theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain


https://research.tue.nl/en/studentTheses/fcfbe43f-2d25-4b77-a02e-e38dd328bbaa

Eindhoven, August 2012

Replenishment Strategy for Supply
Chain Collaboration under Pull
Control Policy in the Fast Moving
Consumer Goods Industry

by
Ying Ye

BSc Industrial Engineering and Management Science — TU/e 2011
Student identity number 0614317

in partial fulfilment of the requirements for the degree of

Master of Science
in Operations Management and Logistics

Supervisors:

dr. ir. H.P.G. van Ooijen, TU/e, OPAC

dr. ir. R.A.C.M. Broekmeulen, TU/e, OPAC

D. Morgan, Mars Nederland B.V.

H.C.L. Zwinkels-Janssen, Mars Nederland B.V.



TUE. School of Industrial Engineering.
Series Master Theses Operations Management and Logistics

Subject headings: replenishment, supply chain collaboration, pull, multi echelon, base stock
policy, Bullwhip effect, point of sale

II



Abstract

In this thesis research is conducted to analyse replenishment strategies for the company
Mars Nederland B.V. in collaboration with its customer Jumbo in order to eliminate the
Bullwhip effect. First, an analysis is made for the current way of pull replenishment
within Mars. Using three types of available data (supplier delivery, retailer orders, and
point of sale data), the possibilities of replenishment improvements are researched. This
study gives insight to the multi echelon replenishment policy with service level
constraint. Besides that, this policy relates to a collaboration model between Mars and
its customers in order to promote future collaborations.
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Management Summary

Mars Nederland B.V. is part of Mars Incorporated, one of the most prominent producers
of chocolates, confectionery, food, and pet care products in the world. For Mars
Nederland B.V., where this research is performed, stock and lead-time reduction are
important issues. This is directly linked to freshness as Mars strives to have their
products consumed at an optimal age of the product. Moreover, Mars is always looking
for new ways to improve its current processes.

This master thesis elaborates on a previous project performed at Mars, which was the
so-called pull project. Within this pull project Mars started piloting its replenishment
based on a pull strategy for the production line X. This strategy is based on an “if
something goes out, it must be replaced” principle on a first in first out basis, mirroring
the actual demand having the ultimate goal of removing the Bullwhip effect.

The current operations of the pull project are translated into working with Kanban
cards. These Kanban cards results into a steady work in process. All demands are
translated directly to production, and productions will be scheduled accordingly taking
into account the manufacturing frequency index and the Kanban urgency levels. For
exceptional processes such as promotions, forecasting is still used to indicate the level of
needed stock building.

The next step in the pull project is the involvement of Mars’ customers. Having already a
supply chain collaboration between Mars and Jumbo, the data from Mars and Jumbo are
analysed. Three types of data, Mars delivery, Jumbo retailer orders, and point of sale
(POS) data are analysed.
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It is noticeable that as demand is measured closer to the end consumer, the data appears
to be more stable. The effects of the different types of demand are caused by the
Bullwhip effect with the presence of the following four symptoms.

e Demand signal processing
If demand increases, firms order more in anticipation of further increases,
thereby communicating an artificially high level of demand.

e Rationing game
There is, or might be, a shortage so a firm orders more than the actual forecast
in the hope of receiving a larger share of the items in short supply

e Order batching
Fixed cost at one location lead to batching of orders

e Manufacturer price variation
Price reductions encourage forward buying of bulk orders

The variability of the different data differs from 2 to 15 times. More variability means a
higher stock level is needed in order to attain a certain service level. The different levels
of data are compared and substantial reductions varying from 21.4% up till 41.2% in
stock reduction can be reached when Mars uses the POS data. However, the focused
should shift to the possibilities of a supply chain wide optimization, thus with the
inclusion of Jumbo the system of replenishment can be viewed as a multi echelon base
stock system.

L2

Quantitative analyses indicate that the local optimization of the different links within the
supply chain results in suboptimality compared to having the whole supply chain in
scope. Although the base stock policy requires more base stock at the Mars warehouse
(from a supply chain wide perspective) than the current pull project; it is still an
improvement compared to the original push situation. The stock level for the total
supply chain is reduced from 11% to even 68% using POS data. For the Jumbo
warehouse, large reductions are obtained when complying with the base stock policy.
Moreover, a part of the collaboration between Mars and Jumbo is to order in full pallet
(layers) and trucks. The order quantity restriction is shown to increase the needed base
stock level and a trade-off should be made against the benefits.

Considering the lead-time analysis, it is shown that the biggest reduction in base stock is
obtained when lead-time reduction can be obtained from the Mars warehouse to the
customer warehouse. Next, the assumption of the holding cost for Jumbo warehouse and
the demand distribution for base stock computation are relaxed. It is shown that
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variation in the holding cost for Jumbo has little to no effect on the required base stock
level. However, larger differences appear when comparing the assumption of Normal
distribution with Erlang distribution. When the base stock levels are considered
throughout the supply chain, it is noticed that the data with lower standard deviation
exert less difference between the two distributions.

For the analysis of products in a push replenishment situation, a test case is taken to
analyse on the Product B. It appears that for this particular product, the delivery data
from Mars results in the lowest needed base stock levels with a total base stock level of
433.5 cases compared to 458 from the current total needed stock. However, the data of
delivery from Mars shows substantial smaller averages than the retailer order and POS
data, suggesting out of stock may have occurred. The reduction in variability in demand
while moving to the use of POS data is still present. With the addition of other customers
the needed base stock could be lowered as variability could be pooled.

Finally, the design of the supply chain collaboration model is given where a central
independent entity is suggested that collects and analyses the data and distributes it to
the links within the supply chain that should replenish according in a base stock manner.

Mid/long term rolling planning tool
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An important addition, in order to create the optimal flow, is a central electronic data
interchange system that distributes data to every link of the supply chain as soon as it is
available or measured, most preferable in real time. In order to implement this data for
real time reactiveness from the links within the supply chain, a central data sharing
system is required where a central planner knows information for the entire system.
Thus, the view is not on each company separately. Instead, the supply chain is seen as a
one single organization. According to the pull principle as well as the base stock policy,
the demanded amount at the next link (preferably from the end consumer) is then
replenished. This results into a smaller amount of stock needed as it will only need to
cover the replenishment time and a certain variance instead of the forecasted demand.
For the mid/long term planning as well as the promotions agreed with the sales team,
data still needs to be transferred to the mid/long term planning tool in order to forecast
periods where stock building is required.
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Introduction

This report is a result of a project conducted at Mars Netherlands B.V. in partial
fulfilment of the master’s program Operations Management and Logistics at Eindhoven
University of Technology.

The structure of this report is constituted as follows. Chapter 1 illustrates the
description of the company and the department at which the project is conducted. This
research is part of two ongoing projects within Mars. Chapter 2 explains the description
of the two projects, the problem statement and the proposed research questions.

Chapter 3 contains a description of the current mathematical method within Mars with
regards to the pull project and its exception process. Chapter 4 contains the data
analysis of the different data levels obtained. Comparisons are made within the current
process.

Chapter 5 takes the view of the supply chain in greater perspective and gives the
heuristics in reviewing the multi echelon system and thus providing the new
replenishment model. Chapter 6 will provide results for the calculations and the possible
improvements are reviewed.

In chapter 7, sensitivity and scenario analyses are made in order to check certain
assumptions made. Chapter 8 discusses possible extensions of this project to other
products and collaborations with more retailers. Finally in chapter 9 the conclusion is
given together with the recommendations for Mars Netherlands as well as the
recommendations for future research.



1. Company overview

In this chapter, an introduction is given to the company Mars. First, a description of Mars
in the Netherlands is given in chapter 1.1. Secondly, the Dutch market will be discussed
in chapter 1.2. The inbound logistics department will be explained in chapter 1.3 and
finally the production planning will be briefly discussed in chapter 1.4.

1.1. Mars Nederland B.V.
Mars Nederland B.V. is part of Mars Incorporated, one of the most prominent producers
of chocolates, confectionery, food, and pet care products in the world. This family-owned
company generates more than 28 billion dollars in sales every year. Mars is a global
leader in chocolate, selling seven of the world's 20 best selling chocolate snacks.
Furthermore, Mars has been feeding pets since 1935 and is a leading provider in pet
care. The Mars Food business segment produces rice, entrees, sauces and condiments
under a number of well-known brand names. Wrigley is a leading manufacturer and
marketer of chewing gum and a leader in confections. As one of the leading food
manufacturers in the world, Mars has a significant international presence in more than
70 countries and has around 70,000 employees. For a list of Mars brands see appendix I.

Mars operates according to The Five Principles of Mars: Quality, Responsibility,
Mutuality, Efficiency, and Freedom. It gives purpose and direction to business and
makes it unique as a company.

In The Netherlands, more than 1450 associates secure the success of Mars: 1200
associates in Veghel and 250 associates in Oud-Beijerland. The Veghel and Oud-
Beijerland factories in the Netherlands enjoy success because of their modern and
efficient production processes.

The town of Veghel in the Noord-Brabant region is home to one of the biggest chocolate-
producing factories in the world. Here, Mars produces chocolates for the brands Mars,
Bounty, Twix, Snickers, Milky Way, Maltesers, Celebrations, and Mars Planets.

The factory in Veghel not only produces for the Dutch market, it also provides many
other Mars factories with semi-finished products such as chocolate and peanuts. Mars
Nederland B.V. has three types of distribution channels; grocery, out of home, and non-
food retail. The grocery channels entails supermarkets, the biggest customers are Albert
Heijn, Jumbo (with C1000), SuperUnie, Sperwer, and DetailResult. The out of home
channels consists of all customers that make sure that chocolates are provided in places
out of home. No direct delivery is provided to all sport canteens, gas stations and such.
Instead, the products are delivered to wholesalers. The biggest clients within this
channel are Lekkerland, Sligro, Makro, and DeliXL The third channel is the non-food
retail. This channel entails retailers that do not belong in the first two channels. The
main clients are Kruidvat and Action.



Within Mars Europe, the Veghel factory has occupied a leading position for years as one
of the most efficient production sites for chocolate products. It ranks as one of the most
efficient production plants for chocolate bars. Veghel is an example for other factories;
associates from the plant are often involved in the start-up of new Mars factories
elsewhere.

1.2. Dutch market (Veghel)
The headquarter for the marketing and sales of Mars snack food and pet care in The
Netherlands is also located in Veghel. From here Mars sells, besides the chocolates it
produces, M&M's, Dove, and Balisto. The petcare brands are Pedigree, Frolic, and Cesar
for dogs; Whiskas, Sheba, Kitekat, Catsan and Perfect Fit for cats.

1.3.Inbound Logistics Department
The inbound logistics department is responsible for the daily availability of products to
its customers. It captures the needed demand by demand forecasting and informs the
production department about these forecasts. The demand planners use an in house
forecasting program called Apollo Demand, which uses a nationwide base level. Inbound
logistics operates in close coordination with the sales and marketing department. This is
to ensure the availability of products during promotions and listings and delistings of
products.

1.4.Production (planning)
Within the factory of the Mars plant there are 11 production lines (Appendix II). Once
the forecasted demand from inbound logistics is available, it will be send to the
production planner. The production planner will make a planning requirement that will
be send to the scheduler that plans the weekly production shifts of the production lines.



2. Description of the problem

In order to explain the aim of the research project, first the pull project history will be
described in chapter 2.1. Next, the collaboration between Mars and Jumbo will be
described in chapter 2.2. In chapter 2.3 and 2.4, respectively the scope of the problem
and the expansion of the scope of the current project will be given.

2.1. Pull project history
This master thesis elaborates on a previous project performed at Mars, which was the
so-called pull project. Within this pull project Mars started piloting its replenishment
based on a pull strategy for production line X. This strategy is based on an “if something
goes out, it must be replaced” principle on a first in first out basis, mirroring the actual
demand. The volume depends on the demand and the replenishment time.

The goal of the initial project was to define and implement a pull system for six items of
product group A for the Dutch and German market. One of the focus points of pull was to
lower the Bullwhip effect in the supply chain by taking out the human behaviour
influencing (amplifying) the demand planning. The key performance indicators of the
project were:

e C(Cash in stock

e Pipeline stock

e Casefill

e Manufacturing Frequency Index (MFI)

The pilot has been run with the following scope (Figure 1).

Market Customer

[
O : o
Suppliers Production Delivel‘y
I WH** WH**
I .
]
|

Market WH** = warehouse Mars

Figure 1 Scope of the pull project

This scope includes a part of production planning as the way lead time is determined is
dependent on the planning of production. The pull project has influence on production
planning, as manufacturing frequencies are checked and emergency runs can be
enforced when a shortage might occur. This will distort the normal cycle of production
and requires the flexibility of the production line.



The focus was on the physical and the information flow of the seven Product A items of
production line X in Veghel. No focus was laid on the performance improvements of
current production line X and/or suppliers or on related implementation of other lean
tools. The pilot pull project is run with the following products (Table 1) on production
line X. The distinction in products is based on different sizes and different way of
packaging.

Table 1 Pull Product A products

Pull pilot items line X

NO UL WN =

In order to implement the pull project, an electronic Kanban system was used in the
pilot for several different packaging of Product A. This electronic Kanban system uses an
Excel file to keep track of the stock instead of physical cards. In the Excel file the stock
and production were kept up to date. There are three coloured regions that indicates
how far down the stock level is. The coloured Kanban levels are illustrated per product
and calculated with the average demand during lead-time and the days needed to
replenish a certain product. This will be explained in more detail in chapter4.

This Kanban system is not exactly the same as the traditional Kanban principle, where
after physical removal of one product, this removal is communicated after which the
production of a new product of the same type is started. Instead, the stock level at the
market warehouse is sent through every day and adjustments on the stock level are
made accordingly. From the Kanban principle this amount is made. However, the
Kanban method from Mars is not completely driven on pull. The in house forecasting
system Apollo Demand is used to forecast a certain demand. When this forecast deviates
from the base line (above a certain standard deviation) for two consecutive weeks due
to, among others, promotions and introductions, the Kanban levels are adjusted. This
will lead to an adjustment of products in the pipeline to cope with this uplift (or
downfall). For example, consider the case where the average demand is 100,000 cases
per period. Derived from forecasting there are two consecutive periods of demand of
130,000 cases. Therefore this uplift will be adjusted in the number of Kanbans. Thus,
more stock will need to be within the pipeline to cover the uplift in demand. This
situation can be seen as a hybrid kind of Kanban system.

After phase 1 (using physical Kanban cards) and 2 (using electronic Kanban system), the
key performance indicators were measured in order to test whether the transition to the
pull project had an impact. Strong decreases in stock in cash (-26%) and pipeline stock
(-30%) in the first phase were observed. In the second phase, relatively less reduction
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has been observed due to the improvements made earlier in phase 1 (-15% for stock in
cash and -22% for pipeline stock).

2.2. Project History Mars & Jumbo
At the second half of 2011, Mars and Jumbo started a project in order to create the value
chain of the future. Both Mars and Jumbo have stakes in shortening the supply chain and
the reduction of stock. The pilot of the project is on Collaborative Planning and
Forecasting in order to prove the benefits. This collaboration initiative is funded by
Brabants Ontwikkelings Maatschappij (BOM) and is led by the consultancy firm Eye On.

Within the project the emphasis is laid on four aspects; planning together, order &
delivery, value chain dashboard, and a pilot in flowcasting. These four aspects will be
briefly explained. For the aspect of planning together, Mars and Jumbo have made
agreements in having a planning of information sharing and ordering. A standardized
sheet is created for both Mars and Jumbo in order to check up on the progress of
ordering. The promotions, listing (introductions of new products), and delisting
(removals of products) of products are also shared several weeks ahead.

The order & delivery aspect is based on the commitment from both parties to have
faster delivery to the shelf. Currently, Mars is delivering products to Jumbo in two
working days because orders of different sizes (parts of a pallet) are made and an order
does not always contain a full truck. The idea is proposed that if Jumbo accepts to order
full pallets and full truckloads from Mars, Mars could deliver within one working day.

The third aspect is the value chain dashboard. The performance information between
Mars and Jumbo is kept in this value chain dashboard to provide insight and keep track
on each other’s performances. At the moment the case fill, on time delivery, and on shelf
performance (out of stocks based on actual out of stock and stock in transit) can be
improved.

The last aspect is the pilot flowcasting. The goal of this part is to kill the bullwhip effect
by planning together. The current situation is that each player in the supply chain makes
its own forecasting as information from each step is passed back into the supply chain
(Figure 2).



1,y )83 (
MARS S ——

[ Gooi= JHNNNNN oo JENN cooos 2

Figure 2 Current forecasting process Mars & Jumbo

The proposed improvement is that information should be shared throughout the supply
chain and the demand can be forecasted accordingly (Figure 3).

Calculate Consumer
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Figure 3 Improved forecasting process Mars & Jumbo

Within the flowcasting project there are many factors taken into account in order to
make the best prediction. Consultancy firm Eye On made a forecasting tool based on
Jumbo’s point of sale data. Moreover, this tool is created with input of promotional
actions and many other parameters. This resulted in a significantly better forecasting for
sales by Jumbo.

In order for Mars to take advantage of the better forecasting using point of sale data,
Jumbo has to keep ordering the exact numbers forecasted and Mars should also stick to
producing this amount for Jumbo. However, because of human judgment and the doubt



that Mars cannot reliably meet its targets regarding case fill, Jumbo orders more than
needed. The planners at Mars who anticipate uplift in demand also amplify these orders.

2.3. Scope of problem
Within the current pull project at Mars, besides the aspects given in chapter 2.2, it is
interesting to extend the scope, including retailer’s data and POS data, in order to
improve the KPI's. However, it is unknown what is needed in order to extend this scope
including the customers and which data provides better performance (Figure 4).

|
. | Market Customer . I
SuppIiers Production Dehvery |
l WH* WH* |
|
| |
Scope |
L e e e e e e e e e e e - - - -
WH** = warehouse
Figure 4 Proposed scope of the problem

The new scope to be considered will be from production until the final consumers. In the
previous scope (of the pull pilot project) the scope runs until the market warehouse. The
question can be asked whether widening the scope leads to other control mechanisms
throughout the supply chain or whether the current pull pilot already leads to the
optimal stock level and can be extended.

Although production is not taken as a main focus due to own optimization cycles, a short
description is provided. In Appendix Il the overview is given for the production lines at
Mars. Line X is the subject of interest within this research. Within this line both Product
A Milk as well as Product A Dark products (different recipes) are produced. The Product
A chocolates are made on 1 central and continuous flow line for all Product A products
within one recipe. Among others, cocoa powder, milk powder, sugar and coconut extract
are used as raw materials for the products. Within the Product A Milk products there are
many machine changeovers as each different packaging is a different product. However,
this specialisation to different products is only dependent on the last step of production,
the packaging step. Changeover times are four hours for recipe changes (dark and milk
chocolate). The changeover for different products within the same recipe is primarily
change in packaging and it takes 24 hours to get the packaging material delivered from
Kuehne + Nagel.

Within a production run of for example Product A Milk are a lot of set ups as around 70
products are made on line X. The set up times for the products are not really an issue
time wise as the packaging machine processes at a higher rate than the chocolate
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producing machines. For instance, if 100 bars can be produced per minute, the
packaging machine can wrap 130 bars. In this way, the machine can be set up while
production is ongoing.

On the basis line X is flexible enough to produce each product each week. However, due
to the demand of certain products, not all of them need to be produced every week such
as the Product A Dark chocolates. To start production the factory needs to have the
packaging material delivered from Kuehne + Nagel. The packaging is transferred to and
from the Mars factory each time a certain product needs to be produced, as there is no
storage room available at the factory.

2.4. Expansion of the current project
In order to manage production, in the current pull project with the Kanban system, data
of demand need to be used. The market warehouse will give a daily update of their stock
to the inbound logistics department. Here the demand planner will transfer the data into
an excel sheet with stock and Kanban levels. The required amount that needs to be
produced is then known and will be corrected with a certain volatility factor that is
derived from the in house forecasting system that takes promotions into account. The
ultimate figures will be send to production planning that also has to implement the
requested amounts. It is noticeable that the amount of manual labour that accompanies
this process is large. This is the main reason that the pull project has not been expanded
onto other products/production lines, as there is a lack of an IT system that links the
information.

The collaboration with the supermarket chain Jumbo is an on-going process. The
addition of the retailer’s and point of sale data is key to extend the scope of the project.
However, a platform to use the data is yet unknown. What kind of aggregation of data is
needed (whether daily, weekly or monthly demand), to implement into the operations of
Mars in order to reduce costs and obtain the optimal stock level, is yet unknown. For the
next step in the pull project it is also not clear how to deal with volatility of the new data.

For Mars Nederland B.V. stock and lead-time reduction, and thus freshness, are still
important issues. Freshness is an issue as Mars strives to have their products consumed
at an optimal age of the product. This is especially significant for candy bars that contain
biscuits that will perish earlier than other candy bars. Moreover, Mars is always looking
for new ways to improve its current processes.

The average cycle time within Mars after the pull pilot for the Product A is 12 days, while
the average cycle time from the customer warehouse to the final customers is 4 to 8
weeks (Figure 5). This cycle time implies the stock cover that is needed. Thus the biggest
reduction in stock cover seems to be within the latter part. However, the complete scope
from the factory until the final consumer will be considered to see whether overall
improvements could occur.
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Considering what the current project has achieved, the scope can be extended to get
commitment from Mars’ customers. This commitment is in the form of provision of
retailer’s demand and POS data. However, in which manner that the available
information can be used remains unanswered. With the expansion of scope of the pull
project, an analysis can be made whether more advantages can be obtained with respect
to an optimized stock level. Other control methods to be considered might lead to more
reduction in costs. In case this occurs, the trade-off between the methods should be
made.

Past literature has promoted supply chain collaboration and the use of customer
warehouse data and point of sale data, in which each has its own favourable conditions
(Ye, 2012a). According to Hopp and Spearman (2003) a pull production system is one
that explicitly limits the amount of work in process (WIP) that can be in the system. This
implies that a push production system is one that has no explicit limit on the amount of
work in process that can be in the system. In this way, the inventory in a pull system
would be considerably lower because of the capacitated WIP.

Pull is a part of the Lean concept. The Lean principles are as follows (Lian & Landeghem,
2007):
1. Define ‘Value’ from the perspective of the customer.
Identify the ‘Value Streams’, and eliminate ‘Waste’ from them.
Create ‘Flow'.
Introduce ‘Pull’.

g1 W

Strive to ‘Perfection’.

Flow is a key aspect within Lean. It comprises the synchronization of activities and
effective process management to keep a product moving through the system at the rate
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of the customer demand. Once this flow has been created, a system is put in place to
control the movement of finished goods with the underlying idea of replacing what has
been used when there is a demand signal for more products. The intent is to remove
unnecessary inventories and activities out of the system (Kahn & Mello, 2005).

Although many conceptual literatures exist on Lean and pull on a strategic level, there
are still little publications on the implementation of pull. As discussed, the execution of
the principles of pull within literature is not always consistent and sometimes
contradicting. Thus, there is still a need to define a clear implementation of pull.
Furthermore, as Lean and pull are originated from the automotive industry and spread
across some other industries such as the process industry; little is known about pull
within the Fast Moving Consumer Goods industry. As the FMCG industry has different
kind of products that are produced in bigger batches than the automotive industry, pull
is not commonly used as a replenishment mechanism. Furthermore the practical
interpretation within this field of subject and industry is combined a gap within
literature that is interesting to research (Ye, 2012b). This leads to the following
assignment:

‘Design a collaboration model for Fast Moving Consumer Goods companies to
control information sharing onto the involvement of customers in order to optimize
stock levels and replenishment time.’

Within this collaboration model the emphasis is laid on the use of different types of data.
The project has several research questions.

1. What kind of information exchange model is needed in order to design the
framework of the new collaboration?

2. Which aggregation level of shared demand data is needed to have more accuracy
to control the supply chain?

3. What will be the total replenishment lead-time in the new collaboration,
considering Figure 5 specifically from the Mars factory to the Dutch warehouse
and from the Dutch warehouse to the Jumbo warehouse?

4. What are the possibilities to focus on other chocolates?

5. How can the collaboration with Jumbo be generalized in order to be applicable
for other collaborations?

To research the questions above a deeper look into the literature on the different pull
control policies and the nature of POS data is required. In Appendix III the different
types of pull control systems are explained to have insight into the way pull systems
work. Prior to conducting the research and during the actual research, a number of
interviews and meetings were held in order to gain knowledge into the problem and the
project history. Moreover, sufficient documentations have been made available in the
form of presentations and data. A list of key resources from which information is
obtained is illustrated in Appendix IV.
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3. Current operations pull project

This chapter is dedicated to the current operations for the pull project at Mars. The
operations around line X and replenishment of the line X products under pull control are
described. The Kanban calculation will be discussed in chapter 3.1. During times of peak
demand that exceeds the Kanban levels stock building is required. The rules behind the
exception process called the volatility translator are explained in chapter 3.2.

3.1. Kanban calculations
According to Silver, Pyke and Peterson (1998, p. 640) the formula of the number of
Kanbans is given by

_ Dyxt;x (1 +SF)

n;

N;

Where
D; = demand or usage rate for part i
t; = total lead time
n; = number of parts per container
SF = safety factor

The safety factor is used to buffer for uncertainty. In case of the Mars safety factor, this is
used to buffer uncertainties such as late signal to the warehouse, scrap during physical
distribution, impact of quality incidents, and MFI deviation. This factor is not the same as
the factor k (a safety factor that leads directly to a value of safety stock by multiplying
with the standard deviation) as the safety factor here is not a multiple of the measure of
uncertainty. Silver, Pyke and Peterson (1998) suggests that the safety factor of 0.25 is
somewhat higher than is often recommended. As uncertainty is reduced, this safety
factor should be lowered.

For the current pull project at Mars, the Kanbans represent inventory that must buffer
for demand during time spent in transportation and production. The Kanban calculation
for the current pull project is made with the following model:

Ki=D;*Ty; *(1+S;)
Where:
K; = Number of Kanbans for product i
D; = Expected weekly demand of item i in cases

T, ; = Replenishment time of product i
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S = Safety factor of product i

The Kanban numbers in pallets can then be derived and is in line with the model given
by Silver, Pyke, and Peterson (1998).

Dy *Tp;* (1+S;)
KP,i = KU,
L

Where:
KU; = Kanban units in a pallet for product i.

In order to determine the Kanban level, the expected weekly demand of producti (D;) is
used. This expected demand is derived from historical demand. D; constitutes of either
the maximum weekly demand of producti (D,,,, ;) or an adjusted value of D,,,, ; due to
forecast (see Table 2, the exception process will be explained in the next paragraph).
The maximum weekly demand (D,,,4,) is taken from an in-house tool called Value Added
Planning Matrix. This tool takes historical data into account and calculates the capped
maximum and minimum demand taking out the outliers. However, this value can be
adjusted when peaks in forecast occur, thus resulting into the adjusted value of D, ;.
At this moment, the maximum weekly demand used is based upon calculations in the
past, due to the fact that the Value Added Planning Matrix doesn’t function anymore.

Using D;, the Kanban level has been calculated. This Kanban level indicates a maximum
number of work in process that the pipeline stock from the production to the Mars
warehouse has to contain.

The replenishment time (77, ;) can have one of the two values; the normal replenishment
time (T, ;) and the emergency replenishment time (77} ;). When the stock of a certain

product falls below a critical boundary, a new production is started within 24 hours.
Therefore, the emergency replenishment time is used. Otherwise the normal
replenishment time holds.

T,; = MFI; + P; + Ty + MH,

T;; = ES+ P, + Ty + MH,

Where:
MFI; = Manufacturing Frequency Index, this implies the number of hours between two
consecutive production runs of the same product.
ES = Emergency start time needed to get wrapping material in from Kuehne + Nagel.
P; = Production time of product i. The production time needed for product i is the

maximum weekly demand observed in the past of product i divided by the
operating capacity for that product.

Tr = Transportation time from factory to Mars market warehouse.

MH, = Remaining micro hold time, including time for micro biotic research and
maturation needed for all products. As the transportation of the products take
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place during the micro hold time, the transportation time is subtracted from the
total micro hold time.

In the past a project was performed for determining the MFI's. These values are used
here. Only when emergency productions are enforced, would the production deviate
from the manufacturing frequency index. This MFI value is set for all the Product A
products at the beginning of the pull pilot project and shall be used as a constant during
the calculations.

The safety factor is a correction percentage for the demand during replenishment time.
This factor has been obtained by means of trial and error during the pilot phase (and
thereafter adjusted each half year) and varies for the different products between 0.15
and 0.30.

The stock level at the Mars Dutch market warehouse is sent to the demand planner at
Mars on a daily basis. The level of stock can then be reviewed and this level can fall
within three parts (red, yellow, and green). The ranges of the three parts are defined as
follows:

Totall- = Ki = Di * TL,i * (1 + Sf,i)
Red; = [0,D; = T;]

[ Total; — D; * T} ;
Yellow; = [D; * T}, , 3 =+ D * T,

Green; =

'<Totall- —D; * T},

> ) +D;+T[; , Totall-l

Kanban levels

Total; — Red;

Total; — Red;

2

M Red Yellow HE Green

Figure 6 Kanban level values
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Figure 5 illustrates the values of the different Kanban levels. As can be seen the green
and yellow region are both of equal value. This is taken as an initial value for both and
can be adjusted through trial and error. Up until now, no adjustments have been made
for these values. For a detailed description of the process and the process model, see
Appendix V (Heuvelmans, 2011).

3.2. Exception process/Volatility Translator
During periods with exceptional peaks in demand (these are mainly caused by
promotions and listings) the Kanban level is changed. This change is originated from the
adjustments in D;. Mars came up with the volatility translator in order to calculate the
needed adjustment.

The volatility translator will adjust the D; when there is a period of exceptional demand.
With the Kanban calculation the Yellow Green Barrier (YGB, see Appendix IX) is set. This
comprises the demand covering the yellow and green region. Thus when demand
exceeds this barrier the stock level will fall within the red area and emergency
production will be enforced.

From the forecasting tool Apollo Demand, the weekly demand forecast (Dy) is made. The
height of this forecast will trigger the needed adjustments. Table 2 shows the conditions
and rates of adjustment. Here, the D, ; is the maximum weekly historical demand and
the D, ; the minimum weekly historical demand.

Table 2 Adjustment conditions for Di
Condition of Dy ; Adjustment of D;
D i < Df; <YGB; D —D ;) * 0.5
max,i fi i Di _ Dmax,i . <( f max,t) + 1)
Dmax,i
Df; >YGB; Ds—D i) * 0.5
fi i Di _ Dmax,i " <( f max,L) + 1>
Dmax,i
Dmin,i < Df,i < Dmax,i D; = Dmax,i
Df,i < Dmin,i fOT 1 week Di = Dmax,i
Df; < Dpyin,i for 2 weeks in a row 1Dy = 0 s

The D; can then be used in the Kanban calculations in order to determine the Kanban
level of the coming weeks.

At first glance, the current system from the pull pilot project has similarities to the
Generalized Kanban system (see Appendix III); the replenishment is not directly linked
to the demand, as it first needs an authorization Kanban (the demand planner would
first receive the stock level and adjusts it in Excel, then this is sent to the production
planner). However, when considering the Generalized Kanban system, if the number of
finished inventory level is equal to the Kanban size, the system will be a Kanban system.

The stock level at the Mars market warehouse is send once each day instead of real time
as the stock level changes. However, the current model links the replenishment with
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several stock level urgencies. It also has adjustments to the maximum demand taking
forecasting into account. Thus it may not completely be a Generalized Kanban system,
but a hybrid form of this system that takes the forecasted demand into account. The
process model is illustrated in Appendix VI (Heuvelmans, 2011).

3.3. Summary
In summary, the current operations of the pull project are translated into working with
Kanban cards. These Kanban cards indicate a certain work in process. This results in a
steady work in process. All demands are translated directly to production, and
productions will be scheduled accordingly taking into account the MFI and the Kanban
urgency levels. For exceptional processes such as promotions, forecasting is still used to
indicate the level of needed stock building.

This pull replenishment process and the forecasting are based on delivery data from
Mars to its customers. However, other demand information could lead to other values of
decision variables and could affect the way of working within the current operations.
According to the assignment formulation in chapter 2.4, research will be conducted to
see the effect of the different types of data and the consequences in obtaining and using
other data. In the next chapters the use of the different data will be analysed using it in
the current pull project (chapter 4), taking a supply chain wide view (chapter 5) and the
comparison against the former push replenishment system (chapter 6.3).
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4. Data Analysis and current model

After the analysis of the current process, others types of data will be researched and the
way these data influence the current calculations will be given. Thus this chapter focuses
on the current models with new data. First the definition and nature of POS data will be
introduced in chapter 4.1. Then the different levels of data will be explained in chapter
4.2. Next, the data will be cleaned using Wisorization in chapter 4.3. Forecasts can be
made in the program Apollo Demand; this will be explained in chapter 4.4. Finally, in
chapter 4.5, the comparison of the Kanban calculations on different levels of data will be
made.

4.1. POS data and factors that influence its effectiveness
Point of sale data is data measured at the consumer level, also known as scanner data. It
is a direct measure of consumption. It shows independent demand whereas other types
of data in the supply chain are dependent demand. POS is not dependent on inventory
levels, ordering processes at the customer and such.

A study of Williams and Waller (2010) show that in 65% of the cases POS data
outperformed order history data used for forecast. For high volume products, POS is
more effective than for low volume products.

Top down forecasting represent more aggregate level. The forecast is made at a higher
level and disaggregated into item level. The bottom up forecasting forecasts at item level
and roll these together to brand or category forecast. From a top down perspective, POS
data is not so effective. Within the bottom up forecast approach POS data outperforms
order data significantly (Williams & Waller, 2011).

The most effective data are the real time data. However, this is often not possible to be
offered. Therefore there is a need to consider aggregated data on a weekly or monthly
basis. Temporal aggregation is the aggregation of demand over time. POS data can be
used aggregated at for example weekly level or on a 4 weeks basis. As aggregation starts
to occur, forecast error increases with POS data. POS and order data can be used
simultaneously. As the forecast horizon is shorter, both data together leads to better
forecast. With seasonal effects, POS was found less useful (Williams B., 2012).

4.2. Data levels overview
The following data are acquired with respect to three Product A chocolates as this is
offered at Jumbo.

e Forecast data from Mars for Jumbo

e Delivery data from Mars to Jumbo

e Order data from the Jumbo supermarkets to it distribution centre
e Point of sale data of the Jumbo customers
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The forecast data from Mars to Jumbo are the last made weekly forecast.

After the first analysis it is visible that the data closest to the final customers exerts less
fluctuation. As an example the Product A.1 is illustrated in Figure 7. The graphs of the
remainder of the products are illustrated in Appendix VII.
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Figure 7 Product A.1 in consumer units

It is interesting to see that the forecast and POS data are least variable. An aspect of the
existing collaboration with Jumbo is very visible. From week 201145 the Product A.1 is
being replenished with a full pallet in a full truck. This restriction contributes to the high
fluctuation in the delivery data from Mars to Jumbo.

Now that the forecast, delivery, retailer order, and POS data are available; one can
consider which data can have influence on the Kanban level. There are several levels of
data that can be used to determine D;. This is depicted in Figure 8.
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The current situation actual (a) can be compared with the different levels of data (b, c,
and d). The current situation calculated is based on the delivery data from Mars to its
customers (b). The calculations with the delivery data should approach the current
situation actual (a). The Df; can be forecasted with Apollo Demand. The forecast data
will be used to check if adjustment of the maximum demand is needed in the volatility
translator.

4.3. Winsorization and data trimming
As the Value Added Planning Matrix tool does not appear to be functioning anymore due
to technical reasons, a new way should be searched in order to calculate the D, 4, ;. To
exclude the extreme peaks in data, literature suggests that one can either trim the data
or use Winsorization. Winsorization adjusts some data points to make them less
extreme, whereas trimming eliminates those data points entirely (Jose & Winkler, 2008).
Determining the cut off point at each end can involve sophisticated approaches, yet it
often is designated as the most extreme five percent, or all observations beyond a
certain multiple of standard deviations from the mean. Usually, this would be 2 to 4
standard deviation.

For the data of Mars and Jumbo, Winsorization is used to adjust the values above or
below two standard deviations from the mean. The basis for the Value Added Planning
Matrix is the mean plus one standard deviation. Thus, this is applied after Winsorization.
The values from this method appear to be closest to the current values. Moreover, to
deal with the exceptional demand during promotion, the volatility translator tool
explained in chapter 3.2 will take care of the uplift, thus the adjustment to high demand
with Winsorization seems less appropriate.

19



4.4.Apollo Demand
The in house forecasting program Apollo Demand is used to determine the weekly
forecast. The program is based on the Lewandowski method in which the combination of
linear regression and exponential smoothing is used. The Lewandowski method is a
special form of the Holt-Winter exponential smoothing method. In general, the
Lewandowski method is a more practical method that is widely adopted by many
European firms. It allows the user to incorporate judgmental elements into the
forecasting model (Lewandowski, 1982). There is an important difference between the
Lewandowski method and the Holt-Winter method. Lewandowski’s method dampens
the trend as the forecast lead-time increases. The level of dampening increases with the
level of noise in the series (Silver, Pyke, & Peterson, 1998).

In this research the testing space of Apollo Demand is used to investigate the effects of
the different types of available data. This forecasting can be used for the volatility
manager to foresee future demand that needs stock building.

The parameters are kept the same for all Product A products except for the seasonality
impact that is adjusted to best fit the data. However, this seasonality impact is also kept
constant for each type of data per product. The obtained forecast is illustrated in
Appendix VIII. This forecasting can then be used to see whether stock building is
required. The conditions for adjustment are explained in chapter 3.2.

4.5. Comparison
Recall Figure 8 with the different levels a, b, ¢, and d of comparison. The data of Mars and
Jumbo can be reviewed to see the effects of demand on different levels. First the current
Dmaxi values at Mars used for the three Product A items at national level are depicted in
Table 3. Next the percentage of the Product A products that are allocated to Jumbo can
be used to compute the part of the overall products for the Dutch market.

Table 3 Percentages delivered accounted for Jumbo

Dmaxi National % accounted  Dmaxi Jumbo

(cases/week) for Jumbo (cases/week)
Product A.1 529 11.153 59.00
Product A.2 1593 7.432 118.40
Product A.3 707 1.621 11.46

The current values are given on a national level. Taken from the actual delivery data
from Mars to Jumbo, the percentages of the different Product A products for the whole
Dutch market accounted for Jumbo are also depicted. The Product A.2 is a big item as it
is sold much more than the other Product A items. Furthermore, the Product A.3 is a
small item especially for the percentage accounted to Jumbo. This is explained as the
Product A.3 is sold more at “out of home” spots such as gas stations as impulse products
rather than supermarkets.
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From the available data the values for Dmax; and Dmin,i are calculated. This is done by
determining the Dy, and Dg; 4., from Winsorization and adding (or subtracting in case
of D) One standard deviation to Dg,, (Table 4). The current calculations (see Figure 8,
a) are made on a national level based on the delivery data from Mars. These values are
adjusted for Jumbo with regards to the percentages given in Table 3.

Table 4 Descriptive statistics of demand accounted for Jumbo
Current Dmax,i Davg,i Dsigma,i Davg,i + Dsigma,i
(cases/week) (cases/week) (cases/week) (cases/week)
Product A.1 a) 59.00
b) 45.16 35.35 80.50
) 46.71 10.23 56.93
d) 37.08 8.04 45.12
Product A.2 a) 118.40
b) 55.11 45.25 100.35
) 67.66 26.51 94.18
d) 57.60 12.47 70.07
Product A.3 a) 1146
b) 5.55 417 9.72
0 6.29 3.15 9.44
d) 5.87 2.87 8.75

4.5.1. Comparison Kanban sizes
Using the determined values of Dnaxi the Kanban levels can finally be calculated by
multiplying the demand with the safety factor and replenishment time. The safety factor
(S7i) is the factor currently in use at Mars. The replenishment time (T7,;) depends on the
variables MFI, SOC, Tr, and MH explained in chapter 5.1. The values of the variables are
depicted in Table 5.

Table 5 Decomposition of replenishment time

MFI; (hours) SOC (cases/hour) Ts(hours) MH (hours)

Product A.1 168 110 13 72
Product A.2 168 101 13 72
Product A.3 84 131 13 72

For Jumbo, the effects that arise with regards to the Kanban size are given in Table 6. To
calculate the Kanbans needed for the Dutch market, the weekly demand (Dmaxi) of Jumbo
and the percentage it accounts for the products on national level is used. For Dmax; the
average of the data plus one standard deviation is used.
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Table 6 Kanban calculations for Jumbo

Jumbo Dinaxi Ty Sy K; % reduction
(cases/week) (weeks) (cases) inK;
Product A.1 a) 59.00* 14318 0.3 110 0.0%
b) 80.50 14329 0.3 150 -36.4%
c) 56.93 1.4317 0.3 106 3.6%
d) 45.12 14310 0.3 84 23.6%
Product A.2 a) 118.40* 1.4356 0.2 204 0.0%
b) 100.35 14345 0.2 173 15.2%
c) 94.18 14341 0.2 162 20.6%
d) 70.07 1.4327 0.2 120 41.2%
Product A.3 a) 11.46* 09291 0.3 14 0.0%
b) 9.72 09290 0.3 12 14.3%
c) 944 09290 0.3 11 21.4%
d) 8.75 09290 0.3 11 21.4%

* These values are taken as the sales accounted for Jumbo from the actual values used on national level

From Table 6 one can observe that the values for the delivery data from Mars (b)
deviates slightly, and stronger in case of the Product A.1, in comparison to the actual
data. However, using the retailer order data (c) leads to a reduction in Kanban sizes
varying from 3.6 percent up till 21.4 percent. Furthermore, using POS data (d) will even
lead to a higher reduction in Kanban size varying from 21.4 percent up till 41.2 percent.

These reductions are also considerable when compared to the calculations with delivery
data (b).

Table 7 Kanban calculations on national level
National level Dinaxi TLi Ssi K; % reduction
(cases/week) (weeks) (cases) in Ki

Product A.1 a) 529* 14572 0.3 1002 0.0%
b) 722 14676 0.3 1377 -37.4%
c) 510 14562 0.3 966 3.6%
d) 405 1.4505 0.3 763 23.9%

Product A.2 a) 1593* 1.5226 0.2 2911 0.0%
b) 1350 1.5082 0.2 2444 16.0%
c) 1267 1.5033 0.2 2286 21.5%
d) 943 14842 0.2 1679 42.3%

Product A.3 a) 707* 0.9606 0.3 883 0.0%
b) 600 0.9558 0.3 745 15.6%
c) 582 0.9550 0.3 723 18.1%
d) 540 0.9531 0.3 669 24.2%

* These values are the actual values used for the national level

From Table 6 one can observe that the values for the delivery data from Mars (b)
deviates slightly, and stronger in case of the Product A.1, in comparison to the actual
data. However, using the retailer order data (c) leads to a reduction in Kanban sizes
varying from 3.6 percent up till 21.4 percent. Furthermore, using POS data (d) will even
lead to a higher reduction in Kanban size varying from 21.4 percent up till 41.2 percent.
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These reductions are also considerable when compared to the calculations with delivery
data (b).

Table 7 gives the results assuming that the effect of stability in demand of the data from
Jumbo is also present for other customers of Mars in the Dutch market. As expected, the
results in reduction are similar to the values allocated for Jumbo. Reductions at level c,
retailer order data, vary from 3.6 percent up till 21.5 percent. For level d, POS data, the
reductions vary from 23.9 percent up till 42.3 percent.

As can be seen from the results, the closer to the end consumer the data is measured; the
less Kanbans are needed because the demand shows less variance as an input parameter
(Djnax) in the Kanban calculation is dependent on the variance. This effect was also
confirmed by the graphs of the data (Appendix VII). The effect on the replenishment
time is small due to little time saving of production relative to the Micro Hold (MH) time
and the manufacturing frequency index (MFI). The lead-time will be discussed more
extensively in chapter 8.4. The excel calculations and electronic representation of the
Kanban file can be found in Appendix IX.

4.6. Summary
In this chapter the method of comparing the different types of data has been addressed.
First, a data analysis has been made and then the method of data trimming and
Winsorization is discussed. It is concluded that the current Dmaxi values are based on the
average value plus one standard deviation after data trimming. Subsequently, the
different levels of data are compared and substantial reductions varying from 21.4
percent up till 41.2 percent in stock reduction can be reached when Mars uses the POS
data. This chapter has focused on the optimization within the company Mars. However,
one should look at the possibilities of a supply chain wide optimization, thus with the
inclusion of Jumbo. The new model of replenishment control for both Jumbo and Mars
will be discussed in the next chapter.
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5. Supply chain scope and multi-echelon serial system

In supply chain perspective one should consider the possible collaboration model to
broaden its scope. A value chain to provide service to the end consumer will require
more than local optimality. That is why this chapter is devoted to the inclusion with a
customer of Mars. First the existence of the Bullwhip effect within the supply chain is
discussed in chapter 5.1. Then, the use of forecast versus actual data is discussed in
chapter 5.2. Next, an analysis of the influence of lead-time is given in chapter 5.3. Next,
the multi-echelon serial system is discussed with its heuristics to calculate the optimal
base stock level in chapter 5.4. Finally, the design of the supply chain collaboration
model is given in chapter 5.5.

5.1. Bullwhip effect
As the production at line X is quite flexible and able to produce each product every week,
production line X is stable. Moreover, the final demand (POS) is considered to be stable.
However, the links within the supply chain acts in such a way that an amplification of
demand exists. This can be considered as the Bullwhip effect. This effect is subjected to
four rational factors. According to Silver, Pyke, and Peterson (1998) these are as follows:

Demand signal processing

If demand increases, firms order more in anticipation of further increases, thereby
communicating an artificially high level of demand.

In practice, as can be seen from the graphs of the three Product A products
(Appendix VII), this is the case.

Rationing game

There is, or might be, a shortage so a firm orders more than the actual forecast in
the hope of receiving a larger share of the items in short supply

In practice, as explained before, because of human judgment and the doubt from
Jumbo that Mars cannot reliably meet its targets regarding case fill, Mars’
customers order more than needed. Right after an out of stock occurred, the
demand increases above regular level.

Order batching

Fixed cost at one location lead to batching of orders

In practice, due to the collaboration project with Mars and Jumbo, appointments
are made to order in full pallets and truckloads in trade for faster delivery. This
leads to order batching. Moreover, not only does this encourage order batching, it
will also facilitate buying products to fill a truck when this product is not needed.
This results into higher stock levels and is detrimental to the demand signals.
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Manufacturer price variation

Encourage forward buying of bulk orders

In practice, at Mars, promotions are discussed beforehand and the amount of
discount is also agreed upon. There are different promotional agreements with
the different customers and deviations from the discussed outtake seem to
appear. Thus everyday low pricing is not in order.

The latter two factors generate large orders that are followed by small orders, which
imply increased variability at upstream locations (Silver, Pyke, & Peterson, 1998).

Whenever out of stocks occurs, Mars will deliver the product shortages upon the next
delivery moment after the product becomes available again. However, the forecast of
Mars is still based upon delivery data and not demand. This is amongst others because of
automatic ordering systems from customers that order the shortage again the period
after out of stock, and it is noticed that the demand of a certain product is higher than
normal right after a period of out of stock. The Veghel plant is the only Mars plant in the
world that produces Product A. So in occurrence of an out of stock, there is no
substitution possibility to supplement the order.

5.2. Forecast versus actual data
In order to react to the actual demand in the market, the Kanban calculations have been
using actual historical demand to determine an expected maximum demand for the
future. For the collaboration between supply chain links, it needs be decided whether
the obtained data should be used for forecast or as actual demand.

Fransoo and Wouters (2000) describe one of the causes of the Bullwhip effect as
demand forecast updating. This explains that that the links in the supply chain base the
expectations about future demand on orders they receive from the succeeding link. An
increase in orders leads to higher demand forecasts, which is transferred to the next link
by increased order quantities. That link also sees an increase in demand, updates its
forecast and distorts information for the subsequent link, thus making it unfavourable to
for each link in the supply chain to use its own forecasting.

Moreover, a test case analysis is made to examine the mean square errors based upon
simple forecasting techniques compared to the expected demand that would arise when
the data is used in a pull manner. The historical data is used and the expected demand
for a given week is the actual demand of a week earlier. Next, methods such as simple
exponential smoothing and linear exponential smoothing are used to forecast.

Silver, Pyke, and Peterson (1998) explained the underlying demand model of simple
exponential smoothing as follows.

xt=a+£t

The simple exponential smoothing model assigns a weight to historical data. The
estimate of a is the following formula.
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fit = axt + (1 - a)at_l

Where « is obtained from the following. It can be noticed that as N becomes bigger (we
go further back in time), less emphasis will be laid on the previous demand values.

_2
@=%/(N+1)
The estimate of x from time ¢t until ¢ + 7 is therefore
k\t,t+‘r = at

The linear exponential smoothing model is based on a model with a trend. The
underlying model of demand is the following.

Xe=a+bt+¢g

The a and b can be estimated by using

¢ = agwxe + (1 — aHW)(at—l + Bt—l)

(o)

()

¢ = Buw (@ — @r—1) + (1 = Buw)b_s
Where ayy, and By, are Holt-Winters smoothing constants

apw =[1— (1 —a)?]

aZ

In order to determine the accuracy of the predictions, the mean square error (MSE)
measure is used.

n

1 o 2
MSE = EZ(xt _xt—l,t)

i=1

Where x4, x5, ..., x,, is the actual demand and % 4, X, 5, ..., X,,—1 , the one period ahead
forecasted demand. Using these methods resulted in the following MSE.
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Table 8 Mean square errors of usage actual demand and forecasting

MSE Actual demand Simple exponential Linear exponential
1 week delayed smoothing smoothing

Product A.1

Delivery data 3357.68 1272.08 1301.29

Retail orders 135.33 135.86 105.08

POS 23.50 96.45 86.38

Product A.2

Delivery data 2710.77 2852.11 2055.65

Retail orders 1190.32 889.10 715.90

POS 160.93 248.81 163.08

Product A.3

Delivery data 24.98 19.82 17.87

Retail orders 3.24 9.09 10.30

POS 0.62 7.23 8.43

Table 8 shows that POS data obtain the lowest MSE when actual demand is used at a
week delay. For other types of data, linear exponential smoothing mostly seems to have
the lowest MSE when comparing the use of actual data and forecast. Because of the fact
that using individual forecast would increase the Bullwhip effect and the better
performance of actual POS data with regards to the MSE, the research will be continued
using actual data for the average demands under pull control.

5.3. Supply chain lead time
Considering the total supply chain having in mind the persuasion of Mars customers to
share their data, the priorities of customers are the length of the supply chain and stock
level.

Impulse Distributors

P 2

/ a:#u";'f AT T
W T %‘Hﬁ‘mml retailers
<> Ve gl..\;_
—P
- = -

Global Supp[lers/y VEG A :& \ GER %
. VEG HUB S *’j A
/.-’L Other Markets \

Local Suppliers 2,,;_;;.," @

~ . . 39 - 2
Cyc]c time in  traditional pusf:l

10 days 12 days 4-8 weeks
12weeks ALY :
Best in [cfgss results on Bounty VE(J
7 days 5 days 4-8 weeks
10 3 =
Potentigl with the customers
<7 days? <5 days? <4-8weeks?
6 weeks?
Figure 9 Stock cover throughout supply chain
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The cycle time in Figure 9 constitutes the stock cover of the Product A products in the
traditional push situation, after the pull pilot project and the potential with customer
inclusion. Considering the left part of the chain, from the factory to the Mars
warehouses, improvements are already obtained in the cycle time. It is however the
right part of the chain where great reductions can be made as the cycle time is 4 to 8
weeks from the customer warehouse to the end consumer.

Nevertheless, replenishment time at the left part will be considered first. From the
current Kanban calculations it is noticed that the replenishment time is as follows:

TL,i = MFIL +Pl +Tf +MHT

Where:
MFI; = Manufacturing Frequency Index, this implies the number of hours between
two consecutive production runs of the same product.
ES = Emergency start time needed to get wrapping material in from Kuehne +
Nagel.
P; = Production time of product i. The production time needed for producti is

the maximum weekly demand of product i divided with the operating
capacity for that product.
Ty = Transportation time from factory to Mars market warehouse.

MH, = Remaining micro hold time, including time for micro biotic research and
maturation needed for all products. As the transportation of the products
take place during the micro hold time, the transportation time is
subtracted from the total micro hold time.

It is noticeable that the effect of less variable data on the replenishment time is small
due to little time saving of production relative to the Micro Hold (MH) time and the
manufacturing frequency index (MFI). Thus, these “bottlenecks” should be addressed. In
order to achieve reduction in the supply chain one should pay attention to the micro
hold and research whether this hold could be reduced.

The right part of the supply chain is large due to the case sizes of the different products.
The Dutch market is small relative to other countries. This is noticed considering the
amount of a product that is sold at a random supermarket. For the Product A products,
an average of 4 to 5 consumer units is sold per week per supermarket for a certain
product. Thus a case of 22 consumer units of a product at a supermarket implies that
this would be on shelf (or at least within the supermarket) for 4 to 6 weeks. Mars could
take a closer look at the case sizes of the products, especially the ones allocated to the
Dutch market. Furthermore, with the base stock calculations one can demonstrate the
needed base stock given a certain service level for both Mars and Jumbo. This will be
discussed in the next chapter.
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5.4. Multi-echelon serial system
Considering the Mars operations with the addition of the Jumbo warehouse, the system
can be viewed as a serial multi echelon system. Such a system assumes the following:
the different demand levels are independent and identically distributed with the normal
distribution, out of stocks are fully back ordered, whenever the inventory position is
below the optimal base stock level, one orders up to the optimal base stock level.
Otherwise, no order is placed. Moreover, an outside supplier has ample stock to supply
material to the factory. To order at the Jumbo warehouse, the order quantity is multiples
of cases. To order at Mars, the order quantity is multiples of pallet layers. Furthermore,
the average ordering, shipping and processing cost are excluded from consideration.

This system has been studied by Clark and Scarf (1960) who showed that an echelon
base stock policy is optimal for the finite horizon problem. The inclusion of Jumbo as a
supply chain collaborator is considered as multi-echelon serial system with two echelon
stock points (Figure 10).

Lo L1

Figure 10 Two echelon serial system

The multi echelon systems studied by Clark and Scarf (1960) can be characterized as a
centralized control mechanism. This means that a central planner or owner knows the
information for the entire system and calculates the optimal base stock level for each
stage. Operating according to local optimal policies may not lead to optimal system
performance. It is important to identify incentive-compatible schemes to facilitate
coordination.

To calculate the optimal base stock level for both stock points the lower and upper
bounds of the optimal base stock level equations from Shang and Song (2003) are used.
The heuristics of Shang and Song (2003) is practical as it allows studying the effects of
system parameters on the optimal costs and policies analytically. The relative error of
the heuristic is less than 0.05 percent. It is an easy to implement, near optimal heuristic,
while the exact formula for the optimal base stock levels provided by van Houtum et. al
(1996) requires heavy computation.

The following parameters are defined:

A = demand arrival rate
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Ly, L, =lead times

hi, h, = echelon inventory holding cost rate at stage j = hj — hj,1; (hyyq = 0)
hi, h;, =installation (local) inventory holding cost at stage j

b = unit backordering costs

s1,S, = optimal base stock levels

s

; = the approximation for s;

B = fill rate at the most downstream echelon

Within the heuristics the demand is supposed to follow a Normal distribution. This is
decided upon an analysis of the distribution (see Appendix X) of the demands based
upon the Chi-squared test that takes into account the squared differences between the
predicted and observed value. The Normal distribution is assumed as in most cases this
is a fairly good fit compared to other distributions. Moreover, for computational
purposes, the parameters for the Normal distribution are straightforward and obtained
easily. The normal distribution is usable as the coefficient of variation for most demand
data is less than 0.5 (van Houtum, 2007). For expansion purposes, this distribution is
assumed.

This serial system will be implemented in Excel with the different parameters from Mars
and Jumbo. Under a normal distributed demand the following applies. Z denotes the
demand with mean p and variance ¢2. Then

Where N(Ej) is the total number of demand arrivals during lead-time Zj(z Z{zl L;)
which has a Poisson distribution with mean AZ]-. The sum of these demands for stock
pointj is thus the total number of demand arrived during lead-time.

This leads to
E[Dj] = AuL,
Var|D;] = A(u? + o¥)L;
The lower and upper bound cost ratios are

L b+ %l b
7 b+ XL hy
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o — b+ 2l hy
J b+XNh

| — o-1/0l - : :
Letz{ = ®7%(6;) and z}' = ®~'(6}"). Where ¢ () and ®(") denote standard normal pdf
and cdf, respectively, and define s} = F;7*(6}) and s} = F;"*(8}"), with j=1, ..., N.

Following the standard procedure

sf = AuL; + z //1(/42 +02)L;

st = AuL; + z} /A(uz +02)L;
a T 1 l u 2 2\T
sit = Aul; +§(zj +z*) |Au* + 0%)L;

N Jj-1
ci(s¥) = b+ Z by |6(z) A2 + 0D, + Z(hmlmzi)
i=) =1

N

-1
ct(s!) = (b + z hl-) ¢(2) |22 + oD + Z(hmwzi)
i=1

i=1

For stock point 1 (the Jumbo warehouse) the following holds.

b+h

I — p-1 2

7n=2 (b+h1+h2)
b + h,

U _ p-1

7= (b+h1+h2>

st = AulLy + 2\ [AQ2 + o)L,

st = Ly + ZAGW? + o)Ly
CHs®) = (b + hy + hp)p(Z)VAWE + D)L,
C¥(st) = (b + hy + hy)d(z))JAW? + 0L,

For stock point 2 (the Mars warehouse) the following holds.

4= )
2 b+h; +h,

1= )
2 b+h,
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sy =u(Ly +Ly) + Zé\//l(ﬂz +02)(Ly + Ly)

sy =Au(Ly +Ly) + Z%\//l(liz +02)(Ly +Ly)

Ci(s¥) =+ h2)¢(25‘)\//1(u2 +02)(Ly + Ly) + (hpAuly)

C?(sé) =((b+h + hz)‘ib(zé)\/l(ﬂz +02)(Ly + Ly) + (hpAulL,)

As all information is given in weekly data no specific information is known about the
number of orders within a week. Thus the A is considered to be one per week. To
implement this heuristic, input parameters from Mars and Jumbo are used. All input
parameters are present except for the back ordering costs. It appears that no back
ordering cost is applied during out of stocks. The drawbacks are the loss in service and
possible sales but this is cumbersome to quantify.

While the heuristic of Shang and Song (2003) uses the back order costs as a given, one
can search for alternatives in order to approach this cost. This is found in the research
by Boyaci and Gallego (2001). They researched the serial inventory systems under
service constraint, which is given (as fill rate) at the current parameters. The connection
with the back order cost system is given as

Fillrate = B = P(D)(s) <s;) = b/(b+ h))

Suppose that (si*, S3y eee) s]*_l) are the optimal local base stock levels for the back order

cost model for stages j = 1,...,] — 1 where ] represent the last stage as opposed to the
heuristic by Shang and Song (2003) where stage 1 represent the last stage. Then in the
back order cost model, s]*_1 is chosen to minimize

/ InY + InY
hjE[s] — D](s)] + bE[s] — D](s)]
This is a newsvendor problem with the optimal solution given as

s; = {n}}n: P(D;(s) <s;) = b/(b + h))}

Recall that the fill rate is defined as the limit probability of positive inventory P ([7] (s) <
Sj). The slight variation of the fill rate, the probability of nonnegative inventory (PONI) is

defined by P(]j] (s) <'s;). The PONI and the fill rate service measures differ only when
demands are discrete.

By substituting b with Sh] /(1 — B) the heuristic of Shang and Song (2003) is usable with
the given parameters in order to calculate the optimal base stock level. This means the
following change in 6:
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ol — pri/(1=B) + X1 h
a ﬂhl/(l—ﬁ)+2?'=1hl

g BI/Q=B) + T
ST B/ (A=) + 2k

- ( Bhi/(1—B)+h, >
1 Bhi/(1—B)+h, +h,

S q,_1< Bhi/(1—B)+h, >
1 Bhi/(1—B)+h, +h,

g [ BM/A=P)
; Bhi/(1—B)+h; +h,

S q>—1< Bhi/(1—B) >
: Bhi/(1=B)+h,

The use of the fill rate (P2-measure) is justified when no emergency runs will be
initiated. At the current pull project, it is measured that 10 percent of the productions
runs are initiated by an emergency run. This, however, is not desired as emergency runs
should only be possible whenever problems occur. This might indicate that the
parameter setting was not completely set right as 10 percent emergency runs is quite
high. The base stock model is set up as such that no emergency runs are required.

5.5. Design of the supply chain collaboration model
The multi echelon serial system leads to optimal control in terms of stock keeping of the
supply under optimal conditions. In order to explain the current state compared to the
possible future state value stream mapping visuals are created. A value stream mapping
is a technique used to design the flow of materials and information required within a
value chain. It is also known as the material and information flow mapping. At the
moment the replenishment is controlled as follows.

Mid/long term rolling planning tool

Raw material/ Mars warehouse
packaging —» Factory C\ C\ Customer C\ Retailers
available { warehouse
E-Kanban stock Customer Pl\j!r Retailer qrder
E-cards

Figure 11 Value stream mapping current replenishment situation
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Figure 11 illustrates that the replenishment process is triggered by the orders from each
link in the supply chain separately. Each link contains its own replenisher that order
with the help of a forecasting system, cooperation with the sales team and its own
judgement. Moreover, the available information from the retailers are analysed in the
form of Nielsen data (data that gives insight to consumer behaviour), that in part
contains the POS data. However, this data is not directly available to the supplier.

From the efforts of the pull system and the new possibilities of cooperation the
replenishment process should transform into the following value stream mapping
depicted in Figure 12.

Mid/long term rolling planning tool

Raw material/
packaging —» Factory Customer Retailers
available { warehouse
Ratailer qrdsr
E-cards
Figure 12 Value stream mapping possible future situation

The most important addition is a central electronic data interchange system that
distributes data to every link of the supply chain as soon as it is available or measured.
According to the pull principle as well as the base stock policy. The demanded amount at
the next link (preferably from the end consumer) is then replenished. This results into a
smaller amount of stock needed as it will only need to cover the replenishment time and
a certain variance instead of the forecasted demand. For the mid/long term planning as
well as the promotions agreed with the sales team, data still needs to be transferred to
the mid/long planning tool in order to forecast periods where stock building is required.

5.6. Summary
In this chapter, we broadened the scope of the view of the project. A closer look at the
current operations throughout the supply chain for Mars and Jumbo revealed that the
actual data is needed for the replenishment of products in a pull fashion. Supply chain
lead-time is an important factor in planning and replenishment. The quantitative effect
of this lead-time will be demonstrated in the next chapter. Finally a multi echelon serial
system has been described along with its heuristics in a manner that the heuristic is
possible to be used for calculation on the base stock level. The cleaned data (explained in
chapter 4) on the three different data levels will be used to implement this heuristic. The
results will be discussed in the next chapter. Finally the design of the supply chain
collaboration model is given where a central independent entity is suggested that
collects and analyses the data and distributes to the links within the supply chain would
replenish according in a base stock manner. Next, the quantitative results will be given.
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6. Results

Using the heuristics from previous chapter, the insight into the decision-making and
collaboration possibilities will be given in this chapter. Chapter 6.1 will give the results
and unveils the optimal base stock level needed for the different kind of data, when the
base stock policy is applied. Chapter 6.2 takes into account the order quantity restriction
when full pallet layers or full pallets are taken as a restriction. In chapter 6.3 we will
compare the optimal base stock levels with the current stock levels and see the impact.
Chapter 6.4 we will explain the influences of these results on production and finally, in
chapter 6.5, the costs of the multi echelon system are explained.

6.1. Optimal base stock level
The parameters from Mars and Jumbo are used as follows. As explained in chapter 4, the
average and standard deviation are derived from the demand and applied to the
heuristics assuming a Normal distribution.

Table 9 Input parameters for cases
Product A n c B L, L1 h, hy Cases/ b
(weeks) (weeks) (€/case) (€/case) pallet (€/case)

Product A.1

b) Delivery Mars 45.16 3535 0.98 1.432 0.200 0.01059 0.00141 100 0.588
c) Retailers orders 46.71 10.23 0.98 1.432 0.200 0.01059 0.00141 100 0.588
d) POS 37.08 8.04 098 1.432 0.200 0.01059 0.00141 100 0.588
Product A.2

b) Delivery Mars 55.11 45.25 098 1.436 0.200 0.02648 0.00353 40 1.470
c) Retailers orders 67.66 26.51 098 1.436 0.200 0.02648 0.00353 40 1.470
d) POS 57.60 12.47 098 1.436 0.200 0.02648 0.00353 40 1.470
Product A.3

b) Delivery Mars 5.55 417 098 0.929 0.200 0.02353 0.00313 45 1.307
c) Retailers orders 6.29 3.15 098 0.929 0.200 0.02353 0.00313 45 1.307
d) POS 5.87 2.87 098 0.929 0.200 0.02353 0.00313 45 1.307

Table 9 depicts the input parameters assuming a Normal distribution (this will be

discussed more extensively in the sensitivity analysis in chapter 7). The value of the

local holding cost at stock point 1 is unknown, which is the Jumbo warehouse. Assuming
the local holding cost at a downstream location is higher than the upstream location, the
value of €1.20 per pallet per week is taken for stock point 1. For stock point 2, the value
of €1.059 is the local holding cost per pallet per week. At the sensitivity analysis
(chapter 7), the influence of variation on the holding cost at Jumbo warehouse will be
regarded. The numbers of the holding cost in Table 9 depicts the echelon pallet holding
cost divided by the pallet size, thus the echelon holding costs for one case. The pallet
sizes are respectively 100, 40, and 45 cases per pallet. Moreover, the service level is the
fill rate required at the downstream location. As a producer’s aim is to have its products
available for the consumer whenever there is a need for its products, the emphasis is
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laid on serving the end consumer. Having an excellent service level at the end of the
chain mean that this will illustrate product availability and contribute to the awareness
of the brands and products.

Using the calculations resulted in the approximation of the optimal base stock levels for
both warehouses.

Table 10 Approximate base stock levels
Product A s5 s
Product A.1

Delivery Mars 222.3 80.5
Retailers orders 200.1 68.9
POS 158.8 54.7
Product A.2

Delivery Mars 275.1 99.9
Retailers orders 299.2 104.1
POS 247.1 85.0
Product A.3

Delivery Mars 21.2 9.8
Retailers orders 22.3 10.0
POS 20.7 9.3

From Table 10 it is again clear that whenever the type of data is located closer to the end
consumer, the lower the base stock level needs to be in order to obtain the same service
level.

The amount of cases needed to hold in stock at stock point 2 is considerably higher than
the amount at stock point 1. This is explained by the flexibility that the system provides.
This flexibility is due to the lead-time. It takes longer to produce certain products to
stock, thus to replenish stock point 2 than it would be needed to transport the stock to
stock point 1. This requires stock point 1 to cover the uncertainty in lead-time.

These results are the preferred optimal results using the multi echelon base stock policy
assuming centralized control. As optimizing locally is likely to result in suboptimality,
the model assumes centralized control. However, the current collaboration between
Jumbo and Mars requires Jumbo to order in batch order sizes such as a full pallet or
pallet layer. From a theoretical perspective, this will lead to suboptimality. In the next
paragraph, this restriction will be considered quantitatively.

6.2. Base stock level with quantity restriction
So far, the base stock policy is a policy that can be seen as a (S-1, S)-policy. As soon as
there is demand (thus as 1 case is demanded), one orders up to base stock level S
directly placed. When the restriction of an order quantity Q holds, one can view the
individual orders in aggregate. Thus considering these demand in multiples of Q. This
means that the policy can be seen as (S-Q, S)-policy. When 1Q in stock decreases, an
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order is placed to replenish this amount up to S. As an example, if the size of Q is 30
cases and the first 4 orders are 8, 6, 12, and 10 cases. After the time needed for the first 4
orders, the order quantity of Q=30 is accumulated. The remaining demand of 6 is taken
into consideration for the next Q demand. This results into new demand distributions.
Considering these distributions given in Appendix XI, one can use the same heuristics
based on Normal distributed demand.

Table 11 Input parameters for pallet layers

Product A 1] c B L, Ly h, h; layers/ b
(weeks) (weeks) (€/case) (€/case) pallet (€/case)

Product A.1

Delivery Mars 3.23 257 098 14318 0.2000 0.1059 0.0141 10 5.88

Retailersorders 3.34 082 098 1.4318 0.2000 0.1059 0.0141 10 5.88

POS 268 0.75 098 1.4318 0.2000 0.1059 0.0141 10 5.88

Product A.2

Delivery Mars 691 570 098 1.4356 0.2000 0.2118 0.0282 5 11.76

Retailersorders 848 3.35 098 1.4356 0.2000 0.2118 0.0282 5 11.76

POS 731 159 098 14356 0.2000 0.2118 0.0282 5 11.76

Product A.3

Delivery Mars 0.63 0.60 098 0.9291 0.2000 0.2118 0.0282 5 11.76

Retailersorders 0.72 0.60 098 0.9291 0.2000 0.2118 0.0282 5 11.76

POS 0.69 0.61 098 09291 0.2000 0.2118 0.0282 5 11.76

Given the restrictions of ordering full pallet layers at Mars, the parameters are given in
Table 11 where the values of the averages and standard deviation are in multiples of
pallet layers (Q).

After calculation, the results are found in Table 12. Rounding the numbers up to entire
pallet layers and transforming it back to cases results in the following number of cases.

Table 12 Base stock levels with Q restriction in layers and cases

Product A s (layers)  s{ (layers) s5 (cases) s{ (cases)
Product A.1

Delivery Mars 16.229 5.862 238 84
Retailers orders 14.574 5.012 210 84
POS 11.752 4.051 168 70
Product A.2

Delivery Mars 35.104 12.702 288 104
Retailers orders 38.103 13.221 312 112
POS 31.836 10.916 256 88
Product A.3

Delivery Mars 2.637 1.228 27 18
Retailers orders 2.892 1.332 27 18
POS 2.821 1.305 27 18
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Considering the results from Table 12 one can see that the required amount of base
stock is slightly higher in this situation for both stock points. Given room for this
restriction means building up higher inventories. One should weigh this decision against
the possible reduction in handling cost as ordering in batches require less handling
compared to ordering individual cases.

6.3. Comparison with current situation
The obtained results can now be compared with the current inventory levels in order to
see the effect of the multi echelon policy for Mars and Jumbo.

The required current Kanban sizes (with accounted percentage for Jumbo) from Mars
and the average inventory levels from Jumbo are acquired and listed in Table 13.

Table 13 Comparison base stock levels

Product A s5 s¢ s5 s¢ Kanban Inventory
(without Q) (withoutQ) (withQ) (withQ) size Mars Jumbo

Product A.1 110 144

Delivery Mars 222.3 80.5 238 84

Retailers orders 200.1 68.9 210 84

POS 158.8 54.7 168 70

Product A.2 204 169

Delivery Mars 2751 99.9 288 104

Retailers orders 299.2 104.1 312 112

POS 2471 85.0 256 88

Product A.3 14 79

Delivery Mars 21.2 9.8 27 18

Retailers orders 22.3 10.0 27 18

POS 20.7 9.3 27 18

The required Kanban size is taken, as this value should be similar to the base stock value
having the same principle. Because Jumbo does not work with this same pull method,
the average inventory is taken.

[t is noticeable that the current Kanban size, thus the required inventory from the pull
project, is lower than any calculated optimal base stocks but the required inventory for
Jumbo is much lower than the current inventory at Jumbo. After deeper investigation,
the explanation is found in the way that the current maximum demand is established
with respect to the Kanban calculations.

As explained in chapter 6 the maximum demand used to calculate the needed Kanbans is
constituted, after data cleaning, as the average plus one standard deviation. Then, this
value is multiplied with a certain safety factor ranging from 0.2 to 0.3. This safety factor
is used to buffer uncertainties such as late signal to the warehouse, scrap during
physical distribution, impact of quality incidents, and MFI deviation, thus the exceptional
incidents. Moreover, this safety factor is also independent of the demand variation.
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However, using the heuristic, under the assumption of Normal distribution, would
require a higher multiple of the standard deviation in order to obtain the service level of
0.98. Moreover, since the calculations are focused on supply chain optimization instead
of local optimization, it is explainable the base stock would be higher for certain stage of
the supply chain.

Now, taking a look into the total needed stock across the supply chain the following
values arise.

Table 14 Improvement percentages

Product A Stotal % Stotal % Stotal
(without Q) Improvement (withQ) Improvement actual

Product A.1 254

Delivery Mars 302.8 -19% 322 -27%

Retailers orders 269.0 -6% 294 -16%

POS 213.5 16% 238 6%

Product A.2 373

Delivery Mars 375.0 -1% 392 -5%

Retailers orders 403.3 -8% 424 -14%

POS 332.1 11% 344 8%

Product A.3 93

Delivery Mars 31.0 67% 45 52%

Retailers orders 32.3 65% 45 52%

POS 30.1 68% 45 52%

Table 14 depicts the sum of both stock points in the situation with and without the
restriction of Q and the sum of the actual values. This time it is clear that using POS data
results in the highest overall improvement of the inventory level throughout the supply
chain.

The actual values of the total safety stock appear to be quite low compared to the
required values from the heuristics. This is partly due to improvement initiatives
already implemented from the pull project. However, more improvements are possible
from a supply chain perspective with the use of POS data.

To see whether the obtained results show improvement from the situation before pull,
the obtained result is also compared to the needed stock cover during the push
operations. As the calculated base stock level is an order up to level, just as this is the
case for the Kanban system, the numbers should be compared to the replenishment
maximum during push replenishment. The numbers are depicted in Table 15 and these
values are taken as the part accounted for Jumbo on the national level.
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Table 15 Comparison base stock, pull, and push

Product A s5 S S
(without Q) Kanban Push

Product A.1 110 271.31

Delivery Mars 222.3

Retailers orders 200.1

POS 158.8

Product A.2 204 261.25

Delivery Mars 275.1

Retailers orders 299.2

POS 2471

Product A.3 14 27.80

Delivery Mars 21.2

Retailers orders 22.3

POS 20.7

As mentioned earlier the required number of cases to be held as base stock is higher
than the current Kanban levels accounted for Jumbo. However, this base stock level is a
level that secures performance at the next link of the supply chain. Compared to the
original (push) situation the required base stock is lower and at its lowest when POS
data is used. This confirms the preference for a pull replenishment policy. In order to
implement this strategy, Kanban type of information is needed to ensure that a certain
work in process is being kept.

6.4. Influence on production
The obtained results and possibility of improvement in stock level has influence on
decisions of stock control and planning. The influence on production is yet to be
discussed.

Reconsider chapter 5.2 and 6.4. In these parts the influence of lead-time is discussed in
qualitative aspects and respectively the quantitative aspects. These aspects do influence
production whenever the reduced or increased amount to be made is sufficiently large
that extra production run needs to be started or skipped. According to the production
planning department, the minimum amount to start a production run is 200 cases of
products as it should be worth planning the delivery of packaging material and set ups.
Although this is not a strict rule, there are little exceptions. As the products allocated to
Jumbo is a small part of the production on national level, at the moment there is less
need for drastic changes in production. However, when this research is extended to
include a bigger amount of Mars’ Dutch sales, there might be sufficiently large
reductions that a certain production run will become unnecessary. Moreover, the
manufacturing frequency index might need to be reconsidered when other data is used.
The current MFI resulted in 10 percent emergency runs that are actually undesirable.
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The statement that reducing the lead time from Mars warehouse to retailer’s warehouse
leads to bigger reductions than from factory to Mars warehouse implies more focus on
order picking and delivery to Mars’ customers. In case more time is needed within the
supply chain (although it is undesirable as it reduces ones reactiveness), it is less
harmful, with respect to the needed base stock, to increase the lead time from factory to
Mars warehouse than from Mars warehouse to the customer’s warehouse. In this way
more slack can be build with regards to production planning and even the
manufacturing frequency index.

6.5. Costs
The costs of maintaining the suggested base stock policy are derived from the formulae
in chapter 5.4. Under the optimal base stock levels, the following costs are derived.

Table 16 Base stock policy costs
Product A C2 (€/week) C1 (€/week)
Product A.1

Delivery Mars 42.11 14.97
Retailers orders  35.40 12.58
POS 28.95 10.29
Product A.2

Delivery Mars 171.02 60.76
Retailers orders  145.56 51.69
POS 117.08 41.57
Product A.3

Delivery Mars 11.17 4.77
Retailers orders  9.87 4.22
POS 9.13 3.90

Table 16 shows the costs under the optimal base stock policy. Given that the lowest
stock level is required at POS level to obtain the same fill rate, it is natural that the costs
are the lowest with the use of POS data. It is however important to note that the optimal
base stock levels are derived from cost minimization and an artificial substitute for the
back order cost is assumed given a certain case fill.

6.6. Summary
In summary, this chapter provided insight to the quantitative aspects of the multi
echelon base stock policy. The optimal base stock level is calculated. Although the base
stock policy requires more stock at the Mars warehouse (from a supply chain wide
perspective) than the current pull project; it is still an improvement compared to the
original push situation. The stock level for the total supply chain is reduced from 11% to
even 68% using POS data. For the Jumbo warehouse, large reductions are obtained
when complying with the base stock policy. The order quantity restriction is shown to
increase the needed base stock level and a trade-off should be made to weigh the
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benefits. It is interesting to see this analysis for other products outside of the pull control
and for other retailers. This will be discussed in the next chapter.
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7. Sensitivity/scenario analysis

The calculations within this report are done under several assumptions in order to be
able to use the given models and heuristics. However, one should check the assumption
and conduct a sensitivity analysis in order to see how the results could vary. In chapter
7.1 the influence of lead-time is discussed. In chapter 7.2 the variability of the holding
cost at Jumbo is analysed. Next, the distribution of the different demand is considered in
chapter 7.3.

7.1.Influence of lead time
Because of the transparency of the heuristics, it is possible see the influence of the lead-
time on the supply chain base stock levels. The set up is to alter L1 as well as Lz with the
same amount of time to see which lead-time is more influential and where focus should
be laid in order to gain most improvements.

Consider the following adjustments to the calculations made in chapter 8.1 where L is
the lead time from factory to Mars and L1 is the lead time from Mars to Jumbo
warehouse (see Figure 10 for illustration of the echelon system):

Increase L1 with 12 hours and L stays the same
Increase L2 with 12 hours and L1 stays the same
Reduce Li with 12 hours and L stays the same
Reduce Lz with 12 hours and L1 stays the same

W N e

Thus, the total lead-time is either incremented with 12 hours (1, 2) or reduced with 12
hours (3, 4).

Table 17 Different influences of lead times
1 2 3 4
2 s1 2 s1 2 1 7 1

Product A.1

Delivery Mars 228.7 95.5 228.7 80.5 215.7 63.1 215.7 80.5
Retailers orders 206.1 82.1 206.1 68.9 194.0 53.8 194.0 68.9
POS 163.6 65.2 163.6 54.7 154.0 42.7 | 154.0 54.7
Product A.2

Delivery Mars 283.0 118.5 283.0 99.9 | 267.1 784 | 267.1 99.9
Retailers orders 308.1 123.9 308.1 104.1 290.2 81.3 290.2 104.1
POS 254.5 101.2 254.5 85.0 | 239.6 66.3 239.6 85.0
Product A.3

Delivery Mars 22.1 11.6 22.1 9.8 20.4 7.7 20.4 9.8
Retailers orders 23.2 11.9 23.2 10.0 21.3 7.8 21.3 10.0
POS 21.6 11.1 21.6 9.3 19.9 7.3 19.9 9.3

Table 17 illustrates that in terms of increasing the lead time, the option of increasing L
result in lower overall base stock levels compared to increasing L1. In terms of reducing
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the lead-time, the reduction of L1 leads to lower overall base stock level compared to
reducing Lo.

To put this in graphical terms the following pattern in effect (Figure 13) is present in all
products and data levels. Thus one example is shown below.

Product A.1 Delivery Mars

250

200

150

Optimal base stock level (cases)

100

T————
50
0

Onl1 OnlL2
=352 Increase 12 hours ==S1 Increase 12 hours
S2 Reduce 12 hours ==S1 Reduce 12 hours
Figure 13 Influence of lead-time increment and reduction

It is visible in Figure 13 that for S2, the optimal base stock level is constant. For S1
however, reducing 12 hours on L1 leads to the lowest base stock level needed. Thus
when decisions are made with regards to lead-time; it is more advantageous to shorten
the lead-time from Mars warehouse to the retailer’s warehouse rather at vice versa. This
leads to overall bigger reductions in the base stock level throughout the supply chain.

7.2. Holding Costs Jumbo
As explained in chapter 6.1 the holding cost at the Jumbo warehouse is unknown and for
the calculations in chapter 6 the value of €1.20 is assumed. To see the influence of the
holding cost at the Jumbo warehouse on the calculations of the optimal base stock levels,
the value of this holding cost is varied.

The holding cost for the Mars warehouse is €1.059 per pallet per week. Assuming that
the holding cost at locations more downstream (closer to the customer) is more
expensive than its previous location, the holding cost of Jumbo warehouse will be varied
between €1.06 and €1.50.

The exact values of the analysis can be found in Appendix XII. Appendix XII also include
the graphical representation of the variation in holding cost.
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Figure 14 Influence of holding cost for Product A.1

Figure 14 shows the influence of the holding cost for the Product A.1. The other products
are shown in Appendix XII and all show the same pattern. One can see that for the
holding cost at the Jumbo warehouse, it require higher number of base stock when the
holding cost approaches the holding cost at Mars warehouse. However, when the
holding cost at the Jumbo warehouse start to increase, it does not affect the optimal base
stock level much. This effect is also visible for the other products.

7.3. Demand distribution
Within this report all distribution of the different demands are assumed to be normally
distributed. This is due to several reasons that are mentioned in chapter 6.4

Many researches include the Poisson distribution, as this is fairly easily computable.
However, this distribution assumes a large standard deviation, as this should be the
same as the mean (thus the coefficient of variation is above 1). This distribution is not
applicable when one needs to examine the influence of the variance in demand.

In this research the normal distribution is assumed as the sigma is in most cases are
sufficiently smaller than the mean (the coefficient of variation is smaller than 0.5).
However, there are some cases where the coefficient of variation is above 0.5. In this
case the research by van Houtum (2007) is applicable. Moreover, the chi squared fit of
the demand distributions given in Appendix X mostly complies with the normal
distribution as well as the exponential and gamma distribution. Thus another method
using these distributions is researched in order to see whether big differences occur.

The Erlang distribution consists of k independent amounts that are each exponentially
distributed with parameter A. In the case with k=1, the distribution is simplified to the
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exponential distribution. The Gamma distribution is related to the Erlang distribution, as
the shape parameter k is an integer with the Erlang distribution. In the Gamma
distribution, this parameter is not restricted to the integers.

Using the heuristics of van Houtum (2007) the objective is to minimize the average costs
of the multi echelon base stock policy.

Gy, y2) = hy(y, — (U + D) + hy(y; —EB; — (I, + D) + (p + hy + hy)EB,

Where
+
B, = (Dtg,t0+lz—1 — (v, — }’1))

+
By, = (Bl + Deysiyto+lp+l, — }’1)

The optimal base stock level S1 follows from the Newsboy equation and has to be turned
such that

W _ol__Pthe _
PlBs" = 0} = = PPuriatorian, < S}

Through bisection search this value can be approached. This is done by determining the
first two moments of D4, ¢, +1,+1, With mean (I; + 1)u and standard deviation

VG +1)o.

The distribution of Dy 4, ¢, +1,+1, €an then be fitted. An Erlang (k-1, k) distribution can be

used if the coefficient of variation is at most equal to 1, otherwise either a
Hyperexponential or an Erlang (1, k) distribution should be used.

Once S1 is determined, S is fixed and is not being changed anymore. The next step is to

find an optimal value for S;. Sz has to be turned such that P{B, = 0} = and may

p+h1+h2
also be determined by bisection.

When S, > S; the probability P{B, = 0} may be approximated as follows. The first two
moments Dy ¢ 1+,—1 With mean l,u and standard deviation \/l—z o needs to be
determined. Then, a distribution on D . +;,—1 needs to be fitted. Again, when the

coefficient of variation is at most or equal to 1, the Erlang (k-1, k) distribution can be
used.

Next, the first two moments of B, need to be determined. Where B; = (Dto,toﬂz_1 -

(y, — y1)>+. The first two moments of By + Dy 4, ¢,+1,+1, With mean EB; + (I; + 1)u and

the standard deviation \/Var(Bl) + (l; + 1)0? needs to be determined next.
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A distribution on By + Dy 41, +,+1,+1, Will be fitted and finally P{B, = 0} = P{B, +
D¢, 41, t+1,+1, < S1} can then be determined by means of bisection.

When S, < §;, the shortcut can be taken by using the property that then B, reduces
+
to By = (Dey o+t +ts — S2) -

The distribution function of the Erlangs (k-1, k) distribution is given by
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This heuristics under Erlang (k-1, k) distribution can then be implemented using the
data that is also used for the calculations under the Normal distribution. This results in
the following values.

Table 18 Comparison base stock levels under different demand distributions

Product A S2 S1 S2 S1 % change % change % change
Erlang Erlang Normal Normal S2 S1 total

Product A.1

Delivery Mars 2788  226.0 2223 80.5 20% 64% 40%

Retailer orders 158.9 93.0 200.1 68.9 -26% 26% -7%

POS 126.2 73.4 158.8 54.7 -26% 25% -7%

Product A.2

Delivery Mars 365.5 287.0 2751 99.9 25% 65% 43%

Retailer orders 2823 187.0 299.2 104.1 -6% 44% 14%

POS 1959 114.0 247.1 85.0 -26% 25% -7%

Product A.3

Delivery Mars 28.3 26.4 21.2 9.8 25% 63% 43%

Retailer orders 24.9 20.9 22.3 10.0 11% 52% 29%

POS 23 16.9 20.7 9.3 10% 45% 25%

Table 18 shows the sensitivity analysis of the different distributions. It is visible that
quite big changes are present at both stock levels separate. However, the change in total
stock level is small when data is used with lower values of standard deviation. The
percentage change becomes larger when larger standard deviations in demand are
present. With the Erlang distribution it noticeable that the required base stock level for
stock point 1 is higher than in the Normal distribution. It appears that when the
standard deviation is larger (thus the coefficient of variance is above 0.5) the Normal
distribution might be less accurate as the percentage change is higher compared to the
Erlang distribution. Nevertheless, when variance is low, the two distributions results in
similar base stock levels for the total amount of stock needed throughout the supply
chain.
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7.4. Summary
In this chapter the influence on lead-time is discussed. It is shown that the biggest
reduction in base stock is obtained when lead-time reduction can be obtained from the
Mars warehouse to the customer warehouse. Next, the assumption of the holding cost
for Jumbo warehouse and the demand distribution for base stock computation are
relaxed. It is shown that variation in the holding cost for Jumbo has little to no effect on
the required base stock level. However, larger differences appear when comparing the
assumption of Normal distribution with Erlang distribution. When the base stock levels
are considered throughout the supply chain, it is noticed that the data with lower
standard deviation exert less difference between the two distributions.
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8. Extensions

The collaboration between Mars and Jumbo can be viewed beyond the Product A
products, thus the products that are not within the pull project. Moreover, collaboration
with Mars’ other customers is also possible. The possible improvements can be
calculated to see its impact. In chapter 8.1 the extension to other products is discussed.
In chapter 8.2 the extension with other customers is explained.

8.1. Other products (in push situation)
Because the Product A products are enrolled into the pull project, it is interesting to see
what the effects are when the base stock policy is applied to products in a push system.
As mentioned before, the focus on freshness of the product is important within Mars.
This is why a Product B product is chosen to be analysed.

After the initial analysis of the percentage of the national share per product that is
accounted for Jumbo, the Product B appears to have the greatest share of 10.07 percent
of the total sales in the Dutch market for this product. Thus this product will be analyzed
as a test case.

For the base stock calculations, the same information as for the Product A products is
obtained. The different data levels (POS, retailer’s orders, delivery Mars and forecast
Mars accounted for Jumbo) are gathered again except this time for the Product B. The
graphical representation of the data can be found in Appendix XIII. Again we see that the
effect of noise in the data is bigger when data is measured deeper within the supply
chain up to the delivery data from Mars.

Next, the data will be cleaned by means Winsorization. The averages and standard
deviation is then derived and used as input for the base stock calculations. The lead-
times at Mars are given by the supply chain planner. Under the collaboration between
Mars and Jumbo, the same parameters hold for Jumbo. The parameter that changes is
the lead-time from the Mars factory to the Dutch warehouse.

The replenishment lead-time constitutes of the following variables:
T,; = MFI; + P; + Ty + MH,

The Manufacturing Frequency Index is on average 1 week. The production time depends
on the size of the batch production (with average of 500 cases in 6 hours) and the
standard operating capacity of 83.3 cases per hour plus the set up time of 45 minutes.
The transportation time to the Dutch warehouse is two days as this product is produced
in the German factory in Viersen. However, the transportation time is within the 72
hours of micro hold and will thus be subtracted from the micro hold time, thus leaving
the last variable the remaining micro hold time.
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Table 19 Base stock level for Product B

Product B Sza (cases) Sia (cases) CurrentS,, CurrentS;. Totalbase Total current
stock stock

Delivery Mars 319.6 113.9 279 179 433.5 458

Retailer Orders 439.0 149.5 588.5

POS 373.0 127.1 500.1

The current maximum stock cover for the Product B at the Mars warehouse is 279 cases
(10.07 percent of the national stock of 2766 cases) and for Jumbo warehouse 179 cases
as the current measured stock (Table 19). Reduction is noticeable at the Jumbo
warehouse. Surprisingly the needed base stock level for the Mars warehouse is larger
than it currents stock levels.

The inconsistency with previous results is partly due to the input parameters given in
Table 20.

Table 20 Input parameters Product B

Product B n c B L, Ly h, hy Cases/ b
(weeks) (weeks) (€/case) (€/case) pallet (€/case)

Product B

Delivery Mars 64.25 47.54 0.98 1.4509 0.2000 0.01375 0.00183 77 0.764

Retailers orders 100.18 21.35 0.98 1.4509 0.2000 0.01375 0.00183 77 0.764

POS 85.11 18.25 0.98 1.4509 0.2000 0.01375 0.00183 77 0.764

As can be seen in Table 20 the average demand is quite different for the data in the
different levels. However, the pattern for the standard deviation is still the same as the
standard deviation becomes smaller moving to the POS data. A look into the case fill
might explain the differences in average demand. Unfortunately, case fill information
from the retailer orders is only available for 3 periods (of 4 weeks per period). During
these periods the case fill has predominantly been 100%. However, there was one
occurrence of a case fill of 80.95%.

From Table 19, the use of delivery data from Mars results in the lowest needed base
stock level. However, as the use of delivery data does not reflect the actual demand, one
can suppose that out of stock may have occurred seeing that the retailers and end
consumers have ordered a sufficiently larger amount.

8.2. Other customers
Considering the extension of data sharing onto other customers, the multi echelon serial
system transforms into a distribution system. When more customers can be taken into
consideration, one can benefit from risk pooling.
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Consider that each retailer has uncorrelated normally distributed demand with mean y;
and standard deviation o; . The replenishment lead times for all these retailers are the
same and all the retailers guarantee the same service level. Eppen (1979) compared two
operational modes of the J-retailer system: decentralized mode and centralized mode.
The completely decentralized system is a system in which a separate inventory is kept to
satisfy the demand at each source of demand. The completely centralized system is a
system in which all demands are satisfied from one central warehouse.

In the decentralized mode, each retailer orders independently to minimize its cost. The
total demand during lead-time to the manufacturer can then be viewed as L * Z{zl D;

and the standard deviation as VI * Y/_, 0.

In the centralized mode, all the retailers are considered as a whole so as to minimize the
total expected cost of the entire system. Since in the centralized mode all the retailers
are grouped, and the demand at each retailer follows a normal distribution N~ (y;, aiz),

the total demand during lead time to the manufacturer will be L * Z{zl D; as well.

However, the standard deviation is then considered to be /L * /Z{zl of.

This indicates the pooling of risks. For example if 100 retailers are considered, each
retailer has uncorrelated normal distributed demand with identical mean u and
standard deviation o. The standard deviation in the decentralized situation would be

VL * 1000 and in the centralized situation it would be VL * 100.

To consider this advantage in terms of a distribution system one can approach the
system with the decomposition and aggregation heuristic. First the system can be
decomposed into ] serial systems (Figure 15).

Figure 15 Decomposition of the distribution system into serial systems
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Then the optimal base stock levels can be solved according to the serial systems
heuristic. After the serial system optimization, the values of the retailers’ base stock
levels need to be fixed.

With the values of base stock levels for the retailers fixed, one can search for the optimal
base stock level for the manufacturer using aggregation benefiting the advantage of risk
pooling. The aggregation can then be considered as a serial system with the sum of the
retailers’ demand as the downstream echelon.

Due to the absence of POS data from other customers, the quantitative analysis cannot
be made for this part of the extension at the moment. However, the effects could be
significant and the current research can be used by means to persuade other retailers to
share their data.

8.3. Summary
After the analysis on the Product B it appears that for this particular product, the
delivery data from Mars results in the lowest needed base stock levels with a total base
stock level of 433.5 cases compared to 458 from the current total needed stock.
However, the data of delivery from Mars shows substantial smaller averages than the
retailer order and POS data, suggesting out of stock may have occurred. The reduction in
variability in demand while moving to the use of POS data is still present. With the
addition of other customers the needed base stock could be lowered as variability could
be pooled. To check whether the assumptions made during the calculations are justified,
sensitivity analysis needs to be conducted. This will be explained in the next chapter.
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9. Conclusion and recommendations

In this chapter a conclusion and recommendations for Mars Nederland B.V. will be given.
Not all subjects are covered and these will be discussed in the recommendations for
future research. The conclusion will be given in chapter 9.1. Next the recommendation
for Mars is given in chapter 9.2 and finally the recommendation for future research in
chapter 9.3.

9.1.Conclusion
The aim of this research was to look into the possibilities of supply chain cooperation
between Mars and its customers extending the pull project currently implemented for
line X at Mars. As former pull practices are implemented for the automotive and process
industry, research should be conducted for the Fast Moving Consumer Goods industry
with regards to pull principle of replenishment. The project definition is set as follows:

‘Design a collaboration model for Fast Moving Consumer Goods companies to
control information sharing onto the involvement of customers in order to optimize
stock levels and replenishment time.’

Part of this collaboration model turned out to have the form of a serial multi echelon
base stock control model that is in line with the pull principle. As replenishment only
takes place when demand has occurred, the number of work in process is secured to a
fixed maximum. Additionally a fixed value of order up to level secures the stock cover
during replenishment time in order to service the customers at the next step of the
supply chain but more importantly, the end consumers. A central and independent
entity or system is suggested to collect and analyse the data from different links of the
supply chain. The information should then be transferred to every link in the supply
chain and replenishment should then be based on the pull principle. The project had
several research questions.

‘What kind of information exchange model is needed in order to design the framework of
the new collaboration?’

The condition to obtain the collaboration is a central EDI system is required in order to
transfer demand data in a timely fashion such that replenishments can be reactive to the
given input. This implies that the links in the supply chain should be able to have trust in
each other in order to share information and replenish only what is necessary.

‘Which aggregation level of shared demand data is needed to have more accuracy to
control the supply chain?’

From the results of the base stock control heuristics it is visible that the closer to the end
consumer the demand data is measured, the less variation the data exerts. Thus using
POS data leads to the lowest level of stock needed as opposed to using the delivery data
from Mars.
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‘What will be the total replenishment lead-time in the new collaboration, specifically from
the Mars factory to the Dutch warehouse and from the Mars warehouse to the Jumbo
warehouse?’

The replenishment time will not be affected by the replenishment system of the base
stock policy. However, effects of changes in lead-time for both the Mars factory to the
Mars warehouse and Mars warehouse to Jumbo warehouse is considered. More
reductions can be obtained when initiatives are taken in order to shorten the lead-time
from the Mars warehouse to the customer’s (Jumbo) warehouse.

‘What are the possibilities to focus on other chocolates?’

The quantitative analysis of multi echelon base stock can be made for every other
product at Mars. However, because of the current pull project initiated for the Product A
products on line X, this line is already able to respond to demand in a Kanban
replenishment manner. Other lines are not yet able to be this reactive and therefore
require larger replenishment times and thus will not reflect the benefits of the pull
replenishment. Nevertheless, POS data can still be shared to eliminate the Bullwhip
effect throughout the chain.

‘How can the collaboration with Jumbo be generalized in order to be applicable for other
collaborations?’

As the obtained improvements in stock reduction is only considered for one retailer the
effects for the production planning is small. Once more retailers are involved, the data
will cover a larger part of the Dutch market. In this way bigger effects can be obtained
that might affect the production more. In order to generalize the applicability of the
collaboration with Jumbo, more retailers have to be involved. This transforms the
current serial multi echelon system into a distribution multi echelon system by means of
the decomposition aggregation heuristics.

9.2.Recommendations for Mars Nederland B.V.
Central data sharing system
The influence of using POS data is described in this research. In order to implement this
data for real time reactiveness from the links within the supply chain, a central data
sharing system is required where a central planner knows information for entire
system. Thus, the view is not on each company separately. Instead, the supply chain is
seen as a one single organization.

POS data of products with best before date implemented

As freshness is an important factory within the company one should be able to research
the freshness of the products the moment they are sold to the end customer (as the item
is being scanned). This will provide a measurable factor on freshness and freshness
improvements.
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Lead time reduction by reducing micro hold time

When considering the lead-time from the Mars factory to the Mars warehouse it is
noticeable that the micro hold time of three days is often experienced as a bottleneck.
Reductions in production are minimal when compared to the fixed micro hold. Further
research should be conducted on microbiological testing in order to improve this fixed
waiting time.

Reconsider full pallet full truck agreement

From the collaboration between Mars and Jumbo the agreement is made to deliver
within 24 hours when full pallets and full trucks are ordered. Although this agreement
frees handling this should be reconsidered. When the restriction to order in full pallets
and trucks is set, it distorts the ordering behaviour and the demand information. This
reasoning is also against the principle of pull or base stock replenishment and will result
in higher stock levels. Thus therefore the trade off should be made to consider less
handling cost and shorter lead-time against information distortion and higher stock
levels.

Case packs sizes in order to reduce the stock cover at the supermarket

The stock cover from the Mars warehouse to the end consumer is large due to the case
sizes of the different products. The Dutch market is small relative to other countries.
This is noticed considering the amount of a product that is sold at a random
supermarket. For the Product A products, an average of 4 to 5 consumer units is sold per
week per supermarket for a certain product. Thus a case of 22 consumer units of a
product is kept at a supermarket implies that this would be on shelf (or at least within
the supermarket) for 4 to 6 weeks. Reconsidering the size of these case packs could
already improve the freshness of the product at the moment of sale.

9.3.Future research
Extending this research for more Mars customers
Due to the absence of POS data from other customers, the quantitative analysis cannot
be made for the extension at the moment. However, the effects could be significant and
the current research can be used by means to persuade other retailers to share their
data. The effect would be larger when bigger part of the sales (and thus uncertainty) is
accounted for.

Substitution and cannibalism

Research into substitution behaviour (in case of out of stocks) of the chocolate products
is also needed as this directly influences the nature of the POS data. Moreover, when
comparable other products are in promotion, it might cannibalize the sales of Mars’
products. This should also be researched.
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Demand data instead of delivery data Mars

This research is conducted using three types of data; POS, retailer orders, and the
delivery data from Mars. The first two types of data are the direct demand from the next
link in the supply chain. However, Mars is currently using its delivery data in order to
forecast and replenish. This data does not completely reflect the actual demand as out of
stock also occurs. Therefore it is interesting to research the nature of the out of stocks
and document the order data as well as the delivery data.

Effects and forecasting of promotions, listings, and delistings using POS

In the current pull project the volatility translator is used to take into account the peaks
in demand in order to start stock building. The volatility translator uses current
forecasting from Mars to generate the peaks. However, when POS is available one can
research the direct effects of these promotions and use this information to have a more
accurate stock building level.

Supply chain profit and risk sharing

When close collaboration takes place between the supplier and the retailer, risk can be
pooled in order to obtain the most efficient supply chain. Subsequently, it is interesting
to find out how this risk can be allocated to the different links in the supply chain.
Through a game theory perspective, one can research how the amounts of risk can be
determined and allocated with regards to its benefits.
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Appendix I

List of Mars brands

The list of Mars brands per business segment:

Chocolate Petcare Wrigley

M&M's Pedigree 5Gum

Snickers Royal Canin Extra

Dove Whiskas Orbit

Mars Banfield Doublemint

Twix Cesar Skittles

3 Musketeers Nutro Eclipse

Bounty Greenies Airwaves

Maltesers The Goodlife Recipe Starburst

Celebrations Temptations Lifesavers

Balisto Sheba Freedent

Combos Crave Juicy Fruit

Revels Kitekat Excel

Kudos Frolic Hubba Bubba

Tracker Chappi Witer Fresh

Goodness Knows Winergy Altoids

Pure Dark Trill Sugus

Milky Way Waltham Boomer

Galaxy Aquarian Pim Pom

My M&M's Catsan P.K. chewing gum

Marathon Solano

American Heritage Chocolate Big Red

Amicelli Kenman
Lockets
Lucas Tunes
Spearmint
Rondo

Food Drinks Symbioscience

Uncle Ben's Alterra Cocoa Via

Dolmio Bright Tea co. Wisdom Panel

Masterfoods Klix Seramis

Suzi Wan Flavia

Royco Dove hot chocolate

Ebly

Seeds of Change

Raris

Kan Tong

Chocolate ice cream products are produced under a few of the chocolate brands.
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Appendix II Production lines Mars Veghel

Due to confidentiality, this appendix is removed.
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Appendix III Pull control systems

Within this section an overview is given for the different kinds of pull control
mechanisms. A pull control mechanism in a multi-stage system is a mechanism that
coordinates the release of parts into each stage of the system with the arrival of
customer demands for final products. In part i the base stock system is explained. Then,
in part ii the Kanban system is explained. Part iii illustrates the Generalized Kanban
system and iv the Extended Kanban system. Next, the hybrid Kanban system is explained
in partv.

i. Base Stock system
The purpose of the Base Stock policy is to satisfy demands to its maximum level. When a
demand arrives in the system, an entity is simultaneously transferred to each stage of
the manufacturing process (Duri, Frein, & Mascolo, 2000). The philosophy of the Base
Stock system is the following. When a customer demand arrives to the system, it is
immediately transmitted to every stage in the system, authorizing it to immediately start
working on a new part, which it pulls from the output buffer of its upstream stage.

«—decmands

Figure 16 Base Stock system

As seen on Figure 16 the manufacturing process is represented by MPi and the link
between stages is modelled by a synchronization station at the output of each stage. The
synchronization station is made up of two queues, one containing the finished parts of
the stage (Pi) and the other containing demands for the products from the next stage
(Ai+1)-

Echelon Base Stock

The echelon stock of a certain echelon j (in a general multi-echelon system) is the
number of units in the system that are at, or have passed through, echelon j but have not
yet been specifically committed to outside customer (Clark & Scarf, 1960).
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Within an echelon Base Stock the decisions for any particular stocking point are based
on its stock position and its direct demand process. Considering a general (s, S) system;
the order-up-to level S, also called the Base Stock level, is determined by:

S=s5+0Q
Where:
S = Base Stock level
s = Safety stock
Q = Order quantity

In terms of physical operation, the echelon inventory position at each level is monitored
according to the following relation:

Echelon inventory position = (echelon stock) + (on order)
The ‘on order’ term refers to an order placed by an echelon on the next higher echelon.

The echelon inventory position is reviewed after each transaction or on a periodic basis.
Whenever the inventory falls below the reorder point s, enough is ordered from the
preceding echelon to raise the position to the Base Stock level S (Silver, Pyke, &
Peterson, 1998).

ii. Kanban system

demands

Figure 17 Kanban system

The most popular control system is the Kanban control system (Figure 17) Kanban
means card in Japanese and refers to the mechanism whereby a production
authorization card is attached onto a part authorizing its release into a stage. The
philosophy of Kanban is that a customer demand is transmitted upstream of the system
from stage i only when a finished part is released downstream of stage i. The Kanban
control system provides tighter coordination between stages than the Base Stock system
(Liberopoulos & Dallery, 2000).
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CONWIP control system

The CONWIP is a pull control mechanism that holds the following principle. As soon as a
finished product leaves the system, a new part enters the system to begin its processing.
It is noticeable that a CONWIP control system is equivalent to a single-stage Kanban
control system that uses Kanban control to release parts into and out of that system.

iii. Generalized Kanban system

The generalized Kanban control system was proposed as a general approach to pull
production control incorporating the Kanban and the Base Stock systems. The difference
between the Kanban control system (KCS) and the generalized Kanban control system
(GKCS) is in the way information is transferred: in a GKCS the transfer of a finished part
from a given stage to the next one and the transfer of demands to the input of this stage
may be done independently of one another, whereas in a KCS they are done
simultaneously (Duri, Frein, & Mascolo, 2000).

demands

Figure 18 Generalized Kanban system

The GKCS (Figure 18) can be viewed as an extension of the KCS by noting that queue Pi
in the KCS is split into two queues, namely Pi and Bi, in the GKCS, and queue Di+1 in the
KCS is split into two queues, namely Di+1 and Ai+1, in the GKCS. Entities in queue Pi
represent the inventory of finished parts of stage i. Entities in queue Ai+1 are stage (i+1)
Kanbans and represent authorizations to transfer stage i finished parts to stage i+1.
Entities in queue Di+1 represent demands from stage i+1 for production of new parts by
stage i. Entities in queue Bi are stage i Kanbans and represent authorizations to transfer
stage (i+1) demands to stage i (Frein, Di Mascolo, & Dallery, 1995).
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iv. Extended Kanban system

Py I, PA, I, PA;
Raw | ]
e s ) () Jf P
customers
Dl D, D3

Demands

Figure 19 Extended Kanban system

The Extended Kanban control system (Figure 19) was proposed as a general approach to
pull production control combining the Base Stock and Kanban control systems. Like the
Generalized Kanban system, the Extended Kanban control system depends on two
parameters per stage; the number of Kanbans and the base stock of parts in inventory.

When a customer demand arrives to the system, it is immediately broadcast to every
stage in the system, as is the case in the Base Stock system. However, unlike the Base
Stock system, a part is actually authorized to be released from one stage to the
downstream stage only if one of a finite number of production authorizations of
Kanbans associated with that stage is available, as is the case in the Kanban system.

v. Hybrid Kanban system
The hybrid Kanban system is not a true pull strategy. It relies on forecasting for high-
volume, stable products, and build low-volume products to order (Holweg & Pil, 2001).
Thus this combines the with the pull strategy. The hybrid control strategy can be
classified into two categories: vertically integrated hybrid systems or horizontally
integrated hybrid systems. Vertically integrated hybrid systems consist of two levels,
usually an upper level push-type production ordering system and a lower level pull-type
production ordering system. Horizontally integrated hybrid systems consist of one level
where some production stages are controlled by push-type control and other stages by a
pull-type control (Geraghty & Heavey, 2004).
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Appendix IV List of resources

During the execution of this project many people within both Mars and Jumbo have
contributed to this report with their knowledge and information. During the initiation
phase of the project, the following interviews were taken in order to form a research
proposal.

Date Person Function

09-02-2012  Daniel Morgan Senior Demand & Availability Planner Confectionary
09-02-2012  Houkje Zwinkels-Janssen  Lean Implementation Manager
10-02-2012  Frans van den Boomen Value Chain Manager

15-02-2012  Dirk van den Hoogen Production Planner

Mieke Derkx Supply Chain Planning Supervisor
17-02-2012  David van Hommel Scheduler

Luc Janssen Central Industrial Engineer
21-02-2012  Suzanne Pegge Manager Outbound Logistics

Marleen van Vilsteren Customer Logistic Coordinator

After the introductory interviews, more in-depth meetings have taken place during the
project with the following list of people.

Person Function

Daniel Morgan Senior Demand & Availability Planner Confectionary

Houkje Zwinkels- Lean Implementation Manager

Janssen

Frans van den Boomen  Value Chain Manager

Marleen van Vilsteren Customer Logistic Coordinator

Natasha Vriens Demand & Inbound Logistics Manager

Chris van Bavel Replenisher CM Jumbo

Martijn Lekkerkerker Supply Chain Operator DKW Jumbo (Project team Mars Jumbo)
Lieke van Amelsfort Senior Demand & Availability Planner Petcare (Project team Mars Jumbo)
André Vriens Consultant Eye On (Project team Mars Jumbo)

Niek van de Crommert Consultant Eye On (Project team Mars Jumbo)

Next to the meetings documentation in the form of Excel files and PowerPoint
presentations about the pull project were made available. Moreover, from the supply
chain collaboration with Jumbo, the data of Jumbo was made available through a file
sharing site. Furthermore, a web seminar is followed at Mars academy about the
usefulness of POS data.
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Daily pull planning process

Appendix V
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Demand Product A products at Jumbo
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Product A.3
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Appendix VIII Forecasting Apollo using retailer orders & POS data

Vertical axis in consumer units.
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Product A.3
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Appendix IX Kanban calculations & electronic representation
Kanban file

Dmax

shment Time: Tr Safety Factor Kanban C: lation Supermarket for Direct delivery
% Kanbans
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When demand falls in the yellow region, the required amount to reach the green region
needs to be produced by the next production run. When demand falls in the red region,
thus exceeding the yellow green barrier, the required amount needs to be replenished
within the next 24 hours. The required amount is the amount needed to have the stock
level on the highest level of the green region. However, it must not surpass the green
area (unless a batch of products needs to be finished). These data will be sent to the
production department on a daily basis. It should be noted that most changeover to
other products of Line X is for different packaging. When set up in different recipe (from
milk chocolate to dark chocolate or vice versa) is required, the 24 hour replenishment
cannot be met due to longer set up time.
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Appendix X Demand distribution fitting using @Risk

Delivery data Product A.1

Fit Ranking -
Chisg

0,0 100,0

Maormal 27,9655
Extvalue 29,9375
InviEauss 29,9375 0,035
Lognorm 30,2185
Triang 30,2183 0,030
Expon 35,0000
Logistic 38,6563 W e
LogLogistic 49,6250 0,025 _—
BetaGeneral 62,5625 mgzx:‘n 1uuDJUOE?
Pearsons 159,5938 Mean 44,05
0,020 g Std Dav 34,47
burse Version vl s
LE
0,015 — Uniformn
Minimurn - -1,59
Mazirnum 101,59
0,010 Mean 0,00
StdDev 2978
0,005
0,000
o
o

Delivery data Product A.2

Fit Ranking ﬂ
Chi-5g

Unifarm o0

Trang 50,2513
BetaGenersl  101,0938
Expon 101,750 0018
ExtYalue 101,3750
TnwiGauss 101,3750 0,016
Lognotn 101,3750
Harmal 01,3750 014 B e
LogLogistic 102,2188 —_—
Logistic 108,1250 0,012 1 IV i
Pearsons 240,8750 Mean 6188
0,010 4 = Sl Dew 66,45
' @RISK Course Version Walues o4
TUE
0,008 - — Uniform
Minirmurn 5,08
0,006 4 Magirurm 325,08
Mean 160,00
Std Dew 95,31
0,004 -
0,002 -
0,000
=

Delivery data Product A.3

Fit Ranking j

LogLogistic
Expon
InvGauss
Lognarm
Logistic
RMormal
Triang
BetatGeneral
Unifarm
PearsonS

Chi-Sq

9,1250
12,5000
20,9375
20,9375
24,0313
32,1875
35,5625
45,6875
78,3125

166,6250

@RISK Course Versi
TUE

350 4

I o

WMiniraorn 0,00
Masimum 27,00
Mean 534
StdDev  E40
Values 64

= Extalue

Minimum  —oo
Maxirnurn +ee
Mean G.74
Std Dev 4,52



Retailer orders data Product A.1

Fit Ranking =

Fit Chi-5q

LogLogiskic 4,6462

Garmma 9,9077

InvEauss 13,2308 040

Mormal 13,2308

Weibull 14,8923 0,035

Extvalue 22,6462

Triang 24,0305

Uniform ssist W e
Expan 118,1846 — mmﬂ 359:003
Pareto 238,0154 o Mean 46,95

0,020

0,015

0,010

0,005

0,000

Retailer orders data Product A.2

Fit Ranking J

Std Dew 12,67
Walues (33

— Logistic

Minirurn  —oo

Std Dev 11,77

Chi-5gq
33,0 134,0

Pearsons 25,1563
Extvalue 27,6575
Logistic 29,6563 8,030
Gamma 33,0313
InvGauss 33,0313
Wbl sz,arso 0025
Mormal 34,1563 . Tnput
Triang 48,7613 e —
Uriform 11,2188 Mean 64,9

0,015

0,010

0,005

0,000

@RISKCourse Version

StdDev 33,81
Walues B4

= LogLogistic

Minimum 20,38
Mazirurm o
Mean BE,91
Std Dev 29,51

Retailer orders data Product A.3

Fit Ranking =
Chi-5q

RiskInvgauss(10,002;98, 43;RiskShift(-3,7263))

2,33 12,25
Loagnarm 9,1250
Pearsons 9,4063
Ext¥alue 10,2500
LogLogiskic 10,2500
Famma 10,5313
Weibull 20,9375
Hormal 23,1875
Lagistic 25,1563 W e
Triang 26,5625 Minimurm 0,00
Mazimum 15,52
Expon 57,5000 Mean 628
Unifarm 66,2168 Std Dev 3,29
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Walues B

Iy EENIE

Minirum 3,73
Mazirurn - +o
Mean b.28
Std Dew 3,19



POS data product A.1

Fit Ranking ﬂ
Fit
Garmma
InwGauss
Lognorm
Pearsons
Logistic
LogLogistic
weibull
BetaGeneral
Extvalue
Triang
Unifarm
Expon
Pareta

POS data Product A.2

Fit Ranking ﬂ
Chi-5g

Pearsons 74286 5,0
Lognarm 8,5714 6,4%
Extvalue 8,8571 0,045
InwGauss 10,8571
Logistic 13,4785 0040
Gamma 14,5714
BotaGeneral 15,1423 0035
‘Weibull 23,4286
Marmal 37,1429 D030
Expon 53,4288
Triang 55,7143 0,025
Pareto 70,7143
Unifarm 144,0000 0,020

0,015

0,010

0,005

0,000

8 ?

POS data Product A.3

Fit Ranking =
Chi-5q

2,60

Lognorm 14,8923
PearsonS 14,8923
LogLogistic 18,7692 0,307
‘weibull 26,2462
Expon 28,1846
Extvalue 32,0615 0,251
Triang 33,1692
BetaGeneral 33,6462
Marmal 46,4615 0,20 4
Logistic 47,5692
Unifarm 62,8000
Pareto 64,1077 0,154

0,104

0,05 4

@RISK Caurse Version

5,0% |
2,7% +

|

Minirurn 21,32
Maxirmumn &1,77
Mean 37.42
StdDav 3,30
*alues EE

= Plotmnal

Minimum  —oo
Maximum  +oo
Mean S
StdDev 280

W e

Minirurn 33,63
Mazinmum 150,75
Mean £9,12
Std Dev 13,03

@RISK Course Version alues [

TUE

&0
a0
100
120
140
160

11,47

75

=== LogLagistic

Miniraurn 28,23
Mazinmurm +oo
Mean SE11
Std Dev 1644

W o

Minirnurn 2,19
Mazirum 12,52
Mean £.8%
Std Dev 2,89
Walues 1

Ty Gauss

Miniraurn 1,25
Mazirnurn oo
Mean 5,88
Std Dev 3,01



Appendix XI Demand distribution fitting using @Risk with Q
Delivery data product A.1 in pallet layers

Fit Ranking ﬂ

Fit 35q
z om 7
Extvalue 30,1231 S, P S, 0% |
InvwGauss 37,0462 0,0%% 18,7% |
Lognarm a2
Logistic 35,4308
Mormal 38,4308
Uriform 40,3602 0,291
LogLogistic 45,6308
I
Expon 58,3692 I e
BetaGeneral 78,8615 0,204 Winirurn 0,00
Maxirnurn 12,00
PearsonS 159,7231 Mean 3,28
. Std Dew 2,70
o1 ISK Course Version vilues 68
)15 4
TUE
— Triang
Minirmura 0,00
0,10 4 Madimum 12,34
Mean 4,11
Std Dew 2,91
0,05 4
0,00 o
o o o + o @ z o -

Retailers orders data product A.1 in pallet layers

Fit Ranking ﬂ

hi-5q

Expon 144,7692

Triang 144,7692

Extvalue 146,4308

Invizauss 145,0923

Logistic 148,0923

LogLogiskic 143,0923

Lograrm 148,0923

Mormal 148,0923 | R

weeibull 148,023 Minimum 1,00

Pareto 160,5535 m::\:wm ggg
Std Dev 0,959
Walues 33
== Uniform
Maximurn 6,08
Mean 380
StdDev 1,49

Uniform 143,1077 5, Fa |
Ext¥alue 148,3231 17,0 +
InviEauss 145,3231 1,6
Lagistic 145,53231
LogLogistic 145,3231 14
Lognorm 145,3231
Mormal 145,3231 12
Triang 45,3230 [l o
tweibull 145,3251 Minimum 1,00
Pareto 09,5692 1O m::‘;““m gg?
X . Std Dew 0,305
- @RISK Course Version vilies 68
)
= Expon
0,6 Winirnurn 0,974
Marimum  +oe
Mean 258
04 stdDew 1,71
02
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Delivery data Product A.2 in pallet layers

Fit Ranking

Fit

BetaGeneral 96,3077

Triang 97,9692

Expan 99,6308 0,18

Extvalue 99,6308

InviEauss s9,6308 18

Logistic 99,6305

LogLogistic 29,6308 0,14

Logniorm 99,6303 . Input

Mormal 99,6308 0,12 Minirmur 0,00

Pearsons 236,9846 m::l:’!\-lm 3‘;4502
e @RISK Course Version 2

TUE

=== Uniform

Minirnurn -0,531
Marimum 3453
Mean 17,00
StdDew 10,12

PearsonS

Famma 20,1538
0,20
InvGauss 20,1538
Lognotn 22,9231 018
Loglogistic 24,0308
Logistic
weibull
Normal Il e
Triang Minimum 0,00
Warimum 23,00
Expon Mean 831
Unifarm SidDev 450

Course Version Values 65

= Extialue

Minirnurmn o
Maxirnumn o
Mean 8,88
StdDev 4,12

POS data Product A.2 in pallet layers

Fit Ranking -l

Chi-Sq

Expon 58,6462

InvGauss 55,6462

LogLogistic 58,6462

Lognorm 58,6462

Pareta 58,6462

ExtValue 59,4769

Logistic 59,4769

I

Triang 61,3077 W e

BetaGeneral 64,0769 mwm_mum 155,003
zximumm 15,

Gamma 70,8308 Mean 768

weibull 70,8308 S Dev 2,46

Unifirm 143,1077 Values kg
= MNotmal
Minimumn — —so
Maxirmum  +oo
Mean 7,68
Std Dev 2,46
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Delivery data Product A.3 in pallet layers

Fit Ranking ﬂ
Fit Chi-5g
BetaGeneral  173,2923
Triang 173,2923
Uniform 173,2923
Expon 174,9538
ExtValue 174,9538
Logistic 174,9538
Lognotn 174,9538

T |

@RISK

Retailer orders data Product A.3 in pallet layers

Fit Ranking |
Fit Chi-sq
BetaGeneral  192,6763
Expon 192,6769
Extvalue 192,6769
InwGauss 192,6763
Logistic 192,6769
LogLogiskic 192,6768
Lognorm 192,6769
PearsonS 192,6769
Triang 192,6765
Uniform 192,6769

Fit R.anking ﬂ
Fit. Chi-5q
BetaGeneral  194,56154
Expon 194,6154
Extvalue 194,6154
Logistic 194,6154
LogLogistic 194,6154
Lognorm 194,6154
1 |
PearsonS 194,6154
Triang 194,6154
Unifarm 194,6154

0,0

|

WMinirnum 0,00
WMasimum 3,00
Mean 0,692
Sd Dev 0,705

Values 65
— Marmal

Minimum =
Marimum  +e

Mean 0,632
Std Dev 0,705

. Input

Minimum 0,00
Maxirnum 2,00
Mean 0.738
StdDew 05139

“alues 23

— Motmnal

Minirmurn
Maximum e
Mean 0738
SwdDev 0519

—a

e

Minirmur 0,00
Marmum 2,00
Mean 0,632
Std Dev 0,610
Walues 3

= Pormal

Minirmurn
Maxirmumn o
Mean 0,632
StdDev  0&10

—o0

i
ST e 4
RISK Cours rsion
TUE
POS data Product A.3 in pallet layers
0,000 2,000
5, 5,
L 12, 5% 1,6%
RISK Cours: rsion
TUE
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Appendix XII  Sensitivity holding cost assumption

Optimal number of cases

N
Ul
o

N
o
o

=
w1
o

=
o
o

w1
o

Product A.1

1,06 1,08 1,10 1,15 1,20 1,25 1,30 1,35 1,40
Holding cost/pallet Jumbo warehouse

=352 Delivery Data Mars ====S2 Retailers Order Data ====S2 POS data

== S] Delivery Data Mars e===S1 Retailers Order Data ====S1 POS data

1,45

1,50

Optimal number of cases

350

300

250

200

150

100

50

Product A.2

E

1,06 108 1,10 1,15 120 1,25 1,30 1,35 1,40
Holding cost/pallet Jumbo warehouse

=52 Delivery Data Mars === S2 Retailers Order Data ====S2 POS Data

=51 Delivery Data Mars ====S1 Retailers Order Data ====S1 POS Data

1,45

1,50
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Product A.3

25

§ 20 ——

3

[

E 15

g

£ 10

E

S 5

0
1,06 1,08 1,10 1,15 1,20 1,25 1,30 1,35 1,40 1,45 1,50
Holding cost/pallet Jumbo warehouse
== S2 Delivery Data Mars e===S?2 Retailers Order Data ====S2 POS Data
=51 Delivery Data Mars ====S1 Retailers Order Data ====S1 POS Data

S2 h1 (€) 1.06 108 110 115 120 125 130 135 140 145 1.50
product A.1
Delivery Mars 224.1 223.8 223.6 2229 2223 221.6 221.0 220.5 2199 2194 21838
Retailer orders 201.6 201.4 201.2 200.6 200.1 199.6 199.1 198.6 198.1 197.7 197.2
POS 160.0 1599 159.7 159.2 158.8 1584 158.0 157.6 157.3 156.9 156.6
Product A.2
Delivery Mars 277.4 2770 276.7 2759 275.1 2743 273.6 2729 2722 2715 270.8
Retailer orders 301.5 301.2 300.8 300.0 299.2 2984 297.6 296.9 296.2 2955 294.8
POS 249.0 248.7 248.4 247.8 247.1 246.5 2459 2453 2447 244.1 243.6
Product A.3
Delivery Mars 214 214 214 213 21.2 21.2 21.1 21.1 21.0 20.9 20.9
Retailer orders 22.5 224 224 223 22.3 22.2 22.1 22.1 220 220 219
POS 209 209 208 20.8 20.7 20.7 206 20.6 20.5 20.5 20.4
S1 h1 (€) 1.06 1.08 1.10 1.15 120 125 130 135 140 145 1.50
product A.1
Delivery Mars 114.7 95.1 90.2 84.1 80.5 78.0 76.0 74.3 72.9 71.6 70.5
Retailer orders 975 81.1 77.0 719 689 668 651 63.8 626 615 60.6
POS 77.3 644 61.1 57.1 54.7 53.0 51.7 50.6 49.7 488 48.1
Product A.2
Delivery Mars 1424 118.0 1120 104.3 999 96.7 94.2 92.2 904 888 875
Retailer orders 1475 1226 1164 108.6 104.1 1009 983 96.2 944 929 914
POS 120.1 100.0 950 886 850 824 80.3 78.6 77.1 75.9 74.7
Product A.3
Delivery Mars 13.9 11.5 10.9 10.2 9.8 9.5 9.2 9.0 8.8 8.7 8.6
Retailer orders 14.2 11.8 11.2 10.5 10.0 9.7 9.5 9.3 9.1 8.9 8.8
POS 13.2 11.0 104 9.7 9.3 9.0 8.8 8.6 8.5 8.3 8.2
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Demand Product B

Appendix XIII

The vertical axis is in consumer units allocated for Jumbo.

Product B
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