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ABSTRACT 

In this master thesis project, we investigate an inventory system consists of 1 supplier and 2 retailers 

that use a base-stock policy. The supply process at retailer 1 is always available but the supply process at 

retailer 2 might be disrupted. If necessary, transshipments (complete pooling policy) can be conducted 

from retailer 1 to retailer 2. The objective is to find an optimal base-stock level for each retailer that 

minimizes system wide holding, backorder and transshipments costs. Some numerical experiments are 

conducted in order to get insights about the sensitivity of each parameter and how the system benefits 

from transshipments.  
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EXECUTIVE SUMMARY 

Incorporating supply disruptions in an inventory system has gained a lot of interest due to several 

reasons such as recent high-profile disruptions events that harmed supply activities. Having supply 

disruptions modeled in an inventory system can protect companies from great loss caused by the risks 

of these events. Based on this, we examine an inventory system consists of a supplier and 2 retailers, 

where one of the retailers faces the possibility of supply disruptions. In order to improve system’s 

performance, we allow transshipments between the retailers. The idea is that transshipments can 

reduce the number of backordered demand for the retailer that faces disruptions.  

We assume that each retailer uses a base-stock inventory policy and the inventory is reviewed 

periodically. Orders attempt to the supplier are placed every period without fixed cost. The retailers face 

constant demand every period. The supply process to the disrupted retailer is assumed to follow a 

discrete time Markov chain (DTMC). The costs considered in the system are penalty costs, holding costs 

and transshipments costs, where all the costs are calculated in the end of the period. The objectives of 

this project are to the find base-stock level for each retailer that minimizes the total costs and 

investigate about how the inventory system with supply disruptions can get benefit from 

transshipments. 

We formulate a cost function for such system and prove that the cost function is piece-wise linear in the 

base-stock level of both retailers. Following that, we also prove that the cost function is convex. From 

those results, we built expressions to calculate the optimal base-stock levels for both retailers. 

Several numerical experiments were conducted to get insights about the impact of each parameter on 

the optimal base-stock levels also to investigate the benefit of transshipments in a disrupted 

environment.   

From the experiments, we find that each parameter has different influence on the optimal base-stock 

levels. Transshipments are beneficial in cases where inventory system has low holding cost at the 

undisrupted retailer, high holding cost at the disrupted retailer, high penalty cost at the disrupted 

retailer, low transshipments cost, high disruptions probability and low recovery probability. In these 

cases, having more inventory at the undisrupted retailer leads to lower cost as the backorders cost can 

be completely avoided. Numerical experiments also confirm our expectations that the cost resulted 

from policy that allow transshipments always lower or equal to the policy that does not allow 

transshipments. In addition, the benefit of transshipments is very obvious when the recovery probability 

is very low. 
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Related to the analysis regarding disruptions parameters, we find that in general changes in recovery 

probability provide more significant cost reductions compared to changes in disruptions probability. 

However, companies still need to look carefully at the value of each cost parameters when they want to 

minimize the cost by managing disruptions parameters since there are some cases where changing 

disruptions parameter does not change the cost or even make the cost higher. 

The results in this thesis show that allowing transshipments between retailers in a disrupted 

environment is beneficial in terms of reducing the total cost. Through a well-planned base-stock levels 

value and transshipments decision, the risk of supply disruptions can be mitigated. The research 

presented here can be extended by relaxing some assumptions so that it can represent the real-life 

cases better such as make both retailers face supply disruptions, incorporate a positive lead time or 

consider a stochastic demand.   
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I. INTRODUCTION 

1.1 Motivation 

Incorporating supply disruptions in an inventory system has gained a lot of interest due to several 

reasons such as recent high-profile disruptions events that harmed supply activities (Snyder, 2008) or 

the popularity of just-in-time (JIT) practices that make the company become vulnerable to supply 

uncertainty events (Gullu et al., 1997). Having supply disruptions modeled in their inventory system can 

protect companies from great loss caused by the risks of these events. Disruptions can be caused by 

several problems and one of them is related with transportation problem. The example for this type of 

problems is presented in the table below: 

 

Table 1 Examples of Supply Disruptions 

 In those events, disruptions had caused distribution activities in several links to stop functioning for an 

amount of time. For example, Hurricane Katrina in 2005 clogged major transportation hubs around US 

gulf coast region, the facilities around the affected area also were not working. These conditions made 

the affected companies could not receive material or stocks from its supplier. Thus, they should find a 

way to mitigate this situation in order to reduce the amount of stockouts such as by piling up inventory 

or having another source of stocks from other suppliers or from its own warehouse in other place that is 

not affected by disruptions. In this project, we interested in modeling those cases, that is, inventory 

model with supply disruptions in which the disruptions cause broken link between supplier and one of 

its branch/retailers. 

In addition to supply disruptions, we also intended to incorporate the possibility of transshipments in 

the system. Most of the literature review about supply disruptions assumes that when disruptions occur 

between a supplier and a retailer, the supply process to that retailer is completely inoperative. In the 

Prepared Unprepared
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transportation disruptions, some distribution links in the system are disrupted and thus the retailers 

that are connected with the supplier through that link cannot receive stocks. We notice that 

transshipments activities between retailers allow them to improve their ability to satisfy customers’ 

demand by stocks reallocation between retailers. In general some literature agree that transshipments 

allow the retailers or stocking points in the same echelon to pool their inventories, so that each retailer 

does not have to keep high level inventory, in order to decrease holding costs and yet still achieving the 

desired service levels. 

 

1.2 Problem Definition 

We are interested to examine an inventory system consists of a supplier and 2 retailers, where one 

of the retailers faces the possibility of supply disruptions. Another retailer is able to conduct 

transshipments when the retailer that faces disruptions experiences stockout. The idea is that 

transshipments can reduce the number of backordered demand for the retailer that faces 

disruptions.  

 Considering both problems (supply disruptions and transshipments), we would like to address the 

following research questions: 

1. In an inventory system that allows transshipments between its retailers where supply 

disruptions risk is faced by one of the retailers,  given that the retailers use a base-stock policy, 

how to calculate its parameter (base-stock level for each retailer) that minimizes the total costs 

for such system? 

2. How the inventory system with supply disruptions benefited from transshipment? 

1.3 Outline 

The remainder of this thesis is outlined as follows: In Chapter 2 we review relevant literature in the 

field of supply disruptions and transshipments problem. In Chapter 3 we describe the system 

investigated in detail including the assumptions, series of events and constraints. In Chapter 4 we 

formulate the cost function for the system investigated. In Chapter 5 we analyze the cost function 

and show that the cost function is piece-wise linear in the base-stock level of retailer 1 and retailer 

2. We also show the convexity of the cost function and the calculation regarding the optimal base-

stock levels for the system. In chapter 6 we do some numerical analysis in order to gain some 

insights about how the system benefited from transshipments. We summarize our conclusion in 

chapter 7 and establish a future research direction.
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II. LITERATURE REVIEW 

In this chapter we present the important literature available about supply disruptions and 

transshipments. Supply disruptions

 

are random events where the supply process is interrupted so that 

it is completely or partially not functioning (Snyder & Shen, 2006) while transshipments can be defined 

as a practice of transferring stock from a location with excess stock to a location that faces shortages. 

These stock movements are carried between locations in the same echelon.  

We begin this chapter by a discussion about supply disruptions and then followed by a review about 

transshipments.

 
2.1 Supply Disruptions 

The negative impacts of supply disruptions (due to interruptions in supply process) can be 

mitigated in 2 ways, strategic and tactical decisions. There are some strategic decisions to mitigate 

supply disruptions that are discussed in the literature. Tomlin (2006) proposed three strategies to 

tackle disruption problems: 

- Mitigation tactics. These strategies are those in which the firm takes some action in advance of 

disruption. The examples of this tactic are business interruption insurance, flexible supply 

contracts  (Tsay & Lovejoy, 1999), and multiple-supplier sourcing strategy. 

- Contingency tactics. The methods here are those in which the firm takes an action only in the 

event a disruption occurs, such as temporarily increasing production at alternative 

suppliers/locations (rerouting) and the company also can shift the customer demand from high 

end to low end (demand management).  

- Acceptance means that the company does nothing to mitigate disruptions and accept the risk 

caused by disruptions.  

 As for the mitigation strategies that focus on inventory decisions, we divided the discussion of 

these problems into two sub-sections, continuous review and periodic review. Most of the papers 

in this review model disruptions as a supply process that has 2 states: 

- State when the supply functions normally, in this review we will refer it as an “ON” state. 

Usually on this state, the supplier has infinite capacity. 

- State when disruptions occur, we will refer it as an “OFF” state. 

The length of ON and OFF state is typically random. Some papers assume exponential distributions 

so that the supply process can form a two-state Markov chain. Some papers also discuss another 

type of distribution such as Bernoulli or Erlang distribution. 
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2.1.1 Continuous Review 

One of the methods to deal with disruptions is to extend the EOQ model in a way that it 

incorporates disruptions process like the EOQD model that is first presented by Parlar and 

Berkin (1991). They used the renewal reward theorem to build an average cost objective 

function and optimized it to find the optimal value of the order quantity.  

Berk & Arreola-Risa (1994) corrected the model by Parlar and Berkin (1991). They found 2 

implicit assumptions that are invalid: (1) in every OFF interval, stockouts always occur and (2) 

the lost sales cost is incurred per unit per time instead of per unit. The authors derived a 

corrected model to calculate the expected annual cost as a function of the order quantity.   

Snyder (2008) provided an approximation for the EOQD cost functions from Berk & Arreola-

Risa (1994). The approximate cost function can be solved in a closed form. The author showed 

that when the ON period is significantly larger than the OFF period, the cost in this EOQD 

model approaches the cost in EOQ model. 

Some papers also examine an inventory system where the reorder point is not zero (NZIO). 

Parlar and Perry (1995) extended the research from Parlar and Berkin (1991) by relaxing the 

zero order policy. They constructed a long run average cost functions for this system using the 

renewal reward theorem. Numerical solutions were shown and sensitivity analysis was 

conducted. In addition to deterministic yields, this paper also considers the case of yield 

uncertainty where the quantity received is a random function of the quantity ordered.  

Gupta (1996) examined supply disruptions in an inventory system that has a continuous 

review, fixed order quantity and reorder point i.e. following a (Q, r) policy. The author 

assumed Poisson demand exponential distribution for the lengths of the supplier’s ON and 

OFF periods. He constructed the expression for average cost for every situation and solved 

them numerically. Computational results show the cost function to be well behaved and show 

that ignoring supply uncertainty can be relatively very expensive, especially when the OFF 

periods are long or stockout penalty is high or both.  

Arreola-Risa & DeCroix (1998) also investigated a continuous review inventory system where 

there is possibility that the supply is disrupted for a random amount of time. Different with 

the previous literature that have been discussed, this paper treats the demands in the system 

as partial backorders, where a fraction of demands that arrive during a stockout is 

backordered and the remaining fraction is lost. They explored the impact on the optimal 

values of the policy parameters of variations in the characteristics of supply disruptions and 

partial backorders. One of managerial insights from this paper is that to manage a change in 

the severity of supply disruptions, the inventory decision should be adjusted in the same 

direction as the change.
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2.1.2 Periodic Review 

Parlar et al. (1995) addressed a periodic-review setting with two types of setup costs: (1) 

setup cost which incurred whenever an order is placed and (2) setup cost that incurred only if 

the order is filled. The probability that the order is satisfied depends on the supplier’s state in 

the previous period. They prove that an (s,S) inventory policy is optimal under this situation, 

where s depends on the state of the supplier in the last period, but S does not. 

Song and Zipkin (1996) explored an inventory system with periodic review which has 

exogenous supply system, that is, the supply state is independent of the demands and orders 

from the retailer that is being investigated. They model the supply system as a discrete-time 

Markov process.  They proved that when the fixed cost is positive, an (s,S) policy that depend 

on the current state of the supply system is optimal. In the linear cost case (with no fixed 

cost), the optimal policy become a base-stock policy with state-dependent base stock level. 

Ozekici & Parlar (1999) examined a periodic-review inventory model that the parameters 

subject to a randomly changing environment. The state of the environment is modeled as a 

time-homogeneous Markov chain. They show that in a linear cost model where fixed ordering 

cost is omitted, an environment-dependent base-stock policy is optimal. In the presence of 

positive fixed ordering costs, the optimal policy is an environment-dependent (s, S) policy with 

some restriction of the fixed ordering costs. 

Argon et al. (2001) investigated an inventory system with backorder dependent deterministic 

demand and supply uncertainty. They used a supply process where the number of periods 

between two supply realizations is random in order to capture the effects of changes in the 

demand process. Their objective functions is to maximize the expected profit per period and 

through numerical examples they found that the objective functions does not have a specific 

structure. However, they showed that finding an order-up-to level for the system that 

maximizes its profit is possible. 

Schmitt et al. (2010) considered an inventory system that use a base-stock policy and has a 

possibility of supply disruptions. In addition to supply disruptions, the system also faces 

stochastic demand or yield uncertainty. The supply disruptions are modeled using an infinite-

state discrete-time Markov chain and the demand is assumed to be normally distributed. They 

solve the problem using an approximation called Single Stochastic Period (SSP) and for the 

first case (combination of supply disruptions and stochastic demand) they found that in 

general, their approximation performed extremely well since the average percent error is very 

small. 
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2.2 Transshipments Problems 

Transshipments provide an effective mechanism for correcting discrepancies between the locations’ 

observed demand and their available inventory that is expected to cost reductions and improved 

service without increasing system-wide inventory (Ozdemir et al., 2006). The inventory management 

policy of this problem has been investigated in many different settings. Some authors consider a 

periodic review setting whereas others consider continuous setting. Models also differ in the 

number of stocking locations, types of ordering, and so on. Another feature is whether a 

transshipment policy is using complete pooling or partial pooling. The former is a general term 

attached to policies where the transshipping location is willing to share all of its stock, the latter is 

used when part of the stock is held back to cover future demand. The literatures presented here are 

divided into two sub-sections: continuous review and periodic review. 

2.2.1 Continuous Review 

Lee (1987) developed a continuous-review multi-echelon model for repairable items. The 

authors attempt to extend the basic METRIC framework developed by Sherbrooke (1968) to 

cases when emergency lateral transshipments are allowed and used. The system consists of 

one depot and M bases. The bases that are identical are pooled in one group. From 

numerical examples based on the approximate model it is shown that the use of emergency 

lateral transshipment can result in significant savings. 

Ollson (2009) examined a single echelon inventory system with two identical locations 

where a given transshipment rules is applied. The author considered two approaches. First it 

is assumed that the locations apply (R, Q) policies for normal replenishment. Second, the 

assumption of (R, Q) policies is relaxed and the optimal replenishment policy using 

stochastic dynamic programming is derived. The author examines how well the commonly 

used (R,Q) policy performs compared to the optimal policy. From numerical results it is 

shown that the cost difference when using the (R,Q) policy compared to the optimal policy 

is very small when the demand rate is relatively small. However, when the demand rate is 

relatively large, the cost difference becomes significant.  

The literatures reviewed above consider a complete pooling. Axsater (2003) considered a 

decision rule for partial pooling examining a single-echelon inventory system consisting of a 

number of parallel local warehouses facing compound Poisson demand. The warehouses 

have (R, Q) ordering policies when replenishing from the supplier. The transshipments take 

no time but incur additional costs. The purpose of the model is to find a suitable 

replenishment policy, which includes reorder points and batch quantities for normal 

replenishments as well as a decision rule for transshipments. The decision rule has been 

evaluated in a simulation study, and the results support that the rule performs very well. It 
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is also shown that the savings obtained by using lateral transshipments are larger when the 

stochastic demand variations are larger.  

Evers (2001) considered similar model with Axsater (2003), but instead of backorder the 

author assume lost sales under (R, Q) policies. Two heuristics are developed to assist 

decision makers in determining when stock transfers should be made. The heuristics 

produce critical values for on-hand inventory levels above which transshipments minimize 

overall expected costs. The rule proposed considers the direct costs incurred by 

transshipping compared to the savings incurred before making a transshipment decision. 

 

2.2.2 Periodic Review 

Krishnan and Rao (1965) introduced the idea of transferring stock between identical 

retailers after demand is observed and they showed the advantage of transshipments 

(Ozdemir et al., 2006).  Robinson (1990) examined the effects on the optimal ordering policy 

of allowing transshipment among retailers as recourse actions occurring after demands are 

realized but before they must be satisfied (reactive transshipment). The model used here is 

an extension of the problem considered by Krishnan and Rao (1965) by allowing for multiple 

periods, varying costs across the retailers, and more general distributions. The objective of 

the model is to determine the ordering and transshipment policies that minimize the 

expected net present value of current and future costs. The resultant savings in holding and 

shortage costs are balanced against the costs of transshipment. The author found that a 

base stock ordering policy is optimal for this model. 

Jonsson & Silver (1987) investigated a two-level distributions system consisting of a central 

warehouse (CW) supplying several branch warehouses (BW's), which in turn, supply 

normally-distributed customer demands in a periodic-review environment. The CW 

replenishes system inventory using a base-stock replenishment policy and a predetermined 

order cycle of time periods. From numerical results, they show that for the same service 

level, the allocation method with transshipment gives a considerably smaller investment in 

inventory. Their results also showed that transshipment system become more advantageous 

in situations with high demand variability, a long planning horizon, many BW’s, a high 

service level and short lead times. 

Tagaras and Cohen (1992) examined an inventory system with 2 locations with positive 

replenishment lead times. The authors investigated different transshipment policies and 

compared the performance of those policies. The inventory decision (the order-up-to level) 

is calculated based on a heuristic algorithm. From numerical examples, it is shown that 

complete pooling outperforms partial pooling. The authors stress the important role of 



8 
 

transshipments in an environment with positive replenishment lead time since this practice 

can reduce the risk gained from uncertainty over future material availability. 

Ozdemir et al. (2006) considered multi-location transshipment problem where 

transportation capacity are restricted. It means that transshipment quantities between 

locations are limited, depends on the capacity of transportation mode used. They developed 

a solution procedure based on infinitesimal perturbation analysis to solve the stochastic 

optimization problem where the objective is to minimize the total cost. By conducting 

experimental design, the authors showed that the capacity restriction changes the system’s 

inventory distribution and increase the total cost.

 
2.3 Summary 

2.3.1 Summary of literature review 

From the supply disruptions papers discussed above that use continuous review, it is clear that one 

of the methods to deal with disruptions is to extend the EOQ model in a way that it incorporates 

disruptions process like the EOQD model that is presented by for example Berk & Arreola-Risa 

(1994) and Snyder (2008). In the EOQD model, the length of the ON and OFF period are commonly 

assumed exponentially distributed, hence the disruptions process can form a two-state continuous 

time Markov chain. To express the expected cost most of the papers use renewal reward theorem.  

When they could not prove the convexity, they solve the problem numerically and found that the 

results are consistent with the classic model EOQ. The order quantity from EOQD formula is higher 

than the order quantity calculated by classical EOQ model because more inventories are needed to 

buffer the risk of supply disruptions. 

Some papers also examine an inventory system where the reorder point is not zero (NZIO). For this 

NZIO case, most of the papers consider an (s, S) policy. This policy means that when the inventory 

level reach s and the supply is available, the firm should order Q units so that the inventory level 

reach S. When the supply is unavailable (OFF period), the firm does not order. It is also shown that 

when disruptions are long and stock-out cost are high, the value of incorporating disruptions into 

inventory model is very high.  

For periodic review problem, when there is no fixed cost, a base stock policy can be optimal. When 

we incorporate a positive fixed cost, some papers agree that an (s, S) policy is optimal. In this case, 

the optimal parameters depend on the current state of the supply system. 

The review about transshipments problem has shown that this problem have been investigated in 

many different setting of inventory system with subtle differences between the models considered, 

such as how many locations considered, the pooling preferences, cost parameters and so on.  The 

different setting will change the complexity of the problem and the nature of the transshipment 

policy. Transshipment can be used as a recourse action in order to minimize backorders (Lee, 1987) 
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therefore penalty cost can be decreased. In addition, for the same service level, allowing 

transshipment leads to smaller investment in inventory (Jonsson & Silver, 1987). However it should 

be noted that transshipments incur other costs such as additional transportation cost for the 

transshipment and the cost of issuing this request (transaction cost). The transshipments decisions 

usually include the trade-off between these costs. 

2.3.2 Contribution and Relevance 

To the best of our knowledge, the current literature is either focusing on just supply disruptions or 

just transshipments. In this project, we investigate an inventory system that incorporates both 

problems (supply disruptions and transshipments).  

Some real-life cases that are relevant with our problem of interest are shown in table 1. From those 

cases, the most relevant case is case no 3 (Hurricane Katrina in the U.S. Gulf Coast Region). Before 

the disruption event happened, Wal-Mart already has several distribution centers including a big 

one in Houston. When the storm attacked, the supply process of two distribution centers were 

badly affected, but the Houston facility and Wal-Mart's many other distribution centers were 

survived. It means that the disrupted distribution centers or the customers under disrupted 

distribution centers can still receive goods from another distribution center that is not affected by 

the storm. In this case Wal-Mart mitigates supply disruptions by having more inventories and 

allowing stock movement between its distribution centers.  

We realized that this project may not represent the real-life cases perfectly as we make some 

assumptions to reduce mathematical complexity. However, this project can be seen as the first 

step for academic community and companies to gain comprehensive insights into an inventory 

system that incorporates supply disruptions and transshipments. 
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III. SYSTEM INVESTIGATED 

3.1 System Description 

In this case, we consider 2 retailers where the supply process at retailer 1 is always available while the 

supply process at retailer 2 might be disrupted. Every period, both retailers face a constant demand 

equal to d. Transshipments can be conducted from retailer 1 to retailer 2. We use a complete pooling 

policy for the transshipment (see e.g. Axsater, 1990 or Olsson, 2009). 

 

Figure 1 System Investigated 

We have the following assumptions for the inventory system: 

a. Each retailer follows a base-stock inventory policy that is reviewed periodically. The inventory is 

observed each period so that it follows (1,S) policy. The reason why we assume a base-stock 

inventory policy is because some researchers have proven that this policy is optimal policy when 

there is no fixed ordering cost, for example:  

- Song and Zipkin (1996) showed that for a periodic-review inventory system with a Markovian 

supply process, a base-stock policy is optimal if there is no fixed cost.  

- Ozekici and Parlar (1999) examined a periodic-review inventory model that its parameters 

subject to a randomly changing environment. They also showed a similar result, that is, they 

show that where fixed ordering cost is omitted in their case, an environment-dependent base-

stock policy is optimal.  

b. Orders attempt to the supplier are placed every period. We assume that there is no fixed order cost. 

c. The supply process to retailer 2 is assumed to follow a discrete time Markov chain (DTMC). The 

transition diagram of Markov chain of this process  is depicted in the figure below: 

Retailer 1

Retailer 2

Supplier 

d

d
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Figure 2 Transition Diagram for the System 

State 0 until j (where j is a very large number) represents the number of consecutive periods that the 

supply process to retailer 2 has been disrupted. α represents the probability that the supply process to 

retailer 2 is disrupted in this period given that 1 period before this retailer was not disrupted (disruption 

probability) and  represents the probability that the supply process to retailer 2 is not disrupted in this 

period given that 1 period before this retailer was disrupted (recovery probability). 

d. The retailers face constant demand each period. 

e. The supplier’s capacity is infinite. 

f. The lead times for the supply process and transshipment are zero. 

g. Unmet demands are fully backlogged. 

h. The costs considered in the system are penalty costs, holding costs and transshipments costs. 

3.2 Series of Events 

The system follows a series of events per period as described below: 

1. At the beginning of a period, each retailer observes its inventory level.  

2. Each retailer requests an order from the supplier to bring its inventory level to S (base stock level). 

Retailer 1 always manages to bring its inventory level to S1. For retailer 2, if the supply process for 

retailer 2 is ON, then its order is satisfied directly (zero lead time and infinite capacity) but if the 

supply process for this retailer is OFF, retailer 2 will not receive anything from the supplier.  

3. Each retailer then tries to satisfy the demand using the on-hand inventory (if possible). Following 

this action, there are 2 possibilities: 

a. Transshipment is not performed when retailer 2 can satisfy all of its demand in that period 

(i.e. retailer 2 does not have backorders). When retailer 2 does have backorders, 

transshipment still cannot be performed if retailer 1 does not have excess inventory. 

0 1 2 3 j

α



1-α

1-







1-
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b. Transshipment is only performed when retailer 2 experiences shortage and retailer 1 has 

excess inventory. The amount transshipped from retailer 1 to retailer 2 is the minimum 

between the excess at retailer 1 and the shortage at retailer 2. 

4. The remaining demand that cannot be satisfied at retailer 2 is backordered.  

5. Finally, all costs are calculated at the end of period (holding cost due to on-hand inventory, penalty 

costs due to backorders and transshipments costs). 

3.3 Notations 

Below are some notations that are used in this document: 

 Index 

Notation Definition 

j 

 

m 

 

Index representing the number of consecutive periods that retailer 2 has been 

disrupted, where j  {0, 1, 2, …..,  } 

Index representing the retailer, where  m  {1, 2} 

 

 

Parameters 

Notation Definition 

c 

hm 

pm 

d 

  j

mI  

j

mB  

 

α 

 

 

 

j 

F(j) 

Transshipment cost per item  

Holding cost per item per period at retailer m 

Penalty cost per item per period at retailer m 

Constant demand at each retailer per period  

The inventory level at retailer m at the end of a period when the system is in state (j)  

The backorder level at retailer m at the end of a period when the system is in state (j)  

 

Probability that the supply process to retailer 2 is disrupted in this period given that 1 

period before this retailer was not disrupted (disruption probability) 

Probability that the supply process to retailer 2 is not disrupted in this period given 

that 1 period before this retailer was disrupted (recovery probability) 

Steady state probability of being in the jth state of disruptions at retailer 2 

Probability that retailer 2 is disrupted for j or less than j periods.  

0

( )
j

j

i

F j 


  
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Variables 

Notation Definition 

Sm 

Xj 

TXj 

TXj-1 

Base-stock level for the inventory system at retailer m 

Transshipment quantity from retailer 1 to retailer 2 in state (j) 

Total transshipments quantity from retailer 1 to retailer 2 up to state (j) 

Total transshipments quantity from retailer 1 to retailer 2 before state (j) 

 

 Mathematical Symbol 

Notation Definition 

  x


 

x    

Maximum {0,x} 

 

the largest integer less than or equal to x 

 

 

3.4 Pre-conditions 

1. Base stock level value for each retailer 

We can limit the value of the base-stock level at each retailer as the following: 

a. Retailer 1 

Since retailer 1 will never be disrupted and the demand is constant every period, retailer 1 

needs at least to keep inventory equal to its own demand (S1 > d) to avoid backorder in each 

period. If this condition is not satisfied, then every period retailer 1 always experiences 

backorder and this will lead to a very big expected cost per period.  

The possibility of transshipments allow retailer 1 to save inventory more than its own 

demand. Since the demand at each retailer is the same, then at most retailer 1 will keep 

inventory equal to twice as much as the amount of the demand (S1 < 2d) as an allocation to 

satisfy the demand from retailer 2 (if this retailer is disrupted and does not have enough 

inventory) by transshipping its inventory less or equal to d. If retailer 1 keeps inventory more 

than 2d every period, then even retailer 1 satisfy both retailers’ demand (release 2d from its 

inventory), at the end of the period (after satisfying demand) retailer 1 will still keep inventory 
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and hence unnecessary holding cost will occur. This additional holding cost (due to keeping 

more inventory than needed) will lead to a very big expected cost per period. 

In conclusion, the following expression holds for the optimal value of S1: d < S1 < 2d. In the 

remaining analysis and numerical examples at chapter V and VI, this constraint will be used. 

b. Retailer 2 

Retailer 2 is the one that might face disruptions therefore it may need to keep more inventory 

than its periodic demand. At this point, we still cannot determine the maximum base-stock 

level value for retailer 2 (S2), but we can say that S2 should be bigger or equal to its demand (S2 

> d) under the assumption that the holding cost at retailer 2 is less than the sum of holding 

cost at retailer 1 plus transshipments cost (h1 + c > h2) which is a reasonable assumption. If the 

condition of S2 is not satisfied (S2 > d), then every period retailer 2 always experiences 

backorders. 

2. Cost parameters 

Cost parameters need to be carefully chosen so that the optimality of the complete pooling policy 

(where transshipment only take place from a retailer with excess inventory to a retailer with 

shortage until the excess inventory is depleted or the imminent shortage is completely avoided) is 

ensured. Therefore, while conducting numerical experiments, we choose our cost parameters 

according to the following conditions as suggested by Tagaras (1989): h1 + p2 - c > 0. If the 

condition does not hold, then one can already suggest that transshipments will not be beneficial. 
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IV. COST FUNCTION FORMULATION 

For the system described above, an inventory system with 1 supplier and two retailers in the presence 

of supply disruptions risk and the possibility to conduct transshipments between the retailers, we are 

interested in formulating the cost function that involve holding and penalty costs at retailer 1 and 

retailer 2 as well as transshipments cost that may occur. We can determine the expected cost per unit of

 time for such system as

 

the sum of the multiplication between the steady state probability of being in 

the jth state of disruptions (j) and the total costs (holding and penalty costs at retailer 1 and retailer 2 

as well as transshipments) at jth state as written in the following formula: 

 1 2 1 1 1 1 2 2 2 2

0

( , )         (4.1)j j j j j

j

j

C S S h E I p E B h E I p E B c E X


   



                         

Where: 

1 1                             (4.2)j jI S d X - -
 

1 1                            (4.3)j jB d S X - 
 

2 2 ( 1)                 (4.4)j jI S j d TX -  
 

2 2( 1)                (4.5) j jB j d S TX  - -
 

  1

1 2min , ( 1)                  (4.6)j jX S d j d S TX
 -  -  - -   

   1 2 2 2
1 2 1min ,1 min , 1 1     (4.7)j S S S

TX j S d d S S d j
d d d

 
 -

                  - -  -  - - -                                    

 

1       (4.8)j j jTX TX X-       
 

Each formula is explained in detail hereafter. 

4.1 Explanation of Each Formula 

4.1.1 Formula 4.2 

Formula 4.2 represents the inventory level at retailer 1 at the end of a period when the system is in state 

j. It equals to the base-stock level at retailer 1 (since in the beginning of a period retailer 1 always 

succeed to increase its inventory to its base-stock level) minus demand and transshipment quantity 

from retailer 1 to retailer 2 at state j.
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4.1.2 Formula 4.3 

Formula 4.3 represents the backorder level at retailer 1 at the end of a period when the system is in 

state j. It equals to the demand minus base-stock level at retailer 1 plus transshipment quantity from 

retailer 1 to retailer 2 at state j. 

4.1.3 Formula 4.4 

Formula 4.4 represents the inventory level at retailer 2 at the end of a period when the system is in state 

j. It equals to the base-stock level at retailer 2 minus demand that is multiplied by (j+1) plus total 

transshipment quantity from retailer 1 to retailer 2 up to state j (TXj). The demand in this formula has 

(j+1) multiplier since in the jth period of a disruption, j+1 periods’ worth of demand has taken place 

since the most recent replenishment.

 
4.1.4 Formula 4.5 

Formula 4.5 represents the backorder level at retailer 2 at the end of a period when the system is in 

state j. It equals to the demand that is multiplied by (j+1) minus the base-stock level at retailer 2 minus 

the total transshipment quantity from retailer 1 to retailer 2 up to state j. With the same reason as 

formula 4.4, the demand in this formula also has (j+1) multiplier. 

 
4.1.5 Formula 4.6 

Formula 4.6 represents the transshipped quantity at state j. It can be found by finding the minimum 

value between the available inventory at retailer 1 ([S1-d]+) and the backorder in retailer 2 state j. The 

backorder at state j in a retailer that faces disruptions is [(j+1)d-S2]+ (Schmitt et al., 2010). Since now we 

allow transshipments between retailers, the backorders expression above should be reduced by the 

total transshipment quantity that has been received by retailer 2 before state j (TXj-1). 

Simplifying Formula 4.6 

For ease of calculation, formula 4.6 can be replaced by: 

    1 2min , ( 1)                        (4.9)jX S d j d S
 

 -  -
 

The proof for above statement is as follows. The transshipped amount (Xj) can also be written in the 

following manner: 

    

 

2

2
1 2

2
1

0                                                  ,  j <      (a)

min , ( 1)  ,  j =         (b)

                                      ,  j >      (c)

j

S
for

d

S
X S d j d S for

d

S
S d for

d

 



  
  

  -  -   

 -
  








   
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To prove that formula 4.6 can be replaced by formula 4.9, we show that both formulas (formula 4.6 and 

4.9) can satisfy each condition (a, b and c) for Xj as written above. Let j* denotes the state of the system 

when the first transshipment occurs, that is when j is equal to the largest integer less than or equal to 

S2/d. 

- For condition (a) 

Both formulas 4.6 and 4.9 hold for condition (a). In both cases, TXj-1 is always zero, because no 

transshipment happened before these states.  

- For condition (b)  

Both formulas 4.6 and 4.9 hold for condition (b). TXj-1 is always zero in this case since the first 

transshipment will occur in this stage, so there is no transshipment happened before this phase. 

- For condition (c)  

Both formulas 4.6 and 4.9 hold for condition (c). The reason why formula 4.9 also holds for this 

case is because the value of [(j+1)d-S2]+ will always be larger than or equal to [S1-d]+ for j > S2/d 

since previously we already constrained the value of S1 (d < S1 < 2d) . Therefore finding the 

minimum value between [S1-d]+  and [(j+1)d-S2]+  will always yield to  [S1-d]+ for j > j*. 

In conclusion, formula 4.9 holds for all values of j, hence it can be used to replace formula 4.6. 

4.1.6 Formula 4.7 

Formula 4.7 represents the total transshipment quantity that has been received by retailer 2 before 

state j. It means that before and up to state j*, the value of TXj-1 is equal to 0. After j* the value of TXj-1 is 

positive.   

To build the expression for TXj-1, we consider 3 cases: 

1. TXj-1 when j < j* 

For all stages before j*, there are no transshipments. Hence TXj-1 is equal to zero. 

2. TXj-1 when j = j* 

 At stage j*, the first transshipment occurs, meaning that the total transshipments quantity before 

state j* (TXj*-1) is zero since there are no transshipments before stage j*. 

3. TXj-1 when j > j* 

For every stage after j*, the total transshipments quantity before state j (TXj-1) is positive.  

The general formula that holds for all 3 cases is shown below. For ease of explanation, the formula is 

divided into two parts: 



18 
 

   1 2 2 2
1 2 1min ,1 min , 1 1j

A B

S S S
TX j S d d S S d j

d d d

 
 -

                  - -  -  - - -                                    

Part A of formula 4.7 

We divide part A into two parts: A1 and A2 as shown below. Part A1 of formula 4.7 determines whether 

we should include the first transshipment quantity for calculating TXj-1.  

 2 2
1 2

21

min ,1 min , 1

AA

A

S S
PartA j S d d S

d d


             - -  -                         

The quantity of transshipped products at state j* (the first transshipment) is represented by expression 

A2, that is, the minimum between the available products at retailer 1 and the backorder at retailer 2 at 

state j*:  

       * 2
1 2 1 2min , 1 min , 1

S
S d j d S S d d S

d
     -  -  -  -        

  

In order to make the expression general for every state j, we have to add another expression to make 

sure that up to state j*, the value of part A is equal to zero. The expression that we need is formula A1 

which then is multiplied with the transshipped quantity (A2). We distinguish 2 cases for A1: 

- For j < j*, the A1 expression for TXj-1 always returns 0, therefore part A is equal to 0 as well. 

Meaning that no transshipment occur for every state before state j*.   

- For j > j*, the A1 expression for TXj-1 always returns 1, therefore part A is equal to A2. Meaning 

that for every state after j*, part A is equal to the quantity of the first transshipment. 

 

 

To sum up, the expression for the transshipment quantity when the system experiences the first 

transshipment activity at state (j) is: 

 2 2
1 2min ,1 min , 1

S S
j S d d S

d d


            - -  -                         
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Part B of formula 4.7 

Part B represents the amount of transshipment quantity from the 2nd transshipment onward until state 

(j-1) without the first transshipment. If we do not constraint the value of S1, after the first 

transshipment, the transshipment quantity every period is: 

  1min ,S d d


-
 

Since we already constrained the value of S1 to: d < S1 < 2d, the value of [S1-d]+ is always between zero 

and d (0 < S1-d < d), therefore finding the minimum value between [S1-d]+ and d will always result in [S1-

d]+.  

Therefore, if we constrained the value of S1 as defined above, the amount of transshipment quantity 

from the 2nd transshipment onward is equal to [S1-d]+. 

The number of transshipments that has occurred including state (j-1) is: 

  2*
S

j j j
d


   -  -    

 

Since we already calculate the quantity of the first transshipment via part A, then we need to subtract 1 

from the above formula. The number of transshipments occurred including state (j-1) without the first 

transshipment is: 

2 1
S

j
d



  - -    
 

Therefore, the expression for the amount of transshipment quantity from the 2nd transshipment onward 

until state (j-1) without the first transshipment is the transshipment quantity every period multiplied by 

the number of transshipments occurred including state (j-1): 

   2
1 1

S
S d j

d


    - - -         
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All in all, the general expression for the total transshipments quantity from retailer 1 to retailer 2 before 

state j (state j is not included) is: 

   1 2 2 2
1 2 1min ,1 min , 1 1j S S S

TX j S d d S S d j
d d d

 
 -

                  - -  -  - - -                                    

 

4.1.7 Formula 4.8 

Formula 4.8 represents the total transshipments quantity from retailer 1 to retailer 2 including state j 

that equals to: 

  

1

1 1

1 2min , ( 1)

j j j

j j j

TX TX X

TX TX S d j d S TX

-

- -

 

   -  - - 
 

If we substitute the expression for TXj-1, TXj will be extremely long and complicated. Therefore we will 

simplify this expression that is explained hereafter. 

Simplifying formula 4.8 

To simplify this formula, we will start by modifying TXj-1 formula into TXj. Previously the formula for TXj-1 

was the following: 

   1 2 2 2
1 2 1min ,1 min , 1 1j

A B

S S S
TX j S d d S S d j

d d d

 
 -

                  - -  -  - - -                                    

So that the above formula can be changed into TXj formula, the transshipped amount at state j (Xj) 

should be included. To make this happen, two adjustments are needed. Firstly, changes at part A: 

 2 2
1 2

21

min ,1 min , 1

AA

A

S S
PartA j S d d S

d d


             - -  -                       

 

Part A in TXj-1 will be zero for every state j <  j*. But for TXj, part A should be zero only for every state j < 

j*. At state j*, TXj should have a value that is equal to the quantity of the first transshipment. In this 

case, part A1 needs to be adjusted as follow: 
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2min 1 ,1
S

j
d

     -             

The above expression ensures that for j < j*, the A1 expression always returns 0, therefore part A is 

equal to 0 as well. Meaning that for every stage before j*, there is no transshipment occur.   

For j > j*, the A1 expression always returns 1, therefore part A is equal to A2. Meaning that for every 

stage after and including j*, part A is equal to the quantity of the first transshipment.  

Hence, part A expression for TXj is:
 

 2 2
1 2min 1 ,1 min , 1

S S
j S d d S

d d


            -  -  -                       

  

The changes at part B is done by adjusting the number of transshipments that have occurred. Previously 

for TXj-1 the number of transshipments that has occurred before state j (state j is not included) and 

without the first transshipment was as follow: 

2 1
S

j
d



  - -    

 
since now state (j) is included, the adjustment for part B is by subtracting the expression above with one 

and then multiply it with the transshipment quantity: 

  2
1

S
j S d

d


   - -         

Therefore, after adjusting part A and part B, the final general expression for TXj is:  

   2 2 2
1 2 1min 1 ,1 min , 1     (4.10)j S S S

TX j S d d S S d j
d d d

 
                   -  -  -  - -                                    
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4.2 Final Cost Function 

Based on the arguments given above, the expected cost per period for the system is the following: 

1 1 1 1

1 2 2 2 2 2

0

( , ) ( 1) ( 1)               (4.11)

j j

j j

j

j
j

h S d X p d S X

C S S h S j d TX p j d S TX

c E X



 


 



    - -  -     
 

     -     - -    
 

   
 


 

    

    

   

1 1 1 2

1 1 1 2

2 2 2
1 2 2 2 1 2 1

min , ( 1)

min , ( 1)

( , ) ( 1) min 1 ,1 min , 1j

h S d S d j d S

p d S S d j d S

S S S
C S S h S j d j S d d S S d j

d d d



 


 

 
 

 - - -  -
 

  -  -  -
 

                  -   -  -  -  - -                                 

   

     

2 2 2
2 2 1 2 1

1 2

( 1) min 1 ,1 min , 1

min , ( 1)

S S S
p j d S j S d d S S d j

d d d

c S d j d S




 

 

 

 
 
 
 
 
 
 

  
  
   


                     - - -  -  -  - -                                        


 -  -
 

0

  (4.12)
j



 









  

  



23 
 

V. COST FUNCTION ANALYSIS 

To get insight in the behavior of the cost function, we conducted several numerical experiments. These 

experiments suggest that the cost function is piece wise linear in S1 with breakpoints at integer multiple 

of d if S2 is an integer multiple of d. If S2 is not an integer multiple of d, then the cost function is piece-

wise linear in S1 with breakpoints where the sum of S1 and S2 is an integer multiple of d. The experiments 

also shows that the cost function is piece wise linear in S2 with breakpoints at integer multiple of d if S1 is 

an integer multiple of d. If S1 is not an integer multiple of d, then the cost function is piece-wise linear in 

S2 with breakpoints where the sum of S1 and S2 is an integer multiple of d. In addition, the experiments 

also suggest that the cost function is convex in S1 and S2. 

We present one of several numerical examples that support the above statements in the table below. 

The experiment is conducted with d=4, h1=h2=1, p1=p2=5, α=0.2, and =0.8. We vary the value for the 

transshipment cost (c) and the base-stock levels (S1 and S2).  

The red highlight in the tables shows the optimal solution for the system, while the grey highlight shows 

the minimum cost when we fixed one of the base stock level. For example in table 2, if we do not specify 

the value of both S1 and S2 in advance, the set of the optimal base-stock levels is S1=8 and S2=4, with 

cost=4. If we fix S1 = 4 (1st row), we can see that S2 that minimizes the cost is 8 (cost = 4.2). Another 

example is if we fix S2 = 6 (3rd row), then S1 that minimizes the cost is 6 (cost =4.1). Table 3 until table 5 

show other results with different values of c.   

 

Table 2 Experiment result with c = 1 

 

Table 3 Experiment result with c = 2 

4 5 6 7 8

4 5 4.8 4.6 4.4 4.2

5 4.75 4.55 4.35 4.15 4.95

6 4.5 4.3 4.1 4.9 5.7

7 4.25 4.05 4.85 5.65 6.45

8 4 4.8 5.6 6.4 7.2

S1

S2

4 5 6 7 8

4 5 4.8 4.6 4.4 4.2

5 4.95 4.75 4.55 4.35 4.99

6 4.9 4.7 4.5 5.14 5.78

7 4.85 4.65 5.29 5.93 6.57

8 4.8 5.44 6.08 6.72 7.36

S1

S2
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Table 4 Experiment result with c = 3 

 

Table 5 Experiment result with c = 4 

We tried other numerical examples and so far they deliver the same insight. If the conclusion (that the 

cost function is piece-wise linear) really holds for all cases, it will be beneficial for us in finding the 

optimal solution for the problem, since we can highly reduce the set of feasible solutions. Later we will 

build a theorem based on the above arguments and then prove it mathematically. 

The graph below represents the behavior of the cost. The graph is taken from one of the numerical 

examples we have conducted (where d=4). The y axis is the expected cost per period and the x axis 

denotes the value of S1. 

 

Figure 3 Example Cost Function 

4 5 6 7 8

4 5 4.8 4.6 4.4 4.2

5 5.15 4.95 4.75 4.55 5.03

6 5.3 5.1 4.9 5.38 5.86

7 5.45 5.25 5.73 6.21 6.69

8 5.6 6.08 6.56 7.04 7.52

S1

S2

4 5 6 7 8

4 5 4.8 4.6 4.4 4.2

5 5.35 5.15 4.95 4.75 5.07

6 5.7 5.5 5.3 5.62 5.94

7 6.05 5.85 6.17 6.49 6.81

8 6.4 6.72 7.04 7.36 7.68

S1

S2

-

1 

2 

3 

4 

5 

6 

7 

8 

9 

4 5 6 7 8

C
o

st

Cost vs S1

S2=4

S2=5

S2=6

S2=7

S2=8
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For different values of S2, the minimum cost also yields different values for S1. The breakpoint of each 

graph takes place when the sum of S1+S2 is a multiple of d. We also can see from the graph that the cost 

function is convex. 

Based on the findings above, we take several steps in order to find the optimal base-stock levels for the 

problem as the following: 

1. Show that the cost function is piece-wise linear in S1 and S2 with breakpoints at integer multiple 

of d. This step is taken in order to reduce the set of feasible solutions. 

2. Show that the cost function is convex. 

3. Find the optimal base-stock levels, that is, the base-stock level at retailer 1 and retailer 2 that 

minimizes the cost. 

 

5.1 The cost function is piece-wise linear in S1 and S2  

Based on the findings above, we build theorems about piece-wise linearity of the cost function as 

follows: 

Theorem 1a: C(S1,S2) is piece-wise linear in S1 with breakpoints at integer multiple of d if S2 is an integer 

multiple of d.  

Theorem 1b: C(S1,S2) is piece-wise linear in S2 with breakpoints at integer multiple of d if S1 is an integer 

multiple of d. 

Theorem 2a: If S2 is not an integer multiple of d, then C(S1,S2) is piece-wise linear in S1 with breakpoints 

where the sum of  S1 and S2 is an integer multiple of d. 

Theorem 2b: If S1 is not an integer multiple of d, then C(S1,S2) is piece-wise linear in S2 with breakpoints 

where the sum of  S1 and S2 is an integer multiple of d. 

In order to prove the above theorems, it will be shown that the second order difference equation, 

2C(S1,S2), equals to zero if the increment in the base-stock level is zero or less than an integer multiple 

of d. But 2C(S1,S2) is positive if the increment in the base-stock level for 2C(S1,S2) is an integer multiple 

of d. The further details about this will be explained later in this section. 

The first order difference equation is defined as: 

- with respect to S1: 

1 1 2 1 2 1 2( , ) ( 1, ) ( , )                        (5.1) SC S S C S S C S S   -
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- with respect to S2: 

2 1 2 1 2 1 2( , ) ( , 1) ( , )                        (5.2) SC S S C S S C S S   -  

While the second order of difference equation is defined as: 

- with respect to S1:
 

1 1 1

2

1 2 1 2 1 2( , ) ( 1, ) ( , )                  (5.3)S S SC S S C S S C S S    -
 

- with respect to S2:
 

2 2 2

2

1 2 1 2 1 2( , ) ( , 1) ( , )                  (5.4)S S SC S S C S S C S S    -  

Proof of theorem 1a and 2a 

According to formula 5.1, the first order difference equation with respect to S1 is the following: 

1 1 2 1 2 1 2( , ) ( 1, ) ( , )SC S S C S S C S S   -  

         

         

1 1 1 2 1 1 2

1 1 1 2 1 1 2

2
2

2

1 min 1 , ( 1) min , ( 1)

1 min 1 , ( 1) min , ( 1)

( 1) min 1 ,1

j

h S d S d j d S S d S d j d S

p d S S d j d S d S S d j d S

S
S j d j

d

h

 
   

 
   



     - -  -  - - - - -  -     

     - -   -  - - -  -  -     

     -   -           
 

   

   

2 2
1 2 1

2 2 2
2 1 2 1

min 1 , 1 1

( 1) min 1 ,1 min , 1

S S
S d d S S d j

d d

S S S
S j d j S d d S S d j

d d d




 


 

           -  -   - -                         

              - -   -  -  -  - -                         

   2 2 2
2 1 2 1

2

2

( 1) min 1 ,1 min 1 , 1 1

( 1) min

S S S
j d S j S d d S S d j

d d d

p

j d S j





 

 

 
 
 
 
               

                   - - -   -  -   - -                                       


-  - -    

            
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1 2 1 2
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min 1 , ( 1) min , ( 1)

S S S
S d d S S d j
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 

 

   









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 
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 
                    -  -  -  - -                                         

  -  - - -  -

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   (5.5)
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

  

Since the value of S1 is never less than d and transshipments only take place from retailer with excess 

inventory to a retailer that faces shortage then it can be concluded that retailer 1 will never have 
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backorder, therefore we can omit the expression related to p1. The expression related to p1 is the 

following: 

         1 1 1 2 1 1 21 min 1 , ( 1) min , ( 1)p d S S d j d S d S S d j d S
 

       - -   -  - - -  -  -     

 

In addition, since transshipment activities are only executed to reduce backorders at retailer 2, having 

one more item at retailer 1 will not give impact to the on-hand inventory at retailer 2 at the end of a 

period. It will only have impact to its backorder level. Hence, we can exclude the expression related to 

h2. The expression related to h2 is the following: 

   2 2 2
2 1 2 1

2

2
2

( 1) min 1 ,1 min 1 , 1 1

( 1) min 1 ,1 min

S S S
S j d j S d d S S d j

d d d

h

S
S j d j S

d


 

 



                  -   -   -  -   - -                                       

     - -   -           
   2 2

1 2 1, 1
S S

d d S S d j
d d




 

 
 
 
 
            -  -  - -                         

 

By erasing two expressions above, the first order difference equation with respect to S1 is: 

         

   

1 1 1 2 1 1 2

2 2 2
2 1 2 1

2

1 min 1 , ( 1) min , ( 1)

( 1) min 1 ,1 min 1 , 1 1

j

h S d S d j d S S d S d j d S

S S S
j d S j S d d S S d j

d d d

p

 
   

 
 

     - -  -  - - - - -  -     

                 - - -   -  -   - -                               
 

   

     

2 2 2
2 1 2 1

1 2 1

( 1) min 1 ,1 min , 1

min 1 , ( 1) min

S S S
j d S j S d d S S d j

d d d

c S d j d S S




 

 

 

   
         
                    -  - - -  -  -  - -                                         

  -  - - -      

0
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   (5.6)

, ( 1)

j

d j d S





 

 
 
 
 
 
 
 
 
 
 
 
 
  -
 
 



 

In formula 5.6 above, we have to determine the minimum between several expressions. To 

accommodate this situation, the first order difference equation with respect to S1 is divided into 2 

conditions: 

- Condition 1, if: 

  2
1 21

S
S d d S

d
   -   -      

 

 



28 
 

- Condition 2, if: 

  2
1 21

S
S d d S

d
   -   -    

 

The expression for the first order difference equation with respect to S1 based on two conditions above 

is only different in the expression that is related to p2 (derived in the appendix).  

We can simplify the expression for the first order difference equation with respect to S1 as shown below: 

- For condition 1: 

1 2

1

1 2 1 2

(1) (2) (3)
2

1 2
1 2 1 2

0
1 1

( , ) 2      (5.7)
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     
           - -              

    

  

 

- For condition 2: 

1 2

1

1 2 1 2
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2

1 2
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Following above results, we can calculate the second order difference equation with respect to S1 as 

follows: 

1 1 1

2

1 2 1 2 1 2( , ) ( 1, ) ( , )                  S S SC S S C S S C S S    -
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- Condition 2: 

1
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Since j is only defined for integer j values, equation 5.9a and 5.9b equals to zero for d > 1.  Therefore, to 

make the above equations positive, the closest difference in S1 should be d. Based on that argument, the 

expression for the second order equation can be replaced by: 
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- Condition 2: 
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Equation 5.10 and 5.11 show that the smallest increment of S1 is d if S2 is also an integer multiple of d, 

which supports theorem 1a. 

Expression 5.10 can also be written as the following:
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And expression 5.11 can also be written as the following:
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Expression 5.12a and 5.12b show that if S2 is not an integer multiple of d, the sum of S1 and S2 should be 

an integer multiple of d. This expression supports theorem 2a.  

Following exactly the same approach, we can prove that the cost function is piece-wise linear in S2 

(theorem 1b and 2b).  
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5.2 Convexity of the cost Function 

 

As stated in the numerical experiments above, the experiment suggests that the cost function is convex. 

Based on that observation, we propose the following theorem: 

 

Theorem 3: The cost function C(S1,S2) is convex in S1 and S2 

 

In order to prove the convexity of C(S1,S2) we use Hessian matrix. In this case, we need to show that the 

Hessian matrix is positive semi definite. To prove that the Hessian matrix is positive semi definite, we 

need to show that the determinant of its Hesssian matrix is positive (Weir, Hass, & Giordano, 2005). 

In order to build Hessian matrix, we need to define the expression for the second order difference 

equation. Following from the theorem about piece-wise linearity of the cost function which stated that 

the smallest increment for S1 and S2 is d, we define difference equation as the following: 

The first order difference equation: 

1 1 2 1 2 1 2( , ) ( , ) ( , )SC S S C S d S C S S   -  

2 1 2 1 2 1 2( , ) ( , ) ( , )SC S S C S S d C S S   -  

The second order difference equation: 

1 1 1 1

2

, 1 2 1 2 1 2( , ) ( , ) ( , )S S S SC S S C S d S C S S    -

 
1 2 1 1

2

, 1 2 1 2 1 2( , ) ( , ) ( , )S S S SC S S C S S d C S S    -

 
2 1 2 2

2

, 1 2 1 2 1 2( , ) ( , ) ( , )S S S SC S S C S d S C S S    -

 
2 2 2 2

2

, 1 2 1 2 1 2( , ) ( , ) ( , )S S S SC S S C S S d C S S    -  

 

Let H(C) denotes the Hessian matrix of C(S1,S2) function, then,  

1 1 1 2

2 1 2 2

2 2

, 1 2 , 1 211 12

2 2
21 22 , 1 2 , 1 2

( , ) ( , )
  H(C)=               (5.13)

( , ) ( , )

S S S S

S S S S

C S S C S Sh h

h h C S S C S S

   
   

     
 

The first order difference equation with respect to S1 

The first order difference equation with respect to S1 can be written as follow (using the same approach 

as we used for formula 5.7):
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The first order difference equation with respect to S2 

We found 2 different results for this expression based on the value of S1. The results are the following: 

Condition 1: if S1=d, then,
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Condition 2: if S1=2d, then,
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Based on the above result, the expression of each part on the matrix is: 

- Expression for h11 
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- Expression for h12 
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- Expression for h21  
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Previously we had 2 conditions for the first difference equation of S2. Since h21 is based on the first 

difference equation of S2, therefore we also apply the same condition for the h21 expression. 

Condition 1: if S1=d, then,
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Condition 2: if S1=2d, then,
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- Expression for h22 
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Using the same reason with h21 expression, we also apply 2 conditions for the h22 expression. 

Condition 1: if S1=d, then,
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Condition 2: if S1=2d, then, 
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Since all expressions for the matrix are already defined, then we can define the Hessian matrix for our 

function as the following: 

Condition 1 (S1=d):  
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Condition 2 (S1=2d): 
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The determinant of H(C) is defined as: 
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h h

h h h h
h h
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From the expression 5.20a and 5.20b above, we can see that: 

- Both conditions only differ in h21 and h22 

- The expression for h11 and h12 are equal 

Since h11 and h12 are equal, the determinant of H(C) can be written as: 

11 22 21( ) ( )H C h h h -

 
To show that h11(h22-h21) is positive, then both h11 and (h22-h21) should be both positive or negative. The 

expression for h11 is the following: 
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The relationship between h1, p2 and c is already defined as the following: h1+ p2 – c > 0. This relationship 

is stated in chapter III. Based on that, we can conclude that h11 is positive. 

The expression for (h22-h21) is the following: 

 



36 
 

For condition 1 the expression is: 
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For condition 2 the expression is:  
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Both conditions show that the expression for (h22-h11) has positive value. Since h11 is also positive then 

we can say that the determinant of H(C) is positive. Therefore we can conclude that C(S1,S2) is a convex 

function in S1 and S2. 

5.3 Optimal Base-stock Levels Solution 

The optimal solution for above problem can be found by solving the expression for the first order 

difference equation. We can find the optimal base stock level for retailer 1 if the value of the base stock 

level for retailer 2 is fixed and vice versa. Let, 

- S2*(S1=d) represents the optimal base stock level for retailer 2 when the value of the base stock 

level for retailer 1 is equal to d. 

- S2*(S1=2d) represents the optimal base stock level for retailer 2 when the value of the base stock 

level for retailer 1 is equal to 2d. 

- C(S1=d, S2*) represents the cost when the base-stock level for retailer 1 is equal to d and base-stock 

level for retailer 2 is S2*(S1=d) 

- C(S1=2d, S2*) represents the cost when the base-stock level for retailer 1 is equal to 2d and base-

stock level for retailer 2 is S2*(S1=2d) 

Since there are only 2 possibilities for the value of S1 (either d or 2d), we can find the optimal solution by 

executing the following steps: 
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1. Find the value for S2*(S1=d)  and S2*(S1=2d) 

2. Calculate C(S1=d, S2*) and C(S1=2d, S2*) 

3. Compare C(S1=d, S2*) and C(S1=2d, S2*), if: 

- C(S1=d, S2*) < C(S1=2d, S2*), then the optimal solution is S1=d and S2= S2*(S1=d) 

- C(S1=d, S2*) > C(S1=2d, S2*), then the optimal solution is S1=2d and S2= S2*(S1=2d) 

Step 2 and step 3 are quite straightforward. Hence we will only elaborate step 1, that is, how to find the 

value for S2*(S1=d) and S2*(S1=2d). 

To find the value for S2*(S1=d) and S2*(S1=2d), we need to satisfy the following equality:  
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To find S2*(S1=d) we need to equate the above expression with zero. 
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 1 2
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In another way, the optimal base stock level for retailer 2 can be written as follow: 
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b. The value for S2*(S1=2d) 

The first order difference with respect to S2 if S1=2d is: 
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To find S2*(S1=2d) we need to equate the above expression with zero. 
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Since above expression is not a closed form expression, we changed the equality above to the inequality 

below: 
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 S2*(S1=2d) is the smallest S2 to satisfy the inequality above (expression 5.22).
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VI. NUMERICAL ANALYSIS 

To conduct numerical analysis, the cost function that was developed is implemented as an Excel macro 

(using visual basic). The computation time for one set of experiment is around 1 minute.  The results of 

the coding are validated by doing the following actions: 

- We calculate the optimal cost and base-stock levels for several cases by hands and then compared 

them with the results provided from the computation tool. The results from both calculations are 

the same.  

- We take several extreme cases such as the one where:  

 The value of α is extremely low and  is extremely high (e.g. the possibility of disruption is 

very small and the recovery probability is very high). In this case experiment shows that the 

behavior of the system is similar to the system where there are no disruptions and 

transshipments also are not conducted.  

 The penalty cost at retailer 2 is very high compared to other costs. As expected the 

experiment shows that transshipments are always conducted from retailer 1 to retailer 2.  

 The holding cost at retailer 1 or transshipment cost is very high compared to other costs. 

Again this experiment confirms our expectation, in those situations, no transshipments will 

be conducted.  

After performing validation, we conduct numerical analysis in order to answer the following questions: 

a. What is the impact of each parameter on the optimal base-stock levels? 

b. What is the benefit of transshipments (compared to the situation where transshipments are not 

allowed)? 

c. How sensitive are the disruptions parameters (α and ) to the costs? 

6.1 Base-case Experiment 

We choose the following parameters as a base-case: 

 

Table 6 Parameters for the base-case problem 

The values of the parameters are chosen as the base case due to the following reasons: 

- Penalty cost is usually higher than holding cost 

- They provide a wide range of possible changes for numerical analytical purposes.  

h1 p1 h2 p2 alpha beta c d

5 10 5 10 0.5 0.5 5 3
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The base-case experiment shows that the optimal base-stock levels are S1*=6 and S2*=3 and the cost for 

these set of base-stock levels is 15. We also calculate the optimal base-stock levels and its cost if we do 

not allow transshipment.  

The expressions below shows the optimal base-stock levels for the system where no transshipments 

allowed: 

 For retailer 1: S1* = d, it means that no cost will occur at retailer 1 since it always satisfies its demand 

every period. 

 For retailer 2, the optimal base-stock level and its cost can be calculated as follows (Schmitt et al., 

2010):
 

S2* = kd, where k is the smallest integer such that F (k - 1)  
  

     
  

And the cost for retailer 2 is: 

      2 2 2 2

0

1 1j

j

E C h S j d p j d S


 



 -    -        

The cost for the system is equal to the cost for retailer 2 since as explained before, no cost will occur at 

retailer 1. From the expressions above, the optimal base-stock levels for the base-case experiment is 

S1=3 and S2=6 and the cost is 22.5.  

From this simple experiment we can see immediately the potential benefit of transshipments. The result 

shows that it is better to put extra inventory at retailer 1 so that the system can avoid penalty cost at 

retailer 2 by conducting transshipments when needed.  

6.2 Varying Parameter values from the base-case 

In order to see the impact of several parameters on the optimal base-stock level for retailer 1 and 

retailer 2 and on the optimal cost for the system as a whole, we conducted some experiments using the 

parameters from the base-case (Table 6) and in each experiment we vary the value of only one 

parameter (h1, h2, p2, c, α and ). We did not examine the various values of p1 since for the optimal 

solution, the penalty cost for retailer 1 is always zero because retailer 1 is always keep inventory at least 

equal to its own demand (as discussed in chapter 3.4). 

For each experiment, we show the set of the optimal base-stock levels and its cost for 2 policies: policy 1 

is when we do not allow transshipments and policy 2 is when we allow transshipments from retailer 1 to 

retailer 2. We also show the cost components for the system that allow transshipments (policy 2) to 

investigate the contribution of each cost to the total cost. We show the results by presenting 2 types of 

graph: (1) graph about the contribution of each cost component for policy 2 and (2) graph about the 

comparison between the costs from policy 1 and policy 2.  
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For the graph about the contribution of each cost component for policy 2, the cost components are 

abbreviated as follows: 

 Inventories cost at retailer 1: Inv-R1 

 Inventories cost at retailer 2: Inv-R2 

 Backorders cost at retailer 2: BO-R2 

 Transshipments cost: Transh 

 

For the graphs that show the comparison between the cost for 2 policies, the following 

abbreviations are used: 

- No Transh: cost for policy 1 (when we do not allow transshipments). 

- With Transh: cost for policy 2 (when we allow transshipments). 

- % difference: the % of cost difference between policy 1 and policy 2. 

The primary y-axis in this type of graph refers to “No Transh” and “With Transh” while the secondary 

y-axis refers to “% difference”. 

 

6.2.1 Varying h1 

In this experiment, we vary the value of h1 from 1 to 15. We expect that for policy 2, low h1 values 

are more beneficial for transshipments, while high h1 may cause high inventory cost at retailer 1 due 

to extra inventories for transshipments. 

The results of this experiment are presented below, started with the set of the optimal base stock 

levels (S1*, S2*) then followed by the graph showing the cost components for policy 2. 

 

Table 7 the set of optimal base-stock level when varying h1
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No Transshipments (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6)

With Transshipments (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (3,6) (3,6) (3,6) (3,6) (3,6)

h1 (holding cost at retailer 1)
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Figure 4 the contribution of each cost component when varying h1 (cost with transshipments)
 

Figure 4 shows that in the system where transshipments are allowed, when h1 is low, the cost 

components that are included are only holding cost at retailer 1 and transshipments cost since the 

policy tends to put more inventories at retailer 1. In this case, the base-stock level of retailer 1 

equals to 2d, hence retailer 2 will never experience backorders since transshipments will be 

conducted to avoid this. When h1 is high, it is better to save more inventories at retailer 2 to avoid a 

high inventory cost at retailer 1 even there is a risk that retailer 2 may face a penalty if the 

disruptions holds on for a long periods of time. When this happens, the optimal base-stock levels 

solution and its cost will be the same as under the policy when no transshipments are allowed as 

can be seen in table 7 and figure 5. Figure 5 also shows that the smaller the h1 value, the greater the 

benefit. These results support our expectation. From this experiment we can conclude that the 

system will benefit from transshipments when the holding cost at retailer 1 is low.  

 

Figure 5 Comparison between the costs of 2 policies when varying h1 

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o

st

h1 (holding cost at retailer 1)

Transh

BO-R2

Inv-R2

Inv-R1

0%

20%

40%

60%

80%

100%

120%

140%

160%

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To
ta

l C
o

st

h1 (holding cost at retailer 1)

No Transh

With Transh

% difference



43 
 

6.2.2 Varying h2 

In this experiment, we vary the value of h2 from 1 to 10. In the system where transshipments are 

allowed, if h2 is high, it is expected that the system prefers to store more inventories at retailer 1 

and conducts transshipments when needed to avoid high holding cost at retailer 2. 

 The set of the optimal base stock levels (S1*, S2*) from this experiment can be seen in the table 

below: 

 

Table 8 the set of optimal base-stock level when varying h2
 

 

Figure 6 the contribution of each cost component when varying h2 (cost with transshipments)
 

In the system where transshipments are allowed, when h2 is low, the cost components that 

contribute to the total cost are only holding cost and backorders cost at retailer 2. In order to 

decrease or avoid backorders cost at retailer 2, it is cheaper to put more inventories at retailer 2 

than to put more inventories at retailer 1 and generate extra cost for transshipments. Thus, the set 

of optimal base-stock levels and its cost are the same as the system that does not allow 

transshipments. When h2 is getting higher, it is beneficial to do transshipment since the system will 

avoid high inventory cost at retailer 2 so the extra inventories will be kept at retailer 1. This 

phenomenon is shown in figure 7 below. The figure also shows that the bigger h2 value, the cost 

difference between policy 2 and policy 1 also getting bigger. 

1 2 3 4 5 6 7 8 9 10

No Transshipments (3,12) (3,9) (3,9) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,3)
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Figure 7 Comparison between the costs of 2 policies when varying h2
 

6.2.3 Varying p2 

In this experiment, we vary the value of p2 from 1 to 15. We expect that the higher the penalty cost 

at retailer 2, the higher the possibility of conducting transshipments so that the penalty cost can be 

completely avoided. 

The set of the optimal base stock levels (S1*, S2*) from this experiment is shown in the table below: 

 

Table 9 the set of optimal base-stock level when varying p2
 

 

Figure 8 the contribution of each cost component when varying p2 (cost with transshipments)
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In the system where transshipments are allowed, when p2 is low, backorders cost at retailer 2 is the 

only one that composes the total cost. In this case, the system chooses to take the backorders risk 

since the penalty cost is low.  By doing this, the system does not have to invest on other costs. As 

the penalty cost at retailer 2 increases, the system chooses to put extra inventories at retailer 1. 

Keeping more inventories at retailer 1 (S1 =2d) is a better solution to avoid backorders at retailer 2 

rather than keeping more inventories at retailer 2 since it can completely avoid the backorders cost. 

This can happen because every time retailer 2 experience disruptions, retailer 1 can transship d 

amount of its products to retailer 2. Therefore, in the end of the period retailer 2 can always 

satisfies its demand. If we put the extra inventories at retailer 2 instead of retailer 1, in addition to 

causing high inventory cost at retailer 2, the risk of having backorders cost is still exists if  the 

disruptions last for a long time period. The results from this experiment confirm our expectation. 

From figure 9 we can see that the cost-gap between the 2 policies (no transshipments and with 

transshipments) gets bigger as p2 increases.  

 

 

Figure 9 Comparison between the costs of 2 policies when varying p2
 

6.2.4 Varying c 

In this experiment, we vary the value of c from 1 to 15. We expect that the higher the 

transshipments cost, the lower the usefulness of conducting transshipments.  

The set of optimal base stock levels (S1*, S2*) from this experiment can be seen in the table below: 

 

 

Table 10 the set of optimal base-stock level when varying c
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c (transshipment cost)
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Figure 10 the contribution of each cost component when varying c (cost with transshipments)
 

The benefit of transshipment can be clearly seen when the transshipments cost is low. In this case, 

the system puts more inventories at retailer 1 and conducts transshipments when needed so the 

backorders at retailer 2 can be completely avoided. As c is getting higher, it is not beneficial to do 

transshipments and the system will put extra inventories at retailer 2 to reduce the backorder costs. 

In these situations the optimal base-stock levels and the cost from the 2 cases (no transshipments 

and with transshipments) is the same as can be seen in table 10 and figure 11.  The results from this 

experiment justify our expectations. 

 

 

Figure 11 Comparison between the costs of 2 policies when varying c 
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6.2.5 Varying α 

In this experiment, we vary the value of α from 0.1 to 0.9. The set of optimal base stock levels (S1*, 

S2*) is shown in the table below: 

 

Table 11 the set of optimal base-stock level when varying alpha
 

 

Figure 12 the contribution of each cost component when varying alpha (cost with transshipments)
 

In the system where transshipments are allowed, when α is low, the system chooses to take the risk 

of having backorders since it will not occur often. By doing this, each retailer only needs to keep 

inventories equal to d and in the same time transshipment activities cannot occur. As the value of α 

gets higher, the system prefer to keep more inventories at retailer 1 in order to allow 

transshipments to avoid backorders at retailer 2. The higher the value of α, the proportion of 

transshipments cost from the total cost is bigger and the proportion of inventory cost at retailer 1 is 

lower since transshipments occur more often. The benefit of transshipments is vivid when α is high, 

in this case, allowing transshipment can reduce the total cost because it gets rid of the backorders 

cost at retailer 2. When we do not allow transshipments, the backorders and inventory costs at 

retailer 2 still exist. Hence for high α, it is better to allow transshipments as shown in figure 13. 
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Figure 13 Comparison between the costs of 2 policies when varying alpha
 

6.2.6 Varying  

In this experiment, we vary the value of  from 0.1 to 0.9. The set of optimal base stock levels (S1*, 

S2*) is shown in the table below: 

 

Table 12 the set of optimal base-stock level when varying beta
 

 

Figure 14 the contribution of each cost component when varying beta (cost with transshipments)
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Figure 14 shows that where the value of  is high, the system is forced to take the risk of backorders 

at retailer 2 in order to reduce or even get rid of other costs (inventory and transshipments cost). 

When  is getting smaller, the system prefer to put extra inventories at retailer 1 (S1=2d) so that it 

can give its products to retailer 2 whenever retailer 2 experiences backorders. The benefit of 

transshipment for these situations (when  is small) is shown in figure 15. When we do not allow 

transshipment, the system is forced to keep a lot of inventories to reduce the backorders cost at 

retailer 2. In contrast, for a system that allows transshipment, to tackle this problem (the low 

recovery probability) we only need to put extra inventories at retailer 1 and by doing this the 

backorders risk at retailer 2 can be completely avoided. Figure 15 also shows the significant different 

between policy 1 and policy 2 when  is small, for example when  = 0.1, the cost difference reaches 

935%. This suggests that transshipments is very crucial when  is small.  

 

 

Figure 15 Comparison between the costs of 2 policies when varying beta
 

6.2.7 Varying cost parameters in different situations 

All the experiments above that are related to cost parameters (experiment 6.2.1 until 6.2.4) were done 
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6.3 Investigate the sensitivity for α and   

6.3.1 All variations of α and  from the base-case cost parameters for 2 policies 

For this experiment, we use the demand and cost parameters that we used earlier in the base case (d=3, 

h1=h2=5, p1=p2=10 and c=5). Unlike all previous experiments, in this experiment we try all possible values 

of α and  in order to get more insights on the impact of these parameters to the cost from 2 different 

policies (policy 1: without transshipments and policy 2: with transshipments). For each policy, we find 

the set of optimal base-stock level and its related cost for every pair of α and  as shown in the tables 

below. 

 

Table 13 The set of optimal base-stock level for policy 1 

 

Table 14 The set of optimal base-stock level for policy 2 

From the tables above we can see that for all values of α, transshipments are beneficial only when  is 

low (0.1 - 0.3). For medium  values (0.4 - 0.6), the decision whether it is better to use transshipment or 

not depends on the value of α. As expected, transshipments are mostly not needed when α is very low. 

For all high  values (0.7-0.9), retailer 1 only keep inventory equal to its own demand and retailer 2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 (3,15) (3,24) (3,27) (3,30) (3,30) (3,30) (3,33) (3,33) (3,33)

0.2 (3,3) (3,9) (3,12) (3,15) (3,15) (3,15) (3,15) (3,15) (3,18)

0.3 (3,3) (3,6) (3,9) (3,9) (3,9) (3,9) (3,12) (3,12) (3,12)

0.4 (3,3) (3,3) (3,6) (3,6) (3,6) (3,9) (3,9) (3,9) (3,9)

0.5 (3,3) (3,3) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6)

0.6 (3,3) (3,3) (3,3) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6)

0.7 (3,3) (3,3) (3,3) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6)

0.8 (3,3) (3,3) (3,3) (3,3) (3,6) (3,6) (3,6) (3,6) (3,6)

0.9 (3,3) (3,3) (3,3) (3,3) (3,6) (3,6) (3,6) (3,6) (3,6)

alpha

b
e

ta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3)

0.2 (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3)

0.3 (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3)

0.4 (3,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3)

0.5 (3,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3)

0.6 (3,3) (3,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3) (6,3)

0.7 (3,3) (3,3) (3,3) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6)

0.8 (3,3) (3,3) (3,3) (3,3) (3,6) (3,6) (3,6) (3,6) (3,6)

0.9 (3,3) (3,3) (3,3) (3,3) (3,6) (3,6) (3,6) (3,6) (3,6)

b
e

ta

alpha
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stores more inventories to avoid backorders if needed (when α is high). In these cases (where  is high), 

the optimal solution is the same between policy 1 and policy 2. 

 

Table 15 The optimal cost for policy 1 

 

Table 16 The optimal cost for policy 2 

It is shown from 2 tables above that for some cases, the costs of policy 2 are significantly lower than the 

cost of policy 1. Seeing this fact, we examine the benefit of transshipments by calculating the 

percentage of cost reduction that is generated if we compare policy 2 to policy 1 for all pairs of α and . 

The results are shown in the figures below. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 132.6   148.5   152.8   154.5   155.3   155.9   156.0   156.1   156.2   

0.2 50.0     64.5     69.1     71.4     72.3     72.9     73.3     73.7     74.0     

0.3 25.0     37.0     41.8     43.4     44.7     45.7     46.0     46.1     46.1     

0.4 15.0     25.0     27.9     30.0     31.7     31.8     31.9     32.0     32.1     

0.5 10.0     17.1     20.6     21.7     22.5     23.2     23.8     24.2     24.6     

0.6 7.1       12.5     16.7     17.0     17.3     17.5     17.7     17.9     18.0     

0.7 5.4       9.5       12.9     14.2     14.1     14.0     13.9     13.9     13.8     

0.8 4.2       7.5       10.2     12.5     12.1     11.8     11.5     11.3     11.0     

0.9 3.3       6.1       8.3       10.3     10.8     10.3     9.9       9.5       9.2       

alpha
b

e
ta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 15 15 15 15 15 15 15 15 15

0.2 15 15 15 15 15 15 15 15 15

0.3 15 15 15 15 15 15 15 15 15

0.4 15 15 15 15 15 15 15 15 15

0.5 10 15 15 15 15 15 15 15 15

0.6 7.1     12.5 15 15 15 15 15 15 15

0.7 5.4     9.5     12.9   14.2   14.1   14.0   13.9   13.9   13.8   

0.8 4.2     7.5     10.2   12.5   12.1   11.8   11.5   11.3   11.0   

0.9 3.3     6.1     8.3     10.3   10.8   10.3   9.9     9.5     9.2     

alpha

b
e

ta
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Figure 16 Percentage of cost reduction in alpha for various values of beta 

Figure 16 shows that for all values of α, when  is lower, the advantage of having transshipments is 

higher. When the value of  is high (in this case from 0.7 until 0.9) it is better to keep more inventories 

at retailer 2 to reduce or avoid backorders rather than transship some products from retailer 1, 

therefore in this case transshipments is not needed. In general, when the value of  is constant, changes 

in α do not cause a significant difference in cost reduction from policy 1 to policy 2. This result implies 

that  gives more impact to the cost reduction rather than α. Figure 17 shows similar insights. 

 

Figure 17 Percentage of cost reduction in beta for various values of alpha 
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From the figure above we can see that all α values except for the 2 lowest α (α=0.1 and α=0.2) show a 

similar pattern when it paired with different value of . It means that for this range of α, the changes in 

 gives similar cost reduction. 
 

6.3.2 α and  changes from various cases for policy 2 

Experiments in section 6.3.1 above are done based on the base-case. We are interested in trying similar 

experiments with different cases since a company may have different set of parameter values. Another 

objective from this experiment is to gain insight for companies if they want to decrease their cost by 

dealing with the parameters that are related to disruptions (α and ). Companies can choose to 

decrease the disruptions probability or to increase recovery probability or even to do both in the same 

time. For above purposes, we investigate 6 cases as listed in the table below, all cases have d=3, p1=p2 

=15, α=0.5 and =0.5. As for h1, h2 and c, we vary the value of those parameters. The reason why we 

choose those parameters to be varied is because the following reasons: 

- From previous experiments, in cases where transshipments are conducted, the cost changes 

mostly involve inventory cost at retailer 1 and transshipments costs.  

- Previously the holding cost and the penalty cost between retailer 1 and retailer 2 are always the 

same. Different holding cost between those retailers may yield different insights. 

- Penalty costs are expected to be always higher than holding costs. Therefore we do not vary 

penalty cost. 

Case h1 h2 c Remarks 

1 5 5 5 h1 = h2, h1 = c 

2 5 5 10 h1 = h2, h1 < c 

3 5 10 5 h1 < h2,  h1 = c 

4 5 10 10 h1 < h2, h1 < c 

5 10 5 5 h1 > h2, h1 = c 

6 10 5 10 h1 > h2, h1 < c 

Table 17 Different cases for investigating the sensitivity of disruptions parameters 

From every case, we want to show the impact of either increasing recovery probability () or decreasing 

disruptions probability (α) on the optimal cost. We are interested to know whether one of the 

disruptions parameters is more sensitive compared to other and whether the behavior is the same for 

every case.  

To see the sensitivity of the disruptions parameters, for each case, we change either α or  value. First 

with constant  (0.5), we decrease α by 20%, 40%, 60% and 80%. After that with constant α (0.5), we 

increased  by 20%, 40%, 60% and 80%. The result of these experiments is presented in 3 figures below. 

Table 18 shows the legend of the figures. 
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Case Explanation Case Explanation 

1a Case 1: decrease  α 1b Case 1: increase   

2a Case 2: decrease  α 2b Case 2: increase   

3a Case 3: decrease  α 3b Case 3: increase   

4a Case 4: decrease  α 4b Case 4: increase   

5a Case 5: decrease  α 5b Case 5: increase   

6a Case 6: decrease  α 6b Case 6: increase   

Table 18 Legend for figure 18, 19 and 20 

 

Figure 18 Percentage of cost reduction for case 1 and case 2 

When the holding cost at retailer 1 and retailer 2 is the same, the changes in  gives more significant 

impact (bigger reduction cost) to changes in α. For the case where h1=c (case 1), the changes in α does 

not give any impact. The reason why there is no impact in case 1a, is because all the optimal solutions in 

this case have S1=6 and S2=3. It means that the costs are only inventory cost at retailer 1 and 

transshipments cost. For these cases, the higher the value of α, the lower the inventory cost at retailer 1 

and the higher the transshipments cost. The cost reduction gained from the inventory cost at retailer 1 

is equal with the increase of transshipment cost (since h1=c), hence the total cost does not change. 

Figure 18 also shows that when c is higher, the cost reduction is also higher. 
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Figure 19 Percentage of cost reduction for case 3 and case 4 

When the holding cost at retailer 1 is lower than retailer 2 and h1=c, changing either the value of α or  

does not reduce the total cost with the same reason as the one we just discussed above. For a high 

transshipments cost (case 4), the changes in α gives a slightly larger reduction cost rather than 

increasing . For both cases (increasing  or decreasing α), mostly the system chooses to put more 

inventories at retailer 1 and conduct transshipments since h1 < h2.  

 

Figure 20 Percentage of cost reduction for case 5 and case 6 

When the holding cost at retailer 1 is higher than retailer 2, increasing  gives bigger reduction cost than 

decreasing α in both cases (case 5 and case 6). The higher the transshipments cost, the higher the cost 
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reduces. For case 5a, at some points when we decrease the value of α (at 20%, 40% and 60%), the cost 

gets higher instead of lower. This can happen because when α gets lower, in the system where h1 is 

quite higher than h2 and c, the increase in inventory cost at retailer 1 is higher than the decrease in 

transshipments cost. When α is decreased by 80%, the system choose to take the penalty risk at retailer 

2 so there is no transshipment and inventory cost at retailer 1.
 

6.4 Conclusion from the experiments 

From several experiments above, we can infer the following points: 

a. From experiment in section 6.2  (varying parameter values) 

The values of each parameter have different consequences to the optimal base-stock level and its 

cost. In short, we can put the general conclusion of the experiments about varying parameters in the 

table below: (note that the determination whether a parameter is low or high is relative, it depends 

on the value of other parameters in the system) 

 

Table 19 the impact of various parameters to the optimal base-stock levels
 

From table 19, we can see the different impact of each parameter to the optimal base-stock levels. 

The transshipments activity is beneficial in the system that has low h1, high h2, high p2, low c, high α 

and low. In these cases it is better to put more inventories at retailer 1 instead of retailer 2 in order 

to minimize the cost. If we put the extra inventories at retailer 1 (S1=2d), every time retailer 2 

experiences disruption, retailer 1 can always provide products to be transshipped to retailer 2 so the 

penalty cost can be completely avoided and in the same time we also reduce the inventory cost at 

retailer 2. On the other hand, if we put extra inventories at retailer 2, the inventory cost at retailer 2 

will be high and we still have the risk of experiencing backorders if the disruptions stay for a long 

periods of time. 

Yes No

low  2d S2*(S1=2d)

high  d S2*(S1=d)

low  d S2*(S1=d)

high  2d S2*(S1=2d)

low  d S2*(S1=d)

high  2d S2*(S1=2d)

low  2d S2*(S1=2d)

high  d S2*(S1=d)

low  d S2*(S1=d)

high  2d S2*(S1=2d)

low  2d S2*(S1=2d)

high  d S2*(S1=d)


Transshipments
Parameter S1* S2*

h1

h2

p2

c

α
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If we compare the 2 policies, in general the policy that allow transshipments performs better, the 

highest difference in cost between policy 1 and policy 2 are given when  is low, in this situation the 

benefit of transshipments is very obvious. In this case, transshipments activity can completely cut 

the inventory and penalty cost at retailer 2. In the system that does not allow transshipments, these 

2 cost components (the inventory and penalty cost at retailer 2) are very high.  

b. From experiment in section 6.3.1 (variations of α and  from the base-case) 

From table 19 we can see what companies can do if they have low or high disruptions parameters (α 

and ). Experiment 6.3.1 confirms this conclusion by trying all possible pair of disruptions 

parameters and provides a more detail insights. When the value of  is high (0.7 - 0.9), then 

companies do not have to do transshipments but when the value of  is low (0.1 - 0.3), 

transshipments are needed.  Additional insight that can be taken from this experiment is that for 

medium  values (0.4-0.6), the decision to do transshipments depends on α value. For these cases, 

transshipments most likely will be beneficial for medium to high α values.  

Different with , α does not give a certain pattern. But we can infer that when α is low, the system 

tends not to do transshipments except in the situation where  is very low. When α is high, the 

system tends to do transshipments except in the situation where  is very high.  

From this experiment we also can see that in general, changes in  value provides more significant 

cost reduction from policy 1 to policy 2 compared to changes in α value. Hence  value is more 

influential in determining better policy.  

 

c. From experiment in section 6.3.2 (α and  from various cases) 

From this experiment, it is shown that in the policy where transshipments are allowed (policy 2), for 

the situation where h1 > h2, increasing recovery probability () gives bigger reduction costs 

compared to decreasing disruptions probability (α) with similar level of change (for example 

increasing  by 20% vs. decreasing α by 20%). In those cases, when the value of c is higher, the cost 

reduction is also higher. For the situation where h1 < h2, the changes in α gives a slightly larger 

reduction cost rather than increasing  except for some situations. The example of the situation is 

that when h1=c, the changes either in α or  do not reduce the total cost because the holding cost at 

retailer 1 and transshipments cost are changing in the same amount, hence the total cost stays the 

same.  

Another thing to be noted is that increasing  or decreasing α does not always generate lower cost. 

For example if we decrease disruptions probability, most probably the optimal solution will lead to 

the increase in inventory cost at retailer 1 and the decrease in transshipments cost. In this case the 
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total cost will be higher if the increase in inventory cost is higher than the decrease in 

transshipments cost. Therefore, companies need to consider and look carefully at the value of each 

cost parameters when they want to minimize the cost by managing disruptions parameters.  

From various set of experiments that investigate the sensitivity of α and , in general it is shown that 

the changes in  gives bigger reduction cost to the changes in α. This result implies that  is more 

crucial rather than α.  One of possible reason for this is because as long as  is high, even the 

disruptions probability is also high, retailer 2 can always recover quickly every time it is disrupted 

and thus can avoid a high level of backorders. In the opposite situation, if the recovery probability is 

low, even the disruptions probability is also low, once retailer 2 is disrupted, the backorders level 

will quickly increase if retailer 2 does not get any product from retailer 1. In that sense, focusing on 

increasing the recovery probability gives more cost benefit rather than decreasing disruptions 

probability.   
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VII. CONCLUSION AND FUTURE RESEARCH 

7.1 Conclusion 

In this thesis, we investigated an inventory system with one supplier and 2 retailers where only one of 

the retailers may experience supply process disruptions. The supply process at another retailer is always 

available. Every period, both retailers face a constant demand. Transshipments can be conducted from 

the undisrupted retailer to the disrupted retailer in order to avoid backorders.  

We derived a formula to calculate the expected cost per period for the system and showed that the cost 

function is convex in the base-stock level of both retailers. From those results, we built expressions to 

calculate the optimal base-stock levels for both retailers. 

Several numerical experiments were conducted to get insights into the impact of each parameter on 

optimal base-stock levels. We found that each parameter value has a different influence on the optimal 

base-stock levels. Transshipments are beneficial in cases where an inventory system has low holding 

cost at undisrupted retailer, high holding cost at disrupted retailer, high penalty cost at disrupted 

retailer, low transshipments cost, high disruptions probability and low recovery probability. In these 

cases, having more inventories at the undisrupted retailer leads to lower cost as the backorders cost can 

be completely avoided. Compared to systems that do not allow transshipments, the benefit of 

transshipments is very obvious when the recovery probability is very low because transshipments 

completely cut the inventory and penalty cost at disrupted retailer. 

We found some interesting results from the sensitivity analysis of the disruptions parameters: 

- In general, increasing recovery probability provides more significant cost reduction compared to 

decreasing disruptions probability. Hence increasing recovery probability is more influential in 

decreasing the total cost.  

- Increasing recovery probability or decreasing disruptions probability does not always lead to a lower 

cost, this action also can lead to the same cost or even higher cost. For example, when we decrease α 

value, if the optimal solution generates transshipment decision, then the lower the value of α, the 

higher the inventory cost at retailer 1 and the lower the transshipments cost. In the situation where 

the holding cost at retailer 1 is the same as the transshipments cost, the amount of cost reduction 

gained from the transshipment cost is equal with the increase of inventory cost at retailer 1, hence 

the total cost does not change. While in the situation where the holding cost at retailer 1 is higher 

that the transshipments cost, the amount of cost reduction gained from the transshipment cost is 

lower with the increase of inventory cost at retailer 1. Therefore the total cost is increased. In this 

sense, companies still need to look carefully at the value of each cost parameters when they want to 
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decrease the cost by managing disruptions parameters since there are some cases where changing 

disruptions parameter does not change the cost or even make the cost higher. 

To conclude, the results in this thesis show that transshipments can reduce the cost of supply 

disruptions in the system. Through a well-planned base-stock levels value and transshipments decision, 

the risk of supply disruptions can be mitigated.
 

7.2 Future Research 

The research presented here can be extended by relaxing some assumptions to better represent the 

real-life cases. The possible changes in the assumption are:  

a. Assume that both retailers face supply disruptions. The disruptions events are sometimes 

unexpected in terms of time and place, therefore assuming that both retailers may face 

disruptions risk are more relevant. In this case, we deal with a more complex DTMC. The 

challenge of this problem is to find the cost function for the system.  

b. Incorporate a positive lead time for supply process from the supplier or transshipments. For big 

companies like Wal-Mart, their distribution centers may be located in different areas so that 

conducting transshipments will need a significant amount of time that may delay their intention 

to satisfy their customers. 

c. Assume a stochastic demand for each retailer. 

d. Redefine the probability in DTMC. The DTMC presented here (figure 2) assumes that for j > 1, 

the probability that retailer 2 is disrupted again (the system moves from j to j+1) is always the 

same for all j (j represents the number of consecutive periods that retailer 2 has been 

disrupted). It seems more realistic if this probability is decreasing in j, for example the 

probability of moving from j=3 to j=4 is lower than the probability of moving from j=2 to j=3. 

e. Assuming a positive fixed ordering cost. For this case, we may want to investigate what is the 

inventory policy that suits the problem most since based on some papers, the base-stock 

inventory policy is optimal only for a system with no order cost. For a system with positive order 

cost, some researchers (e.g. Song and Zipkin, 1996) suggest that (s,S) policy is optimal. 

Apart from relaxing some assumptions above, we may want to apply the result of this research to a real-

life case and incorporate company demands and limitations to the problem. All in all, relaxing some 

assumptions or applying the result of the research to a specific problem in the real world can give more 

beneficial results to both researchers and practitioners.  
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IX. APPENDIX 

9.1 Appendix Chapter 4 

Formulation for j 

Related to the supply process, it is assumed that disruptions follow a discrete time Markov chain 

(DTMC). Let Yt represent the state in the supply process in period t on state space S ={0, 1} where Yt = 1 if 

the supply process is ON and Yt = 0 if the supply process is OFF. Defining transition probabilities as: 

α = P (Yt = 0|Yt-1 = 1) and  = P (Yt = 1|Yt-1 = 0), 

Then α can be defined as a disruption probability and  as a recovery probability. Since it is assumed 

that the disruptions follow a DTMC, the length of ON and OFF intervals are therefore geometrically 

distributed. 

Define, 
. 1( | )i j t tp P X j X i    

Then we can assign the following transition probability: 

p0.0 = 1- ; p0.1 =  ; p1.0 = α ; p1.1 = 1-α 

Let the steady state distribution of the state space is denoted by G = [G0, G1], then the steady state 

probability should satisfy: 

.
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In this case G0 is the steady-state probability that the supply process is disrupted and G1 is the steady-

state probability that the supply process is not disrupted. From equation (1) we can define: 
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From equation (2): 
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Since it is specified that the DTMC for the disruption states using two parameters: α and , one can 

define the expression for j  using those parameters as the following. 

For j = 0,  

0 = steady state probability of being in the 0 period of OFF interval, then 0 is G1 

0




 


  

For j > 0,  

1 = steady state probability of being in the 1st period of OFF interval 

1 1.0 0p


 
 

 
  

2 = steady state probability of being in the 2nd period of OFF interval 

2 0.0 1 (1 )p


  
 

 
  -  
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3 = steady state probability of being in the 3rd period of OFF interval 

2

3 0.0 2 (1 )p

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and for the rest of j where j > 2: i = p0.0j-1.   

The definition above has a recurring pattern, therefore for j > 1, we can rewrite a general expression for 

i: 

1(1 ) j

j


 

 

-  
 -  

 
 

9.2 Appendix Chapter 5 

Derivation of Formula 5.7 

Derivation of the first term (1): 

The expression related to h1 is the following, 

         1 1 1 2 1 1 2

0

1 min 1 , ( 1) min , ( 1)   (5.7a)jh S d S d j d S S d S d j d S
  

        - -  -  - - - - -  -     


 

The above expression can be simplified by limiting the value for j, since after a specific value of j, 

formula 5.7a will be equal to zero. Simplifying the expression will be helpful for the next step of 

derivation (second order derivation).  

 

To find the specific value for j which limits the expression, first we divide expression (5.7a) into two 

parts: 
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 Part B in the formula above will have positive value if, 

    1 1 2min , ( 1)S d S d j d S
 

-  -  -

 
The specific value of j that can satisfy above expression is:  

2 1

1 2

( 1)

2

j d S S d

S S
j

d

 -  -


 -
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And part A will have positive value if, 

    1 1 2

2 1

1 2

1 2

1 min 1 , ( 1)

( 1) 1

2 1

1
2

S d S d j d S

j d S S d

jd S S d

S S
j

d

 
-   -   -

 -  - 

  - 

 
 -

 

Based on both results, for all j > ((S1+S2)/d)-2, both part A and B are always equal to 0, hence the value 

for expression (5.7a) is equal to 0. 

Now, we will check the value of expression (5.7a) for all j < ((S1+S2)/d)-2. We find it by trying several 

values of j. 

(1) For j = ((S1+S2)/d)-2 

         1 1 1 2 1 1 21 min 1 , ( 1) min , ( 1)jh S d S d j d S S d S d j d S
 

        - -  -  - - - - -  -     

   1 2 1 2
1 1 1 2 1 1 21 min 1 , 1 min , 1j

S S S S
h S d S d d S S d S d d S

d d


 
 

 
                    - -  - - - - - - - - -                                

         1 1 1 1 1 1 11 min 1 , min ,jh S d S d S d S d S d S d
 

         - -  - - - - - - -       

   
1 21 1 1 1 1 1 1

2
1j j S S

d

h S d S d S d S d h h  
 

 


-

      - - - - - - -         

(2) For j = ((S1+S2)/d)-3 

         1 1 1 2 1 1 21 min 1 , ( 1) min , ( 1)jh S d S d j d S S d S d j d S
 

        - -  -  - - - - -  -     

   1 2 1 2
1 1 1 2 1 1 21 min 1 , 2 min , 2j

S S S S
h S d S d d S S d S d d S

d d


 
 

 
                    - -  - - - - - - - - -                                

         1 1 1 1 1 1 11 min 1 , 2 min , 2jh S d S d S d S d S d S d
 

         - -  - - - - - - -       

   
1 21 1 1 1 1 1 1

3
1 2 2j j S S

d

h S d S d S d S d h h  
 

 


-

      - - - - - - -         
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From two examples above expression (5.7a) equals to h1j. This pattern continues for all 0 < j < (S1+S2)/d 

-2. This result is also applied for j =0 as shown below. 

(3) For j = 0 

         1 1 1 2 1 1 21 min 1 , ( 1) min , ( 1)jh S d S d j d S S d S d j d S
 

        - -  -  - - - - -  -     

         1 1 1 2 1 1 21 min 1 , min ,jh S d S d d S S d S d d S
 

         - -  - - - - - - -       

Since S2 > d, [d-S2]+ always results in 0. Hence, 

    1 1 1 1 1 01j jh S d S d h h  
 

  - - -  
 

Therefore expression (5.7a) can be rewritten as the following:  

1 2 2

1

0

S S

d

j

j

h 


-



 
 
 
 
 

  

Derivation of the second term (2): 

The expression related to p2 is the following, 

 2 2 2

0

( 1) ( 1)j j

jp j d S TX j d S TX


 

    - - -  - -      

   2 2 2
2 1 2 1

2

0

2
2

( 1) min 1 ,1 min 1 , 1 1

( 1) min 1 ,1

j

S S S
j d S j S d d S S d j

d d d

p

S
j d S j

d




 

 





                   - - -   -  -   - -                                       

     -  - - -           



   2 2
1 2 1

  (5.7b)

min , 1
S S

S d d S S d j
d d




 

 
 
 
 
            -  -  - -                          

  

To analyze this expression, we first elaborated formula (5.7b) to various different values of j.  

(1) For 
2S

j
d


 

In this case, we can omit TXj since no transshipment has occurred before this state.
 

    2 2 2( 1) ( 1) 0j p j d S j d S
 

 - -  -   
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(2) For 
2S

j
d


 

For this range of j, expression (5.7b) can be written as follow: 

   

   

2 2
2 1 2 1

2

0

2
2 1 2 1

( 1) min 1 , 1 1

( 1) min , 1

A

j

S S
j d S S d d S S d j

d d

p

S S
j d S S d d S S d j

d






 



 

           - -  -  -   - -                       

   -  - - -  -  - -      


2

  

B

d




 
 
 
 
 
 

                     
 

 

Since in part A and part B we have to determine the minimum between two expressions, we will 

analyze expression (5.7b) with 2 conditions. 

(a) Condition 1, if: 

   2
1 21

S
S d d S

d
   -   -      

   1 2

1 2

1 2

*

2 *

* 2

S d j d d S

S S d j d

S S
j

d


-   -

 - 


 -

 

Now, we will check the value of expression (5.7b) for j > ((S1+S2)/d)-2.  

(1) For 
1 2 1

S S
j

d


 -

 

   1 2 1 22 2
2 2 1 2 2 1 2( ) min 1 , 1 ( ) min , 1j

S S S SS S
p d S S d d S d S S d d S

d dd d


 

 
                  - -  -  - - - - -  -                                

   
22 1 1 1 1 21j S

d

p S S d S S d p 
 

      -  - - - -  -     

 
(2) For 

1 2S S
j

d



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   

   

1 2 1 22 2
2 1 2 1

2

1 2 1 22 2
2 1 2 1

( 1) min 1 , 1 1

( 1) min , 1

j

S S S SS S
d S S d d S S d

d dd d
p

S S S SS S
d S S d d S S d

d dd d






 


 

            - -  -  - -  - -                       

         -  - - -  - - - -                 



 
 
 
 
  
   

       

       2 1 1 1 1 1 1( ) 1 1 ( )j p S d S d S d S d S d S d
 

         -  - -  - -  - - - -     

    2 1 1 23 2 3 2j jp d S d S p 
 

 - - - -  -  

 

(2) For 
1 2 1

S S
j

d


 

 

   

   

1 2 1 22 2
2 1 2 1

2

1 2 1 22 2
2 1 2 1

( 2) min 1 , 1 1 1

( 2) min , 1 1

j

S S S SS S
d S S d d S S d

d dd d
p

S S S SS S
d S S d d S S d

d dd d






 

 

            - -  -  - -  -  -                       

         -  - - -  - - -  -               




 
 
 
 
   
           

       2 1 1 1 1 1 1( 2 ) 1 2 1 ( 2 ) 2j p S d S d S d S d S d S d
 

         -  - -  - -  - - - -       

    2 1 1 25 2 3 5 2 3j jp d S d S p 
 

 - - - -  -  

For every j that is bigger than ((S1+S2)/d)-2, the result for formula 16 has the same pattern, that is = 

1 2
2 2j

S S
p j

d


   
- -  

  
 

(b) Condition 2, if,  

  2
1 21

S
S d d S

d
   -   -      

Using the same approach as what we have done in condition (1), we found the result for expression 

(5.7b) under condition 2 as the following: 

1 2
2 1j

S S
p j

d


   
- -  

  
 

Based above results, expression 5.7b can be replaced by: 
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For condition 1: 

1 2

1 2
2

1

2j
S S

d

S S
p j

d





-

   
- -  

  


 

For condition 2: 

1 2

1 2
2 1j

S S

d

S S
p j

d






   
- -  

  
  

Derivation of the third term (3): 

The expression related to c (transshipment cost) is as the following, 

           1 2 1 2

0

min 1 , ( 1) min , ( 1)    (15c)j

A B

c S d j d S S d j d S


   
 -  - - -  -  

To analyze this expression, we examined the result of expression (5.7c) in three different ranges of j, 

that are for j < j*, j=j* and j > j* (j* is the stage when the first transshipment occurs). 

Expression (5.7c) is always equal to 0 for j < j*. Since no transshipment occurs in those stages both for 

part A and B.  

For j > j*, part A is equal to [S1+1-d]+ and part B is equal to [S1-d]+, therefore expression (5.7c) generates 

result as the following:  

           1 2 1 2min 1 , ( 1) min , ( 1)jc S d j d S S d j d S
   

 -  - - -  -
 

    1 11j

j

c S d S d

c





 
  - - -


 

As for j = j*, Expression (5.7c) also depends on S1 because at this stage if S1 is bigger than d and S2 is not 

an integer multiple of d, then at j* both part A and part B are equal to [(j*+1) d-S2]+ thus expression 

(5.7c) is equal to 0. But, for other conditions, expression (5.7c) can have positive value bigger than 0. 

In order to find the lower bound for j where expression (5.7c) can have positive value bigger than 0, we 

tried to include S1 in the definition of j*. There are two conditions for this: 
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1. If 1 1
S

d
  
  

, then j* can be rewritten as: 

2 1 1 2* 1 1
S S S S

j
d d d

       
  -  -      
      

 

 

2. If 1 2
S

d
  
  

, then j* can be rewritten as: 

  
2 1 1 2* 2 2

S S S S
j

d d d

       
  -  -      
      

 

Now, we check the value for each condition, 

(1) For 
1 2 1

S S
j

d


 -

 

           1 2 1 2

0

min 1 , ( 1) min , ( 1)jc S d j d S S d j d S


   
 -  - - -  -

 

           1 1 2 2 1 1 2 2

0

min 1 , min ,jc S d S S S S d S S S


   
  -  - - -  -  

 1 11j jc S d S d c  -  -  

 

(2) For 
1 2 2

S S
j

d


 -

 

           1 2 1 2

0

min 1 , ( 1) min , ( 1)jc S d j d S S d j d S


   
 -  - - -  -

 

           1 1 2 2 1 1 2 2

0

min 1 , min ,jc S d S d S S S d S d S S


   
 - -  - - - -  -  

 1 1 0jc S d S d - -  
 

Hence, the lower bound for j is when 1 2 1
S S

j
d

 
 - 
   

Based on above results, expression (5.7c) can be rewritten as follow:
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1 2*
1

j j
S Sj

d

c c 
 


-

   

Derivation of Formula 5.14 

The derivation of this formula is similar with formula (5.7).
 

1 2

1

1 2 1 2

(1) (2) (3)
2

1 2
1 2 1 2

0
1 1

( , ) 2      (5.14)

S S

d

S j j j
S S S Sj

d d

S S
C S S h d p j d c d

d
  


-

 

 
- -

     
         - -            

    

  

 

Derivation of the first term (1): 

In the first order derivation of C(S1,S2), the expression related to h1 is the following, 

         1 1 1 2 1 1 2

0

min , ( 1) min , ( 1)   (5.14a)jh S d d S d d j d S S d S d j d S
  

        - -  -  - - - - -  -     


 

To find the limit value for j, first we divide above expression into two parts: 

         1 1 1 2 1 1 2

0

min , ( 1) min , ( 1)   j

A B

h S S j d S S d S d j d S
  

   

 
    -  - - - - -  -
    
 
 

   

Part B in the formula above will have positive value if, 

    1 1 2

2 1

1 2

min , ( 1)

( 1)

2

S d S d j d S

j d S S d

S S
j

d

 
-  -  -

 -  -


 -

 

And part A will have positive value if, 

    1 1 2

1 2

min , ( 1)

1

S S j d S

S S
j

d

 
  -


 -

 

Based on both results, for all j > ((S1+S2)/d)-2, both part A and B are always equal to 0, hence the value 

for expression (5.14a) is equal to 0. 
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Now, we will check the value of expression (5.14a) for all j < ((S1+S2)/d)-2. We find it by trying several 

values of j. 

(1) For j = ((S1+S2)/d)-2 

         1 1 1 2 1 1 2min , ( 1) min , ( 1)jh S S j d S S d S d j d S
 

       -  - - - - -  -     

         1 1 1 1 1 1 1min , min ,jh S S S d S d S d S d
 

        - - - - - - -       

   1 1 1 1 1 1j jh S S d S d S d h d 


    -  - - - -      

(2) For j = ((S1+S2)/d)-3 

         1 1 1 2 1 1 2min , ( 1) min , ( 1)jh S S j d S S d S d j d S
 

       -  - - - - -  -       

         1 1 1 1 1 1 1min , 2 min , 2jh S S S d S d S d S d
 

        - - - - - - -       

   1 1 1 1 1 12 2j jh S S d S d S d h d 
 

      - - - - - -        

From two examples above expression (5.14a) equals to h1jd. This pattern continues for all 0 < j < 

(S1+S2)/d -2.  

Therefore expression (5.14a) can be rewritten as the following:  

1 2 2

1

0

S S

d

j

j

h d


-



 
 
 
 
 

  

Derivation of the second term (2): 

The expression related to p2 is the following, 

 2 2 2

0

( 1) ( 1)j j

jp j d S TX j d S TX


 

    - - -  - -      
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   2 2 2
2 1 2 1

2

0

2
2

( 1) min 1 ,1 min , 1

( 1) min 1 ,1

j

S S S
j d S j S d d d S S d d j

d d d

p

S
j d S j

d




 

 





                   - - -   -  -   - -                                       

     -  - - -           



   2 2
1 2 1

  (5.14b)

min , 1
S S

S d d S S d j
d d




 

 
 
 
 
            -  -  - -                          

  

To analyze this expression, we first elaborated formula (5.14b) to various different values of j.  

(3) For 
2S

j
d


 

In this case, we can omit TXj since no transshipment has occurred before this state.
 

    2 2 2( 1) ( 1) 0j p j d S j d S
 

 - -  -   

(4) For 
2S

j
d


 

For this range of j, expression (16) can be written as follow: 

   

   

2 2
2 1 2 1

2

0

2 2
2 1 2 1

( 1) min , 1

( 1) min , 1

A

j

S S
j d S S d S S j

d d

p

S S
j d S S d d S S d j

d d






 



 

           - -  -  -                       

       -  - - -  -  - -              

   

B




 
 
 
 
 
 

    
           

 

 

 Since the value of expression 5.14b is also depends on S1, we try several value of j that also includes S1. 

(1) For 
1 2 1

S S
j

d


 -

 

   1 2 1 22 2
2 2 1 2 2 1 2( ) min , 1 ( ) min , 1j

S S S SS S
p d S S d S d S S d d S

d dd d


 

 
                  - -  - - - - -  -                                

      1
2 1 1 1 1 1 1 2( 1)j j

S
p S d S S S d S d S d p d

d
 

 
       - - - - - - - - -  -      

 
(2) For 

1 2S S
j

d



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   

   

1 2 1 22 2
2 1 2 1

2

1 2 1 22 2
2 1 2 1

( 1) min , 1

( 1) min , 1

j

S S S SS S
d S S d S S

d dd d
p

S S S SS S
d S S d d S S d

d dd d






 


 

            - -  - - -                       

           -  - - -  - - - -                    



 
 
 
 
 
  
     

    2 1 1 1 1 2( / ) 2 ( ) ( 2 )j jp S S S d d S d d p 
 

 - - - -  -  

For every j that is bigger than ((S1+S2)/d)-2, the result for formula 5.14b has the same pattern, that is = 

1 2
2 2j

S S
p j

d


 
- - 

 
 

Therefore, expression 5.14b can be rewritten as: 

1 2

1 2
2

1

2j
S S

d

S S
dp j

d





-

 
- - 

 


 

Derivation of the third term (3): 

The expression related to c (transshipment cost) is as the following, 

           1 2 1 2

0

min , ( 1) min , ( 1)    (5.14c)j

A B

c S d d j d S S d j d S


   
 -  - - -  -  

To analyze this expression, we examined the result of expression (5.14c) in three different ranges of j, 

that are for j < j*, j=j* and j > j* (j* is the stage when the first transshipment occurs). 

Expression (5.14c) is always equal to 0 for j < j*. Since no transshipment occurs in those stages both for 

part A and B.  

For j > j*, part A is equal to [S1]+ and part B is equal to [S1-d]+, therefore expression (5.14c) generates 

result as the following:  

           1 2 1 2min , ( 1) min , ( 1)jc S j d S S d j d S
   

 - - -  -
 

    1 1j

j

c S S d

cd





 
 - -


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As for j = j*, Expression (5.14c) also depends on S1 because at this stage if S1 is bigger than d and S2 is not 

an integer multiple of d, then at j* both part A and part B are equal to [(j*+1) d-S2]+ thus expression 

(5.14c) is equal to 0. But, for other conditions, expression (5.14c) can have positive value bigger than 0. 

In order to find the lower bound for j where expression (5.14c) can have positive value bigger than 0, we 

tried to include S1 in the definition of j*. There are two conditions for this: 

3. If 
1 1

S
d
 , then j* can be rewritten as: 

2 1 1 2* 1 1
S S S S

j
d d d

 
  -  - 

   

 

4. If 
1 2

S
d
 , then j* can be rewritten as: 

  
2 1 1 2* 2 2

S S S S
j

d d d

 
  -  - 

   

Now, we check the value for each condition, 

(3) For 
1 2 1

S S
j

d


 -

 

           1 2 1 2

0

min , ( 1) min , ( 1)jc S j d S S d j d S


   
 - - -  -

 

 1 1j jc S S d cd  -  

 

(4) For 
1 2 2

S S
j

d


 -

 

           1 2 1 2

0

min , ( 1) min , ( 1)jc S j d S S d j d S


   
 - - -  -

 

 

 1 1 0jc S d S d - -  
 

Hence, the lower bound for j is when 1 2 1
S S

j
d


 -

 

Based on above results, expression 5.14c can be rewritten as follow:
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1 2*
1

( )j j
S Sj

d

c c d 
 


-

 
 

The derivation for formula 5.15a and 5.15b can be done using the same approach as above. 

 

Derivation of Formula 5.16 

1 1 1 1

1 2

1 2 1 2

1 2

1 2

2

, 1 2 1 2 1 2

1

1 2
1 2

0

2

1 2
1 2

0
1

( , ) ( , ) ( , )

1

2

S S S S

S S

d

j j j
S S S Sj

d d

S S

d

j j
S Sj

d

C S S C S d S C S S

S S
h d p j d c d

d

S S
h d p j d

d

  

 


-

 

 


-




-

    -

     
       - -  -           

    

   
     - -      

  

  

 
1 2 1

j
S S

d

c d



-

  
    

   
  



 

1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2

2 2

1
1

0 0

1 2

2

1 1

( ) ( 2 ) ( 3 ) ........

( ) ( 2 ) ( 3 )........

S S S S

d d

j S S j

j jd

S S S S S S

d d d

S S S S S S

d d d

j j
S S

d

h d d

d d d

p

d d d

c d d

  

  

  

 

 
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The derivation for formula 5.17 is using a similar approach as used for the derivation of formula 

5.16, and in the end it provides the same results. 

 


