
 Eindhoven University of Technology

MASTER

Implementation and experimentation with adaptive fault management in component based
software systems

Yang, F.

Award date:
2007

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6107a14e-8792-44a9-bf3c-b0e530cf25ed

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

Implementation and Experimentation
With adaptive fault management

In component based software systems

By
Fang Yang

Supervisors:

Michel Chaudron (TU/e)
Johan Muskens (Philips Research)

Rong Su (TU/e)

Eindhoven, Aug 2007

 1

Index

1. Introduction... 2

1.1 Background and problem statement.. 2

1.2 Poker game application... 4

2. Literature Review.. 9

3. Theoretical part ... 11

3.1 Failure detection.. 11

3.2 Middleman architecture & process ... 13

3.3 Adaptive failure recovery algorithm... 17

3.3.1 Failure recovery model ... 17
3.3.2 Repair rule evaluation ... 20

3.3.3 Learning part ... 26

4. Implementation ... 31

4.1 Runtime instantiation of the Middleman .. 32

4.2 Failure detection.. 34

4.2.1 Specification format.. 34

4.2.2 Input / output parameters check.. 36

4.2.3 Behavior deviation check.. 37

4.2.4 Time constraints check ... 40

4.2.5 Excessive concurrent call check ... 41

4.2.6 Internal errors catch .. 43

4.3 Failure recovery .. 44

5. Testing and results .. 51

5.1 Testing approach... 52

5.2 Results... 55

5.2.1 Results of behavior deviation check ... 56

5.2.2 Results of input / output check.. 58

5.2.3 Results of time constraints check.. 59

5.2.4 Results of excessive concurrent call check... 60

5.2.5 Results of internal errors catch ... 61

5.2.6 Performance of adaptive repair rule selection .. 62

6. Conclusion and future work.. 65

 2

1. Introduction

1.1 Background and problem statement

Trust4All is a joint research project of various European companies. It builds on the

Space4U architecture [1] and the Robocop component model [2]. The aim for Trust4All

is to define an open, component-based framework for the middleware layer in high-

volume embedded appliances that enables robust and reliable operation, upgrading and

extension. A Trust4All system in this paper contains a collection of software entities

called components. Each component offers the functionality through a set of services,

which are equivalent to a Class in the object-oriented languages. The implementation of

the services is unknown to the outside, except by means of interfaces from which the

users can invoke the service. An individual service sometimes requires calling other

services in order to provide specific functionality. Establishing a connection between two

services is called binding. Finally, an application is an executable software entity that

assembles different service instances to fulfill a task. As our reliance on computers

increases, so does the need for high reliability of software. In order to achieve high

reliability of software application, it is important to achieve reliability of each service.

Currently fault management mechanisms have been developed, which is to encapsulate

existing services at runtime with fault management logic. By intercepting operation calls

to and from the encapsulated service instance, the Middleman can detect deviations from

the specification, and take a repair action if necessary.

Figure 1: Middleman

Requires Interface

Provides Interface

Service

Middleman

Service

Provides Interface

Requires Interface

 3

In the existing solution, a number of standard failure detection and recovery units are

inserted into the Middleman. But they are quite straight forward and static. In this paper,

we investigate and prototype a more advanced and intelligent Middleman. We want to

find the solution for the following questions:

(1) How to implement the Middleman with failure detection and recovery in an object

oriented environment?

(2) How to realize the adaptive failure repair rather than statically testing a list of

repair rules (the result of Space4U)?

(3) How to validate the approach? Does it improve the reliability of the component

based software system?

Thus, later in this paper we will introduce an adaptive repair rule selection strategy which

makes use of the knowledge from the previous experiences so that the Middleman can be

adaptive to the general cases.

In the next section, we will first give a brief introduction of an application called poker

game, which is constructed in a component based architecture. This application will be

used in the rest chapters as an example. In Chapter 2, the literature reviews will present

the existing solutions. After that, a theoretical part will elaborately discuss the internal

architecture of the Middleman and the strategies for adaptive failure recovery. In Chapter

4, how to implement those strategies mentioned in Chapter 3 is introduced in an object-

oriented environment. Chapter 5 contains the testing results of those strategies in the

poker game application. Finally, there is a section of conclusion and future work.

 4

1.2 Poker game application

As a vehicle for our research, we build a poker game application, which consists of four

components: Game Console, Game View, Bank and Player. Each component contains

only one service that has the same name as the corresponding component. The service

Game Console mainly controls the flow of the game. It contains five interfaces: the

requires interfaces IDialog, IFrame, IBank, IPlayer and the provides interface

IGameControl. The service Bank serves as a virtual bank from which the players could

withdraw and transfer the money. It contains two interfaces: the requires interfaces

IDialog and the provides interface IBank. The service GameView is responsible for the

view of user interaction. It contains three interfaces: the requires interface

IGameControl and the provides interfaces IDialog and IFrame. The service Player

implements a player instantiations. It contains two interfaces: the requires interace

IGameControl and the provides interface IPlayer. Figure 2 depicts the structure of the

poker game application.

Figure 2: Structure of poker game application

In this game, there are two virtual players and one human being player. The game

console controls the game sequence, and instructs the human being player with the game.

Game Console

Bank

Player

IBank

IFrame IDialog IPlayer

IFrame IDialog IPlayer

IBank IGameControl

IDialog

Provides interface Requires interface

Game View

IGameControl

 5

For the virtual players, their behavior is simulated by two separate threads. At the

beginning, the players join the game through interface IGameControl. Waiting for a

certain period time, the game console confirms that all the players are ready. Then each

player is required to first put the stake. During this procedure, the Game Console sends a

withdrawal request to Bank through IBank. And the bank confirms the information with

the players. After all these done, the game console starts the game through IPlayer. In

each round, the players call the interface IGameControl to either ask for a card or refuse

a card to make their total points close to 21 points. Once the game is over, the game

console calculates the results and transfers the money through IBank. All the game view

and interactions are realized through IFrame and IDialog. Since there is a list of

available operations of provides interface, the poker game application invokes the

functionalities by calling an ordered sequence of operations. Figure 3 shows the sequence

of the poker game with three main services.

 6

BankGameConsole Player

True

NewPlayer(PlayerID)

JoinGame()

Player's Infor

PutStake(PlayerID)

information authentication(GameView)

True

PlayCard(#Round, PlayerID, Action)

True

PlayCard(#Round, PlayerID, Action)

True

.

.

.

Transfer(bankAccount, amount of wined money)

Withdraw(bankAccount, stakeAmount)

StartGame()

True

True

Figure 3: Sequence of poker game

 7

Now let us see more detail for each service. In service Bank, provides interface IBank

has two operations:

• Withdraw: called by Game Console to withdraw the stake from the virtual bank.

Domain
Parameter name Format

Lower Upper

Input_BankAccount String of 9 digits

Input_Amount_of_the_stake 100 5000

Output_Status_of_withdrawal

0: successful withdrawal

1: invalid bank account

2: not enough deposit to withdraw

This operation internally calls the operations through the interface IDialog to make

the confirmation of the withdrawal information with the players.

• Transfer: called by Game Console to transfer the money according to the game

results.

Domain
Parameter name Format

Lower Upper

Input_BankAccount String of 9 digits

Input_Amount_of_money_wined 100

Output_Status_of_transfer

True : successful transfer

False : failed transfer

In service Game Console, provides interface IGameControl has four operations:

• JoinGame: called by Player to participate into the game.

Parameter name Description

Output_Status

True : succeed in joining the game

False : fail to join the game

This operation assigns a player ID and internally calls the operation of IPlayer to

instantiate the information of the newly joined player.

• PutStake: called by Player to put the stake.

Domain
Parameter name Format

Lower Upper

Input_playerID 0 2

 8

This operation internally calls the operations through the interface IBank to withdraw

the stake for each player.

• PlayCard: called by Player to request or refuse a card in each round.

Domain
Parameter name Format

Lower Upper

Input_Round 0 10

Input_PlayerID 0 2

Input_Action

True: get a card

False: refuse a card

Output_Status_of_the_request

True : succeed in dealing with the request

False : fail to deal with the request

• Console: called by the main application to control the whole flow of the game.

In service Player, provides interface IPlayer has three operations:

• NewPlayer: called by Game Console for instantiating the new players.

Domain
Parameter name Format

Lower Upper

Input_playerID 0 2

Output_Player’s_infor playerID 0 2

 #Round 0 10

 Bank account String of 9 digits

 Amount of stake 100 5000

 Action
True: get a card

False: refuse a card

 Status

0: idle / lose the game

1: ready / continue with the game

2: win the game

• StartGame: called by Game Console to give the permission of starting the threads

for the virtual players.

In service Game View, there are two provides interfaces IDialog and IFrame. Since

the operations provided by these two interfaces are only responsible for the game

interaction and view, we will not give much detail about this part.

 9

2. Literature Review

There is a large volume of publications on failure tolerance, diagnosis and repair of

software systems. Components have long promised to encapsulate data and programs into

a box that operates predictably without requiring that users know the specifics of how it

does so. This has brought about widespread software reuse, spawning a market for

components usable with such mainstream software buses as the Common Object Request

Broker Architecture (CORBA) and the Distributed Component Object Model (DCOM).

But after that, people starts to ask how can we trust a component? What if the component

behaves unexpectedly, either because it is faulty or simply because we misused it? Before

we can trust a component in mission-critical applications, we must be able to determine,

reliably and in advance, how it will behave. In 1999, A. Beugnard, J.-M.

Jezequel, N. Plouzeau and D. Watkins defined a general model of software contracts and

show how existing mechanisms could be used to turn traditional components into

contract-aware ones.[15] They apply contracts to components such that contracts are

divided into four levels of increasingly negotiable properties. The first level, basic, or

syntactic contracts is required simply to make the system work. The second level,

behavioral contracts improves the level of confidence in a sequential context. The third

level, synchronization contracts improves confidence in distributed or concurrency

contexts. The fourth level, quality-of-service contracts, quantifies quality of service and is

negotiable.

Paper [1] introduces the meaning of terminology failure and fault. A failure is an event

that occurs when the delivered service of a system deviates from correct service.

Examples of failures are unexpected behavior of a system with respect to its specification

like delivery of wrong data to the user. A fault is the adjudged or hypothesized cause of a

failure. Often faults are mistakes made by a human, but they can also be caused by

external factors like defective hardware. Examples of faults are incorrect thinking of the

system developer that makes him produce design or programming mistakes, the toggling

of memory bits due to electromagnetic disturbances in the environment where a given

hardware operates, or a network congestion beyond its buffer capacities. From paper [1]

 10

and [7], fault tolerance is the technique of designing a system that is failure free despite

of faults. Fault tolerance mechanisms are based on detecting, resolving and hiding errors

by wrapper pattern.

In paper [4], C. Fetzer and X. Zhen propose the idea of a wrapper, which sits between an

application and its shared libraries. This approach is trying to improve the robustness of

C libraries without source code access. The wrapper generation process consists of two

phases. In the first phase, the system extracts the C type information for a shared library

using header files and manual pages. Then it generates for each global function a fault

injector (introducing the faults into the code) to determine a “robust” argument type per

each argument. Based on this information, the system generates a robustness wrapper that

performs careful argument checking before invoking C library functions.

In the deliverable of Space4U project [1], a Fault Management Framework used in

Space4U based systems is elaborately described. It provides mechanisms for adding fault

tolerance techniques (e.g. error detection and recovery) to an existing system. These

techniques deal with errors occurring in Service Instances created from Components that

are not trusted, without modifying these Components and without relying on reflection.

The strategies applied in this Framework are similar as those in paper [3]. In paper [3], R.

Su, M.R.V. Chaudron and J.J. Lukkien propose the similar solution of wrapper but to

improve reliability of applications in component based system. The main idea is to

construct a runtime configurable fault management mechanism (FMM) which detects

deviations from the service specifications by intercepting interface calls. When a repair is

necessary, FMM picks a repair action that incurs the best tradeoff between the success

rate and the cost of repair. During this procedure, FMM is designed to be able to

accumulate knowledge and adapts its capability accordingly.

 11

3. Theoretical part

3.1 Failure detection

The main strategy of failure detection is to compare the real execution with the given

specification which serves as a standard. Now let’s discuss them in more detail.

• Input/output values check

In the specification, there is a description for input/output parameters such as the order of

the parameters, data type, data domain and data format. The Middleman compares this

with the real input/output to see whether there are some mismatches.

• Behavior deviation check

Sometimes, the operations of provides interfaces need the support from other services. In

such cases, the operations will call requires interfaces which bind with corresponding

provides interfaces in other services. This procedure is visible for the Middleman. In the

specification, a behavior model is specified to describe such procedure, so the Middleman

can compare the real behavior with the model to see whether a deviation occurs. Suppose

there is an operation A provided by interface_1 in service S, which internally calls the

operations provided by other services as in the Figure 4.

Figure 4: Example behavior model in the specification

Thus, in the implementation of requires interfaces in MiddleMan_S, there will be a

behavior deviation check before transferring the call to other services.

OperationA

(interface_1)

OperationC

(interface_2)

OperationE

(interface_2)

OperationB

(interface_2)

OperationF

(interface_3)

Return

Return

 12

• Time constraints check

 In many applications, there are time constraints for the interaction response or duration

of a complex computation. Thus, we introduce the concept of the timer to monitor the

total execution time of the operations. Once the deadline is missed, a time out notification

will be sent to the Middleman. This may indicate that the system is stuck in an infinite

loop or recursion during the execution.

• Concurrent call check

In some cases, the number of synchronized calls for one operation is limited. The

Middleman applies a counter to record such number. If the number exceeds the limit

defined in the specification, there is an excessive concurrent call.

• Internal error check

Since the implementation of the services is a black box for the users, it is hard for the

Middleman to detect the internal errors directly. Nevertheless, the Middleman can detect

some of them by catching the exceptions thrown from the service that it encapsulates.

 13

3.2 Middleman architecture & process

Since a service in a component based software system is a black box which can be

accessed only through service interfaces, we use the wrapper pattern [5] to perform

failure diagnosis. During the runtime execution, in addition to instantiating each service

instance, a software entity called Middleman is runtime instantiated to totally encapsulate

the service instance. By intercepting every interface call to or from another service

instance or other users, the Middleman can detect the deviations from the specification

and take a repair action if necessary. Taking the service Bank in the poker game case as

an example, the wrapper pattern could be represented as shown in Figure 5.

Figure 5: Middleman for service Bank

The Middleman implements the same interfaces as its encapsulated service instance. For

each interface implemented by service instances, the Middleman implements two

corresponding interfaces: one is used for internally binding with real service instance (e.g.

IBankI, IDialogI); the other is used for connection with outside (e.g. IBankO,

IDialogO). Calls from the external interface to the internal interface will be checked so

that the failures could be detected and repaired if exist.

Inside the Middleman, a failure is detected by comparing the observation with the

specification of the service instances. In general, a service instance specification allows

us to identify the following failures:

IDialog

IBank
IBankI

IBank

IDialog

IDialogI

Bank

 IBankO

IDialogO

Middleman_Bank

Bank

Provides interface Requires interface

 14

1) value mismatches such as illegal input parameter values and illegal return values

of an operation call;

2) unspecified operation calls within an individual provides operation such as non-

existing promised service functionality and unexpected service functionality;

3) Unexpected resource usage for an individual operation. [3]

In the poker game case, the expected detectable failures are

1) Input/output mismatches;

2) Time out (an operation misses its deadline);

3) Behavior deviation;

4) Excessive concurrent calls.

For each failure, there is a unit implemented to detect it. In addition, there are another

three units: failure adaptor, error recovery, and central unit. The unit failure adaptor is

mainly responsible for finding the possible faults regarding to the failures; the unit error

recovery is responsible for finding the repair rules corresponding to faults; the central

unit internally binds with other units, and concentrates on the flow of the failure

diagnosis and recovery. Figure 6 depicts the architecture of the Middleman.

Figure 6: Architecture of Middleman

 ICounter
Concurrent call

Check

IAdaptor Central

Unit

Fault

Adaptor

IValueCheck ISignal

ISignal

 IRecovery ITimer
Time

Monitor

Error

Recovery

IBehavior
Behavior

Monitor

Input & Output

 Check

Provides interface Requires interface

 15

As shown in Figure 6, each unit has its own interfaces. Considering the multithread cases,

the central unit will first register the information in different units such as Time Monitor

and Behavior Monitor through corresponding interfaces. After that, the Central Unit will

follow an ordered sequence of actions by calling other units. During this procedure,

ICounter is first called to determine whether the call has permission to obtain immediate

execution. If so, input parameters are checked through IValueCheck. If no failure occurs

in this step, the timer will be started through ITimer, parallel executing with the real

operation in the service instance. When there is an internal call for functionalities in other

service instances, the behavior deviations are checked through IBehavior. Finally,

outputs of the operations are checked through IValueCheck. If a failure occurred in the

whole process, the central unit will turn to Fault Adaptor and Error Recovery for

recovery. This will be discussed later.

Now, we will discuss how to detect the failures based on the above architecture. In

general, there is a specification which describes:

1) A list of requires interfaces;

2) A list of provides interfaces;

3) Detailed information for each operation in provides interfaces:

• input/output parameters

• time constraints

• behavior model

• Upper bound for the number of the concurrent calls to one operation

The failure detection is mainly implemented in provides interfaces of the Middleman as

shown in Figure 7.

 16

Figure 7: Process for failure detection

Once there is a call for Interface.operation_A in the service, it will be first transferred

into the provides interface of the Middleman to experience first the concurrent call check

and then input values check. After that, the call will be transferred into the internal

interface. At the same time, the time monitor will be started to parallel running with the

main sequence. When the call returns, it will experience the behavior deviation check and

finally output values check. Suppose there is an internal call for Interface.operation_B. It

will be transferred to the requires interface, which implements the behavior deviation

check and then calls the external interface.

Exceeding call check

Input values check

Call for InterfaceI.

operation_A

Behavior deviation check

Output values check

Provides Interface

Behavior deviation check

Call for InterfaceI . operationB

Requires Interface

Middleman

Time Monitor

 17

3.3 Adaptive failure recovery algorithm

3.3.1 Failure recovery model

Once a failure is detected, removing it by some repair rule becomes our goal. A

collection of faults may be correlated [6] with each other in the sense that:

1) The subsequent failures of a collection of faults may not be simply the union of

failures caused by each individual fault;

2) Failures of one fault may be masked by failures of others;

3) The repair of one fault is indispensable of some other’s repair.

To avoid unnecessary complexity, in this paper we only consider independent faults.

Thus, we build a Failure-Fault-Repair model under this assumption. [3]

After summarizing most ideas and concepts in the existing literature [8, 14], we classify a

list of commonly occurred failures and a list of design faults or faults in the environment.

Let }F,...F,F{F n21= denote this fault set and }f,...f,f{f m21= denote the failure set.

Since one failure could be caused by different faults, and one fault could result in

different failures, we try to build a relation between these two sets as shown in Figure 8.

These two sets and their relations will be stored in a database, and could be dynamically

updated according to the real facts.

Figure 8: Example relations between failures and faults

From the figure, it is obvious to see that failure 1F could be resulted from three different

faults, while fault
2f could be the reason for either failure

1F or failure
4F or both. In

addition, we also summarize a list of repair rules that are possible to remove different

 18

kinds of faults. Let }R,...R,R{R p21= denote the repair rules set. Similarly we construct

a relation between each fault and repair rules as shown in Figure 9.

Figure 9: Example relations between faults and repair rules

Figure 10: Example of Failure-Fault-Repair model

Hence, by combining relations in Figure 8 and Figure 9, we derive:

pairReFailurepairReFault&FaultFailure −⇒−−

 19

Finally we form our Failure-Fault-Repair model, which could be illustrated by the

example in Figure 10. Suppose we detect the failure 1F and 4F . According to relations

between failures and faults, we derive the corresponding faults set:

{ }5432141 f,f,f,f,f})F,F({Fault = .

Then from relations between faults and repair rules, it is possible to obtain a list of repair

rules:

{ }65432141 R,R,R,R,R,R}))F,F({Fault(pairRe = .

Our goal is to remove the failure efficiently. Here “efficiently” has two meanings:

1) With high success rate;

2) With low cost.

Randomly choosing a repair rule is not a wise solution. Thus, an evaluation is requested

to be applied to help us make a good selection during the repair rules set.

 20

3.3.2 Repair rule evaluation

In this section, we introduce some new concepts for the repair rules evaluation. In Figure

10, some repair rules can cover two failures. Hence, to construct a good evaluation

procedure, we make full use of the properties disclosed from constructed relations.

Defining a set of influential parameters is indispensable. In our evaluation function, there

are three influential parameters:

• Probability of fault)(mj1f j ≤≤ occurred when the failure n)i1 (Fi ≤≤ is

detected in the specific operation;

• Success rate of repair rule
kR to remove fault jf in operation

lO ;

• Cost of each repair rule;

Suppose we have already built the following two tables to represent the relations between

failures, faults and repair rules.

Table 1: Example relations between failures and faults

Table 2: Example relations between faults and repair rules

Pair ID Fault Repair

0
1f 1R

1
1f 2R

2
2f

3R

3
2f 2R

4
2f

4R

5
3f 3R

6
3f 2R

7
4f

5R

Pair ID Failure Fault

0
1F

1f

1
1F

2f

2
1F

3f

3
4F

2f

4
4F 4f

5
4F 5f

 21

8
5f 6R

9
5f 4R

Since in different operations, the probability of one fault occurrence corresponding to a

failure is different, an operation label is needed for distinguishing. Assume each

operation could be uniquely identified by its name and related interface name. Let

}O,...O,O{O q21= denote the set of all the operations of provides interfaces. And

)(ql1Ol ≤≤ uniquely represents an operation. The probability of fault)(mj1f j ≤≤

when the failure n)i1 (Fi ≤≤ is detected in operation)(ql1Ol ≤≤ is denoted

by ()
lji O,f,FP . The probability could be updated during the iterative failure detection

and recovery procedure. Therefore, we use a table that keep track at runtime.

Table 3: Probability

Operation)f,F(Pair ji Probability

1O
11 f,F 1/3

1O 21 f,F 1/3

1O 31 f,F 1/3

1O 24 f,F 1/3

1O
44 f,F 1/3

1O
54 f,F 1/3

Since failure
1F is possible to occur because of three different faults in })({ 1FFault ,

initially we set these probabilities equally as 1/3 (
|})({| 1FFault

1
). For failure

4F , we do

the setting similarly. The value will be updated according to the repair facts. This will be

discussed later in this chapter.

Because it is possible for us to record the attempt times and successful times for each

repair rule when attempting to remove some failure, we define success rate as the result

of successful times divided by the attempt times. Since this parameter can be uniquely

identified by the operation)(ql1Ol ≤≤ , fault jf and repair rule
kR , we denote it

as)O,R,f(fault_SR lkj
. The parameters are stored in the table as the following:

 22

Table 4: Success rate

Operation)R,f(Pair kj Successful

times

Test

times

1O 11 R,f 1 2

1O 21 R,f 1 2

1O
32 R,f 1 2

2O 22 R,f 1 2

2O
42 R,f 1 2

2O 33 R,f 1 2

3O 23 R,f 1 2

3O
54 R,f 1 2

3O
65 R,f 1 2

3O 45 R,f 1 2

We initially set the successful times to be 1 and the attempt times to be 2 so that the

success rate is 50%. There is another solution for the success rate’s initial setting which

will be discussed later in the learning part.

The last parameter “cost” is currently set to be a constant for each repair rule, denoted by

)R(Cost k
. Now we start to define our evaluation procedure based on the above three

influential parameters.

Step1:

Compute the success rate for removing the failure iF in operation lO by repair rule kR :

• ∑
∈

=
)F(eragecovf

lklilik

i

)O,R,f(fault_SR*)O,f,F(P) O,F,failure (R_SR

-)F(eragecov i
: A set of the possible faults corresponding to the failure

iF .

Illustrated by an example, }f,f,f{)F(eragecov 3211 = , while

}f,f,f{)F(eragecov 5424 = .

-)O,R,f(fault_SR lkj : The success rate of the repair rule kR applied to repair

fault jf in operation lO . Since sometimes the repair rule kR can not cover all the

 23

faults in the)F(eragecov i
, let the success rate in this condition to be zero. For

example,)O,R,f(fault_SR l44 =0 due to the fact that the repair rule 4R is not a

possible solution for repair the fault 4f .

Based on the case given in the Figure 10, initially set “success rate” to be 50%. We

can do the following calculation:

%7.16%50*
3

1

)O,R,f(fault_SR*)O,f,F(P) O,F,failure (R_SR 111111111

==

=

%50%50*
3

1
%50*

3

1
%50*

3

1

)O,R,f(fault_SR*)O,f,F(P

)O,R,f(fault_SR*)O,f,F(P

)O,R,f(fault_SR*)O,f,F(P) O,F,failure (R_SR

123131

122121

121111112

=++=

+

+

=

%3.33%50*
3

1
%50*

3

1

)O,R,f(fault_SR*)O,f,F(P

)O,R,f(fault_SR*)O,f,F(P) O,F,failure(R_SR

133131

132121113

=+=

+

=

%7.16%50*
3

1

)O,R,f(fault_SR*)O,f,F(P) O,F,failure (R_SR 142121114

==

=

Sometimes, multiple failures occur. Suppose it is a subset of failure set F , let us denote it

as 'F . In this condition, we extend the above evaluation function into the following way:

• ∑
∈

=
'FF

liklk

i

)O,F,R(failure_SR
'F

1
) O,'F,failure (R_SR

- 'F denote the number of elements in the set 'F .

Taking the example that }F,F{'F 41= , we do the following calculation:

%25
2

%50*
3

1
%50*

3

1
%50*

3

1

))O,R,f(fault_SR*)O),f,F(P

)O,R,f(fault_SR*)O,f,F(P

)O,R,f(fault_SR*)O,f,F(P(
2

1
) O,'F,failure (R_SR

132124

133131

13212113

=

++

=

+

+

=

 24

%33.8
2

%50*
3

1

)O,R,f(fault_SR*)O,f,F(P
2

1
) O,'F,failure (R_SR 15414415

==

=

Step2:

Compute the effectiveness which is defined as the success rate per cost:

)t (Rcos) / O,'F,failure(R_SR)O,'F,R(E klklk = .

Then we try to rank the repair rules by the results:

)R(rank)R(rank)O,'F,R(E)O,'F,R(E 1kkl1klk ++
>⇔>

Here set 'F should include at least one element failure. If there are two or more repair

rules getting the same rank, we will randomly choose one as a trial. Since each repair rule

kR has a constant cost, we do the following assumption:

30)R(Cost,70)R(Cost,50)R(Cost,20)R(Cost 4321 ====

Based on the result we did in step 1, we try to rank the repair rules }R,R,R,R{ 4321
 when

only failure 1F occurs in the operation 1O .

%835.0
20

%7.16
)t (Rcos) / O},F{,R(failure_SR)O},F{,R(E 1111111 ===

%1
50

%50
)t (Rcos) / O},F{,R(failure_SR)O},F{,R(E 2112112 ===

%476.0
70

%3.33
)t (Rcos) / O},F{,R(failure_SR)O},F{,R(E 3113113 ===

%567.0
30

%7.16
)t (Rcos) / O},F{,R(failure_SR)O},F{,R(E 4114114 ===

Thus, we can derive the rank for each repair rule:

)R(rank)R(rank)R(rank)R(rank 3412 >>>

According to the above results, we will first try the repair rule
2R . If it succeeds in

removing the failure
1F occurred in the operation

1O , we won’t try the other repair rules

any more. Otherwise, we will try the next repair rule until it succeeds or all the repair

 25

rules have been tried. If all the rules fail to remove the failure, a message will be sent to

the Fault Manager for manual solution.

 26

3.3.3 Learning part

Although from the failure we can not tell which fault is the origin in certainty, we can

learn some related information from the iterative repair procedure. Besides, the success

rate is dynamically changing after each repair action. Hence, we bring in the idea of

“learning”, which means applying some rules to updating the influential parameters in

our evaluation procedure. This could be divided into two parts:

1) Updating the success rate for repair rule kR to remove the fault jf ;

2) Updating for probability of fault jf occurred when the failure iF is detected in

the specific operation.

To update the success rate, we will increase both the successful times and attempt times

by one if the corresponding repair rule succeeds in removing the failure. Otherwise, we

only increase the attempt times by one and retain the successful times. Then we will turn

back to its initialization. Since we already mentioned one method in the previous section,

here we will give another solution and also their individual advantages and disadvantages.

• Method 1: the initial success rate)O,R,f(fault_SR lkj is set to be 50% represented

by 1 success times: 2 attempt times. (mentioned in section 3.2.2)

0.4

0.5

0.6

0.7

0 2 4 6 8 10

test times

s
u

c
c
e
s
s
 r

a
te

Series1

Figure 11: Example tendency of success rate by Method 1

 27

Draw a graph to show the trend of the success rates with the attempt times as an example.

It is obvious to see that this procedure is quite sensitive to the modification, especially for

small number of attempt times. Therefore, at the beginning phase, there may be some

fluctuation that can not accurately show the real trend of the success rates. In addition, if

the success rate decreases to a very low value at the beginning, it may loss the trial

chance from then on even it is an effective repair rule.

• Method 2: the initial success rate for each repair rules is also set to be 50%. But before

n (a large integer) test times, the success rate will remain 50%. Suppose n = 200, we

derive the following diagram:

0.4

0.5

0.6

0.7

199 200 201 202 203 204 205 206 207

test times

s
u

c
c
e
s
s
 r

a
te

Series1

Figure 12: Example tendency of success rate by Method 2

It could be observed from the diagram that this method is not very sensitive to the

modification. But it will slowly approach the real trend without obvious fluctuations.

It is difficult to tell which method is better. But if it is possible to quickly obtain a large

number of samples, Method 2 is more preferable. No obvious fluctuations could present

the tendency of success rate more accurately without making some repair rules lose trial

chances. On the situation that only a small number of samples are derived, it is better to

choose Method 1 which could show the tendency of success rate. Though there are some

fluctuations, it is still better than no changes shown by Method 2.

 28

Since the above two methods update the success rate based on the result last time, one

specific repair rule may be always chosen after a large number of attempt times. This will

cause other repair rules to lose the attempt chances. To improve this condition, we

introduce the third method.

Method 3: windowed success rate. Supposing we already had a large number of sampled

success rate which denoted by{ }n21 t,...t,t . When calculating
1nt +
, we first try to get the

average of samples { }
�����

ksize

j1ii t,...t,t

+
 ({ }n21 t,...t,t⊆) which likes a window of size k. Then

based on this result, we update the success rate. To calculate 2nt +
, the window slides with

a sample to obtain the average from samples{ }
�� ��� ��

ksize

1j2i1i t,...t,t

+++
.

Now we will move to the update for probability of fault)(mj1f j ≤≤ when

failure n)i1 (Fi ≤≤ is detected in the specific operation. If repair rule

)pk1(Rk ≤≤ succeeds, let)Rcov(k denote the fault set that kR could cover. Before

update, ()
∑

∈

=

)F(eragecovf

i

ji

lji

i

)f,F(weight

)f,F(weight
O,f,FP . At the beginning,)f,F(weight ji is set to

be 1, which denotes fault jf takes the weight one. ∑
∈)F(eragecovf

i

i

)f,F(weight denotes the

total weight of faults when failure iF is detected. Then we update

);f,F(n weight retai,)(Rcov if f

;1)f,F(weight)f,F(weight,)(Rcov if f

jikj

jijikj

∉

+=∈

With the newly updated weight for each fault, we recalculate the probability according to

the definition.

Supposing a failure 1F occurs in the operation 1O , let us take the example in Figure 13 for

illustration.

 29

Figure 13: Example of relations between failures, faults and repair rules

Initially,

()
3

1
O,f,FP 111 = , ()

3

1
O,f,FP 121 = , ()

3

1
O,f,F(P 131 = .

Then we do the following update:

• if
1R is successful: () }f{)erage(FcovRcov 111 =∩

()
2

1

13

11
O,f,FP 111 =

+

+
=

()
4

1

13

1
O,f,FP 121 =

+
=

()
4

1

13

1
O,f,FP 131 =

+
=

• if
2R is successful: () }f,f,f{)erage(FcovRcov 32112 =∩

()
3

1

33

11
O,f,FP 111 =

+

+
=

()
3

1

33

11
O,f,FP 121 =

+

+
=

()
3

1

33

11
O,f,FP 131 =

+

+
=

• if 3R is successful: () }f,f{)erage(FcovRcov 3213 =∩

()
5

1

23

1
O,f,FP 111 =

+
=

()
5

2

23

11
O,f,FP 121 =

+

+
=

 30

()
5

2

23

11
O,f,FP 131 =

+

+
=

• if 4R is successful: () }f{)erage(FcovRcov 214 =∩

()
4

1

13

1
O,f,FP 111 =

+
=

()
4

1

13

1
O,f,FP 121 =

+
=

()
2

1

13

11
O,f,FP 131 =

+

+
=

Hence, our adaptive failure repair is an iterative procedure combining the repair rule

evaluation and its learning update.

 31

4. Implementation

In this chapter, we mainly focus on implementing the aforementioned concepts into a real

application in Java environment. To briefly explain more, we focus on the poker game

application. There are three main parts:

• Runtime instantiation of Middleman

• Failure detection

• Failure repair

 32

4.1 Runtime instantiation of the Middleman

In Chapter 3, we already mentioned that the Middleman is a software entity runtime

instantiated to encapsulate the service instance. To implement this in applications, it no

longer directly creates a service instance, but instantiates a Middleman which will

internally create the service instance. Since the existence of Middleman is unknown to

the users, a table is created to internally bind the call for service instances with its

Middleman. Therefore, when the users call for a service by its name, the system will

internally search for its related Middleman from the table and rebind the call to the

Middleman.

The Middleman itself implements the same provides and requires interfaces as those in

the service that it encapsulates. But inside each operation of provides interfaces there are

some logical part doing prior and post checks. If we describe this in a diagram, it could

be like Figure 14.

Figure 14: Middleman

There is a call for Service executed by an observer thread in dashed line. It first

experiences a set of prior logic checks. Then a new thread called observed thread in bold

 Middleman

Prior check

Post check

Service

Call for Service

 33

line is created to internally call the operation in the real service instance through provides

interfaces. The observer thread begins to sleep when the observed thread starts, which is

denoted by the bold dashed line. When the operation finishes in the observed thread, the

observer thread derives the results and does a set of post logic checks. Here prior logic

checks include input parameters check, concurrent call check and behavior deviation

check and post check is mainly output parameters check.

 34

4.2 Failure detection

In this section, we introduce the implementation for failure detection. Since the

specification plays an important role as a comparison standard, we will first discuss the

specification format.

4.2.1 Specification format

In each operation’s specification, there is a description containing its functionality,

input/output parameters and normal behavior. It is requested to derive and transfer the

useful information to a format that the Middleman could access and use. Here is a list of

information for each operation derived from the specification:

o Operation name

o Interface name

o Time constraints

o Upper bound for the number of the current calls to one operation

o Behavior model

o Input parameters’ constraints

o Output parameters’ constraints

“Operation name” and “Interface name” are used to uniquely identify one specific

operation. In some case, an operation is required to complete within a constrained period

of time, so we bring in “Time constraints”. Take the bank as an instance, the clients

won’t be patient to wait for more than five minutes to withdraw 20 Euro. Hence, it is

needed to monitor the response time. If it misses the deadline, some actions should be

taken.

In the poker game, there are three players whose behavior is controlled by three separate

threads. Suppose one player is calling for the operation “withdraw”, which is already

called by another and not completed yet. And it is not allowable for two players doing

this action together. Then the “Upper bound of the number of the current calls to one

operation” is applied to temporarily block the call from the latecomer. A behavior model

is similar to a state machine. Let us consider the operation “JoinGame” of interface

 35

IGameControl. This operation receives the participation request from Player, and

internally checks whether the player is allowed. If so, a player ID will be generated. Then

“JoinGame” calls “newPlayer” through interface IPlayer to instantiate detail information

with new player ID. In the implementation, this behavior is represented by a sequence in

Figure 15.

Figure 15: Behavior model of operation “JoinGame”

If there are branches in the behavior, it could be represented as:

Figure 16: Behavior Model of an example operation

How to use this model to check behavior deviation will be discussed later. As to

input/output parameters’ constraints, a set of information are defined in the specification:

o Object type

o Data name

o Data type

o Format (only for “String” data)

o Domain (the lower bound and upper bound only for the numerical data)

o Default value

Since sometimes input or output parameters could be objects, “Object type” is applied to

distinguish those from simply primitive types such as integer. Due to the properties of

java, “Format” is defined by java regular expression [13]. For example, “\d” denotes a

digit between 0-9, “X{n}” denotes character X exactly n times. Thus, a bank account

consisting of 9 digits, can be defined as “\\d{9}” as its format. In the poker game

application, the amount of stake is set 500 as the default based on which the players could

increase. Then we record “Default value” for operations if it exists, which could provide

a repair suggestion when a input failure is detected.

O1.start O2.start O4.start

O3.start
O4.start O4.end

O4.end O2.end

O3.end O1.end.
O1.end

JoinGame.start newPlayer.start newPlayer.end JoinGame.end

 36

4.2.2 Input / output parameters check

This functionality is provided by service “Input & Output Check”. There is one operation

“dataCheck” of provides interface IValueCheck.

Input parameters:

o Real input (output)

o Specified input (output)

Since different operations have different number and types of input (output) parameters,

“Vector” is used to dynamically record them. The output of this operation is an array,

which records the checking results corresponding to each input element.

If there is an object O existing in the input (output) parameters, we first use the

following code to derive the value of the primitive data in it.

Line 1. Class c = O.getClass();

Line 2. Field[] m = c.getDeclaredFields();

Line 3. Field f = m[index];

Line 4. field.setAccessible(true);

Line 5. field.get(o);

Line 1 Returns the runtime class of the object O . Line 2 obtains an array of Field objects

reflecting all the fields declared by the class c. And the last three lines finally get the

value of the field represented by f, on the specified objectO .

Once the value of primitive type is derived, it will experience two different checks

accordingly. They are “format check” and “domain check”. “Format check” is only

applied for the data in String, while “domain check” is only for the numerical data.

Suppose we have a string called “bankAccount”. Since the data “Format” is defined by

Java regular expression as “\\d{9}”, directly calling a method of class String

bankAccount.matches(“\\d{9}”) can tell whether “bankAccount” is in the correct format.

As to the “domain check”, it is similar to the mathematical comparison between the lower

bound and upper bound according to the different data types.

Checking input / output value mismatches is just before and after the execution of the

operation in the observer thread so that such failure could be caught in time.

 37

4.2.3 Behavior deviation check

This functionality is provided by service “Behavior Monitor”. Behavior check is

implemented not only in the provides interfaces but also in the requires interfaces.

Considering the multiple threads in the poker game application, it is the common cases

that three threads execute the same operation at the same time. Taking the example in

Figure 16, three threads are currently in the execution of that operation, but at the

different steps. Suppose thread A is already at the end state, while thread B is in the state

before O2.end, and thread C is just at the initial state. Hence we have to distinguish them

in such situation. A concept of behavior information is brought in, which record the call’s

information such as thread (which thread it belongs to), current step (which step the call

is currently at) and so on.

In the provides interface IBehavior, there are four operations:

• Init: responsible for initializing the basic information for each operation call.

• stepBehaviorCheck: responsible for behavior deviation check by comparing the real

behavior with the specified behavior.

• updateBehaviorInfo: responsible for updating the behavior information (this is not

indicated in Figure 17, since it is called during the failure recovery).

• removeBehaviorInfo: responsible for removing the behavior information when the

operation call is completed.

 38

Figure 17: Behavior deviation check, activity diagram

Figure 17 describes how to implement the behavior deviation check. The dashed arrows

form the observer thread in the Middleman-1, while the bold arrows form the observed

thread for the Operation-1 execution. When the Middleman-1 receives a call for the

Execute

Operation-1

Call to requires interfaces

Behavior check
(stepBehaviorCheck)

Execute

Operation

Behavior check
(stepBehaviorCheck)

Execute

Operation-1

Behavior correct

Initialization of

Behavior information

(init)

Remove

Behavior information

(removeBehaviorInfo)

Behavior check

(stepBehaviorCheck)

Sleep
Behavior

deviation

Behavior

deviation

Behavior

correct

Behavior

correct

Behavior

deviation

Behavior check

(stepBehaviorCheck)

Provides interface in

Middleman-1

Provides interface in

Service instance-1

Requires interface in

Middleman-1
Provides interface

In Middleman_2

 39

service_instance-1, it first initializes the behavior information. Then take the behavior

check. If a deviation exists, it will call for failure recovery denoted by the hollow circle.

Otherwise, a new thread is created to execute operation-1. Assume there is a call to some

functionality in other service instances during the procedure. Then behavior checks will

be taken in the requires interface. Once the internal call is completed, the operation-1 in

the provides interface will continue. The main thread is sleeping to wait for the return

from operation-1. When operation-1 returns, a behavior check is invoked to see whether

the operation is correctly completed without any loses of internal behavior etc. Finally,

the behavior information is removed to save the space.

 40

4.2.4 Time constraints check

This functionality is provided by service “Time Monitor”, implemented by the following

codes:

Line 1. Timer timer = new Timer();

Line 2. timer.schedule(new TimerTask() {

Line 3. public void run() {

 //alarm to the observer thread

Line 4. }

Line 5. } , deadline);

Line 1 instantiates a new timer which will run in the background thread parallel with the

observed thread. From Line 2 to 5, a timer task is scheduled in this timer, which will give

an alarm to the observer thread when the deadline is missed.

Figure 18 describes how it is implemented. At the beginning, the observer thread in

dashed lines, instantiates the timer. Then, the operation is started in the observed thread,

at the same time the timer is started in the background thread. Once the deadline is

missed, a notification is sent to the observer thread. Then the observer thread will turn to

the failure recovery part in hollow circle. During this procedure, the operation in the

observed thread keeps executing until there is some repair rule applied.

Figure 18: Time constraints check, activity diagram

Initialization

the timer

Execute operation Timer start

Notify time out

Provides interface in

the Middleman
Timer

Provides interface in

the service instances

Sleep

 41

4.2.5 Excessive concurrent call check

This functionality is provided by service “Concurrent call check”. It is implemented only

in the provides interface in the Middleman. In some applications, this could prevent data

inconsistency. For example, there is an operation that could access and modify the

internal data. Two users A and B want to call this operation. By setting the upper bound

of the counter to 1, it is guaranteed that only one user can execute the operation untill the

end. In other cases, the exceeding call check could ensure the application is running

within its processing capability. For instance, the game console can only deal with three

players at a certain period, thus this check could temporarily block more requests from

the other players.

In the provides interface “ICounter”, there are two operations:

• decreaseCounter: responsible for two tasks:

1) Initialize the counter with the specification when the operation is called first time;

2) Check the counter whether it is still larger than zero. If so, decrease the counter by

1 to give the permission to invoke the operation.

• increaseCounter: responsible for releasing the permission by increase the counter by 1.

Figure 19 describes the implementation of the excessive concurrent call check. The

dashed arrows form the observer thread in the Middleman. When a call arrives, the

counter will check whether the permission could be given. If so, a new thread in bold

arrows will be created to execute the operation in the service instance. Otherwise, failure

recovery will be called from the hollow circle. The observer thread is sleeping from the

operation invoked in the service instance untill its completion. Finally, the permission is

released to the counter.

 42

Figure 19: Excessive concurrent call check, activity diagram

Decrease the counter

(decreaseCounter)

Execute operation

Increase the counter

(increaseCounter)

Permit

Refuse

Provides interface in

the Middleman
Provides interface in

the service instances

Sleep

 43

4.2.6 Internal errors catch

Since a service is a black box, it is hard for the Middleman to directly monitor the errors

inside the service. In Java, it is possible to throw the internal exception to the outside.

Thus, in the implementation of provides interfaces in the Middleman, it catches the

exceptions thrown from the interfaces by the following code:

Line 1. try{

Line 2. interface.operation A

Line 3. }

Line 4. catch(Exception e){

Line 5. Exception manager in central unit of Middleman

Line 6. }

In the exception manager, it will show the exception message on the Java console, and try

to remove the exception by “retry” or “replace”.

 44

4.3 Failure recovery

In this section, we focus on the implementation of failure recovery part. There are two

parts in this section. First, we will briefly introduce how to select a repair rule once a

failure is detected. After that, we will discuss some repair rules in detail.

• Adaptive failure recovery

In the section 3.2, we have already illustrated the strategy of adaptive repair rule. Due to

the Failure-Fault-Repair model, once there is a failure detected, the Middleman will try to

remove the failure as described in Figure 20.

Figure 20: Adaptive failure recovery, activity diagram

Derive the possible

faults set (Fault{Fi})

(getPossibleFault)

Failure message ({Fi})

Derive the corresponding repair

rules set (Repair(Fault{Fi}))

(getRepairRule)

Calculate the value of evaluation function

for each repair rule

(getProbability, getSuccessRate, getCost)

Sort the repair rules

Apply the first repair rule

Apply the next

repair rule

Failed repair

Successful repair

Update the successRate and probability

(updateSuccessRate, updateProbability)

All the repair rules fail

 45

At the initial state, the failure message is transferred into the central unit of the

Middleman. First, operation getPossibleFault in the provides interface IAdaptor is called

to derive the possible faults corresponding to the failure message. According to this result,

we obtain a list of repair rules by the operation getRepairRule through the provides

interface IRecovery. Then we do the calculation to evaluate each repair rule by calling

operation getProbability of IAdaptor, getSuccessRate and getCost of IRecovery. After

sorting the repair rules, we test each rule in order until the failure is removed or all the

rules are failed. If the failure is removed, the success rate and probability are updated by

operations updateSuccessRate of IRecovery and updateProbability of IAdaptor.

Otherwise, Fault Manager in hollow circle is referred to as a manual solution.

 46

• Some repair rules

Before giving the details of the implementation about failure recovery, we list a set of

faults injected in the poker game application as well as their corresponding failures and

repair rules.

Fault Failure Repair Constraints

Create a new service

instance to replace the

previous one

No side effect on the

system states

Infinite loop

Time out

Retry Temporary error

Create a new service

instance to replace the

previous one

No side effects on the

system states

Unintended calls
Behavior deviation

Retry Temporary error

Get input from elsewhere

Elsewhere is

available

Invalid input

- Input wrong format

- Input out of domain

Apply the default value

The default value is

sensible and available

Retry Temporary error

Get output from elsewhere

Elsewhere is

available

Apply the default value

The default value is

sensible and available
Invalid output

- Output wrong format

- Output out of domain

 Create a new service

instance to replace the

previous one

No side effect on the

system states

Wait for more time

Retry
Untimely

response
Time out Create a new service

instance to replace the

previous one

No side effect on the

system states

Excessive

concurrent call
Call counter overflow

Temporary block the call

and wait for the entry

Retry

Internal error Exception
Create a new service

instance to replace the

previous one

 47

• Apply the default value (AD) & get from elsewhere (GE)

These two rules are mainly applied when some input (output) failures occur. A default

value is provided by the specification if it exists. Elsewhere could be another service

instance which provides the similar functionality, or manually input (output) from the

keyboard.

Line 1. input = new byte[n];

Line 2. System.in.read(input);

Line 3. System.in.skip(System.in.available());

Line 4. String s = new String(input);

Suppose, the input parameter is a string of size n. Line 2 derives the input stream from

the keyboard, while Line 3 gets rid of the redundancy from the input stream. Finally, Line

4 creates the string obtained from the input.

Once the rule AD is applied, the program will sequentially set the default values to the

valid parameters. If the parameter is an Object, it will be first decomposed into elements

as the way mentioned in section 4.2.2. As to the rule GE, it is almost the same as the rule

AD, only that it requires keyboard input. Take the poker game application as an example.

Suppose the bank account is invalid, then GE can be applied to get the value from the

users. If the amount of stake is out of domain, we apply AD to set the value as 500 Euro.

 48

• Temporary block the call and wait for the entry

This rule is mainly applied when the excessive concurrent call of one operation is

detected. Described in the Figure 21, the observer thread in dashed arrows is sleeping

until it obtains the permission. Then the observed thread in bold arrows is created and

started to execute the operation in the service instance.

Figure 21: Temporary block the excessive call and wait for the entry, activity diagram

Detect the exceeding call

Execute operation

Provides interface in the

middleman

Get permission

No permission

Sleep

Provides interface in the

service instance

Sleep

 49

• Retry

This rule is mostly applied in the case of temporary errors. Since the observer thread is

separate from the observed thread which executes the operation in the service instance,

“Retry” is implemented by stopping the observed thread and starting a new again.

Figure 22: Retry, activity diagram

From Figure 22, it is obvious to see that the observer thread dashed arrows stops the

observed thread at the cross, and restart the thread to execute the operation in the service

instance by bold arrows.

Notify to stop the

observed thread

Restart the thread

Provides interface in the

middleman

Provides interface in the

service instance

Execute operation

Sleep

 50

• Create a new service instance to replace the previous one

This rule is mostly applied as the last option when the other repair rules fail. It is quite

similar to the repair rule “Retry” by first stopping the observed thread, then creating a

new service instance to replace the old one, and finally restarting the observed thread. In

this procedure, the interfaces between the Middleman and the service instance will be

rebound.

Figure 23: Create a new service instance to replace the previous one, activity diagram

Notify to stop the

observed thread

Restart the thread

Provides interface in the

middleman

Provides interface in the old

service instance

Execute operation

Provides interface in the newly

created service instance

Execute operation

Create a new service

instance, and rebind

the interfaces

Sleep

 51

5. Testing and results

Since the failure detection and recovery mechanisms are already implemented into the

poker game application, we did some tests to validate the effectiveness of those

mechanisms. Thus, in this chapter, we mainly focus on the testing approaches and the

results.

 52

5.1 Testing approach

Before starting the tests, we first generate the test cases by injecting different kinds of

faults. The introduced faults may propagate to the observable failures which may be

caught by our mechanisms. In this way, we can test how those mechanisms work to

answer the following questions:

1. Are failures detected by the Middleman?

2. If the answer of question 1 is yes, are failures removed by the Middleman?

3. If the answer of question 1 is no, why can the failure not be detected? How to

improve the mechanisms if possible?

4. If the answer of question 2 is no, why are failures not removed? How to improve

if possible?

There are two approaches applied for fault injection in our tests:

- Code mutation tool

- Manually fault injection

Here, we introduce a code mutation tool called µJava (muJava). It is a mutation system

for Java programs developed by two universities, Korea Advanced Institute of Science

and Technology (KAIST) in S. Korea and George Mason University in the USA [8, 9,

10]. It automatically generates mutants for both traditional mutation testing and class-

level mutation testing. µJava can test individual classes and packages of multiple classes.

In our tests, this mutation tool generates lots of test cases which can cause the failures

covering time out, unintended behavior, input / output mismatches. For the failures out of

our scope such as internal logical error, we just filter them out. Since µJava is designed

highly based on the characteristics of Java, there are some cases not covered by this tool.

Hence, we manually introduce some faults into the code in order to complement the

limitation of µJava.

The manually injected faults are designed according to different categories. For the

behavior check part, some operations have internal calls to other services, while others do

not. Thus, we divide test cases into two main categories:

- The operations do not have internal calls (B1):

 53

• Insert unintended internal calls (B1.1)

- The operations have internal calls (B2):

• Insert unintended internal calls (B2.1)

• Disorder the sequence of internal calls (B2.2)

• Delete some internal calls (B2.3)

If we illustrate the second category in an example behavior model as Figure 24, the

original behavior internally calls operation A then B. For the case B2.1, we insert the

internal call to operation C into the real application. In case B2.2, we change the sequence

such that the internal call to operation A has to wait for the completeness of operation B.

In the last case, we delete the internal call to the operation A.

Figure 24: An example for behavior test cases

Now let’s move to the test cases for the input and output mismatches. Since there are

parameters in objects or primitive type in the input / output, we also divide the test cases

into two categories:

- Parameters in type of Object (I1)

• Object is null pointer (IO1.1)

• The elements of the object are out of domain (IO1.2)

A.start

A.end

B.start

B.end

A.start

A.end

B.start

B.end

A.start

A.end

B.start

B.end

B.start

B.end

Origina

l
B2.1 B2.2 B2.3

C.start

C.end

 54

• The elements of the objects are of incorrect format (IO1.3)

- Parameters in primitive type (I2)

• Out of domain (IO2.1)

• Incorrect format (IO2.2)

We mainly focus on checking whether the parameters are out of domain or of wrong

format. For the parameters in Object type, whether it is of null pointer is also in the

checking scope.

As to the failures like time out and excessive concurrent calls, we did not do the manual

injection, since code mutation tool has produced enough cases. All the injected failures

we mentioned before are tested on two situations: persistent injection or transient

injection. Here transient injection is implemented by using a parameter random:

Line 1. random = (Math.random()*10)%2;

Line 2. if(random==1)

Line 3. //code with injected faults

Line 4. else

Line 5. //code without injected faults

Initially, randomly generate a number in the domain 0-10. If the number is odd, the code

with injected faults is executed. Otherwise, the correct code is executed.

Finally, we did the test to see how the strategy of adaptive repair rule selection performs.

This mainly depends on iteratively running the poker game application to monitor the

modification of evaluation results.

 55

5.2 Results

In this section, we will present the testing results. For easy illustration, we will discuss

them according to different categories of failures in the following sequence:

1) Results of behavior deviation check;

2) Results of input / output check;

3) Results of time constraints check;

4) Results of exceeding call check;

5) Results of internal errors catch;

6) Performance of adaptive repair rule selection.

In each category, the detection results will be showed together with the recovery results.

Before starting the discussion of the results, we will give some notices about the poker

game application for later easy illustration. In the testing procedure, we mainly focus on

the three services: Player, Game Console and Bank. The services Player and Game

Console have their internal states, which mean they are not stateless during the game. For

more detail information, please refer to section 1.2.

 56

5.2.1 Results of behavior deviation check

Success rate of detection = Number of successful detection / number of test cases

Success rate of repair = Number of successful repair / Number of successful detection

Type of

injected

fault

Detailed fault category
Number of

test cases

Number of

successful

detection

Number of

successful

repair

Success

rate of

detection

Success rate

of repair

B1.1: Unintended internal

call in the operation of set

B1

20 20 15 100% 75%

B2.1: unintended internal

call in the operation of set

B2

20 20 10 100% 50%

B2.2: Disordered sequence

of internal call in the

operation of set B2

20 20 10 100% 50%

B2.3: missed internal call

in the operation of set B2
20 20 10 100% 50%

Behavior

deviation

Misbehavior in choosing

branches of the behavior

model

20 0 0 0 0

Total 100 80 45 80% 56.25%

All the test cases in the categories B1.1, B2.1, B2.2 and B2.3 are detected by the

Middleman. If the faults are injected temporarily, they could be removed by the repair

rule “retry”. But if the faults are injected permanently, then the condition becomes

complicated. For the service Bank which has no internal state, the repair rule “Create a

new instance and replace the previous one (Replace)” is successful to remove the failure.

But for the service Player and Game Console, the repair rule “Replace” fails to remove

the failure in behavior, which means all the repair rules fail. For further improvements we

maybe can try to record the internal states in the service during the execution, so that the

states could be restored before “Replace”. Since in component based software systems,

the detail of the service is unknown to the outside, it maybe difficult for us to obtain the

complete information about the system internal states. So, it may be a better solution to

constraint the system design into a way of stateless. Once the service is designed stateless,

“Replace” can remove the failures in behavior check easily.

The behavior model sometimes contains branches as in Figure 25. Suppose the left

dashed path is path A and the right path is path B. In the specification, this model is

represented as an array which contains path A and B, which means the behavior is

allowed to choose either path A or B.

 57

Figure 25: behavior model with branches

But in the real application, there are conditions to decide which path to go. For example,

if the condition is true, go to path A; if the condition is false, go to path B. If we change

the code such that when the condition is false, go to path A, then our current behavior

model fails to detect this kind of failures. This is because we did not set the conditions for

branches selection in the model. Maybe in the future, we could add this property into the

behavior model to make the behavior check stricter.

 58

5.2.2 Results of input / output check

Success rate of detection = Number of successful detection / number of test cases

Success rate of repair = Number of successful repair / Number of successful detection

Type of

injected

fault

Detailed fault category
Number of

test cases

Number of

successful

detection

Number of

successful

repair

Success

rate of

detection

Success rate

of repair

IO1.1: Null pointer for

parameters in Object type
20 20 8 100% 40%

IO1.2: Out of domain for

elements in parameters in

Object type

20 20 17 100% 85%

IO1.3: Incorrect format for

elements in parameters in

Object type

20 20 20 100% 100%

IO2.1: Out of domain for

parameters in primitive type
20 20 14 100% 70%

Invalid

input/output

IO2.2: Incorrect format for

parameters in primitive type
0 0 0 0 0

Total 80 80 59 100% 73.75%

All the test cases in the categories IO1.1, IO1.2, IO1.3 and IO2.1 are detected by the

Middleman. There is no test case designed in category IO2.2 because of the limitation of

the poker game program. For removing the failures in the input parameters, “setting the

default value” or “getting from elsewhere” is applied. In the poker game application,

“getting from elsewhere” requests the user to give the input parameters from the

keyboard. In other applications, elsewhere could also be implemented as a service which

provides the required input parameters. But if the input parameter is null pointer, the

current repair rules can not deal with this. In addition, if the invalid input parameter is

quite related to the system internal states, such as the number of rounds in the poker game,

it is infeasible to recover by the above two rules.

For the failures in the output parameters, there are another two repair rules: retry and

replace. If the faults are injected temporarily, they can be removed by “retry”. Otherwise,

“replace” is applied. In the stateless service, this rule is successful to remove the failures.

But in a state related service, this rule will fail similarly to the behavior check part.

 59

5.2.3 Results of time constraints check

Success rate of detection = Number of successful detection / number of test cases

Success rate of repair = Number of successful repair / Number of successful detection

Type of injected

fault

Number of

test cases

Number of

successful

detection

Number of

successful

repair

Success

rate of

detection

Success rate

of repair

Infinite loop 20 6 6 30% 100%

Untimely response 20 20 10 100% 50%

Others 10 10 5 100% 50%

Total 50 36 21 72% 58.33%

Time monitor is mainly used to check for untimely response or infinite loop in the poker

game case. In the specification, we give an assumption of the time constraints for most

operations except the function “console”. Since the function “console” controls the whole

sequence of the game, it is very hard to set a time constraint for it. Hence, the infinite

loop occurred in this function is unable to be detected. But for the other cases, when the

interaction is untimely or the infinite loop occurs, the Middleman can detect them by

receiving the time out notification. For the temporary infinite loop, it could be removed

by “retry”; for the permanent ones, it could be removed by “replace” for the stateless

service like Bank, but not for the state related services.

In addition, time out sometimes occurs not because of untimely response or infinite loop.

The timer in the Middleman monitors not only the execution time of the operations, but

also the time taken by failure detection and recovery during the execution. Take the poker

game application as an example, suppose there is one operation A which is quite simple

and only takes up very little execution time. But the failure detection and recovery take

large amounts of time, which finally leads to time out of the operation A itself, or even of

the other operation which waits for the results from the operation A. Even worse, the

timer monitor may disturb the failure repair in the operation A due to the time expiration.

Thus it is better to achieve a balance between real applications and failure detection and

recovery in order to not influence the real execution of the applications. In the poker

game application, for operations without output, we just skip the output checking. For

operations related to the game view, we skip most of the failure detections on them since

there are not much data communications in them.

 60

5.2.4 Results of excessive concurrent call check

Success rate of detection = Number of successful detection / number of test cases

Success rate of repair = Number of successful repair / Number of successful detection

Type of injected fault
Number of

test cases

Number of

successful

detection

Number of

successful

repair

Success

rate of

detection

Success rate

of repair

Excessive concurrent call 50 50 39 100% 78%

During the tests, we did not manually inject the test cases particularly to excessive

concurrent call check. But the test cases generated by µJava sometimes propagate to

observable excessive concurrent calls. Suppose there is an operation A which could be

called by only one user at one time. If the user a is executing operation A, the later

comers b and c’s calls to operation A are detected by the Middleman as excessive

concurrent calls. They will get the entry in order after the user a completes the operation

A. But if some failure occurs when the user a is executing operation A and the

Middleman fails to remove the failure, then a deadlock may occur. This is because in the

current model, only after user a successfully completes the operation A, then will it

release the entry for the other users. This means if user a fails to execute the operation A,

the others will always wait for the entry in queue.

 61

5.2.5 Results of internal errors catch

Success rate of detection = Number of successful detection / number of test cases

Success rate of repair = Number of successful repair / Number of successful detection

Type of

injected

fault

Detailed fault category
Number of

test cases

Number of

successful

detection

Number of

successful

repair

Success

rate of

detection

Success rate

of repair

Array index out of bounds 30 20 15 66.67% 75%

Not instantiated 30 20 6 66.67% 30% Internal

errors Others (internal logic errors,

internal calculation errors)
40 0 0 0 0

Total 100 40 21 40% 21%

Although the Middleman can not know the detail inside the service, it can catch the

internal exception thrown from the service. If the exceptions are temporary such as

array’s index out of bounds or object null pointer, they can be caught by the Middleman

and removed by “retry”. If the exceptions are permanent, they could be removed by

“replace” in stateless services. But for the complicated exceptions, the Middleman can

only catch them rather than remove them due to the property of component based

software system. For those internal logic errors or calculation errors which do not throw

exceptions or propagate to the visible failures in the interfaces, the current Middleman is

not able to detect them and repair them.

For the service Player, there is another point that should be mentioned here. Since there

are two separate threads in Player which run as two virtual players, they are invoked by

the Game Console. After that, they run individually, the Middleman can not monitor their

behavior as well as catch the exceptions in the current models. Thus, to improve this

situation, it is better to avoid the creation of multiple concurrent threads in instances of

one component when designing the system. Or we may consider applying the fault

management to a single thread rather than to a service.

 62

5.2.6 Performance of adaptive repair rule selection

Since it is hard to accumulate large amounts of field data in the poker game application,

we initialize the success rate as 50% (1 successful times: 2 attempt times) and did the

further tests based on this. After the testing, we observe that the mechanism for adaptive

repair rule selection performs quite well. Figure 26 shows how the evaluation for two

repair rules “apply the default value (AD)” and “get from elsewhere (GE)” goes, when

the input parameter bank account is invalid. From the figure, at the beginning, the rule

“AD” is tested but fails due to the results decrease. For the rule “GE”, although it does

not rank in the first order at the beginning, after 3 attempts, it goes ahead of the rule

“AD”. Therefore, the Middleman will not test rule “AD” any more so that its evaluation

remains at 0.0125.

Figure 27 shows the trend of evaluation of repair rule, when the exceeding call is detected.

Currently, in the poker game application, only “Wait for entry” is suggested as a repair

rule. It could be observed that the increasing trend of the evaluation goes quite fast. If in

the future, there are more corresponding repair rules, the better one can also stand out

quite quickly after several tests.

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4

test times

s
u

c
c
e
s
s
 r

a
te

 p
e
r

c
o

s
t

apply the default value

get from else where

Figure 26: Invalid bank account for the operation “Withdraw”

 63

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 2 3 4 5

test times

s
u

c
c
e
s
s
 r

a
te

 p
e
r

c
o

s
t

wait for entry

Figure 27: Excessive concurrent call

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8

test times

s
u

c
c
e
s
s
 r

a
te

 p
e
r

c
o

s
t

apply the default value

get from elsewhere

Figure 28: Stake out of bounds

The last figure presents the trend when the randomly generated amounts of stakes are out

of bounds. Since we provide the default values in the specification, so the Middleman

will always try the repair rule “apply the default value”. Hence, its evaluation results are

 64

continuously increasing, while the results of “get from elsewhere” remains due to no

chance to test.

Concerning the limitation of poker game application, it may be better to test this adaptive

selection mechanism in other applications in the near future. Besides, we can provide

some system design guideline so that the system is more compatible with the Middleman

in the current models.

 65

6. Conclusion and future work

During this project, I first read the related literatures to learn about the Robocop

component model and fault management mechanisms. Then I designed and implemented

a test application which built on the component model. Based this test case, I

implemented the adaptive fault management with extendible repair rules. And finally I

did a validation on the approach.

From the description in the last section, we can see that most of the failures in the test

cases can be detected by the Middleman. But for those unintended calls in the branched

behavior model, our Middleman totally fails to deal with. As to the failure recovery, the

Middleman’s performance seems not so satisfactory, since it quite depends on the

properties of the services, such as stateless. If the fault is transient, it could be removed

by “retry” at most times. But if the service instances have the internal states, sometimes

“retry” action will bring in some side effects. When the fault is persistent, “replace” could

remove it within the stateless service instances. But for those with internal states,

“replace” performs not good, since it loses the internal states and even the internal data.

To improve this, it should be considered to make the services stateless during the design

phase. In addition, we can consider defining Fault_Management_Interface in the

component to communicate with the Middleman, so that the Middleman can export the

states of the services. This will improve the Middleman on failure recovery.

For the adaptive repair rule selection, the results show that it could learn the experience to

dynamically choose the repair rules. Though, in some specific application, it may be

possible to get the information about which repair rule is better in advance. But for the

general case, our strategy is more suitable so that we can decide which repair rule is

better from the experience data.

Good performance of the Middleman depends a lot on the quality and architecture of the

services. If the service is implemented decently rather than full of bugs, it will be much

easier and highly successful to remove the failures. Currently, the Middleman applies the

failure detection and recovery for each service. But in case of multiple threads, the

 66

Middleman fails to monitor the behaviors and catch the internal errors. Hence, in the

future we should consider about applying the fault management on each thread. Since the

timer is applied to monitor the duration for an operation’s completion, the time for failure

detection and recovery is also included. Thus, it is important for us to set proper time

constraints so as to avoid the performance overhead. In addition, the testing results

already show that there is some relationship between different failures. The current repair

rules are hard to deal with this condition, because sometimes one repair procedure will be

influenced by the other operations. It is the future work to investigate the relationship

between different failures, and how to improve the current failure recovery way into more

effective and accuracy.

 67

Reference:

1. CSEM, Ikerlan, Nokia, UPM, Philips and TU/e, “Space4U Deliverable 2.4

Specification of Framework”, Jun. 2005

2. Robocop: Robust Open Component Based Software Architecture, URL:

http://www.hitechprojects.com/euprojects/robocop/deliverables.htm

3. R. Su, M.R.V. Chaudron and J.J. Lukkien, "Adaptive runtime fault management for

service instances in component-based software applications", IET Software, Vol. 1 (1),

pp. 18-28, Feb. 2007

4. C. Fetzer and X. Zhen, “An Automated Approach to Increasing the Robustness of C

Libraries”, Proceedings of the International Conference on Dependable Systems and

Networks, 2002

5. E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of

Reusable Object-Oriented Software”, Addison Wesley Professional, 1
st
 edition, 1994

6. K. Wu and Y.K. Malaiya, “A Correlated Faults Model for Software Reliability”, Proc.

IEEE Int. Symp. on Software Reliability Engineering, pp. 80-89, Nov. 1993

7. R.T.C. Deckers, P.L. Janson, F.H.G. Ogg, P.J.L.J. van de Laar, “Introduction to

Software Fault Tolerance”, Technical Note, Koninklijke Philips Electronics N.V.

2006

8. Mujava, URL: http://ise.gmu.edu/~ofut/mujava/

9. J. Offutt and Yu-Seung Ma, “Description of Class Mutation Operators for Java”,

URL: http://ise.gmu.edu/~ofut/mujava/mutopsClass.pdf, Nov. 2005

10. J. Offutt and Yu-Seung Ma, “Description of Method-level Mutation Operators for

Java”, URL: http://ise.gmu.edu/~ofut/mujava/mutopsMethod.pdf, Nov. 2005

11. C. Szyperski, “Component Software: Beyond Object-Oriented Programming”, 2nd

Edition, Addison Wesley Professional, 2003

12. J. C. Laprie, B. Randell, A. Avizienis, and C. Landwehr, “Basic concepts and

taxonomy of dependable and secure computing”, IEEE Trans. Dependable Secure

Computing, pp. 11-33, 2004

13. Summary of regular-expression constructs in Java,

URL: http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

 68

14. J.-C. Laprie, B. Randell, A. Avizienis, and C. Landwehr, “Basic concepts and

taxonomy of dependable and secure computing”, IEEE Trans. Dependable Secure

Computing, Vol. 1(1), pp. 11-33, 2004

15. A. Beugnard, J.-M. Jezequel, N. Plouzeau and D. Watkins, “Making components

contract aware”, Computer, Vol. 32, pp. 38-45, Jul. 1999

	Index
	1. Introduction
	2. Literature Review
	3. Theoretical part
	4. Implementation
	5. Testing and results
	6. Conclusion and future work
	Reference:

