
 Eindhoven University of Technology

MASTER

Operation Analyzer
a software approach for improving fault diagnosis at Philips Medical Systems

Kurvers, M.J.M.

Award date:
2007

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1af79701-85ad-4748-ab3b-cc0d05359cd3

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

Supervisors:

Michel Chaudron (TU/e)
Pieter Buts (Philips Medical Systems)

Eindhoven, October 2007

Operation Analyzer
A software approach for improving fault

diagnosis at Philips Medical Systems

By
M.J.M. Kurvers

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 2 of 116

Preface

This thesis is submitted in partial fulfillment of the requirements for a Master’s Degree in
Computer Science and Engineering at the Technical University of Eindhoven. It contains
a summary of the work that I’ve done from December 2006 to October 2007 at Philips
Medical Systems in the area of fault diagnosis.

Philips Medical Systems produces very complex systems, used in medical care all over
the world. Even though the products are of high quality, the components of these systems
are subject to wear and aging, and can break down eventually. When a system breaks
down, it is important that it gets repaired as quickly as possible. To repair the machine,
the service engineer first needs to find out which component is broken, and this process is
called fault diagnosis.

In this thesis we are investigating how to improve fault diagnosis at Philips Medical
System, such that the downtime of a system is reduced and less non-faulty components
are replaced.

I would like to thank everybody who has helped me during my Master’s project. In
particular I would like to thank my supervisor at Philips Medical Systems, Pieter Buts
who contributed in a lot of ways to my project. I would also like to thank my supervisor
at the Technical University of Eindhoven, Michel Chaudron. Finally I would like to thank
all my colleagues at Philips Medical Systems for the nice time I had working there.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 3 of 116

Index

1 Introduction... 8

1.1 Fault Diagnosis ... 8
1.2 Philips Medical Systems ... 9
1.3 Fault Diagnosis at Philips Medical Systems... 9
1.4 Outline... 10

2 Project Description.. 11
2.1 Problem description .. 11
2.2 Goal... 11
2.3 Scope... 11

3 Fault Diagnosis Analysis .. 12
3.1 Analysis of assignment ... 12
3.2 Analysis of current situation ... 12
3.3 High Level Requirements ... 14
3.4 Assumptions.. 17
3.5 Analysis conclusion .. 18

4 Research Survey.. 19
4.1 Information sources .. 19
4.2 Comparison criteria... 19
4.3 Fault Diagnosis Methods .. 22
4.4 Comparison ... 28
4.5 Research conclusion.. 34

5 Diagnosis Method Description ... 38
5.1 Introduction... 38
5.2 Method description ... 40

6 Design of prototype diagnostic solution ... 55
6.1 Architecture overview... 55
6.2 Diagnostic Engine Design... 56
6.3 Observation Server Design ... 65
6.4 Design Decisions .. 70

7 Validation.. 79
7.1 Validation plan.. 79
7.2 Validation results .. 83
7.3 Validation conclusion ... 98

8 Conclusion .. 102
9 Future work and recommendations... 105

9.1 Diagnostic Method.. 105
9.2 Diagnostic Models .. 106
9.3 Observation Points .. 108
9.4 Architecture of controlling software... 109

10 References... 110
Appendix A... 112
Appendix B ... 115

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 4 of 116

List of figures

Figure 1.1 Cardio/Vascular X-Ray system ... 9
Figure 4.1 Fault model based diagnosis.. 23
Figure 4.2 Light bulb example.. 24
Figure 4.3 Consistency model based diagnosis .. 25
Figure 4.4 Process history diagnosis in general.. 28
Figure 4.5 Module that has a dependency on another module ... 37
Figure 5.1 Diagnosis process .. 38
Figure 5.2 Example of informal model rule.. 41
Figure 5.3 Example system... 43
Figure 5.4 Feature Diagram of Cardio Vascular X-Ray system (partly) 47
Figure 5.5 Example of diagnostic rule.. 48
Figure 5.6 Schematic overview of the checking of a diagnostic rule 49
Figure 5.7 Example of dependencies in rule... 49
Figure 5.8 Another example of dependencies in rule ... 49
Figure 5.9 Pseudo code example of signaling of observation points................................ 50
Figure 5.10 Example diagnostic rule .. 53
Figure 5.11 Diagnostic models created for the modules... 53
Figure 6.1 Architectural overview of the Diagnostic System... 55
Figure 6.2 Top level UML static structure of Diagnostic Engine..................................... 56
Figure 6.3 Design of Rule Handler group of classes .. 58
Figure 6.4 Design of Module Handler group of classes ... 59
Figure 6.5 Design of Model Handler group of classes ... 60
Figure 6.6 Design of External Handlers ... 61
Figure 6.7 Initialization process of the diagnostic engine .. 62
Figure 6.8 The first part of the checking (execution) of a diagnostic rule........................ 63
Figure 6.9 The second part of the checking (execution) of a diagnostic rule 64
Figure 6.10 Design of Observation Server ... 65
Figure 6.11 Registering and signaling of observation point at the observation server..... 67
Figure 6.12 Forwarding of requests to other observation servers..................................... 68
Figure 6.13 Checking of a rule by the diagnostic engine ... 69
Figure 6.14 Process of creating a ranked list of components ... 71
Figure 6.15 Overview of multiple Diagnostic Servers in system 74
Figure 6.16 Code example of movement starting... 75
Figure 6.17 Generic function that uses parameter to specify movement type.................. 76

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 5 of 116

List of tables

Table 3.1 Requirements of diagnostic solution... 14
Table 3.2 Assumptions on system under diagnosis .. 17
Table 4.1 Comparison of fault diagnosis methods.. 34
Table 5.1 Available sources of behavioral information.. 39
Table 6.1 Variables involved in re-ranking .. 73
Table 7.1 Validation results for test group 1... 90
Table 7.2 Validation results for test group 2... 97
Table 8.1 Comparison of this method against current practice and MBD...................... 102

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 6 of 116

Abbreviations

C/V Cardio Vascular
CAN Controller Area Network
CT Computed Tomography
FIPS Fault Isolation Procedures
FRU Field Replaceable Unit
FSE Field Service Engineer
KB Knowledge Base
KBS Knowledge Base System
MBD Model Based Diagnosis
MR Magnetic Resonance
NN Neural Network
PMS Philips Medical Systems
RBR Rule-based Reasoning

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 7 of 116

Terms

Target (Software) The system that is under diagnosis. In the case of this project the
target is the Cardio/Vascular X-Ray system of PMS and the target
software is its controlling software.

Diagnostic Method The diagnostic method that we are designing and according to which
the diagnosis process will be executed. This will also be referred to as
the method.

Diagnostic Solution The entire diagnostic solution that is needed to improve the fault
diagnosis process at PMS. This includes the diagnostic method and all
components of the final implementation, such as a diagnostic engine, a
presentation layer, observation servers, observation points built-in in
the target software, defined diagnostic rules and defined diagnostic
models.

Diagnostic Engine The engine that will perform the diagnosis. This engine needs
behavioral and diagnosis information and derives a diagnosis from
this information.

Diagnostic Model A model that describes the correlation between observations that are
done and the healthiness of components. The diagnostic engine uses
models to diagnose the system. A diagnostic model is defined for one
diagnostic module (and hence can be used to diagnose that module). A
diagnostic model will also be referred to as model.

(Diagnostic) Model Rule A diagnostic model consists of one or more (diagnostic) model rules.
Each model rule describes the correlation between observation points
and components, especially which impact the signaling of an
observation point has on the healthiness of certain components. A
diagnostic model rule is part of a model and will always be referred to
as either diagnostic model rule or model rule so no confusion can arise
with diagnostic rule. Whenever a “rule” is mentioned a diagnostic rule
is meant and not a model rule.

Diagnostic Module A defined subsystem of the Target on which diagnostic models are
made to diagnose that subsystem. This will also be referred to as
module.

Diagnostic Rule A rule that describes a number of diagnostic models and the order in
which they need to be checked. This will be referred to as rule if no
confusion can arise with the (diagnostic) model rule.

Observation Point One point in the target software that can be signaled when the control
flow passes there. Observation points are used to gather observations
(behavioral information) from the system and are used in diagnostic
models.

Observation Server An observation server will be built-in in the target software and is
used by the diagnostic engine to retrieve information about
observation points (and hence behavioral information) from the target.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 8 of 116

1 Introduction

Machines nowadays are getting more and more complex. This is also true for systems in
a medical environment. At the same time we are getting more dependable on these
systems and therefore any downtime of the system should be kept to a minimum. Part of
keeping the downtime to a minimum is being able to quickly diagnose what is broken in a
system when it stops functioning. This process is called fault diagnosis and it will be the
main topic of this thesis.

1.1 Fault Diagnosis
To discuss the topic of fault diagnosis, first the terminology must be unambiguously
described. The master’s project is carried out at Philips Medical Systems in the
development group where software is developed for Cardio/Vascular X-ray systems. By
machine or system we will refer to the complete system, meaning both hardware and
software components.

With a module or subsystem we will refer to a part of the machine (either hardware,
software or both) that has its own responsibility within the machine. We shall use
component to refer to a part of a module or subsystem that works together with other
parts in that module or subsystem. Philips Medical Systems has also defined the notion of
Field Replaceable Unit (FRU), which indicates a part of the system (at least one
component, up to a complete module), which can be replaced as a whole.

By error we mean an observation that can be made of the machine behaving in a way that
was not specified. A fault or defect is the malfunctioning of a hardware and/or software
component. A fault could manifest itself as an error, but it could also be dormant
(because the faulty component is not used, or its malfunctioning is masked by the
behavior of other components). Lastly we shall use diagnosis or fault diagnosis to refer to
the task of locating the fault that has led to an error. This fault then is the root cause of
the error.

So by fault diagnosis we refer to the task of finding the fault that is the root cause of an
error in the system under diagnosis.

In this master’s project we will create a diagnostic system. This is a system that performs
fault diagnosis. Unfortunately, diagnostic systems are rarely perfect. Sometimes it misses
a fault and indicates that the component is working correctly, while it is actually broken.
This is called a false negative. A diagnostic system might also indicate that something is
broken, while it actually is working correctly. This is called a false positive.

In the context of this master project, fault diagnosis is used to find faults in the hardware.
The software is assumed to be correct. Therefore we shall use the term fault diagnosis as
the process of finding the faulty hardware component(s).

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 9 of 116

1.2 Philips Medical Systems
Philips Medical Systems is concerned with designing and building systems for the
medical industry. One of these systems, as already mentioned in the previous paragraph,
is the Cardio/Vascular X-Ray system. A picture of such a system is shown in Figure 1.1.

Figure 1.1 Cardio/Vascular X-Ray system

This system is used in hospitals to create diagnostic images of patients using X-rays.
These images can for instance be used for detecting blood clots in someone’s brain, but
also to guide the placement of stents in someone’s arteries to keep them open in case of
artery blockage.

Apart from the hardware shown here, there are more parts such as power supplies,
computers, X-ray generators, coolers and various control boards. These parts are placed
in cabinets which are not shown in the picture above.

1.3 Fault Diagnosis at Philips Medical Systems
As with all systems, the Cardio/Vascular X-Ray system at Philips Medical Systems is
continuously evolving. More functionality is added to the system which leads to an
increase of the complexity of the hardware and the software. This increase of complexity
has given rise to the problem that finding a fault in the system becomes increasingly
difficult.

One of the aspects of this continuous evolvement is that there are many different versions
of the Cardio/Vascular X-Ray system in hospitals. Besides differences in versions, there

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 10 of 116

are also different configurations possible. These two factors lead to the fact that the
system is hard to diagnose for the field service engineer who is sent to the hospital when
a machine breaks down. In the current situation, it takes at least a few hours before a fault
is located, and sometimes it takes up to several days or even weeks. Such a downtime is
not acceptable, and therefore Philips Medical Systems has started a number of projects
that have as goal to improve overall reliability. One of those projects that has as goal to
decrease the downtime of the systems is the project that is described in this thesis. Its goal
is to see whether it is possible to create a software solution that helps decrease the time it
takes to diagnose a system after it has broken down and to accurately pinpoint the
problem.

1.4 Outline
The project will be further described in chapter two of this thesis. That chapter will also
give a clear description of the goal of this project. Chapter three gives an analysis of fault
diagnosis at Philips Medical Systems and will point out some aspects that need
improvement. In chapter four the research will be described and the conclusions from this
research will be given. The method that is designed will be described in chapter five and
the design of the prototype using this method is discussed in chapter six. Validation of
this method will be discussed in chapter seven and finally chapter eight and nine give the
conclusions and some recommendations for future research and improvements.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 11 of 116

2 Project Description

This chapter describes the project in more detail.

2.1 Problem description
The Cardio/Vascular X-Ray system is a complex system consisting of several hardware
modules operating together that are controlled by software. The sequence of events in the
system is based on the design of the system and its configuration. E.g. operator controls
send a signal to a processing unit that starts a movement, depending on several internal
and external hardware conditions. For fault analysis it can be hard to find the location of
the problem. It could be a fault in the operator control unit, a fault in the communication
between the units, an internal state, a hardware/sensor fault, etc. The analysis is also
complicated by the fact that there can be many configurations (combinations of hardware
modules and software versions).

2.2 Goal
The goal of this project is to design a method that improves diagnosing a C/V X-Ray
System from Philips Medical Systems. Improvement must lead to a quicker and more
accurate diagnosis that eventually lowers the total time to repair the system and the
number of non-broken components that are exchanged.

2.3 Scope
The scope of the project is limited in a number of ways. This project is meant as a
feasibility study, in which a method has to be designed, a limited prototype has to be
created and this prototype has to be verified to determine whether the method works.

By limited prototype we mean a prototype on a part of the functionality of the machine.
Together with experts at Philips Medical Systems a part will be selected that is big
enough to demonstrate the feasibility of the method, but small enough to be created in the
limited time available.

The scope of the project will also be limited to finding hardware faults, since this is the
goal of the project. Therefore, the software will be assumed correct.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 12 of 116

3 Fault Diagnosis Analysis

To design a method for improving fault diagnosis, we first need to analyze what
properties are important for that method. Therefore we need to analyze the assignment
and examine the current situation of working. From this we can conclude if and how
improvements can be achieved.

3.1 Analysis of assignment
Philips Medical Systems produces high quality systems incorporating strict safety
measures to avoid harm to patients and medical personnel. However, these systems are
made of moving and electric parts and are therefore subject to wear and electronic
fluctuations. This means that eventually something, either mechanical or electrical, will
break in the machine causing it to malfunction.

The main goal of the assignment is to find broken hardware components in a system that
is malfunctioning. This means that software errors are not part of the project scope,
although it would be valuable if the diagnostic system could indicate that all involved
hardware appears to be functioning correctly and suggest that it might be an error related
to the software.

The target audience for the final solution of this project is field service engineers (FSE)
that are low to medium experienced. Since PMS is broadening its business to more and
more countries over the world, there is also a rising need for field service engineers who
are able to solve problems with these systems. The reason for this is that they only get a
short training, and that they are trained to be able to provide service to not just CV
machines, but also CT, MR and other PMS systems. The solution should therefore focus
on the large group of field service engineers that is low to medium experienced and help
them find the faulty component quicker.

3.2 Analysis of current situation
When a machine is no longer operating, a call is made to the service desk which decides
whether it is necessary to send a field service engineer to the location or not. If a field
service engineer is dispatched to the site, his task is to determine which component is
broken in the machine. He is also responsible for replacing the broken component. This
all should happen as quickly as possible, since any downtime of the machine means that
time is lost in which patients could be diagnosed.

The task of finding the broken component or broken components in a system is called the
diagnosis of the system. During this diagnosis, the field service engineer can use many
tools. The FSE usually starts with an interview with the operator to get a clear picture of
what the symptoms are. Then he will perform a visual check of the system, where he
checks various leds that indicate the operational status of parts of the system. After that
he will inspect the log files, hoping to see some log entries that might indicate where the

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 13 of 116

problem lies. After these steps, the field service engineer has many options to try and find
the cause of the problem. He might:

• Use an online knowledgebase to try if such an error has occurred earlier and if
there is a given solution for it

• Perform a number of functional tests
• Lookup the status of the Power-on-self-test (POST) of various subsystems
• Use technical drawings
• Use Fault Isolation Procedures (FIPS)
• Use various mechanical tools to test parts of the system
• Use various external software tools to test functionality*

*This is only available to certain very experienced engineers since these tools might
seriously damage the system if used incorrectly. Since our focus is on low to medium
experienced field service engineers, we assume that they will not use these tools.

Most of the above methods are quite low level; they require that the FSE already knows
in which part of the system the fault is. So the main problem with the current situation is
that there is no good method available to the service engineer that he can use to quickly
determine in which part of the system the fault may be. The LEDS only cover a small
part of the system, and the information in the log files is fairly unclear to the FSE.

This problem is further underlined in interviews at PMS, where it is indicated that one of
the main problems is that too much non-faulty hardware is exchanged in the current
situation. This happens in cases where the FSE has no good idea where the problem lies
and he replaces components to see if one of them was faulty. This leads to higher
maintenance costs than necessary, since spare parts are expensive.

The interviews with FSE’s also indicate that most of the methods mentioned above are
not used. One reason is because they are quite difficult to apply, and another is indeed
because they take a lot of time, and before a FSE can invest this time in such a method he
needs to be quite certain that the problem is indeed in that part. The last problem
indicated is that FSE’s are not specialists for the PMS Cardio/Vascular X-Ray system,
they are trained and have to service all systems of PMS (MRI, CT, Cardio/Vascular X-
Ray, General X-Ray, Ultrasound). This is the reason that they only have medium
knowledge about the system under diagnosis.

Therefore there is a real need for a diagnostic solution that can be applied to the entire
system and that can quickly narrow down the search area to a small part of the system
that presumably contains the fault. Ideally, the solution should indicate a number of
components that are possibly broken ranked from the component that has the highest
probability of being broken to the component that has the lowest probability of being
broken. If the list is still too long or the top of the list contains a number of components
that are close in probability of being broken then the FSE can also use any of the above
methods to find the faulty component.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 14 of 116

3.3 High Level Requirements
From the analysis of the assignment and the current situation and interviews with people
from PMS, we are able to derive a number of requirements that should be met by the
diagnostic solution that is to be designed. These requirements are listed in Table 3.1.

Nr. Requirement Priority
1 The solution should be able to cope with different hardware

configurations of the machine.
High

2 The solution should be easily maintainable with future
upgrades/changes in the hard and/or software design.

Medium

3 The solution should be extendible in fault diagnosis according to
field experience.

High

4 Extension of the solution as described by req. 3 should not lead to
changes in the target software.

High

5 The solution should be able to perform fault diagnosis on-line Medium
6 Fault diagnosis should be performed with minimal physical

intervention from a Field Service Engineer
Low

7 Presentation of the diagnosis should be clear to the Field Service
Engineer

Medium

8 The presented diagnosis should be reliable Medium/High
9 It must be possible to integrate the solution within the current Field

Service Framework
Medium/High

10 The solution should be able to quickly narrow down the search
area of the fault to a small part of the system

High

Table 3.1 Requirements of diagnostic solution

The priorities of the requirements are assigned by the project supervisor at Philips
Medical Systems. All the requirements will be briefly described below.

3.3.1 The solution should be able to cope with different hardware
configurations of the machine

There are many possible configurations for the cardio vascular systems that are under
diagnosis. For instance, a system can have multiple input units, different tables and/or
different arcs that house the X-ray tube and detector.

The solution that will be designed must be able to cope with these different hardware
configurations, preferably, with minimum user effort.

3.3.2 The solution should be easily maintainable with future
upgrades/changes in the hard/software design

The machines that are produced at Philips Medical Systems are in continuous
development. According to new user experience and new hardware developments, the
design of the machine changes frequently to incorporate these new developments.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 15 of 116

The solution that will be designed should be able to cope with these changes in the
hardware and/or software design and these changes should preferably be reflected in the
solution with minimum effort.

3.3.3 The solution should be extendible in fault diagnosis according
to field experience

During the design of the machine, the developers keep in mind what could go wrong and
try to incorporate this knowledge in for example the logging. This helps finding those
problems more easily. However, experience has shown that in practice, these machines
also break down in ways that were not foreseen by the designers.

Therefore, the solution should be adaptable to find errors that were not thought of during
design, but show up according to field experience. This way knowledge gained in the
field can be shared amongst all other field service engineers.

3.3.4 Extension of the solution as described in req. 3 should not lead
to changes in the target software

Since the software created at Philips Medical Systems is used in medical machines, there
are very strict rules for testing the software before it can be released for public use. If
changes are made to the target software, it must be tested extensively before it can be
released. This testing costs about three weeks for a full team of testers.

The solution should be designed in such a way that it is extendible as described in
requirement 3, but this extension should not require any changes to the target software,
such that the target software does not need to be re-tested.

3.3.5 The solution should be able to perform fault diagnosis on-line
The solution should be able to perform the fault diagnosis while the machine is
functioning and within a reasonable amount of time. Reasonable amount of time is
specified as that the user should not have to wait for minutes before the diagnosis is
made.

3.3.6 Fault diagnosis should be performed with minimal physical
intervention from a Field Service Engineer

The solution should be able to perform fault diagnosis with minimal input from the field
service engineer. Input from a field service engineer takes time, and ideally the solution
should be able to diagnose the machine automatically without user input.

A second reason for this requirement is that Philips Medical Systems has recently
implemented the ability to remotely connect to the machine. Having a solution that can
perform fault diagnosis without any specific actions taken by the Field Service Engineer

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 16 of 116

could greatly improve Field Serviceability since the Field Service Engineer can then be
deployed to the location with prior knowledge about what could be wrong with the
machine.

3.3.7 Presentation of the diagnosis should be clear to the Field
Service Engineer

The solution that is to be designed should also focus on the presentation of the diagnosis.
This presentation should be clear to the Field Service Engineer, given that they have a
different level of knowledge about the machine than a developer has.

3.3.8 The presented diagnosis should be reliable
The solution should give a reliable diagnosis to the Field Service Engineer. In case of a
false positive, expensive components could be replaced and the problem would still exist.
In case of false negative even more time will be spent on other non-malfunctioning
components, which also costs a lot of money. For example, if the communication to a
certain component is unavailable, the diagnosis should not be that the component is
malfunctioning, but that the communication channel is broken.

3.3.9 It must be possible to integrate the solution within the current
Field Service Framework

There exists a current diagnostic framework within the C/V System of Philips Medical
Systems to perform certain maintenance tasks and diagnostic tests on the system. The
solution that is to be designed does not have to be designed within this framework,
because it is a feasibility project to see whether the method works in practice. However,
when Philips Medical Systems decides to use the method, it might be integrated within
this diagnostic framework, so the solution has to be designed in such a way that
integration within this framework is feasible.

3.3.10 The solution should be able to quickly narrow down the
search area of the fault to a small part of the system

There currently exist many methods to find a fault in a certain part of the system.
However, there is a need for a method that can diagnose the whole system and then
indicate in which part of the system the fault is located. The diagnostic solution should
primarily focus on narrowing down the search area for the fault to a small part of the
system. If possible it would be nice if the solution can also indicate which component(s)
are likely to be broken, but this last step in diagnosis can also be achieved by using some
of the already available methods.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 17 of 116

3.4 Assumptions
From the analysis of the solution and the system, a number of assumptions can be derived
that hold for this assignment. When designing the diagnostic solution, these assumptions
will be taken into account. That means that the diagnostic solution will work in a
situation where the assumptions hold, but might not work when one or more of the
assumptions do not hold. The assumptions are listed in Table 3.2.

Nr. Assumption
1 The system can be divided into a number of modules, each of which has its own

defined function
2 The different modules in the system are mostly passing signals to each other
3 Components in modules are either broken or functioning correctly
4 The software is functioning correctly

Table 3.2 Assumptions on system under diagnosis

3.4.1 The system can be divided into a number of modules, each of
which has its own defined function

The system that is under diagnosis consists of a large number of components. These
components can be grouped into modules, where each module has its own defined
function. For instance, there is a power module whose task it is to convert the incoming
power and distribute it to the other modules/components that need power (and with the
right voltage/power).

With this assumption the diagnostic solution can diagnose the modules separately.

3.4.2 The different modules in the system are mostly passing signals
to each other

Most of the communication between the modules in the system can be seen as signals
being sent from one module to another. Observations can be done whether or not signals
are passed to another module. If a signal is sent then the observation is True if the signal
is not sent then the observation is False.

With this assumption it is known for defined situations which signals should be sent and
received, and which signals should not. The diagnostic solution can use this information
to derive a diagnosis.

3.4.3 Components in modules are either broken or functioning
correctly

In real systems it can happen that a certain component breaks partly, in which case it can
work sometimes or it can show strange behavior. For instance when a cable is partly
broken, some controls might be working when the system is in a certain position, but
when the system is moved to another position, the same controls (that could be

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 18 of 116

completely independent of the moving controls) might not work anymore (because the
partly broken cable is more stressed in that position, breaking its conductivity). These
kinds of errors are very hard to find and for this project we consider them out of scope.

With this assumption the diagnostic solution will focus on persistent errors and assumes
that if a component is broken it will never show working behavior.

3.4.4 The software is functioning correctly
Since the goal of our diagnostic solution is to find hardware faults and we are trying to
find them using software, we assume that the software is working correctly. This
assumption is necessary to avoid making the project too complex.

With this assumption the diagnostic solution does not have to take software errors into
account.

3.5 Analysis conclusion
One of the most important conclusions from the interviews with people from PMS is that
the Cardio/Vascular X-Ray system contains enough information to let experts determine
what the problem is in a reasonable amount of time. When an FSE cannot find the
problem and the 1st and 2nd line helpdesks cannot help him, finally the problem is
forwarded to a developer at PMS and using log and trace files they can determine the
problem most of the time. This means that all the necessary data is already available in
the system and minds of developers.

The key improvement to fault diagnosis is to find a way in which a diagnostic system can
incorporate this developer knowledge and use it together with the information that is
already available inside the system and derive a diagnosis from it.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 19 of 116

4 Research Survey

This chapter gives an oversight of the research that has been conducted into the area of
fault diagnosis.

4.1 Information sources
As information sources for fault diagnosis, my analysis and research has been limited to
literature and interviews. These interviews have been done with different people from
different departments within Philips Medical Systems. The departments that were
interviewed were Development, Service Innovation and Field Monitoring Team of the
Cardio Vascular Business Unit.

The development department is the group in which this project is carried out. It consists
of the people (architects, designers, developers, testers) that design and create software
for the system. This department is used as an information source since they know how the
system is built, how the architecture for the system was designed and how it was
implemented. Furthermore, they have a good understanding of what might go wrong and
some of the people working in this department also have contacts with service engineers
that work on these machines in the field (the Field Service Engineer).

The Service Innovation department supports the Field Service Engineers with
information. They have a knowledge base system in which a Field Service Engineer can
look for similar problems as the ones that he encounters, and he can look for possible
solutions in this knowledge base. The Service Innovation department is also responsible
for creating so-called Fault Isolation Procedures (FIPS), which embody an effect-to-cause
reasoning to isolate the fault in the system. Another important task for the Service
Innovation department is to define which parts of a machine are to be replaced as a whole
in case of malfunctioning. These parts are called Field Replaceable Units, and in case of a
hardware malfunction it is the task of the Field Service Engineer to locate which Field
Replaceable Unit is malfunctioning and replace that one.

The Service Innovation department also works closely with people from the development
department to get the necessary information for updating their knowledge base, update
the FIPS and create service documentation inside the machine software.

The Field Monitoring Team department is responsible for assisting Field Service
Engineers when a machine with new technology is shipped to a customer. At that time,
there is not much experience with the machine nor do the FSE’s have much experience
with it. In these situations, the Field Monitoring Team helps with finding faults and
solving errors in machines.

4.2 Comparison criteria
To make a comparison between various fault diagnosis methods, certain criteria of
interest must be pointed out that will be used for the comparison. The criteria that are

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 20 of 116

presented in this paragraph are mostly derived from the requirements as described in [2].
In addition, the criteria are also based on the “desirable attributes of a diagnostic system”
as described in [3]. The reason why not all desirable attributes from [3] are used as
comparison criteria is because they are not all equally relevant for the situation at Philips
Medical Systems. Only the relevant attributes are used as comparison criteria.

The comparison criteria that are important for this project are:

• Accuracy
• Resolution
• Completeness
• Variability/Configurability
• Extendibility
• Representation
• Automation
• Development costs
• Maintenance costs

For each criterion will be described why it is important to Philips Medical Systems.

Accuracy
Accuracy is an important criterion for any diagnostic system. Accuracy corresponds to
the correctness of the diagnosis. A high accuracy diagnosis will contain little false
positives or false negatives. This is an important aspect for PMS because a false positive
might lead to the replacement of a non-defective component, leading to superfluous costs.
False negatives are just as bad as they might steer the FSE away from the faulty
component leading to higher repair times. This means more hourly costs of the FSE and a
higher downtime of the machine. So accuracy of the diagnosis is important.

Resolution
Another important criterion for any diagnostic system is resolution. Resolution is the
ability of a diagnostic system to minimize the set of fault candidates. A diagnostic system
with a low resolution will give a large set of possible faults. Within the situation of PMS
this means that the FSE has to spend a longer time determining which of the proposed
components is the faulty one. This leads to longer repair times, leading in turn to higher
hourly costs of the FSE and higher downtime of the machine. High resolution means that
there are only few fault candidates proposed by the diagnostic system, however, this
increases the probability of the actual fault being not in the set of proposed candidates.

Completeness
Completeness is the property that the actual fault is part of the set of proposed fault
candidates. So the higher the completeness, the higher the probability that the actual fault
is part of the diagnosis result. However, there is a tradeoff between resolution and
completeness. Having a diagnosis system that gives the set of all components as a fault
candidate is complete, but its resolution is very low. Therefore, the right balance must be
found between completeness and resolution. The importance of completeness within
PMS is already described under the head accuracy; missed faults leads to extra costs

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 21 of 116

because the FSE is steered away from the actual defect. Secondly, missed faults might
also decrease the confidence in the diagnostic system.

Variability/Configurability
A method that can deal with variability of the system is important to Philips Medical
Systems since their C/V system can have many different configurations. The machine is
divided into different components, for instance the table and the arc. Different versions
are available of these components, since all are under continuous development. A
hospital can choose to upgrade their table for instance, while keeping other components.
This can lead to many different configurations of the whole machine, and ideally, this
should be made transparent in the diagnostic system because making a separate
diagnostic system for each possible configuration would mean that not one but more than
ten diagnostic systems should be made. This leads to an unwanted increase in
development and maintenance costs. Therefore a diagnosis method should be able to
diagnose all different configurations of the system without an exponential increase in
development and maintenance costs.

Extendibility
The fact that different components are under continuous development also leads to the
fact that hardware and software can change over time. New hardware and changes to the
software should not lead to rigorous changes in the diagnostic system. Neither should
additions lead to much change in the diagnostic system, other than adding new diagnostic
functionality.

Representation
Service engineers that are employed by Philips Medical Systems are multi-modality
trained. This means that they are not just trained on one specific system, but on many
different systems, including MR, General X-ray, C/V X-ray, CT, Nuclear Medicine and
Ultrasound systems. The downside of this is that service engineers do not have specific
in-depth knowledge of all these machines. Therefore, it is important for the diagnostic
system to give a clear description of its diagnosis that is meaningful to the service
engineer.

Automation
Automation of the diagnosis is also important to Philips Medical Systems. To make the
diagnostic system as automated as possible, the observations of the machine should be
done by the diagnostic system. Ideally, the state of all components in the machine should
be determined by software without human interaction. For security reasons however,
certain actions are not allowed to be done fully automatically. For instance, movement
and X-ray control either must be manually engaged or require a dead-man’s control key
when done automatically. Therefore, manual input will always be necessary to start the
diagnosis for example.
The downside of choosing not to have any human measurements on the machine is that
resolution of the diagnosis cannot be as high as when human measurements could be
done on the machine. For instance, it could be impossible for software to distinguish

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 22 of 116

between the case in which a certain hardware switch is broken, or that the cable that
connects that hardware switch is broken.
So human interaction is allowed, although it should be minimized.

Development costs
Since PMS is a commercial company, development costs are an issue. Development costs
of the solution should be reasonable, but the precise definition of reasonable cannot yet
be made. When a prototype of the solution is finished, a much clearer view should be
available on costs that would be involved in developing the solution for the whole
system. The decision whether the costs are reasonable and whether it is useful to extend
the solution to the whole system can then be made by the PMS management.

Maintenance costs
For maintenance costs the same holds as for development costs. If this solution is used in
practice, its costs for maintaining and extending the diagnosis capabilities should be
reasonable. This also can only be decided after a prototype is available that offers a
clearer view on the costs.

4.3 Fault Diagnosis Methods

This paragraph will give an overview on different fault diagnosis methods that are known
today. For each method, strong points and weak points will be given. The comparison
using the criteria described in the previous chapter will be given in the next paragraph.

4.3.1 Overview
There are many different methods available for fault diagnosis. These can be classified in
a number of ways. One way of classifying them is by what information they use for fault
diagnosis. This is done in [3], [5], [6] and [7]. The major distinction is made by
classifying methods that use process model information and classifying methods that use
process history information.

4.3.2 Process model based methods
Methods that fall under this category are methods that use certain knowledge about the
process that is under diagnosis. This knowledge can be captured into a model of the
process. The process knowledge can for instance be knowledge on how components are
interconnected or how communication between processes is done. From this knowledge
models can be constructed that describe the conditions of nominal or faulty behavior.
These models can then be compared with observed behavior of the device and a
diagnostic engine can then draw conclusions whether the functioning of the device is
faulty or not. Using this information, it can also try to find the root cause of the error.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 23 of 116

For model based fault diagnosis, mainly two types of models can be used. These are the
fault models and consistency based models [10], [11]. The differences between these two
subcategories of model-based diagnosis will be described in the following paragraphs.

4.3.2.1 Fault models
One subcategory of model-based diagnosis is methods that use fault models to describe
the system. Fault models embody a form of effect-to-cause reasoning. A symptom
(effect) is observed and using the fault model can be reasoned back to a possible cause of
this symptom.

The way in which fault model based diagnosis globally works, is shown in Figure 4.1.

Figure 4.1 Fault model based diagnosis

Designers make a model of the system that is to be diagnosed. This model contains
abductive information about symptoms and possible faults. Observations of symptoms in
the system are then used for abductive reasoning in the model, which leads to a set of
possible faults that are consistent with the observations. This set of faults is then
presented as the diagnosis.

However, the abductive reasoning that is used leads to several problems. First of all,
effect-to-cause reasoning uses rules that are of the form:

Fault Ø Symptom

Then based upon the observed symptoms, a conclusion is draw:

 Symptom ¢ Fault

This is logically unsound [12], [8] and therefore every Fault that has Symptom as a
consequence might be a cause of the error. This leads to many hypotheses being
generated [3], especially because in fault models the relationships are more complex than
described above (due to chaining, common causes and common effects). Consider the
following rules:

F1 Ø F3
F2 Ø F3

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 24 of 116

F3 Ø S

Observation of Symptom S leads to the following conclusion:

 S ¢ F1 . F2

I.e. both fault F1 and F2 could have caused the symptom.

To solve this, additional effect information (more observed variables) is needed to gain a
higher level of resolution.

Another problem of this reasoning is that there might be some fault Fu that is yet
unknown, but which also has S as a consequence. This fault will not be hypothesized and
therefore this diagnostic method is incomplete when not all fault possibilities have been
exhaustively explored (and this is not feasible for complex systems).

As an example, consider the simple system of a power supply, switch and a light bulb
shown in Figure 4.2.

Figure 4.2 Light bulb example

A fault model for this simple example could be:

“The fuse in the power supply is blown” Ø “There is no power”
“The power supply is overheated” Ø “There is no power”

“The power supply is short-circuited” Ø “There is no power”
 “There is no power” Ø “There is no light when the switch is on”

 “The switch is broken” Ø “There is no light when the switch is on”
“The light bulb is broken” Ø “There is no light when the switch is on”

This extremely simple example already shows that the symptom “There is no light when
the switch is on” can have many different causes. Moreover, this simple example already
is incomplete. The following rules could be added for example:

“The voltage setting for the power supply is improperly set” Ø “There is no power”
“The light bulb is improperly fitted” Ø “There is no light when the switch is on”

This demonstrates that it is really hard (if not impossible) to catch all ways in which a
component can fail in advance.

4.3.2.2 Consistency based models
Consistency based fault diagnosis uses one or more models to describe the structure and
the behavior of a device. The main advantage of consistency model based diagnosis is

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 25 of 116

that knowledge of specific faulty behavior of subcomponents is not needed. The
structural and behavioral models describe how the device is supposed to work and from
this information it can be derived if a certain component is not working correctly.

The way in which consistency model based diagnosis globally works, is shown in Figure
4.3.

Figure 4.3 Consistency model based diagnosis

Designers make a model of the system that is to be diagnosed. This model is an
abstraction of the system. Observations of the system are then compared to predictions of
the model. This comparison can be done manually and automatically. The diagnostic
engine can then draw conclusions from differences or similarities and can turn these into
a diagnosis.

Consistency model based diagnosis uses rules of the form:

ŸFault Ø ŸSymptom

This means that as long as a certain Fault has not occurred, a certain Symptom should
also not occur. Now if Symptom occurs, the following reasoning is used [8]:

Symptom ¢ F

This is logically sound which means that one can deduce (using logic reasoning) that
Fault has occurred.

Modeling the incomplete light bulb example using consistency based models gives the
following:

“The power supply is working” Ø “The system is powered”
“The switch is working” Ø ((“The system is powered” - “The switch is on”) ¨ “The

light bulb is powered”)
“The light bulb is working” Ø (“The light bulb is powered” ¨ “The light is on”)

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 26 of 116

If we now observe Ÿ“The light is on” - “the switch is on” and we assume correct
functioning of all components, we get a contradiction1. Since we have observed Ÿ“The
light is on” - “the switch is on” there must be an error in our assumption about the
correct functioning of all components, i.e. one of the components must not be working
correctly. Removing any of the assumptions that a device is working correctly would no
longer give a contradiction, so for this system the set of fault candidates is:

(Ÿ“The light bulb is working”, Ÿ“The switch is working”, Ÿ“The power supply is
working”)

This small example shows the main difference between consistency based models and
fault models. The impact of the different techniques looks small in this example, but on
larger examples where the propositions have much more mutual correlation, the
difference gets bigger.

Because contraposition is logically sound, a diagnostic engine can systematically remove
one of the “component is working” assumptions and try if it can still reach a
contradiction. As soon as a contradiction can no longer be derived, that component is a
possibly candidate for being broken.

Secondly, because of soundness, if removing an assumption leads to certain behavior that
was not observed, that component can be rejected as a possible candidate. For example, if
there is a second light bulb that is connected to the same power supply (without a switch),
the following rule could be added to the model:

“The 2nd light bulb is working” Ø (“The system is powered” ¨ “the 2nd light is on”)

If we now observe Ÿ“The light is on” - “the switch is on” - “the 2nd light is on” we
again get a contradiction when assuming the correct working of all components.
However, when we investigate the assumptions about working components, we come to
the conclusion that removing the assumption that the power supply is working correctly
still leads to a contradiction2. This means that the power supply is no longer a fault
candidate.

The diagnostic power that is available through this reasoning does however require clever
models. For instance, if we would have chosen to extend the model in this way:

“The power supply is working” Ø “The 2nd light bulb is powered”
“The 2nd light bulb is working” Ø (“The 2nd light bulb is powered” ¨ “the 2nd light is

on”)

The observation Ÿ“The light is on” - “the switch is on” - “the 2nd light is on” would still
give the power supply as a possible candidate3. Therefore modeling is a non-trivial
activity [13] that should be performed with care using knowledge from experts.

1 Proof can be found in Appendix A under Proof 1
2 Proof can be found in Appendix A under Proof 2
3 Reasoning why is given in Appendix A under Reasoning 3

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 27 of 116

4.3.2.3 Consistency vs. fault models
From the previous analysis can be concluded that consistency model based diagnosis
clearly has some advantages over fault model based diagnosis [10][13]. The main
advantage is that not all fault modes of a component have to be investigated and modeled.
Instead, the normal behavior can be modeled and a consistency based diagnostic system
can then indicate which component is not functioning as is modeled. Another advantage
is that the reasoning used by the diagnostic system is logically sound and therefore it will
lead to a fewer number of candidates than fault model based diagnosis (as is explained
earlier).

However, the last example of the previous paragraph (where the power supply still is a
possible fault candidate although the 2nd light bulb is on) is still worrying.

When we investigate this example further, we conclude that humans are able to reason
that if the (only) power supply is broken, it is never possible for a light to be on. From a
logic point of view, it is possible to add this “fault behavior” information to our
consistency based model. To recapitulate, we have to model:

“The power supply is working” Ø “The system is powered”
“The switch is working” Ø ((“The system is powered” - “The switch is on”) ¨ “The

light bulb is powered”)
“The light bulb is working” Ø (“The light bulb is powered” ¨ “The light is on”)

To which the following rules were added:

“The power supply is working” Ø “The 2nd light bulb is powered”
“The 2nd light bulb is working” Ø (“The 2nd light bulb is powered” ¨ “the 2nd light is

on”)

Now if we add the known fault behavior information:

Ÿ“The power supply is working” Ø (Ÿ“The 2nd light bulb is powered” - Ÿ“The system

is powered”)

Then our “less clever” model will also rule out the power supply as fault candidate. So it
might be useful to add fault information to the model. However, this gives again the
problems that also occur in fault model based diagnosis, namely that a component can fail
in a way that was not foreseen, leading to the exclusion of a possibly broken component
from the fault set. I.e., if the power supply would be partly broken in a way such that the
2nd light bulb does receive power, but the switch does not, then the diagnosis that the
power supply might be broken is not part of the fault set. So care must be taken when
adding fault behavior to consistency based models.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 28 of 116

4.3.3 Process history based methods
Process history based methods use information that has been gained from the device that
is under diagnosis. This information could be statistics or cause-effect information that
has been gathered over time during the operation of the device. An example of this
information is a rule-based sheet that contains effects that might be observed from the
device along with possible causes (and solutions) for each effect.

Figure 4.4 gives a global view of process history based reasoning.

Figure 4.4 Process history diagnosis in general

During design and especially field operation, information is gathered about the
(mal)functioning of the system. This information is stored, and can later be used in
diagnostic reasoning when an error occurs. The diagnostic reasoning in this case can be
done manually, but it can also be automated by a diagnostic engine.

There are many process history based diagnosis methods, Neural Networks, Bayesian
Networks, Rule-based, Case-based and statistical analysis are examples of them.

The downside of all process history based diagnosis methods is that they need large
quantities of process information to train their diagnosis capabilities. This process
information should consist of information of the observed behavior of the system at the
time of a fault. The fault and its accompanying observed behavior should then be linked
together and are used as input for the process history based diagnostic methods.

Unfortunately this information is not stored at the moment. When Field Service
Engineers fix a system a work sheet is filled in with basic information of the symptoms
and what actions were taken to fix the system. However, this information is not detailed
enough to be used as process information since not all symptoms are precisely described
(often only the main problem is described) and usually many components are replaced
and it is then not known what the actual faulty component was. Because of the
unavailability of this information, process history based methods are not considered when
looking for a solution.

4.4 Comparison

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 29 of 116

In the next paragraph, a comparison will be given between various fault diagnosis
methods. This comparison will be used in the last paragraph to motivate a conclusion of
which method is the best to use. Although the comparison will be made as objective as
possible, the considerations in this chapter are made while considering the situation at
PMS. This means that the claims that are made of the various methods might not hold for
every situation, but they hold when applied to the situation at PMS from my point of
view. As a last point it has to be remarked that not all comparison criteria are precisely
quantifiable, so that the evaluation and comparison might also be subjective to my
opinion.

4.4.1 Fault Diagnosis Method evaluation
Before the global comparison, first the selected methods will be discussed using the
comparison criteria, described in paragraph 4.2. The following methods will be
discussed: Rule-based reasoning, Neural Networks, Statistical Analysis, Fault Trees and
Consistency Models. Although paragraph 4.3.3 concludes that process history based fault
diagnosis methods are not an option within PMS because of the lack of process history
data, they are included in this comparison. The reason for this is that if they prove to be a
good choice then PMS might decide to start storing process history data for use in future
projects.

4.4.1.1 Rule-based reasoning
Rule based reasoning (RBR) is a form of process history based fault diagnosis. Rule
based methods use abductive reasoning to reason from symptoms to causes. The main
disadvantage of RBR is that the knowledge base gets very large.

Since the KB used for RBR gets very large and there might be many possible causes for a
symptom, resolution of RBR is not very high. Because of this low resolution, the
accuracy is also quite low. On the other side, if the KB is sufficiently large, it has a good
completeness since the actual fault is likely to be in the set of proposed faults.

To describe variability or configurability of the system within RBR would require
different cause-effect rules for different configurations (either by using different
knowledge bases, or by adding the configuration as a conjunct to the antecedent part).
Both are not desirable, so RBR does not score high on variability/configurability.

Extending RBR to incorporate diagnosis knowledge of new hardware is as easy as adding
new rules. However, changes in existing hardware and/or software would require the
whole knowledgebase to be revised (as to check whether the rules still hold with the new
hardware/software setup). Therefore, RBR scores only medium on extendibility.

In the previous two paragraphs we have claimed that RBR needs a large KB to work, and
that this large KB has a negative impact on changes in the existing hardware and/or
software. This implies that RBR scores low on both development costs and maintenance
costs.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 30 of 116

RBR does not incorporate any features that allow an intuitive representation of the
reasoning that was used to come to its diagnosis. The only form of representation is a list
of possibly fault components based on abductive reasoning. This abductive reasoning can
be done automatically, so it is possible to automate this method.

4.4.1.2 Neural Networks
Diagnostic systems based on neural networks (NN) also fall under the category of process
history based methods. However, unlike RBR they do not require experts to create a huge
KB with diagnostic rules. Instead, a NN can be trained to “learn” to recognize patterns
and attach a diagnosis to them. The main problem with NN is that it requires a lot of data
to train a NN and that it is hard to create a NN that is really predicting outcomes rather
then just replaying the “learned” outcomes.

A good trained NN can have a high accuracy and high resolution, however especially
new problems might not be found if the NN is either over trained or under trained.
Therefore, this method scores medium on completeness.

If the NN is trained with the variability of the system as its input, it can learn to diagnose
the different errors of the different configurations. Therefore, variability is good.
Extendibility might be a problem however, since a trained network will have to be
retrained to incorporate the new hardware. This again takes a large amount of training
data. The same goes for changes in the current software and/or hardware of the system.

A NN does not have any representation facility, it cannot explain how it came to a certain
diagnosis. So it scores low on presentation. Neural networks are meant for automated
diagnosis, so it scores high there.

Finally, the costs of development are high, because of the need of the large training set.
New training is needed when the system is extended with new hardware and/or software,
or when the current hardware and/or software is changed. Therefore, maintenance costs
are also high. Since this new training also requires new process information (which is not
available when a new or changed feature is introduced), its extendibility is low because
only after a certain amount of new process information is gathered can the NN be trained
with this process information.

4.4.1.3 Statistical Analysis
Statistical analysis is mostly used to detect disturbances in a system based on statistical
quality analysis. It can measure various parameters of a process and use statistical
information on these parameters to predict the quality of the system (and it can try to
predict that a certain component may break down based on this quality analysis of the
system).

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 31 of 116

Statistical analysis scores badly on accuracy, resolution and completeness. This is
because it can only predict the breakdown of a component based on statistics. Therefore,
a component could break before its breakdown is predicted, or it could be working while,
according to statistics, it should have broken down. Also some components might not
have parameters through which a breakdown could be predicted.

On variability and extendibility this method scores good since new components can just
have their individual statistics added to the complete diagnostic system, as long as their
healthiness can be predicted through (observable) parameters. The same holds for the
different components that are used in different configurations.

Since statistical analysis can only indicate that a fault is likely to occur in a certain
component, it scores low on representation. Automation however is quite easy, only the
necessary parameters need to be monitored and compared to statistical data. Development
costs are medium since a lot of statistical information is needed before any good
predictions can be made. Finally, maintenance is good; after the initial statistics are
available only new statistics for new or changed components need to be added.

4.4.1.4 Fault Trees
Fault trees are a fault diagnosis method that uses causal chains to find the possible root
causes of a symptom. Fault trees are a form of model-based diagnosis using fault models.
This means that fault trees suffer from the disadvantages that are listed in paragraph
4.3.2.1.

The disadvantages described in paragraph 4.3.2.1 lead to the fact that fault trees score
only medium on accuracy, resolution and completeness. They are better than RBR and
statistical analysis since fault trees use more knowledge of the internal structure and
functioning of the system.

To describe variability with fault trees it suffices to add nodes with the variability
information to the tree on decision points where this variability information matters. This
means that the variability information might be copied into different places in the tree,
but no completely different trees have to be made for all different configurations.
Therefore, fault trees score medium on variability. They score high on extendibility,
because when extending the system, only fault information for the newly added
components has to be added to the tree.

Fault trees also score high on representation, since the fault model represents an internal
“workflow” sheet of the system. A representation of the fault tree can give a FSE more
insight to the way the diagnostic engine came to its diagnosis. The fault tree can also be
automatically checked, so on automation it also scores high.

The hardest part of all model based diagnosis methods is creating the model. For fault
trees this means that experts of the system must make a division into modules and
components and must clearly state what components are dependent of each other and in

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 32 of 116

what ways a component can fail (and possibly how this failure can propagate through the
system). Covering a high percentage of the errors in a system takes less effort than with
RBR, so fault trees score medium on development costs. For maintenance costs it takes
far less effort to extend the model than to create the model. However, maintaining the
model to incorporate changes to the hardware/software still takes quite some effort. So
although overall maintenance takes less effort than with RBR or NN, it still takes quite
some effort so it scores medium.

4.4.1.5 Consistency Models
The next diagnostic method that is taken into the comparison is consistency model based
diagnosis. This form of model-based diagnosis is more elaborately described in paragraph
4.3.2.2. The main disadvantage of consistency model-based diagnosis is that it is hard to
create an adequate model.

Consistency model based diagnosis uses a model of the systems behavior and/or
structure. The accuracy of the diagnosis depends on the detail of the model, but with a
detailed enough model it scores high on accuracy. An accurate model also scores high on
resolution, since the set of faulty components should be traced back to a small set (if the
model is detailed enough). However, since the model will always be an abstraction of the
system, there are always aspects that are not incorporated in the model. Some of these
aspects might have an unforeseen impact on the system and cause an error, which will
then not be detected (since it is not incorporated into the model). Therefore, it only scores
medium on completeness.

Consistency model based diagnosis also does not have a natural way of dealing with
variability of the system. The parts that can differ must be modeled separately and a way
must be found to incorporate these different models into the model of the complete
system. On the field of extendibility, this technique scores good. When extra hardware
and/or software is added to the system, this can be incorporated into the existing model.
Therefore, it scores high on extendibility.

This method is also good for representation, since it has an internal model of the structure
and/or behavior of the system. This can be presented to the FSE and can be used to
clarify its diagnosis, giving it a high score on representation too. Secondly, consistency
model-based diagnosis is especially used in automated fault diagnosis.

The downsides of model-based diagnosis as discussed earlier lead to a medium score on
development and maintenance costs. Development of consistency based models is hard,
and requires the knowledge of experts. On maintenance costs, this technique scores a
little worse than fault model based diagnosis methods since changes to the existing
hardware and/or software will lead to bigger changes in the model than with fault model
based diagnosis. However, the changes are still smaller than with RBR or NN.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 33 of 116

4.4.1.6 Bayesian Networks
Bayesian networks could be classified as both a process history based method and as a
process model based method. Bayesian networks use probabilities on conditional
influences to calculate the belief of a certain hypothesis being true or false (hence it could
be considered process history based), but the conditional influences also express causal
relationships between nodes (variables) and hence it could be considered a process model
based method (since the relationships are designed using white-box knowledge of the
system under diagnosis).

The nodes in a Bayesian network represent process variables or certain conditions that
can occur in a system. The directed arcs between the nodes represent causal influence
between the nodes. The nodes also have a certain probability of occurring, or a certain
probability of influencing another node.

Using Bayesian networks it is possible to calculate the probability of a certain component
being broken, given a (possibly incomplete) set of observations. Components can then be
ranked in order of possibility of the component being broken given the observations.

Bayesian networks can also be fully created by experts, or they can be trained like neural
networks. The Bayesian networks we consider for our purpose are those that are fully
created by experts, since the large amounts of data needed for training the networks are
not available.

An advantage of Bayesian networks is that they can be used in situations were a full
behavior model is not possible (the complexity increase is less when the systems get
bigger than with model based diagnosis), or when the input/observable data is incomplete
or contains flaws.

The disadvantage of Bayesian networks is that process data is needed to give probabilities
to the nodes, which requires either a certain amount of process history data to be
available, or these probabilities have to be estimated by experts.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 34 of 116

4.4.2 Comparison overview
For the comparison overview a scale from -- to ++ will be used where -- means that the
diagnostic method scores very bad on that property and ++ means that the diagnostic
method scores very good on that system. Table 4.1 shows the results of the comparison.

A
cc

ur
ac

y

R
es

ol
ut

io
n

C
om

pl
et

en
es

s

V
ar

ia
bi

lit
y

Ex
te

nd
ib

ili
ty

R
ep

re
se

nt
at

io
n

A
ut

om
at

io
n

D
ev

el
op

m
en

t
co

st
s

M
ai

nt
en

an
ce

co

st
s

Rule-based reasoning - -- + - 0 - + - -
Neural Networks + + 0 + -- - + - -
Statistical Analysis - - - + + - + 0 +
Fault Trees 0 0 0 0 + + + 0 0
Consistency Models + + 0 - + + + 0 0
Bayesian Networks 0 0 + - + 0 + 0 +

Table 4.1 Comparison of fault diagnosis methods

Any conclusions from this overview will be made in paragraph 4.5.

4.5 Research conclusion

First a short conclusion on each of the compared diagnosis methods will be given. After
that a general conclusion will be given, and this conclusion will be used to decide on the
direction that will be followed.

4.5.1 Individual conclusions
This paragraph will give the conclusions for the individual methods applied to the
situation at PMS. After that a general conclusion will be given in the next paragraph.

Rule-based reasoning
Pure Rule-based reasoning will not be very useful for PMS because the system that is
under diagnosis is a very complex system. This means that the knowledge bases that have
to be used will get too large and very hard to maintain. Plus Rule-based reasoning by
itself does not take any advantage from extra information that is available about the
structure and modules of the system.

Neural Networks
Neural networks are not useful in the current situation of PMS since the large quantities
of training data that are needed are not available. The way in which current problems are

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 35 of 116

solved, it is not always clear what the root cause of an error was. Sometimes many
components are exchanged in one go, and if the machine then works there is no further
investigation of which component was the faulty one. Furthermore, the root cause of
errors is not always logged after the error is solved, so there is no central information
store that has all this information. If neural networks were to be used, first such a central
information store must be installed and the general way the field service engineers work
must be changed.

Secondly, it is not certain that NN provides the level of fault diagnostics needed at PMS
since there is many input data and there is no precise method on deciding which size of a
NN is optimal for this problem. Therefore, NN are not further considered.

Statistical Analysis
Statistical analysis on its own will not provide a good way of fault diagnosis for the
situation at PMS. Many of the components do not have observable parameters of which
the quality of that component can be predicted. Secondly, as with neural networks, the
large amount of statistical data that is needed is currently not available.

Fault statistics could however be easily implemented in addition to another method, since
it can just be used to increase the accuracy and resolution of that method using statistics.

Fault Trees
Fault trees could be a good method for fault diagnosis at PMS, and manual forms of fault
model-based diagnosis are already used within PMS. The downside of this method is that
it remains hard to capture all ways a component could fail and because of the large and
complex coherence of the components in the C/V systems of PMS these fault trees would
get extremely large, and therefore hard to maintain.

Consistency Models
Consistency based models are a good method for fault diagnosis at PMS. It solves the
problem of having to capture all ways a component could fail in advance and also
provides good reasoning representation capabilities of its internal reasoning. However,
the problem remains that in the C/V systems of PMS these models get very large and
complex and are therefore hard to maintain. A small disadvantage compared to fault trees
is that certain specific errors are less easily captured (because in pure consistency model
based diagnosis, it is not possible to directly describe errors in terms of observable
events).

Bayesian Networks
Bayesian networks could be quite useful in the current situation of PMS, since they can
be constructed using model based knowledge and they can also incorporate statistical
data about component failure probabilities. More importantly, they scale better to bigger
systems (the complexity increases at a lower rate) than pure model based methods, but on
the downside they might produce a lower resolution than consistency based models.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 36 of 116

4.5.2 General conclusion
The main conclusion that is also drawn in the literature is that there is no single solution
that satisfies all requirements of diagnostics [3][16]. Hence a combination of some of
these methods must be used to create a solution that is optimal for the given
requirements.

From the research done in various papers can be concluded that process model based
diagnosis has preference over process history based diagnosis. The reason for this is that
diagnostics can be done without large quantities of available fault information. Within
model-based diagnosis, consistency based models also have a preference over fault
models. The reason for this is that not all fault modes of a component need to be captured
in advance.

However, making a consistency based model for a full-scale application would not be
feasible in practice [10][16]. A system wide model would have to incorporate state and
time, since these play a role in the C/V System of PMS. Modeling state and time adds
extra complexity to the solution, and should be avoided if possible. Furthermore, a model
of the whole system would be very large, making extendibility and maintainability quite
poor.

Therefore, a method needs to be chosen that would not require making a model of the
complete system, but that could still benefit from the advantages offered by consistency
model based diagnosis.

Recommendations for the method to be designed
The recommendation is to design a method that uses a form of “loose” model based
diagnosis. In addition, this form of diagnosis should not be performed on the system as a
whole, but the system should first be divided into a number of smaller modules. Then this
form of diagnosis can be performed on these smaller modules.

The way the diagnosis on the smaller modules should be done is by comparing observed
behavior with a model. The model should then describe how the system is supposed to
behave in a certain situation. This behavior should be measured from observations
whether control signals have passed at a certain place or not. A method to gather this
information is elaborated in chapter 5.

To avoid the addition of state and time to the diagnostic solution, models should be
described in terms of signals that have passed at certain points in the code. To be more
concrete, between two given moments (for instance, the start of the diagnosis and a
defined time period later), the model should describe whether a signal should have passed
there or not.

The places in the code where there should be checked whether the control flow has
passed there should be considered by experts, but some places that are generally
interesting can be defined. Such places are:

• Interfaces between software and hardware

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 37 of 116

• Software decision blocks (where software decides whether something is allowed
or not)

• Software exception handlers

Though software errors are out of scope, it is important to place observation points in
software decision blocks so that the diagnostic system knows that a certain action was
disabled (or not) by the software. This avoids that such a situation is mistakenly
interpreted as a hardware failure.

Furthermore it is interesting to place observation points in software exception handlers
that are related to the hardware. The software contains internal checks of hardware input
and output signals. These checks might determine that something is wrong (for instance a
sensor value is over a certain threshold) and raise an exception. An observation point here
would be valuable because the diagnostic system could deduce what could be the cause
of this observation.

Since modules are assumed to have their own defined behavior, it should be known for
certain situations what output signals the module should produce. If these output signals
are produced then the module is assumed to function ok. If these signals are not
produced, the fault should be inside the module. This reasoning introduces a form of
dependencies, i.e. if a certain module B relies on module A, then module A should be
checked before module B, because the malfunctioning of module A implies that module
B also cannot function (while the fault is not in module B). This means that the solution
must take care of handling these dependencies in the proper order.

A simple example of this reasoning scheme is shown in Figure 4.5.

Figure 4.5 Module that has a dependency on another module

Here the light bulb (module B) cannot function without the power supply (module A)
functioning correctly. Therefore we say that the light bulb has a dependency on the power
supply (indicated by the arrow between the modules) and therefore the power supply
should be checked on correct output before the light bulb is checked.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 38 of 116

5 Diagnosis Method Description

In this chapter we will describe the method that we have designed to improve fault
diagnosis in more detail.

5.1 Introduction
Before explaining the method in detail, we will first give a short introduction.

5.1.1 General diagnosis process
The diagnosis process can be generalized as shown in Figure 5.1.

Figure 5.1 Diagnosis process

Behavioral information is collected from the system that is under diagnosis. This might
be external observable information, but also internal information (such as logging) or
information that is obtained through measurements.

Besides behavioral information, diagnosis information is needed. This diagnosis
information is used by the diagnostic engine to determine if the system is functioning
correctly. If the system is not functioning correctly, this information is used to determine
what components could be broken.

5.1.2 Diagnosis process for Philips Medical Systems
As shown in Figure 5.1 the diagnosis process has three entities. We will now investigate
what the requirements on each of the entities are for the specific situation at Philips
Medical Systems such that we can define a diagnosis method that satisfies the goal.

System under diagnosis
The system that is under diagnosis needs to supply behavioral information to the
diagnostic engine to allow it to derive a diagnosis of the current situation of the system.
There are many sources of information that may potentially be used. These sources are
explained in Table 5.1.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 39 of 116

Information source Explanation
External
Observables

We define external observables as observations that can be made
without using additional tools. Leds that indicate the status of
some component are external observables, but also a visible
movement, a clicking sound of a clutch or any information on the
screens can be seen as external observables.

Logging The software of the system generates logging which contains
information about events that occurred in the system. This
logging might also indicate where problems could be.

Functional tests The functional tests can provide basic information whether some
function of the system works or not.

POST information The Power-On-Self-Test performs a number of tests during
startup of the functional unit. The results of these tests can
provide some information about basic features that are not
functioning.

BIST information The Built-In-Self-Test performs a number of tests on a functional
unit. The results of these tests can provide some information
about basic features that are not functioning.

Table 5.1 Available sources of behavioral information

Logging and POST information can be extracted from the system automatically. External
observables can only be extracted manually and Functional tests and BIST information
can be extracted automatically, but these tests need to be initiated manually. Since we are
looking for an automatic software solution with minimal manual input, we do not
consider external observables as an option.

We also will not consider Functional tests or BIST information because they already
require knowledge about in which part of the system the fault may be. But the software
solution that we are looking for actually has as goal to give the service engineer a good
idea in which part of the system the fault may be. Another remark about the POST, BIST
and functional tests is that they cover only a certain percentage of the faults that can
occur (estimated by PMS at between 60% and 70%).

This leaves the choice between choosing the Logging and POST as information sources
to get behavioral information and creating a new source of behavioral information. The
disadvantage of using the logging is that it is in an almost free format and the logging
only provides some information, mostly about errors that have occurred. But in diagnosis,
it might be just as interesting to know whether some component is working correctly
since it can then be removed from the list of possible candidates.

Since we are interested in behavioral information concerning errors but also concerning
correct functioning of components, and we do not want to be dependent on the presence
of logging at a certain point where we want information, we choose to add our own
behavioral information sources to the system.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 40 of 116

Diagnosis information
Diagnosis information is information that is needed by the diagnostic engine to derive a
diagnosis when given the behavioral information gathered from the system under
diagnosis. In our method, this diagnosis information consists of models that describe the
behavior of the system under normal and under fault conditions. Using this information,
the diagnostic engine can deduce whether the system (or a certain part of it) is
functioning correctly (in which case its behavior should correspond with the model) or
whether its behavior deviates from the modeled normal behavior. In the latter case we
speak of an error.

As derived from the research conclusions in chapter 4 we have chosen not to make
models that fully describe the behavior and structure of the system under diagnosis.
Instead, we have chosen to model only certain selected behavior, where we will try to
capture a large amount of errors with only a moderate amount of modeling information.
Therefore, the diagnosis information should be supplied by hand. In this way, human
experts can use their knowledge and experience to create “smart” models that achieve the
goal of finding a large part of errors with moderate modeling effort. This last decision
also means that we are not looking into ways of automated creation of models.

Diagnostic system
The diagnostic system should be able to combine the behavioral information of the
system under diagnosis and the diagnosis information and derive a conclusion. As stated
in the requirements, the diagnostic system should do this with minimal user input. Since
the research conclusions suggest that we should gather the observable information in a
defined period of time, user input is still needed to define the starting point and the end
point of the diagnosis. Since the diagnostic method consists of measuring signals, it
means that the user also has to give the right input to the system. The right input here is
the input that produces, under normal condition, the right flow of signals that is also
modeled. This last step could be automated (the diagnostic software could simulate this
input), but this has two drawbacks. First the hardware up to the point where the
diagnostic system simulates the input is not tested. Secondly, automatic movements are
not allowed due to safety restrictions (they still require a “dead-mans” control key to be
pressed).

5.2 Method description
When looking back at paragraph 5.1 it can be seen that designing a diagnostic method
involves defining the following three entities:

• What behavioral information is captured from the system
• What diagnosis information is needed
• How the diagnostic engine uses this information to create a diagnosis

The relationship between these three entities is already shown in Figure 5.1. We will now
design these three entities in the following paragraphs. Note that a lot of terms are used in
this chapter. These are explained in the list of terms that is included before the index.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 41 of 116

5.2.1 Diagnosis information
The entity from Figure 5.1 that we will define first is the diagnosis infrastructure. The
diagnosis infrastructure provides the diagnosis information that is used by the diagnostic
engine together with the behavioral information to create a diagnosis. All the diagnosis
information that is needed will be described in this paragraph.

In the method that we are designing, the diagnosis information is made up of the
following three parts:

• Diagnostic models
• System information
• Diagnostic rules

We will define all three parts in the following paragraphs.

5.2.1.1 Diagnostic models
The diagnosis information contains information that is used by the diagnostic engine to
create a diagnosis. The research conclusions suggest that a form of loose modeling is
used to avoid having to make models that describe the full behavior of (a certain part of)
the system. We propose to make models that directly link a (combination of) observation
points to a conclusion. This conclusion will then be about the healthiness of components.

We will first give an example of such a link between an observation point and the
conclusion. The input modules of the system are connected via a CAN network to the
controlling software. If the controlling software receives a message from this CAN
network then the conclusion can be drawn that the CAN network is functioning correctly.
This link can be described as is shown in Figure 5.2.

Here we use the implication symbol from propositional logic to indicate that the
conclusion part “The CAN network is functioning correctly” holds if the condition part
“Observation point CAN_message_received is signaled” holds.

In true model-based diagnosis, this reasoning is done by a diagnostic engine [4][10][13],
but as already said in the research conclusions we have chosen to create “smart models”
that do not describe the full structure and/or behavior, and therefore these conclusions
cannot be made by the diagnostic engine and must be incorporated into the diagnosis
information. In this paragraph we will describe how these conclusions are incorporated
into diagnostic models.

Figure 5.2 Example of informal model rule

“Observation point CAN_message_received is signaled”
fl

“The CAN network is functioning correctly”

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 42 of 116

A diagnostic engine must make conclusions about the healthiness of components with the
help of diagnostic models. More precise this means that the models must describe what
influence a combination of signaled observation points have on the conclusion about the
healthiness of a component. An example of this was already given in Figure 5.2. From
now on we will call such a conclusion a diagnostic model rule (or simply model rule). We
can now define models (or diagnostic models) as a collection of model rules. But first, the
precise format of these model rules will be defined.

Model rules
Model rules consist of an observation part and a conclusion part. Both will be precisely
described. We will start by investigating what is needed on both parts.

The observation part consists of an observation that is done in the system. In the previous
example a single observation is used in the observation part, but we propose allowing
combinations of observations to be used here. This might allow more advanced
conclusions to be made (an example will follow later).

The other part that needs to be designed is how the conclusion part is shaped. Restricting
to the two conclusions that a component is either functioning correctly (healthy) or is
broken is not enough. There are situations where an observation could lead to the
conclusion that any of a number of components could be broken. Therefore more
gradations are necessary. An option could be to use a continuous domain, i.e. the domain
of real numbers and assign each component a “healthiness score” between 0.0 (definitely
broken) and 1.0 (definitely healthy). The downside of doing this is that the model rules in
the models get more complex, since for every rule it needs to be described how the
healthiness score of that component is affected.

Therefore, we have chosen to create a gradation with the minimal number of options that
are necessary. These gradations are:

• Definitely healthy
• Unknown
• Possibly broken
• Definitely broken

We will now explain why we need at least these four gradations. Initially, before the
diagnosis, nothing is known about the healthiness of the components. We need a
gradation to represent this and use the gradation “Unknown” for those components. If no
further conclusions are drawn about these components then the state of that component
will remain “Unknown”.

Some observations might lead to the conclusion that a component is definitely working
(see the example earlier). In this case these components need to be removed from the list
of possible fault candidates. We use the “Definitely healthy” gradation for that.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 43 of 116

Other observations might lead to the conclusion that something is definitely broken.
These parts have to be exchanged. The gradation “Definitely broken” is used for this.

The last gradation is “Possibly broken”. This gradation is used when an observation leads
to the conclusion that any of a certain number of components could be broken, but that it
is not clear which of those components is actually broken.

Taken the previous definitions into account, we can now give a more formal description
of model rules. Model rules will be of the form:

Observations fl Healthy(C1) - PossiblyBroken(C2) - Broken(C3)

Where Observations is a logical condition consisting of observation points (that are true
when they are signaled and false when they are not signaled) and the logical operators
and, or, not and equals. C1, C2 and C3 are sets of components where the components in C1
are given the gradation to be definitely healthy, the components in set C2 are possibly
broken and the components in set C3 are definitely broken.

Example model
Now that the diagnostic models have been defined, we will give an example of a
diagnostic model to further illustrate their use. For this example we will introduce a
simple system shown in Figure 5.3.

Figure 5.3 Example system

This system consists of a simple light circuit with a power supply, current sensor, switch
and light. The Control PC can read the readings of the light and current sensor. The
switch is controlled by an operator.

A model to diagnose this system could be called "switch_on_light" which should
describe the behavior of the observation points when the switch is switched on.

The following assumptions are made on the model:

• The control PC works
• All connections work

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 44 of 116

• The current sensor works in such a way that it will always pass current, even
when it is broken, plus the current sensor has intelligence such that it can
differentiate between a too high current level and a normal current level

The model describes the following components:

• Power supply
• Current sensor
• Switch
• Light
• Light sensor

Furthermore, the following observation points (OP1..OP3) are inserted in the software
that controls this system (Their locations are also shown in Figure 5.3):

Observation Point OP1
Name POWER_SENSOR_NORMAL_CURRENT
Description This observation points is signaled when the power sensor detects that

the current going through it is within “normal” boundaries.

Observation Point OP2
Name POWER_SENSOR_TOOHIGH_CURRENT
Description This observation point is signaled when the power sensor detects that

the current going through it is above the “maximal current” boundary.

Observation Point OP3
Name LIGHT_SENSOR_LIGHT_DETECTED
Description This observation point is signaled when the light sensor detects the light

from the light bulb.

Using this information, the following five model rules (R1..R5) are defined for this
model:

R1:
POWER_SENSOR_NORMAL_CURRENT

fl
Healthy(“Power supply”, “Switch”, “Current sensor”, “Light”)

R2:

POWER_SENSOR_TOOHIGH_CURRENT
fl

Healthy(“Current sensor”, “Switch”) ⁄ Broken(“Power supply”) ⁄
PossiblyBroken(“Light”)

R3:
LIGHT_SENSOR_LIGHT_DETECTED

fl
Healthy(“Power supply”, “Switch”, “Light Sensor”, “Light”)

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 45 of 116

R4:

LIGHT_SENSOR_LIGHT_DETECTED AND
NOT(POWER_SENSOR_NORMAL_CURRENT OR

POWER_SENSOR_TOOHIGH_CURRENT)
fl

Healthy(“Power supply”, “Switch”, “Light Sensor”, “Light”) ⁄
Broken(“Current sensor”)

R5:

NOT(POWER_SENSOR_NORMAL_CURRENT OR
POWER_SENSOR_TOOHIGH_CURRENT OR
LIGHT_SENSOR_LIGHT_DETECTED)

fl
PossiblyBroken(“Power supply”, “Switch”, “Current sensor”, “Light Sensor”,

“Light”)

The diagnostic model M for this example can then be constructed as the set of the model
rules. This is described in the following formula:

M = {R1, R2, R3, R4, R5}

We will now also give a textual description of all five model rules:

The first rule defines that if normal current is detected this means that the power supply,
the switch the current sensor and the light are working correctly. This is based on the
domain knowledge that if the power supply is broken there can be no current flowing
through the sensor. If either the switch or the light bulb is broken, the power circuit
would be interrupted which also means that no current could flow through the sensor.
Lastly, if the current sensor detects current then it must be working correctly.

The second rule defines that if too high current is detected that the current sensor and
switch are working correctly, the power supply is broken and the light might also be
broken (damaged by the high current).

The third rule indicates that if light is detected the by the sensor then this light must be
emitted by the light bulb. This can only be the case if the power supply, switch, light and
light sensor are working correctly.

The fourth rule is an example of a model rule that uses more than one observation point
to draw more “advanced” conclusions. This rule captures the domain knowledge that if
light is detected then the power supply, switch, light and light sensor are working
correctly (we established this with the last rule). Therefore we know that there must be
current flowing through the current sensor. If the current sensor does not detect any
current then it must be broken.

The last rule indicates the case where no current and no light is detected. From the
domain knowledge we know that any of the main components (power supply, switch, and

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 46 of 116

light) could be broken, or that both sensors must be broken. In our method we can only
represent this by giving all those components the gradation of “Possibly Broken”.

A priori failure probability
In the previous paragraph four gradations for the healthiness of components are given. A
total ordering on the probability of a component being broken given one of the four
gradations can be defined as:

“Definitely healthy” < “Unknown” < “Possibly broken” < “Definitely Broken”

This should be read as “Any component marked definitely broken has a higher
probability of being broken than any component that is marked possibly broken”. In turn
it also holds that “Any component marked possibly broken has a higher probability of
being broken than any component that is marked unknown”.

Although this gives a basic ordering, it is not enough to give a list of components ranked
on probability of the component being broken. Diagnosis result could be that a number of
components are given the gradation “Possibly broken” without any further ranking
between those components. As stated in the previous paragraph we have chosen to have
only those four gradations to avoid the complex situation where each model rule should
describe how a components healthiness score is affected by the observation. This means
that another way is needed to rank the components that are given the same gradation on
probability of being broken.

The Lydia project [20] combines model based diagnosis with statistical failure
probabilities (a priori failure probabilities) to create a list of fault candidates (component
or set of components) ranked from the candidate that has the highest probability of being
broken to the candidate that has the lowest probability of being broken. After discussion
with PMS employees it is decided to also use this method, because of many components
it can be estimated what their a priori failure probability is. Therefore it is suggested as a
good method to be able to further distinguish the individual components that have the
same gradation, without adding a large amount of complexity to the model rules.

5.2.1.2 System information
In the research conclusions we suggested that the system should be divided into a number
of modules, and that the diagnostic models are created for these modules. The way the
system is divided into modules is also part of the diagnosis information and this will be
described now.

The system must be divided into a number of modules. For this division we are looking
for parts that have a clear function in the system and that have defined input and/or output
signals. For instance, a power module has a clear function to deliver power to the various
other modules of the system that need power. It also has a defined output signal, which is
the current that it delivers to the various other modules. Another example is the input

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 47 of 116

module which has as function to forward the requests that are inputted by a user to the
control PC. It also has a defined output signal, namely the (movement) request signals.

A requirement that was defined in paragraph 3.3 that is closely related to this division
into modules is requirement 3.3.1: The solution should be able to cope with different
hardware configurations of the machine. The division into modules has indeed led to a
number of modules that are either optional, or that are mutually exclusive (for instance 3
different table types of which only one can be connected to the system). When
investigating how to represent this information a solution called “Feature Diagrams” [21]
has been found.

An example of a feature diagram is shown in Figure 5.4.

Figure 5.4 Feature Diagram of Cardio Vascular X-Ray system (partly)

This figure shows a part of a feature diagram for the C/V X-Ray System of PMS. The
diagram is not complete; it only is used to present the method.

In this feature diagram, the complete system is represented by the root of the tree. The
children of the root represent the different parts that the system is made of. These parts
can be hardware modules or software modules, but also a combination of these. We will
refer to these parts as modules. Modules with a solid dot are mandatory; modules with an
open dot are optional. In the picture above, the L-arc module is an example of an optional
module.

Each module can be further divided into smaller modules until, at the leaves of the tree,
we have modules that have a clear function in the system and that have defined input
and/or output signals. Furthermore these modules must be small enough such that it is
possible to create diagnostic models for these modules (without the diagnostic models
getting too complex).

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 48 of 116

In the diagram, the Input, Table and Stand modules are further divided. For the Table
module there is a choice between 3 different tables. This choice is described by the arc
that is drawn between the 3 options. The AD5, AD5 Tilt and AD7 modules are the leaves
of the tree, which indicate that these modules have a clear function within the whole
system. It is for these modules that the diagnostic models, discussed in paragraph 5.2.1.1,
will be created.

5.2.1.3 Diagnostic Rules
After the system has been divided into modules, diagnostic rules must be created.
Diagnostic rules describe which diagnostic models need to be checked to diagnose certain
functionality of the system. However, there might be certain dependencies between the
models of the different modules, as is depicted in Figure 4.5. These dependencies are the
reason that the models must be checked in a certain order. Since these dependencies
cannot be inferred from the feature diagram or the diagnostic models this means that the
dependencies must be captured in the diagnosis information.

Diagnostic rules define the order in which the diagnostic models need to be checked. An
example of such a chain is shown in Figure 5.5. The arrows in the figure represent the
order in which the diagnostic models are checked. They do not represent information that
is passed from model to model since every model is treated as a separate entity by the
diagnostic engine. This means that when checking a model, no information of models that
are checked earlier is used.

Figure 5.5 Example of diagnostic rule

The diagnostic engine will first perform diagnostics on the “power check model” that
could be defined in the “power module”. If the diagnosis of this model is ok, then the
next model is checked by the diagnostic engine. The check whether a diagnostic model
was ok or not is done by the diagnostic engine. This will be discussed in paragraph 5.2.3.
The sequence of actions performed to check the diagnostic rule shown in Figure 5.5 is
schematically depicted by the diagram in Figure 5.6.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 49 of 116

Figure 5.6 Schematic overview of the checking of a diagnostic rule

The chain that is shown in Figure 5.5 is completely linear. However, there might also be
situation where not all models are linearly related. Two examples of chains in which the
models are not linearly related are shown in Figure 5.7 and Figure 5.8.

Figure 5.7 Example of dependencies in rule

Figure 5.8 Another example of dependencies in rule

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 50 of 116

This means that the diagnostic engine must also be able to deal with these kinds of
dependency relations. A possibility is that the diagnostic engine transforms these chains
into a linear chain. This is only possible if the chain does not contain circular
dependencies, so circular dependencies should be avoided.

5.2.2 Behavioral information
Paragraph 5.2.1 describes how conclusions are drawn given certain observations. In this
paragraph we will describe how these observations are gathered from the system that is
under diagnosis.

As described in paragraph 5.1.2 we have chosen to add our own behavioral information
to the software that is under diagnosis. The research conclusions in paragraph 4.5.2
indicate that behavior should be captured as signals that indicate whether the control flow
has passed a certain point in the code in a defined period of time. An example of this is
shown in Figure 5.9.

Figure 5.9 Pseudo code example of signaling of observation points

The example shown is a pseudo-code example; it is used for indication. At the point in
the code that reads SignalObservationPoint(“CAN_message_received”); a method
should be inserted that will generate a signal such that the diagnostic engine knows that
the control flow has passed there. These points in the code will be called “observation
points” from now on.

The behavioral information that is gathered this way consists of a number of observation
points in the code of which the diagnostic engine can check whether they were signaled
in a certain interval, i.e. whether the control flow has passed there in the period of the

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 51 of 116

diagnosis. The diagnostic engine can combine this behavioral information with the
diagnosis information to draw conclusions about the state of (parts of) the system. For
instance, in the example above the conclusion might be drawn that the CAN network is
functioning correctly, since a message over the CAN network has been received.

In paragraph 6.4.5 we will design observation points at source code level. For now we
will suffice with the abstract idea that an observation point becomes TRUE whenever the
statement that contains the observation point is executed by the processor of a computer.
If the statement containing the observation point is not executed it will remain FALSE.

5.2.3 Diagnostic Engine
The last entity from Figure 5.1 that needs to be defined is the diagnostic engine. The
diagnostic engine is responsible for processing the behavioral information and the
diagnosis information and deriving a diagnosis.

The task of the diagnostic engine is to check the models and derive the healthiness status
of the components using observations. This means that the diagnostic engine should be
able to retrieve the observation information from the target software.

To perform system wide diagnosis, the diagnostic engine will interpret a diagnostic rule
and check the models in the order that is described by the diagnostic rules. Since every
model is defined for one module, the healthiness of the modules can be inferred by the
diagnostic engine. This is done by checking whether all components within that module
have been identified as healthy (or by checking whether no component has been
identified as possibly broken).

A second method for inferring healthiness of modules is to specify an “entry” and “exit”
observation for every model. These observations can then be used to detect whether a
(combination of) signal(s) has entered the module and whether a (combination of)
signal(s) has exited the module. If the entry observation was not signaled, it can be
concluded that the control flow never reached that module (and that the problem thus
must be earlier in the chain). If the exit observation was not signaled, it can be concluded
that the control flow never leaves that module and that the problem must be in that
module. Note that these observation points must be optional, since they cannot be defined
for every module or model. For instance, the power module does not have an input signal,
it just produces output and the table module only has input; it has no defined output
signals.

When a module is identified as not working correctly, the diagnostic engine must give a
list of components within that module, ranked by the probability of being broken. For this
list the diagnostic engine uses a ranking function that takes the following factors into
account:

• Whether a component has been marked as definitely healthy
• Whether a component has been marked as possibly broken
• Whether a component has been marked as definitely broken

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 52 of 116

• A priori failure probability of component

From these factors the diagnostic engine will construct a list with candidates that are
possibly broken, starting with the component that is the most likely to be broken to the
component that is the least likely to be broken. The precise mathematical definition of the
ranking function is given in paragraph 6.4.2.

A side note with the gradations is that if a component is marked as both definitely healthy
and possibly broken, it is considered definitely healthy by the definition of definitely
healthy. When a component is marked as both possibly broken and definitely broken it is
considered broken. Lastly, if a component is marked both definitely healthy and
definitely broken it is considered to be a modeling error, and an error message should be
produced.

The factors described above are based purely on defining which component has the
highest probability of being broken. However, in practice it might also be useful to
consider other factors. Consider the case where the result of the diagnosis is that the
power supply has the highest probability of being broken and that a fuse has the second
highest probability of being broken. While probabilities indicate that the power supply is
the best candidate to be replaced, it is in practice often much more cost efficient to
exchange the fuse first, and only if that does not solve the problem replace the power
supply. The reason for this is that a fuse is far less expensive than a complete power
supply unit and most of the time also takes less time to replace.

Therefore two extra factors are taking into account. These are:

• The time it takes to exchange a component
• The costs of a component

Both of these factors are known within PMS for the defined FRU’s.

Besides the main task of deriving the healthiness of modules and components, the
diagnostic engine is also responsible for presenting the diagnosis to the user and for
dealing with the variability of the system. Both these subjects will be discussed now.

5.2.3.1 Diagnostic model overloading
The diagram shown in Figure 5.4 graphically represents the Cardio/Vascular X-Ray
system with its optional modules (such as the L-Arc module) and its modules of which
different versions are available (such as the Table module). But the diagnostic engine
should also be able to deal with this, preferably with as little extra effort as possible
compared to when the system had no optional / choice modules.

For this we design a feature we call diagnostic model overloading. We will illustrate this
feature with an example. Suppose we have the diagnostic rule as shown in Figure 5.10.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 53 of 116

Figure 5.10 Example diagnostic rule

The whole diagnostic rule is defined for checking the table movements, i.e. the case
where the table movements do not work or one of the table movements does not work. It
consists of six diagnostic models. Each diagnostic model is linked to a module from
Figure 5.4 and is responsible for checking that module.
Now as can be seen in Figure 5.4, a system can have the AD5 table, the AD5 tilt table or
the AD7 table. The AD7 table is completely different in both hardware and software and
the AD5 tilt table has more hardware than the AD5 table. This means that different
diagnostic models must be created for the different tables.

Now by our definition of diagnostic rules, also three different diagnostic rules have to be
created. When taking the different possibilities for the input module into account, even
more diagnostic rules have to be created. But we would like to have one general rule for
checking the table movements, independent of the underlying hardware.

Figure 5.11 Diagnostic models created for the modules

In Figure 5.11 a part of the feature diagram is shown again. For each of the three tables a
diagnostic model has been created. Now instead of making three different diagnostic
rules, one with each of those models, we define one diagnostic rule in which we define
that we want to execute the “Table check model” of the “Table” module (instead of the
“Table check model” of either the “AD5”, “AD5 Tilt” or “AD7” module).

Of course, the “Table” module itself does not have a model called “Table check model”,
so it is the responsibility of the diagnostic engine to execute the right model depending on
the configuration of the system (if the system is configured with an “AD7” table, it
should execute the “Table check model” model of the AD7 table).

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 54 of 116

5.2.3.2 Diagnosis presentation
From interviews with field service engineers it has become clear that the diagnosis
presentation is a very important aspect. The presentation of the diagnosis should be clear
and understandable for the field service engineer. If this is not the case, then the
diagnostic system is likely to be ignored by the field service engineers.

For now we propose to let the diagnostic engine give a graphical representation of the
modules in the system and let colors describe the healthiness of each module. Besides this
representation, also a list of components in each module should be given and this list
should indicate for each component whether it was marked as healthy, broken or possibly
broken. This list should also rank the components based on which component is the best
candidate for replacement.

Besides the given markers, the presentation of the diagnosis results will be considered out
of scope for this project.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 55 of 116

6 Design of prototype diagnostic solution

In this chapter the design of the prototype of the diagnostic solution will be described.
This prototype implements the method that is described in chapter 5. An overview of the
architectural design will be given and the designs of the different blocks will be shown.
Some important design decisions regarding problems that were encountered will also be
explained and motivated.

6.1 Architecture overview
Figure 6.1 gives an overview of the system that is to be designed. All grayed components
are part of the diagnostic solution.

The software that controls the system is already available (and depicted by the white
boxes). However, observable information needs to be collected from this software. This
means extra additions are needed (depicted by the observation server blocks).

Figure 6.1 Architectural overview of the Diagnostic System

As can be seen from the diagram, the main part of the diagnostic system is the Diagnostic
Engine. This module is responsible for executing a diagnostic rule, collecting the
observable information from the target software and deriving a diagnosis. It collects the
observable information by contacting the observation servers that are placed in the target
software modules. Using the observable information and interpreting the data of the
system structure, diagnostic models and diagnostic rules the diagnostic engine can derive
a diagnosis.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 56 of 116

The diagnostic engine is aware of the diagnostic capabilities of the system via the system
structure description and the system configuration that it receives as input. It can then
receive the command to run a test (execute a diagnostic rule) from the presentation layer
and can execute this test by checking all diagnostic models involved in that rule using the
observable information from the Target Software. The result of the diagnosis is then sent
back to the presentation layer.

In the following paragraphs the designs of the two main components, the Diagnostic
Engine, and the Observation Server, will be shortly described. The presentation layer is
out of scope and will not be designed in this project.

6.2 Diagnostic Engine Design
The diagnostic engine is the heart of the diagnostic system. Its task is to collect
behavioral information from the system under diagnosis, execute diagnostic rules,
interpret the diagnostic models and finally derive a diagnosis using the available
information. For the design of the diagnostic engine UML is chosen because this method
is good for describing designs and it is the standard within PMS.

First the UML static structure design will be shown, then the dynamic behavior is
designed using UML sequence diagrams. The classes in the diagrams below only show a
limited number of functions to give an idea of the responsibilities for that class.

6.2.1 Top level design
To decrease the complexity of the design, it has been split into a top level design
consisting of the main class and four groups of classes. For each group of classes a more
detailed design is shown after the top level design. Figure 6.2 shows the top level design.

Figure 6.2 Top level UML static structure of Diagnostic Engine

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 57 of 116

The DiagnosticSystem class is the external interface of the system. It is responsible for
the creation of all handler classes and is the entry point for the presentation layer. This
class uses the other handler classes to retrieve a list of diagnostic rules and also to execute
a rule. The results are then passed to the DiagnosticConclusionManager class which
creates a ranked list of components from the information. This ranked list of components
is then passed to the presentation layer.

The handlers are groups of classes that have their own function in the complete design.
To limit complexity of the design, the individual classes are shown in separate diagrams
which are discussed in the following four paragraphs.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 58 of 116

6.2.2 Rule Handler design
The rule handler group of classes is responsible for handling the rules. The design is
shown in Figure 6.3. The DiagnosticRuleManager class reads all diagnostic rules from
file and filters the rules that are available on the active configuration. It is also
responsible for checking a rule. For both these tasks the DiagnosticRuleManager class
communicates with the Module Handler group of classes. The DiagnosticRule class
represents one rule and stores all the data that is needed for one rule. A diagnostic rule is
made up of several diagnostic models, and every model is linked to one step in a
diagnostic rule. Therefore a DiagnosticRule object has at least one DiagnosticRuleStep
object in which data is stored about the model that needs to be checked in that step and to
which module that model belongs.

Figure 6.3 Design of Rule Handler group of classes

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 59 of 116

6.2.3 Module Handler design
The module handler group of classes is responsible for handling the modules. Figure 6.4
shows the design. The DiagnosticModuleManager class reads the system structure file
and creates an internal data structure of all the modules. This class is also responsible for
storing the active configuration. The system structure is stored in a tree form, which is
done by the classes TreeNode and DiagnosticModuleNode. The TreeNode class
implements the behavior of the tree (such as adding children), while the
DiagnosticModuleNode class is responsible for adding all the specific information from a
diagnostic module to a particular node. This specific information is stored in the
DiagnosticModule class.

Classes from the Rule Handler group communicate with the DiagnosticModuleManager
class, which in turn communicates with classes from the Model Handler group to retrieve
the diagnostic models that are linked to a certain diagnostic module.

Figure 6.4 Design of Module Handler group of classes

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 60 of 116

6.2.4 Model Handler design
The model handler group of classes is responsible for handling the models. Its design is
shown in Figure 6.5. The DiagnosticModelManager class reads all the models from the
files.

The model data is stored in instances of the DiagnosticModel class. A diagnostic model
consists of observation points, components and model rules and all this information is
stored in instances of the ObservationPoint, DiagnosticComponent en ModelRule classes
respectively.

The ObservationManager class is responsible for contacting the
DiagnosticObservationServer interfaces and retrieves the observation point data from the
software that is under diagnosis.

Finally, the DiagnosticModelChecker class checks the model rules of a diagnostic model
and for that task it uses the BooleanExpressionEvaluator class to evaluate the condition
part of the model rules.

Figure 6.5 Design of Model Handler group of classes

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 61 of 116

6.2.5 External Handlers
This group contains “helper” classes that are not interrelated, but are used by classes in
the other groups. The Logging class is used by the other classes for logging purposes. The
goal of the logging is to provide information that can be used to debug the prototype
diagnostic solution. The system structure file, model files and rule files are all stored in
XML format. An XML Parser is used to read and parse these files.

Figure 6.6 Design of External Handlers

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 62 of 116

6.2.6 Dynamic behavior
In this paragraph some of the dynamic behavior of the diagnostic engine will be
described. This dynamic behavior will be described using UML Sequence diagrams. Here
the same holds as with the static structure design, UML is chosen because this method is
good for describing designs and it is the standard within PMS.

6.2.6.1 Initialization
During the initialization process a number of initializations need to be done. First the
logging is initialized and then several files are read. This files that are read contain the
system structure, the diagnostic rules and the diagnostic models. This behavior is
described in Figure 6.7.

Figure 6.7 Initialization process of the diagnostic engine

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 63 of 116

6.2.6.2 First part of the checking of a diagnostic rule (PrepareExecuteRule)
The most important function of the diagnostic engine is to diagnose the target. For
diagnosing the target a diagnostic rule is selected by the user (for instance the check table
movements rule) and this rule is then checked by the diagnostic engine (executed).

The checking of a diagnostic rule is done in two parts. In the first part, the system is
prepared, i.e. the right rule is selected, the configuration is checked, it is checked if the
rule can be executed in the given configuration and the observation manager starts
monitoring the observations points. As the final part of the preparation the user is told to
perform an action. This action (for example press button X) is supposed to cause certain
behavior in the system and this behavior is then captured by the observation points. The
checking of the models and model rules is done in part two.

The UML sequence diagram for the first part of the checking of a diagnostic rule is
shown in Figure 6.8.

Figure 6.8 The first part of the checking (execution) of a diagnostic rule

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 64 of 116

6.2.6.3 Second part of the checking of a diagnostic rule (FinishExecuteRule)
In the second part of the checking of a diagnostic rule the complete diagnostic rule is
checked step by step. In each step the diagnostic model corresponding to that step is
checked, which means that all the model rules in that model must be checked. In turn this
means that for each model rule the condition part is evaluated (where a signaled
observation point is TRUE and an observation point that was not signaled is FALSE) and
if the condition holds then the components are marked Healthy, PossiblyBroken or
Broken, depending on what the rule indicates.

When this is done for all model rules for all models for all steps then the results are
ranked using the DiagnosticConclusionManager. These results can then be presented to
the user via the presentation layer (which is out of scope for this project).

The UML sequence diagram for the second part of the checking of a diagnostic rule is
shown in Figure 6.9.

Figure 6.9 The second part of the checking (execution) of a diagnostic rule

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 65 of 116

6.3 Observation Server Design
In this paragraph the static structure and dynamic behavior of the observation server will
be described.

6.3.1 Static structure
The observation servers are integrated into the target software that is under diagnosis. Its
UML static structure design is shown in Figure 6.10.

Figure 6.10 Design of Observation Server

The observation server manages the observation points. This means that all observation
points in the target software “register themselves” at the ObservationServer object by
providing a “logical name”. Then each observation point is given an ID and an entry in
the array that stores the values of all observation points is assigned. Every time the
control flow passes the observation point, the entry in the array is increased by one. This
way it can be checked if the observation point is signaled in a certain period of time by
comparing the value at the beginning of the period with the value at then end of the
period. If those two values differ, then the observation point was signaled.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 66 of 116

The ObservationServer class provides functions to search for observation points by
logical name, convert the logical name into an ID or an ID into a logical name and for
retrieving the value of an observation point. Furthermore it provides simulation functions
where behavior can be simulated without the target software actually running.

In paragraph 6.4.4 it will be precisely described why there is a need to have multiple
observation servers. For now we will assume that we have multiple observation servers
divided over a number of processes which run on a number of different hardware
platforms. We will also assume that there is a need for communication between these
observation servers (why this is will also be discussed in paragraph 6.4.4).

The CommunicationHandler class arranges this communication. The
CommunicationHandler class is responsible for receiving requests from other
ObservationServers (running in different processes, possibly on different hardware) and it
also takes care of the forwarding of requests to other ObservationServers.

For instance, there is an embedded PC called the Geo IPC which is connected to the Host
PC (which runs the diagnostic software). This Geo IPC is connected to the Host PC via
Ethernet. Observations need to be gathered at the Geo IPC too and therefore it also has an
ObservationServer in its process. To communicate with this observation server a specific
ForwardHandlerToIPC class is created implementing the generic interface
ForwardHandlerToSpecificServer. The specific implementation takes care of the
communication via Ethernet.

In turn, there are embedded real time platforms called LUC’s connected to the Geo IPC.
Here observations need to be gathered too, so they also have an ObservationServer in
their process. These LUC’s are connected via CAN so a specific ForwardHandlerToLUC
class is created that implements the communication via CAN.

Using the generic ForwardHandlerToSpecificServer interface every instance of
ObservationServer can forward the request to other ObservationServers without needing
knowledge of the underlying communication channel.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 67 of 116

6.3.2 Dynamic behavior
In this paragraph the dynamic behavior will be described. As in paragraph 6.2.6, UML
Sequence diagrams will be used for this.

6.3.2.1 Registering and signaling of observation point at the observation server
As is discussed in paragraph 6.3.1, the observation points in the code of the target
software need to register themselves with the observation server. To do this the code
constructs a logical name in the initialization phase and sends this name to the
observation server. The observation server then links a unique ID to this name and sends
this back. This unique ID is stored locally.

Whenever the control flow then passes the observation point in the code, the observation
point needs to be signaled at the observation server. For this the unique ID (that is stored
locally) is used and the result is that the value of that observation point at the observation
server is increased by one. This process is shown in Figure 6.11.

Figure 6.11 Registering and signaling of observation point at the observation server

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 68 of 116

6.3.2.2 Forwarding of requests to other observation servers
Another feature that was discussed in paragraph 6.3.1 is the ability of an observation
server to forward requests to other observation servers. We have chosen to illustrate this
behavior for the GetObservationPointCount function, but the same principle applies to
the other functions that can be forwarded.

Whenever a request needs to be forwarded, the function in the ObservationServer class
calls the corresponding function of the CommunicationHandler class. This function
creates a message according to a certain format and calls the internal ForwardMessage
function while passing the message to it. The ForwardMessage function then takes care
of the actual forwarding to all other known observation servers.

Figure 6.12 Forwarding of requests to other observation servers

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 69 of 116

6.3.2.3 Checking of a rule by the diagnostic engine
The sequence diagram shown in Figure 6.13 shows how the observation server is
involved in the main task of the diagnostic engine, the checking of a diagnostic rule. As is
explained in paragraph 6.2.6.2 this checking consists of two parts. For the observation
server this means that in the first part the session ID is retrieved and all observation
points are reset.

Then the action message is shown to the user (the observation server is not involved in
this, but it is shown as an indication which actions happen in part one and which actions
happen in part two). After this the session ID is retrieved again. If this session ID is
changed, then the target software (including the observation server) has crashed or
rebooted while the diagnostic rule was running. This means that the results are unreliable
since not all observations might have been seen (those before the crash/reboot are not
seen since on crash/reboot all observation points reset again). In this case the execution of
the diagnostic rule should be aborted and the complete test should be retried.

When the session ID has not changed then the values of all observation points that are
used in the models can be retrieved. Since logical names are used in the models, first a
lookup needs to be done to convert the logical name to an ID. After this the value can be
retrieved. If the value differs from 0 then the observation point was signaled in the time
period of the test, if it is 0, then the observation point was not signaled.

Figure 6.13 Checking of a rule by the diagnostic engine

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 70 of 116

6.4 Design Decisions
This paragraph will explain and motivate some of the design decisions that have been
made during the design phase.

6.4.1 Separate the diagnostic system from the target software that is
under diagnosis

One of the experiences in diagnosis at Philips Medical Systems is that once a system is
introduced in the field, faults occur at places where the designers of the systems did not
think faults would occur. Since the designers were not aware that these faults could
happen, there often is no logging at the place of such a fault that clearly indicates what
could be the faulty components. In such case, designers would like to extend the logging
in such a way that a clear notification is made in the logging which tells the field service
engineer which components could be responsible for the error.

The problem here is that the updated software cannot simply be released for public use
because the software controlling medical systems is under strict regulations. Before any
new software can be released to customers in the field, it must be rigorously tested. The
result is that new software releases are only made available two or three times a year.

If the diagnostic system can be designed as a separate system (where also the models and
rules are separate from the target software of the system), then it can be updated much
more frequently since only the target software that controls the medical system falls
under these regulations of strict software testing.

When looking at Figure 6.1 it can be seen how the separation between the target software
and the diagnostic system was realized in our method. The target software is represented
by the white blocks marked “Target Software Module”. This is the software that is under
strict regulations and that cannot be changed. This also means that the observation servers
and the observation points cannot be changed between major software releases.

However, the diagnostic engine, the presentation layer, the system structure file, the
diagnostic rule files, the diagnostic model files and the file containing the location of the
observation servers are all separate from the target software which means that they can be
changed between major software releases. This means that new rules can be added to the
diagnostic solution, rules can be changed and models can be created or updated according
to field experience gathered. The limitation here is that these new models must use
existing observation points, no new points can be added to in between major software
releases.

6.4.2 Diagnostic conclusion manager algorithm
In paragraph 5.2.3 it was discussed that it is the task of the diagnostic engine to create a
ranked list of components based on what component is the best choice for replacement. In

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 71 of 116

that paragraph an example was given that in practice it might not always be cost and time
efficient to replace the component that has the highest probability of being broken, but
that factors as the costs of a component and the time it takes to replace a component (or
to manually check its healthiness) might result that it is better to consider another
component (that does not have the highest probability of being broken) for replacement
(the power supply vs. fuse example).

The diagnostic conclusion manager contains an algorithm that can create a list of
components ranked on the components that is the best choice for replacement using the
following information:

• The gradation of a component (definitely healthy, unknown, possibly broken,
definitely broken)

• The a priori failure probability of the component
• The costs of the component
• The time it takes to replace the component

This process is briefly described in Figure 6.14.

Figure 6.14 Process of creating a ranked list of components

The process starts after a diagnostic rule has been executed. This means that a number of
diagnostic models have been checked, and that one model indicated that there are or
might be faults in a certain module. The result of the checking of this model is a list of
components of which their gradation (definitely healthy, unknown, possibly broken or
definitely broken) is known. This gradation is given to the component by the model rules.
Besides the gradation the a priori failure probability, the costs to replace the component
and the time it takes to replace the component are also known. This last information is
also contained in the models.

From this information first a list of components is created that is ranked on the pure
probability of the component being broken. The gradation and a priori failure probability
are used for this. For this ranking a mathematical function is used which we will give the
name “ranking function step 1” and it will be precisely described later. After this a
second mathematical function is used to create a list of components that is ranked on
which component is the best choice for replacement. This function uses the result from
the “ranking function step 1” together with the costs and time to replace a component.
We will call this second function “ranking function step 2”.

Ranking function step 1
We will now give a mathematical definition for the ranking function that is used in step 1.
We will first look at what basic conclusion can be drawn from the given information:

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 72 of 116

• A component marked definitely healthy should never be in the list.
• A component marked definitely broken should always have a higher ranking than

a component marked possibly broken (because of the definition of definitely
broken).

• A component that has the same marking (definitely or possibly broken) as another
component, but with a higher a priori failure probability should have a higher
ranking than the component with the lower a priori failure probability.

Considering these conclusions, the ranking function for step 1 is simple. It should first
rank the components based on their gradation (where components with a gradation of
unknown or definitely healthy are removed from the list), and within the resulting two
groups of components it should rank the components based on their a priori failure
probability.

We first define Gradation(“Definitely Healthy”) = -2, Gradation(“Unknown”) = -1,
Gradation(“Possibly Broken”) = 0 and Gradation(“Definitely Broken”) = 1. Furthermore
we define the component_gradation as the gradation given to the component by the
model rules and component_failure_probability as the a priori failure probability given to
the component by the model.

Then considering that the a priori failure probability is a number between 0 and 1 the
following function can be used to calculate the rank in step 1:

Rank = Gradation(component_gradation) + component_failure_probability

The component with the highest score for “Rank” is the component that has the highest
probability of being broken.

Ranking function step 2
In step two we consider three factors that determine what component is the best choice to
be replaced. We consider the rank from step 1, the costs of a component and the time it
takes to replace a component. From these three factors a final score needs to be calculated
and then the components are sorted on this score such that the component with the
highest score is the best choice of being replaced.

Because not all factors should have an equal weight in the final outcome, we define
weights for each of these three factors and calculate a final score using the weights. Using
weights the final outcome of this step can be tuned with field experience by adjusting the
weights. For the function of step 2 we define the variables as shown in Table 6.1.

Variable Description

Pbroken The initial ranked probability (from step 1)
Treplace The time it takes to replace the component
Ccomponent The costs of a component
Wprob The weight factor of the probability
Wtime The weight factor of the time

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 73 of 116

Wcosts The weight factor of the costs
Table 6.1 Variables involved in re-ranking

The new rank can then be calculated using the following formula:

Rank = Pbroken * Wprob + (1 - Treplace) * Wtime + (1 – Ccomponent) * Wcosts

Note that the weight should have a value between 0 and 1 and that the values for Treplace
or Ccomponent should be normalized such that they also represent a value between 0 and 1.

The exact values of the weights are not yet known and should be determined together
with PMS.

6.4.3 Performance of Observation Servers
When investigating the assignment, it became clear that performance is an issue since the
target software has fixed timing constraints. For instance, the main control loop of the
software running on the Geo IPC executes every 50 ms. If an iteration of the main control
loop takes more than 50 ms a watchdog terminates and restarts the Geo IPC software.

Since there might be observation points that need to be signaled in functions that are
called by the main control loop, an efficient solution for the signaling needs to be found.

Therefore it is chosen that each observation point should be kept as simple as possible.
An array of integers is chosen to keep track of all observation points. Any signaling of
observation points is then registered as the increment of an element of the array. Since
integer increment and array lookup operations are both efficient, the performance impact
is minimal. Whether an observation point is then signaled can be checked by comparing
the integer values at the beginning of the diagnosis and at the end of the diagnosis. If the
two values differ, the observation point is signaled.

This method has one flaw however. In the case where an observation point is signaled
exactly MAX_INT times, the integer values are the same before and after the diagnosis,
and the signaling is not seen. For now, this case is considered extremely unlikely and the
drawback is discarded.

6.4.4 Multiple intercommunicating Observation Servers
The software that controls the system of Philips Medical Systems is distributed over a
number of PC’s and other hardware platforms. Since every process needs its own
observation server (inter-process communication would cost too much performance) this
means that there will be multiple observation servers. However, some of these hardware
platforms are not directly accessible from the PC that runs the diagnostic engine, and
needs to be accessed via a specific other hardware platform. In these cases, an
Observation Server should be able to forward an external request (for example, a request

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 74 of 116

to retrieve the value of a certain observation point) to another Observation Server that is
not directly accessible.

Figure 6.15 Overview of multiple Diagnostic Servers in system

Figure 6.15 shows this for the situation at PMS (although only a small part of the
controlling software is shown). The request received by the observation server in the
Host Process is forwarded to the Observation Server in the GSC Process and the result is
returned. This picture only shows a small part though. In reality, the software on the Geo
IPC controls a number of embedded real-time hardware platforms. These platforms also
cannot be directly accessed, so the Observation Server in the GSC Process should be able
to forward any requests received from the Observation Server in the Host Process to the
Observation Servers on these embedded platforms.

6.4.5 Creation of Observation Points
The sequence diagram in paragraph 6.3.2.1 shows that observation points need to register
themselves at the observation server. To register the code constructs a logical name
which it passes to the observation server. The observation server then returns a unique ID
to the code which is then used for signaling the observation point. We will now discuss
why it is necessary to first construct a logical name and why it is not possible to just use
unique ID’s that have been created at compile time.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 75 of 116

Consider the fragment of real code shown in Figure 6.16. This function is called when a
movement request is received and it has been approved by the host software.

Figure 6.16 Code example of movement starting

At the point of the line that says “signal that movement request was received” we want to
add statements such that an observation point is signaled that a movement request was
received and approved by the host software. Suppose we have a CObservationServer
singleton class with a function SignalObservationPoint() that takes an ID of the
observation point that is signaled (this is how the Observation Server is designed). Then
we could add the following statement:

CObservationServer::Instance()->
SignalObservationPoint(MOVEMENT_STARTING);

If then a movement is started the observation point “MOVEMENT_STARTING” is signaled
and we can use this observation point in our models. However, we want more detailed
information about which movement was started. Now we have a problem because the
function shown in Figure 6.16 is called for every movement type. If we would add the
following statement:

CObservationServer::Instance()->
SignalObservationPoint(TABLE_HEIGHT_MOVEMENT_STARTING);

Then the observation point “TABLE_HEIGHT_MOVEMENT_STARTING” would indeed be
signaled if we would request a table height movement from the input controls. However,
if we would request a table lateral movement or an L-Arc movement this observation
point would also be signaled.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 76 of 116

The problem is that the code as is shown in Figure 6.16 is a so-called “generic code”
block which means that it contains code that is executed for all movements (in this
project we just consider the code that controls the movements). After further investigation
we have found that there are generally two types of generic code. The first type is a
generic function in which a parameter of that function indicates which movement the
code is for. An example of this type is shown in Figure 6.17.

Figure 6.17 Generic function that uses parameter to specify movement type

Here the parameter “MovementId” makes this general movement function specific for one
type of movement.

The second type of generic code is a class in which the constructor takes the movement
type as a parameter. The generic functions in this class can then use the class member
variable of the class to make it specific for one type of movement. The difference with
the first type is the scope in which the information about the movement type is available,
which is at class level in the latter case and at function level in the first case.

The solution that has been designed is to construct a logical name for the observation
point at runtime, using the function parameter or class member variable to make the
observation point specific for one type of movement. For instance, code to create a
specific observation point for the code shown in Figure 6.16 could be:

sprintf(sOPName, “GEOSA_GSCPROXY_REQUEST_MOVEMENT_%s”,
MovementIdToString(MovementID));

This statement assumes the existence of a MovementIdToString function which can be
created if necessary (but in our case such a function already exists, called “Convert”).

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 77 of 116

The result of this statement is that in case of a height movement an observation point
called GEOSA_GSCPROXY_REQUEST_MOVEMENT_TABLE_HEIGHT is created, and in case of
an L-arc propeller movement an observation point called GEOSA_GSCPROXY_REQUEST_-
MOVEMENT_LARC_PROPELLER is created. Now every movement type has its own
observation point which is exactly what we wanted.

One last remark is that string handling (the creation of the name and the conversion of the
name to a unique observation point ID at the observation server) is expensive
performance wise. Therefore the aim should be to construct the logical name and retrieve
the unique observation point ID in the initialization of the software unit (if possible). The
retrieved observation point ID can then be stored locally and the statements that signal
observation points can then use this locally stored observation point ID. In some cases
this is not possible and another performance efficient solution needs to be chosen (for
instance a switch statement with all possibilities).

6.4.6 Fixed start situation
The diagnostic engine creates a diagnosis based on comparing the observed behavior with
the behavior described in the models. Therefore, the models should be described using a
fixed starting situation such that if a machine is in this state and the diagnostic test is run,
the outcome should always be the same (while taking the assumption into consideration
that intermittent problems are out of scope). Of course, this is the ideal situation and it
might not always be possible, but care should be taken to strive that this holds in most
cases.

To achieve this, the following three measures are taken:

The system should be restarted before the diagnostic test is run
When a component breaks, the system might not always detect it immediately. Then after
a restart of the system it might detect that something is wrong and disable the movement
(this happens for quite a lot of problems). Without this measure, the system behavior
could be quite different if the diagnostic test is run before the problem is detected by the
system than it would be if the diagnostic test is run after the problem is detected by the
system. Furthermore this measure might prevent different system behavior from non-
persistent settings that are done by the field service engineer in order to find the problem.

The observation points should be reset before the diagnostic test is started
The previous measure already partly covers this measure, but before the diagnostic test is
started the observation points should be reset, such that only observation points that are
signaled during the test are taken into account.

The diagnostic test should precisely describe which actions need to be taken in order
to execute that test
Since the diagnostic system is currently designed as a passive system, which only
observes system behavior, actions need to be performed to ensure that control paths are
taken through the software that otherwise remain idle (the controlling of the movements

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 78 of 116

and the hardware involved with that task). The actions and the order in which they need
to be taken need to be precisely described and followed by the service engineer. This
way, the system behaves as was modeled.

These three measures should take care of a fixed start situation. Any deviations that might
still be possible should be incorporated into the models. This means that they must be
robust enough to handle this.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 79 of 116

7 Validation

In this chapter the validation of the diagnostic solution and its prototype implementation
will be described. First the method of validation will be described and then the results are
presented. An interpretation of these results will be given and a short conclusion is given
based on these results. The main conclusion is presented in the next chapter.

7.1 Validation plan
Validation of the diagnostic solution can be done in a number of ways. Though this
number of ways is limited with the knowledge that the prototype solution is not officially
approved software. This means that validation can only be done internally on test systems
and that it is not allowed to test it on real systems in the field.

The downside of this is that the diagnostic solution can not be tested on real fault
situations. Instead, faults have to be injected in a test system and then the diagnostic
solution can be used to see if it detects the fault.

Together with PMS it has been decided that a number of test cases will be made where
each test case contains one fault. Then the diagnostic solution should be used to see if it
can find the fault. For the validation, two groups of test cases are created.

For the demonstration of the prototype the AD7 table has been chosen. This choice was
made together with experts of PMS because the table is relatively new, there is not yet
much knowledge about it amongst field service engineers, it is mechanically more
complex than other tables and also quite important, the available test systems are all
equipped with an AD7 table.

Note that for the validation the a priori failure probabilities have not been taken into
account. The reason for this is that these probabilities are based upon statistics about
which FRU’s have a higher chance of failing. But in our test situation, each FRU will fail
once (we will simulate the failure of each FRU in a different test) meaning that using a
priori failure probabilities would negatively influence the results and that it would not be
realistic since the a priori failure probabilities do not apply when faults are injected in the
system. The result of this decision is that components can only be ranked in one of the
four gradations and that no ranking within these gradations is possible.

7.1.1 Test cases group 1
For the first group of test cases, an overview will be made of the different FRU’s that are
involved in the part of the system that is covered by the prototype. A test will then be
made for each FRU in which it is simulated as being broken. Of course, an FRU can
break in many ways, but for the validation we will chose to simulate each component as
completely electrically broken (so no signals come in or out of the FRU). The reason for
this is that it is the easiest way to simulate. More complicated errors are much harder to
simulate and in some cases it is even impossible (without actually breaking the FRU).

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 80 of 116

The different test cases will be explained now:

0. Everything OK
The first test case will be the case where the whole system is OK. The diagnostic solution
should detect that all (involved) modules are working correctly.

1. Broken UI module
A broken UI module is not able to send any movement commands to the controlling
software. The diagnostic solution should be able to detect that the input module is broken
since it does not receive any input.

2. Broken CAN cable from UI module to TTCB
The UI module is connected to the Table Top Connection Box (TTCB) via a cable. The
CAN signal goes through this cable. If the CAN lines are broken, then the controlling
software does not receive any input and this should be detected by the diagnostic
solution.

3. Broken enable_move line from UI module to TTCB
One of the safety mechanisms is that besides a software signal also a hardware signal is
used to enable movements. When this line is broken, the controlling software receives
movement commands but detects that the enable_move line stays false.

4. Broken network card in Host PC
The Host PC contains a network card for the communication with the IPC. This network
card can be broken and when this happens there is no communication possible between
the Host PC and the IPC.

5. Broken Ethernet cable from network card in host PC to switch
The cable from the Host PC to the switch is part of the Ethernet communication channel
between the Host PC and the IPC. It could break and when this happens there is no
communication possible between the Host PC and the IPC.

6. Broken Ethernet switch
The Ethernet switch is part of the Ethernet communication channel between the Host PC
and the IPC. It could break and when this happens there is no communication possible
between the Host PC and the IPC.

7. Broken Ethernet cable from switch to IPC
The Ethernet cable from the switch to the IPC is part of the Ethernet communication
channel between the Host PC and the IPC. It could break and when this happens there is
no communication possible between the Host PC and the IPC.

8. Broken IPC
The IPC can break down in various ways. Many ways will prevent it from starting up
which should be detected by the Host PC since no communication is possible to the IPC.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 81 of 116

9. Broken CAN cable from IPC to SIB
There is a CAN cable from the IPC to the System Interface Board (SIB) through which
CAN signals pass. This cable can break and this will result in an unavailable CAN
network.

10. Broken IO cable from IPC to SIB
There is also an IO cable from the IPC to the SIB. Various IO signals go through this can
cable and if it breaks, no movements are possible.

11. Broken Smart Drive for height and tilt movement
Each motorized movement (height, tilt, lateral, longitudinal, cradle) contains a device that
directly controls the movement. It sends signals to the motor and the brake and it receives
input from the potentiometer. This device is called a smart drive. When it is broken, the
movements will not work.

12. Broken potentiometer for height and tilt movement
Each motorized movement (height, tilt, lateral, longitudinal, cradle) contains a
potentiometer which is used to detect movements. Since the rotating axis of the
potentiometer is attached to the moving part, the increase or decrease in resistance of the
potentiometer can be used to calculate to movement in millimeters or degrees. When this
device is broken, the Smart Drive no longer has feedback if the table is moving.

13. Broken motor for height and tilt movement
Each motorized movement (height, tilt, lateral, longitudinal, cradle) contains a motor that
controls the movement. The voltage, current and also the frequency and the amplitude of
the current are directly regulated by the Smart Drive. When the motor does not work, no
movement is possible.

14. Broken brake for height and tilt movement
Each motorized movement (height, tilt, lateral, longitudinal, cradle) contains a brake that
will prevent movements if no movement request is done. When the brake is broken no
movement is possible (since the brakes are designed in such a way that they will be on if
the internal electrics of the brake are broken).

15. Broken emergency stop cable
At various places in the room there are emergency stop switches available (at the walls, at
the input modules, at the table). These are all part of one electrical loop and if this is
interrupted at any place, the emergency stop procedure is activated. Whenever an
emergency stop cable is broken somewhere, the emergency stop will always be activated.

7.1.2 Test cases group 2
For the second group of test cases, a number of possible problems have been thought up
by experts of PMS. Most of these are not detected by the POST or by the logging. All of
the test cases in this group are shortly explained:

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 82 of 116

16. Broken AD7 tilt sensor
The AD7 table has a tilt sensor which is not a separate FRU but for demonstration
purpose it is interesting to check whether it is possible to detect if this component is
broken.

17. Loose potentiometer
With a loose potentiometer is meant a potentiometer of which the rotating axis is no
longer mechanically connected to the moving part of the table. This results in a
movement not being detected by the potentiometer.

18. Movement denied by 3D model
A situation that might occur that is closely related to the previous one is when the table is
close to another part of the system and a movement is denied by the software because the
3D model predicts a collision. Sometimes this is not entirely obvious, and it could be
mistakenly be interpreted as a hardware fault. The diagnostic system should recognize
this and indicate that nothing is wrong with the hardware.

19. Motor over current
If a hardware panel is bent, or some cable tree moves out of position this might cause a
situation where the motor current goes over a certain threshold (because of the increased
friction). This should be recognized by the diagnostic system.

20. IPC crash during test
It could happen that due to a software bug the IPC crashes during a test. This should be
detected by the diagnostic system and it should not mistakenly mark parts as broken in
such a situation.

21. No power to input module
22. No power to IPC
23. No power to AD7 table
24. No power to height motor
The power net is not incorporated into the diagnostic models. However, we will test
faults with the power net anyway to see how the diagnostic solution handles faults that
are outside of its scope.

25. Emergency stop pressed
When the emergency circuit is activated, all movement is disabled. Although this gives a
clear user message, the diagnostic solution should detect that the hardware is working
correctly and that the emergency stop is pressed.

26. Broken tilt button on UI module
A single button of the UI module could be broken. This should be detected by the
diagnostic solution.

27. Broken Synqnet loop

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 83 of 116

Finally all drives in the AD7 table are connected via a ring network called Synqnet. If a
connection anywhere in this ring is broken, it should be detected by the diagnostic
solution.

7.2 Validation results
To present the validation results, first it needs to be defined when a test is passed and
when a test is failed. A test is passed if the following three rules hold (unless specified
otherwise by the test description):

• The right module is detected as being suspicious or failed

The prototype solution has been made on a part of the system that contains five
modules (Host PC, Network, Embedded PC, Input and AD7). The module that
contains the faulty component should be correctly identified as being suspicious or
failed.

• The faulty component is diagnosed as either possibly broken or definitely broken

The component that is simulated broken should be diagnosed as either possibly
broken or definitely broken.

• There are no components listed as possibly broken or definitely broken that could

have never been broken in that situation (within the limitations of the target software)
The list of fault candidates should be as short as possible, i.e. it should not contain
any components that could have been diagnosed as definitely healthy in that situation.

Now the results of the validation will be presented. Each test case will be presented
separately and an explanation of the results will be given.

7.2.1 Test cases of group 1
These are the results of the tests of group 1.

Test case 0: Everything OK

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: healthy
AD7: healthy

Result Passed
Remarks Every diagnostic module is marked as healthy so the results are OK.

Test case 1: Broken UI module

Outcome Host PC: healthy
Network: healthy
Embedded PC: suspicious

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 84 of 116

Input: failed
AD7: dependency failed

Possibly broken:
• IO cable from Geo-IPC to adapter card
• Adapter card
• UI Module
• Cable from UI Module
• Cable from TTCB to TBCB
• Cable from TBCB to SIB
• System interface board

Result Passed
Remarks The input module is correctly identified as the faulty module. In this

module, no distinction can be made between the UI module itself being
broken or any of the cables involved being broken. Therefore they are
all listed.

Because the enable_move signal is also not active, the adapter card and
IO cable are also listed as possible broken components. The model
could be improved here though, as it could be modeled that if there are
no input signals detected, then it is logical that the enable_move signal
is not detected. (This addition would also clear the suspicious tag for the
embedded pc module).

Test case 2: Broken CAN cable from UI module to TTCB

Outcome Same as test #1

Result Passed
Remarks Same as test #1

Test case 3: Broken enable_move line from UI module to TTCB

Outcome Host PC: healthy
Network: healthy
Embedded PC: failed
Input: dependency failed
AD7: dependency failed

Definitely broken:
• GSC Software

Result Failed
Remarks To test this, the software simulates that the enable_move line is always

false. However, the logging indicates that the enable_move line became
true after all. This indicates that the observation point used is closer to
the input hardware than the place where the simulation forces
enable_move to be false. Therefore, the model detects that the

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 85 of 116

enable_move observation point was signaled, while the GSC Software
does not detect that enable_move becomes true since the simulation
forces enable_move (at a higher level) to be false. Therefore the GSC
Software blocks the movement. This means that the model actually
correctly identifies the GSC Software as the cause of the disabled
movement and this test needs to be redone using another method to
simulate the broken enable_move line.

Test case 4: Broken network card in host PC

Outcome Host PC: healthy
Network: failed
Embedded PC: dependency failed
Input: dependency failed
AD7: dependency failed

Definitely broken:
• Network connection

Possibly broken:
• Host PC network card
• Ethernet cable from Host PC
• Geo ethernet switch
• Ethernet cable
• Geo-IPC

Result Passed
Remarks The components that are involved in the networking are all listed as

possibly broken and since currently there is no way of making a further
distinction between these components this is the best possible result.
However, it is noted that the switch involved also connects other parts
of the system and if in these other parts observation points and servers
are placed, a further distinction might be possible.

Secondly, the model has incorporated a safety feature that detects if the
network connection was lost during the test. If this happens the test is
marked as unreliable. This is the “network connection” component that
is marked broken in this test. The model could however be improved by
using the observation points to make a difference between the state in
which there never was a connection during the test, and the state in
which there was a connection during the test but this connection was
lost. If the model would be improved this way, then the “network
connection” component would also disappear from the list.

Test case 5: Broken Ethernet cable from network card in host PC to switch

Outcome The same as test #6

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 86 of 116

Result Passed
Remarks The same as test #6

Test case 6: Broken Ethernet switch

Outcome The same as test #6

Result Passed
Remarks The same as test #6

Test case 7: Broken Ethernet cable from switch to IPC

Outcome The same as test #6

Result Passed
Remarks The same as test #6

Test case 8: Broken IPC (no power to IPC)

Outcome The same as test #6

Result Passed
Remarks The same as test #6

Test case 9: Broken CAN cable from IPC to SIB

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: healthy
AD7: healthy

Result Failed
Remarks For the test it was assumed that this cable contained the enable_move

line. This assumption proved wrong, since movements did work while
the cable was disconnected. Further investigation pointed out that this
cable is only responsible for the connection from the IPC to the lateral
and frontal stand (which are out of scope for this prototype). Therefore,
everything within the tested scope was indeed functioning ok, so the
outcome is actually correct.

Test case 10: Broken IO cable from IPC to SIB for tilt movement

Outcome The same as test #12.1

Result Failed

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 87 of 116

Remarks One of the lines of the IO cable is the enable_move line. During
modeling it was assumed that whenever this signal was seen enabled on
the Geo IPC, this cable was healthy (since the signal needed to travel
through that cable and partly broken components are out of scope).
However, after investigation it appears that this signal is also high when
the cable is completely removed from its connector. Therefore the
model needs to be adapted and the rules that indicate whether the IO
cable is healthy or possibly broken should be revised.

Table components tests
For the following eight tests, first a couple remarks need to be made. Most of these faults
are detected by the POST of the Embedded PC. This means that the movements are
already blocked at the Host PC and the control flow stops there. The diagnostic server
currently has no means of making a better distinction between these problems (and
should therefore refer to the post in these cases). Each test is divided into an x.1 and x.2
variant. The x.1 is for the height drive, the x.2 is for the tilt drive.

Test case 11.1: Broken smart drive for height movement

Outcome Host PC: healthy
Network: healthy
Embedded PC: suspicious
Input: healthy
AD7: suspicious

Possibly broken:
• XMP card
• Smart drive for the height
• Potmeter assembly for the height
• Motor assembly for the height
• Drive assembly for the height
• Smart drive for the tilt
• Potmeter assembly for the tilt
• Motor assembly for the tilt
• Cable set assembly for the tilt
• Actuator assembly for the tilt
• Smart drive for the cradle
• Drive assembly for the cradle
• Cable set assembly for the cradle
• Tilt level indicator

Result Passed
Remarks This error is detected by the post, and all table movements are disabled.

Therefore, the diagnostic solution is only able to indicate that there is a
problem with the table (or with the XMP card controlling it). The
diagnostic solution should refer to the POST results in this case. Moving
the diagnostic system from passive to active (allowing it to perform

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 88 of 116

actions such as calling certain functions) might result in a better
diagnostic resolution, but referring to the POST results should give as
much information (though it is an extra step for the service engineer).

Test case 11.2: Broken smart drive for tilt movement

Outcome The same as test #12.1

Result Passed
Remarks The same as test #12.1

Test case 12.1: Broken potentiometer for height movement

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: healthy
AD7: suspicious

Possibly broken:
• Smart drive for the height
• Potmeter assembly for the height
• Motor assembly for the height
• Drive assembly for the height

Result Passed
Remarks This error is detected by the post, and the height movement is disabled.

The components that are involved in the height movement are listed as
possible fault candidates.

Test case 12.2: Broken potentiometer for tilt movement

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: healthy
AD7: suspicious

Possibly broken:
• Smart drive for the tilt
• Potmeter assembly for the tilt
• Motor assembly for the tilt
• Cable set assembly for the tilt
• Actuator assembly for the tilt
• Tilt level indicator

Result Passed
Remarks The same comment as in #13.1 also holds here but then for the tilt

movement instead of the height. An additional comment can be made

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 89 of 116

that the tilt level indicator is listed as possibly broken. This can be
solved by modifying the model such that it incorporates that the tilt
level indicated can never work if the movement did not work.

Test case 13.1: Broken motor for height movement

Outcome The same as test #12.1
Result Passed
Remarks The same as test #12.1

Test case 13.2: Broken motor for tilt movement

Outcome Session ID changed during test, test unreliable

Result N/A
Remarks The GSC Software crashed during this test, which was detected by the

session ID change and therefore the test is discarded.

Test case 14.1: Broken brake for height movement

Outcome Session ID changed during test, test unreliable

Result N/A
Remarks The GSC Software crashed during this test, which was detected by the

session ID change and therefore the test is discarded.

Test case 14.2: Broken brake for tilt movement

Outcome Session ID changed during test, test unreliable

Result N/A
Remarks The GSC Software crashed during this test, which was detected by the

session ID change and therefore the test is discarded.

Test case 15: Broken emergency stop cable

Outcome Host PC: healthy
Network: healthy
Embedded PC: suspicious
Input: suspicious
AD7: suspicious

Broken:
• Emergency stop circuit

Possibly broken
• XMP card

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 90 of 116

• UI Module
• Cable from UI Module
• Cable from TTCB to TBCB
• Cable from TBCB to SIB
• System interface board
• Smart drive for the height
• Potmeter assembly for the height
• Motor assembly for the height
• Drive assembly for the height
• Smart drive for the tilt
• Potmeter assembly for the tilt
• Motor assembly for the tilt
• Cable set assembly for the tilt
• Actuator assembly for the tilt
• Smart drive for the cradle
• Drive assembly for the cradle
• Cable set assembly for the cradle

• Tilt level indicator

Result Passed
Remarks The emergency stop circuit is correctly identified as being responsible

for disabling movements.

The model could be improved however, if it were added to the model
that it is normal that all movements are disabled when the emergency
stop circuit is activated, then all the components under possibly broken
would be removed from the list.

Summary
The result of the validation of the first test group is presented in Table 7.1. An
interpretation of these results is given below. An explanation of when a test is passed and
when a test is failed is given in the beginning of paragraph 7.2.

Tests Passed Failed N/A
20 14 3 3

Table 7.1 Validation results for test group 1

For each test an explanation is given in the “Remarks” section of that test why it passed
or failed. The summary is given here.

Group 1 contains 24 test cases. From these 3 tests were given the result N/A because the
IPC software crashed during this test. When the IPC software crashes, the observation
points are reset. This means that the diagnostic engine can no longer derive whether the

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 91 of 116

observation points in the IPC were signaled or not. This situation is detected by the
diagnostic engine and when this happens the test is abandoned.

For the failed tests it needs to be remarked that test #3 failed because the error was not
simulated correctly. Test number #9 and #10 failed because of modeling errors. Test #3
actually passed when it was retried later and simulated correctly. Further investigation is
necessary to check how the modeling errors for the tests #9 and #10 can be resolved.

7.2.2 Group 2
These are the results of the tests of group 2.

Test case 16: Broken AD7 tilt sensor

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: healthy
AD7: suspicious

Possibly broken:
• Tilt level indicator

Result Passed
Remarks The broken AD7 tilt sensor is correctly identified as (the only candidate)

being possibly broken.

Test case 17: Loose potentiometer for height movement

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: healthy
AD7: suspicious

Possibly broken:
• Potmeter assembly for the height

Result Passed
Remarks The loose potentiometer for the height movement is correctly identified

as (the only candidate) being possibly broken.

Test case 18: Potentiometer with a lot of noise

Outcome Not tested
Result N/A
Remarks This could not be simulated and therefore the test was discarded.

Test case 19: Wrong calibration

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 92 of 116

Outcome Not tested
Result N/A
Remarks This test was not possible since the calibration procedure of a movement

expects its parameters to be in a certain range. When the parameters are
too far out of range (which is what we wanted to simulate), the values
are not accepted. Therefore it is not possible to calibrate the machine
that it is rigorously out of calibration.

Test case 20: Movement restricted by 3D model

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: healthy
AD7: suspicious

Possibly broken:
• Tilt level indicator

Result Failed
Remarks The outcome of this test is debatable. The tilt level indicator should not

be listed as possibly broken. This can be fixed by extending the model
in such a way that if no tilt movement is possible, it can never be said if
the tilt level indicator is healthy or not.

If the model was extended this way, all parts in the table would be
diagnosed as unknown, in which case the diagnostic engine concludes
that the table is healthy (this is a design decision). In that case, the
results would be correct.

Part of the problem is that the software does not completely block the
movement; it allows small movements (under reduced performance /
override). Therefore the diagnostic engine does not detect that
movements are blocked (since they are not), but the movements are too
small to be certain that there was movement.

Test case 21: Motor over current for height movement

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: healthy
AD7: failed

Broken:
• Height drive over current

Possibly broken:
• Smart drive for the height

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 93 of 116

• Potmeter assembly for the height
• Motor assembly for the height
• Drive assembly for the height

Result Passed
Remarks This specific error is correctly detected. All components that are

involved in the movement are listed as possibly broken.

Test case 22: IPC crash during test

Outcome Session ID changed during test, test unreliable

Result Passed
Remarks The crash is successfully detected, and the test results are marked as

being unreliable. If this happens multiple times, the diagnostic engine
should refer to the event viewer and if that shows no errors or warnings
a software error should be reported back.

Test case 23: Wrong configuration on Host PC

Outcome Not tested

Result N/A
Remarks This test was not possible since the Geo IPC detects that the

configuration of the Host PC is different from the actual configuration
and therefore it does not start.

Power tests
The power lines and connections to the different parts were not considered in the models.
Therefore, the following four tests will give wrong results, but this is a test to see how the
diagnostic engine behaves when something that was not modeled is encountered (and if
those results are acceptable).

For all of the four cases below holds that it would be good to extend the model to
incorporate the power design, and to add observation points at places where it is possible
to measure if the power input is ok there.

Test case 24: No power to input module

Outcome Host PC: healthy
Network: healthy
Embedded PC: suspicious
Input: failed
AD7: dependency failed

Possibly broken:
• IO cable from Geo-IPC to adapter card

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 94 of 116

• Adapter card
• UI Module
• Cable from UI Module
• Cable from TTCB to TBCB
• Cable from TBCB to SIB
• System interface board

Result Passed
Remarks The power goes through the CAN cable to the UI module, so this test is

the same as the test in which the cable between the UI module and
TTCB is broken (#2). The results are ok if indeed the power is cut off
due to a broken cable or defect UI module, but if the power is cut off at
a much earlier stage, this is not detected and the results would be wrong.

Test case 25: No power to IPC

Outcome Host PC: healthy
Network: failed
Embedded PC: dependency failed
Input: dependency failed
AD7: dependency failed

Definitely broken:
• Network connection

Possibly broken:
• Host PC network card
• Ethernet cable from Host PC
• Geo ethernet switch
• Ethernet cable
• Geo-IPC

Result Passed
Remarks This is the same test as the broken IPC, since a broken IPC was

simulated by cutting the power off (#10). If the power to the IPC is cut
off due to a broken power supply in the IPC then the fault is identified.
If the power is cut off earlier, then the results would be wrong and the
fault is not detected.

Test case 26: No power to AD7

Outcome Host PC: healthy
Network: healthy
Embedded PC: suspicious
Input: healthy
AD7: suspicious

Possibly broken:
• XMP card

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 95 of 116

• Smart drive for the height
• Potmeter assembly for the height
• Motor assembly for the height
• Drive assembly for the height
• Smart drive for the tilt
• Potmeter assembly for the tilt
• Motor assembly for the tilt
• Cable set assembly for the tilt
• Actuator assembly for the tilt
• Smart drive for the cradle
• Drive assembly for the cradle
• Cable set assembly for the cradle
• Tilt level indicator

Result Passed
Remarks This error is detected by the POST and all table movements are

disabled. The diagnostic engine can therefore not test what is wrong
since the signals are stopped at the Host PC. It has to be investigated
whether it is possible to detect the power failure using observation
points.

Test case 27: No power to height motor of AD7

Outcome Host PC: healthy
Network: healthy
Embedded PC: suspicious
Input: healthy
AD7: suspicious

Possibly broken:
• XMP card
• Smart drive for the height
• Potmeter assembly for the height
• Motor assembly for the height
• Drive assembly for the height
• Smart drive for the tilt
• Potmeter assembly for the tilt
• Motor assembly for the tilt
• Cable set assembly for the tilt
• Actuator assembly for the tilt
• Smart drive for the cradle
• Drive assembly for the cradle
• Cable set assembly for the cradle
• Tilt level indicator

Result Passed
Remarks This is the same test as a smartdrive being broken (#14.1). In this case,

all movements are disabled and the diagnostic engine should refer to the
POST results. The error can be detected there.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 96 of 116

Test case 28: Emergency stop pressed

Outcome Host PC: healthy
Network: healthy
Embedded PC: suspicious
Input: suspicious
AD7: suspicious

Broken:
• Emergency stop circuit

Possibly broken
• XMP card
• UI Module
• Cable from UI Module
• Cable from TTCB to TBCB
• Cable from TBCB to SIB
• System interface board
• Smart drive for the height
• Potmeter assembly for the height
• Motor assembly for the height
• Drive assembly for the height
• Smart drive for the tilt
• Potmeter assembly for the tilt
• Motor assembly for the tilt
• Cable set assembly for the tilt
• Actuator assembly for the tilt
• Smart drive for the cradle
• Drive assembly for the cradle
• Cable set assembly for the cradle
• Tilt level indicator

Result Failed
Remarks It cannot be detected whether the emergency circuit is broken or

whether an emergency stop button is pressed. Therefore in the software
design it is said that before each test the system should be restarted. This
also clears the emergency stop state which is only re-entered if the
emergency stop circuit is broken or the emergency stop button is
pressed again. Since the description of the test does not state that the
emergency stop button should be pressed, the diagnostic engine
concludes that the emergency stop circuit is broken.

Test case 29: Broken tilt button on UI module

Outcome Host PC: healthy
Network: healthy
Embedded PC: healthy
Input: failed
AD7: dependency failed

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 97 of 116

Broken:
• UI module

Result Passed
Remarks This error is correctly identified.

Test case 30: Broken Synqnet loop

Outcome Host PC: healthy
Network: healthy
Embedded PC: suspicious
Input: healthy
AD7: suspicious

Possibly broken:
• XMP card
• Smart drive for the height
• Potmeter assembly for the height
• Motor assembly for the height
• Drive assembly for the height
• Smart drive for the tilt
• Potmeter assembly for the tilt
• Motor assembly for the tilt
• Cable set assembly for the tilt
• Actuator assembly for the tilt
• Smart drive for the cradle
• Drive assembly for the cradle
• Cable set assembly for the cradle
• Tilt level indicator

Result Passed
Remarks The POST detects this error and all movements are disabled. The

diagnostic engine should refer to the POST results where this fault can
be detected.

Summary
The result of the validation of the second test group is presented in Table 7.2. An
interpretation of these results is given below. An explanation of when a test is passed and
when a test is failed is given in the beginning of paragraph 7.2.

Tests Passed Failed N/A
15 10 2 3

Table 7.2 Validation results for test group 2

For each test an explanation is given in the “Remarks” section of that test why it passed
or failed. The summary is given here.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 98 of 116

Group 2 contains 15 test cases. From these 3 tests were given the result N/A because the
test could not be executed. The explanation why is given in the “Remarks” section of the
given tests.

For the 2 tests that failed it holds that test #20 might be resolved if extra observations are
added. Test #28 was given the classification failed after discussion with experts from
PMS. This classification is debatable and the reason why is further explained in the
“Remarks” section of that test.

7.3 Validation conclusion
The goal of the validation was to investigate whether the method has brought
improvement in the way diagnosis is done. To be able to draw this conclusion, first it
needs to be known what the current status of fault diagnosis is. Unfortunately, this
information is not available. Often, a FSE replaces a number of components at the same
time. When this happens, it cannot be traced what the actual fault was. Also the actual
time needed to come to a diagnosis or the total time of repair is not directly available.
Especially in cases where more than one FSE needs to visit a broken system before the
fault is found it is not known how much the total time of repair was.

Therefore another way needs to be found to draw a conclusion from the results of the
validation. Since the idea that fault diagnosis can be improved came from internal
discussions amongst people from PMS, we have chosen to present the prototype and the
results of the validation to these people and ask them for their opinion about whether this
prototype can improve fault diagnosis. The survey that was used for this is attached as
appendix B. People from the Service Innovation department, Field Monitoring team, the
Software Development department and the Test department were asked to fill in this
survey. In total eight persons were asked of which five returned answers to the survey
questions and in some cases some general remarks.

7.3.1 Survey results
Here the survey results will be presented. The results are grouped the same way as is
done in the survey.

The way the tests are executed
All five persons that returned the survey indicated that the way tests are selected is clear.
A remark is made that the test description does not describe how the test is executed. An
extended description would solve this.

The presentation of the diagnosis results
The presentation of the diagnosis results was found clear by all. The coloring was seen as
a good way to quickly determine where the fault is and what components are candidates
for further investigation. Remarks were made here that it might not always be clear to

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 99 of 116

which module a component belongs. For instance a network card may be part of the
Network module, but also of the Host PC module.

The results of the validation
For the results of the validation the opinions are spread. Two persons indicated that the
number of failed test cases is acceptable; one person answered that he couldn’t judge that
and two persons indicated that the results are not acceptable. One of the latter mentioned
that with the remarks the result is acceptable, and the other indicated that all tests should
pass since all tests represent scenarios that can occur and that the FSE should always be
able to rely on the diagnosis.

Another remark that was made by two persons is that the results look promising for the
Geometry subsystem, but that further investigation is needed before a conclusion can be
drawn whether this method can be used throughout the whole system.

The usability of this method to improve fault diagnosis
For the usability of this method to improve fault diagnosis, four of the five persons
indicated that the results are promising and that on the limited scope on which the
prototype was built, it shows good results. Two persons mentioned that there are
currently many tools available to diagnose a part of the system, but that it is not clear for
the FSE which one he should choose. This method could help the FSE decide which tool
he could use for further investigation (if necessary). One person also mentioned that most
of those other diagnostic capabilities are not useful enough since they generate a lot of
unclear messages and logging.

Two persons also mentioned that it should be avoided that a lot of components get the
gradation “Possibly Broken” as this might lead to even more non-broken components that
are replaced.

Four of the five persons indicate that this method is promising and that the work done is
good as a basis, but that now a prototype with a larger scope should be built to investigate
if the method can be scaled up to the entire system. Furthermore a business study is
necessary to do a cost-benefit analysis whether the gained benefits outweigh the work
needed to implement this method. Finally, one person mentioned that a pilot should be
started where this method should be used to find faults on a real system in the field.

7.3.2 Survey conclusion
From the survey it can be concluded that four of the five persons are positive about the
usability of the prototype. The fifth person indicated that in his opinion it does not
provide much extra diagnostic capability compared to the POST and the logging.

Furthermore, two points of improvement have been found necessary by some of the
people that filled in the survey. The first point of improvement should be to improve the
models such that all tests pass. Two of the five persons mentioned that none of the tests
should fail. As is already mentioned in the remarks section of the failed tests, it should be

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 100 of 116

possible to extend the models such that some of the tests that now fail will pass. On some
other tests further investigation is necessary before it can be concluded that those test can
pass by adapting the models.

The other point of improvement should be on the resolution of the diagnosis. Two
persons mention that there should not be too many components marked as possibly
broken because this might lead to more replacement of non-broken hardware. The cause
of the low resolution in certain test cases lies in the architecture of the controlling
software.

The software that controls the C/V X-Ray system has been designed such that when the
POST detects that something is wrong in for instance the height movement, it disables the
complete height movement at the level of the Host PC. This means that any controlling
signals concerning the height movement are blocked at the Host PC. Since our method
uses these signals as observable information, the diagnostic engine is limited in its
diagnostic capabilities by this behavior of the controlling software (since no observable
information can be gathered after the Host PC).

To solve this issue, three possible improvements have been suggested where each of
these might solve the problem. The first solution is to change the behavior of the
controlling software in such a way that it will no longer block signals and that signals will
always be sent to the hardware. Such behavior might be implemented in a separate
operating mode called a “diagnostic mode”. This suggestion is further described in
paragraph 9.4.1.

The second solution that is suggested is to add the capability to the models that
statements might be derived from observations. Currently, only the healthiness of
components is derived from observations but this might be extended in a way such that
also statements might be derived from the observations. Such a statement could then be
“Table height movement disabled, check the Table POST results” for example. This way
no changes are necessary in the controlling software. However, this suggestion does not
improve the diagnostic capabilities of the diagnostic solution; it just refers to other
diagnostic methods that are available in the system. This suggestion is further described
in paragraph 9.1.2.

The last solution that is proposed to solve this issue is to place observation points in the
code where the POST results are retrieved. This way the diagnostic solution can use the
diagnostic capabilities of the POST and use the derived conclusion of the POST as
observable information in the models. This suggestion also does not improve the
diagnostic capabilities of the diagnostic solution directly, but rather makes use of the
results of other diagnostic methods in the system. This suggestion is further described in
paragraph 9.3.2.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 101 of 116

7.3.3 Comparison to earlier work
As is already stated earlier in this thesis, there has been another Master’s project on
improving fault diagnosis at Philips Medical Systems. This project was carried out a few
months before the beginning of this Master’s project and was carried out by W.M.
Lindhoud. His thesis can be found in [8]. It would be valuable for the validation to
compare the outcomes of both projects. However a direct comparison is not possible. In
his project he concentrated on one specific movement of the system. This selected
subsystem only contained 5 components and everything up to there is assumed to be
functioning correctly. This means that input is not considered and also the way the Host
PC or the Geo IPC influence the behavior of the system are considered out of scope. His
thesis does not state if and how his method can be scaled up to the entire system, while
the method that is described in this thesis has been designed to be able to diagnose the
entire control chain from the input to the movement of the table. Because the scopes of
the two projects are very different, a comparison is not possible.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 102 of 116

8 Conclusion

The goal of this project was to design a method that improves fault diagnosis for the C/V
X-Ray system of PMS. Unfortunately, this cannot be directly concluded. As is also
described in paragraph 7.3, to conclude that the designed method can improve fault
diagnosis it first needs to be quantified what the current status of fault diagnosis is and
then it needs to be quantified how fault diagnosis is improved using the designed method.
A comparison can then be made on the factors that are important for fault diagnosis, such
as accuracy, resolution, completeness, variability/configurability, extendibility,
representation facilities, automation, development costs and maintenance costs. However,
such a comparison is not possible on the exact statistics, since the current status of fault
diagnosis can not be precisely quantified (which was also concluded in [8]).

Since an exact statistical comparison is not possible, a comparison will be made based on
the results of the validation and on the data that has been collected from interviews with
people from PMS. The method presented in [8] will also be taken into the comparison.

A
cc

ur
ac

y

R
es

ol
ut

io
n

C
om

pl
et

en
es

s

V
ar

ia
bi

lit
y

Ex
te

nd
ib

ili
ty

R
ep

re
se

nt
at

io
n

A
ut

om
at

io
n

D
ev

el
op

m
en

t
co

st
s

M
ai

nt
en

an
ce

co

st
s

Current practice of FSE + + 0 + 0 0 -- 0 0
Method presented in this
thesis

+ + 0 + 0 + + 0 +

Method presented in [8]
(MBD)

++ + + 0 0 + + - 0

Table 8.1 Comparison of this method against current practice and MBD

The current practice of low to medium experienced field service engineers scores only
moderate on completeness since, using the current method, he is only able to detect a
certain percentage of the faults (estimated at 60%-70%). It scores good on accuracy and
resolution, since when the right test is selected (or the right fault procedure is followed)
this test will usually pinpoint the right component (or a small number of components) that
could contain the fault. On variability it scores good since for every different version of
the system there are test available. The field service framework (the interface that is used
by the field service engineer to find faults) automatically filters the tests or data that are
applicable for the current configuration. Extendibility scores moderate, since for every
extension to the system it needs to be reviewed what impact that extension has to the field
service framework. Representation also scores moderate since the representation only
gives a textual description, which is not always clear to the FSE. The major drawback of
the current practice is that the field service framework is huge, and it contains many
different tests and logging data but it does not contain a general overview of where the
fault could be. It is very unclear for the FSE where he should start the diagnosis. Also the
development and maintenance costs are moderate since all parts of the system contain

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 103 of 116

code for field service. Furthermore, the field service framework itself is also very large.
Therefore development and maintenance requires quite some effort.

The method presented in this thesis has comparable accuracy, resolution and
completeness to the current methods of fault diagnosis. However, the major improvement
is in automation. The diagnostic capabilities in the current method are not available in
one diagnostic test, but are separated over a very large number of diagnostic methods
(functional tests, POST’s, logging). It is up to the FSE to select the right functional test,
or to view the right POST results or the right part of the logging to find out what the fault
could be. If he does not select the right part, he will not find anything at all. The method
presented in this thesis provides one diagnostic engine with a small number of diagnostic
rules that together can diagnose the whole system (and thus reach the same level of
accuracy, resolution and completeness with a much smaller test time). The method
presented here also has built-in facilities to deal with different configurations (variability)
and scores also the same on extendibility (extensions should be reviewed to see what
impact they have on the models and model rules). On representation it scores good, since
it gives an overview of the system (divided into modules) and lists per module what
components could be faulty (ordered by probability of being broken). It scores moderate
on development costs, since this is a new method and if it is going to be used, it has to be
built up from the beginning, which costs resources. The resources used for this however,
are less than with MBD as presented in [8]. Since for using MBD, full behavioral and
structural modules need to be made for the entire system (and since the software
influences the behavior of the system, the software needs to be modeled too).

The method presented in [8] scores better on accuracy and completeness than both the
method presented in this thesis and the current practice, since full behavioral and
structural models contain much more information. Therefore a better diagnosis is possible
by the diagnostic engine. The reason that it scores good instead of very good on
completeness is because a model is still an abstraction from the reality and thus is not
exactly the same as the original system and therefore might still contain false negatives.
In the work presented in [8] it is not discussed how that method can cope with different
configurations of the system, therefore it scores moderate there. On representation it
scores the same as the method presented here since the way the results are presented is
the same (ranked list of fault candidates). The tool used in [8] still requires observations
to be inputted manually, but this could be automated and therefore it also scores good on
automation. Finally, the major drawback of MBD is that building full scale models that
capture the behavior and structure of the entire system is not feasible. This is also the
reason why PMS chose not to continue with MBD.

It can be concluded that MBD scores better on accuracy and completeness than the
method presented in this thesis. However, scaling MBD up to the entire system is not
(yet) feasible and therefore another method has to be found. The method presented here is
feasible on a much larger part of the system than that which is chosen in [8]. The method
presented here also gives the same accuracy and completeness as the current practice of
fault diagnosis. As major improvement, this method is almost fully automated, where the
current practice requires a lot of user effort (which results in an increased time of

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 104 of 116

diagnosis). As a last point it has been designed to handle the different configurations of
the system with minimal user effort. Therefore one diagnostic system can be used to
diagnose all different configurations of the system. This is also an advantage over MBD.

Another important aspect of the conclusion is the usability of this work for PMS.
Therefore a survey has been held amongst people of different departments within PMS.
The prototype and the validation results of this prototype have been presented to people
from the field service department, from the service innovation department, from the test
and integration department and from the development department. Then a survey was
held amongst them in which they were asked to give their opinion on whether this
method can improve fault diagnosis at PMS.

The results and the conclusion drawn from this survey can be found in paragraph 7.3.1
and 7.3.2. The general conclusion that is drawn is that the results are promising as a basis,
but that further investigation is necessary to conclude that this method can be used to
improve fault diagnosis on the entire system.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 105 of 116

9 Future work and recommendations

In this chapter a number of recommendations will be described. These recommendations
will be about ideas that might be worth investigating if implementing them would lead to
better diagnostic capabilities. The recommendations have been divided into four
paragraphs, the first paragraph discusses changes with regard to the method, the second
paragraph with regard to the models and the third paragraph will discuss changes with
regard to observation points. The last paragraph contains future work and
recommendations that could not be categorized in any of the other three paragraphs.

The recommendations that will be described here are all with the current situation taken
as starting point. This means that not all combinations of recommendations might be
possible, so care must be taken when combining several recommendations.

9.1 Diagnostic Method
Here the future work and recommendations regarding the diagnostic method itself will be
described.

9.1.1 Combining results of different diagnostic rules
Currently the system is diagnosed using one diagnostic rule. The result from this is a
diagnosis where components are given a gradation of Healthy, Unknown, Possibly
Broken or Broken. In the current prototype, there is no correlation between the diagnosis
results of two rules. If in one rule a component has been diagnosed as definitely healthy
then it is possible that in a second rule it is diagnosed as possibly broken.

Since the method only looks at persistent errors it can be stated that the healthiness of
components does not change between test if nothing is replaced or repaired. Therefore it
might be possible to profit from this knowledge by combining the diagnosis results from
different diagnostic rules.

9.1.2 Allow statements to be derived
In some cases unexpected behavior is caused by something other than a hardware fault.
Examples of these cases are when the configuration is wrong or when for instance a
movement is blocked by the 3D model in the software. Those cases were considered out
of scope for this project, but adding diagnostic capabilities to also detect these cases
would be valuable for Field Service Engineers. To add these cases an extension to the
method is necessary because these cases do not involve components. Therefore it should
be investigated if the models can be extended such that it is also possible to derive
conclusions about “statements”.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 106 of 116

9.1.3 Allow actions to be done to generate observable information
Currently the method is passively monitoring signals that pass through the system. Extra
observable information could be gathered if the diagnostic system is allowed to perform
certain actions (call functions) such that extra observable information can be gathered.
This does however raise questions about the safety and therefore it must be investigated
first to see whether it could be allowed in a safe way. It should also be investigated if the
extra observable information that could be gathered this way is useful to get a better
accuracy or resolution from the diagnosis.

9.2 Diagnostic Models
Here the future work and recommendations regarding the diagnostic models will be
described.

9.2.1 Allowing “virtual” observation points
The model rules consist of an observation part and a conclusion part. The observation
part of the model rules consist of observation points and logical operations. The
observation part of these model rules can get quite complex when a lot of observation
points are used. When this happens, the observation part becomes difficult to read which
makes it hard to maintain or extend the models. It also makes it easier to make mistakes.

Therefore we propose adding some “syntactical sugar” to the model rules where “virtual
observation” points can be defined to replace part of the condition. An example of this is
presented below. Suppose the following model rule exists:

Host_PC_movement_request_received AND Host_PC_movement_is_operational

AND Host_PC_movement_request_forwarded AND (NOT
Geo_IPC_movement_request_received)

=>
PossiblyBroken(“Network components”)

Then a virtual observation point called “Host_PC_is_functioning” can be defined as
being a synonym for:

Host_PC_movement_request_received AND Host_PC_movement_is_operational

AND Host_PC_movement_request_forwarded

The model rule would then become:

Host_PC_is_functioning AND (NOT Geo_IPC_movement_request_received)
=>

PossiblyBroken(“Network components”)

The impact might seem minimal in this example, but in the actual models there are model
rules that contain more than ten observation points and for these model rules this

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 107 of 116

syntactical sugar would really make the model rules more readable, making it easier to
understand, modify and extend them.

9.2.2 Introducing a minimal time span for tests
Currently, when the diagnosis is started all observation points are reset. Then the user is
asked to perform an action and after that the user can click that the test is finished. The
period between the reset of the observation points and the click that the test is finished is
called the diagnostic period and only during this time observations are gathered from the
systems.

This might lead to cases where different observable behavior is captured when the user is
performing the action really quick or when the user is performing the action at a slower
speed. As an example, take the case where a message is sent over a network. As long as
no confirmation of the message is received, the sending is retried for a fixed number of
times. After this fixed number of retries, the sending of the message is given up and an
observation point is signaled. Because time is involved in the sending of the message and
waiting for the confirmation it might be the case that the diagnostic period is over before
the maximal number of retries is reached. This means that in that case the observation
point that indicates that the sending of the message has been given up is not signaled.
However, when the diagnostic period is longer because the action is performed at a
slower speed, the observation point is signaled. This difference in outcomes is not wanted
because the physical state of the machine is the same in both cases (and thus the
diagnosis result should be the same).

This unwanted behavior can be avoided if for the diagnostic period a minimal time span
is defined. This could mean that for each diagnostic model a minimal time span should be
defined that needs to be waited before the next model is checked.

9.2.3 Adding time or precedence to observations in the model rules
The model rules currently allow that conclusions about the healthiness of components are
drawn using static observations that are gathered from the system. The observations that
are gathered are whether or not an observation point is signaled. However, it might give
extra information if also time information could be used or precedence between
observation points. For example, model rules could specify that a certain observation
point should be signaled before another observation point is signaled. Further
investigation is necessary to see whether this could lead to better diagnostic conclusions.

9.2.4 Investigate tooling that can assist building models
Model rules can become quite complex when a lot of observations are used. This makes it
easy to make mistakes when creating the model rules. Obviously, mistakes are not
wanted because faults in the model rules might lead to faults in the diagnosis. Therefore it
might be useful to investigate whether it is possible to create tooling that can assist in

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 108 of 116

building model rules. Such tooling should then reduce the number of faults that are made
when creating the models.

9.2.5 Investigate tooling that can validate models
In previous suggestions we have stated that it is realistic that faults are made when
creating the diagnostic models. This might lead to incorrect diagnostic conclusions by the
diagnostic engine. Therefore it might be worth to investigate if it is possible to create
tooling to validate models. This tool might then contain a number of test cases where
observation points are simulated and that the outcome of the diagnostic engine is
compared to the given correct outcome. This tool could then be used to test models after
they have been changed to check whether they are still correct for known situations.

9.3 Observation Points
Here the future work and recommendations regarding the observation points will be
described.

9.3.1 Adding manual observation points
The observable behavior that can be used for the diagnosis is limited to information that
can be traced from the software. This results in a decrease in diagnostic resolution in
places where only hardware is available. For instance, the input module is connected by a
cable to a hardware box and from there a cable goes through an interface board to the
Host PC. This is all hardware so the current method cannot distinguish between a broken
cable, a broken hardware board or a broken input module. By adding “manual”
observation points, i.e. observation points where the user or FSE is asked to perform a
measurement or to see whether an LED is on or not, extra observable information can be
gathered from places where the software cannot get observable information from.

9.3.2 Include startup observations in diagnosis
When the diagnosis is started, all observation points are reset. This is done to get a fixed
starting situation as is explained in paragraph 6.4.6. This means that any observable
information that is gathered before the observation points are reset, is lost. This also
includes any tests, such as the POST, which are only executed at the startup of the
system. Since the POST contains valuable information that could improve the diagnosis,
it might be worth to investigate whether it is possible to create a fixed starting situation
by, for example, restarting the system and omit the resetting of observation points at the
beginning of the diagnosis. This means that observable information gathered during
startup can also be taken into the diagnosis.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 109 of 116

9.4 Architecture of controlling software
This paragraph describes future work and recommendations about the architecture of the
controlling software.

9.4.1 Introducing a “diagnostic mode” in the controlling software
One of the outcomes of the validation has been that the diagnostic capabilities of the
diagnostic solution are seriously limited by the controlling software when it disables
some movements. The controlling software disables movements when, for example, the
POST detects that something is wrong with a movement and the movement is then
disabled at the level of the Host PC. This means that all signals for that movement stop at
the Host PC and that no observable information for that movement can be captured in the
modules after the Host PC.

My suggestion is to introduce different behavior in the controlling software such that
movements are no longer blocked at the Host PC level (and signals are thus no longer
stopped at the Host PC level). Such behavior could be introduced in a separate
functioning mode that could be called the “diagnostic mode”. It does need to be
investigated however what impact introducing this mode has on the controlling software.

9.4.2 Improve the logging in the controlling software
From discussions with FSE’s it has become clear that the logging and the information in
the event viewer does not contain understandable information for the beginning and
medium experienced FSE. Improving the logging such that it contains more meaningful
information (which is already being done at the moment for some subsystems) would
help the FSE to quicker determine what the problem in the system is.

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 110 of 116

10 References

[1] M. Kurvers, Project Plan, Non-public document, Philips Medical Systems, 2007
[2] M. Kurvers, Requirements Specification, Non-public document, Philips Medical

Systems, 2007
[3] S. Dash, V. Venkatasubramanian, Challenges in the industrial applications of fault

diagnostic systems, Technical report, Purdue University, 2000
[4] J. de Kleer, B. Williams, Diagnosing Multiple Faults, Artificial Intelligence, Vol.

32, pp 97-130, April 1987
[5] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. Kavuri, A review of process

fault detection and diagnosis Part I: Quantitative model-based methods,
Computers and Chemical Engineering, Vol. 27, Nr. 3, pp 293-311, March 2003

[6]

V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. Kavuri, A review of process
fault detection and diagnosis Part II: Qualitative models and search strategies,
Computers and Chemical Engineering, Vol. 27, Nr. 3, pp 313-326, March 2003

[7] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. Kavuri, A review of process
fault detection and diagnosis Part III: Process history based methods, Computers
and Chemical Engineering, Vol. 27, Nr. 3, pp 327-346, March 2003

[8] W. Lindhoud, Automated Fault Diagnosis at Philips Medical Systems, Master’s
thesis, Delft University of Technology, June 2006

[9] R. Davis, W. Hamscher, Model-based reasoning: Troubleshooting, Exploring
Artificial intelligence, H. Shrobe, E. Morgan, Kaufmann Publishers, San
Francisco, CA, 1988

[10] B. Peischl, F. Wotawa, Model-Based Diagnosis or Reasoning from First
Principles, IEEE Intelligent Systems, Vol. 18, Nr. 3, pp 32-37, May 2003

[11] D. Poole, Representing Diagnosis Knowledge, Annals of Mathematics and
Artificial Intelligence, Vol. 11, Nr. 1-4, pp 33-50, 1994

[12] L. Console, D. Theseider Dupre, P. Torasso, On the relationship between
abduction and deduction, Journal of Logic and Computation, Vol. 1, Nr. 5, pp
661-690, 1991

[13] R. Davis, Diagnostic Reasoning Based on Structure and Behavior, Artificial
Intelligence, Vol. 24, Nr. 1-3, pp 347-410, December 1984

[14] B. Kaiser, P. Liggesmeyer, O. Mäckel, A New Component Concept for Fault
Trees, Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software, Vol. 33, pp 37-46, 2003

[15] M. Maurya, R. Rengaswamy, V. Venkatasubramanian, Application of signed
digraphs-based analysis for fault diagnosis of chemical process flowsheets,
Engineering Applications of Artificial Intelligence, Vol. 17, Nr. 5, pp 501-518,
August 2004

[16] A. Lin, A Hybrid Approach to Fault Diagnosis in Network and System
Management, HP Technical Report, HPL-98-20, 1998

[17] I. Rish, M. Brodie, S. Ma, Efficient fault diagnosis using probing, in proceedings
of AAAI Spring Symposium on "Information Refinement and Revision for
Decision Making: Modeling for Diagnostics, Prognostics, and Prediction", pp 16-
23, March 2002

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 111 of 116

[18] P.H. Ibargüengoytia, L.E. Sucar, E. Morales, A probabilistic Model Approach for
Fault Diagnosis, in proceedings of Mexican International Conference on Artificial
Intelligence, pp 687-698, April 2000

[19] J. de Kleer, Using crude probability estimates to guide diagnosis, Artificial
Intelligence, Vol. 45, Nr. 3, pp 381-391, October 1999

[20] A. van Gemund et al, Lydia Project, http://fdir.org/lydia/
[21] K. Czarnecki, U. Eisenecker, Generative Programming – Methods, Tools and

Applications, Addison-Wesley, June 2000

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 112 of 116

Appendix A

Proof 1: Assumption that all components are working with given observations leads
to a contradiction, hence one of the assumptions must be wrong.

1. “The power supply is working” assumption
2. “The switch is working” assumption
3. “The light bulb is working” assumption
4. Ÿ“The light is on” observation
5. “the switch is on” observation
6. “The power supply is working” Ø “The system is powered” rule 1
7. “The switch is working” Ø ((“The system is powered” -

“The switch is on”) ¨ “The light bulb is powered”)
rule 2

8. “The light bulb is working” Ø (“The light bulb is powered” ¨ “The
light is on”)

rule 3

9. “The system is powered” 6 & 1
10. (“The system is powered” -

“The switch is on”) ¨ “The light bulb is powered”
7 & 2

11. “The system is powered” - “The switch is on 9 & 5
12. “The light bulb is powered” 10 & 11
13. “The light bulb is powered” ¨ “The light is on” 8 & 3
14. “The light is on” 13 & 12
15. False 14 & 4

Proof 2: Removing the assumption that the power supply is working still gives a
contradiction, hence the power supply is not a fault candidate.

1. “The power supply is working” assumption
2. “The switch is working” assumption
3. “The light bulb is working” assumption
4. “The 2nd light bulb is working” assumption
5. Ÿ“The light is on” observation
6. “the switch is on” observation
7. “the 2nd light is on” observation
8. “The power supply is working” Ø “The system is powered” rule 1
9. “The switch is working” Ø ((“The system is powered” -

“The switch is on”) ¨ “The light bulb is powered”)
rule 2

10. “The light bulb is working” Ø (“The light bulb is powered” ¨ “The
light is on”)

rule 3

11. “The 2nd light bulb is working” Ø (“The system is powered” ¨ “the
2nd light is on”)

rule 4

12. “The system is powered” ¨ “the 2nd light is on” 11 & 4
13. “The system is powered” 12 & 7
14. (“The system is powered” - 9 & 2

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 113 of 116

“The switch is on”) ¨ “The light bulb is powered”
15. “The system is powered” - “The switch is on 13 & 6
16. “The light bulb is powered” 14 & 15
17. “The light bulb is powered” ¨ “The light is on” 10 & 3
18. “The light is on” 17 & 16
19. False 18 & 5

Reasoning 3: Different way of modeling system as in Proof 2. Now removing the
power supply no longer gives a contradiction, hence the power supply is a fault
candidate.

1. “The power supply is working” assumption
2. “The switch is working” assumption
3. “The light bulb is working” assumption
4. “The 2nd light bulb is working” assumption
5. Ÿ“The light is on” observation
6. “the switch is on” observation
7. “the 2nd light is on” observation
8. “The power supply is working” Ø “The system is powered” rule 1
9. “The switch is working” Ø ((“The system is powered” -

“The switch is on”) ¨ “The light bulb is powered”)
rule 2

10. “The light bulb is working” Ø (“The light bulb is powered” ¨ “The
light is on”)

rule 3

11. “The power supply is working” Ø “The 2nd light bulb is powered” rule 4
12. “The 2nd light bulb is working” Ø (“The 2nd light bulb is powered” ¨

“the 2nd light is on”)
rule 5

13. (“The system is powered” -
“The switch is on”) ¨ “The light bulb is powered”

9 & 2

14. “The light bulb is powered” ¨ “The light is on” 10 & 3
15. “The 2nd light bulb is powered” ¨ “the 2nd light is on” 12 & 4
16. “The 2nd light bulb is powered” 15 & 7
17.
18.
19.

Now from this point on, to get a contradiction we need the “The light is on” to be true.
This is true if and only if “the light bulb is powered” is true. For that to be true, we need
“The system is powered” to be true which (in this model) we can only get by the
assumption that “The power supply is working”.

This immediately gives an indication why, after removing the assumption that “the power
supply is working”, we do not get a contradiction in the model of reasoning 3, but we do
get a contradiction in the model of proof 2. In the model of proof 2 the assumption that
“The power supply is working” leads to the conclusion that the whole system is powered
(including light bulb 1 and light bulb 2). In the model of reasoning 3 the assumption that
“The power supply is working” leads to two separate conclusions, namely that “The

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 114 of 116

system is powered” and that “The 2nd light bulb is powered”. This effectively removes
the “link” between the power nets of the first and second light bulb, leading to a model in
which it is no longer possible to conclude that the whole power net must be working if
one of the two light bulbs is powered. (This means that the model of proof 2 is probably
closer to the reality than the model of reasoning 3).

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 115 of 116

Appendix B

Survey improvement of fault diagnosis with new method

Introduction
For my graduation project at Philips Medical Systems I’ve created a method for
improving fault diagnosis at PMS. The goal of the method was to help beginning and
medium experienced engineers to quicker narrow down the search area for a fault and to
reduce the amount of non-faulty hardware that is replaced. Currently a prototype
implementation has been built on a selected part of the whole system and a verification of
this prototype is done. More information about the verification can be found in the
documents “Verification Plan” and ‘Verification Results”. A quick guide to give an idea
how the prototype diagnostic tool works can be found in the document “User guide for
diagnostic method prototype”.

Purpose of survey
To finish the project a conclusion needs to be drawn whether this method has succeeded
in improving fault diagnosis in the ways described in the introduction. It is hard to
quantify this conclusion based upon figures. The reason for this is that no exact figures
are available for the time a FSE spends on average on the problems described in the test
cases that were used to test the prototype on. It is also not known exactly how much
components would have been replaced by the FSE without using this tool and with using
this tool. This prototype cannot be verified on real problems in the field because the
software is not officially approved (as is needed by regulations of the FDA). Therefore it
has been decided that a survey will be done in which people of PMS give their opinion of
the usability of the prototype and if it satisfies the goals that were set out. These opinions
and the arguments that have lead to these opinions will be used in the conclusion whether
this method can improve fault diagnosis at PMS.

Survey questions
The target audience for this diagnostic tool is the beginning or medium experienced Field
Service Engineer. All questions are asked with the target audience in mind. It would be
very appreciated if the answers are motivated (can be done generally per section at the
“remarks” section).

The way the tests are executed
• Is the selection of the tests clear?
• Is the action text clear?

Remarks:

The presentation of the diagnosis results
• Do the blocks that represent the different parts or modules of the system give a good

indication in which part of the system the fault is?

Master Project Mark Kurvers Improving fault diagnosis at Philips Medical Systems

Technical University of Eindhoven / Philips Medical Systems Page 116 of 116

• Is the listing of components per block clear and useful in determining what could be
the faulty component?

Remarks:

The results of the verification
• Is the number of failed tests acceptable?
• Are the current results of the verification acceptable to create a full scale diagnostic

application based on this method?

Remarks:

The usability of this method to improve fault diagnosis
• Can this method help to reduce the number of non faulty hardware that is replaced?
• Can this method help to quicker locate a fault in a system?
• Is this method a useful addition to the already available diagnostic methods (POST,

logging) in that it adds extra diagnostic capabilities?
• Is this approach suitable for use in the system of PMS?

Remarks:

	 Preface
	 Index
	 List of figures
	 List of tables
	 Abbreviations
	 Terms
	1 Introduction
	1.1 Fault Diagnosis
	1.2 Philips Medical Systems
	1.3 Fault Diagnosis at Philips Medical Systems
	1.4 Outline

	2 Project Description
	2.1 Problem description
	2.2 Goal
	2.3 Scope

	3 Fault Diagnosis Analysis
	3.1 Analysis of assignment
	3.2 Analysis of current situation
	3.3 High Level Requirements
	3.3.1 The solution should be able to cope with different hardware configurations of the machine
	3.3.2 The solution should be easily maintainable with future upgrades/changes in the hard/software design
	3.3.3 The solution should be extendible in fault diagnosis according to field experience
	3.3.4 Extension of the solution as described in req. 3 should not lead to changes in the target software
	3.3.5 The solution should be able to perform fault diagnosis on-line
	3.3.6 Fault diagnosis should be performed with minimal physical intervention from a Field Service Engineer
	3.3.7 Presentation of the diagnosis should be clear to the Field Service Engineer
	3.3.8 The presented diagnosis should be reliable
	3.3.9 It must be possible to integrate the solution within the current Field Service Framework
	3.3.10 The solution should be able to quickly narrow down the search area of the fault to a small part of the system

	3.4 Assumptions
	3.4.1 The system can be divided into a number of modules, each of which has its own defined function
	3.4.2 The different modules in the system are mostly passing signals to each other
	3.4.3 Components in modules are either broken or functioning correctly
	3.4.4 The software is functioning correctly

	3.5 Analysis conclusion

	4 Research Survey
	4.1 Information sources
	4.2 Comparison criteria
	4.3 Fault Diagnosis Methods
	4.3.1 Overview
	4.3.2 Process model based methods
	4.3.2.1 Fault models
	4.3.2.2 Consistency based models
	4.3.2.3 Consistency vs. fault models

	4.3.3 Process history based methods

	4.4 Comparison
	4.4.1 Fault Diagnosis Method evaluation
	4.4.1.1 Rule-based reasoning
	4.4.1.2 Neural Networks
	4.4.1.3 Statistical Analysis
	4.4.1.4 Fault Trees
	4.4.1.5 Consistency Models
	4.4.1.6 Bayesian Networks

	4.4.2 Comparison overview

	4.5 Research conclusion
	4.5.1 Individual conclusions
	4.5.2 General conclusion

	5 Diagnosis Method Description
	5.1 Introduction
	5.1.1 General diagnosis process
	5.1.2 Diagnosis process for Philips Medical Systems

	5.2 Method description
	5.2.1 Diagnosis information
	5.2.1.1 Diagnostic models
	5.2.1.2 System information
	5.2.1.3 Diagnostic Rules

	5.2.2 Behavioral information
	5.2.3 Diagnostic Engine
	5.2.3.1 Diagnostic model overloading
	5.2.3.2 Diagnosis presentation

	6 Design of prototype diagnostic solution
	6.1 Architecture overview
	6.2 Diagnostic Engine Design
	6.2.1 Top level design
	6.2.2 Rule Handler design
	6.2.3 Module Handler design
	6.2.4 Model Handler design
	6.2.5 External Handlers
	6.2.6 Dynamic behavior
	6.2.6.1 Initialization
	6.2.6.2 First part of the checking of a diagnostic rule (PrepareExecuteRule)
	6.2.6.3 Second part of the checking of a diagnostic rule (FinishExecuteRule)

	6.3 Observation Server Design
	6.3.1 Static structure
	6.3.2 Dynamic behavior
	6.3.2.1 Registering and signaling of observation point at the observation server
	6.3.2.2 Forwarding of requests to other observation servers
	6.3.2.3 Checking of a rule by the diagnostic engine

	6.4 Design Decisions
	6.4.1 Separate the diagnostic system from the target software that is under diagnosis
	6.4.2 Diagnostic conclusion manager algorithm
	6.4.3 Performance of Observation Servers
	6.4.4 Multiple intercommunicating Observation Servers
	6.4.5 Creation of Observation Points
	6.4.6 Fixed start situation

	7 Validation
	7.1 Validation plan
	7.1.1 Test cases group 1
	7.1.2 Test cases group 2

	7.2 Validation results
	7.2.1 Test cases of group 1
	7.2.2 Group 2

	7.3 Validation conclusion
	7.3.1 Survey results
	7.3.2 Survey conclusion
	7.3.3 Comparison to earlier work

	8 Conclusion
	9 Future work and recommendations
	9.1 Diagnostic Method
	9.1.1 Combining results of different diagnostic rules
	9.1.2 Allow statements to be derived
	9.1.3 Allow actions to be done to generate observable information

	9.2 Diagnostic Models
	9.2.1 Allowing “virtual” observation points
	9.2.2 Introducing a minimal time span for tests
	9.2.3 Adding time or precedence to observations in the model rules
	9.2.4 Investigate tooling that can assist building models
	9.2.5 Investigate tooling that can validate models

	9.3 Observation Points
	9.3.1 Adding manual observation points
	9.3.2 Include startup observations in diagnosis

	9.4 Architecture of controlling software
	9.4.1 Introducing a “diagnostic mode” in the controlling software
	9.4.2 Improve the logging in the controlling software

	10 References
	 Appendix A
	 Appendix B

