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1
Introduction

This chapter starts with the problem statement which is followed by the
explanation of Wireless Sensor Nodes (WSN) and Electrocardiogram (ECG).
Next, the WSN architecture and power dissipation is discussed followed by
possible optimizations of the WSN.

1.1 Problem statement

A big change is anticipated in modern healthcare from traditional care in
hospitals toward remote care at home. The main drive is to counteract
the ever increasing costs in the modern healthcare system. To enable this
change, wireless body sensor nodes will be required that are able to monitor
physiological parameters like ECG, blood pressure, oxygen saturation outside
the hospital setting. These devices must be reliable, easy to use and have a
long operation time. Ultimately one would like to develop devices that can
operate without batteries enabling "unlimited" lifetime. Such low power
devices pose a big challenge for the electronics because energy scavengers
are only able to harvest 100µW whereas current systems consume a factor
of 50 to 1000 more power.

In this study, the lower limit of energy-e�cient device operation is inves-
tigated to check if a device is able to run on scavenged energy. For this, a
model is created to give insight of the power usage of all system components.
The model is �rst veri�ed to a state-of-the-art System On Chip (SoC), this
veri�cation is done using all major system components. The system compo-
nent will be exchanged to check their impact on total power usage and to
locate bottlenecks in the device. Di�erent applications will have diverse bot-
tlenecks on power consumption while running on the same SoC. While one
application may use the major part of the energy budget for computation,
others may dissipate most for transmitting the data wirelessly. The model
must be able to accommodate such application dependent features.
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Figure 1.1: An ECG of a heart

This study focuses on electrocardiogram (ECG) applications to asses if
it is possible to build a system able to run on scavenged energy. The results
and underlying model can be readily reused to assess energy boundaries for
other applications.

1.2 Wireless body sensors and ECG

The aging society lays a heavy burden on the economy nowadays. The num-
ber of patients needing care is increasing rapidly and this is overwhelming
the the expensive care institution with work. To keep the cost of healtcare
a�ordable, a shift from hospital-centric to remote care is needed. Remote
healthcare needs Wireless Sensor Nodes (WSN) for remote monitoring and
(in future) treatment. Next to long operation time and small dimensions,
such WSN's must be extremely reliable and easy-to-use for (non-technical)
patients and care givers. Examples of on-body worn monitors are temper-
ature, blood pressure and ECG sensors. The latter will be discussed below
because it is the focus of this study. Future treatment devices can also be
placed inside the body, in this case arti�cial retina, pancreas and cochlear
implants are made possible. In-body devices should work without batteries
and use energy scavengers as power supply. The in-body WSN could save
lives due to fewer operations needed for the patient. It could also change
modern healthcare convenience to another level for patients, think for exam-
ple about diabetic patients not needing to think about a shot of insulin after
they have eaten or drunk something.

An ECG is the graphical representation of the electrical activity of the
heart, as shown in Figure 1.1. It gives information about how the heart
works and if any disorders are occurring. An important feature in the ECG
is the QRS complex, seen in Figure 1.2, which shows the depolarization
of the ventricles. The QRS is depicted in amplitude and duration. These
parameters can be calculated by preparing the data �rst through (digital)
�ltering and beat detection, after which the QRS parameters can be easily
extracted.
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Figure 1.2: The QRS complex

Figure 1.3: Architecture of a WSN
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1.3 WSN architecture and power dissipation

This section describes the components from which a WSN is build. An
architectural view is depicted in Figure 1.3 which shows the following com-
ponents: processor with storage, wireless communication, sensors, real time
clock generation, communication between the blocks and a power source.
The storage is partly non-volatile memory to store the program and partly
volatile memory for storing the data. State-of-the-art WSN SOC's, like the
Chipcon 2430 (from now on is referred to as �Chipcon�), provide power modes
in which one or more components are simultaneous active. To achieve low
power consumption for a given application, e�cient power modes needs to
be enforced which basically aims to wake up only the required components
while keeping all other components in deep sleep. The power consumption
of component not being in deep sleep is unneeded. In a parallel study [8],
low power operation at 5.60mW and 7.31mW is demonstrated on an ECG
application build on a Chipcon 2430, transmitting RAW and QRS ECG
data respectively. Figure 2.11 on page 33 depicts the underlying power us-
age which reveals wireless power dissipation can be relieved by sending local
processed data instead of the RAW data.

1.4 WSN optimizations

This section gives insight into memory architectures and implementations,
circuit implementation techniques and ends with the general expected result
when an Integrated Circuit (IC) is scaled to another technology feature size.
The most promising optimization techniques described in this section will be
used to optimize the SoC in Chapter 3.

If feasible, battery less devices will undoubtedly have a huge potential.
However, running without batteries has a big impact on the design of a sys-
tem. Energy must be scavenged from the surrounding environment, implying
that the system has very low power consumption. Current systems like the
Chipcon 2430 are not capable to run solely on scavenged energy. Power op-
timizations need to be done to enable energy scavengers to completely power
a WSN.

A lot of related research is currently done on battery- and wireless de-
vices. However, these studies typically focus on one aspect of the device.
In [3] for example, a Pearl processor is optimized for executing an ECG
application, the software for this application is optimized in [4]. Other re-
search focuses on energy scavengers [19], memory technology [16] [17] [18],
radio technology (Philips), radio protocols [8], Analog to Digital Converters
(ADC) [7] and clock generation [10]. The approach in the thesis is focused
to get a global insight of the total power consumption of a complete SoC.
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1.4.1 Memory architectures and implementations

Memory is needed to store the program being executed and program vari-
ables. We can distinguish di�erent types of memory; volatile and non-
volatile.

Non-volatile memory can retain the stored information even when it is
not connected to a power source. This type of memory is normally used to
store the program of the device because no power is needed to retain the
data. Various types of non-volatile memory exist but all have some sort of
disadvantage; Read Only Memory (ROM) can only be written once while
FLASH can be rewritten but only a limited amount of times.

Volatile memories, like Random Access Memory (RAM) needs power
to retain the contents. RAM has the advantage of an unlimited amount
of read/write cycles, making it ideal to store data used by the executed
algorithm.

Volatile memory

Filter cache

Large memories have a disadvantage over small memories; they consume
more power and have a higher access time. Cache is used as an intermediate
level because it uses less energy and time usage to access the data. Cache has
copies of the data from the large memory. Disadvantage of the cache is that
when the requested data is not available, time and energy is waisted in trying
to get the data from the cache. The time penalty can be solved by setting
up the regular memory transfer parallel with the cache, but only access the
normal memory when the data is not available in the case. Solving the time
penalty uses power and decreases the power savings of having a cache. The
�lter cache is a unusually small cache positioned between the core and the
normal L1 memory of cache. A �lter cache can save 58% power while the
performance is reduced with 21%[12]. Other papers [13] show an average of
34% reduction in power while the performance reduction is less than 1%. On
average, 15% of the requests to the �lter cache result in a cache miss due to
the small size. More about �lter cashes can be found in [12], [13] and [14].

Actively reducing memory size

A way to save power in the data memories is to reduce the size of the
memory, this is possible if it is not completely utilized. A memory can be
constructed out of multiple memories while logically it looks like one big
memory. Every small memory block of this logical big memory is power
gated as explained in section 1.4.2. To use this technique the programmer
of the system must be aware of how much and what part of the memory can
be powered down.

The programmer of the system might not be able to fully utilize this
technique. To solve this, new cache technologies in [16] [17] [18], in here
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they are investigated how to automatically disable memory parts which are
not used.

Non-volatile memory

FLASH endurance problem

FLASH is ideal to store instructions for the processor because it is able to
retain the data without a power source and can be reprogrammed. With
low DC systems it is an interesting idea to use FLASH also as data storage
because it can be disconnected from the power source to save leakage energy
which is used in SRAM to maintain the data. The endurance (which means
the number of cycles a block or chip can be reprogrammed) for FLASH
is however limited. Typically FLASH has an endurance of one million1

erase/write cycles which limit the usage of FLASH as data storage. With
this endurance and a rewrite frequency of for instance 1Hz, the one millionth
erase/write cycle limit is reached after 11.6 days.

FLASH might be used when the data is rewritten on a much slower
frequency, but this is not feasible for a many applications. Other current
technologies, like Ferroelectric Random Access Memory (FRAM), have a
higher endurance (10 billion rewrite cycles2) but cannot be integrated into a
SoC at the moment of writing and is not investigated further for this reason.

FLASH versus ROM

Non-volatile memory, like FLASH for instance, is needed to store the in-
structions of the device when it is not in use. A disadvantage of FLASH,
being a high power consumption when active, can be solved by replacing it
with ROM. The power usage of di�erent memory sizes for FLASH and ROM
are depicted in Figure 1.4. The drawback of ROM is that is can not be re-
programmed after fabrication. This limits the usage of ROM to high volume
systems that are proven to work correctly. In this setting ROM has also an-
other advantages over FLASH: it is a factor 2 to 5 times denser, reducing the
cost of the device. Another advantage is, that ROM is available in the latest
technology while FLASH is mostly lagging 2 feature sizes behind making it
impossible to use the least power e�cient technologies.

The advantage of being able to reprogram the FLASH will be traded to
the lower power consumption of ROM in one optimization step executed in
Chapter 3.

1.4.2 Circuit implementation techniques

Power gating

Power gating is a technique where the leakage of a (sub)component in a
system is decreased when it is not active by removing the power supply to

1Source: Toshiba:www.dataio.com/pdf/NAND/Toshiba/NandDesignGuide.pdf.pdf
2Source: www.fujitsu.com/global/news/pr/archives/month/2007/20070418-02.html
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Figure 1.4: The power consumption for FLASH and ROM running on 32MHz
with a duty cycle of 1%.

that component. An extra transistor is inserted between the power rail and
the component to accomplish this, as shown in Figure 1.5. This technique
can be applied for instance on the core of the processor when it is not active.
External circuitry is needed to revive the processor. SRAM memories can
also be power gated, however if done so, the contents will be lost when the
supply voltage is removed.

The extra standby transistor will increase the active power consumption
but this is neglectable with the power saved by this technique.

Threshold voltage of transistors: high Vt against normal Vt

The way how a transistor is made in�uences the threshold voltage. The
threshold voltage describes the point where the transistor starts conducting.

Figure 1.5: With the standby signal the logic block can be disconnected from the
power rails, saving leakage when not used
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A high threshold voltage will lead to less leakage when turned o�, however it
lowers the frequency at which the transistor is able to switch between states.
If speed is not an issue, high Vt transistors should be used to save leakage.

To illustrate the di�erence in power consumption, a 8192 by 8-bit mem-
ory from [2] at 90nm is used. Both have the same active usage: 10pJ/access,
while the leakage is 1.2µW and 11.3µW for high Vt and normal Vt respec-
tively.

1.4.3 IC technology scaling trends

Energy consumption can be di�erentiated into static and dynamic. Static
energy is the leakage of transistors, while dynamic energy is induced by the
switching of transistors and (dis-)charging of the capacity in the circuit.

The technology depended feature size will in�uence the power consump-
tion of digital circuitry. A smaller feature size will decrease the dynamic
power (also known as active power), while the static power (also known as
leakage) increases. Scaling the active power consumption between di�erent
technologies can can be calculated with the next formula:

Pnewactive =
(

Vnew
dd

Vcurrent
dd

)2
· FeatureSizenew
FeatureSizecurrent

·Pcurrentactive (1.1)

1.5 Summary

Power hungry WSN need to be optimized before they can be powered with
scavenged energy. This thesis focuses on a global insight and optimization of
a complete WSN SoC by means of a model The created model must be able
to predict the power di�erence of the optimizations discussed in this chap-
ter. The variety of optimization is huge; from technology implementation to
component and architectural decisions. The most promising energy saving
techniques, if applicable, are used to optimize the SoC in Chapter 3.
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2
Model description

This chapter will describe how the WSN model is constructed. The model
is parameterized in variables, the parameters together with the formulas
explained in this chapter is the created model. The top view of the model,
with all its subsystems, is depicted in Figure 2.3. The top view of the model
will be explained before the explanation of the subsystem. The hardware of
the WNS is divided into components which are speci�ed by leakage, active
energy and power consumption. In some cases, a duration of handling an
event is added to the hardware description. The application will specify the
activity of the components so that the energy consumption can be calculated.

The model is created in Microsoft O�ce Excel because this software pack-
age is widely used and known while it is still possible to expand the model
for future use. It is build in a way that even non experienced Excel users can
add new components. Excel o�ers the possibility to use Visual Basic for Ap-
plications (VBA), a programming language, so that even complex formula's
can be composed. Another advantage of VBA is the possibility to add com-
ments in the formula so that future users are able to understand what (and
how) is calculated in the case they need to change or extend something.

The formulas used in this Chapter are constructed out of the next vari-
ables names followed by the explaination:

• P Power

• E Energy

• V Voltage

• I Current

• N Amount

• T Time

12



• τ Fraction

• f Frequency

The rest of this section starts with explaining the application part of
the model, followed by the explanation of the hardware components in the
model. After the model is explained it will be trimmed in Section 2.3 to a
System on Chip (SoC) to verify the model in Section 2.4. Fast readers go to
the next chapter.

2.1 Application

The following list shows all application parameters to be set by the user:

• Amount of instruction for the application

• Amount of instruction for transmitting a radio packet (Medium Access
Control, MAC)

• Amount of instruction for acquiring a single sample

• Amount of transmitted bytes per second

• Transmit interval

• Sampling frequency

• Extra high frequency crystal oscillator start up

• Level 1 Data memory activity

• Level 2 memory activity

• State save size

In Figure 2.1 the application parameters are named in the �rst row and the
values for di�erent systems are listen below that parameter. For instance,
the �extra startups� apply to the high frequency crystal oscillator. This set-
ting is made available to set extra startups of the processor to do application
processing, which might not be triggered by a sampling or wireless commu-
nication event. The sampling frequency indicates obviously at what rate
the sensor acquires data. Three di�erent parameters can be given to state
the amount of instructions the processor(s) has(have) to do, as indicated
in Figure 2.1. The di�erence between them is when they are scheduled to
execute. If the processor is needed to acquire a sample, for instance to copy
the sample, it should be �lled in at the amount of instructions needed to
acquire one sample. The amount of instructions �lled in for the sample will
be multiplied with the sampling frequency of the sensor to come to the total
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Figure 2.1: Snapshot of the input application worksheet

Figure 2.2: Current consumption of Chipcon in the �RAW� ECG application.
Here, the device switches every 5ms from sleep mode (PM1) to active mode (PM0)
to acquire a sample and wirelessly transmits groups of 32 samples

amount of executed instructions for sampling. The amount of instructions
for radio processing will be multiplied with the amount of transmitted pack-
ets (called transmit interval) and executed on the processor selected by the
radio (which can be another than the processor used for the application).
All other instructions needed to be executed can be put at the amount of
instructions for the application.

The usage of the di�erent memories in the system depends on the appli-
cation and must therefore be set in the model, a typical memory usage for
data is 30%. The instruction memory is fully utilized for most processors
and therefore it is automatically set to 100% active.

The state save size it the amount of data needed to be saved to L2 when
the processor is power gated, how this works is explained further in Section
2.2.1.

Two parameters are used to describe the application side of the radio,
transmit Byte/sec speci�es how much data will be send wireless per second,
while transmit interval speci�es in how many packets per second this data
will be put. The division in these two characteristics is needed to enable the
packet rate to be easily changed without recalculating the amount of data
transmitted per packet.
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Figure 2.3: Model top view. Gray part are future extensions

2.2 System model

In Figure 2.2 the power consumption of a typical WSN is depicted, which
the model must be able to predict. In this �gure the power consumption of
the Chipcon [1] is depicted when it executes the RAW ECG algorithm. The
algorithm acquires samples that will be send by a radio. Figure 2.2 shows
the di�erent power consumptions of the Chipcon; PM1 where the processor
is in sleep mode and PM0 where the processor is active.

The power consumption of the complete system will be modeled by the
summation of the di�erent system components in Formula 2.1.

Ptotal = Psensor + Pradio + Pprocessor + PPM + PHF + Pperipheral (2.1)

The power of the di�erent components used in Formula 2.1 can be decom-
posed into a summation of the di�erent power modes of the component and
the summation of the power used to switch between these power modes, as
depicted in Formula 2.2. These two formulas can calculate the power used
in Figure 2.2.

Pcomponent = Pmode0 + fto & from mode0 ·Eto and from mode0
switch

+ Pmode1 + fto & from mode1 ·Eto and from mode1
switch (2.2)

Figure 2.3 shows that the system is constructed out of components, which
are subsequently divided in even smaller blocks. Take for instance the pro-
cessor; it is constructed out of a core (which does the logical calculations)
and memories(used to store the program and data). From Figure 2.3 it can
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Figure 2.4: Snapshot of the input system worksheet

also be seen that the radio uses a processor as a component. A processor is
also used for the radio, this may or may not be the same processor used for
application processing. The model enables to construct a system bottom-up
by selecting subcomponents but also top-down by selecting already de�ned
components in the system worksheet as shown in Figure 2.4. Every row in
the worksheet is a complete system and all systems shown in the �gure are
used in chapter 3. Pull-down lists are available for the �rst 2 systems to
enable fast top-down selection of components. In Figure 2.3 only one sensor
is shown, the model is actually prepared to use di�erent sensors, as depicted
in Figure 2.4 with sensor1, sensor2 and sensor3. The model is made to be
easily extended to multiple sensors (>3). Using these parameter together
with the application speci�c parameters will enable teh model to predict the
power usage.

In the coming sections the input parameters stated in Figure 2.3 will
be explained in detail and the separate components in Formula 2.1 will be
decomposed to parameters that are used in the model.

2.2.1 Processor

In this section it is �rst explained from what parts the processor is composed
and which options exist to change the power behavior of the processor. With
this basic knowledge the formula for the power consumption of the processor
will be explained.

The processor is the main computing part of the system and can be
used to ful�ll many di�erent tasks in the system. It can, for instance, copy
data from a sensor or compute features from the already gathered (sensor)
information.

The core will be speci�ed by the average energy used per instruction, the
leakage power and the cycles per instructions (CPI). The CPI speci�es the
average amount of clock cycles needed for a core to execute an instruction.
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Figure 2.5: Snapshot of the input processor worksheet

The CPI can be below 1, meaning that more than a single instruction can be
executed within one clock cycle. This is possible if the core has multiple issue
slots i.e.: a Very Long Instruction Word (VLIW) processor. The model is
also able to work with asynchronous processors, these processors do not have
a clock and therefore a CPI can not be speci�ed. These processors commonly
use a handshake protocol to synchronize for internal communication and may
use a clock to communicate with external devices. To indicate the usage of
an asynchronous processor in the model, the CPI must be set to zero and
the frequency of the core must be set to the average amount of executed
instructions per second (IPS).

The core alone, as already explained, is not enough to create a complete
working processor. To create a processor the core has to be selected together
with memories, as shown in Figure 2.5. The memories connected directly to
the processor are called level 1 memories (L1) and there is also a possibility
to connect a second level (L2) memory.

The L2 is optional and existence mainly depends on the size of the L1 or
the power saving properties of a second level cache when used correctly. The
memories can be selected from a pull down list, which refers to memories in
the �Memory� worksheet, which is �lled with embedded memory information
from NXP [2]. The memories are characterized in the model by the energy
needed for an access and by leakage power.

Next to the core and the memories some other options can be set for
the processor: the frequency of the core (at this speed the L1 memories will
also run), the frequency of the L2 memory and some state saving options,
as depicted in Figure 2.5. When the processor is power gated, the core
and/or memories are disconnected from the supply voltage, as explained in
1.4.2. No leakage of the core will be added to the power when the core is
disconnected from the supply voltage. SRAM looses it content when it is
disconnected from the power rail. To enable power gating for the memories
the model is able to calculate the power associated with saving the contents
of the L1 memories to the L2 memory when they are disconnected from the
supply voltage. This saving can be set independently for instruction and
data memory. The instruction memory could be erased if the data is still
present in another memory, the complete memory must be saved if this is
not the case. The L1 data memory holds the state of the processor, this
does not need to be the complete size of the L1 data memory. The state size
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is given as an input and only this size needs to be saved to L2 before the
memory is disconnected from the supply voltage.

A processor will use energy when switched from sleep mode to active
mode, this can be speci�ed as start-up energy of the processor.

The last option to set for the processor is the possibility to reduce the
amount of active L2 in sleep mode. There are 2 possible options: the original
memory is completely powered up, or only the part what is actually needed
to store the data is powered up. No change is done to the memory when the
original memory is used. Power gating on parts of the memory, as explained
1.4.1 will be applied when memory size needs to be reduced. The size of
the memory that needs to be active to store the data is determined by if the
L1instr needs to be saved and the amount in 'state' explained in the previous
paragraph. The model itself will try to �nd a suitable memory size able to
store the requested data.

With the basic knowledge of the processor the formulas for the processor
can be explained. Formula 2.3 states how the total power of the proces-
sor is calculated. The sample frequency is multiplied with the amount of
instructions, needed by the processor to acquire a sample, and energy per
instruction. The processor needs to switch from a sleep state to the ac-
tive state if there are any instruction needed by the processor to acquire a
sample (N>0), this switching involves energy which is asses to every sample
acquired. The extra instructions multiplied with the energy per instruction
and the extra startups from the processor are added next. The amount of
state saves, depending on the fsample + f extraswitching + ftransmit interval, is multi-
plied with the power used to save the state which is explained later on in
this section. The leakage of the memories need to be split up between the
sleep and active time because in the sleep time it could be the case that (a
part of the) memories are power gated and thus do not leak. The leakage
of the memories when the processor is in the sleep mode is determined by
the state saving options α, β and δ (zero if state saving is applied and one
if state saving is not applied) whereas the duration of the sleep mode is the
time that the processor is not active. The reduction in size of L2 will de-
termine the PleakageL2 when the processor is in sleep. Note that the power for
processing the radio instructions is not in this formula. The power of the
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radio processor is incorporated into the radio itself.

Pprocessor = fsample ·
(
Nsample
instr ·Eprocessorinstr + (if N>0) ·Epowermodesswitching

)
+ Nextra

instr ·E
processor
instr

+ f extraswitching ·E
powermodes
switching

+ (fsample + f extraswitching + ftransmit interval) ·Pstate save

+
(
1−

fsample ·Nsample
instr + Nextra

instr ) ·CPI
fcore

)
· (α ·Pcoreleakage + β ·PleakageL1instr + δ ·PleakageL1data)

+ PleakageL2 (2.3)

In Formula 2.4 the energy per instruction for the processor when active is
stated. This is the summation of the energy per instruction of the core
and energy per access on the memories (together with the power used in
the bus), where τL1instr, τL1data and τL2 determine activity fraction of the
memories. The leakage per instruction is determined by the time of an
instruction multiplied with the leakage power. The core and L2 can have
di�erent frequencies so the leakage of the core, L1instr and L1 data are
multiplied with frequency of the core, while the leakage of the L2 is multiplied
with it own frequency. The time of one instruction must be compensated in
the leakage of the memories, this is done by the CPI.

Eprocessorinstr = Eactivecore + τL1instr · (EactiveL1instr + EactiveL1 instr bus)
+ τL1data · (EactiveL1data + EactiveL1data bus)
+ τL2 · (EactiveL2 + EactiveL2 bus)

+
CPI

fcore
·
(
Pleakcore + PleakL1instr + PleakL1data

)
+
CPI

fL2

(
PleakL2

)
(2.4)

Pstate save = β ·
NBytes to save for L1instr

NL2 wordsize in bytes

·
(
EactiveL2 + EactiveL1instr +

fprocessor
fL2

·
Eactivecore + EactiveL1instr

CPI

)
+ δ ·

NBytes to save for L1data

NL2 wordsize in bytes

·
(
EactiveL2 + EactiveL1data +

fprocessor
fL2

·
Eactivecore + EactiveL1instr

CPI

)
(2.5)

The energy spent for saving one state is depicted in Formula 2.5. This
formula consists of two parts: one for the energy spent to save L1 instr
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and the other for L1data. This division is done because state saving can be
selected independent for both memories. The energy usage for state saving
the memories is calculated the roughly the same for both memories; �rst the
amount of write cycles to the L2 is calculated by dividing the amount of
bytes needed to be saved by the word size of L2. This amount of write cycles
is multiplied with the power needed to do one such write cycle: energy for
L2 write, energy for reading L1instr or L1data, and the energy spend by the
processor while the data is written back. The frequency of the processor and
L2 can be di�erent, as a compensation the energy spent by the processor and
L1instr must be multiplied by the term

fprocessor
fL2

. This can be done because
it is assumed that fprocessor ≤ fL2. The amount of instruction needed to save
the state is not only dependent on the frequency di�erence of the processor
and the L2 bus also on the CPI. Dividing by the CPI brings the amount
instructions back to the real executed instructions in stead of the di�erence
of the frequencies. The processor is assumed to be able to �ll the L2 word size
every time it is written to L2. For asynchronous processors, having a CPI
of zero, the CPI will be set to

fprocessor
fL2

, canceling out the earlier frequency
term, this can be done due to the previous assumption.

If the model is set to reduce the amount of L2 during state save, the model
substitutes the selected L2 by a smaller memory if available. If fore instance
only 2kB of data needs to be saved and the memory is larger, a smaller
memory is selected automatically from the memory list. The substituted
memory must ful�ll the next requirements: created in the same technology
and having the same data width. This reduction in memory size is in the
line of reducing the memories as a optimization stated in Section 1.4.1.

2.2.2 Radio

The radio is composed out of the radio technology, protocol and radio pro-
cessor. The radio technology speci�es the sleep, idle, transmit and receive
current together with the supply voltage, data rate of the radio and the
startup energy. Radios need a high frequency input clock with a speci�c
accuracy. These last two parameters can be put into the radio part of the
model but are not used, they only are added for completeness.

Pradio = fpacket ·
(
Eprotocol + Epayload + Eprocessorradio + Estartupradio

)
+ Psleepradio

(2.6)

Formula 2.6 is used to determine the power used by the radio; the packet
frequency is multiplies with the energy of one packet which in turn is con-
structed out of the energy for the protocol, payload, radio processor and
radio startup. If the radio consumes power while inactive, a sleep power is
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added.

Eprotocol = (Tprotocol · τRXprotocol +
NRX overhead
bytes

link speed
) ·PRXradio

+ (Tprotocol · τTXprotocol +
NTX overhead
bytes

link speed
) ·PTXradio

+ Tprotocol · (1− (τTXprotocol + τRXprotocol)) ·Pidleradio (2.7)

Protocols are used to specify how di�erent wireless nodes communicate
with each other. All protocols add a speci�c overhead to the data needed to
be send, which is depicted in formula 2.7. The packet overhead is divided
into three parts: receive, transmit and idle. The part of the protocol that is
independent of the link speed is speci�ed with a total protocol time (Tprotocol)
for the tree parts. The time for the tree parts is calculated by multiplying the
total protocol time with the fraction of that part. The receive and transmit
part of the protocol also have a link speed dependent piece which is speci�ed
in amount of bytes per part. The time of every part is calculated before it
is multiplied with the power used for that part.

Epayload =
Npayload
bytes

link speed
·PTXradio (2.8)

The power used to transmit the payload is calculated by the number of
payload bytes divided by the link speed and multiplied with the transmit
power.

Eprocessorradio = Nprocessor
MAC instr ·E

processor
instr (2.9)

For every transmitted packet a certain amount of instructions is needed
by the radio processor. The Eprocessorinstr in Formula 2.9 is calculated by Formula
2.4 with the values of the radio processor, except for the power of the L2
memory. If the radio processor is a di�erent processor than the application
processor the L2 will be shared between the two processors. The L2 for the
radio processor is ignored and the values of the application L2 processor are
used for the radio processor.

2.2.3 Sensors

To characterize the sensors, active and sleep power, duration per event (in
case of an ADC this is the time it takes to acquire one sample) and start-up
energy should be given, as depicted in formula 2.10.

Psensor = fsensor · (Tduration
sensor ·Psensor + Estartupsensor ) + Psleepsensor (2.10)

fsensor in formula 2.10 is an application dependent frequency and is not set in
the hardware pro�le of the sensor. It is possible to enter the minimal required
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input clock. If the minimal input clock is set to 0, the high frequency crystal
oscillator is not activated for the duration of the event, in all other cases the
clock is started and continues to run for the duration of the event.

2.2.4 Peripherals

Peripherals in the system are components like timers, data interfaces (UART
and IO-pads) or others. The peripherals are a future extension to the model,
as depicted in Figure 2.3 in gray.

2.2.5 Clock

The clock generation can be speci�ed supply voltage, active-(and) start-up
ampere and startup time. The clock drives a clock net that consumes power
which is modeled by the frequency of the clock multiplied with energy needed
for one complete clock cycle. From these parameters the energy used by the
high frequency oscillator can be calculated when the startup frequency and
the Duty Cycle (DC, τHF) is known, as depicted in Formula 2.11. The
accuracy is also given as an input for completeness, but not used in the
calculations of the model.

PHF = fstartup ·EstartupHF + τHF ·
(
PactiveHF + fclock ·Eswitchclock net

)
(2.11)

The startup frequency is the addition of three components: sensor, radio
and extra startups. ξ, ψ and ζ for the sensor time are booleans specifying if
the high frequency crystal oscillator needs to be active for sensor1, sensor2
or sensor3 respectively.

fstartup = (ξORψORζ) · fsensor + fradio + fextra (2.12)

The DC of the high frequency crystal oscillator is an addition of three factors:
sensor time, radio time and extra processing time.

τHF = fsensor ·MAX

[
(ξ ·Tsensor1), (ψ ·Tsensor2), (ζ ·Tsensor3),

(
Nsensor
instr ·CPI
fprocessor

)]
+ fpackets ·MAX

[(
Nradio
instr ·CPI
fprocessor

)
, (Tprotocol + Npayload

bytes · linkspeed)
]

+
CPI

fprocessor
·Nprocessor

instr (2.13)

The sensor time is the maximum duration of the di�erent sensors and the
processor time. The maximum time of the processor and radio transmission
is used to calculate the time that the high frequency crystal oscillator is
active for the radio part. Tprotocol, T

RX overhead
packet , TTX overhead

packet , Tidle overhead
packet ,

NTX overhead
bytes , NRX overhead

bytes and linkspeed depends on the same variables used
in Formula 2.6. The last part in Formula 2.13 determines the DC used to
execute the extra instructions by multiplying the time for one instruction
with the amount of instructions.
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2.2.6 Power manager

To stabilize and convert the input power supply to the correct voltage a
DC:DC1 converter is used. The e�ciency of the converter can be put into
the model, which is used to adjust all the power drawn in the system.

The power manager includes a continuously running crystal oscillator,
this typically runs at a low frequency to save power and it is used to schedule
global events in the system. The used crystal oscillator can be selected
from the clock worksheet in the model. Therefore it has the same input
parameters speci�ed as in the section 2.2.5, however the startup power is
not used because it is continuously running. Formula 2.14 states how to
calculate the power for this crystal oscillator.

PLF = Voscillator · Ioscillator (2.14)

Formula 2.1 on page 15 that states to total power used in the system is
changed to Formula 2.15 due to the Ptotal being in�uenced by e�ciency of
the DC:DC converter. Next to the e�ciency change, PPM in Formula 2.1
is changed to LF in the new formula because it is the power drawn by the
power manager.

Ptotal =
Psensor + Pradio + Pprocessor + PLF + PHF + PPeripheral

e�ciency
(2.15)

2.3 Model calibration on Chipcon 2430 SoC

In this section the instruction count of two applications, executed on the
Chipcon, are determined. Next, the hardware parameters of the Chipcon
components are calculated.

2.3.1 Estimation of instruction count

The �rst application is the RAW ECG application where two main functions
are executed:

1. Acquiring ECG samples at 200Hz

2. Wireless transmission of groups of 32 sample values

Measurements on the Chipcon are done with an oscilloscope to determine
the time needed to handle a job. The time can be determined very accurate
because a led on the Chipcon platform can be toggled at the start and
end of a function. The led can be monitored with one of the leads of the

1An on-chip DC:DC converter is mostly constructed out of an Low Drop-Out regulator
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Figure 2.6: Measurement of taking a sample

oscilloscope. The measured time can be converted into instruction count by
using the clock frequency and the CPI as illustrated in Formula 2.16.

Ninstructions = Tmeasured ·
fHFoscillator

CPI
(2.16)

Figure 2.6 shows a measurement when taking a sample. In this �gure, the
Chipcon �rst has to wakeup from a low power mode before it can acquire a
sample. The processor of the Chipcon is active for the duration of acquir-
ing a sample (39µs), after which it needs 25µs to process the sample. The
frequency of the Chipcon processor is 32MHz, and the CPI is 2.82 as deter-
mined in Appendix B, the amount of instructions per sample is determined
to be 726 by using Formula 2.17. The 726 instructions is listed in the �rst
row of Table 2.1.

Ninstructions = Tmeasured ·
fHFoscillator

CPI

= (39µs + 25µs) · 32MHz

2.82
= 726[1/sample] (2.17)

The measurement of a wireless transmission is shown in Figure 2.7. First the
Chipcon does a part of the MAC processing in active mode (PM0) and then
activates the radio in the receive mode (RX), followed by transmitting data
(TX) and receiving the acknowledge (RX). After a packet is transmitted the
processor stays in PM0 until the next sample is taken. It is needed to stay
in PM0 because when a power down sequence on the Chipcon is activated
(after a packet has been completely transmitted) and the wake-up timer is
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Sampling QRS extract MAC Total instructionsa

instr/sample instr/s instr/packet instr/s
RAW ECG 726 - 113475 854419
QRS ECG 726 930892 113475 1200915

Table 2.1: Summary of instruction count per function and second

aWith a sampling rate of 200Hz and a sampling rate of 6.25Hz for RAW ECG and
1.1Hz for QRS ECG

Figure 2.7: Power usage for transmission of a wireless packet

triggered (to acquire a new sample), the Chipcon goes to an unde�ned state
where it stops responding. This causes the Chipcon to stay active for the
wireless transmission in multiples of 5ms (which corresponds to the period of
200Hz sampling rate). The wireless transmission takes roughly 8ms, so the
processor is active for 10ms. The amount of instructions used to transmit a
single packet, as stated in Table 2.1, is calculated by formula 2.18.

Ninstructions = Tmeasured ·
fHFoscillator

CPI

= 10ms · 32MHz

2.82
= 113475[1/packet] (2.18)

The total amount of instructions per second for the RAW ECG application
is calculated by formula 2.19 and listed in Table 2.1.

Nper second
instructions = fsample ·Nsample

instr + fpacket ·Nprocessor
MAC instr (2.19)

= 200Hz · 726instr + 6.25Hz · 113475instr
= 854419[1/second]
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Figure 2.8: Power usage for transmission of a wireless packet

A sample frequency of 200Hz and transmitting packets containing 32 samples
leads to a transmit interval of 6.25Hz. Since the application adds eight bytes
per packet to the payload and every sample is represented in 2 bytes, the total
amount of data send per second is: 6.25packets/s · (32 · 2bytes + 8bytes) =
450bytes per second which needs to be put in the model at the application
worksheet under the name 'Amount of transmitted bytes per second'.

The second application is an ECG parameter extraction algorithm. Cal-
culating the parameters is done by computing the QRS times of a heart beat,
more details how the algorithm works can be found in [4]. The input of the
algorithm are samples taken from the heart and the output is a 10 byte
packet transmitted by the radio for every heart beat. The same amount of
instruction are needed for acquiring the samples and transmitting a packet,
which can be seen in Table 2.1.

A measurement of calculating the QRS parameters can be seen in Figure
2.8. The calculation of the QRS parameters involves three parts:

1. Filter the data at 200Hz

2. Beat detection at 4Hz

3. Calculate QRS parameters at heartbeat frequency

The measurement indicates that the �lter function and beat detection takes
269µs and 2987µs respectively and the amount of instructions is calculated
by formula 2.20 and 2.21.

Ninstructions = Tmeasured ·
fHFoscillator

CPI

= 269µs · 32MHz

2.82
= 3052[1/sample] (2.20)
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Ninstructions = Tmeasured ·
fHFoscillator

CPI

= 2987µs · 32MHz

2.82
= 33895[1/250ms] (2.21)

The duration of calculating the QRS parameters takes so long that three new
samples are acquired and �ltered in the mean time. The duration of acquiring
and �ltering these samples need to be subtracted from the measured duration
of QRS parameter calculation. The measured time of the QRS parameter is
18.8ms, which besides the acquiring and �ltering of the samples also includes
the beat detection whih need to be subtracted. The amount of instructions
is for calculating the QRS parameters is stated in Formula 2.22.

NQRS extract
instructions = Tmeasured ·

fHFoscillator
CPI

=
(
18.8ms− (3 · (39µs + 25µs + 269µs) + 2987µs)

)
· 32MHz

2.82
= 168102[1/heart beat] (2.22)

Knowing the average beat per minute, which is assumed to be 66bpm (=1.1Hz)
it is possible to calculate the total executed instructions per second for the
QRS parameters, as illustrated by Formula 2.23 and listed in Table 2.1.

NQRS total
instructions = 200Hz · 3052 + 4Hz · 33895 + 1.1Hz · 168102 (2.23)

= 930892[1/second]

The total amount of instructions per second needed to do the QRS extrac-
tion is calculated in Formula 2.24, which is based on Formula 2.19 but an
extra term is added for the extra instructions used for the QRS parameter
extraction, and is also listed in Table 2.1, in this formula the packet rate is
the same as the frequency of the heartbeat.

Ntotal
instructions = fsample ·Nsample

instr + f extrainstr ·N
QRS total
instr + fpacket ·NMAC

instr (2.24)

= 200Hz · 726 + 1Hz · 930892 + 1.1Hz · 113475
= 1200915[1/second]

Ten bytes are transmittes per packet. The frequency of the heartbeat is
1.1Hz and this is therefore also the packet frequency. The amount of bytes
transmitted per second is 1.1Hz · 10bytes = 11bytes.

2.3.2 Estimation of component power

The power consumption of individual Chipcon components is not listed in
the Chipcon datasheet[1] and, unfortunately, can not be directly derived
from measurements. In this section, literature, measurements and the Chip-
con datasheet will be used to estimate the power of all components of the
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Chipcon. The Chipcon has several Power Modes (PM), where PM0 is the
active mode and PM1, PM2 and PM3 are sleep modes, where only parts of
the Chipcon are active. PM0 and PM1 are measured to be 27.18mW and
1.05mW respectively. PM1 includes Power on reset (POR), sleep timer (ST),
a kHz crystal oscillator, leakage of the digital part of the system including
SRAM memories.

PmeasuredPM0 ·LDOE�ciency = PmeasuredPM1 ·LDOE�ciency + P32MHz
clock net + P32MHz Xosc

+ Pactiveperipheral + PFLASHLeakage + Pactivemem + Pactivecore

(2.25)

PM0 of the Chipcon equals the power drawn in PM1, 32MHz clock, the
clock net, peripherals, FLASH leakage, power use in active memory and the
power in the core. The measured PM0 and PM1 need to be corrected by
the DC:DC e�ciency before they can be used in Formula 2.25. The power
consumption for all these parts will be determined.

The DC:DC converter, implemented as a Low Drop Out (LDO) regulator,
has a conversion e�ciency depicted in Formula 2.26, where the input voltage
is 3V, the output voltage is 1.8V and the conversion e�ciency θ is set to
100%.

LDOE�ciency =
Vout

Vin
· θ (2.26)

The power of the clock net can be calculated by Formula 2.27.

Pclock net = f ·C ·V2 (2.27)

The clock net is commonly constructed out of an H-tree, as illustrated in
Figure 2.9, because it ensures an equal propagation delays to each end point
of the tree. Every inner bu�er in the H-tree powers 4 bu�ers toward the end
of the tree. The total amount of bu�ers in the H-tree can be calculated by
Formula 2.28, where L is the amount of levels in the tree. The amount of

Figure 2.9: H-tree of levels two to �ve

end bu�ers in the H-tree is calculated with Formula 2.29.

Ntotal
bu�ers =

L−1∑
0

4L (2.28)
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N end
bu�ers = 4L−1 (2.29)

It is assumed that there are 5 levels in the Chipcon clock net, bringing to
total bu�ers in the clock net to 341. Every end bu�er is assumed to drive
eight Flip-�ops and the average wire length per bu�er and to the Flip-�ops
is 0.3mm. A input capacitance of a bu�er and Flip-�op in 180nm is 4.7fF
and the wire capacitance 100fF/mm, both values come from a NXP library.
The total capacitance for the clock net is calculated by Formula 2.30 by
multiplying the amount of gates with the capacity per gate.

C = (341 + 256 · 8) · (4.7fF + 0.3mm · 100fF/mm) (2.30)

= 82.9pF

The total power of the Pclock net can be calculated with Formula 2.27, which
leads to 8.60mW with a clock frequency of 32MHz and a supply voltage of
1.8V.

Power consumed by the 32MHz crystal oscillator can be extracted from
the Chipcon datasheet; the processor running with low activity on a 16MHz
RC-oscillator consumes 7.74mW. With the same low activity but now on
32MHz it consumes 17.1mW, the frequency is generated with a crystal os-
cillator. The active part of the processor scales linear with the frequency,
so if the static energy (indicated with PM1) is subtracted it is possible to
calculate the power consumed by the crystal oscillator because the power
used by the RC-oscillator can be neglected, as depicted in Formula 2.31.

P32MHz Xosc =
(
P32MHz
PM0 − PPM1

)
−

(
32MHz

16MHz
·
(
P16MHz
PM0 − PPM1

))
(2.31)

=
(
17.1mW− 342µW

)
−

(
32MHz

16MHz
·
(
7.74mW− 342µW

))
= 1.962mW

This power consumption is inline with measurement performed in a similar
manner that point to 2.5mW. Di�erence might be due to di�erent devices.

Pperipheral in Formula 2.25 is set to zero because it is assumed to be
negligible.

From the Chipcon datasheet it is know that three di�erent memories are
used; two 4kB SRAMs, one 128kB FLASH and internal registers of the core,
as illustrated in Figure 2.10. One 4kB SRAM is partially used in the register
and the SFR register and it is unsure if it is also used for the instruction
cache. The Chipcon datasheet states that both SRAM memories are build
with high Vt memory technology. Using the memory estimator from NXP[2]
the energy per access and leakage will be approximated for the memories
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Figure 2.10: Chipcon core with memories and buses activity

interpreted in the Chipcon. A 4kB ultra low power SRAM uses 44pJ/access
and leaks 180nW, embedded FLASH uses 620pJ/access and leaks 405µW.
The leakage of both SRAM memories are already included into PM1 and
are therefore already subtracted from the Chipcon power, the leakage of the
FLASH is not included in PM1 and is directly subtracted in Formula 2.25
from PM0. FLASH is used to store the instruction for the processor, it is
stated in the Chipcon datasheet that there is a cache between the FLASH
and the processor. The size of this cache is unknown and it is assumed that
it is byte addressable because the instruction width of the processor is one
byte, further it is assumed that it has the same active power as a 4kB SRAM
From [15] it is known that an typical instruction cache has a miss rate of 1%,
which in term is used as the activity of the FLASH. The 8051 has internal
registers and we assume that the power in these registers are included in the
power of the core, as illustrated with a red box in Figure 2.10. The internal
registers are L1 data for the core, the L2 data for the core is the 4kB SRAM.
Because the registers are included in the core, the name of the L2 data in
the model will be L1 data.

The power of the memories is calculated in Formula 2.32, which is par-
tially derived from Formula 2.4: the amount of instructions per second mul-
tiplied with the power of the memories used for every instruction.

P active
MEM =

instruction

second
·
(
τinstr cache · (Einstr cache/acc+ Einstr cachebus )

+ τexternal data · (Eexternal data/acc + Eexternal databus )
+ τFLASH · (EFLASH/acc + EFLASHbus )

)
(2.32)

In most processors the activity of the L1instr is around 100% because every
execution of an instruction involves fetching the instruction. One instruction
fetch on the 8051 is 1 byte, but because some instructions of the 8051 uses
multiple bytes for one instruction the activity will be more than 100 %. In
appendix B it is shown that on average 1.46 bytes are used for an instruction,
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leading to a 146% activity to the L1instr cache. The data memory activity is
determined to be 7.1% by counting the amount of MOVX instructions that
refer to external memory divided by the total amount of instructions used
for the �lter code of the QRS application.

Formula 2.33 calculates the energy per bus transaction, which is the
width of the bus multiplied with the capacity and squared voltage. Not all
wires in a bus change per transaction, it is assumed that 2/3 of the wires
actually changes state and thus consume power.

Etransactionbus = Nbus width ·
2
3
·Cwire ·V2 (2.33)

The capacity of a wire in Formula 2.33 can be calculated by multiplying the
amount of gates per wire with the gate capacity and adding the capacity of
the wire, as depicted in Formula 2.34.

Cwire = Nper wire
gates ·Cgate + Lwire ·Cper L (2.34)

The bus from the core to the instruction cache has a width of 8 bit and is
a dedicated bus, meaning that it only has 2 gates per wire, assuming a bus
length of 0.2mm the energy per bus transaction is 508fJ, calculated by using
Formula 2.34 and 2.33. The bus to the FLASH and external data memory is
shared, meaning that a lot of gates are connected to every wire. The width
of the FLASH is 32-bit an therefore the bus has the same width. A bus
transaction consumes 7.9pJ assuming a bus length of 0.2mm and 20 gates
per wire, calculated by Formula 2.34 and 2.33.

All values are know to �ll in Formula 2.32 to calculate the power used
by the memories:

P active
MEM =

32MHz

2.82cpi
·
(
1.46 · (44pJ + 508fJ)

+ 0.071 · (44pJ + 7.9pJ)
+ 0.01 · (620pJ + 7.9pJ)

)
= 850µW

Pcore can be calculated because all other term in Formula 2.25 are known,
this leads to a 3.86mW. The power of the core can be converted in to energy
per instruction by Formula 2.35.

E/instr = P active
PROC ·

CPI

fcore
(2.35)

= 3.86mW · 2.82
32MHz

= 340pJ/instr

As a reference, Handshake Solutions uses a reference 8051 consuming 500pJ/instr
2 which most likely involves a version not fully optimized for ultra low power.

2Source: Handshake Solutions
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The start-up power is measured to be 6.3µJ. The radio power for both
transmit and receive is measured to be 55.32mW, while the sleep power of the
radio is zero due to power gating. The measured power should be adjusted
with the DC:DC e�ciency (Formula 2.26) before they are put in the model.
The protocol times are derived from Figure 2.7 which the help of the work
in [8], these times include switching between the radio modes and thus the
power consumed for switching between the radio modes.

PM1 includes Power on reset (POR), sleep timer (ST), a kHz crystal
oscillator, leakage of the digital part of the system and memory leakage
due to data retention of both SRAM memories. Power involved in PM1
must be split up before it can be put in the model. The leakage of the
SRAM memories is already covered in the memories itself. The kHz clock
dissipation can not be measured because the power consumption is so low
that is falls below the measure accuracy. It is assumed the the clock uses
396nW which is the power consumed by an EM microelectronic[9] crystal
oscillator also running on 32kHz. POR power can be extracted from the
Chipcon datasheet: 360nW. ST and peripherals are assumed to consume
500nW and 10.5µW respectively. The power of the digital leakage can than
be calculated by subtracting all other parts from the PM1 power usage:
1.05mW · 1.8

3 −
(
180nW+ 180nW+ 396nW+ 360nW+ 500nW+ 10.5µW

)
=

617.9mW. Note that the �rst two terms are the leakage the SRAMmemories,
which do need to be subtracted from PM1 to come to the leakage of the
digital part.

The Chipcon datasheet speci�es a consumption of 3.6mW for the ADC,
this needs to be corrected with the DC:DC e�ciency before it is put in the
model.

2.4 Model Validation on Chipcon 2430 SoC

In Section 2.3.1 the amount of instructions is determined. The power usage
of the Chipcon components is determined in a static way in Section 2.3.2.
The model will estimate the dynamic power consumption of the Chipcon
with the two above stated inputs.

The �rst application transmits the RAW ECG samples. The model pre-
dicts a power usage of 7.34mW, as illustrated in Figure 2.11. Measurement
indicates that the Chipcon uses 7.31mW, a 0.4% di�erence to the model.

The second application that calculates the QRS parameters and trans-
mits the QRS parameters wireless is predicted to use 5.52mW by the model,
as illustrated in Figure 2.11 and was measured to use 5.60mW, which is a
1.4% di�erence.

A possible reason for the di�erence between the model and the measure-
ment is the CCA time of the protocol. The CCA time is determined for
every packet by a random variable, causing the measurement of the Chipcon
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Figure 2.11: Power breakdown of RAW data and
QRS parameter extraction. Note the logarithmic axis

to be non deterministic. The result of the random variable can be seen in
Figure 2.2 on page 14. Two transmitted packets are illustrated in the �gure,
the �rst has a short CCA time, while the second has a long CCA time. The
di�erence between the measurements and predictions of the model is small
enough to state that the model works correctly.

From Figure 2.11 it is already possible to see that di�erent applications
have di�erent power bottlenecks. This insight is made possible by the model
due to dividing the power in components. Most power in the RAW mode is
consumed by sending the data wireless By processing the data locally, as in
the case of the QRS algorithm, more energy is evidently used for processing
but this is compensated by bigger reduction in energy needed to transmit
the data wireless. The next chapter will start with optimizing the biggest
power consumer: the processor.

2.5 Summery

A complete description of the model is given in this chapter. The param-
eters used are described and all formulas in the model are explained. Two
applications executed on the Chipcon are used to verify if the model works
correctly. The veri�cation showed that the model predict the power usage
correctly, given that the input parameters in the model are correct.
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3
System optimization results

This chapter will use the model described in chapter 2 to estimate the power
of the various hardware optimizations. A reference system for executing the
QRS parameter extraction algorithm, introduced in Section 2.3.1, will be
the starting point of this chapter. The reference system will be optimized in
consecutive steps to assess whether the ECG algorithm can run within the
energy budget that allows for energy scavenging. The optimization exercises
will be conducted assuming the entire system will be manufactured in 180nm
CMOS technology. The optimization across process technologies is outside
the scope of this study, although general formula's are stated in Section 1.4.3.
Although a wide variety of optimizations scenario's have been considered in
Chapter 1, a limited (the most promising) set will be used in this chapter.

3.1 Reference system

The QRS extraction application run on the Chipcon will remain the same,
the hardware of the Chipcon will be changed. The unneeded peripherals are
removed, which include, POR, UARTS, timers and IO ports. The majority
of the power used in the peripherals goes to the IO ports, of the 21 IO
pins available on the Chipcon, only one is needed for a serial interface or
debugging purposes. This reduces the power consumed by the peripherals
from 10.5µW to 0.5µW. The processor can be put into a deeper sleep mode
(PM2) where the digital regulator is o�, meaning that the core does not
leak anymore, Beside this, only one of the two 4kB SRAM is powered in
sleep mode, reducing the leakage of the memories by two in this mode. The
transmit power of the radio can be adjusted, lowering the output power to
from -0.1dBm to -25.4dBm leads to a power reduction in transmit mode from
39.9mW to 15.3mW.

The power waisted in the LDO is 1− (1.8V
3V ) = 40%. There are di�erent

options to get a better e�ciency: decrease the input voltage or use a di�erent
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DC:DC converter with a higher e�ciency. The latter option is chosen, mean-
ing that the LDO is replaced with a switched capacitor converter. On-chip
switched capacitor converters have a lower e�ciency (67% according to [20])
compared to o�-chip converters. O�-chip converters have a peak e�ciency
up to 90%, as illustrated in Figure 6.1 on page 56 which is taken from [21],
and a broad operating range where the e�ciency is above 85%. An o�-chip
switched capacitor converter is used in the system and it is assumed to have
a 85% e�ciency on the whole operating range.

All these optimizations leads to a power usage of 3.20mW for the refer-
ence syste, as illustrated in the �rst bar of Figure 3.1 on page 36.

3.2 Processor optimization

The power breakdown of the reference system, discussed in section 3.1, shows
that the biggest power consumer is the processor. The processor is used
to perform sampling, ECG processing and radio processing. This section
describes how energy can be saved by removing the active wait instructions
of the synchronous 8051 by using an asynchronous 8051 processor. The next
optimization is to exchange the asynchronous 8051 with an asynchronous
ARM to see the bene�ts of a processor with a better architecture. The last
optimization is to use a second processor, especially optimized to execute
the ECG application, next to the ARM.

3.2.1 Single processor design

The processor is used to ful�ll 3 main tasks:

• Acquire a sample

• Extract the QRS parameters

• Arrange wireless communication

Acquiring the samples, as described in section 2.3.1, takes 726 instruc-
tions which is listed in Table 3.1.

The total sampling time is 64µs, 39µs of this is actually acquiring the
sample and the remaining 25µW is for processing the sample. The 39µs the
processor is executing wait instruction, so the actual needed instructions is
39µW · 32MHz

2.82CPI = 284. The 284 instructions used for sampling is listed in
Table 3.1 on the second row.

In Section 2.3.1 it is described that the wireless communication, involv-
ing the MAC processing and takes 113475 (=10ms · 32MHz

2.82CPI) instructions of
which the majority are active wait instructions. A small test program has
been created to check how many non-wait instructions are actually executed
by the Chipcon to process the MAC. The test program used di�erent timings
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Sampling QRS extract MAC Energy per instruction
instr/sample instr/s instr/packet J/instr

8051 726 930892 113475 340pJ/instr a

8051 HS 284 930892 19291 89pJ/instr [5]
ARM9 HS 47 155149 4823 214.8pJ/instr b

Pearl original 75406 50.83pJ/instr c

Pearl optimized - 95766 - 39pJ/instr [3]

Table 3.1: Summary of instruction count per function and J/instr for the consid-
ered processors

acalculated in section 2.3.2
bCalculated using [6] by: 0.045mWMHz *1,5cpi/1MHz =67.5pJ/instr and scaled from

130nm to 180nm: 67.5pJ/instr · 180nm
130nm

·
(

1.8V
1.2V

)2
= 214.8pJ/instr

cIt is 11.3pJ/instr at 90nm[3], 11.3pJ/instr · 180nm
90nm

· ( 1.8V
1.2V

)2

in the protocol so that the time of the this protocol can not be compared
to other protocols used in this thesis. The di�erent protocol timing did not
in�uence the amount of MAC instructions executed. A function is writ-
ten that takes 252µs to complete, and is called continuously. Sending a
packet takes around 5.6ms and handling the MAC processing was done by
using interrupts, ensuring that the MAC processing was executed without
interruption of the test function. When one packet is transmitted, the pro-
cessor was able to complete 15 function calls. It is unknown to what extent
the processor was able to �nish the 16th call, so half the time for this was
counted. The total time the processor was not utilized for MAC processing
is 15.5 · 252µs = 3.9ms, the time needed to execute the MAC processing is
therefore 5.6ms − 3.9ms = 1.7ms. The processor executes 1.7ms · 32MHz

2.82CPI =
19291 instructions for the MAC, as listed in Table 3.1, all other instruction
(113475 - 19291 = 94184) are active wait instructions and how these wait
instructions are removed is explained next.

The execution of the QRS algorithm takes 930892 instruction per second,
as described in section 2.3.1, there are no wait instructions involved in this
part and therefore the amount of instructions stays the same as listed in the
second row of Table 3.1.

Di�erent techniques are available to reduce the amount of executed ac-
tive wait instructions or to decrease the power of these instructions, like:
processor halting, data holding, event handling (i.e. by interrupt request or
asynchronous processor). It is chosen to use an asynchronous processor to
eliminate the active wait instructions.

An asynchronous processor intrinsically avoids to be in an active wait
state for acquiring a sample, nor should it be active after the MAC process-
ing is completed for the wireless communication. This is true because the
asynchronous processor is only active when an event enters the processor,
the active wait instructions are eliminated by this. The synchronous 8051
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processor is replaced by an asynchronous 8051 from Handshake Solutions[5]
to remove the wait instructions.

The Handshake Solutions claims in [5] that the asynchronous 8051 uses
89pJ per instruction. The energy per instruction for the Chipcon core
(340pJ/instr) is in line with the 500pJ/instr Handshake Solution used as
a reference for a synchronous core. Handshake Solutions claims the decrease
from 500pJ/instr for the 8051 reference to 89pJ/instr for the asynchronous
8051 due to the asynchronous design. In Section 2.3.2 it is assumed that the
power of the registers in included into the core, this assumption is also used
with the Handshake solutions core.

The memories in the system will remain the same because only the core
is replaced, this means that the power used in the buses also remains the
same because the distance from the core to the memories is equal.

A rough power save can be calculated by multiplying the amount of
instructions from Formula 2.24 on page 27 with the energy per instruction
for both processors, as depicted in Formula 3.1

P8051core

P8051 HScore

=
(fsample ·Nsample

instr + f extrainstructions ·Nextra
instr + fpacket ·Nprocessor

MAC instr) ·E8051core

(fsample ·Nsample
instr + f extrainstructions ·Nextra

instr + fpacket ·Nprocessor
MAC instr) ·E8051 HScore

(3.1)

=
(200Hz · 726 + 1Hz · 930892 + 1.1Hz · 113475) · 430pJ/instr
(200Hz · 284 + 1Hz · 930892 + 1.1Hz · 19291) · 89pJ/instr

= 4.5

The gain expressed in Formula 3.1 comes from both the decreased instruction
count and the more energy e�cient processor.

The high frequency crystal oscillator is not needed for the core of the
asynchronous processor but is still used for the memories attached to the
core. The DC of the high frequency crystal oscillator, calculated by Formula
2.13 on page 22, is increased from 10.6% to 11.1% when the Handshake
solutions core is used. This is caused by the lower instructions per second
(denoted as MIPS: million instructions per second) the new core is able to
process. The Chipcon core has a MIPS of: 32MHz

2.82CPI/1000000 = 11.3 and
the Handshake solutions core has a MIPS of 9.21. The DC is divided into
three parts: sampling, radio and calculation as depicted in Formula 22. The
dominant part of the DC for the Chipcon is the calculation part (with 82ms
it is 78% of the total DC). The time the crystal is on in the case of the
Handshake Solutions core is: 11.3MIPS

9.2MIPS
· 82ms = 101ms, which explains the

increase. The increase in DC of the high frequency crystal oscillator also
explains the increase in power for this component in Figure 3.1.

A more accurate estimate on power consumption for the whole system
can be obtained by using Formula 2.3, 2.4, 2.6 and 2.13 as the model does,

1Taken from [5]
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resulting in a power consumption of 303.7µW for the processor as depicted
in the second bar from the left in �gure 3.1.

After removing active wait instructions, signi�cant energy savings can
be obtained by using a more e�cient processor. Appendix A explains the
reduction of 6 times in instruction count used for data processing when the
8051 is replaced with an ARM processor. The six time reduction in instruc-
tion count is used in generating the instruction count for sampling and QRS
extraction depicted in the third row of Table 3.1. MAC processing is mostly
a control application and not a data processing application like sampling and
QRS extraction. It is expected that a control application does not have the
6 time reduction in instruction count when the processor is changed from a
8051 to an ARM, instead a reduction of 4 times, as seen in Table 3.1 for the
MAC processing is more suited for these kind of applications.

The replaced processor still has to be asynchronous to remove the active
wait cycles as explained above. The selected processor is the ARM996[6] from
Handshake Solutions; a clock-less 32-bit RISC processor core. The processor
being 32-bit is actually a disadvantage because the program performs 16-
bit computation and therefore can not make use of the 32-bits architecture,
which results in an unneeded power usage in the wider data path of the
processor.

The L1 instruction memory for the ARM has the same amount of lines
(4096) for storing the instructions as the Chipcon, actually less lines are
needed due to the decreased instruction count. The width of the instruction
memory is changed from 8-bit to 32-bit to match the width of the processor,
so the instruction memory of the ARM is 4096 words of 32-bit. The size of
the L1 data memory is kept the same to 4kB, but the width is again changed
from 8-bit to 32-bit, therefore the amount of parameter storage is reduced a
factor four.

Energy used in the data bus stays the same because it was already a
32-bit bus in the previous optimizations. The energy in the instructions bus
is recalculated with Formula 2.33 and 2.34 to be 2pJ per bus transaction.

Using the instruction count from Table 3.1 and Formula 3.1 the estimated
power reduction is stated in Formula 3.2.

P8051HScore

PARM HS
core

=
(200Hz · 284 + 1Hz · 930892 + 1.1Hz · 19291) · 89pJ/instr
(200Hz · 47 + 1Hz · 155149 + 1.1Hz · 4823) · 215pJ/instr

= 2.46 (3.2)

The processor power with this optimization is reduced a factor 3.6 from
303.7µW to 83.1µW, as illustrated in Figure 3.1. The di�erence is caused by
using di�erent memories, bus power and other leakage of the processor.

Next to the drop in processor power in Figure 3.1 a drop in power for
the high frequency crystal oscillator is illustrated too, the reason for this is
twofold. First, the amount of instructions is decreased by roughly 6 times,
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Figure 3.2: Original Pearl implementation

causing the oscillator to be active for a shorter time and second, the ARM is
able to process more instructions per second: 66.7MIPS2 for the ARM and
9.2MIPS for the 8051 from Handshake Solutions.

3.2.2 Dual processor design

An ultra low power solution for the processor can only be achieved by fol-
lowing an application speci�c approach; a general purpose core would never
be as e�cient as an application speci�c instruction set processor. In [3] [4]
a Pearl processor from Silicon Hive is optimized for the ECG parameter ex-
traction algorithm. The original Pearl is a 3 issue slot machine connected
to a bus, see �gure 3.2. Its hardware is described and altered in a high level
programming language, the compiler is automatically generated to ensure
the application code is properly mapped onto the changed hardware.

The Pearl is being optimized in [3] by several techniques: clock gating,
memory size and memory technology for low leakage. The original data
memory of 32kB is reduced to 2kB because the ECG application only needs
1.2kB of memory. The width of the instruction memory is reduced from
128-bit to 64-bit by removing the 3rd issue slot and reducing the size of the
immediates. As shown in Table 3.1, the original Pearl consumes 51pJ/instr,
while the optimized version consumes 39pJ/instr (both converted by equa-
tion 1.1 at page 11 from 90nm to 180nm). The major part of the leakage is
tackled by switching from normal Vt to high Vt transistors as explained in
section 1.4.2.

From [4] it is known that all the optimizations result into a 27% increase
in cycles of the program mainly because one issue slot was removed. This

2Calculated using [6]: reference ARM runs on 100MHz (and has equavalent perfor-
mance) and a CPI of 1.5. 100MHz/1.5=66.7 million instruction per second
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results into a 314 against the originally 248 cycles executed for �ltering and
detecting the beat in a sample, the QRS extraction takes 950 cycles. The
total instruction count for the QRS extraction algorithm executed on the
Pearl (with a CPI of 0.66613) is: 200Hz · 314cycles+1.1Hz · 950cycles

0.6661cpi = 95766 in-
structions as listed in Table 3.1. A quick calculation from the same table
learns that the original Pearl consumes 75406instr · 50.83pJ/instr = 3.83µJ
on active energy, while the optimized Pearl consumes 95766 · 39pJ = 3.73µJ.
It does not look like a interesting gain, but the real gain in the optimized
Pearl is within the idle and leakage power, detail information can be found
in [3] and [4].

To put the memories of the Pearl the model it was possible to choose from
the NXP library [2] or from the simulated memories [3] of the Pearl. The
latter one was chosen because this is the actual power consumption which
gives a more accurate result. The FLASH in the system is not used for the
Pearl when it is executing instructions, due to the instruction memory of
the Pearl being large enough to hold the complete program. The energy
used in the buses, to let the Pearl communicate to the memories, are already
included into the power simulations.

To give a fair comparison the frequency of the Pearl was set to 32MHz
instead of the originally 100MHz it was build for in [3].

In previous sections the factor of active power save for the complete
processor is calculated, in this case this is not done because only a fraction
of the active power (only the QRS processing) is changed. The power saved
in the part that has changed is calculated with Formula 3.3, which is a part
of Formula 3.1, by subtracting the power used by the Pearl from the ARM
and adjust it with the DC:DC e�ciency

PQRSARM − PQRSPearl

DCe�ciancy
=

(1Hz · 155149 · 214.8pJ/instr)− (1Hz · 95766 · 39pJ/instr)
0.85

= 34.8µW (3.3)

The model, based on Formula 2.3, 2.4, 2.6 and others stated in Chapter
2, predicts a power save of (83.1µW - 24.1µW =) 59µW when the ARM
processor is substituted by the Pearl to do the QRS algorithm. The di�erence
between 59µW and 34.8µW is caused by not taking the di�erent memories
and leakages into account.

3.3 Radio optimization

After optimization of the processor described in the previous section, we now
turn to the radio. Optimizing the radio is done in two manners: the radio
technology and the protocol being used to transmit a packet.

3The CPI of the Pearl was determined by the work done in [3]
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3.3.1 Radio Technology

Radio technology of Chipcon is rather power hungry, for example the receive
stage consumes 33.2mW whereas the transmit stage consumes in the range
of 15.3mW at -25.4dBm to 33.2mW at -0.1dBm4. Various academic and
industrial activities are ongoing to develop radio solutions that are more
energy e�cient. For example, within Philips a radio is under development
that provides a 50kb/s linkspeed up to 10meter at only 3mW transmit and
receive power. The power of the new radio includes a PLL to transform the
input of the high frequency crystal oscillator to the desired carrier frequency.
The reduced range of 10 meters, compared to 75 meters for the Chipcon, is
su�cient for the purpose of the system under investigation. With the data
rate being 50kbps, it is one �fth of the 250kbps of the Chipcon radio. The
decreased data rate is compensated by the lower power consumption. The
estimated power when the radio is changed is stated by formula 3.4; by
multiplying the changed linkspeed with the changed power consumption of
the radio and the power used by the Chipcon radio.

∆linkspeed ·∆Pradio ·PChipconradio =
linkspeedPhilips radioradio

linkspeedChipcon Radio
radio

·
PaveragePhilips radio

PaverageChipcon radio

· PChipconradio (3.4)

=
250kb/s
50kb/s

· 3mW
(15.3mW + 33.2mW)/2

· 243.5µW
= 150.6µW

The model predict a power usage of 130.7µW, as depicted in �gure 3.1, which
is in line with the expected result. The di�erence can be explained by the
included radio processing in the term Eprocessorradio (in Formula 2.9) which does
not scale with the power consumption of the new radio. Another factor
explaining the di�erence is that the duty cycle of receive and transmit is not
50% as used in Formula 3.4.

3.3.2 Protocol

Selecting the optimum radio technology is not the complete story to optimize
the radio; the overhead induced by the protocol to transmit the data can
have a signi�cant impact, specially if small packets are transmitted. The
original protocol (CSMA) uses a Clear Channel Assessment (CCA) before
transmitting a packet. This minimizes the collisions that might occur when
multiple radios are using the same link frequency. Alternative protocols,
like Guaranteed Time Slots (GTS), are available for low data rate networks.

4Maximum transmission power is 0.6dBm
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GTS is a synchronized protocol where several nodes can have a prede�ned
private slot. This makes it possible to send data without doing a CCA,
however, the node must keep synchronized with the network coordinator.
This synchronizing is done by using a beacon. Obviously some power is
needed to receive the beacon but this is less compared to the power usage
for CCA, because it is known when the beacon is send and the duration of it
is less than the average CCA time, 2.9ms5 and 8.4ms6 respectively for GTS
and CSMA with a linkspeed of 50 kbps. The private slot of GTS makes sure
no collisions occur with nodes in the same network. More information about
protocols can be found in [8].

The expected power when the protocol is changed from CSMA to GTS
is calculated by Formula 3.5 by taking the changed protocol time multiplied
with the power used for the radio.

Pradio =
TGTS
protocol

TCSMA
protocol

·Ppreviousradio (3.5)

=
2.9ms
8.4ms

· 130.7mW

= 45.1mW

When the protocol is changed from CSMA to GTS the model predict a radio
consumption of 52.5µW and not the estimated 45.1µW by Formula 3.5, the
di�erence is caused by the protocol only being a part of the radio power, the
other parts (payload and MAC processing) do not scale with the changed
protocol.

The power usage of the radio is under the ideal assumption that no
interference causing a needed retransmission of the data, the results of this
assumption will be addressed in Section 4.1.

3.4 Sampling optimization

The highest power consumption of non-optimized components is the high
frequency crystal oscillator: 177.8µW which is included in the HFclock part
of Figure 3.1. The oscillator is replaced and the new oscillator has a lower
continuous power consumption when active, but it has a higher total power
consumption due to the increased energy needed to start the new oscillator.
This optimization is rejected and the ADC is optimized in this section.

An unfortunate choice is being made in the Chipcon design that causes
the sampling energy to be unnecessary high, one of these choices is that
the high frequency crystal oscillator needs to be active while acquiring a
sample. Next to this, the ADC has a high power consumption (2.16mW),

5Beacon time: 16 bytes · 8
50kbps

+ 320µs = 2.9ms, data used from research done by [8]
6CCA time: 50 bytes · 8

50kbps
+ 400µs = 8.4ms, data used from research done by [8]
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a long acquiring time (39µs) and involves quite some processing due to the
10-bit value being stored unalligned in the 2-byte variable which leads to
the need of shifting the data to the correct place of the two byte variable.
By replacing the Chipcon ADC with a custom ADC of e.g. Philips[7], the
above stated problems can be solved. The Philips ADC uses 7.2µW when
active, has an acquiring time of 500ns and the data shift by the processor
is not needed because it is already placed at the correct location in the
variable. Processor instructions are saved by removing the need to shift the
data; instead of the 47 instructions only 12 instructions are assumed to copy
acquired sample to the memory. The power used to write the sample into the
memory of the processor is already included into the energy per instruction
of the processor: the activity of the data memory. The new ADC has an
embedded RC oscillator so the high frequency crystal oscillator is not needed
to acquire a sample. The power of the embedded RC oscillator is included
into the power consumption of the sensor and the start-up time (and thus
also the start-up power) is also included into the start-up time of the sensor.

Unfortunately the high frequency oscillator still needs to be started to
let the processor copy each sample from the ADC to the memory.

The estimated power of the new sensor is calculated by using Formula
3.6, where we use the di�erence in power of the two sensors multiplied with
the old sensor power

∆Psensor ·PChipconsensor =
7.2µW · 500ns
2.16mW · 39µs

· 19.8µW (3.6)

= 846pW

The model, as illustrated in Figure 3.1, predicts a power usage of 847.1pW,
with is precisely the estimated value. Note in Figure 3.1 that the high
frequency crystal oscillator uses less power when the sensor is optimized,
the reason is twofold: �rst the ADC has an embedded RC oscillator so that
the high frequency crystal oscillator is not active while acquiring a sample
and second, the processor needs to execute less instructions per sample.
The latter also explains the decreased power by the processor when this
optimization is applied.

In principle, use of the HF oscillator can be circumvented by using the
free running RC oscillator of the Chipcon (or from the sensor itself) for the
non-timing critical sample to memory copy. Also, use of processor for sample
to memory copy can be circumvented by using DMA. Both optimizations are
not investigated.

3.5 Batch Program execution

The motivation for this optimization is to reduce the amount of startups for
the high frequency crystal. Reducing the startups is possible if the processor
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is not copying data from the ADC to the memory sample-by-sample but
for a burst of samples. For this, a memory is added to the ADC sensor
to store the samples. An acceptable latency forces a batch frequency of
minimal 4Hz, which in term leads to the sensor being able to store at least
50 samples due to the 200Hz sampling frequency. To store the 50 samples,
a memory of 64 words of 16-bit wide is added to the sensor. The processor
is started when the sensor memory is �lled to copy the samples, after which
the processor continuous to execute the ECG application. The processor
instructions involved for copying the samples are moved from the sensor
processing to the application processing because they are not executed when
the ADC acquires a sample7.

The expected power savings for this optimization is the reduction in
power used by the high frequency crystal oscillator, however the increased
power for the sensor caused by the added memory needs to taken into account
too. The power of the sensor is calculate by formula 2.10 on page 21, Psleepsensor

in this formula will be used to put the leakage of the memory (50nA · 1.8V =
90nW) into and Estartupsensor will be used to add the active power, one for writing
and one for reading the data, of the memory (2 · 42pJ = 84pJ):

Psensor = 200Hz · (500ns · 4µW + 84pJ) + 90nW
= 107.5nW

The power of the high frequency crystal oscillator is reduced by the unneeded
startups multiplied with the start-up energy:

(200Hz− 5.1Hz) · 144nJ = 28.1µW

The power estimation in Figure 3.1 of the sensor is exactly the same if
the DC:DC conversion e�ciency is taken into account: 107.5nW/85% =
126.5nW. The power drop of the high frequency crystal oscillator is also the
same if the DC:DC conversion e�ciency is taken into account 28.1nW/85% =
33.0µW.

3.6 Clock generation optimization

This optimization is rather simple; the two crystal oscillators used in the
system are replaced by more e�ciently oscillators to save power. The low
frequency continuous running crystal, is replaced with the low power crystal
oscillator from Werner Thommen [22]. This oscillator uses 81nW, roughly
one �fth of the assumed oscillator used in the Chipcon. A RC oscillator could
be optimized to use even less energy, but these oscillators do not have the
needed accuracy to be used as a long term reference clock in a SoC. The high

7The instructions must be moved according to Formula 2.13, otherwise the high fre-

quency crystal oscillator is started due to to term
Nsensor
instr ·CPI
fprocessor

in the formula
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frequency crystal oscillator is replaced with [10], which uses 75.1µW when
activated and 270nJ to startup (against the previous 1.96mW and 144nJ).
This oscillator has a higher startup power compared with the previous oscil-
lator used, but this is being compensated by the lower power consumption
while it is active.

The power consumption of the HFclock in the model is composed out of
two parts: the high frequency crystal oscillator and the clock net. In this
optimization only the crystal is changed, the power consumed by the clock
net (DC · 32MHz · 149pJ) stays the same.

Using Formula 2.13 on page 22 the DC is determined to be 0.38%. For-
mula 2.12 leads to the start-up frequency 5.1Hz. Using Formula 2.11 yields
to power usage for the high frequency crystal oscillator (which is conform
Figure 3.1 when adjusted with the DC:DC conversion e�ciency):

PHF/DC:DCe� = (5.1Hz · 270nJ + 0.0038 · (75.1µW + 32MHz · 149pJ))/0.85
= 23.4µW

3.7 Program memory optimization

The last optimization is to go to the ultimate low power usage for this device
on 180nm. In all previous systems FLASH is used to store the instructions,
the core does an access to the FLASH only if the L1 SRAM, situated be-
tween the FLASH and the core, does not have the requested instruction.
From paragraph 1.4.1 on page 9 it is known that ROM requires less active
energy and leakage compared to FLASH, so the FLASH used as L2 in the
system is replaced. The ROM memory is used to store both the instructions
for the application processor and the radio processor and therefore it has
the combined size of the previous used L1 instruction memory from both
processors.

Two small (128 words of 32-bit) caches are placed between the processors
and the ROM (one for each processor) as a L1 instruction cache to minimize
the amount of accesses going to the ROM, this so called �lter cache is ex-
plained in 1.4.1. Due to the small size of the �lter cache it has only a hit rate
of 85% [12], so 15% of the instruction fetches are still going to the ROM,
where in all previous systems 10% L2 usage was assumed for the ARM (recall
that the Pearl does not use the FLASH during run time). The energy used
in the bus per transaction, to access the ROM stays the same because it is
assumed that the length of the bus stays constant, which is true if the ROM
is placed in the same location on the SoC as the FLASH.

A simplistic power estimation can only be done by �lling in Formula 2.3
and 2.4 on page 19, which in fact is precisely what the model is doing. From
Figure 3.1 it is possible to see that the power of the processor is decreased.
The radio power also drops because it is including the processing part for the
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radio and the instruction for this now also are fetched from ROM instead of
FLASH. The total power of the optimized complete system 90.5µW.

3.8 Summary

In this chapter various optimizations are executed on top-level and low-level
decisions. Top-level decisions changes are executed on the sort of processor
used in the system, the radio protocol, the way of processing data (batch
processing) and exchanging the FLASH for storing the instructions with
ROM (which in fact is a speci�cation change rather than an implementation
change). The low-level decisions turned out to change the implementation
of the ADC, radio and clock generation. All the optimizations resulted in a
power reduction from 3.2mW to 90.5µW, as depicted in Figure 3.1 on page
36.
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4
Discussion

4.1 Radio assumptions

Two assumption are considered for the radio power:

• Only looked at the power of the WSN, not the complete network in-
cluding network coordinator

• Interference of other radios

Some protocols, like CSMA, require the network coordinator to be contin-
uously active in receive mode, even if no WSN is transmitting data. This
thesis uses only the power consumed by the WSN and not the complete net-
work which includes the network coordinator. It might be the case that the
network coordinator is not able to run solely on scavenged energy.

Other radios on the same frequency as the WSN, can disturb the trans-
mission due to collisions. If this happens the data needs to be retransmitted.
In this thesis it is assumed that collisions do not happen, so the extra power
consumption induced by collisions is not taken into account.

A detailed study on the complete power consumption of the radio, in-
cluding collisions and di�erent protocols, is outside the scope of this thesis
and can be found in [8]. However, the results in [8] indicate that the power
can increase when more nodes are added to the network. How much the
average power increases depends on the protocol used in the network. The
power for the CSMA protocol, executed on the Chipcon 2430 SoC, is on
average 6.5mW per node when 8 nodes are active in the network, the power
increases to 7.5mW on average per node if 32 nodes are in the network. The
unmodi�ed GTS protocol has 8 private slots for di�erent nodes, with 8 nodes
in the network the average power per node is 8.2mW, when 32 nodes need
to share the 8 private slots collisions occur increasing the average power per
node to 13.8mW.
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4.2 Processor state retention

Batch processing could also be used to power down the memories of the
processor to save leakage. The state of the processor must in this case be
saved to FLASH, saving the state to another SRAM is only an option if
the retention SRAM has less leakage than the SRAM from where the data
originates. With the sampling rate of 200Hz or the batch rate of 4Hz it is
not possible to use FLASH to store the state of the processor, due to limited
erase/write cycles, as already explained in paragraph 1.4.1. However, there
are application where the frequency of processing is much lower. Think for
example about a temperature sensor, this only needs to be measured every 10
seconds. Processing is done once per 15 minutes. With an FLASH endurance
of one million erase/write cycles and writing only once every 15 minutes the
state of the processor to the FLASH it is able to work for 28.5 years. The
usage of FLASH in these cases is an interesting idea due to leakage of the
memory saved, however, this technique is only feasible if the leakage saved is
more than the energy needed to copy the data to the FLASH. Explorations
of state saving can be done with the model, this is however not applied to
the optimization discussed in the previous chapter because the frequency of
the needed state saving is to high to make use of FLASH.

4.3 ADC at higher speeds

The power used by the sensor in the last optimization from the previous
chapter is 126.5nW at a 200Hz sampling rate. Other applications, like elec-
tromyograph (EMG), require a kHz sampling rate. The power usage of a
sensor acquiring samples at a rate of 1kHz is calculated by Formula 3.6:

Psensor = 1000Hz · (500ns · 4µW + 84pJ) + 90nW
= 176.0nW

This increased power usage is not a problem, even multiple sensors could be
used without a�ecting to total power usage considerately. If for instance, ten
ADCs are acquiring samples at a rate of 1kHz, they will consume 1.76µW.
The rest of the system consumes 90.5µW, the total power used is in this case
still below the 100µW limit of energy savaging. Note that in this demon-
stration only the sensor power is changed, an increased sampling rate would
normally also lead to an increased activity of the processor due to an in-
creased work load. There is still 100.00µW − 92.26µW = 7.74µW left for
processing, so even in the case of the multiple sensors there is still room to
do some extra processing.
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4.4 Power gating

Power gating on 180nm does not have a huge impact because the leakage
is not the mayor factor in the total power usage. While the feature size
shrinks the leakage will increase and the active energy will decrease. The
leakage may become dominant in low DC systems made in smaller feature
sizes. This will make power gating more important in the future.

4.5 ROM as an instruction memory

Using ROM in the complete optimized system from the previous chapter is
not a practical solution because the device can not be reprogrammed. The
created platform in Chapter 3 is also able to run other low duty cycled ap-
plications if another way of storing the program is used. Reprogramable
non-volatile memory, like FLASH, is in this case the best choice to store
the instructions for the processor. It has no leakage when powered o� (dur-
ing the sleep state) but uses more energy in active mode and has a higher
leakage compared to ROM. If ROM cannot be used in the system the last
optimization from the previous chapter should be ignored.

4.6 Change crystal earlier

The order of optimizing in the previous chapter is from the most to the
least power consuming block. A careful inspection of Figure 3.1 shows that
high frequency crystal oscillator uses the most energy after optimizing the
processor and radio. This should be the logical choice to optimize next. This
is actually done, but the result was that the system uses more energy after
changing the oscillator. This was caused by the amount of startups of the
oscillator. The new oscillator uses more energy to startup while the active
power is less. This resulted into a power increase from 135.0µW to 148.5µW.

The optimization was undone and other optimizations are applied. After
applying batch processing as an optimization, the amount of high frequency
startups was reduced allowing another try to change the crystal. The switch
of oscillator was in this case bene�cial; a 48.3µW to 23.4µW power drop in
the HF-clock, as seen in Figure 3.1.

4.7 E�ective energy per bit

The expression �energy per bit� is a popular way to express radio e�ciency.
System designers might get mislead by this number because it does not take
the protocol into account which has a big impact on energy per bit in real
life situations. The formula to calculate the energy used by the protocol for
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transmitting a packet (without data) is shown in Formula 2.7 on page 21,
while the energy used to transmit the payload is stated in Formula 2.8.

The Chipcon radio is used to demonstrate the e�ect of the CSMA pro-
tocol on the energy per bit. When Formula 2.7 is used with the power
numbers of the Chipcon and the CSMA protocol parameters, it shows that
the cost of transmitting a packet is 198.4µJ, while Formula 2.8 calculates
that transmitting 10 bytes as payload uses 10.6µJ.

Normally the advertised Chipcon energy per bit (only taking the radio
part into account) is 33.2mW/250kbps = 133nJ/b, however, if the protocol is
taken into account the energy per bit becomes (198.4µJ+10.6µJ)/(10bytes · 8) =
2.6µJ/b. This huge di�erence is caused by the low amount of payload bytes,
however when the maximum packet size of CSMA (88 bytes) is used, it
becomes 414.6nJ/b, still more than tree times the advertised energy per bit.
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5
Conclusions

Model creation

A layered model is created for system design exploration of WSN on power
usage. The model is able to forecast power usage and is used to check if
energy scavenging is feasible for a typical wireless physiological body sensor
like an ECG.

The input of the model is the architecture of the system and the appli-
cation being executed. The output is the average power consumption. A
layered decomposition of the architecture is done to create functional blocks
like:

• Processor

• Radio

• Power manager

• Sensors

• High frequency clock

The application is characterized with the next input parameters:

• Instructions for acquiring a sample

• Instructions for radio processing

• Instructions for application processing

• Memory usage

• Sample frequency

• Transmitted bytes per second
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• Transmit interval

• Extra oscillator start ups

• Wireless protocol parameters

The architecture blocks are described in energy per event, leakages, timings
and power usages. The model maps the application to the architecture for
calculating the power. Bottlenecks on system level power consumption can
be identi�ed for the application. The optimal architecture is driven by the
application and can be found with the help of the model in an iterative pro-
cess where bottlenecks are tackled one after each other.

Validation of the model

Validation of the model can not be done straightforward because the Chipcon
2430 Soc [1] does not allow to measure the power consumption of the sepa-
rate blocks as speci�ed in the model. The measured power of the Chipcon
is broken up in parts so that it can be assigned to the di�erent components
in Section 2.3.2. Two applications are run to prevent �tting of the model
parameters to one application, the application parameters are described in
Section 2.3.1.

The di�erence of the model compared to the measurements is 0.4% for
the RAW ECG application.

The 2nd application is an ECG parameter extraction algorithm, the power
bottleneck in this application is located in the processor and not in the radio
as in the previous application. The output of the model for this application
di�ers 1.4% when compared to the measurement. This shows that the hard-
ware parameters are not �tted to the �rst application and that the model
works correctly.

Complete optimized system

When a new optimized system, locally calculating the ECG parameters and
sending the data wireless, is created from scratch it will consume 90.5µW; a
reduction of 35 times in power compared to the original Chipcon implemen-
tation, see Figure 3.1. This shows that it is possible to let a WSN run on the
100µW power budged provided by energy scavenging. This has been realized
with the next system where the several tasks are represented in groups:

• Processing:
Optimized Pearl processor [3] for application processing
ROM used for storing instructions, a small high Vt SRAM used as
instruction �lter cache
High Vt SRAM for data storage
HF crystal oscillator to generate the clock for the processor
Processing in batches to decrease the startup power of the crystal
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• Acquiring data:
Ultra low power ADC which has it own clock generator
Samples stored in local ADC memory to enable batch processing

• Radio:
Ultra low power radio from Philips
High frequency crystal oscillator (same used for processor) with PLL
for the radio
GTS protocol [8] executed on a
Asynchronous RISC processor [6]

• Power management:
Continuously running low frequency crystal oscillator[11]
DC:DC conversion e�ciency of 85%
Power gating all components1

General purpose system

Application speci�c design of a system is the key to get to the power level
where energy scavengers are able to power the system. Trade-o�s must be
made on programmability versus power. Take for instance the complete op-
timized system, it has a ROM to store the application data. Once ROM is
programmed (during the fabrication) it cannot be altered, meaning that the
device is �xed to its destined application. The use of a mask programmable
ROMmakes it possible to change the application during manufacturing with-
out creating a complete new chip layout, therefore saving costs. However,
devices with FLASH are preferable so that the application can be changed
after fabrication. This is the key to make a general purpose system. FLASH
consumes more power than ROM as seen in the last optimization steps of
the previous chapter.

5.1 Summary

This study is a �rst attempt to get global insight if a system is possible to run
solely on scavenged energy. The created model works correctly and using the
model it is showed that an QRS extraction algorithm can run on scavenged
energy More detailed studies are needed to substantiate these �ndings.

1The start-up power of hardware not put in the model for all components because these
values are unknown, although the model is ready to have the values as an input

54



6
Future work

6.1 Peripherals

On of the �rst extensions to the model would be to make it easier to add
peripherals to the model. Sensors in the current model would be a part of
the peripherals. In the current model, the sensors are already able to model
most characteristics of peripherals. In the current model, the sensors share
a frequency they are activated on, which is a problem if multiple peripherals
are used that should be activated on their own frequency. This problem
can be �xed by giving every peripheral a private frequency. To enable easy
exchange of peripherals, the amount of instructions per peripheral should
be given as an input. In the current model, the total instructions to handle
all the sensors are given as an input, which might change of an di�erent
peripheral (sensor) is selected. Every peripheral should be able to select a
processor on which the instructions are executed, which in the current model
is always the same processor.

6.2 DC:DC e�ciency

DC:DC converters do not have a single e�ciency, the e�ciency depends on
di�erence between the input and output voltage and on the current output, as
illustrated in Figure 6.1. The e�ciency in the low current consumption could
be a problem for low duty cycled systems because these systems spend most
of the time with a low current consumption. A power dependent DC:DC
e�ciency is not implemented in the model and could be an improvement of
the total predicted power output of the model.
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Figure 6.1: The e�ciency of the MAX1680
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A
8051 to ARM: instruction count

In this appendix, the architectural di�erences of an 8051 and ARM are ad-
dressed that motivate the factor six di�erence in instruction count for data
algorithms like QRS processing in section 3.2.1 and a factor 4.5 for control
algorithms.

The 8051 is based on an 8-bit Complex Instruction Set Computer (CISC)
core with Harvard architecture and originally developed as a controller. With
the 8 bit processor it is possible to calculate 16 or 32-bit arithmetic opera-
tions but this comes with a heavy burden. To illustrate this, the overhead
of an addition (ADD) and multiplication (MULL) is detailed in Table A.1.
The 8-bit addition operation from Table A.1 is explained in the accumulator
architecture of the 8051 in part a of Figure A.1. One of the operands in the
accumulator based architecture comes from the register (REG or memory)
while the other comes from the accumulator (ACC). The accumulator needs
to be �lled with one operand before a two operand instruction can be exe-
cuted. This is done by using a move instruction, as shown in the Table A.1
and Figure A.1 with a 1. The result of the addition is written back to the
accumulator (2 in the table and �gure), which is followed by copying the data
from the accumulator with a move instruction (3) to a register (or memory).
So the 8-bit addition operation takes only three instructions on the 8051 but
the amount of instructions will repidly increase for larger operand widths.
For example, Table A.1 illustrates that 16 and 32-bit addition operation take
respectively 6 and 18 instructions to complete on the 8051. For multiplica-
tions, the amount of instructions depend even stronger upon data width as
illustrated in Table A.1 as well.

By adding the clock cycles for all instruction listen in Table A.1, one
arrives at the total number of clock cycles to perform the ADD and MULL
operations, which is displayed in the second column of Table A.2, while in
column four, the number of instructions for an ARM is depicted.
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# ADD 8 bit ADD 16 bit ADD 32 bit MUL 8 bit MUL 16 bit MUL 32 bit

1 MOV A,R2 MOV A,R4 MOV A,@R0 MOV A,R1 MOV V0,R2 MOV V0,R2
2 ADD A,R1 ADD A,R2 ADD A,@R1 MOV B,A MOV V0,R3 MOV V0,R3
3 MOV R1,A MOV R2,A MOV @R0,A MOV A,R2 MOV A,R4 MOV A,R4
4 MOV A,R5 INC R0 MUL AB MOV R2,A MOV R2,A
5 ADDC A,R3 INC R1 MOV R1,A MOV A,R5 MOV A,R5
6 MOV R3,A MOV A,@R0 MOV R3,A MOV R3,A
7 ADDC A,@R1 MOV A,R2 MOV A,R2
8 MOV @R0,A MOV B,V0 MOV B,V0
9 INC R0 MUL AB MUL AB
10 INC R1 XCH A,R2 XCH A,R2
11 MOV A,@R0 MOV R4,B MOV R4,B
12 ADDC A,@R1 MOV B,V0 MOV B,V0
13 MOV @R0,A MUL AB MUL AB
14 INC R0 ADD A,R4 ADD A,R4
15 INC R1 MOV R4,A MOV R4,A
16 MOV A,@R0 MOV B,V0 MOV B,V0
17 ADDC A,@R1 MOV A,R3 MOV A,R3
18 MOV @R0,A MUL AB MUL AB
19 ADD A,R4 ADD A,R4
20 MOV R3,A MOV R3,A
· · · · · ·
· · · · · ·
107 MOV R2,A

Table A.1: Instruction count for an addition and multiplication on a 8051 for
di�erent data width

8-bit 8051 Chipcon 2430 32-bit RISC ARM9 HS
Operations #instr clock cycles #instr clock cycles
ADD 8-bit 3 4 1 1.5
ADD 16-bit 6 8 1 1.5
ADD 32-bit 18 40 1 1.5
MUL 8-bit 5 10 1 1.5
MUL 16-bit 20 48 1 1.5
MUL 32-bit 107 244 1 1.5

Table A.2: Summary of instruction count to execute an addition and multiplica-
tion on a 8051 and RISC
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Figure A.1: Architecture of 8051 (a) and RISC (b), numbers indicate instructions
executed to do an addition

The 32-bit register-register architecture of the Reduces Instruction Set
Computer (RISC) makes it possible to execute every addition and multi-
plication (up to 32-bit) in only one instruction, eliminating the MOV, INC
and other instructions needed by the accumulator architecture to execute
the operation. Figure A.1 illustrates how this is accomplished in the RISC
architecture. Table A.2 shows a six-fold reduction in instruction count for an
ADD16. Since the QRS extraction algorithm is written for 16-bit wordsizes
and contains many two 16-bit operand operations like ADD16, the reduc-
tion in amount of instructions for 16-bit data is assumed to be a factor six.
Not every operation uses two operands (i.e. A=10) and therefore, will not
have a six time di�erence in instructions However, these are compensated by
the more expensive operations like the multiplication (Table A.2 shows a 20
times di�erence).

Control applications do not have a six time reduction in instruction count
because it is a mix 8-bit and 16-bit operations, Table A.2 lists a factor 3 and
6 respectively for these operations. It is assumed that the ratio for 8-bit and
16-bit operations in the MAC processing is equal for both parts, this leads
to the average instructions decrease for the ARM compared to the 8051 of:
(3+6)/2=4.5.
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B
Cycles Per Instruction (CPI)

In this Appendix, the cycles per instruction are determined for a sample
code executed on the 8051 processor embedded in the Chipcon 2430 SoC.
This CPI will be used in Section 2.3.1 to estimate the amount of executed
instructions from measurements of active times.

Operations written in a high-level program language, like C, will be com-
piled to instructions for the processor. The CISC architecture of the 8051
needs one, two or more machine cycles to execute an instruction depending
on the instruction complexity and memory location of the operands, which
can be seen in Table B.1. For example, 'MOV A,R' a single machine cycle
whereas 'MOV @R,A' uses multiple machine cycles. The implementation
of the processor will specify how many clock cycles are needed to execute a
machine cycle. In the case of the Chipcon, it uses one clock cycle to execute
one machine cycle. Table B.1 shows a selected summary of Chipcon's 8051
instruction set together with the number of clock cycles required to execute
each instruction.

The average amount of clock cycles needed to execute a set of instruc-
tions will determine the Cycles Per instruction (CPI). To determine the CPI
of the Chipcon, part of the ECG parameter extraction algorithm from [4] is
compiled and the resulting instructions and lock (machine) cycles analyzed.
The code is unrolled manually so that the real amount of executed instruc-
tions is counted. In this process the loop overhead is copied too, so that the
control part of the program is also taken into account. Because the duration
of an instruction can di�er in amount of machine cycles, these had to be
counted as di�erent instructions. The result of counting the instructions can
be seen in Table B.2 where the instructions are grouped together. The CPI
is calculated as the weighted average of all the CPI's and in the case of the
Chipcon the CPI for the instructions is 2.46.

In the CPI calculation of the Chipcon the prefetch of the instruction code
is not taken into account and this needs to be added to the CPI. The 8051 has
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Instruction Description Opcode Bytes Cycles
MOV A,R Move register to accumulator E8-EF 1 1
ADD A,R Add register to accumulator 28-2F 1 1
MOV R,A Move accumulator to register F8-FF 1 2
ADDC A,R Add register to accumulator with carry 38-3F 1 1
MOV A,@R Move indirect ram to accumulator E6-E7 1 2
ADD A,@R Add indirect ram to accumulator 26-27 1 2
MOV @R,A Move accumulator to indirect ram F6-F7 1 3
INC R Increment register 08-0F 1 2
ADDC A,@R Add indirect ram to accumulator with carry 36-37 1 2
MULL A,B Multiply A B A4 1 5
XRL direct,#data Exclusive OR immediate data to direct byte 63 3 4
DIV A,B Divide A B 84 1 5
MOVX @R,A Move accumulator to external RAM F2-F3 1 4-11
PUSH Push direct byte to stack C0 2 4
LJMPaddr16 Long jump 02 3 4
ANL A, R AND register to accumulator 58-5F 1 1
ANL direct, A AND accumulator to direct byte 52 2 3
ORL A, @R OR indirect ram to accumulator 46-47 1 2
ORL direct,#data OR immediate data to direct byte 43 3 4
XRL A, #data Exclusive OR immediate to accumulator 64 2 2
XRL direct, A Exclusive OR accumulator to direct byte 62 2 3

Table B.1: Summary of Chipcon's 8051 instruction set with HEX opcode, instruc-
tion bytes and machine/clock cycles
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Instruction Total used 8051 CPI distribution CPI
MOV 39546 19605 of 1 CPI, 19941 of ≥ 2 CPI 1.84
ADD 7312 4604 of 1 CPI, 2708 of 2 CPI 1.37
MOVX 5114 variety of cycles, ranging from 3 to 11 8
MULL 4956 5 CPI 5
ADDC 4007 2402 of 1 CPI,1605 of 2 CPI 1.4
XCH 1652 2 CPI 2
SUBB 1500 800 of 1 CPI, 700 of 2 CPI 1.47

Others 7064
1971 of 1, 2888 of 2

2.19
1102 of 3 and 1103 of 4

Total 71151 weighted average 2.46

Table B.2: CPI distribution of Chipcon 8051 instructions for part of the ECG
extraction algorithm

a 4 byte L1 bu�er1 to store instruction code and �lling this bu�er takes one
clock cycle. The unrolled program uses 71151 instructions and 103838 code
bytes. This information also tells us the amount of code bytes on average
per instruction: 103838/71151 = 1.46, this number is used to determine the
activity of the L1 instruction memory which is used to calculate the energy
used for fetching the instruction code. To the already determined CPI of
2.46 we need to add the average cycles per instruction for prefetching to
determine the total CPI for the Chipcon:

CPI = 2.46 +
103838bytes/4

71151instr
= 2.82

In principle, the RISC architecture makes a CPI of one possible, but in
practice, the pipelined architecture causes an increase in the average CPI
due to branches and stalls. The CPI of an ARM9 is 1.52, as can be seen in
Table A.2.

Another 8051 is examined to illustrate that the CPI is implementation
depended. This is done by taking a Nordic 8051 and repeating the above
described algorithm mapping exercise. This 8051 uses 4 clock cycle to process
one instruction cycle. Most instructions use the same amount of machine
cycles when the Nordic is compared with the Chipcon. Due to the Nordic
using 4 clock cycles for one machine cycle, it is expected that the Nordic has
around a 4 times higher CPI than the Chipcon. The calculation revealed
that the Nordic has a CPI of 8.22, indeed a rough 4 time di�erence with the
Chipcon.

1Chipcon data sheets [1] states that four bytes are preloaded in an instruction fetch
2Taken from http://www.arm.com/support/faqdev/4160.html
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