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Abstract

Electron microscopy is a powerful tool for many research areas in physics, chemistry and
biology. Current state-of-the-art microscopes enable the study of individual atoms in samples
(better than 0.1 nm spatial resolution). Research is now aimed at viewing the ultrafast motion
of these atoms. This requires ultrashort electron pulses of 100 femtosecond duration.

A radio frequency (RF) cavity has been designed for use as a streak camera to measure the
duration of ultrashort, 100 keV electron pulses. Analytical calculations and particle tracking
simulations show it should be able to measure electron pulses with 100 femtosecond temporal
resolution. In order to enable operation of the cavity with a compact 1 kW RF source the
design has been optimized for low power consumption. The cavity has been manufactured by
high-precision machining with better than 10 µm accuracy. Characterisation measurements
show that the resonant frequency and on-axis field profile are in good agreement with the
design. The cavity has been driven with 1 kW RF power without breakdown and is now ready
for implementation.

In addition, other applications of RF cavities for electron microscopy have been inves-
tigated. The streak camera cavity can also be used to create ultrashort electron pulses in
an existing electron microscope: by placing a small aperture behind the cavity a continuous
electron beam is chopped into short pulses. Furthermore a similar RF cavity can be used as
a time dependent, axially symmetric charged particle lens with negative focal length. This
is not possible with the regular axially symmetric electrostatic and magnetostatic lenses and
could provide a new way for correcting spherical and chromatic aberrations.
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Chapter 1

Introduction

1.1 Electron microscopy

1.1.1 Spatial resolution

Microscopes allow the study of objects or details that are too small to be observed with the
unaided eye. Microscopes that use visible light have a resolution limit however, since they can
not resolve details with dimensions smaller than the wavelength of the light used. This means
a resolution limit of approximately 0.1 µm.

To overcome this limitation electrons are used instead of light. The wavelength λ of an
electron depends on its energy E as

λ ≈ h√
2mE

(1.1)

for non-relativistic energies, where h is Planck’s constant and m the electron mass. An electron
energy commonly applied in electron microscopy is 100 keV, which yields a wavelength of 0.004
nm. Current electron microscopes are not yet near this wavelength limit in resolution, because
they are limited by other aspects such as spherical and chromatic aberrations of their lenses.
The state of the art in electron microscopes can achieve a resolution down to 0.05 nm [6].
This spatial resolution is enough to show individual atoms in a sample. This is the smallest
dimension of interest in most applications.

1.1.2 Basics of electron microscopy

Basically two types of electron microscopes exist, the Transmission Electron Microscope
(TEM) and the Scanning Electron Microscope (SEM). Only the former will be considered
here. A TEM works somewhat like a slide projector, Its basic layout is shown in figure 1.1.
A beam of electrons is emitted by a source. A magnetic condenser lens collimates the beam,
before it passes through the object under investigation, which must be a thin sample. With an
objective lens an enlarged image of the sample is projected onto a fluorescent screen or digital
camera. Generally, the electron source consists of a sharp metal needle cathode and an anode.
A high voltage, typically 50 - 300 kV, is applied between them to extract electrons from the
needle and subsequently accelerate them towards the anode. Passing through a hole in the
anode, the beam enters the microscope column. Besides the ’imaging’ mode the microscope
can be used in ’diffraction’ mode. Diffraction measurements reveal a pattern of bright spots

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic of a Transmission Electron Microscope (TEM)

from which properties of the sample such as lattice spacing, shape and orientation can be
derived.

1.2 Ultrafast electron microscopy

1.2.1 Temporal resolution

The time needed to take a picture can be considered as a temporal resolution. For current
electron microscopes this is in the order of a second. Many interesting processes however,
happen much faster than this. The fastest process of interest is the motion of atoms, the
ultimate goal for the temporal resolution. This timescale of atomic motion is of the order of
100 fs, 100 · 10−15 s. Atoms at room temperature move about 0.1 nm in this time.

Because electronics for image capturing are not that fast, the way to study these processes
is to illuminate the sample with a short pulse of electrons.

To make a film of a process in which you can see individual atoms move the following
procedure can be adopted. The atomic motion in a sample is initiated by something (pump),
usually an ultrashort laser pulse, in order to define the zero of time of the process. Now
the process is in action a picture is taken with an electron pulse of typically 100 fs duration
(probe). This pump-probe sequence is repeated many times with different probe delay times.

1.2.2 Single shot measurements

For a 1000 x 1000 pixel image about 108 electrons are required (100 per pixel), whereas for
diffraction measurements 105 will suffice. To take an image in a single shot the electron bunch
of 100 fs duration has to contain 108 electrons i.e. 10 pC, which results in a peak current
of 100 A. Such electron bunches can be made by photo-emission of electrons with a fs laser
pulse. Current electron microscopes however, deliver electron currents of nA to µA. This
means that the electrons are separated by enough distance to neglect the repulsive Coulomb
force between them. If instead a bunch with many electrons passes through the column, the
electrons will interact. This deteriorates the spatial resolution. In reference [4] it is shown that
at 200 keV electron energy a 1 pC bunch of 30 ns duration can give an image with about 20
nm spatial resolution. For shorter bunches the interaction between electrons will be stronger
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thus decreasing spatial resolution. To get both the desired temporal and spatial resolution in
a single shot, the electron microscope has to be redesigned, perhaps with implementation of
radio-frequency lenses to correct aberrations.

1.2.3 Stroboscopic imaging

Even without large changes to the microscope images can be made with high spatial and
temporal resolution. This is done by so-called stroboscopic imaging, which was first applied
in 1977 [5]. In this imaging mode, 100 fs bunches are used which contain only one or a few
electrons. To build up one image, many (∼ 108) pump-probe sequences are required with the
same delay time. To produce an image within a reasonable amount of time, the sequence should
be repeated with a frequency of at least a MHz, but preferably several GHz. Therefore this
method is limited to processes that are rapidly repeatable, such as electronic phase transitions
and gas reaction dynamics. It should be noted that the limitation to repeatable processes also
applies, to some extent, to the single shot imaging. Although it allows an image to be taken
in one shot, several shots are needed to study the temporal behavior of the sample under
investigation.

Perhaps the most elegant method to do stroboscopic imaging is to free electrons from the
electron source within 100 fs (with a fs laser pulse). This method has been used by [10] to
create bunches that contain on average one electron per pulse, with which nm resolution could
be achieved. However, the desired temporal and spatial resolution have not yet been reached
with this method. Although it looks promising, it requires more investigation.

A more straightforward method is to operate the microscope as usual but with a relatively
small extra component which interrupts the electron beam most of the time but lets pulses
of 100 fs through. This way the electron beam is chopped into pulses. This method gives the
freedom to choose the electron source independent from the temporal resolution requirement;
the source does not have to be optimized for the laser. A continuous beam with a current of
1 µA chopped into 100 fs pulses will have on average about 1 electron per pulse.

1.3 RF cavities for ultrafast microscopy

In the work described in this thesis time-varying, radio frequency (RF) fields are employed.
They are used to manipulate electrons at timescales of the order of 100 fs. Therefore GHz
frequencies are used, at these frequencies the fields can be considered linear over a time span
of 100 fs, since the oscillation period is of the order of 100 ps. The electromagnetic fields are
contained in a resonant cavity, a hollow metal object of some shape with dimensions such that
the fields are resonant inside it at the desired frequency. In the cavity the fields will oscillate
harmonically. This makes it easy to synchronize the fields with electron bunches created with
either a femtosecond laser pulse or an RF chopper. That means the fields can be used at
one specific phase every time, which is essential for proper functioning. Besides, in a cavity
a higher field strength can be obtained more easily than in some non-resonant setup. Out of
the available common frequencies the S-band around 3 GHz, with a wavelength of 10 cm is
chosen. This gives a cavity size of the order of this wavelength and thus a manageable size.
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Figure 1.2: Electron beam chopping with an aperture behind a resonant cavity.

1.3.1 RF chopper

In this section we investigate the possibility of chopping the electron beam with a resonant
cavity, which has a hole in the bottom and top surface, allowing the electrons to pass through.
The electromagnetic fields form a standing wave such that on the axis along which the electrons
pass, the main field component is a magnetic field perpendicular to the electron motion. The
direction of motion of the electrons is defined as the z-direction. Then if we take the magnetic
field direction as the y-direction, the electrons are deflected in the x-direction. The magnitude
of the deflecting force depends on the phase of the field at the moment when the electron passes
through. The electron beam is then chopped by a small aperture placed at some distance
behind the cavity. Electrons can only pass through this aperture if they arrived in the cavity
at the proper phase. This is illustrated in figure 1.2. By changing the aperture diameter, the
distance from cavity to aperture or the field amplitude in the cavity, the pulse duration can
be varied. The cavity described in this thesis is resonant at a frequency of 3 GHz, and pulses
can be formed twice per period, so in principle 6 · 109 measurements per second can be done
with this setup, which means that an image can be taken in 0.01 s. The sample has to be
pumped at the same rate, so a laser used for this purpose needs to have this frequency as
well. Furthermore the sample has to be able to recover to its original status within the 150
ps between pulses.

1.3.2 RF charged particle lenses

In both electron and light optics, the paths of the electrons or photons are often described
with their first order approximation, the paraxial approximation. In this approximation, a
point source is imaged by a lens into a point and a parallel beam is focussed to a point in the
lens focus. A point source at a distance r from the axis is imaged to a point at a distance M ·r
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Figure 1.3: A lens with spherical aberration.

Figure 1.4: Different lens shapes

from the axis, with M the magnification. The image position is thus linear in r, the object
position. However, to describe the paths properly higher order terms have to be taken into
account. These terms are called higher order terms because the image positions depends not
linearly on r but to higher orders of r. These terms are often called aberrations, because they
describe the aberration from the paraxial description. The aberrations have several causes.
One has to do with geometry; the sine of the angle θ of the path with the optical axis is
approximated in first order by θ itself. The other cause is non-linearity of the lenses. The
effect of spherical aberration is that particles farther from the axis are focussed at a different
position than particles near the axis. As is illustrated in figure 1.3, this results in a spot being
formed instead of a point, so that details smaller than the spot can not be imaged properly.
This limits the resolution of the microscope.

Another aberration that deteriorates the resolution is chromatic aberration. This aberra-
tion is due to energy spread in an electron beam. Because faster electrons are deflected less
than slower electrons, a beam with energy spread is imaged as a spot of a point. In optical
microscopes most aberrations can be corrected for. One way to do this is to change the shape
of the lens. Figure 1.4 shows several possible shapes for glass lenses. These lenses have the
same strength and so the same focal distance, but differ in aberration. A similar effect can be
reached by using different types of glass. By cleverly combining lenses a microscope can be
made which has very little aberration. For optical microscopes this can be done so well that
the resolution is limited more by the wavelength of the light than by aberrations.

In electron microscopes electrostatic and magnetostatic lenses are used. These lenses
mostly have positive focal length and furthermore Scherzer has shown that for electrostatic
and magnetostatic axially symmetric lenses aberration coefficients are always positive [12].
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So whereas in optical microscopes lenses can be combined to reduce aberrations, in electron
microscopes this is not possible with electrostatic and magnetostatic lenses. Other types of
lenses exist to correct aberrations such as quadrupole and octupole lenses but these are very
complex and have not done much to push the limit of resolution towards the wavelength of
the electrons.

One type of lens not yet much explored is a high frequency lens. This lens uses an
electromagnetic field which varies in time at up to GHz frequencies. The calculation done
by Scherzer does not hold for time-dependent fields, so it is possible to design a lens with a
negative aberration coefficient. Because the fields reverse direction every half period the lens
has a positive focal length half the time and negative focal length the other half. Since the
shape of the field does not change in time the aberration coefficient changes sign together with
the focal length. Thus the lens has a negative aberration coefficient half the time, which can
be used to correct the aberration of the static lenses in the microscope.The properties of this
lens are described in more detail in section 2.4.3.

1.3.3 RF streak camera

In order to do ultrafast microscopy, one does not only need a method for producing ultrashort
pulses or bunches, but also a way of measuring the bunch length and thus establish the
temporal resolution. While it is a challenge to make these bunches as short as possible, it is
also a challenge to measure the actual duration that has been achieved. One way to measure
the bunch duration is with a streak camera. The deflecting cavity described in section 1.3.1
for beam chopping can also be used as a streak camera. Similar to a beam, an incoming bunch
is deflected sideways by the rapidly varying field, in such a way that the front of the bunch is
deflected more than the back, or vice versa. This gives the bunch a lateral size which depends
on its original duration. This lateral size can easily be measured by impinging the bunch
on a phosphor screen and measuring the streak produced by the bunch with a CCD-camera.
When the deflecting force is known by properly characterizing the cavity, the original bunch
duration can be calculated. This will be described thoroughly in chapter 3.

1.4 Scope

As described in this chapter, microwave cavities containing radio frequency electromagnetic
fields have many interesting possible applications. Starting from a ’simple’ cylinder shaped
cavity, two different field modes are described in chapter 2, with their respective possible
applications in electron microscopy and elsewhere. One interesting application is the use of a
cavity in a streak camera setup. We have a setup at hand where a very fast streak camera
would be most useful for measuring electron bunch durations from 10 fs to 10 ps. Therefore the
remainder of this report is dedicated to this application. Chapter 3 investigates the influence
of all input parameters on the streaking process. To operate the streaking cavity with only
1 kW of power an energy-efficient shape has been designed, which is described in chapter 4.
Based on this design a cavity has been manufactured by high-precision machining. Chapter
5 describes the measurements that have been performed on this cavity to characterize it and
to verify that it is in agreement with the design. Finally, conclusions are drawn in chapter 6.



Chapter 2

RF cavity theory

The fields within such a resonant cavity can be calculated using Maxwell’s equations. This
is derived in appendix A. Within any shape of resonant cavity several field arrangements are
possible. These are called ’modes’ and they each have a specific frequency at which they are
resonant in the cavity. In this thesis the shape of the cavity basically is a hollow cylinder.
Although the exact shape of the cavity will not simply be a cylinder, it is convenient to describe
them in cylindrical coordinates (r, φ, z) as is depicted in figure 2.1. In such a coordinate system
two types of modes can be distinguished. The Transverse Magnetic (TM) modes have only
transverse magnetic fields, so no magnetic field component in the z-direction. The electric
fields can then have any direction. The Transverse Electric (TE) modes have only transverse
electric field, so no electric field component in the z-direction. The magnetic fields can then
have any direction.

The different modes are distinguished by an index added to the mode type. In this chapter
two modes will be described. Firstly the TM010 mode in section 2.1 and secondly the TM110

mode in section 2.2. In section 2.3 the effects of energy losses will be considered, which is the
same for both modes. Next, some possible applications of the TM010 mode will be described
in section 2.4: acceleration, bunch compression and focusing. The application of the TM110

mode as an electron beam chopper will be described in section 2.5 and chapter 3 will be fully
devoted to the application as a streak camera.

2.1 The TM010 mode

The TM010 mode is the lowest TM-mode. The fields of this mode will be described below for
a cylinder-shaped cavity or ’pillbox-cavity’ with length d and radius R as depicted in figure
2.2. The derivation can be found in appendix A.

By definition of a TM-mode, Bz = 0. For perfectly conducting material E must be
perpendicular to the wall, so that for r = R, Ez = 0. With this boundary condition and
considering the mode index, Ez becomes

Ez = E0J0(kr) cos ωt (2.1)

Where E0 is the field amplitude, J0 is the zeroth order Bessel function of the first kind, ω is
the angular frequency of the mode and k is the corresponding wave number, according k = ω

c
with c the speed of light. Because for r = R the electric field has to be zero, the argument kR

7
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Figure 2.1: Cylinder coordinate system.

Figure 2.2: Pillbox cavity dimensions.
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Figure 2.3: The field amplitude as a function of radius for the electric field (left) and the
magnetic field (right) of the TM010 mode.

has to be equal to the first node of the Bessel function, kR = 2.405. For an applied frequency
of 2.9985 GHz the required radius R is 38 mm. With Ez known the other field components
in the cavity can be calculated which results in

Bφ = −1
c
E0J1(kr) sinωt (2.2)

All other components, Br, Eφ, Er are 0 for this mode. Figure 2.3 shows Ez and Bφ as a
function of the radius, figure 2.4 shows Ez in a plane of the cavity and a vector representation
of Bφ.

We want to use the cavity fields to manipulate the trajectories of accelerated electrons.
Therefore two small holes have to be made in the cylinder at the center of the top and bottom
surface to let the electrons enter and exit. This will off course alter the fields in the cavity,
but for now this will be neglected.

2.2 The TM110 mode

Another field mode that has been applied in this research is the TM110 mode. The "110"
means that the longitudinal electric field Ez has one node in the φ-direction, one in the radial
or r-direction viz. at the wall and no node in the z-direction, implying the field is constant in
that direction. The electric field is then

Ez = E0J1(kr) cos(φ) cos(ωt) (2.3)

Where J1(x) is the first order Bessel function. For r equal to the cylinder radius R the
field has to be zero, so kR = 3.832, the first node of J1(x). This yields R = 61 mm for a



10 CHAPTER 2. RF CAVITY THEORY

Figure 2.4: Field distribution of a TM010 mode. The electric field magnitude in a plane with
constant z is plotted on the left. The magnetic field is plotted as vectors in a plane (right).
For different values of z the fields are the same.

frequency of 2.9985 GHz. The other field components in the pillbox-cavity are

Br =
E0

ω

1
r
J1(kr) sin(φ) sin(ωt) (2.4)

Bφ =
E0

ω

∂

∂r
J1(kr) cos(φ) sin(ωt) (2.5)

The electric and magnetic fields are depicted in figure 2.5 and 2.6. Two small holes in the
center of the top and bottom surface allow electrons to pass through the cavity. At the center
of the cavity the electric field is almost zero while the magnetic field is large. For small radius
it is convenient to describe the magnetic field in cartesian coordinates.

Bx = Br cos φ−Bφ sinφ (2.6)
By = Br sinφ + Bφ cos φ (2.7)

For r =
√

x2 + y2 � R, 1
rJ1(kr) and ∂

∂rJ1(kr) are approximately k
2 . Therefore on the z-axis

Bx = 0 (2.8)

By =
E0

2c
sinωt (2.9)

The magnetic field in the (arbitrarily defined) y-direction working on electrons moving in
the z-direction results in a deflection in the x-direction.

2.3 Energy dissipation

In the derivation of the fields it has been assumed that the cavity walls are perfect conductors.
In practice, materials are used with a high but finite conductivity. The fields will therefore ex-
tend a bit into the walls and induce electric currents in the wall which cause energy dissipation.
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Figure 2.5: The field amplitude as a function of radius for the electric field (left) and the
magnetic field (right) of the TM110 mode.

Figure 2.6: Field distribution of a TM110 mode. The electric field magnitude in a plane with
constant z is plotted on the left. The magnetic field is plotted as vectors in a plane (right).
For different values of z the fields are the same.
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Figure 2.7: Field energy as a function of time when external power source Pin is switched on
at t = 0 (a) or switched off (b).

A measure of the dissipation in the cavity is the quality factor Q defined as

Q = ω0
U

Ploss
(2.10)

Where ω0 is the original resonance frequency, U is the energy stored in the cavity and Ploss

the power dissipated in the cavity walls. If there is a power input Pin for t > 0 the energy
change at any given time is

dU

dt
= Pin − Ploss = Pin −

ω0

Q
U (2.11)

Solving this differential equation gives the energy as a function of time

U(t) = Pin
Q

ω0

[
1− e−ω0t/Q

]
(2.12)

Assuming there is no energy in the cavity at t = 0. As shown in figure 2.7a, U rapidly grows
to a steady-state value of PinQ/ω0. Now if we consider the decay of the field if Pin is switched
to zero at t = 0 we find

U(t) = Pin
Q

ω0
e−ω0t/Q (2.13)

which is sketched in figure 2.7b. Since

U(t) =
1
2
ε0 |E(t)|2 (2.14)



2.3. ENERGY DISSIPATION 13

Figure 2.8: Energy absorption follows a Lorentz curve around the resonance frequency ω0+∆ω.

we can conclude that E(t) behaves similar to U(t). Off course E(t) oscillates in time so that
it becomes

E(t) =
√

2PinQ

ε0ω0
e−iω0te−ω0t/2Q (2.15)

To find the frequency dependence of the fields in the cavity we take the Fourier transform of
equation (2.15) which gives

Ẽ(ω) =
√

PinQ

πε0ω0

1
i(ω − ω0)− ω0

2Q

(2.16)

Then using equation (2.14) we find that the frequency dependence of the energy follows a
Lorentz curve

Ũ(ω) =
PinQ

2πω0

1

(ω − ω0)2 +
(

ω0
2Q

)2 (2.17)

This is shown in figure 2.8. The full width at half maximum (FWHM) of the Lorentz curve is
equal to ω0/Q. When power is applied to the cavity, the absorption of energy as a function
of frequency will follow this curve. This can be used to determine Q of the cavity.
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As a rule of thumb, Q is approximately equal to the ratio of the volume V of the pillbox
to the volume of a thin shell of thickness δ/2 surrounding this volume, Q ≈ 2V/δA, where A
is the surface area of the pillbox and δ the skin depth of the electromagnetic field inside the
pillbox [11].

δ =
√

2
µω0σ

, (2.18)

where µ is the permeability and σ the conductivity of the wall material. Taking copper as
wall material, with σ = 5.8 · 107 Ω−1m−1 and µ = 1.3 · 10−6 H/m, the skin depth becomes
1.2 µm at 3 GHz. Assuming a cylindrically shaped cavity, V/A ≈ d/2 for R � d so that a
cavity length d ≈ 10 mm yields Q ≈ 104.

Because the fields extend into the walls, the boundary conditions have changed, which will
cause a shift ∆ω in resonant frequency. As described in [8, p. 374] this shift can be calculated
using the technique of perturbation of boundary conditions, which yields

∆ω ≈ − ω0

2Q
(2.19)

We intend to use a frequency of 3.00 GHz and a Q of the order of 104. Then the frequency
shift is -0.15 MHz.

2.4 Applications of the TM010 mode

In this section three possible applications of the TM010 mode will be described. Firstly it can
be used for accelerating electrons, secondly for electron bunch compression and thirdly as an
electron lens.

2.4.1 Acceleration

Since the TM010 mode has an electric field component in the z-direction, it is commonly used
for accelerating electrons. It is even possible to couple several cavities such that the electrons
are accelerated all the way through. These cavities can have electric fields strengths of up to
100 MV/m [9].

2.4.2 Longitudinal focusing

The longitudinal electric field Ez accelerates or decelerates electrons. To a group or ’bunch’ of
electrons it imparts an energy spread. If a bunch of electrons passes through the cavity within
a half period of the field variation, thus within 160 ps for the 3 GHz field, then the electric
field can be used to shorten the bunch duration. If the entrance phase of the bunch is right
then the first electrons are effectively slowed down during their passage through the cavity
while the last electrons are accelerated. Consequently the last electrons will start catching up
with the first so that the electron bunch becomes shorter. This extra-short electron bunch
can then be used to do many interesting experiments. Since the energy difference applied by
the cavity is much smaller than the forward kinetic energy, relatively small fields will suffice.
For an electron energy of 100 keV a field strength of 5 MV/m suffices to focus a bunch of a
few picoseconds duration to some tens of femtoseconds [7].



2.4. APPLICATIONS OF THE TM010 MODE 15

Figure 2.9: Electron beam focusing.

2.4.3 Transverse focusing

With a TM010-mode field it is also possible to focus an electron beam or a bunch in the
transverse direction. Figure 2.9 shows this kind of focusing with the relevant parameters,
where f is the focal distance of the lens, θ the angle of deflection from the z-axis and r the
distance from the axis. The momentum of the electron in the forward direction is pz, the
momentum in radial direction is pr. The tangent of θ is equal to

tan θ =
r

f
=

pr

pz
(2.20)

To calculate pr we need to integrate the radial component of the Lorentz force FL over the
cavity.

pr =
∫

FLdt =
∫
−e (Er − vzBφ) dt (2.21)

In the pillbox field description of section 2.1 we found a description of Bφ and found Er to be
zero. However, as a result of the holes which are inevitable to let electrons enter the cavity,
a z-derivative of Ez is introduced, which results in a radial component Er. Ez(0, 0, z), will
look something like figure 2.10. In appendix B the fields are derived for the most general
distribution, where they are written as a series expansion in r. Taking only the first term of
the expansion, the linear part, we find



16 CHAPTER 2. RF CAVITY THEORY

Figure 2.10: The electric field component Ez along the z-axis for a pillbox cavity with holes
and one without holes.
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Er = −1
2

∂Ez(z)
∂z

r cos(ωt + φ0) (2.22)

Bφ = − ω

2c2
Ez(z)r sin(ωt + φ0) (2.23)

Where Ez(z) ≡ Ez(0, 0, z) is the electric field on the z-axis and φ0 is the phase at t = 0.
With this we can calculate pr using equation (2.21) and assuming that r and vz are constant.
Furthermore we use t = z/vz and with vr � vz we write γ =

√
1

1−β2 , the Lorentz factor, with
β = vz/c. Then we find, after partial integration

pr =
ervz

2γ2β2c2

∫ ∞

−∞

∂Ez(z)
∂z

cos
(

ωz

vz
+ φ0

)
dz (2.24)

If we assume the cavity to be thin, i.e. the electrons pass through in a time much shorter than
the period of the field, we can use ωz

vz
� 1, which gives

pr =
ervz

2γ2β2c2

∫ ∞

−∞

∂Ez(z)
∂z

[
cos

(
ωz

vz

)
cos (φ0)− sin

(
ωz

vz

)
sin (φ0)

]
dz

=
ervz

2γ2β2c2

∫ ∞

−∞

∂Ez(z)
∂z

[
cos (φ0)−

ωz

vz
sin (φ0)

]
dz

=
erω

2γ2β2c2
sin (φ0)

∫ ∞

−∞
Ez(z)dz (2.25)

With this we can calculate the focal distance of the TM010 cavity using equation (2.20).

f =
2mγ3β3c3

eω sin (φ0)
· 1∫∞

−∞ Ez(z)dz
(2.26)

A Copper pillbox resonant at 3 GHz with length d = 6 mm and field amplitude E0 = 5
MV/m requires 4 kW input power and has a focal distance of 15 cm at φ0 = 0. With a good
cavity design the power consumption can be reduced to 0.3 kW, while keeping the same focal
distance [7].

The description above is linear in r. For an accurate description higher order terms have
to be taken into account, such as the spherical aberration. Besides that, chromatic aberration
has to be taken into account, which is an aberration resulting from a spread in velocity of the
electrons.

To use the cavity as a lens the electrons have to arrive at the right phase in the cavity.
This requires the use of short bunches of electrons, i.e. much shorter than the field period of
300 ps. Any finite bunchlength will however result in a ’phase’-aberration, a focusing error as
a result of the difference in arrival phase.

The major advantage of using this RF field as a lens is that it can act both as a positive
and a negative lens. Because of that its spherical aberration van be used to correct the
spherical aberration of commonly used magnetostatic lenses. This correction probably requires
strong focusing and thus large input power, which could become problematic. Alternatively,
perhaps the aberration of the RF lens can be increased by changing the cavity shape to enable
aberration correction at lower field strength.
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Figure 2.11: Electron beam chopping with an aperture behind a resonant cavity.

2.5 Applications of the TM110 mode

In this section one possible application of the TM110 mode is described. As was mentioned
at the end of section 2.2 the cavity deflects an electron beam or bunch sideways. This can be
used to chop the electron beam in an electron microscope into short bunches. Furthermore
it can be used in a streak camera for measuring ultrashort bunch durations, which will be
described in chapter 3.

2.5.1 Electron beam chopping

Electrons pass through the cavity in the z-direction with speed vz. They experience a magnetic
field in the y-direction.

By = B0 sin(ωt + φ0) (2.27)

This results in a momentum in x-direction px of

px ∼ vzB0 sin(ωt + φ0) (2.28)

If now an aperture is placed behind the cavity at some distance z, then only those electrons
can pass through that did not get too much transverse momentum. This setup is drawn
schematically in figure 2.11

The exact formulas will be given in the next chapters, but the result is that an aperture
with diameter a = 25µm at a distance z = 0.1 m combined with B0 = 8 · 10−3 T gives
electron bunches of duration tb = 100 fs. This field requires 3.1 kW RF power when using a
pillbox-shaped cavity, but this can be reduced by using an energy-efficient shape as described
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Figure 2.12: Electron beam chopping produces a distorted electron puls, which can be corrected
with a second cavity.

in chapter 4. The bunch duration scales as

tb ∼
a

zB0
(2.29)

The electrons that experience no net force go straight on along the axis and pass through
the aperture. Electrons that arrive a bit earlier or later will get a small upward or downward
momentum yet still be able to pass through the aperture. This produces a distorted puls, as
illustrated in figure 2.11.

Putting a second cavity behind the aperture will stop the lateral expansion induced by the
first cavity if the electrons arrive at this cavity when the field is in the opposite direction of
the first cavity, as depicted in figure 2.12. This suffices if the chopping takes place at the top
of the microscope. The resulting pulse will pass through the column and sample and create
an image on the detector.

If the chopping is done at the bottom of the microscope it is essential that electrons that
passed through a certain spot of the sample also arrive on one spot of the detector i.e. a
horizontal line of the pulse at the left of figure 2.13 must be returned to a horizontal line
at the right side. This requires a setup with three cavities where the second cavity (with a
field twice as large as the others and in the opposite direction) reverses the transverse motion
caused by the first and the third stops the transverse motion as all electrons are back in
position. This is illustrated in figure 2.13.
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Figure 2.13: Electron beam chopping produces a distorted electron puls. A second deflecting
cavity reverses the transverse motion of the electrons and a third cavity stops the transverse
motion as the electrons are back in their original position.



Chapter 3

Streak camera

A streak camera is a common tool for measuring electron bunch durations. The principle of
operation is quite simple. An electron bunch moves through a variable electric or magnetic
field. While the bunch moves through the field, the field strength is increased (or decreased),
for example linearly as shown in figure 3.1. The field is in a direction transverse to the motion
of the electrons, so the electrons become deflected sideways. The angle of deflection of the
electrons is proportional to the time integral of the field, which is the area under the graph in
figure 3.1. The electrons at the front of the bunch arrive at t = 0 and leave the field after a
transition time ttr. The electrons at the back of the bunch arrive in the field region at t = tb,
where tb is the bunch duration and have the same transition time ttr. As can be seen from the
graph, the front electrons become deflected less then the back electrons. If after some drift
space the electrons are captured on a screen, then the front and back electrons will arrive on
a different spot, as illustrated in figure 3.2. This way the bunch forms a line on the screen, a
"streak". From the length of the line the original bunch duration can be calculated when the
field properties are known.

In this chapter the variable field will be the time dependent magnetic field in the TM110

pillbox-cavity described in section 2.2. In section 3.1 the ideal streak will be described, i.e.
the streak of a mono energetic bunch of zero transverse size and zero angular spread. In
the remaining sections deviations from this ideal streak will be considered. In section 3.2
deviations caused by energy spread are described, in section 3.3 those caused by the finite
dimension of the bunch. The effects due to finite angular spread are described in section 3.4.
Next, all these calculations are compared with simulations in section 3.5 and finally all results
are summarized in section 3.6.

In this chapter electron energies are assumed to be 100 keV, which is typical for many
electron microscopes and our setup. For this energy the Lorentz factor is

γ =
(

1− v2

c2

)−1/2

= 1.20 (3.1)

The calculations have been done non-relativistically, which therefore results in an error of
approximately 20%. In order to compare the calculations with the simulations, which are
done relativistically, the relevant relativistic calculation results are given in appendix C.

21
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Figure 3.1: A linearly increasing transverse field can be used for streaking an electron bunch.
The back electrons, which arrive at t = tb are deflected more than the front electrons which
arrive at t = 0.
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Figure 3.2: A cavity can be used to streak an electron bunch.
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3.1 Ideal streak

Electrons moving along the z-axis or at a small distance r � R from the axis, will experience
a field as was given by equation (2.9)

By = B0sin(ωt + φ0) (3.2)

Here B0 is the amplitude of the magnetic field in the cavity, which is equal to E0
2c . When

evaluating equations in this chapter we will assume a value of E0 = 10 MV/m. Then B0 =
16.7 · 10−3 T = 16.7 mT. The phase of the field at t=0 is φ0. Now we calculate the angle
of deflection of an electron after passing through the cavity. We assume its velocity vz to be
constant and its distance r from the z-axis to remain small inside the cavity. Then we find by
integrating the force exerted by the magnetic field on the electron that

θ =
px

pz
=

2eB0

mω
sin(ωtc + φ0) sin(

1
2
ωttr) (3.3)

where tc is the time at which the electron is in the center of the cavity and ttr is the transition
time. When a bunch with duration tb is deflected the difference in deflection angle between
the first (tc = t0 − 1

2 tb) and the last (tc = t0 + 1
2 tb) electron is

∆θ = θl − θf =
2eB0

mω

[
sin ω(t0 +

1
2
tb)− sinω(t0 −

1
2
tb)

]
sin

1
2
ωttr

=
4eB0

mω
sin(ω

1
2
tb) cos(ωt0 + φ0) sin(

1
2
ωttr) (3.4)

assuming ttr is the same for all electrons and t0 is the time when the center of the bunch is at
the center of the cavity. To maximize ∆θ the phase of the field φ0 should be adjusted until
ωt0 + φ0 = 0, so that the cosine term in equation (3.4) equals 1. Then t0 is a zero-crossing
of By. The transit time of the electrons is determined by their velocity and the interaction
length d of the cavity.

ttr =
d

vz
(3.5)

To maximize the second sine term in equation (3.4) ωttr should be taken equal to π. At
an electron energy of 100 keV and a cavity resonant frequency of 2.9985 GHz this gives an
interaction length of d=27 mm. For this optimization ωttr could be chosen equal to 3π as
well, but this will not increase ∆θ and only introduce more disturbance of the electron bunch.
With these optimizations we find for values of tb smaller than 10 ps so that we can write
sin(1

2ωtb) ≈ 1
2ωtb and for B0=16.7 mT

∆θ ≈ 2eB0tb
m

(3.6)

To measure the streak length we will use a CCD camera with a pixel size of the order of 10
µm. Thus if the camera is put at a distance of 100 mm from the cavity, a 20 fs streak can
be resolved. The camera can be put farther away to resolve even shorter streak lengths, but
in practice the resolution will be limited by other factors, which will be described in the next
sections.
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3.2 Energy spread

In the previous section ttr was assumed to be the same for all electrons. However, any real
bunch of electrons will have energy spread and thus velocity spread, so that the transit time
differs between electrons. The momenta of the electrons will vary around the average as

pz = pz0 + δp, (3.7)

where pz0 is the electron momentum at 100 keV energy. Typical energy spread is of the order
of 1%, so δp will typically be 0.5 % of pz0 . The angle of deflection now becomes

θ =
2eB0

mω
sin(ωtc + φ0) sin

(
1
2
ωttr0

pz0

pz

)
≈ 2eB0

mω
sin(ωtc + φ0)

[
1− 1

2

(
π

2
δp

pz0

)2
]

,

(3.8)

where ttr0 is the transit time at 100 keV energy. In the last step δp
pz0

� 1 is assumed as well
as ωttr0 = π.

With these assumptions θ varies with the square of δp. Thus both faster (δp > 0) and
slower (δp < 0) electrons are deflected less than electrons with momentum pz0 . As described
in the previous section, the cavity phase should be adjusted such that the average deflection is
zero. In that case all electrons with a nonzero δp produce a shorter streak, so that the streak
length will not be influenced.

The low sensitivity to change in momentum is a result of the low sensitivity to change in
ttr. By choosing the optimal interaction length d the sine term with ttr0 has a value near its
maximum, where it is less sensitive to changes. If the average momentum of the bunch is not
pz0 or d is not optimal, then the sine term is not at its maximum and approximating it gives
a linear dependence on δp.

An electron bunch with an energy spread has a varying bunch duration all the time, also
inside the cavity. But because of high sensitivity to tc and low sensitivity to ttr we can say
the cavity effectively produces a streak corresponding to the bunch duration exactly at the
center of the cavity, with only small deviations as a result of differences in transit time.

3.3 Off-axis behavior

3.3.1 Magnetic field dependence

When a bunch moves through the cavity it does not move exactly on the axis. The bunch has
some size in the x and y-direction. But away from the axis the field is not precisely as given
in equation (3.2). A Taylor expansion of the field from section 2.2 around the axis to second
order gives the following equation.

By = B0 sin(ωt)
[
1− 1

8
k2y2 − 3

8
k2x2

]
(3.9)

where k = ω/c. With this you can calculate that θ only deviates 0.5%� for y = 1 mm and
1.5%� for x = 1 mm. Since bunches will be used that are always smaller than this we can
assume the magnetic field is the same for the entire bunch.
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Figure 3.3: An electron bunch with a size in x-direction becomes longer, because electrons at
large x positions are somewhat accelerated or decelerated.

3.3.2 Electric field dependence

The magnetic field given above is not the only field that should be taken into account. There
is also a longitudinal electric field, as described in section 2.2 which scales to first order as

Ez =
1
2
E0kx cos(ωt + φ0) = ωB0x cos(ωt + φ0) (3.10)

Here it will be assumed that φ0 = 0. This electric field deforms the bunch as follows. Electrons
that have a position some distance from the axis in the x-direction will become accelerated
or decelerated by the electric field. This is sketched in figure 3.3. As a result the bunch
is effectively lengthened, tc is different for electrons at large x-positions. The total forward
momentum, including that as a result of the electric field is

pz(x, t) = pz0 −
∫ t

− π
2ω

eB0ωx cos(ωt)dt = pz0 − eB0x [sin(ωt) + 1] (3.11)

With pz0 the momentum before the electrons enter the cavity. It is assumed that the electrons
enter the cavity exactly at t = −π/2ω. Integrating equation (3.11) gives the position as a
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function of time.

z(x, t) = vz0

(
t +

π

2ω

)
− eB0x

m

(
t +

π

2ω

)
+

eB0x

mω
cos(ωt) (3.12)

Electrons that are unaffected by the electric field, those at x=0 , will arrive at the center of
the cavity at t=0, so

z(0, 0) =
πvz0

2ω
=

1
2
d (3.13)

Electrons that are affected by the electric field arrive at the center at t = tE . Solving z(x, tE) =
1
2d yields the following expression for tE .

tE =
(π

2 − 1)
ω

[
pz0

eB0x
− 1

]−1

(3.14)

Here we assumed tE small so we can write cos(ωtE) ≈ 1. Evaluating this expression with
values as used before and assuming x < 1 mm we find that the bunch is effectively lengthened
by an amount

∆tE ≈ (
π

2
− 1)

eB0∆x

ωpz0

≈ 4.5 · 10−10∆x (3.15)

where ∆x is the width of the bunch. Thus as sketched in figure 3.3, a bunch with a size
in x-direction effectively becomes longer as a result of the electric field. Since the streak
camera is very sensitive to changes in tc and only little sensitive to changes in ttr, it suffices
for describing bunch lengthening to take into account tE , which is the change in tc. To keep
the error on the bunch duration measurement small, the lengthening has to be minimized.
This can be achieved by reducing the bunch size in x-direction before the cavity. To reduce
bunch lengthening tE to for example 20 fs, an aperture would have to be used to reduce
the x-dimension of the bunch to 45 µm. Since tE scales with B0, reducing B0 will decrease
lengthening. Furthermore it is possible to perform streak length measurements with different
aperture sizes and extrapolate results to zero size in x-direction.

3.3.3 Curved trajectory

In the previous sections it was assumed that the electrons follow a straight line. It is simple
to see that this is not the case. The magnetic field around the axis has been described before
in equation (3.2). This field causes a force and hence a velocity vx in the x-direction.

vx(t) =
∫ t

tc− 1
2
ttr

e

m
vzBy(t)dt = −evzB0

mω

[
cos(ωt)− cos(ωtc −

1
2
ωttr)

]
= −evzB0

mω
[cos(ωt)− sin(ωtc)] (3.16)

Then assuming ωttr = π, the x-position of the electrons is

x(t) = x0 −
evzB0

mω

∫ t

tc− π
2ω

[cos(ωt)− sin(ωtc)] dt

= x0 −
evzB0

mω2

[
sin(ωt)− sin(ωtc −

π

2
)− sin(ωtc)(ωt− ωtc +

π

2
)
]

≈ x0 −
evzB0

mω2

[
sin(ωt) + 1− ωtc(ωt +

π

2
)
]

(3.17)
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Where tc is assumed small, so the terms with tc can be approximated to first order in tc. For
B0=16.7 mT and tc = 0 the electrons will move as much as 2.7 mm from their original position
x0. Probably the biggest disadvantage of this displacement is the fact that the streak will not
be at the center of the capturing screen. Furthermore this displacement will result in a net
acceleration of the electron bunch because they will experience more Ez field as they move off-
axis. For B0 = 16.7 mT, the electrons leave the cavity with 3% more momentum on average,
so 6% extra energy. This momentum increases with the square of B0. The lengthening of the
bunch by the Ez field will not be different, since the bunch will stay in the area where Ez

scales linearly with x.

3.4 Angular spread

If the variable field in the streak camera is off, the electron bunch forms a spot on the screen.
When the field is on, the bunch forms a line on the screen and the length of the line will
depend on the bunch duration as described before. The width of the line will be equal to the
diameter of the spot. In order to properly determine the length of the line, the length should
be substantially larger than the width. The diameter of the spot and thus the width of the
line can be decreased by using an aperture in front of the deflection cavity. However, after the
aperture the bunch size will gradually increase. This is a consequence of the angular spread
in the bunch. In any real electron bunch or beam, the electrons will have some transverse
momentum, though much smaller than the forward momentum. As a result they move at
small angles with the z-axis.

The angular spread has several causes. One is the process of creation of the bunch. When
the electrons are extracted from the electron source they always have momentum in a random
direction as a result of the temperature of the source and the process of extraction. After
acceleration the transverse part of the momentum spread shows as angular spread. Next, the
angular spread can increase as a result of the repulsive Coulomb force between electrons or
external fields such as magnetic lenses.

From simulations of our setup we expect the bunch to diverge with an angle of approxi-
mately 1 mrad between the streak cavity and the screen. For B0 = 16.7 mT a bunch with a
duration of 170 fs is deflected over an angle ∆θ = 1 mrad. Such a bunch will produce a line
with a length to width ratio of 2, as is shown in figure 3.4. A shorter bunch will produce a
line with a smaller length to width ratio. This will become increasingly hard to measure in
practice. If the bunch duration is 20 fs, then the length of the line will be only 10% larger than
the width. This may still be measurable, although the accuracy will be low. To measure more
accurately and thus to be able to measure even shorter bunches or measure at lower values of
B0, the angular spread has to be reduced. This can be done by placing an aperture in front of
the streak cavity, which will remove the outside of the bunch, the electrons with the biggest
angular spread. The aperture only needs to remove the outside electrons in x-direction, but
a circular aperture will probably be more convenient than a rectangular one. We expect that
the angular spread depends linearly on x, with 1 mrad divergence for x0 = 1 mm. The spot
size on the screen becomes

xs = x0 + Zx0 (3.18)

Here x0 is the transverse size of the bunch at the cavity and Z is the distance from cavity to
screen.
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Figure 3.4: Example of electron bunch streak. The width of the line is determined by the
aperture size and angular spread in the bunch. The length of the line is equal to the width plus
the length of the streak Z∆θ.

3.5 Simulations

Next to the analytical calculations of the previous sections, the particle tracking simulation
programme General Particle Tracer [2] has been used to calculate the motion of electron
bunches in the streak camera setup. The calculation uses several starting values, which can
be chosen freely. These include the x and y dimensions of the bunch, the energy and energy
spread of the electrons and the external fields in the setup. In this section the simulation
results will be given and be compared to the analytical calculations of the previous sections.
To make this comparison, the pillbox fields of section 2.2 have been used in the simulation, so
without the holes that disturb the fields.

Next, the simulations can be done with more realistic and complicated fields. This more
realistic field has been taken from the simulations in chapter 4, which have been checked by on-
axis field measurements (chapter 5) In order to keep data files manageable the field is exported
with a mesh size of 2 mm. This will cause some error but we expect to obtain reasonable
results nonetheless. The GPT simulation results with this ’real’ field will be included in the
relevant graphs and values will be given at the end of this chapter.

The simulations are most clear when they start from one dimensional bunches. These
bunches have no angular spread, or energy spread and we will use bunches with some size in
either z or x-direction. The size in z direction will be given as a duration in time. With these
bunches all aspects from the previous sections can be studied more or less separately.

3.5.1 Bunch duration

Firstly the bunch duration dependence of the streak length is studied. For this purpose the
starting values for x and y are taken to be zero and all particles have the same initial energy of
100 keV exactly. The bunch is created at point z = 0 during a time tb. This time tb is varied
from 10 fs to 10 ps. The bunch passes through the pillbox fields with frequency 3.00 GHz
and amplitude B0 = 16.7 mT, over a distance d = 25 mm. Figure 3.5 shows the simulation
results. Plotted is the size in x-direction at a distance of z = 100 mm from the cavity center
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Figure 3.5: A plot of simulated and calculated streak length versus bunch duration.

as a function of bunch duration. The solid line is the analytical result from section 3.1,
equation (3.4). The main quantitative discrepancy between calculation and simulation lies in
the classical approximation in the calculation. A proper relativistic calculation using p = γmv,
as done in appendix C shows that the classically calculated deflection angle θ should be divided
by γ which equals 1.20 for 100 keV electrons. Furthermore a different interaction length d has
been used, which gives a difference of almost 1%. With these adaptations the calculation gives
the result shown as the dashed line. The remaining difference of approximately 3% may result
from combinations of the effects described in this chapter (higher order effects) and from a
variation of t0 which can be a few ps because the phase of the cavity is not exactly correct.
The cavity phase φ0 has been adjusted until the average deflection angle θ = 0. Then ωt0 +φ0

will be zero. Limited accuracy in φ0 gives an offset in the deflection angle of a few mrad. We
therefore conclude that for a pillbox cavity the streak is given by ∆θ = 4.9 · 109tb (SI units).
The ’real’ field simulations give ∆θ = 3.1 · 109tb.
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Figure 3.6: This graph shows the change in size in the x-direction of an electron bunch as a
function of the original size.

3.5.2 x-Direction

Next the streak length dependence on the bunch size in x-direction is studied. Therefore a line
bunch is created with no length in y- or z-direction, so created at one point in time. The rest
is the same as before. Figure 3.6 shows the simulation results. The streak length xstr minus
the starting size x0 is plotted against the bunch’s starting size x0. The solid line represents
the non relativistically calculated values. These have been calculated by substituting ∆tE of
equation 3.14 as bunch duration tb into equation 3.4. They differ only quantitatively with
the simulation results. A relativistic calculation as given in appendix C and presented by a
dashed line in figure 3.6 differs only 9% from simulations. This difference may be ascribed to
a variation of t0 and higher order effects, as in the previous section.

As these simulations show, the extra length of the bunch is ∆tE = 4.2 · 10−10x0 for the
pillbox cavity and ∆tE = 1.2 · 10−10x0 for the ’real’ field. Then the change in streak length
δθ due to x0 is given by δθ = 2.05x0 for a pillbox cavity and by δθ = 0.37x0 for the real field
(all in SI units).
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Figure 3.7: Calculated and simulated electron trajectories in the streak cavity.

3.5.3 Curved trajectory

As described before in section 3.3.3, the bunch follows a curved trajectory. In figure 3.7
the average x-position of the bunch in the simulation is plotted against time. The solid line
represents the trajectory as calculated non-relativistically in equation (3.17) for tc = 0 and
B0 = 16.7 mT. The dashed line shows the trajectory for a relativistic calculation. Even for
this calculation there is a large difference (more than 20%) with the simulation. In both
calculations tc = 0 is assumed, but from the simulation results we can see that after passing
through the cavity the bunch has a small but non-zero average deflection angle θ. This means
that tc is not exactly zero, and from θ we find tc = 0.2 ± 0.05 ps, which gives only a small
deviation. The remaining difference will be a result of higher order effects such as acceleration
of the bunch in the cavity.

The simulations for the ’real’ field show only 0.3 mm sideways displacement in the cavity.
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Figure 3.8: Front view of the bunch before it has passed the cavity (left) and after it has passed
the cavity (right).

3.5.4 y-Direction

Equation (3.9) shows that By decreases with the square of y. To show this dependence we use
the curved trajectory of the previous section. The simulation now starts with a bunch with
a length only in y-direction. This bunch follows a curved trajectory while in the cavity, but
a bit less sideways for large y values. Figure 3.8 shows a front view of the bunch before and
after passing the cavity. It shows the y2 dependence and it shows that for values of y smaller
than 1 mm, as we expect to use, By can be assumed to be independent of y.

3.5.5 Momentum spread

In order to study the influence of a change in momentum, several simulations have been done
with different momentums. Bunches are simulated with a size in z-direction of 0.5 ps, no
transverse size and momentum is the same for each electron in the bunch. The results of
these simulation runs are give in figure 3.9, where the streak length is plotted against the
starting momentum of the bunch. The solid line gives the calculated result of section 3.2, i.e.
equation (3.8) multiplied with the z-position at which the streak length is measured. For the
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Figure 3.9: This plot shows the streak length as a function of the momentum of the electron
bunch.

simulation that is 100 mm, measured from the cavity center. The calculation is off at two
points. Firstly it gives a 20% larger streak length than the simulation, just like in section
3.5.1. The relativistically calculated dashed line is more accurate in that respect. Secondly
the calculation shows that electrons with either smaller or larger momentum than pz0 will be
streaked less than electrons with momentum pz0 . After all, the pillbox cavity was designed
to have the optimal momentum to be pz0 , by optimizing the cavity length. The dashed line
is calculated with the same cavity length as the simulations, d = 25 mm, which is slightly
less than the optimal 27.4 mm. This shifts the optimal momentum to a lower value. The
simulation appears to give an optimal momentum which is even lower than expected. This
is bound to be a result of the net acceleration that the bunch experiences. We are thus no
longer operating the cavity with electron momentum around the optimal value. Therefore the
streak length depends more or less linearly on electron momentum. As the simulations show,
we can approximate the change in streak length δθ due to δp with δθ = −0.37δpz

∆θ
pz0

for the
pillbox cavity. So 1% momentum change causes 0.4% change in streak length. For the real
field this is δθ = −0.95δpz

∆θ
pz0

.
For a bunch with momentum spread the streak length will depend on momentum distribu-
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tion. Typically the streak length will be determined by the slowest electrons. However, when
the fastest electrons are at the front of the bunch and the slower ones at the back, the front
half of the bunch will produce a shorter streak and the back half a longer streak. This way
the streak length of the bunch will be nearly the same as if it had no momentum spread.

3.6 Conclusion

From the calculations and simulations described in this chapter it can be concluded that mea-
suring electron bunch durations from tens of femtoseconds to tens of picoseconds is possible.
Table 3.1 summarizes the results of this chapter for both the classical and the relativistic
calculation as well as for the simulation. The y-dependence is left out, because it is negligible.
Values we expect in our measurements are given in table 3.2. From this can be concluded
that effects from momentum spread can be neglected. In the following two sections we will
substitute the values of table 3.2 into the equations of table 3.1, for 8 different combinations
of the parameter values, and discuss the results. Tables 3.3 and 3.4 finally summarize these
results.

Table 3.1: Equations describing the performance of the streak cavity, in SI units. The equations
are derived from a classical calculation, a relativistic calculation and (relativistic) simulations
all for B0 = 16.7 mT. The calculations concern the pillbox fields.

Classical Relativistic Pillbox ’Real’ field Field strength
calculation calculation simulation simulation dependence

streak length ∆θ 5.9 · 109tb 4.9 · 109tb 4.9 · 109tb 3.1 · 109tb ∼ B0

∆tE 5.4 · 10−10x0 4.5 · 10−10x0 4.2 · 10−10x0 1.2 · 10−10x0 ∼ B0

δθ(x0) 3.2x0 2.2x0 2.05x0 0.37x0 ∼ B2
0

δθ(δpz) - - −0.37δpz
∆θ
pz0

−0.95δpz
∆θ
pz0

Table 3.2: Expected values for experimental quantities.
Quantities in experiment expected values
bunch duration 10 fs - 10 ps
momentum spread δp/pz0 1%
angular spread 1 mrad
transverse bunch size x0 10 µm - 1 mm
distance from cavity to capturing screen 100 - 500 mm
magnetic field amplitude B0 0 - 8 mT

3.6.1 Discussion of pillbox cavity performance

10 ps bunch, B0 = 16.7mT

When measuring long bunches we can put the screen at Z = 100 mm from the cavity. Then
the spot size due to angular spread is xs = 1.1 mm. The streak length will be xstr = 4.9 mm,
so much larger than the spot size and easy to measure.
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Since transverse size is approximately 1 mm, lengthening due to the electric field gives an
extra streak length xE = 0.2 mm, only 4%. Thus, the bunch duration can be easily measured
with 4% accuracy.

10 ps bunch, B0 = 8 mT

With the screen still at 100 mm spot size is 1.1 mm, streak length will be 2.3 mm. Lengthening
will be only 0.05 mm. Now the streak length change of 0.4% due to energy spread has to be
taken into account. All together, the bunch duration can be measured easily with an accuracy
of 2%.

10 fs bunch,B0 = 16.7 mT

To measure this tiny bunch duration we put the screen as far away as possible, Z = 500 mm.
Even then the streak length will be only 25µm, thus hard to measure. The spot size is 1.5 x0

and lengthening is equal to x0, where we can choose x0 with an aperture. To have a streak
length of 10% of the spot size so we can just measure it, we need an aperture size x0 = 170µm.
To get only 10% lengthening the aperture has to be 3 µm. Since this is impossible, we will
need to measure with different apertures and extrapolate to zero aperture size.

10 fs bunch, B0 = 8 mT

Again we use Z = 500 mm, to find a streak length of just 12 µm. Thus for a reasonable spot
size we need x0 = 80µm. To get 10% lengthening an aperture of 5µm is required, so we will
need to extrapolate to that.

Measuring 10 fs bunch duration clearly is a challenge, but not impossible.

3.6.2 Discussion of ’real’ field cavity performance

10 ps bunch, B0 = 16.7mT

When measuring long bunches we can put the screen at Z = 100 mm from the cavity. Then
the spot size due to angular spread is xs = 1.1 mm. The streak length will be xstr = 3.1 mm,
so much larger than the spot size and easy to measure.

Since transverse size is approximately 1 mm, lengthening due to the electric field gives
an extra streak length xE = 0.04 mm, only 1%. Now the streak length change of 1% due to
energy spread has to be taken into account. All together, the bunch duration can be measured
easily with an accuracy of 2%.

10 ps bunch, B0 = 8 mT

With the screen still at 100 mm spot size is 1.1 mm, streak length will be 1.5 mm. Lengthening
will be only 0.01 mm. Now the streak length change of 1% due to energy spread has to be
taken into account. All together, the bunch duration can be measured easily with an accuracy
of 2%.
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10 fs bunch,B0 = 16.7 mT

To measure this tiny bunch duration we put the screen as for as possible, Z = 500 mm. Even
then the streak length will be only 15µm, thus hard to measure. The spot size is 1.5 x0 and
lengthening is equal to 0.19x0, where we can choose x0 with an aperture. To have a streak
length of 10% of the spot size so we can just measure it, we need an aperture size x0 = 100µm.
To get only 10% lengthening the aperture has to be 8 µm. Since this is impossible, we will
need to measure with different apertures and extrapolate to zero aperture size.

10 fs bunch, B0 = 8 mT

Again we use Z = 500 mm, to find a streak length of just 7 µm. Thus for a reasonable spot
size we need x0 = 50µm. To get 10% lengthening an aperture of 18µm is required, so we will
need to extrapolate to that.

Table 3.3: Summary of the performance of the pillbox cavity.
Bunch duration 10 ps 10 ps 10 fs 10 fs
B0 16.7 mT 8 mT 16.7 mT 8 mT
Z screen-cavity 100 mm 100 mm 500 mm 500 mm
streak length xstr 4.9 mm 2.3 mm 25 µm 12 µm
spot size xs 1.1 x0 1.1 x0 1.5 x0 1.5 x0

streak lengthening xE 0.2 x0 0.05 x0 1.03 x0 0.24 x0

streak length accuracy 4% 2% (10%) (10%)
transverse bunch size /aperture x0 1 mm 1 mm 0.17 mm / 2.5 µm 80 µm/ 5 µm

Table 3.4: Summary of the performance of the ’real’ field cavity as designed in this thesis.
Bunch duration 10 ps 10 ps 10 fs 10 fs
B0 16.7 mT 8 mT 16.7 mT 8 mT
Z screen-cavity 100 mm 100 mm 500 mm 500 mm
streak length xstr 3.1 mm 1.5 mm 15 µm 7 µm
spot size xs 1.1 x0 1.1 x0 1.5 x0 1.5 x0

streak lengthening xE 0.04 x0 0.01 x0 0.185 x0 0.04 x0

streak length accuracy 2% 2% (10%) (10%)
transverse bunch size / aperture x0 1 mm 1 mm 0.1 mm / 8 µm 47 µm/ 18 µm
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Chapter 4

Cavity design

To get the required field mode, a right cylinder will suffice, which is simple to design. This right
cylinder cavity or pillbox cavity was the basis for the calculations in the previous chapter. This
was useful for gaining understanding of the operation of the streak camera. It was assumed
that in the cavity the magnetic field along the z-axis is constant, of magnitude B0 and pointing
in the y-direction. This is correct for a closed pillbox, but introducing holes in the top and
bottom to let electrons pass through changes this magnetic field profile. The profiles are
shown in figure 4.1. for both profiles we will define B0 as the magnetic field amplitude in the
center of the cavity, thus as the maximum field on the z-axis. This is no longer the maximum
magnetic field in the cavity.

The holes in the cavity also cause an electric field Ex(0, 0, z) along the z-axis, which is
shown in figure 4.2. Its maximum will be called Emax, even though there may be a higher Ex

field elsewhere in the cavity.

To get a field amplitude of B0 = 16.7 mT in a pillbox cavity, as was used in the previous
chapter, 13.4 kW is required. For half the field amplitude, B0 = 8 mT, we need 3.1 kW.
Applying that much power to a small component in an electron microscope is bound to cause
large disturbances. Furthermore we want to keep the power supply to the cavity compact. We
want to use a compact solid-state amplifier and coaxial cables with a small loop antenna for
coupling the 3 GHz signal into the cavity. The amplifier can deliver up to 1 kW of power. For
larger power a larger setup is required with a big klystron for power generation and rectangular
wave guides for incoupling.

In order to decrease the power consumption of the cavity, an alternative shape has been
designed. To calculate the power usage simulations have been done with CST Microwave
Studio [1]. Because the required field is not rotationally symmetric, it cannot be calculated
with a two-dimensional solver such as superfish [3], which is commonly used for cavity
design. The final energy-efficient cavity shape is shown in figure 4.3. With this shape only 860
W is required for a field amplitude B0 = 8 mT. Although this is only half the field amplitude
of that used in the calculations of the previous chapters, it still is sufficient for the desired
application. This chapter describes the design process of the energy-efficient cavity.

39
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Figure 4.1: Magnetic field profile for pillbox cavity with and without holes.

Figure 4.2: Electric field profile for pillbox cavity with holes.
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Figure 4.3: This cross-section of the rotationally symmetric cavity shows the efficient shape.
The dashed line indicates the size of the pillbox cavity as used for the calculations of chapter
3.1. The electrons pass through along the dotted line, the z-axis.

4.1 Design starting point

The starting point for the simulations is a hollow cylinder. From the calculations of section
2.2 follows that the radius R should be 61 mm to get the cavity at the correct resonance
frequency. By choosing a length d ≈ 25 mm, the region with a significant magnetic field
strength By can be made such that electrons pass through in approximately half the period
of the RF field. One other requirement is that electrons can pass through along the z-axis.
Therefore an entrance and an exit hole of 6 mm diameter are required.

Figure 4.4 shows the cylinder with the above mentioned dimensions. In the simulation
the cavity material is assumed to be a perfect electric conductor. The space inside the cavity
is assumed to be perfect vacuum. The holes in the top and bottom of the cavity are closed
at z = ±50 mm. Since at this point the field strength is nearly zero, this will not affect
the simulation results. With the shape of the cavity as an input, the program calculates the
resonance frequencies ω of the cavity and the corresponding field distributions. To calculate
the quality factor Q from these results, the conductivity of the cavity wall is assumed to be
that of copper. Then the energy dissipation due to surface currents in the cavity wall can be
calculated rewriting equation (2.10)

Ploss =
ωU

Q
(4.1)

Where U is the total stored energy in the electromagnetic field. For a pillbox cavity as used
for calculations, so with radius R = 61 mm and a thickness d = 25 mm, at a field strength
B0 = 8 · 10−3 T, Ploss and thus the required input power is 3.4 kW.
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Figure 4.4: Starting point for the cavity design is a right cylinder.

4.2 First variation

Now the dimensions and the shape of the cavity will be varied. For that purpose the vacuum
inside the cavity is simulated as three concentric cylinders. The inner cylinder has a radius
of 3 mm and a length of 100 mm, it represents the holes in the cavity for electron passage.
The inner cylinder is kept the same for all simulations. The middle cylinder has outer radius
R2 and inner radius 3 mm. It has a length d2. The outer cylinder has inner radius R2,
outer radius R3 and length d3. The starting values are chosen R2 = 30 mm, R3 = 60.9 mm,
d2 = 15 mm and d3 = 50 mm. These parameters are varied one by one and the resulting
power requirement is calculated. The result is plotted in figure 4.6. To get the lowest power
consumption the following values are taken R2 = 23 mm, d2 = 10 mm and d3 = 55 mm from
now on. This change in dimensions naturally has its effect on the resonant frequency. To
get the frequency right the dimensions can be changed somewhat around the chosen optimal
values. This will be done later. R3 is kept constant for now at 60.9 mm, changing it has
little effect on the power consumption but a rather large effect on frequency. The resulting
shape after this optimization step is shown in figure 4.5. These chosen values for the three
parameters R2, d2 and d3 are not the best possible values. As described above, they were
varied independently. To find the optimal values the entire 3D parameter space should be
investigated, which requires much calculation time. The chosen values give a result which is
good enough though, since with this shape approximately 1.1 kW is needed for B0 = 8 mT.

Its efficiency can more or less understood as follows. The power loss scales as

Ploss ∼ B2Aδ (4.2)

Where B is the field strength in the cavity (actually the field at the cavity wall), A is the wall
area and δ is the skindepth, the distance the fields extend into the wall, which is typically of
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Figure 4.5: The first changes for decreasing the power usage of the cavity are done by dividing
the cavity into three parts and varying their sizes.

the order of micrometers. The energy U stored in the cavity scales as

U ∼ B2V (4.3)

With V the cavity volume. Assuming U constant and a simple cylindrical cavity geometry we
find

Ploss ∼
A

V
∼ 1

d
(4.4)

So to decreases losses the cavity length should be increased, but this also decreases field
strength. To obtain large field strength around the axis we keep d small there, while making
it large otherwise.

4.3 Rounding

The next step in optimizing the cavity is rounding off the edges. Instead of a 90◦ angle circular
edges are made with radii c0 through c3. This is illustrated in figure 4.7, which shows the
cavity cross-section with optimal radii. As the graphs in figure 4.8 show, the optimal values
are c1 = 8 mm and c3 = 25 mm, while the edges c0 and c2 are best kept right, so zero radius.
Because a right edge is hard to machine, c0 is chosen 1 mm and c2 = 3 mm radius. With

these rounded edges, power demand for the cavity has come just under 1 kW for B0 = 8 mT.
To get the cavity at the intended frequency of 2997.9 MHz some dimensions have been

varied to get most frequency shift at the least cost of increased power usage. This gives the
final cavity dimensions of R3 = 66.20 mm, c3 = 32.7 mm, h3 = 82 mm and the rest as given
before. The choice for exactly this frequency will be explained in section 4.6.
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(a)

(b)

(c)

Figure 4.6: These graphs show the power usage as a function of several cavity dimensions.
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Figure 4.7: Cavity cross-section with rounded edges.

4.4 Further optimization

Although the result from the previous section is the cavity that has actually been built, further
improvements are possible. One way to reduce the power usage of the cavity even further is
to abandon rotational symmetry. As a simple example of this, the cavity can be "squeezed"
in one direction while otherwise keeping all sizes the same as shown in figure 4.9. When we
adapt the same coordinate system as used to describe the field mode in section 2.2, the on-axis
magnetic field points in y-direction. If we then reduce the cavity size in y-direction, we reduce
the volume where the magnetic field is large, without affecting magnetic field along the z-axis.
This should result in reduced power losses. As figure 4.10 shows, a substantial reduction in
power loss can indeed be achieved this way, up to 30% for a ratio y/x = 0.4. This looks
very promising, but since it is not possible to construct a non-rotationally symmetric cavity
to within the required accuracy of 10 µm, such cavities are not investigated any further here.

Other optimizations that may be conceivable concern the goals of optimization. While
here the goal was to use as little power as possible for an on-axis maximum field strength
of 8 mT, other goals may yield different cavity shapes. For example the magnetic field By

integrated along the z-axis could be considered instead of simply its maximum along the z-
axis, or the electric field Ex along the axis. Alternatively, an other cavity shape could give a
certain preferred field aberration, a certain profile along the z-axis or a less disturbing electric
field distribution around the z-axis.
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(a) (b)

(c) (d)

Figure 4.8: These graphs show the power usage as a function of edge radius.
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(a) (b)

(c) (d)

Figure 4.9: The magnetic field distribution for z = 0 in a cylindrically symmetric cavity (a)
and in a cavity which is "squeezed" (b) so its size in y and x direction differs. The magnitude
of the longitudinal electric field Ez of both is given in (c) and (d) respectively. For a ratio of
y/x = 0.4, up to 30 % power reduction can be achieved relative to the y/x = 1 ratio in (a).
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Figure 4.10: A graph of the power usage as a function of the ratio y/x.



4.5. ACCURACY 49

4.5 Accuracy

To calculate the field distribution for any cavity shape the electromagnetic field simulation
program CST Microwave Studio has been used, which features an eigenmode solver to calculate
field modes in a closed cavity. To perform the calculations the cavity shape is subdivided into
small cells that form a mesh, a three dimensional grid. Although some error may originate
from the field calculation itself, the main source of inaccuracy is the finite resolution of the
mesh. Because of limited computing capacity and to keep computation times workable, the
field and power loss calculations during cavity shape optimization have been done with some
ten thousand mesh cells. With this mesh density the resonant frequency of the mode can be
off by as much as 5% and the power loss can have an error of up to 10% or even 20%. This
error is so large because the power loss is calculated from the frequency, quality factor and
field strength, so that simulation errors will add up.

While the magnitude of the power loss is rather inaccurate, the dependence of power loss
on cavity shape variations is not expected to differ so much. Therefore optimizing power
consumption of the cavity is expected to work out fine even for low mesh quality.

A high accuracy of the resonant frequence of the cavity is required when it is used together
with another cavity. This will be described in the next section. To calculate the frequency
of the final design to within an accuracy of 0.1 MHz, a long series of simulations has been
done with an increasing number of mesh cells. The result of this series is shown in figure 4.11,
where the calculated frequency is plotted against the number of mesh cells used.

To verify the accuracy of the simulation an aluminium prototype cavity has been con-
structed before the final copper cavity. The aluminium prototype cavity had somewhat differ-
ent dimensions, giving a calculated frequency of 3002.06 ± 0.01 MHz. The measured resonant
frequency of the aluminium cavity, after correction for the air pressure, is 3002.4 ± 0.2 MHz
in vacuum. The final copper cavity has a calculated resonant frequency of 2997.75 ± 0.05
MHz. The measured frequency is 2998.0 ± 0.2 MHz. The difference between simulated and
measured values is approximately 0.3 MHz. Other types and shapes of cavities have been
constructed in a similar way, where differences were of the order of 1 MHz. The differences
between simulated and calculated values can have several causes.

• Machining errors. Simulations show that varying R3 over 10 µm, which is the machining
accuracy, gives a variation of 0.3 MHz in resonant frequency.

• Cavity deformation during brazing. The cavity is made from two parts which are sol-
dered together at high temperature (up to 700◦C)in vacuum during 8 to 12 hours. Stress
in the material, introduced during manufacturing, which relaxes during heating, may de-
form the cavity. To prevent this effect the cavity described in this thesis has been heated
before the last, most accurate machining step. Probably as a result of this, the frequency
shift during soldering was only 0.2 MHz.

• Volume change from antenna. To drive the field inside the cavity a small loop antenna
(ca. 120 mm3) is inserted into the cavity. The cavity volume will decrease as a result,
but the frequency difference will be of the order of 10 kHz.

• CST Microwave Studio simulation error. Although simulations appear to converge quite
well, to within 0.05 MHz of the final value, there might still be some remaining systematic
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Figure 4.11: The calculated resonant frequency of the cavity depends on the number of mesh
cells used in the calculation. For a large number of cells, the frequency converges to a final
value. The rightmost result required 5 hours calculation time.
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error. This could be investigated by comparing simulation results on a pillbox with
analytical results.

• Finite conductivity. For frequency calculations in the simulations perfect conductivity
of the cavity wall material is assumed. Since conductivity is in practice finite, boundary
conditions differ resulting in a frequency shift. As was mentioned in section 2.3 this will
be approximately −0.3 MHz.

It can be concluded that the simulations give a good frequency calculation, with an error of
less than 10−4, as long as the mesh is chosen dense enough.

4.6 Tuning

In the setup where we want to use the cavity as a streak camera, we will use it together with
another cavity. It is important to note that in order to use two or more cavities simultaneously,
they have to be excited at exactly the same frequency. This is necessary because for both
cavities the phase of the RF field at the moment the bunch passes the center of the cavity is
crucial for its proper operation. To ensure that the phases of both cavities are locked, the RF
fields of both cavities are derived from a single source.

As equation (2.17) shows, the cavities have a certain bandwidth of frequencies they can
absorb. Since the designed cavity has a quality factor of approximately 9000, its absorption
spectrum has a FWHM of approximately 0.3 MHz. Thus if the resonant frequencies of the
cavities differ 0.3 MHz and they are driven at their average frequency, they both absorb 50%
of the signal they receive. That means that 50% of the total power is reflected to the amplifier.
This requires a setup that can handle so much reflection and it limits the amount of power
you can deliver to the cavities. Reducing reflection to 10% requires a frequency difference of
0.1 MHz or less between cavities. With the design method described before and a machining
accuracy of 10 µm cavities can be designed with an accuracy of 0.3 MHz. Clearly, this is not
sufficient for using two cavities simultaneously. For fine-tuning the resonant frequency a few
options exist.

• Temperature change. By heating or cooling the copper of the cavity its volume and
therefore its frequency will change, at approximately 0.05 MHz/K. Controlling the tem-
perature of the cavity is troublesome work, however, which we hope to avoid.

• Tuning plunger. By introducing a metal plunger into the cavity, its frequency will in-
crease because of the change in cavity volume. By choosing a proper width and length
of the plunger, 1.5 MHz change is possible. Such a tuning stub has been implemented
in the cavity, so its frequency can be varied over this range easily. This will be described
in more detail in section 5.3. From simulations is concluded that the plunger does not
significantly influence the fields near the z-axis.

4.7 Design results

In this section the simulated results of the designed cavity will be given. The main goal
of the design was to reduce the power usage of the cavity. Figure 4.12 shows the magnetic
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Figure 4.12: Peak magnetic field on the central axis of the final cavity as a function of power
input.

field amplitude B0 at the center of the cavity as a function of power input Pin. A magnetic
field with B0 = 8 mT requires 880 ± 25 W and furthermore Pin ∼ B2

0 . The magnetic field
amplitude on the z-axis is given in figure 4.13a, figure b gives the electric field. Off course the
field strength depends on the amount of power input, but if B0 = 8 mT then Ex,max = 7.9 ·104

V/m. To compare the effect of the electric and magnetic field, the magnetic field has to be
multiplied with the electron velocity at 100 keV, which gives vzB0 = 1.31 · 106 V/m. Thus we
can conclude that the effect of Ex on the streak length can be neglected; the effect of By is
much larger. Table 4.1 summarizes the main properties of the cavity.
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(a) (b)

Figure 4.13: The magnetic (a) and electric (b) field profile along the z-axis.

Table 4.1: Cavity properties as derived from simulation, for B0 = 8 mT.
Parameter value
2πω 2997.75± 0.05 MHz
Q 11630± 20
Pin 860± 20 W
Ex,max 7.9 · 104 V/m
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Chapter 5

Cavity characterization

After the more efficient cavity shape had been designed as described in the previous chapter,
a prototype was constructed. With this prototype the simulations could be validated and the
construction method could be tested before the final cavity was constructed. The prototype
was made for operation at normal air pressure, so without vacuum seals or flanges. Further-
more a hole was made in the side of the cavity, after the first measurements were finished, to
test the tuning of the cavity by inserting a tuning plunger into it. The prototype was made
from aluminium with a machining accuracy of 10 µm.

With the measurement results on the prototype, the cavity dimensions for the final design
were slightly altered to obtain the correct resonant frequency. Furthermore the optimal tuning
plunger size was implemented. The final cavity has been constructed from copper with vacuum
seals to enable operation at low pressure. Before any measurements could be performed, an
antenna had to be inserted into the cavity. The antenna is a small loop wire, inserted into
the cavity as shown in figure 5.1, through a hole that enables rotation of the antenna. A
radio frequency current through the wire will create a varying magnetic field through the
loop antenna. This will create the desired TM110 field mode in the cavity. By rotating the
antenna, the magnetic flux component parallel to the TM110 field can be changed. This way
the absorption of the cavity can be optimized. Several measurements have been performed,
both on the aluminium prototype cavity and the final copper cavity. First the absorption by
the cavity of an RF signal as a function of its frequency will be described in section 5.1. From
this measurement the resonant frequency of the cavity can be determined. Next, the fields
on the z-axis of the cavity have been measured, as will be described in section 5.2. Then, in
section 5.3 the tuning of the cavity to the correct frequency will be considered and finally its
behavior when used at maximal desired power is described in section 5.4.

5.1 Absorption

To measure the absorption of RF power by the cavity, we have used a network analyzer. This
sends a low-power RF signal into the cavity through a coaxial cable with a loop antenna
and measures the amplitude and phase of the reflected signal. The network analyzer sweeps
the signal frequency through a given range and displays a plot of the amplitude or phase of
the reflected signal as a function of frequency. Measuring the absorption with the network
analyser gives the result shown in figure 5.2. The measurement is fitted with a Lorentzian.
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Figure 5.1: Loop antenna, inserted into the cavity through a small hole in the wall. The
antenna transfers RF power from the coaxial transmission line to the cavity.



5.1. ABSORPTION 57

Figure 5.2: RF signal absorption by the copper cavity. The measurement result is fitted with a
Lorentzian as described in section 2.3
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Using equation (2.17) we can then find the resonant frequency of the cavity and its quality
factor Q. The measurement on the copper cavity of figure 5.2 gives a resonant frequency of
2.99950 GHz and QL = 4.3 · 103.

This measured QL is in fact the quality factor of the entire setup of cavity and power supply,
which in this case is the network analyser. It is called the loaded QL and is approximately
half the unloaded Q0 of the cavity itself. So the unloaded Q0 of the cavity is 8.6 · 103. The
simulations of chapter 4 gave Q0 = 11630± 20.

The resonant frequency is usually just read from the network analyser as the point with
maximum absorption. This gives a difference of only 0.01 MHz from fitting the entire curve.

5.2 Field profile

In order to verify that the field in the cavity is indeed as the simulations of section 4.7
suggest, the field strength on the z-axis has been measured. This has been done by placing a
small object on various positions along the axis and measuring the resulting shift in resonant
frequency ω0 of the cavity. This frequency shift is caused by the change in volume of the
cavity and is given by [11]

∆ω

ω0
= −3ε0∆V

4W

(
εr − 1
εr + 2

E2 +
µr − 1
µr + 2

B2c2

)
(5.1)

Here W is the total stored energy in the cavity, ∆V is the volume of the small object introduced
into the cavity, its relative dielectric constant is εr and its relative magnetic permeability is
µr. E and B are the unperturbed electric and magnetic fields strength at the position of the
introduced object.

From simulations of section 4.7 we know that Bc is at least 10 times E on the z-axis,
so measuring the magnetic field profile is relatively easy. For this purpose we glued a small
piece of iron to a 0.05 mm diameter fishing line, to move it through the cavity. The line is
suspended from an electric micrometer to measure the displacement of the iron piece. Iron
has a large µr as well as εr, so that we can write

∆ω ∼ E2 + B2c2 ∼ B2 (5.2)

and measuring the frequency shift allows us to calculate the on-axis magnetic field profile.
The result is shown in figure 5.3 as well as the simulation result. The difference between these
two is less than 2 % except at the ends, where the measurement is less accurate because of
the small fields there.

Measuring E on the axis with this method was unsuccessful. The maximum frequency
shift when measuring B with the piece of iron was 400 kHz. For E this will not be more
than 1 kHz if you use a material with high εr and µr very close to unity. If µr is more than
1.01, B already has a larger effect on frequency shift than E. Besides, temperature variations
disturb the measurements. The resonant frequency depends linearly on cavity diameter, so
using the thermal expansion coefficient of copper kT = 17 · 10−6K−1 we can calculate that 1
K temperature change causes a frequency change of 50 kHz.
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Figure 5.3: The measured and simulated magnetic field amplitude on the z-axis. With the axial
fields known, the fields in the entire cavity are known.
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5.3 Cavity tuning

The cavity described in this thesis will be used in a streak camera setup. Therefore we shall
refer to it as streak cavity. Eventually, it will be used together with another cavity, a focusing
cavity [7]. The cavities were designed and machined nearly simultaneously. First a prototype
of both cavities was constructed, after which both designs were adjusted and the final cavities
were constructed.

When operating the cavities together we want to drive them at the same frequency. To
have enough absorption in the cavity they have to be tuned to within 0.1 to 0.3 MHz of each
other, depending on absorption requirements. Therefore the streak cavity is fitted with a
tuning plunger which can increase its resonant frequency. Thus the streak cavity has to be
designed at a frequency somewhat below the design frequency of the focus cavity.

When the aluminium prototype cavities were constructed it was measured that the res-
onant frequency of the focus cavity was 0.2 ± 0.1 MHz lower than the simulated resonant
frequency. For the streak cavity the resonant frequency was 0.3 ± 0.2 MHz higher than simu-
lated. Now it was assumed that this difference was at least partly due to the used simulation
program, since a different program has been used for each cavity. Therefore the difference
between measurement and simulation is taken as a correction on the simulated frequency for
the final cavity. So if simulations give a resonant frequency of 2997.75 ± 0.05 MHz for the
streak cavity, we expect that after construction we will measure 2998.1 ± 0.3 MHz. The
large error results mainly from the measurement. Although the frequency is measured quite
accurately, it varies between measurements, most likely due to temperature variation. This
gives a range of expected frequencies. Now we want to make sure that the range of the streak
cavity is below the range of the focus cavity. Then using the tuning plunger the frequencies
can be made equal. This requires a plunger which can increase the frequency at least 0.8
MHz. Different plungers have been tested on the aluminium prototype cavity. In figure 5.4
the frequency shift has been plotted against the length L of the plunger inside the cavity. A
negative length means the stub is retracted into the cavity wall, resulting in a hole with depth
−L. Also in this figure are some simulation results from CST Microwave Studio [1] where
plungers were simulated in a broader range of length and radius.

There can be some offset in the measured data, because it is difficult to say when exactly
the plunger has no length in the cavity. The error will be 1 mm at most. Otherwise, the
measurements and simulations are in good agreement. After this test we decided to use a
plunger of 14 mm diameter and up to 10 mm length, which allows tuning over a comfortable 1.5
MHz. Figure 5.5 shows the simulated frequencies for the final cavities as well as the expected
frequencies. Also shown in this figure are the actual frequencies of the cavities as measured
after construction. Before brazing, these indeed lie in the expected range. However, the
cavities are constructed in several parts which have to be brazed together at high temperatures.
When this was done with the focus cavity its resonant frequency appeared to have increased
0.9 MHz probably as a result of deformation due to annealing during brazing. To prevent
or at least decrease this change for the streak cavity, it was heated and thus annealed before
the last, very accurate machining step. This way stresses in the material could relax without
changing the resonant frequency. Indeed, the resonant frequency of the streak cavity changed
very little during brazing. Screwing the tuning plunger as far as construction allowed into the
cavity turned out to be just enough to get the streak cavity to the same frequency as the focus
cavity. Figure 5.6 shows the frequency shift as a function of the length L of the plunger inside
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Figure 5.4: Cavity tuning with a tuning plunger. The resonant frequency can be increased, to
a maximum, or slightly decreased. A negative length means the plunger is retracted into the
cavity wall, creating a hole. Measurements have been performed on the aluminium prototype.
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Figure 5.5: Resonant frequency of focus cavity and streak cavity for different steps in design
and production process. Starting on the left are shown the frequencies from simulations and
then, derived from the simulations, the frequency range in which the frequency is expected to
lie after construction. When this frequency was measured after construction, before brazing,
it was found to lie in this range indeed. The frequency changed substantially during brazing,
in particular for the focus cavity, but the frequencies can still be made equal with the tuning
plunger.
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Figure 5.6: Resonant frequency for different plunger lengths in the aluminium prototype and
final copper cavity.
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the cavity. Because of some solder leaking into the screw thread during brazing the plunger
can only be moved over a short range. Therefore three plungers of different lengths were used.
Again it is hard to determine the point where L = 0, so there is some offset remaining on both
axes. In the figure the offset is chosen to best fit the measurement on the aluminium cavity.
It is possible to use a longer plunger to increase the frequency further if required. However,
the frequency will probably increase only some 0.2 MHz before decreasing as in figure 5.4.

5.4 High-field operation

When operating the cavity for electron manipulation the setup as shown in figure 5.7 is used.
An RF signal is generated by a Rohde&Schwarz SM300 signal generator. It can be tuned from
9 kHz to 3 GHz and delivers 10 mW of output power. This signal is amplified using a 3 GHz 1
kW solid state high power amplifier model AM 84-3S2-50-60R from Microwave Amps Ltd. It
can be operated at a frequency of 2.998 ± 0.02 GHz, delivering up to 850 W of output power
to the cavity through a coaxial cable with a loop antenna. The amplifier has to be operated
in pulsed mode, so it has to be enabled with block pulses of 10 µs duration at a frequency of
1 kHz. With this setup supplying power to the cavity we can measure the absorption in the
cavity by placing a directional coupler between the amplifier and the cavity. Then the forward
and reflected signal can be measured with an oscilloscope. The 3 GHz signal is too fast to be
sampled by the oscilloscope, but it does show the envelope of the RF pulse.

When the reflected power is minimal the applied frequency is the resonant frequency of
the cavity. Thus, when the frequency of the applied signal is varied the amount of reflected
power changes. By constantly monitoring the applied and reflected power it is found that the
resonant frequency gradually decreases (presumably by heating of the cavity) while the setup
is running. The resonant frequency as a function of the duration of the measurement is shown
in figure 5.8 The frequency decrease is most likely a result of the increasing cavity size which
is due to heating by energy dissipation in the cavity wall. Since nearly all the RF energy is
absorbed by the cavity a time-averaged 9 W is dissipated in the cavity walls. The frequency
decreases approximately 0.3 MHz, which corresponds with a temperature increase of 6 K.

A similar thing will happen with the focus cavity. In fact, because it is smaller it heats
up more and faster than the streak cavity, so its frequency decreases more. With a power
input of 850 W it decreases 0.8 MHz in resonant frequency. It does not need that much power
for normal operation, though. The plan is to operate both cavities with the same power
supply, so the power will be split between them, probably using 200 W for focusing and 600
W for the streak cavity. This will result in a frequency decrease of around 0.2 MHz for both
cavities, although the exact value will have to be measured. If they should end up at different
frequencies the tuning plunger length has to be adjusted. The current plunger probably has
enough range to allow this. The design of the streak cavity is such that to move the tuning
plunger, the vacuum has to be broken. This is somewhat inconvenient, but once the frequency
is tuned correctly, it should not require any further tuning.

To calculate the field strength B0 in the center of the cavity, we use equations (2.10) and
(4.3) with the simulation result that for U = 1 J, B0=0.3467 T. This gives

B0 = 0.3467
√

PinQ

ω0
(T ) (5.3)
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Figure 5.7: A schematic of the 1 kW setup as used for driving the cavity with up to 1 kW RF
power. The power applied to and reflected from the cavity are measured with an oscilloscope.
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Figure 5.8: As power is applied to the cavity it heats up, expands and its frequency decreases.
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If we substitute measured values into this equation, Pin = 840 ± 10 W and Q = 8800 ± 400,
we get B0 = (6.8± 0.3)10−3 T.

5.5 Discussion and conclusion

As the measurement results in this chapter show, the process of designing a cavity using CST
Microwave Studio and machining it with an accuracy of at least 10µm is very accurate.

• The resonant frequency of 2998.0 ± 0.4 MHz after construction differs only −0.15 to
+0.65 MHz from simulations, no more then 0.02%.

• The magnetic field profile on the cavity axis is equal to the simulation, within the
measurement accuracy.

Having validated simulation results we can reasonably assume that the entire field description
from simulations is correct, in particular the on-axis electric field, which is virtually impossible
to measure. Because we need to set the resonant frequency even more accurately then can be
realized with this design method, a plunger is inserted into the cavity for additional tuning,
which allows tuning up to +1.5 MHz with an accuracy of 0.01 MHz. This plunger can also be
used to correct for frequency variation caused by heating during operation.
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Chapter 6

Conclusion

In this thesis three applications of RF cavities for electron microscopy have been described.
Application as a streak camera has been the main part. Further, the application as an electron
beam chopper and electron lens have been considered.

6.1 Streak camera

The calculations and simulations described in this thesis show that measuring bunch durations
from 10 fs to 10 ps should be possible. Several deviations from the ideal streak have been
analyzed, showing that only two factors cause some disturbance when measuring streak length;
transverse bunch dimension and energy spread in the bunch. Energy spread causes an error of
approximately 1% in the streak length measurement, transverse bunch size causes lengthening
of the bunch in the cavity. A transverse size of 1 mm causes approximately 100 fs lengthening.
When measuring much larger bunch durations this is not a big problem, but for short bunch
duration an aperture is required to reduce the transverse size and thereby the lengthening.

The energy-efficient cavity has a required input power of 0.9 kW for a field amplitude
B0 = 8 mT. As a comparison, the pillbox cavity as used for calculations requires 3.1 kW input
power for B0 = 8 mT. However, to produce similar streak lengths the pillbox cavity can be
operated at B0 = 5 mT, which requires only 1.3 kW. The error due to energy spread for the
pillbox cavity is approximately half that of the energy-efficient cavity; bunch lengthening due
to the transverse size of the bunch is approximately twice as much for the pillbox cavity as
it is for the energy-efficient cavity. Since lengthening seems to be the limiting factor when
measuring bunch duration, the energy-efficient cavity will have a better resolution than the
pillbox cavity.

Characterization measurements show that the resonant frequency of the cavity differs no
more than 0.02% from the design and the on-axis magnetic field profile is in good agreement
with the design. With the tuning plunger the frequency can be adjusted to within 0.01
MHz from the desired frequency. The cavity has been driven with 1 kW RF power without
breakdown, so it is ready for implementation in the streak camera setup.
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6.2 Electron beam chopper

If the streak cavity is used for electron beam chopping the capturing screen has to be replaced
with an aperture. The calculations will be basically the same, so when using the energy-
efficient cavity with 0.9 kW input power the beam can be chopped into 1 ps bunched with a
150 µm aperture at Z = 100 mm from the cavity.

Many aspects require further investigation however, such as the influence of disturbance
of the beam by the cavity. The calculations on the streak cavity will provide a good basis for
this investigation. Finally, a new cavity design may deliver a cavity which better satisfies the
need for low disturbances in an electron microscope.
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Appendix A

Cavity field derivation

In this chapter the electromagnetic field distribution in a cylinder-shaped or ’pillbox’-shaped
resonant cavity with radius R and thickness d will be derived. In the cavity there exist no
charges or currents and the walls will be assumed to be perfectly conducting. The electric (E)
and magnetic (B) fields always satisfy Maxwell’s equations, which are as follows, for the case
of no charges or current.

~∇ · ~E = 0, (A.1)

~∇× ~E = −∂ ~B

∂t
, (A.2)

~∇ · ~B = 0, (A.3)

~∇× ~B =
1
c2

∂ ~E

∂t
(A.4)

For a perfectly conducting wall the boundary conditions for the fields are that E must be
perpendicular to the wall and B must be parallel to the wall. The fields will be described in
cylindrical coordinates (r, φ, z) and a sinusoidal time dependence is assumed.

~E(r, φ, z, t) = ~E0(r, φ, z) cos(ωt)
= [Er(r, φ, z)~er + Eφ(r, φ, z)~eφ + Ez(r, φ, z)~ez] cos(ωt) (A.5)

~B(r, φ, z, t) = ~B0(r, φ, z) sin(ωt)
= [Br(r, φ, z)~er + Bφ(r, φ, z)~eφ + Bz(r, φ, z)~ez] sin(ωt) (A.6)

To obtain an equation with only the electric field we take the rotation of equation (A.2).

~∇× (~∇× ~E) = ~∇(~∇ · ~E)− ~∇2 ~E = −~∇2 ~E

= −(~∇× ∂ ~B

∂t
) = − ∂

∂t
(~∇× ~B) = − 1

c2

∂2 ~E

∂t2

(A.7)

Thus
(~∇2 + k2) ~E0 = 0, (A.8)

with

k2 =
ω2

c2
. (A.9)
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And similarly, by taking the rotation of a equation (A.4)

(~∇2 + k2) ~B0 = 0, (A.10)

Equations (A.8) and (A.10) are called the wave equations.

It is important to note that ~∇2 operating on a vector is the vector Laplacian. In cylindrical
coordinates this is

~∇2 ~A =


[

∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂φ2 + ∂2

∂z2 − 1
r2

]
Ar − 2

r2
∂
∂φAφ[

∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂φ2 + ∂2

∂z2 − 1
r2

]
Aφ + 2

r2
∂
∂φAr[

∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂φ2 + ∂2

∂z2

]
Az


For a TM (Transverse Magnetic) field distribution the only field component in the longitudinal
direction is the electric field Ez. It satisfies the wave equation, which yields for a sinusoidal
dependence in φ- and z-direction

[
∂2

∂r2
+

1
r

∂

∂r
− m2

r2
−

(
lπ

d

)2

+ k2

]
Ez(r) cos(mφ) cos

(
lπz

d

)
= 0 (A.11)

When we change variables to ρ = kcr with k2
c = k2 −

(
lπ
d

)2, the equation becomes Bessel’s
equation, so that Ez(r) must be

Ez(r) = E0Jm(kcr) (A.12)

A field distribution can be TM, as described above, or TE (Transverse Electric). For a TE
field distribution the only field component in the longitudinal direction is the magnetic field
Bz, but this mode will not be considered here.

There are many different types or modes of TM field distribution. These are indicated
with an index: TMmnl. Here m is the number of periods in the azimuthal or φ-direction and
l the number of half periods in the longitudinal or z-direction. Indexes m and l have already
been used in the description above. The index n relates the cavity radius to kc, because on
the cylinder wall, so for r = R, the longitudinal electric field has to be zero and thus kcR has
to be equal to xmn, the n-th root of the m-th order Bessel function.

From the longitudinal field distribution the other field components’ distribution can be
derived using equations (A.2) and (A.4). For example, using the φ-component of (A.2) and
the r-component of (A.4) we get two equations with Ez, Er and Bφ. This enables us to
eliminate one of the transverse fields e.g. Bφ and express Er as a function of Ez. This can be
done for all transverse components.
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Thus, in general the TM fields are given by

Ez = E0Jm(kcr) cos(mφ) cos
(

lπz

d

)
(A.13)

Er = − lπ

k2
cd

E0
∂

∂r
Jm(kcr) cos(mφ) sin

(
lπz

d

)
(A.14)

Eφ =
mlπ

k2
cd

E0
1
r
Jm(kcr) sin(mφ) sin

(
lπz

d

)
(A.15)

Br =
k2m

k2
cω

E0
1
r
Jm(kcr) sin(mφ) cos

(
lπz

d

)
(A.16)

Bφ =
k2

k2
cω

E0
∂

∂r
Jm(kcr) cos(mφ) cos

(
lπz

d

)
(A.17)

The frequency of the field can be calculated using

ω2 = c2

[(xmn

R

)2
+

(
lπ

d

)2
]

. (A.18)
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Appendix B

Field expansion

To derive the fields in a resonant cavity of any given shape, the fields can be written as a series
expansion in r, the distance from the axis. When substituting this in Maxwell’s equations,
it is found that the fields are fully described if the fields on the z-axis are known. This will
be done first for the TM010 mode and next for the TM110 mode. Although it is disputable
whether the modes can still be called ’Transverse Magnetic’ with their respective indices, this
still is a useful way of discerning different modes.

B.1 TM010 expansion

To describe the field for a generalized TM010 mode the following assumptions are made:

∂ ~E

∂φ
= 0 (B.1)

Eφ = 0 (B.2)
~E = E0 cos(ωt) (B.3)

This leads to

Ez =
∞∑

n=0

an(z)rn cos(ωt) (B.4)

Er =
∞∑

n=0

bn(z)rn cos(ωt) (B.5)

Bφ =
∞∑

n=0

cn(z)rn sin(ωt) (B.6)

The components Br and Bz are zero, as follows from equation (A.2), the rotation of ~E.
Substituting the above expansions in equation (A.1), the divergence of ~E, we can write bn as
a function of an. With the wave equation (A.8) we can write any an as a function of a0 and
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with the rotation of ~B, equation (A.4), cn can be related to an. The resulting coefficients are

bn+1(n + 2) = −a′n (B.7)

an+2(n + 2)2 = −a′′n − k2an (B.8)

cn+1 =
−1

n + 2
ω

c2
an (B.9)

Where ’ means ∂
∂z . Since the wave equation also shows that a1 = 0 we can write the fields as

Ez =
∞∑

n=0

a2nr2n cos(ωt) (B.10)

Er =
∞∑

n=0

− a′2n

2n + 2
r2n+1 cos(ωt) (B.11)

Bφ =
∞∑

n=0

− ωa2n

c2(2n + 2)
r2n+1 sin(ωt) (B.12)

From this description it is clear that the only field on the z-axis (r = 0) is

Ez(0) = a0(z)cos(ωt) (B.13)

If this field is known from measurement of simulations, the field at any position in the cavity
is known.

B.2 TM110 expansion

The most general expansion for a field distribution is

A(r, φ, z) =
∞∑

m=0

∞∑
n=0

αmn(z)rn cos(mφ) + βmn(z)rn sin(mφ) (B.14)

where A is some field component. From the calculation of section 2.2 it can be deduced that
the TM110 mode can be described with only the m = 1 terms. We will choose Ez to behave
as cos(φ), then the axial magnetic field will be in the y-direction as we assumed in this work.
With already a glance at Maxwell’s equations to see which component behaves as sin(φ) and
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which as cos(φ) we define the field components as

Er =
∞∑

n=0

an(z)rn cos(φ) (B.15)

Eφ =
∞∑

n=0

bn(z)rn sin(φ) (B.16)

Ez =
∞∑

n=0

cn(z)rn cos(φ) (B.17)

Br =
∞∑

n=0

dn(z)rn sin(φ) (B.18)

Bφ =
∞∑

n=0

fn(z)rn cos(φ) (B.19)

Bz =
∞∑

n=0

gn(z)rn sin(φ) (B.20)

When substituting this series expansions into Maxwell’s equations we find that

c0 = g0 = 0 (B.21)
a0 = −b0 (B.22)
d0 = f0 (B.23)

and writing all coefficients as a function of an and fn

a2n+2

[
(2n + 3)2 − 1

]
= −k2a2n −

2n + 3
2n + 1

a′′2n −
2ω

2n + 1
f ′2n (B.24)

b2n+2(2n + 3) = k2a2n − a2n+2 − ωf ′2n (B.25)
c2n+1(2n + 1) = a′2n + ωf2n (B.26)

d2n+2(2n + 3) = f2n+2 − f ′′2n +
ω

c2
a′2n (B.27)

f2n+2

[
(2n + 3)2 − 1

]
= −2n + 3

2n + 1
k2f2n − f ′′2n −

ω

c2

2
2n + 1

a′2n (B.28)

g2n+1 = − ω

c2
a2n + f ′2n (B.29)

On the z-axis, for r = 0 we can write the fields as

Er = a0 cos(φ) Br = f0 sin(φ) (B.30)
Eφ = −a0 sin(φ) Bφ = f0 cos(φ) (B.31)

When we calculate from these the field components in cartesian coordinates we find

Ex = a0(z) Bx = 0 (B.32)
Ey = 0 By = f0(z) (B.33)

From this we can conclude that if the electric and magnetic fields on the axis are known,
the fields in the entire cavity can be described.
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Appendix C

Relativistic streak camera calculations

In the calculations of chapter 3, relativistic effects were neglected. Since this can give an error
of approximately 20%, the main calculation results of that chapter are given here including
relativistic effects. Starting point is the equation for the momentum p of the electrons.

p = γmv (C.1)

Where γ =
[
1− v2

c2

]−1/2
, m the electron mass, v the electron velocity and c the speed of light.

The magnetic field working on the electrons is still

By = B0 sin(ωt + φ0) (C.2)

The resulting momentum px is still the integral of the field, but pz is now according equation
(C.1), so that θ becomes

θ =
px

pz
=

2eB0

γmω
sin(ωtc + φ0) sin

(
1
2
ωttr

)
(C.3)

The changed factor in this equation stays in all subsequent equations, so ∆θ for a bunch with
duration tb becomes

∆θ =
4eB0

γmω
sin

(
ω

1
2
tb

)
cos(ωt0 + φ0) sin

(
1
2
ωttr

)
(C.4)

When considering energy spread in section 3.2 it was assumed that

vz0

vz
=

pz0

pz
(C.5)

Relativistically, however
pz0

pz
=

γ0mvz0

γmvz
≈ 1− γ2

0

δv

vz0

(C.6)

Where γ0 =
[
1− v2

z0
c2

]−1/2

and δv = vz−vz0 , the variation in velocity,is assumed much smaller

than vz0 so that only linear terms in δv have to be considered. Consequently, the angle of

81



82 APPENDIX C. RELATIVISTIC STREAK CAMERA CALCULATIONS

deflection becomes

θ ≈ 2eB0

γmω
sin(ωtc + φ0)

[
1− 1

2

(
π

2
− 1

2
ωttr0

)2

−
(

π

2
− 1

2
ωttr0

)
1
2
ωttr0

1
γ2

0

δp

pz0

− 1
8

(
ωttr0

1
γ2

0

δp

pz0

)2
] (C.7)

The longitudinal electric field Ez changes electron momentum as described in section 3.3.2

pz(x, t) = pz0 − eB0x [sin(ωt) + 1] (C.8)

Now we use
p = γmvz ≈ γ0mvz (C.9)

Since
γ = γ0

[
1 +

δv

vz0

(
γ2

0 − 1
)]

(C.10)

Then we integrate vz to find

z(x, t) = vz0

(
t +

π

2ω

)
− eB0x

γ0m

(
t +

π

2ω

)
+

eB0x

γ0mω
cos(ωt) (C.11)

Electrons with x = 0 still arrive at the cavity center t = 0. Then we find that tE is, just like
equation (3.14)

tE =
(π

2 − 1)
ω

[
pz0

eB0x
− 1

]−1

(C.12)
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