EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

An implementation of reactive process networks

Alberga, D.

Award date:
2008

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d583b5a6-931e-4001-b239-1be798876d54

TU /e technische universiteit eindhoven

Faculty of Electrical Engineering
Section Design Technology For Electronic Systems (ICS/ES)
ICS-ES 893

Master's Thesis

AN IMPLEMENTATION OF REACTIVE PROCESS
NETWORKS.

Daan Alberga

Supervisor: prof.dr. H. Corporaal
Coach: dr.ir. M.C.W. Geilen
Date: February 2008

The Faculty of Electrical Engineering of the Eindhoven University of Technology does not
accept any responsibility regarding the contents of Master's Theses

Contents

Related work

Theory

3.1 Imtroduction.
3.2 Reconfigurationand KPNs
3.3 A Different Concept of Time
34 Reactive Networks
3.5 ‘Rather synchronized’ reconfiguration.
3.6 Reconfiguration Practice
37 Conclusion e e
Implementation

41 Introduction.
4.2 Refinements e
4.3 Architecture
Manual

5.1 Imtroduction.
5.2 The RpnProcess: The Multiplier
5.3 The RpnProcess: The Duplicator
5.4 The ReactiveProcessNetwork
5.5 Stateful reconfigurations

11
11
11
13
21
27
28
28

29
29
29
31

Summary

Kahn Process Networks (KPNs) are a good way to model streaming data ap-
plications, like multimedia applications that are quite popular nowadays. A
major drawback of KPNs however, is that the function that KPN processes ex-
ecute remains constant, although it can have parameters. Real reconfiguration,
i.e. a real change of the function that is executed, is not possible while the
execution of the network continues, as is a synchronized way of reconfiguring
several processes at once. The RPN model [5] gives a solution, but remains very
theoretical and doesn’t solve problems like how reconfiguration should be orga-
nized without stopping and emptying the whole network. The proposed model
solves this problem by using a different perspective of time: tokens are the time
units, instead of seconds or milliseconds. Several ways of reconfiguration, both
synchronized and non-synchronijzed, are investigated. The network can now be
reconfigured while it is in operation. This theoretical model is described in
chapter 3.

The existing C++ toolbox YAPI has been modified to be able to implement
these new networks and to simulate them. How this works is explained in
chapter 4. Chapter 5 gives a manual to implement new process networks.

Chapter 1

Introduction

1.1 KPNs and RPNs

In 1974, Gilles Kahn introduced the Kahn Process Network (KPN)[6], a com-
puting model, consisting of processes, connected by infinitely large fifo-buffers,
that function as communication channels. Every process represents some func-
tion, fully unsynchronized and independent of other processes. Communication
is only possible through tokens of a certain type in these fifo-buffers. Tokens
are information units, that can contain any type and amount of information,
e.g. a boolean, an integer, a sound sample or a complete movie. Every channel
can only have one type of token.

This model has been popular in computing theory, but hardly was interesting
in practice, because it is primarily interesting for multi-processor architectures,
which never were really popular. Nowadays however, the interest has grown,
because the limits of one-processor architectures are being pushed further and
further, making them increasingly expensive, while several slower processors,
made with cheaper technology, might together be as good as, or even better than
one fast processor. Especially multimedia systems tend to be easily modeled in
KPNs, because they usually perform several consecutive operations on the same
information.

One major drawback of the KPN maodel is that it is static. Reconfiguration isn’t
supported. This is unacceptable for most multimedia applications, because users
should be able to adjust the configuration while executing the algorithm, e.g.
adjusting the volume or the brightness of a movie. Therefore lately, this hasbeen
a research subject. One of the developments have been the paper [5] by Marc
Geilen and Twan Basten, introducing the Reactive Process Network (RPN). In
this paper, processes can have several states, each executing a different function.
These processes switch between those states.

7

8 CHAPTER 1. INTRODUCTION

1.2 Assignment

The purpose of the master’s assignment that this report is about, was firstly to
explore the RPN model and to specify it further, to enhance it, as well as to
solve the problems that arise when implementing it. Secondly, the model had
to be implemented into YAPI, a C++ tool box that was designed to implement
KPNs.

1.3 Report

This report explains the solution that has been found to the problem of the
reconfiguration of KPNs, as well as the implementation. The context and the
related work that have preceded this report can be found in chapter 2. The
theoretical solution is described in chapter 3. Chapter 4 describes the imple-
mentation of this model. This chapter also describes which simplifications had
to be applied in order to implement the model. Chapter 5 describes how the
implementation can be used to build RPN applications. The final chapter gives
conclusions and recommendations. Used literature and the program texts can
be found in the appendices.

Chapter 2

Related work

In the area of flexible processing networks, much work has already been done.
This can be divided into several categories:

1. Works about reactiveness in KPN and SDF.

2. Works about how resources in a computer system should be distributed
and redistributed.

For this report, it is mainly the first category that is interesting. Many models
in this category, however, suffer from several drawbacks:

1. Choices are made in a non-deterministic way.

2. Large parts of the network are halted to switch to another state instead
of continuing working; the network is ‘Qushed’.

3. The network cannot react on events that happen at unpredictable mo-
ments.

4. The input and output rate of processes (tokens per loop) imposes more
rigid constraints.

5. The network doesn’t provide synchronized reconfiguration

Ad 1: [1] has an interesting view about timing. However, if several tokens
arrive at a process at the same time, the choice which event receives priority is
made in a non-deterministic way. This is the opposite of what was intended in
this report: to keep the determinism of KPN present, except for the arrival of
reconfiguration commands.

Ad 2: flushing is proposed in [5], although the details are not filled in in this
paper. The model in this report gives a solution for this, so the network can
always continue working whenever there is enough data available at a process’s
input channels.

Ad 3: an example of this phenomenon is SADF [12]. This model is a flexible
dataflow system, but it is derived from SDF. SADF cannot react on unpre-
dictable events. It is possible to model reactive behavior in SADF, but only if

9

10 CHAPTER 2. RELATED WORK

every computation would, apart from the input data, receive some ‘reconfigura-
tion token’. This is a crucial difference: the model described in this report only
needs reconfiguration commands at moments at which it needs to carry out a
reconfiguration.

Ad 4: Streamlt [13] has the drawback that all flow rates in the streams must
be static. The mode] proposed in this report partly solves that: the rates can
be dynamic, as long as they are predictable.

Ad 5: Parameterized KPN [9] has this drawback; there is no way of making
sure that the processes change at exactly the correct point in time. Another
drawback is that the system has to halt before things are changed.

[8] works with a hierarchical model. This is comparable to the subnetwork
model that is used in this report. It introduces the quiescent state. A drawback
is that it cannot handle stateful reconfiguration.

Much work has been done about resource allocation, like the work of Vincent
Nollet [10] and Eclipse [11]. This work is applicable to the system that is
described in this report when it is implemented on a multiprocessor platform.

A lot of work had been done on expressing reactiveness in programming lan-
guages, like [2] and [3]. Articles like these give a clear view about how networks
can be expressed in a programming language. This will be useful if YAPI would
be revised at some point in time, as would be [4], an article that focuses on
the technical details of implementing streaming applications on multi-processor
architectures.

So the work in this reports adds an important new view on the design of re-
configurable dataflow systems. It keeps the system deterministic in every sense,
except for the reconfigurations, because reconfiguration events can never be
predicted. It provides more freedom in the input and output rates of tokens in
channels and it can continue working while the network is computing.

Chapter 3

Theory

3.1 Introduction

The theoretical part of this report starts with a very brief description of a KPN
and the question what reconfiguration is and how this is done, stating the central
problem. From this point, the report gradually works towards a new percep-
tion of process networks, where time is no longer treated in a traditional way,
measured in seconds, but in a new way: measured in tokens. The main focus is
on how information travels through the network and how this can be expressed.
This is treated in section 3.3. The next section is about the reconfiguration of
the networks. The chapter ends with some more practical considerations about
what is needed for each way of reconfiguration.

This theoretical chapter is an independent section, which means that the imple-
mentation isn’t mentioned here. The next chapter will explain how this model
is implemented and which adjustments have been made to use it in practice.

3.2 Reconfiguration and KPNs

Consider an abstract model of a dvd reading system, figure 3.1. Now at a certain
moment, a user wants to resize the window size of the video screen. To be sure
that the subtitles are resized at exactly the same moment as the video, both
processes that are marked with an arrow should change something at the same
time. The trouble is that all processes work independently. That means that
the subtitle process might be a few frames (or more) further than the video
scaling process. The final goal is to have the processes reconfigured in such a
way, that the user sees the size of the video and the subtitle change at the same
moment. This way of changing is called ‘synchronized’ changing.

The video system can be further abstracted to a general network consisting of
processes and channels, like a KPN. Every process represents some function
(o1,...,0Nn) = f(i1,...,ipm) for some number of inputs M and some number of
outputs N. The processes only communicate through channels that are infinitely
large fifo-buffers. Each channel can only contain tokens of one size and type.

11

12 CHAPTER 3. THEORY

Figure 3.2: The KPN from example 1

Now several processes have to change their functionality in a synchronized way,
like in the dvd example. When only one process has to be adjusted, it can
basically change at any time. When two or more processes have to be reconfig-
ured in a synchronized way, then there has to be some kind of synchronization
between these processes. This isn’t a trivial problem, as nothing is known about
how many tokens each process will have produced at any time.

Example 1 Consider ¢ KPN with three processes: processes P : c3 = f1(c1)
and Ps : ¢4 = fo(ca) both receive output from the outside world and deliver their
output to process P3 : c5 = f3z(cs,ca), see figure 3.2. For this example, it is
known that Py, P, both produce one token for each consumed token and that P
alternately picks one token from c3 and one from ¢4 and then produces a token.
Now at a certain moment in time, we want Py to start ezecuting function g1(c1)
instead of fi(c1) and P, to start executing function ga(ca) instead of fa(ca).
This moment has to be chosen in such a way, that P; consumes the first token
from c3 that has been processed according to g;(c1) (and not according to f1(c1))
immediately after P3 has consumed the last token from c4 that has been processed
according to fa(co), because otherwise, the output will see several changes one
after another. In other words: the tokens that have been processed ‘the new way’
have to arrive simultaneously at Ps.

Question: We choose the moment ¢ for P; to change its function to be t = 7.
At which moment does P, have to change its functionality? Answer: We don’t
know. Nothing is specified about at which moment P; and P, process the tokens

3.3. A DIFFERENT CONCEPT OF TIME 13

that arrive simultaneously at P3. There is no guarantee whatsoever that it will
be at the same moment; at ¢ = 7, P> could as easily be 1000 tokens ahead of P;
as behind. For this reason, time in the traditional sense of the word isn’t very
useful to determine the moment for more than one process to change. Therefore,
we need a new concept of time.

3.3 A Different Concept of Time

As has been illustrated above, time in the traditional sense of the word isn’t a
good means to express the moment for processes to change, because for KPNs,
the time in the outside world doesn’t say anything about how many tokens a
certain process has produced.

3.3.1 Time Spaces

Time is just a way to express the order of events, whatever they may be, or to
express causality. In the normal world, time is also often used to express some
duration, which is a logical thing to do, because human beings actually live
and experience each second passing by in some way. Channels don’t. Channels
can only experience two things during their lives: tokens being written and
tokens being read. Therefore, the time for a channel is measured in tokens
being written. Time is measured from the start at t = 0. The first token arrives
at time ¢ = 1. These “moments” are used like time, but could also be seen as
sequence numbers, which is what they actually are. All tokens are part of the
“history” of a channel:

Definition 3.3.1 The history h. of a channel ¢ is the set of tokens that have
thus far been written in a channel.

For every moment that has passed in channel ¢ since the start of the network,
i.e. for every token that has been in channel ¢, there is one element in A,.

Definition 3.3.2 For a channel ¢, the time t. that has passed since the begin-
ning at t, = 0, which is also called the age of channel ¢, is equal to the number
of tokens that have been written into the channel:

te = |hl.

Tokens are numbered by the moment that they arrived in the channel, so the
first token arrives at time ¢ = 1, the second at t = 2, the third at ¢ = 3 et cetera,
not matter how long it takes to produce those tokens. This arrival moment is
called a “time stamp”:

Definition 3.3.3 The time stamp t, of some token a is equal to the moment
that it arrived in the channel that it is in. (The function t(a) gives the time
stamp of token a.)

14 CHAPTER 3. THEORY

The first token in a channel is written on ¢ = 1 and, consequently, has time
stamp 1. The tokens in a channel form a strictly ordered set. Token g; is called
younger than token a; (written as a; > a;) if ¢(a;) > t(e;) (because a; was born
later than ;) and elder (written as a; < a;) if t(a;) < t(a;). (NB This has
nothing to do with the values of the tokens.) If tokens have the same age, then
they must be the same token.

Because every channel defines its own time, we say that every channel is in its
own time space. These time spaces can be related to each other by processes.

A network can be expressed as a directed graph, where the processes are the
nodes and the channels the edges. The channels in this graph (and consequently
in the original network) form a preordered set. ¢; > ¢, if edge ¢; can be reached
from edge ¢;. If edge c¢; cannot be reached from edge ¢;, then no relation can
be given. If ¢; > c¢; > ¢; then ¢; and c¢; are part of a cycle. Cycles are a more
complicated matter; they are treated in paragraph 3.3.5.

3.3.2 Stateless and Stateful Processes

The simplest processes just take some fixed number of tokens from the incoming
channels, process them, and output the result as some fixed number of tokens
into the outgoing channels, like SDFs do. Having done that, they start over
again by again taking some number of tokens from the incoming channels et
cetera, without remembering any information from the previous input tokens.
This class of processes is called the class of stateless processes.

Definition 3.3.4 A stateless process is a process that handles a certain amount
of input tokens (which could also be one) at the same time and then “forgets”
the information to proceed to the next amount. So a process is stateless if it
ezecutes a function f for which holds:

f(8- 8 = £(B)- £(8),

where (3 is a certain sequence in the history of an input channel of f and ' a
sequence that follows 8. After having computed f(3), the process forgets every-
thing - this moment is called o quiescent state[8]. The process then proceeds to

£(8).

There is also another kind of process, which doesn’t have the properties of a
stateless process:

Definition 3.3.5 A stateful process is a process that isn’t stateless.

A stateless process can easily be reconfigured at a quiescent state. Reconfigura-
tion means that a certain process starts executing another function than it has
before. Stateful processes don’t have quiescent states, so they can’t easily be
reconfigured.

In the dvd-example, the subtitle renderer will probably be a stateless process,
because it only needs to read the text of a subtitle to produce an image of this
subtitle. It doesn’t need the text of the other subtitles as well to do that. A

3.3. A DIFFERENT CONCEPT OF TIME 15

video processor can be a stateful process, because it might need some image to
calculate the next image, so it needs several images to compute the next one.
However, this depends on the implementation of the video coding system. Most
coding systems will after a certain number of frames return to a state in which
they forget all previous data and start again.

3.3.3 Information, Influence, Impact and Sources

Every token that doesn’t come from an input, has been produced by a process.
Processes are not required to have incoming channels, but they usunally do,
and if so, at least part of the incoming tokens can be used to produce at least
part of the outgoing tokens. When one or more incoming tokens are necessary
to produce an outgoing token, then the outgoing token contains information
from the incoming tokens. This means that the incoming tokens influence the
outgoing token (which will usually mean that the contents of that token will
have some influence on the contents of the token that is being computed):

Definition 3.3.6 Some token a influences some other token b, if the informa-
tion from token a is used to create token b.

For example, if a process has one input channel and one output channel and
repeatedly reads two tokens, computes their sum and outputs them, then those
two tokens that are summed influence the outgoing token that is their sum.

Back to the DVD example: many video coding systems make use of so called I
frames and P frames. The I frames are complete pictures, but the P frames only
give the difference between a previous I frame and the current picture. When
an I frame is decoded, the resulting image will only be influenced by that I
frame, but when a P frame is decoded, the resulting image will at least contain
information of the decoded P frame and of the last T frame. In some formats,
the resulting image will also contain information of all images between the last
I frame and the current P frame.

A certain moment 7 in a certain time space can be transformed to its corre-
sponding moment in another time space. In the same way, a certain token a
in a certain channel can be transformed to its corresponding token in another
channel. In forward or backward transformations, tokens are considered ’corre-
sponding’ if one influences the other.

Definition 3.3.7 The forward transformation aI;, ¢ > ¢; of token a in channel
c; returns the first token in channel c; that is influenced by a. The backward
transformation b|{, c; > c¢; of token b in channel c; returns the oldest token d
in channel ¢; for which d|; = b. If that token doesn’t ezist, it returns the oldest
token for which d|; = ¢, where c is the token before b. If that token doesn’t exist
as well, it will investigate the previous one and so on.

In the subtitling example, a token that contains some subtitle is transformed
to the first frame on screen that shows this text. This frame can also be trans-
formed back to the token that contains this text.

16 CHAPTER 3. THEORY

Tokens that cannot be transformed into each other via forward or backward
transformations, might be transformed via another token. (E.g. in the subti-
tling example, a certain sentence in a subtitle corresponds to a certain number
of frames in a video file. To transform this sentence’s token, it has to be trans-
formed to the final frame and then back to the video frame in the video file.)

Not only tokens can be transformed, moments can be transformed too:

Definition 3.3.8 A moment 7 in a certain time space T; is transformed to
another time space T; by transforming the token with that time stamp in the
channel in that time space:

7‘|§» =t (u|;) Jtu) =7,

Some tokens influence more tokens than others; we say that some tokens have
a bigger “impact” than other tokens. The number of tokens that is influenced,
is called impact:

Definition 3.3.9 The number of tokens M}(a) from the first to the last token
in channel c; that are influenced by token a in channel ¢;, c; > cj, is called the
impact of token a in channel c;.

The impact of tokens doesn’t need to be constant for all tokens in a certain
channel. For example, an I frame will typically have a higher impact than a P
frame. If one I frame is used to compute ten final frames, while one P frame
is only used to compute one final frame, then the impact of one I frame is ten
times the impact of one P frame.

The influence of a token is the set of tokens that is influenced. For example, the
influence of a certain subtitling sentence could be the number or frames that
the text will appear in.

Definition 3.3.10 The influence Ji(a) in a certain channel ¢; of a certain
token a in channel c;, ¢c; > c;, is the set of tokens in channel c; that is influenced
by a:

i(a) = {blt(d) € [t (alj) .t (al}) + Mj(a) — 1]} .

The source is the opposite: the source of a token represents the earlier tokens
that have influenced that token:

Definition 3.3.11 The source Sf (a), ¢; > ¢j of a token a in channel ¢;, is the
set of tokens in channel ¢; that influence a:

Sl(a)={beci|lacTi(b)}.

The functions M}(a), J%(a), a/; and 87(a) are called transfer functions. They
are defined in such a way, that they tell exactly which tokens are influenced by
other tokens. Those relations can be dependent on the contents of the tokens;
however, that makes it impossible to compute the transformation functions on
beforehand. Therefore, they are not allowed to be dependent of the contents of

3.3. A DIFFERENT CONCEPT OF TIME 17

.oXx x+1 x+2 x+3 x+4 x+5 x+6
T @ o o [) [] [) [

Tk © © e o o o o
y y+1 y+2 y+3 y+4 y+d y+6 y+/

Figure 3.3: Some transformation characteristics of some arbitrary process. The solid lines
represent the real influences, the dotted lines the parts that are added by the adapted func-
tions.

the tokens. If they are, then the transformation functions cannot be defined,
which places the processes in separate universes (universes are explained later).
This is an important restriction of the model, as KPNs do allow this. Unfor-
tunately, in such a situation, there is no way to predict these functions until
the contents of the token are knowmn, which is too late if tokens need to be
transformed before they are processed.

It isn’t always the case that a certain number of bits will, once processed, be a
predictable number of bits. An example of this phenomenon can be seen in many
compression algorithms. However, this has nothing to do with the predicted
number of tokens that are output. What is important for synchronization, is in
which tokens the information from certain tokens can be found further in the
network, or, actually, which tokens are needed to produce a certain token. The
amount of information or, consequently, the amount of bits that can be found
in those tokens is a different question and in our case totally unimportant.

Now, it could for example be the case that information does not remain in
the same order when it is processed: t(a)[} > (t(a) + 1)|} for some token a
from channel ¢; > c¢;. This can be a drawback for certain calculations, like the
influence calculation, that are looking for a set of tokens without knowing where
the set ends. Therefore, a new function 5; (a) = [A(a), A’(a)] is introduced,
satisfying the following constraint of monotonicity:

A(a) < A(b)

b - A

a<o={ AT a0

A(a) and A'(a) are altered versions of T:(a) = [A(a), A’(a)], satisfying the fol-
lowing equations:

. Ala) Afa) < A(
Sy Aa) : Alla) 2
A(a)_{ Aa-1) : A)<A@-1)

and of course, M (a) = |Ji(a)| and ai} = A(a). To compute A(a), one needs the
past until A(a — 1) and to compute A’(a), one needs the future from A’(a + 1).

18

"l (5;'.(0,))

' (J5(a))
y+7 =
y+6 —
y+5
y+4 —
y+3 -
y+2 —

y+1 —

CHAPTER 3.

A'(z42)=(z+2)[} + i (2+2)

|

M; (z+6),
M; (z+5)

L

A’(z+2)=(z+2)|;-+M}(z+2)

@ \ A(z+2)=(z+2)|;-
\ A(z+2)=(a+2)]}

— T T T T T T

X x+1 x+2 x+3 x+4 x+5 x+6 t'(a)

THEORY

Figure 3.4: The influence of tokens from channel ¢; in channel c;, see also figure 3.3. The solid
lines represent the influence IJ;-(a) of token a*, the dotted lines and the solid lines together

represent Ji(a), like % (z +2) = [y +2,v + 4] and Fi(z +2) = [y + 1,y + 5.
J J £

3.3. A DIFFERENT CONCEPT OF TIME 19

In theory, one might really need the complete history, including the future to
compute this A’(a), but usually, it will be possible to proof that only a few
tokens are needed.

An illustration of these functions can be seen in figure 3.3 and 3.4. For tokens
on moments [z, z + 6] the influences J%(z,...) are shown in solid lines. In figure
3.3, the relations between time space T; and T} can be seen. The solid lines are
the real influences. The dotted lines have been added in the altered functions.
This isn’t really clear in figure 3.4, but when this picture is converted to figure
3.4, this is much clearer: the envelope of the upper and lower bound are now
monotonous. An advantage of this, is that if you know that a certain token
(take for instance y + 7) is not influenced by z + 4, then you know as well that
it isn’t influenced by any token before z + 4. The same is true the other way
around: if you know that a token (take for instance y + 1) is not influenced by
z + 4, then you also know that it isn’t influenced by any token after z + 4.

A function like S;(a) hasn’t been defined, because that function would return
the same set as 8%(a).

Take for example the token on z + 2. One can immediately see that (z + 2)|; =
y+2, Mi(z+2)=3,0i(z+2) = [y+2,y+4], 5‘;'-(z+2) =[y+1,y+9], et
cetera. It is clear that with the dotted lines, the lower and upper envelope are
now monotone.

3.3.4 Universes

As has been mentioned before, it is possible that transformation functions can-
not be defined. In such a case, synchronization isn’t possible, because for syn-
chronization, it is necessary to know when information arrives at the different
processes. To express this impossibility of synchronization, universes are intro-
duced.

Definition 3.3.12 Two time spaces Ty and Ts, associated with two channels
C1 and C; respectively, C1 > C2, are synchronizable if al3, a|}, Mj(a) and J}(a)
are defined Va € Ty and 82(b) is defined Vb € Ts.

Definition 3.3.13 A universe is a set of synchronizable time spaces.

Synchronization of processes is only possible if these processes are in the same
universe. The opposite is true as well: processes that don’t have to be synchro-
nized don’t have to be in the same time space and therefore don’t need any
transformation function or impact function. However, as transformation and
impact calculations are performed while ‘traveling’ through the network graph,
the time spaces that belong to the channels that connect two channels that have
to be synchronized, do need to be in the same universe.

One can think of many situations in which these functions aren’t defined. When
for example the number of tokens that a process reads or writes depends on the
contents of certain tokens, it can be impossible to define transfer functions.
Another reason that these functions aren’t defined, is simply that the network
designer doesn’t need them. If time spaces don’t need to be synchronizable,
then the existence of transfer functions isn’t necessary.

20 CHAPTER 3. THEORY

Figure 3.5: A network that contains a cycle. The numbers at the head and tail of the channels
are the numbers of tokens that are produced or consumed per process loop. The grey area is
a different universe from the one that the channels cj, c2, c3, c4, cs are in.

3.3.5 Cycles

As was said in paragraph 3.3.1, cycles in the network graph that is used to
calculate distances and synchronization routes are only allowed under certain
circumstances. However, many networks do contain cycles.

Consider the network in figure 3.5a. A token that comes at a certain time in
channel ¢, will have an influence on a token in cg, ¢4, ¢5 and eventually again
in following tokens in cg, ¢4 and cs, and so on. This means that the impulse of
tokens that arrive at P; has to be infinite. So far so good.

We say, for example, that some token arrives in ¢; at moment ¢;. The token
that is then produced in ¢y will arrive at moment #; et cetera, and finally in ¢5 at
ts. The token will now influence a token in cg, that will arrive there some time
later than ¢, say tz + 2. That means that the token in channel ¢z at moment
to can be transformed to ¢4 as t4, to ¢5 as 5 and to ¢y as t3 + x. So going round
can transform a token in a certain time space to the same time space, but to
another token. That is obviously wrong, though it is a theoretical problem, not
a practical problem.

The source of this problem is the fact that when there are cycles in a network
graph, there are infinitely many routes along which a transformation can be
computed, which causes this ambiguity.

Cycles with this ambiguity are prohibited. Cycles in networks are always al-
lowed, but in such a case, they should be in at least two different universes.
Figure 3.5b illustrates the solution that is used: a dummy process P is inserted
with a channel cg, that is placed in another universe. Transformations cannot

3.4. REACTIVE NETWORKS 21

take place while crossing the borders of a universe, so only one route remains
for each transformation. This way, every possible transformation is determinate
and every real process can still be synchronized with any other process. There
only remains one single route along which the transformations can take place.

In a case when there are no ambiguities however, cycles are allowed.

3.3.6 Subnetworks

Several connected channels and processes together can be treated like one big
process.

A subnetwork has the same properties as a process and can be treated like one.
If the network inside it is in one universe, then properties like the token impact
and influence can easily be computed by expanding those functions to channels
further in the network.

If a|} and bl are known Va,b then ali = a|_’1',’c is known too. If Ji(a) =
[A1(a), A2(a)] and F,(b) = [Bi(b), Ba(b)] are known Va,b, then Ji(a) =
[B1(A1(a)), B2(A2(a))] is known Va as well, as is Mi(a) = [Ji(a)]. This way,
all functions can be computed from the subnetwork’s incoming channels to its
outgoing channels.

3.4 Reactive Networks

A reactive network is a network that reacts to non deterministic events that
control the network functionality, which means that certain parts of the network
change, after some event has taken place. This will normally be as soon as
possible after this event occurred. When an event occurs, the network has
to decide what its reaction will be, i.e. which processes have to change and
how they should change. This has to be decided by the network, following the
guidelines of the network designer.

Definition 3.4.1 An event is a command, coming from the outside world (usu-
ally some kind of interface) at a moment that cannot be predicted a priori by
the network, that tells the network that it should change its behavior, and how
it should change this.

Obviously, all these changing processes need to be in the same universe to
be able to change in a synchronized way. If they’re not, then a synchronized
reaction is impossible. It is up to the designer of the network to decide whether
to make time spaces synchronizable. Usually, many time spaces can be made
synchronizable, though the often don’t need to be, and it is easier then to leave
them unsynchronizable. Unsynchronizable time spaces can still react to events,
but not in a synchronized way.

22 CHAPTER 3. THEORY

T T2 T

X x+1 XxX+2 x+3 x+4 x+5 x+6 x+7 x+8
1 o o [) ;@ ® O ® , 0 [

z z+1 z+2 z+3 z+4 z+5 z+6 z+7

Figure 3.6: An illustration of the information dependencies of some stateless process. The
dotted lines represent quiescent states. The grey areas are the quiescent states over several
stages.

X x*1 Xx+2 x+3 x+4 x+5 x+6 x+7 x+8
o o [[) [) [

® o o e ® o o e o
y y+¥1 y+2 y+3 y+4 y+5 y+6 y+7 y+8

Figure 3.7: An illustration of the information dependencies of some stateful process. There
are no quiescent states.

3.4. REACTIVE NETWORKS 23

3.4.1 Stateless Changes

Stateless changes, as opposed to stateful changes, which will be treated in para-
graph 3.4.2, are changes that are just carried out at a suitable moment and
where only the processes are involved that were designated to change. The only
constraints are that the changing processes all have to be in a gquiescent state
at the moment at which they’ll change, and that that moment comes as soon
as possible.

Is is quite obvious that one cannot go back in time. Tokens that have been
processed, cannot be recovered. Therefore, the youngest token that has been
consumed by one of the designated processes imposes the limit, before which no
moment can be chosen at which the reconfiguration should take place. Starting
with this moment, a moment has to be found at which every process that is
involved will come into a quiescent state.

To find the youngest token that has been consumed, all the incoming channels
of all the changing processes have to be searched. The token that is to be
consumed first in each channel is the eldest token available, so the token at
one moment earlier is the youngest token that has been consumed. Their time
stamps have to be transformed into the same time space, after which they can
be compared.

Every changing process should be in a quiescent state when the reconfiguration
takes place and this moment should — transformed to their time spaces — be the
same moment for all processes. This fact can be used to check whether a chosen
moment is a quiescent moment. If there is a set of time spaces T = {T}|1 <
i £ N} that contains all time spaces that correspond to the input channels of
the designated processes, then 7 € T; is a quiescent state if 'r|3[f = 7,V;. This

means that transforming to and back from all other time spaces in T' gives the
same moment. If not, one moment later can be tried, and this process continues
until a moment is found that fits all processes. If no moment can be found,
then there is no mutual quiescent state and synchronized reconfiguration is not
possible.

This system is proven by examining definition 3.3.7. Some token a in time space
1 is transformed to time space 2, to the first token b = a|} that it influences.
The back transformation ¢ = b|? is to the first token that influences token b. If
that is the same token (a = ¢) then no token before token a influences token b,
so no information is used from tokens before that token.

This can be illustrated with figure 3.6. Suppose moment y + 3 is chosen. Ac-
cording to definition 3.3.8, (y+3)|} = z+3 and (z+3)|} =y +2, s0 y+3is not
a quiescent state. y + 4 would also transform to z + 3, which would transform
to y + 2; wrong either. (y +5)|] =z + 5 and (z +5)|} =y + 5, so y + 5 is the
first quiescent state, which is true, so y +5 = = + 5 is the first quiescent state
available. The same process can be used to find quiescent points for different
processes. The figure gives an illustration of two processes after each other. The
grey areas denote the quiescent states for both processes behind each other.

Each process is then given the command to make its change happen at that
moment, which means that it has to continue working until it has read all
tokens with that time stamp, after which it should finish its work, output the

24 CHAPTER 3. THEORY

result and then start executing the new behavior.

The details on how to change are filled in by the designer, who will have to build
some interface to communicate with the processes.

3.4.2 Stateful changes

The above principle works when all processes are stateless. However, it doesn’t
when stateful processes are involved, as will now be explained.

The question that is actually posed when one asks at which moment the pro-
cesses should change, is at which moment the ‘old’ way should be abandoned and
the output should be computed the ‘new’ way. It is this moment that determines
when the processes should change.

Suppose that there is some network with some stateful process P somewhere
in it. Suppose that somewhere in the path to that P’s input stream there is
a number of processes that change at a certain moment 7 (which is of course
properly transformed to each time space as applicable). Now the tokens arriving
before T are said to have been processed the ‘0ld’ way and tokens arriving from
7 on are said to have been processed the ‘new’ way. As P is a stateful process,
at moment 7 and perhaps much longer, P will possibly be using ‘old’ and ‘new’
tokens together to compute output tokens. One can think of cases in which
this is desirable or unimportant, but one can also think of cases in which this is
highly undesirable or even just plainly wrong. Whether this is the case or not,
should be defined by the network designer. It will usually depend on the kind
of event or, more specifically, the difference between old and new tokens.

In the declaration of the event, the network designer can dictate which processes
should be taken into account when the event happens. Now a graph is created,
which is a subgraph of the network graph, containing all processes that will
change, all processes that should be taken into account and all processes that
lie in between. All these processes need to be replaced in order to be able to
provide the last process with enough ‘old’ tokens to enable it to compute its
last ‘old’ output token, and at the same time provide that process’ new version
with enough ‘new’ tokens to enable it to compute its first ‘new’ output token.

Example 2 Consider figure 3.8. There is some stateful process P, before which
several processes change at moment 7. The changing processes’ input channel is
in time space T;, P’s input channel is in time space T; and P’s output channel
is in time space Ty. The tokens that P needs on its input channel to produce
the last ‘old’ token at T — 1 are 8(7 — 1). These tokens should be ‘old’ tokens.
The tokens that P needs on its input channel to produce the first ‘new’ token at
7 are 8] (7). These sets will probably overlap, indicating that both an ‘old’ and a
‘new’ version of the same token are needed. An illustration of this can be seen
in figure 3.9. It can be clearly seen that in this situation, there are tokens that
are both needed to compute token 7 — 1 and token 7.

To tackle this problem, two tracks are created, one along which the old tokens
are computed and one along which the new tokens are computed. See figure
3.11 for an illustration. Track A will be the old track with the old processes
that will keep running until the last token before the reconfiguration has been

3.4. REACTIVE NETWORKS

Changing
processes

Figure 3.8: The network of example 2

Figure 3.9: The source tokens of 7 — 1 and T are overlapping.

25

26 CHAPTER 3. THEORY

Track A

Figure 3.10: Stateful processes 11 and 21 have to be replaced by processes 12 and 22. The
reconfiguration is scheduled at = = 24. 83(23) = [16,23] and §3(24) = [26,19]. Mi(a) =3,Va
and]Mg (a) = 4,Va. Two tracks are created to compute two versions of the tokens that are
needed by both processes.

Figure 3.11: The influence relations from the example of figure . The overlapping areas have
been shaded twice.

3.5. ‘RATHER SYNCHRONIZED’ RECONFIGURATION 27

processed. Track B will be the new track, with all new processes. Track A will
receive tokens until the last token of S{ (7 — 1) and Track B will receive tokens
starting with the first token of Sg (7). Part of this will overlap; those tokens are
given to both track A and track B. When track A has produced its last token,
the processes are terminated. Then, the tokens from track B will be output and
the network will return to its normal state, but with new processes.

3.4.3 More Radical Changes

Thus far, only simple replacements of processes have been discussed. Of course,
more radical changes than that might me desired. But whatever change is
desired, the changing network can always be seen as a subnetwork, acting like a
process that can be replaced. In that way, every possible change can be carried
out.

3.5 ‘Rather synchronized’ reconfiguration

In many situations, the transfer functions can be defined. However, there are
also many situation in which these functions cannot be defined. In those cases,
real synchronization is impossible, but there is an alternative which could work
in many situations. Take for example a movie played in a window on a pc.
Suppose that the movie is subtitled. Now if the window is resized, the movie
should be resized too, and the subtitles should be resized at the same time. If
that isn’t possible, it could be a bit ugly if the subtitles would be resized a bit
earlier or later than the movie itself. However, this wouldn’t be a big problem.
It’s ugly, but that’s all.

Definition 3.5.1 The function Q(a) indicates whether a’s time stamp is a qui-
escent state of the process that the channel that a is in feeds:

Qa) = true : a is a quiescent state
| false : a is not a quiescent state

This function can be defined when it is impossible to create transformation
functions, but when the quiescent states are known. Processes can then be
changed, though they cannot be synchronized.

To tackle this last problem in certain situations, the function €}(a) is intro-
duced. This function has no true definition, but what it does can nevertheless
be indicated:

If a|; is defined, then Ci(a) = al}. If it isn't, then C%(a) returns a moment from
channel c; that is ‘close’ to the moment that al} had returned if it had ezisted.
The implementation is left to the network designer.

Of course, ‘close to’ cannot be defined. Tt should however be clear what it
means: as close to as possible under the current circumstances. The subtitling
example should illustrate the idea.

C:‘;'-(a) can be used to make transformations ‘rather synchronized’. In many
applications, real synchronization isn’t that important. It could however be

28 CHAPTER 3. THEORY

important to be as close as possible. In video for example, one or two distorted
frames are undesired, but better than having no other option than starting the
whole movie over again with different parameters.

3.6 Reconfiguration Practice

Several kinds of reconfiguration are possible, each having its own required func-
tions:

1. No reconfiguration (the ‘old-fashioned’ KPN)
2. Asynchronous reconfiguration (requires Q(a))
3. Rather synchronous stateless reconfiguration (requires Q(a) and (‘3}- (a))

4. Synchronous stateless reconfiguration (requires a|§-)

5. Synchronous stateful reconfiguration (requires J%(a) (and 87(a)))

An implementation of this model ideally provides each of these reconfiguration
possibilities, to be applied in the appropriate situation. The next section will
describe the implementation that is proposed by the author.

3.7 Conclusion

The RPN model has been expanded to a model that makes KPNs reconfigurable.
The model now is implementable. Important features of this model are the
new perception of time, and the way that time progresses differently for each
different time space. Reconfigurations take place synchronized, but in different
time spaces, which means that the reconfigurations do not take place at the
same moment when seen from the outside world.

Not all time spaces can necessarily be synchronized. Therefore, reconfigurations
can take place in a synchronized way and in a non-synchronized way. Reconfig-
urations can be stateless and stateful. Non-synchronized reconfigurations can
sometimes be ‘rather’ synchronized. These things are left to the network de-
signer to decide.

Chapter 4

Implementation

4.1 Introduction

The theoretical model, that has been described in the previous chapter, has
been implemented in YAPI, a tool box for C++ with which KPNs can be
implemented. This chapter describes two things:

o How the theory was adjusted in order to make it implementable in YAPI.

e How this model was implemented in YAPI.

This chapter wasn’t intended to be an implementation manual. It only described
the way that things are organized in the implementation and why it is organized
like that. A detailed how-to will be given in the next chapter.

4.2 Refinements

For several reasons, the implementation needed to make several small refine-
ments to the theoretical concept, that was described in chapter 3. These refine-
ments are the following:

1. The systems makes a difference between state changes and parameter
changes, while the theory considers them equal.

2. Universes have not been implemented as such.

[\

. Rather synchronized transformations haven’t been implemented as such
either.

. The influence and the source function have been slightly changed.
. Stateful reconfiguration works differently.

. Processes now explicitly execute loops.

~N O v

. The focus is now much more on process time than on channel time.

29

30 CHAPTER 4. IMPLEMENTATION

Ad 1: Parameters have been introduced for practical reasons. It wouldn’t be
a very good idea to implement a separate state for every possible combination
of parameters. Strictly, every change in a process functionality remains a state
change. There is no clear distinction between a parameter and a state. In theory
both can be used to model every possible behavior. In practice, the difference is
big: changing a state makes the process really execute another function, while
a parameter change only changes one variable in the process.

Ad 2: In the theory, universes have been introduced to express the situation
that processes cannot be synchronized. In the implementation, universes have
not been implemented explicitly, because it’s not necessary to be explicit about
that. When two processes cannot be synchronized, then the programmer just
shouldn’t do that.

Ad 3: The same holds for rather synchronous reconfiguration. It is up to the
programmer to make sure that the transformation functions are correctly im-
plemented. When these functions are not accurate, then the synchronization is
automatically ‘rather’ synchronous, instead of synchronous. The system doesn’t
need - and therefore doesn’t make - any distinction between rather or real syn-
chronization. It doesn’t check whether or not the results are correct. Internally,
there is no distinction between these transformations.

Ad 4: The influence function should give a set of tokens. That isn’t very prac-
tical for programming. If it is known that the elements of a set are consecutive
moments in time and the smallest element and the size of a set are known, then
the influence is known as well. (See definition 3.3.10.) Something comparable
has been done for the source function: only the size is given. When the size is
added to the result of the back transformation, the answer is known.

Ad 5: Stateful reconfiguration is carried out with only one version of each
process, not with two.

Ad 6: In fact, processes don’t need to execute something that has the construc-
tion of a loop. In practice however, that will nearly be always the case. The
implementation assumes that processes execute loops, because that is, given the
construction of YAPI, the best way to be able to implement state changes. Its
construction reflects that thought.

Ad 7: Time stamps are in principle something that has to do with channels.
When a token appears in a channel determines which time stamp that token re-
ceives. However, these time stamps are used to make processes change. There-
fore, it is the process that keeps track of the time of the relevant channels.
(Another reason to do this, is that YAPI was constructed in such a way that it
is nearly impossible for process objects to communicate with channel objects,
other than through buffers.) This is done by keeping track of the number of to-
kens that have been read. Tokens are read in the same order as they’re written,
so this is a valid method to keep track of their time stamps.

In spite of these adjustments, the theory remains valid in the implementation.
The only exception is the stateful reconfiguration; the structure of that has
changed thoroughly.

4.3. ARCHITECTURE 31

4.3 Architecture

In order to implement the theory in YAPI, several things are needed:

1. Networks that can change
2. Processes that can change
3. A way to give the tokens a time stamp

4. A way to transform time stamps

To implement these, the YAPI class Process has been extended, by deriving a
class from it, as well as the YAPI class ProcessNetwork. The derived classes
are called class RpnProcess and class ReactiveProcessNetwork.

4.3.1 Time Stamps

The theory gives each token a time stamp, which is computed very easily: the
first token in a channel is number 1, the second number 2 and so on. Every
channel is only read by one process and the processes are the only instances in
the network that really need the information about each token, so therefore, the
tokens are just counted by the process that takes its input from the channel.

Following the theory, the time stamps of the tokens are used as a clocking
mechanism, i.e. as a system that provides a way to express the moment that
a process should change. The type Time is used to express all variables that
represent some moment, which is of the same type as the type that YAPI uses
to count the number of tokens that it has processed. (Therefore, the possibility
of overflowing hasn’t been taken into account; this would require a much more
complicated system, which would only be needed for very large numbers of
tokens.)

So the task of keeping track of the time stamps of tokens is designated to the
processes, not to the channels. The reason that this was done that way, is that
the design of YAPI is such that it is nearly impossible to have process objects
communicate with fifo objects, other than through reading and writing.

4.3.2 Processes

So the YAPI processes had to be changed in two ways:

1. Processes needed timing functionality.

2. Processes needed reconfiguration functionality.

RpnProcess has got a variable Time clock (Time is the type in which time
is expressed, defined in time.h) that keeps track of the process’s clock. The
behaviour of a process is illustrated in figure 4.1. After the initialization, the
process enters a loop, in which the clock is adjusted (usually according to the
number of tokens read from some input channel), the correct state is selected and

32 CHAPTER 4. IMPLEMENTATION

—

Evaluate clock

v

Evaluate state and parameters

Figure 4.1: The internal structure of a running process. The grey processes can be redefined
by the programmer. The thickly lined processes have to be defined by the programmer.

the corresponding function is called. These functions (usually in the format Time
mainl()) are written by the programmer. Such a function returns the number
of moments that the clock has increased during this process, i.e. the number
of tokens that have been read from a certain channel during the execution of
this function. As is described in figure 4.1, not all processes need to be written
by the programmer. Most processes have a standard implementation with a
virtual function, which can be re-implemented by the programmer. Details
can be found in chapter 5.

A process can only be reconfigured after such a process function has finished.
If the process doesn’t save any information, computed with information from
tokens, when such a function ends, then those states are the quiescent states,
mentioned in the theory. This is the case for stateless processes. The occurrence
of quiescent states has to be predicted by the programmer. He is expected to
provide a function bool Q(const Time moment) which returns true if moment
is a quiescent state (see section 3.5). This function is used to produce the
results of functions like NextQ(), which returns the next available quiescent
state by checking which moment, starting with the current value of clock makes
Q(const Time moment) return true. The maximum number of moments that
NextQ() searches, is defined by the constant const Time MAXSEARCH = 100;
in rpnprocess.h.

Internally, the process has a list of planned changes, which is filled by
calling void ChangeState(int s[, Time moment]) or <template T> void
ChangeParam(int param, T newValue[, Time moment]). The process stores
its state in the variable state and updates it according to this list. Whenever
a state is updated, the process calls void ImplementStateChange(const int
newState).

For parameters, a comparable structure is applied, but there is one major differ-
ence: RpnProcess itself stores nor changes the parameters, because they have to
be defined by the programmer and because they can be of any type, and because
RpnProcess doesn’t know which type it has, it cannot access those parameters .

4.3. ARCHITECTURE 33

Therefore, in param.h class ParamChange is declared, which is, together with
its derived class TParamChange used to plan a parameter change. The details
will be explained in the next chapter (section 5.2).

A function Time M(Time moment[, int i[, int j11) is provided, which
should give the impact]M;-(moment) of a certain token. If the programmer
doesn’t re-implement this function, it just returns 1. There is no function for
the influence, but it can easily be computed as described in 3.3.10.

The same holds for the source function. No set is given, but the first element
and the size. The first element is given by firstelement(8] (moment))=Time
S(Time moment[, int j1). The size |8](moment)|=Time Ss(Tme moment[,
int j1.

4.3.3 Subnetworks

A subnetwork should behave like a process, so basically has the same functions
as a process. However, a subnetwork doesn’t have a clock. When it is asked for
its clock, it transforms the clocks of all processes to the same time space (Time
space “0”) and returns the highest. Which time space this time space “0” is, is a
design choice, that has to be made by the programmer. Usually the time space
of some incoming channel will do, but the programmer could for example also
decide to create a new time space for that. To check the clock of each process,
a network needs access to all (relevant) processes and process networks that
it contains. It therefore has a list of both. (vector<RpnProcess*> processes
and vector<ReactiveProcessNetwork*> rpns) The programmer needs to add
all relevant processes and process networks to these lists.

A major difference between a process and a process network, is that the process
network doesn’t plan the reconfigurations to be executed at some later point in
time. It just orders its processes to plan the reconfiguration to be executed at
the chosen moment. This way, a reconfiguration can be planned by invoking
the correct function of the top-most network. This network then can invoke the
correct functions of the appropriate subnetworks and processes, each with the
correctly transformed (see section 4.3.4) moment. This way, the processes will
each change at the appropriate time.

4.3.4 Transformations

Transformations are a difficult issue in the implementation of reactive process
networks. The program cannot deduce the transformation functions by itself.
It is up to the programmer to create correct transformation functions. This is
a drawback of KPNs. In KPNs, everything with respect to reading and writing
tokens is allowed. In other streaming models, like SDF, this isn’t the case and in
such a case, the transfer functions can be detected by the system, by tracing how
many tokens a process reads and writes per loop. With KPNs, the programmer
has to write them himself. However, he is assisted by the architecture of the
system.

Processes and process networks have transformation functions
Time TransformIJ(Time moment[, int i[, int j11) and Time

34 CHAPTER 4. IMPLEMENTATION

Stateful

Figure 4.2: The structure of stateful reconfiguration.

TransformJI(Time moment[, int i[, int j]]), which can be used to
redefine the transformation functions moment|; and moment|]. They can (and
probably should) be dependent on the state and parameters of the process, and
of the planned changes. Examples can be found in the next chapter.

Process networks have transformation functions that transform a moment for a
certain process (which is in fact a time space that is connected to the process)
to a general time space. (TrOI and TrIO, the 0 is a zero, not an O) Which
time space this is, is a design choice. Again, this generally will depend on
things like the network structure and the states and parameters of the different
processes, so this has to be done by the programmer. These functions are used
to synchronize time spaces in order to be able to compare them.

4.3.5 Stateful Reconfigurations

Stateful reconfigurations can be quite complicated. Therefore, it is hard to talk
about them in a general way. The principle however, is always the same.

In figure 4.2, one can see how stateful reconfiguration is performed. The theory
uses two separate processes, which is clearer in theory. In practice, it is easier
to just use one process. The main reason to do that, is that it simplifies the
network that is used. Another reason to do this, is that one doesn’t have to
keep track of which process is active at which time. A third reason to do this,
is that YAPI is constructed in such a way, that inactive processes are always
either reading or writing, because a process just continues executing its main
function, until a read or a write operation cannot be completed because a buffer
is full or empty. The process that should start in another state cannot switch
to this state at that moment, because it was already executing a main function
that belongs to some previous state. Therefore, it cannot switch immediately,
because it can only switch when a main function returns.

Figure 4.2 shows part of a process network, namely the part that should be part
of the switch. The input channels have a stateful switch (SFS in sfs.h) and the
output channels have a stateful merger (SFM in sfm.h).

The switch continues until it arrives at the moment that tokens need to go to
both processes, as seen in the theory. (Figure 3.11) From that moment on,
tokens are still sent to the process, but are also saved in the buffer (the loop in
figure 4.2) to be used later. At the moment that the old version has finished
what it should do, it makes sure that the process switches and it empties this

4.3. ARCHITECTURE 35

buffer, so that the tokens are sent again to the process network, which then
uses them again to compute what it has to compute, but now in the new state.
When the buffer is emptied, the switch continues its work by again just passing
tokens from the input to the output.

The merger does the opposite: it ignores the tokens that are wrong. (It could
for example be the case that a process always outputs two tokens at a time,
while the reconfiguration should be between them, or that a process, due to its
internal structure always starts with some noise.) This is very much like the
theory. The process continues reading tokens from the input and writing tokens
to the output, until the process has switched. At that moment, the process starts
to ignore the tokens that have wrong results (if there are any) until the first
correct token arrives. At that moment it switches back and continues reading
and writing the way it used to do.

This system (like the theoretical system by the way) has to be customized for ev-
ery set of stateful processes, because the system itself has no information about
the network structure and where impacts influence each other - this depends on
the network architecture. An example which implements this, is shown in the
next chapter, which describes the implementation.

Chapter 5

Manual

5.1 Introduction

This manual explains how the RPN-toolbox is used to write RPN-programs. It
is assumed that the reader already has a thorough knowledge of YAPI. This can
be found in [7]

To illustrate how to use the extended version of YAPI, a small RPN-program is
made step by step. The program that has been chosen is a small filter, which can
be seen in figure 5.1. This filter can be seen as a model for e.g. a volume control.
It consists of two separate reactive processes: a duplicator and a multiplier. The
duplicator has two states. In state 1 it is turned off and just passes the token
to the next process. In state 2 it duplicates the tokens that it reads n times. n
is provided as a parameter.

The multiplier only has one state, but it has a parameter, that it multiplies its
input with.

The source provides tokens in some way and sends them to the filter. The
sink reads them and sends them to their destination, whatever that may be.
The source and the sink are normal KPN processes and therefore, they are not
treated in this manual. There is no problem to use KPN processes mixed with

Dupli-
cator

Filter

Figure 5.1: The schematics of the filter program.

37

38 CHAPTER 5. MANUAL

RPN processes.

5.2 The RpnProcess: The Multiplier

Program Text 1: multiplier.h

#include "rpnprocess.h"

class Multiplier : public RpnProcess
{
public:
Multiplier(const Id& n,
In<int>& i,
Out<int>& o,
int f£=1);
const char* type() const;

bool Q(const Time moment);
Time mainl();

private:

InPort<int> in;

OutPort<int> out;

int factor;

void ImplementParamChange (ParamChange* p);

};

The header file of the multiplier can be seen in program text 1. Most of this
is equivalent to how things are done for normal processes. There are a few
exceptions:

e Each RpnProcess must have a member function bool Q(const Time
moment). This function returns whether or not moment is a quiescent
state. For example, it could be the case that each even number is a qui-
escent state.

e A parameter can be adjusted, so a member function void
ImplementParamChange (ParamChange* p) is needed.

e Main functions are in the format Time <name>().

Program Text 2: multiplier.cc

#include "multiplier.h"

Multiplier::Multiplier(const Id& n, In<int>& i,
Out<int>% o, int f):
in(id("in"), i),
out (id("out"), o),
factor(f),

5.2. THE RPNPROCESS: THE MULTIPLIER 39

RpnProcess(n, 1)
{
states[1]=(MAIN)&Multiplier: :maini;
}

const char* Multiplier::type() const {return "Multiplier";}
bool Multiplier::Q(const Time moment) {return true;}

void Multiplier::ImplementParamChange (ParamChange* p)
{

factor=((TParamChange<int>*)p)->NewValue();
}

Time Multiplier::maini()
{
int i;
read(in, i);
write(out, factor*i);
return 1;

Program text 2 gives the implementation of Multiplier. The first notable thing
one can see is the initialization of its ancestor, RpnProcess, in the constructor.
The second argument represents the initial state of the process. This is 1 by
default, but can be specified differently.

The second thing is the initialization of the different states in the constructor.
This is done by adding each main function to the vector states. These func-
tions need to be converted to the type MAIN (which is defined in rpnprocess.h
by typedef Time (RpnProcess::*MAIN)();), because RpnProcess expects
functions that are of type Time (RpnProcess::*)(). This is dictated by
C++. Time mainl() is the main function, so state 1 is initialized with
states[1]=(MAIN)&Multiplier::mainl;. This main function basically does
four things: it reads a token, it multiplies it with the current multiplying factor,
it outputs it and it returns the number of moments that it needs, in this case 1.

The Q function in this case just returns true because every moment is a quies-
cent state.

The parameter changing function ImplementParamChange (ParamChange* p)
is called at the moment that a change really should take place (so perhaps
some time after this change was planned). This always happens before the
new main function is called. The only thing it does in this case, is to give
factor a new value. This new factor is given in parameter ParamChange* p.
This however isn’t really trivial. The problem actually is that the super class
RpnProcess doesn’t know which parameter types its childs have. Therefore, it
passes the parameter as type ParamChange*. This type has two member func-
tions, int ParamNr(), returning the parameter number (i.e. 1 for parameter 1,
2 for parameter 2 et cetera) and Time Moment (), which returns the moment on
which the change should take place, which is of course equal to the clock when
ImplementParamchange is called. We know that parameter number 1 (there is
only one parameter) is an integer, so we also know that the actual type of the

40 CHAPTER 5. MANUAL

parameter is TParamChange<int>*. Therefore, we need to convert this param-
eter to that type, so we can call its member function T NewValue() where T is
an int. Therefore, factor=((TParamChange<int>*)p)->NewValue();.

The rest of the .cc file is just the same as it would normally be with YAPI.

5.3 The RpnProcess: The Duplicator

Program Text 3: duplicator.h

class Duplicator : public RpnProcess
{
public:
Duplicator(const Id& n,In<int>& i,Out<int>& o,
int initialState=1,int number=1);
const char* type() const;

inline int NumberOfDupl() {return numberOfDupl;};

bool Q(const Time moment);
Time TransformIJ(const Time moment,const int i=1,const int j=1);
Time TransformJI(const Time moment,const int j=1,const int i=1);

void ChangeState(int s, Time moment);

void ChangeState(int s);

void ChangeParam(int param, int newValue, Time moment);
void ChangeParam(int param, int newValue);

Time maini();
Time main2();

private:
InPort<int> in;
OutPort<int> out;
int numberOfDupl;

void ImplementStateChange(const int newState);
void ImplementParamChange(ParamChange* p);

Transform transformations;

};

When it comes to the .h file, there’s not so much difference with the multiplier,
except that there are two main functions (two states) and that transformation
functions have been added as well as a transformation variable. These are
explained below.

Program Text 4: duplicator.cc

Duplicator::Duplicator(const Id& n,In<int>% i,0ut<int>% o,
int initialState,int number):
in(id("in"), i),

5.3. THE RPNPROCESS: THE DUPLICATOR 41

out (id("out"), o),
number0£Dupl (number) ,
RpnProcess(n, initialState)

states[1]=(MAIN)&Duplicator::maini;
states[2]=(MAIN)&Duplicator::main2;
if (initialState==2) transformations.ChangeRate(l, 1, number);

}
const char* Duplicator::type() const {return "Duplicator";}
bool Duplicator::Q(const Time moment) {return true;}

Time Duplicator::TransformIJ(const Time moment,const int i,
const int j)
{ return transformations.TransformIJ(moment);}

Time Duplicator::TransformJI(const Time moment,const int j,
const int i)
{ return transformations.TransformJI(moment);}

void Duplicator::ChangeState(int s, Time moment)
{
StatelessProcess: :ChangeState(s, moment);
// Register clock
if (s==1) transformations.ChangeRate(moment, 1, 1);
if (s==2)
transformations.ChangeRate (moment, 1,
((TParamChange<int>*)ParamAt (moment))?
((TParamChange<int>*)ParamAt (moment))->NewValue():
number0fDupl) ;
}

void Duplicator::ChangeState(int s){ChangeState(s, NextQ());}

void Duplicator::ChangeParam(int param,int newValue,Time moment)
{
StatelessProcess::ChangeParam(param, newValue, moment);
// Register clock
if (State()==2) transformations.ChangeRate(moment, 1, newValue);

}

void Duplicator::ChangeParam(int param, int newValue)
{
ChangeParam(param, newValue, NextQ());

}

Time Duplicator::main1()
{
int t;
read(in, t);
write(out, t);
return 1;

42 CHAPTER 5. MANUAL

Time Duplicator::main2()
{
int t;
read(in, t);
for (imt i=1; i<=number0fDupl; ++i) write(out, t);
return 1;

}

void Duplicator::ImplementStateChange(const int newState)
{ // Nothing is needed, the state changes automatically...}

void Duplicator::ImplementParamChange (ParamChange* p)
{

number0fDupl=((TParamChange<int>*)p)->NewValue() ;
}

Now it is clear that the duplicator is a bit more complicated than the multiplier.
These differences can be divided into two different categories:

1. There are two states

2. There are non-standard transformation functions.

5.3.1 More than one state

It is quite simple to give a process more than one state, as can be seen in the
program text. The programmer only needs to define one main function for each
state and then add them to the vector state. The process will automatically
choose the appropriate main function. A state change doesn’t really need an
implementation in this case, because apart from picking the other main function,
nothing really needs to be altered.

5.3.2 Transformations

One challenge with this duplicator is that the transformation ‘r|3 can change,
depending on the state and parameter of the process. Where the information of
some input token will be in the next channel, depends not only on the present,
but also on the planned state changes. However, this information is needed to
plan the changes for the processes after this process.

Therefore, every planned change in input/output rate is registered as soon as it
is planned. To do this, the process reimplements the functions with which state
and parameter changes are planned. In the program text, one can see that first
RpnProcess’s functions are called. Then the planned transformation changes
are registered.

These transformations are registered in the variable transformations of type
Transform by calling void Transform::ChangeRate(Time moment, int i,
int j). moment is the moment that the change takes place, i is the num-
ber of tokens read per time period and j is the number of tokens written per

5.4. THE REACTIVEPROCESSNETWORK 43

time period (usually per loop, but it could easily be per two loops, or per
twenty loops or so). Time Transform::TransformIJ(Time moment) and Time
Transform: : TransformJI(Time moment) give the forward and backward trans-
formations moment|} and moment|], by calculating them while making use of
the registered transformations. (This only works for this specific kind of behav-
ior, i.e. a constant number of input and output tokens per time period between
two reconfigurations. In other cases, the programmer will need to develop his
own method to compute these transformations.)

The registering process depends on the state that is planned. If state 1 is
planned, then of course the input and output rates are just one. If state 2 is
planned, then they depend on the value of the parameter at that moment. This
is tested by using the function RpnProcess::ParamAt(Time moment), which
gives the last parameter change before moment. (As there’s only one parameter,
one doesn’t need to look for a specific parameter number.)

The transformation functions themselves make use of transformations to cal-
culate their transformations.

5.4 The ReactiveProcessNetwork

The filter itself is a ReactiveProcessNetwork, which is derived from class
ProcessNetwork. It doesn’t have more than one state, but it has two param-
eters: the multiplication factor and the duplication factor. They each have a
number that is defined in a const: P_.FACTOR and P_DUPL . The header file can
be seen in program text 5.

Program Text 5: filter.h

const int P_FACTOR=1; // Parameters numbers, to be used
const int P_DUPL=2; // to identify them.

class Filter : public ReactiveProcessNetwork

{

public:
Filter(const Id& n, In<int>& i, Dut<int>& o, int factor=1);
const char* type() const;

Time TrIO(RpnProcess* r, Time moment) ;
Time TrOI(RpnProcess* r, Time moment);

private:
Fifo<int> f;

InPort<int> in;
OutPort<int> out;
Multiplier m;
Duplicator<int> d;

void ImplementParamChange (ParamChange* Pp);

};

44 CHAPTER 5. MANUAL

Most of the file should be clear. Two things are different: the parameter change
implementations and the transformation functions, which are explained in sec-
tion 4.3.4.

Program Text 6: filter.cc

#include "filter.h"

Filter::Filter(const Id& n, In<int>%& i, Out<int>& o, int factor):
£(id("£1")),
in(id("in"), i),
out (id("out"), o),
m(id("m"), £, out, factor),
d(id("d"), in, £, 2, 1),
ReactiveProcessNetwork(n)

{13
const char* Filter::type() const{return "Filter";}

Time Filter::TrIO(RpnProcess* r, Time moment)
{
if (r==&m) return d.TransformJI(moment);
return moment;

3

Time Filter::TrOI(RpnProcess* r, Time moment)
{
if (r==&m) return d.TransformlJ(moment);
return moment;

}
void Filter::ImplementParamChange (ParamChange* p)
{
switch (p~>ParamNr()) {
case P_FACTOR:
int newValue=((TParamChange<int>#*)p)->NewValue();
m.ChangeParam(1,newValue,TrO0I(&m, p->Moment()));
break;
case P_DUPL:
int newValue=((TParamChange<int>#*)p)->NewValue();
if (newValue==1)
d.ChangeState(1, p->Moment());
else {
d.ChangeState(2, p->Moment());
d.ChangeParam(1, newValue, p->Moment());
}
break;
}
}

The first interesting part of filter.cc is the transformation functions. They
test for which process a transformation is needed, perform the corresponding
transformation and return the answer. The input channel is considered as time

5.5. STATEFUL RECONFIGURATIONS 45

Figure 5.2: The schematics of the stateful illustration program.

space 0. According to the network topology, the incoming channel of the du-
plicator is in the same time space, so no extra transformations are needed for
it. The multiplier is behind the duplicator, so transformations for that process
and its incoming channel need to be transformed by duplicator’s transforma-
tion functions. That’s why the function tests whether the desired process is
the multiplier, and if so, it transforms moment with d.TransformJI (mocment) or
d.TransformIJ(moment).

The other interesting thing is the parameter change implementation function.
This function tests which parameter is to be changed in the switch statement.
It then applies the corresponding transformation to the correct template<class
T>TParamChange<T>* to read the new value. When that is finished, it reconfig-
ures the correct process.

It is clear that the different RPNs are responsible for the correct implementation
of the reconfigurations. The processes just wait until the network gives them
the order to reconfigure.

5.5 Stateful reconfigurations

A small network has been made to illustrate stateful reconfiguration, see figure
5.5. In state 1, the process (called processi in this case) outputs the average
of the last three tokens and saves the last two tokens. In state 2, the process
outputs twice the average of the last three tokens and saves the last two tokens
* 2. So8l(r) =[r—2,7] and J;'- (r) = [r,7 + 2]. This process can be seen in
program text 7 and 8 The interesting part of the program text is the switching
function of the network, which can be seen in program text 9.

Program Text 7: testprocess.h

#include "rpnprocess.h"

class TestProcess : public RpnProcess

{

public:
TestProcess(Id% n, In<int> i, Out<int> o);
const char* type() {return "TestProcess";};

Time M(const Time moment, int i=1){returmn 3;};
Time S(const Time moment, int j=1){return moment-2;};
Time Ss(const Time moment, int j=1){return 3;};

46

CHAPTER 5. MANUAL

Time maini(); // Average of the last three tokens
Time main2(); // Average of the last three tokens times 2

private:
InPort<int> in;
DutPort<int> out;

int tokenl, token2;
};

Program Text 8: testprocess.cc

#include "testprocess.h"

TestProcess: :TestProcess(Id& n, In<int> i, Out<int> o):
in(id("in"), i),out(id("out"), o),tokeni(0),token2(0),
RpnProcess(n)

{
states[1]=(MAIN)kTestProcess: :mainl;
states[2]=(MAIN) &TestProcess::main2;

}
Time TestProcess: :mainl()
{

int i;

read(in, i);

write(out, (tokenl+token2+i)/3);
tokenl=token2;

token2=i;

return 1;

}

Time TestProcess: :main2()
{
int i;
read(in, 1i);
ix=2;
write(out, (tokenl+token2+i)/3);
tokenl=token2;
token2=i;
return 1;

Program Text 9: void ImplementStateChange

void StatefulNetwork::ImplementStateChange(const int newState,
const Time moment)
{
// To stay producing, the last token it needs is:
Time mil=processl.S(moment-1)+procesl.Ss(moment-1)-1;
// So it should switch one tokem later:
processl.ChangeState (newState, mi+1);

5.56. STATEFUL RECONFIGURATIONS 47

// To produce tokens from moment, it needs tokens from S(moment).
Time m2=processl.S(moment);
sfs.SwitchState (m2, ml);

// Tokens that are to be ignored are at moment, the number is:
Time m3=moment-processi.S(moment);
sfm.IgnoreAt (moment, m3);

The stateful process is processi, the stateful switch is sfs and the stateful
merger is sfm. When a change is planned on moment moment, the process needs
to stay producing until the last token before moment, which is moment - 1, so it
needs input until the last token in 8] (moment—1), which is process1.S(moment
- 1) + procesi.Ss(moment - 1) - 1l. The reconfigured process needs all
tokens in 8!(moment), so it should start with token processi.S(moment).

1For those functions, see section 4.3.2

Chapter 6

Conclusions and
Recommendations

A model has been presented, that implements the outline of RPNs[5]. This
model improves the KPN model [6], enabling it to model dynamic networks.
The key principle to achieve this, is to use a different concept of time. Time
shouldn’t be divided into seconds, but into the sequence numbers of tokens.
That means that the time isn’t equal for each process and channel.

Every part of the network is considered to be in a different time space, each
with its own clock. Those time spaces are related by the processes between
the different channels. Crucial for these relations is which tokens’ information
correspond to each other in terms of information.

Several time spaces together can form a universe, inside which the time spaces
can be synchronized. When time spaces can be synchronized, the processes can
be synchronized too, and thus they can be reconfigured in a synchronized way.

There are several forms of synchronized and unsynchronized reconfiguration, see
section 3.6 for an overview. For each way, the reconfiguration has been modeled.

The model has been implemented to be used by YAPI. A description has been
given of the underlying principles. Not every part of the theory has been imple-
mented exactly the way that the theory describes. These differences have been
investigated and explained.

Several choices have had an impact on the implementation:

1. No attention was given to the fact that counters can overflow. This choice
was made, because the model is not intended to simulate endlessly. In
practice, the limits should do.

2. Providing correct transformation functions are the job of the programmer.
This choice was made, because YAPI isn’t really suitable to synthesize a
network model, while this model is needed to calculate the transformations
automatically.

3. In the implementation, it is the process that keeps track of the channel
time. This was done this way, because YAPI is designed in such a way that

49

50

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

it is impossible for process objects to communicate with channel objects
(except the tokens of course).

. Processes now explicitly execute loops. This choice was made, because

it was the best way to explicitly distinguish quiescent points (at the end
of each loop), to switch between states and to keep track of which time
stamps the just read tokens have.

A manual has been written, with which a programmer is able to write his own
RPN programs.

There are several areas in which there is still work to be done.

. The stateful reconfiguration is now quite complicated. Perhaps this could

be simplified by improving the class RpnProcess. Another way of im-
proving could be to have some easily implementable standard scenarios
that can be used in some often occurring situations.

. Currently, the programmer is responsible for the process transformation

functions. Perhaps this could be automated in some cases, for example by
providing several standard functions, like the Transform class does.

. At the moment, the network topology isn’t analyzed by the network. If

this would be done, then the network’s transformation functions could
be generated automatically, because in such a case, it is known in which
order which process’s transformation would be used in order to generate
the correct transformation.

. The model is now implemented in YAPI. It would be useful to be able to

map the model or indeed a YAPI program on a multiprocessor platform
that really executes the different processes on different processors.

. While implementing the model, efficiency hasn’t been a goal. Therefore,

some functions could probably be implemented much more efficiently.

Despite these things, the implementation works and can be used to write and
simulate RPNs. Several testing programs have been written and they proved
that the system works. Two examples are used as illustrations in this report.
There is an important limitation though: It is vital to the system that the
number of tokens that is read and written are known a priori. When this is not
the case, only ‘nearly’ synchronized reconfigurations are possible.

The theory has given a new perspective on the use of time in streaming networks
and the implementation proofs that that perspective works. Hopefully, this will
help developing new streaming data process networks in the future.

Bibliography

1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

1]

F. Boussinot Sémantique de réseaux paralléles : une approche du temps
réel Revue Technique Thompson-CSF, vol. 12, no. 3, September 1980

Jack B. Dennis First Version of a Data Flow Procedure Language, MIT
Project MAC Technical Memo. 61, May 1975

Guillaume Doumenc and Frédéric Boussinot La Programmation par Objets
Réactifs, Rapport EMP-CMA 15/92, 1992

Tomas Henriksson, Jeffrey Kang and Pieter van der Wilf Implementa-
tion of Dynamic Streaming Applications on Heterogeneous Multi-Processor
Architectures Third IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, 2005.

Marc Geilen and Twan Basten Reactive Process Networks Proc. of the 4th
ACM int. conf. on Embedded software, Pisa, Itali, 27-29 September 2004,
pp 137-146, ACM Press, New York (NY), USA

Gilles Kahn The Semantics of a Simple Language For Parallel Program-
ming Information Processing 74: Proc of the IFIP Congress 74, Stockholm,
Sweden, August 1974, pp 471-475, North-Holland Publishing Company,
Amsterdam, The Netherlands

Erwin De Kock and Gerben Essink Y-chart Application Programmer’s In-
terface

Stephen Neuendorffer and Edward Lee Hierarchical Reconfiguration of
Dataflow Models Proc. 2nd ACM and IEEE Int. Conf. on Formal Meth-
ods and Models for Co-Design, 23-25 juni 2004, pp 179-188, IEEE, Los
Alamitos (CA), USA

Hristo Nikolov, Todor Stefanov and Ed Deprettere Modeling and FPGA
Implementation of Applications using Parameterized Process Networks
with Non-Static Parameters Proc. of the 13th Ann. IEEE Symp on
FCCM’05, 2005

Vincent Nollet Run-Time Resource Management for Future MPSoC Plat-
forms 2008, TU Eindhoven, The Netherlands

Martijn J. Rutten, Jos T.J. van Eijndhoven e.a. Eclipse: Heterogeneous
Multiprocessor Architecture for Flexible Media Processing IEEE Parallel
and Distributed Processing Symposium IPDPS 2002, 2002

51

52 BIBLIOGRAPHY

[12] B.D. Theelen, M.C.W. Geilen e.a. A Scenario-Aware Data Flow Model
for Combined Long-Run Average and Worst-Case Performance Analysis
Fourth ACM and IEEE International Conference on Formal Methods and
Models for Co-Design, 2006.

[13] William Thies, Michal Karczmarek and Saman Amarasinghe Streamlt: A
Lanuage for Streaming Applications Lecture Notes In Computer Science;
Vol. 2304 Proceedings of the 11th International Conference on Compiler
Comnstruction, 2002

	Voorblad
	Contents
	Summary
	1 Introduction
	2 Related work
	3 Theory
	4 Implementation
	5 Manual
	6 Conclusions and recommendations
	Bibliography

