
 Eindhoven University of Technology

MASTER

Safety-critical design of the generic driving actuator
a hybrid approach

Merkx, L.L.F.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/719e8555-b74a-4ff6-a5aa-77bfc3c47def

Eindhoven University of Technology

Department of Computer Science
Section Design and Analysis of Systems

Safety-critical design of the
Generic Driving Actuator

A hybrid approach

L.L.F. Merkx

Master’s thesis

Exam committee:
Chairman Prof. dr. ir. J.F. Groote
Mentor Dr. ir. P.J.L Cuijpers
External member Dr. ir. R.J. Bril
Mentor (TNO) Ir. H.M. Duringhof

Exam date:
November 20, 2007

Copyright c© 2007 Eindhoven University of Technology, Eindhoven, The Netherlands

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or

otherwise, without the prior written permission of the Technical University of Eindhoven.

Summary

At TNO Automotive the Generic Driving Actuator (GDA) is developed. The
GDA is a device capable of driving a vehicle fully automatically using the same
interface as a human driver does. In this thesis, the design of the GDA is dis-
cussed and the interaction between its software and hardware components is
analyzed from a safety point of view.

Before starting with the safety issues of the GDA, a control strategy is designed
for the GDA. A torque controller and a position controller is built and their per-
formance is analyzed. The torque controller is a feedforward controller without
feedback and the position controller is implemented as a PID controller. These
fairly simple controllers perform good enough for their use in the GDA.

The hardware design of the GDA is adapted to achieve an acceptable level of
fault tolerance. Safety must be guaranteed for single-point failures. To achieve
this, safety-critical hardware components are duplicated without making the
system less compact or too costly.

The software of the GDA needs to be correct under all circumstances to guar-
antee its safety. Therefore the software is designed and verified using formal
methods. First the requirements of the software are specified. Based on these re-
quirements a software model is built in the proces-algebraic language µCRL. The
requirements are then converted to modal logic, which can be verified against
the software model.

Finally, a simulation model is built in Simulink to analyze safety during driving
tests in simulation. Furthermore a strategy is designed to maintain safety during
component failures and external emergencies. The simulation model consists of
a vehicle model and a model of the GDA with functionality to simulate faults
of the GDA.

- i -

Preface

This thesis is written at TNO Automotive for the department of Integrated
Safety as part of a joint thesis for both Computer Science and Mechanical En-
gineering. This thesis focusses on the computer science aspects to obtain the
master degree in computer science, while the other thesis focusses on the me-
chanical engineering aspects. The joint thesis is supervised by prof. dr. Henk
Nijmeijer (TU/e Mechanical Engineering), prof. dr. ir. Jan-Friso Groote and
dr. ir. Pieter Cuijpers (TU/e Computer Science) and ir. Hans-Martin During-
hof (TNO Automotive).

This thesis is written at TNO Automotive for the department of Integrated
Safety as a joint thesis for both Computer Science and Mechanical Engineering
to obtain the master degree. This master’s thesis is supervised by prof. dr.
ir. Jan-Friso Groote and dr. ir. Pieter Cuijpers (TU/e Computer Science),
prof. dr. Henk Nijmeijer (TU/e Mechanical Engineering) and ir. Hans-Martin
Duringhof (TNO Automotive).

During this master’s thesis, I had a lot of support from my supervisors. I thank
them for giving me the opportunity to make a joint thesis despite of the com-
plications this would bring with it. Fortunately they liked the challenge.

In addition to the support from my supervisors I received advice and assistance
from ing. Fred Gordebeke and ing. Joris Coolen (electrical implementation of
GDA, TNO), ir. Robert Verschuren (Steering robot, TNO), ir. Roel Leenen
and ir. Raymond Tinsel (MACS/Simulink, TNO), ir. Pieter Schutyser and ir.
Arjan Teerhuis (Simulink, TNO), dr. ir. Antoine Schmeitz and dr. ir. Igo
Besselink (vehicle dynamics, TNO / TU/e), ir. Muck v.d. Weerdenburg and
dr. ir. Wieger Wesselink (µCRL, TU/e), ir. Erwin de Groot (Review of report,
UCalgary) and others.

Furthermore I want to thank the people who made this combined study possi-
ble in the first place. In 2001 I wanted some variation in my computer science
curriculum. I wanted to do some automotive classes and ultimately prof. ir.
Nort Liebrand convinced me of doing both curricula: computer science and
mechanical engineering. He arranged my individual curriculum for mechanical
engineering together with dr. ir. Bram de Kraker (director of education) and
ir. Elise Quant. Dr. Ad Aerts (student advisor) helped them finding overlap
between the two curricula and adjusted the computer science curriculum.

- iii -

Last but certainly not least, I like to thank my friends, my family and my girl-
friend for their support throughout this master’s thesis.

Eindhoven, November, 2007

Leon

- iv -

Nomenclature

Latin symbols

Symbol Description Unit

dcolumn Damping constant of steering column [Nms/Rad]

dgda Damping constant of the steering robot [Nms/Rad]

drack Damping constant of the steering rack [Ns/m]

fact Actuator frequency [Hz]

fs Sample frequency [Hz]

ist Steering ratio [−]

kcolumn Spring constant of the steering column [Nm/Rad]

kgda Spring constant of the steering robot [Nm/Rad]

l Beam length [m]

mrack Mass of the steering rack [kg]

np Number of pole pairs [−]

nrack Ratio between steering rack and steering column [m/Rad]

tdelay Delay time [s]

ts Sample time [s]

xrack Position of the steering rack [m]

C(s) Controller transfer function

F Force [N]

Fy Lateral tyre force [N]

Fz Vertical tyre force [N]

Fwh Wheel forces and torques (acting on vehicle body) [N, N, N, Nm, Nm, Nm]

Id, Iq Currents in rotor frame [A]

Iu, Iv, Iw Currents in three-phase stator frame [A]

Ix, Iy Currents in xy-frame [A]

Jgda Inertia of steering robot [Nms2/Rad]

K Controller gain [−]

Kgda Friction coefficient of the steering robot [Nm]

Krack Friction coefficient of the steering rack [N]

Kt Torque constant [Nm/A]

Ku Ultimate gain [−]

Mx Self-aligning moment of the tyre [Nm]

Td Differential control action [s]

Td Damping torque [Nm]

Teff Effective torque [%]

Tfric Friction torque [Nm]

- v -

Tgda Torque applied by steering robot [Nm]

Ti Integral control action [s]

Tk Spring torque [Nm]

Tm Motor torque [Nm]

Tst Steering torque [Nm]

Tu Ultimate period [s]

a Action variable

b Boolean variable

p Process variable

q Process variable

t Time [s]

Y Propositional variable

Greek symbols

Symbol Description Unit

α Angle [Rad]

αbacklash Backlash in steering robot [Rad]

αm Angle of pole [Rad]

αst Steering wheel angle [Rad]

αwh Steer angle of the wheel [Rad]

γ Electrical angle [Rad]

λ Failure rate [s−1]

ψd, ψq Rotor fluxes [T]

∆ Difference

α Action formula

β Regular formula

δ Inaction

µ Least fixed point operator

ν Greatest fixed point operator

τ Internal action

φ State formula

Other symbols

Symbol Description Unit

> Set of all actions

- vi -

Operators

Symbol Description

+ Non-deterministic choice

· Sequential composition

|| Parallel composition

/ . Conditional choice

¬ Logical negation operator

∨ Logical or operator

∧ Logical and operator

· Concatenation operator

| Choice operator
∗ Transitive-reflexive closure
+ Transitive closure

Abbreviations

µCRL micro Common Representation Language

ACP Algebra of Communicating Processes

CADP Cæsar Aldébaran Development Package

CCS Calculus of Communicating Systems

CSP Communicating Sequential Processes

CTL Computation Tree Logic

GDA Generic Driving Actuator

HML Hennessy-Milner Logic

HyPA Hybrid Process Algebra

ISO International Organization for Standardization

LPO Linear Process Operator

MACS Modular Automotive Control System

PID Proportional-Integral-Differenial (controller)

PLTL Propositional Linear-Time Logic

SAE Society of Automotive Engineers

- vii -

Contents

1 Introduction 1
1.1 Background . 1
1.2 Project description . 2
1.3 Structure of report . 3

2 Generic Driving Actuator 5
2.1 Introduction . 5
2.2 Safety . 7
2.3 Driving tests . 8

2.3.1 Control response tests . 8
2.3.2 Handling tests . 9

2.4 Competitors . 9
2.4.1 History . 10
2.4.2 Steering robot . 10
2.4.3 Pedal robot . 11

2.5 Specification . 12
2.5.1 Steering robot . 12
2.5.2 Pedal robot . 12

3 Controller design 13
3.1 Hardware . 13
3.2 Torque controller . 14

3.2.1 Design . 14
3.2.2 Performance . 18

3.3 Position controller . 20
3.3.1 Design . 20
3.3.2 Performance . 21

4 Safety-critical hardware design 25
4.1 Introduction . 25
4.2 Fault-tolerant strategies . 27
4.3 Fault-tolerant GDA . 30

4.3.1 Angle sensor . 30
4.3.2 Actuator and servo amplifier 30
4.3.3 Control system . 31

- ix -

CONTENTS

5 Safety-critical software design 33
5.1 Introduction . 33
5.2 Interface description . 34

5.2.1 Operational modes . 35
5.2.2 User interface . 36
5.2.3 Component interface . 37
5.2.4 Canbus interface . 37

5.3 Requirements . 38
5.4 Specification . 38

5.4.1 Introduction to µCRL . 39
5.4.2 Data types . 40
5.4.3 Processes . 42

5.5 Analysis results . 47
5.5.1 Problem 1 . 47
5.5.2 Problem 2 . 49
5.5.3 Problem 3 . 50

5.6 Verification . 51
5.6.1 Introduction to model-checking 51
5.6.2 Expressing requirements in modal logic 52
5.6.3 Generation transition system 57
5.6.4 Results . 59

5.7 Implementation . 61

6 Safety during driving tests 63
6.1 Control system . 63
6.2 Robot dynamics . 65

6.2.1 Second order estimation 65
6.2.2 Friction . 66
6.2.3 Backlash . 66
6.2.4 Fit parameters . 67
6.2.5 Model . 68

6.3 Vehicle model . 68
6.3.1 Advance . 69
6.3.2 Vehicle . 69
6.3.3 Steering mechanism . 69

6.4 Simulation . 71
6.4.1 Steering capabilities . 71
6.4.2 Error mode strategy . 77

7 Conclusions & Recommendations 83
7.1 Conclusions . 83

7.1.1 Controller design . 83
7.1.2 Safety-critical design . 84
7.1.3 Safety during driving tests 85

7.2 Recommendations . 85

8 Discussion 87

- x -

CONTENTS

A Hardware 93
A.1 Angle measurement with the Netzer encoders 93

A.1.1 Netzer encoder . 93
A.1.2 Electrical angle computation 94

A.2 Torque measurement . 94

B Transition system reduction using binary semaphores 95
B.1 Introduction . 95
B.2 Technique . 95
B.3 Conclusion . 98
B.4 Steering robot . 98

C Process algebraic tools 99
C.1 µCRL toolset . 99
C.2 Cæsar Aldébaran Development Package 100
C.3 Visualization tools . 100

D Formal methods code 101
D.1 Specification . 101
D.2 Modal formulae . 117

D.2.1 Requirement 2 . 117
D.2.2 Requirement 3 . 117
D.2.3 Requirement 4 . 118

E Paper SCSC 119

- xi -

Chapter 1

Introduction

’Computer Science is no more about computers than astronomy is about tele-
scopes.’

Edsger W. Dijkstra

In this chapter an introduction is given to the master’s thesis. The project back-
ground, the project description and the structure of the thesis are described.

1.1 Background

TNO Automotive is an independent research institute for the automotive indus-
try. In Helmond the department of Integrated Safety is situated. One of their
research areas is the development and testing of intelligent vehicle systems.

A new project in this area is the development of the so-called Generic Driving
Actuator (GDA). The GDA is a compact system which can drive a vehicle fully
automatically. This system uses the same interfaces as a human driver does: it
controls the steering wheel, the brake pedal and the throttle pedal. The GDA
consists of three robots to control each interface: a steering robot and two pedal
robots. The clutch pedal will be ignored, since most vehicles also have a version
with automatic gearbox, which can be used instead.

The main use of the GDA will be to perform driving tests. The GDA can
be a good alternative for a test driver. One can think of driving tests which
would endanger a test driver (roll-over tests) and driving tests which are hard
to (re)produce (sinusoid steer and step steer tests). These driving tests can be
used for system identification1 or vehicle dynamics assessment.

Although the control system’s basic functionality will be based on fairly simple
feedback control techniques (e.g. PID control), special attention should be paid

1System identification is a general term to describe mathematical tools and algorithms that
build dynamical models from measured data. [WIK]

- 1 -

Introduction

to safety. Failing control can lead to life threatening situations, when the GDA
is used. One can imagine that simply shutting down the GDA is not always the
wisest decision.

When the master’s thesis was started, the design of the GDA was already de-
veloped (without safety measures) and the hardware components were finished
and available. The design had not yet been tested in reality.

1.2 Project description

In this master’s thesis the design of the GDA is described. The objective of
the thesis will be on how to make the GDA a safe system. A basic control
system (single actuator, single controller and single sensor) is built and will be
improved by applying safety strategies. The safety will be evaluated from three
different perspectives:

• Hardware design: Fault-tolerant strategies are applied to reduce the risk
of failing hardware.

• Software design: Formal methods are used to verify the correctness of the
software.

• Vehicle dynamics: Research is done on the effect of failing GDA hardware
on vehicle dynamics and how to continue safely in case of failing hard-
ware or an emergency (e.g. another vehicle which accidently obstructs the
driving test).

The subject of this master’s thesis will be:
The safety-critical design of the Generic Driving Actuator

During the thesis a lot of problems with the original design of the steering robot
were detected. Getting the steering robot running, which was supposed to be
an easy job, turned out to be a laborious, costly and time-consuming task. The
original design principles did not seem to work and components had quirks or
did not deliver the required specification at all.

The steering robot has only worked with poor performance. After many im-
provements to the design and to the components the steering robot is almost
finished, but still not working optimally.

The work on the pedal robot has been delegated to others due to time con-
straints. Although the GDA is now close to completion, the project has been
postponed due to marketing problems, new strategic plans and reorganization.

Without having the full GDA operational, tests in reality are not feasible. This
means that the development of a safe GDA can only be done with simulations,
without being able to verify the results in reality.

- 2 -

1.3. Structure of report

1.3 Structure of report

In this thesis, first the system requirements on the Generic Driving Actuator
are introduced in chapter 2. Focussing on the needs of the different driving
tests and the competition, the specifications for the GDA are described and the
importance of safety is stressed.

In chapter 3 the controller of the GDA is designed without any safety measures.
Since the three robots have a similar hardware design, only the steering robot
design is described in this chapter. First the hardware components are discussed
followed by the development of the torque controller and the position controller.

Chapter 4 describes the safety-critical hardware design. The safety of the GDA
must be guaranteed for single-point failures. To achieve an acceptable level of
fault tolerance the safety-critical hardware components need to be duplicated.
Some safety theory will be presented and put into practice.

Chapter 5 describes the software design and verification of the control system.
Formal methods will be used to guarantee the requirements of the GDA’s soft-
ware. An introduction is given on safety-critical software design and how formal
methods fit in. Formal methods are used to specify, design and verify the GDA’s
software. In the last section the implementation is described in Simulink.

In chapter 6 the safety during driving tests is analyzed in simulation for both
hardware and software. A strategy is designed, what should be done to main-
tain safety during component failures. A simulation model will be built with the
simulation platform Simulink. Only the behaviour of the steering robot will be
designed in complete detail. The other robots will be simplified in simulation. A
practical approach to validate the models by system identification experiments
will be proposed.

Chapter 7 contains the conclusions and further recommendations.

A short discussion is given in chapter 8 on the differences between computer
science and mechanical engineering and how these fields should be combined.
As the master’s thesis also will show, combining both fields will improve the
design proces and remove problems in an early phase by verifying requirements.

In figure 1.1 the structure of the report is schematically shown. The relations
between different parts of the report are indicated and it shows to which field
these parts belong. This master’s thesis is written for both mechanical engi-
neering and computer science and therefore certain parts will not immediately
be clear for people who are not familiar with both fields.

- 3 -

Introduction

Figure 1.1: Structure of report

- 4 -

Chapter 2

Generic Driving Actuator

Three laws of robotics
1. A robot may not injure a human being, or, through inaction, allow a human
being to come to harm.
2. A robot must obey the orders given it by human beings except where such
orders would conflict with the First Law.
3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

Isaac Asimov

This chapter introduces the GDA. First a general introduction is given and the
importance of safety is discussed. The last section contains the specifications of
the GDA, based on the needs of the different driving tests and the competition.

2.1 Introduction

The GDA is a device which is capable of driving a vehicle fully automatically
using the same interfaces as a human driver does. It is able to control steering
wheel, braking pedal and throttle pedal. The clutch pedal will be ignored, since
most vehicles also have a version with automatic gearbox, which can be used
instead.

The GDA consists of a control system and three robots each with their own
responsibility: turning the steering wheel, pressing the brake pedal and press-
ing the throttle pedal1. The control system receives setpoints from the user
like steering wheel angle. The GDA design is schematically shown in figure 2.1.
Note that all three robots make use of the control system, since the controllers
of the three robots are also part of the control system.

1Modern vehicles more and more use throttle-by-wire. The traditional throttle cable is
replaced by electronics. This makes it possible to use the electronic interface, instead of using
a pedal robot for throttle control.

- 5 -

Generic Driving Actuator

Figure 2.1: GDA Design

Two different types of robots are used in the design of the GDA: a steering
robot and a pedal robot. Both types have an almost identical setup. The only
difference is the output, which is either rotational (steering) or translational
(pedal). The setup of the steering robot will be further explained in chapter 3.
The pedal robot uses a similar setup with an additional component (a spindle)
to convert the rotating motion into a translating motion. The steering robot is
shown in figure 2.2 and the pedal robot is shown in figure 2.3.

Figure 2.2: Steering robot installed in Smart

The main use of the GDA will be to perform driving tests for system identifi-
cation and vehicle dynamics assessment. The GDA can replace the test driver
in dangerous driving tests (roll-over tests) and driving tests which are hard to
(re)produce (sinusoid steer and step steer tests). Driving tests will be further
explained in section 2.3.

It is also possible to use the GDA to test intelligent vehicle systems. An example
of an intelligent vehicle system is Automated Vehicle Guidance, which let a
vehicle follow a predefined trajectory. To test this system the steering, braking

- 6 -

2.2. Safety

Figure 2.3: Pedal robot

and throttle mechanism of the vehicle need to be adapted. Instead of converting
the complete vehicle, the GDA can be used and the system can be tested directly.
This will reduce development time and cost significantly.

2.2 Safety

The safety of the GDA is one of the most important design criteria. If a vehicle
gets out of control, it poses a serious thread to the test driver and to the envi-
ronment. This potential thread needs to be minimized.

If the GDA is used in combination with a test driver, he can take over control by
shutting down the GDA in emergency situations. The steering robot and pedal
robot are designed in such a way, that it is still possible for a test driver to
drive the vehicle. However the test driver is not always fast enough to prevent
dangerous situations. For example if the GDA decides to turn left, due to a
failing hardware component, the test driver might not have a chance to respond
on time to prevent a catastrophe. If the GDA is used for autonomous driving,
the safety issues are even more serious.

The GDA can be considered to be sufficiently safe, if these three requirements
are fulfilled.

• A single-point-of-failure in hardware does not effect the proper operation
If one hardware component fails, it must still be possible to use the GDA
to control the vehicle. Dangerous situations due to a single component
failure are avoided this way. The hardware safety is described in chapter
4.

• The software is safe
The software requirements must be verified to guarantee the correct be-
haviour under all circumstances. The software safety is further explained
in chapter 5.

- 7 -

Generic Driving Actuator

• The GDA must be able to stop the vehicle safely by itself
If a hardware component fails or if an emergency occurs, the GDA must
be able to stop the vehicle safely fully automatically. How this can be
done is described in chapter 6.

2.3 Driving tests

The GDA is used for driving tests. There are many driving tests defined within
the automotive industry to test handling, ride comfort, etc. In this section the
most important driving tests for horizontal dynamics are discussed shortly.

2.3.1 Control response tests

Control response tests are driving tests to measure the response of a vehicle
to inputs from steering wheel, throttle and brakes. These tests can be used to
identify vehicle parameters.

• Steady state cornering
These driving tests (also known as Circle tests) are described in [SAE96]
and are performed to measure steady state response to steer input at
different speeds. The most important reason to do these kinds of tests is
to investigate the understeer/oversteer behaviour.

• Lateral transient response tests
These driving tests are described in [ISO03] and are used to analyze the
dynamic behaviour of a vehicle. This analysis is done in the time domain
and in the frequency domain.

The driving tests in the time domain are usually only used to judge the
dynamic response of a vehicle subjectively. Large overshoots in yaw veloc-
ity, roll angle and sideslip angle during these tests are not accepted. The
driving tests in the time domain are the following:

– Step input : A steering wheel angle is set almost instantly (at speeds
of around 1000 degrees/s) and kept at this angle at a specific vehicle
speed.

– Single-cycle sinusoid : In this test the steering wheel is rotated in a
single-cycle sine motion at a specific throttle position. This test is
similar to the lane-change test, which is described later.

With the driving tests in the frequency domain, transfer functions can be
computed. The driving tests in the frequency domain are the following:

– Random input : Continuous pseudo-random input is applied to the
steering wheel with a frequency of 0.2 Hz to 2 Hz at a specific vehicle
speed.

– Pulse input : A triangular waveform is applied to the steering wheel
at a specific throttle position.

– Continuous sinusoidal input : A sinusoidal input is applied to the
steering wheel with a frequency starting at 0.2 Hz and ending at 2
Hz at a specific vehicle speed. This frequency is slowly and stepwise
increased.

- 8 -

2.4. Competitors

• Brake and throttle tests
So far, the described driving tests only concerned the effect of steering.
Other driving tests were developed to test the response on brake and
throttle pedal. This can be done purely longitudinal, i.e. braking and
accelerating in a straight line. However driving tests investigating the
combined effect of steering and accelerating/decelerating are most inter-
esting. One can think of the following driving tests: Braking in a turn,
Power-off in a turn (throttle off) and Power-on in a turn (full throttle).

The described driving tests will be performed turning both left and right. The
behavior of the vehicle turning left or right may not be symmetrical, since the
vehicle itself will never be completely symmetrical. Therefore it is important to
investigate this as well.

2.3.2 Handling tests

Handling tests are driving tests to measure the behaviour of the vehicle in com-
bination with the driver, i.e. in handling tests the driver is part of the control
loop. For this reason these tests are less objective than the control response
tests. Handling tests are performed to see which car behaves best during par-
ticular maneuvers and to see if the vehicle’s behaviour is acceptable in limit
situations. These maneuvers are based on events occurring in real life.

The most important handling tests are described below:

• Double lane change: The test driver changes lanes twice and tries to drive
the prescribed trajectory as fast as possible. The driving test trajectory
is described in [ISO99].

• Elk : This driving test is similar to the Double lane change test, only it
has somewhat different specifications.

• J-turn: This driving test simulates the scenario in which a driver steers
away from an obstacle. A step function is applied to the steering wheel at
the highest possible speed. This test is developed to test rollover propen-
sity.

• Fish hook : This driving test simulates the scenario in which a driver first
steers to one direction and than overcompensates to the other direction.
This test drive is run at the highest possible speed. The test is also
developed to test rollover propensity.

2.4 Competitors

There are some competitors in the same market building systems comparable
to the GDA. However these companies can only build components (a steering
robot and/or a pedal robot) or build robots for tests on test stands. None of
the competitors offers a compact, lightweight driving robot to perform driving
tests, which uses the onboard 12V charge. It does not need additional batteries
and/or transformers. Furthermore it is quick to install in a random vehicle
without adjustments to the vehicle.

- 9 -

Generic Driving Actuator

2.4.1 History

Until recently R&D departments of car manufacturers built their own applica-
tions to perform driving tests. These were electro hydraulic, making them large,
heavy, complex and expensive. Therefore it used to be a laborious task to build
the driving robot into a vehicle. It was also impossible to drive the car man-
ually when such a robot was installed. If the vehicle can be driven manually,
the driving test is easier to perform. In this way the driving test can easily be
started, when the vehicle reaches the initial speed on a specific part of the test
track. However it was possible to perform driving tests.

Only since recently it is possible to make compact, light-weight steering and
pedal robots with modern electro mechanics. The market for these applications
is therefore relatively new and small.

2.4.2 Steering robot

Modern steering robots are capable of performing standard driving tests. They
are relatively easy to install in modern vehicles and it is possible to drive the
vehicle manually with the equipment installed.

The most important competitor is Anthony Best Dynamics (ABD). This com-
pany builds two different steering robots: a steering robot for regular driving
tests and a steering robot for parking tests. The steering robot is considered to
be the best in the market and is used by many companies.

Other steering robot vendors are ATI/Heitz and Stähle. The main difference
between these vendors and ABD is the user interface. The ABD steering robot
is much easier to operate. It has a touch screen to select and adjust driving
tests and to show the results real time. Furthermore it is possible to correct
the steering robot by joystick (e.g. if the car leaves the track). In figure 2.4 the
ABD robot [ABD] and the ATI/Heitz robot [ATI] are shown.

Figure 2.4: Steering robots: ABD (left) and ATI/Heitz (right)

The steering robot specifications are compared in table 2.1.

- 10 -

2.4. Competitors

Maximum torque Maximum speed
(Nm) (deg/s)

ABD SR30 18 (nominal) 1900 (at zero load)
[ABD04] 33 (peak) 1440 (at 10 Nm)

425 (at peak load)
ABD SR30 30 (nominal) 2350 (at 7 Nm)
High Power System 33 (peak) 1440 (at 22.5 Nm)
[ABD04] 850 (at peak load)
ATI/Heitz Sprint 3 23 (nominal) 1300 (at peak load)
[ATI97] 50 (peak)
Stähle SSP2000 50 (nominal) 1800 (at unknown load)
[STA]

Table 2.1: Steering robot specification of competitors

2.4.3 Pedal robot

The most important developers of pedal robots are ABD and Stähle. In figure
2.5 the ABD robot [ABD] and the Stähle robot [STA] are shown.

Figure 2.5: Pedal robots: ABD (left) and Stähle (right)

The Stähle Autopilot can control all pedals and can drive the vehicle automat-
ically. It is developed for use on test stands to do for example exhaust emission
tests or durability tests. It is not the perfect solution for driving tests, because
it is not possible to drive the vehicle manually anymore without removing the
system. Furthermore it is almost impossible to install a steering robot due to
its size.

Stähle also has a robot for individual pedals (AP-GB/2.15). But still, for the
same reasons, it is not really suitable for performing driving tests

ABD has only built a braking robot. With this robot it is still possible to op-
erate the brake pedal, when the braking robot is not in operation. It is easy to
install and it is possible to do a large variety of tests (step, pulse, sinusoid, etc).
This makes it a perfect robot for driving tests.

A third company, Horiba Instruments, also makes pedal robots. These robots

- 11 -

Generic Driving Actuator

are similar to the Stähle Autopilot.

The pedal robot specifications are compared in table 2.2.

Maximum force Maximum speed Travel
(N) (m/s) (m)

ABD BR1000 1400 0.80 (at zero load) -
[ABD] 0.70 (at 400 N)
ABD BR2000 2100 0.55 (at zero load) -
[ABD] 0.49 (at 800 N)
Stähle AP-GB/2.15 350 0.30 (at unknown load) 0.15
[STA]

Table 2.2: Pedal robot specification of competitors

2.5 Specification

The specification of the two robots to be built is based on the needs of the
driving tests and it needs to be comparable to the competition.

2.5.1 Steering robot

The maximum steering efforts of a human driver are measured first. Low speed
tests (5 km/h) with a BMW 3-series showed that the maximum rotational
speeds where around 720 degrees per second. The highest torques measured
were around 10 Nm during hard cornering. During normal driving speeds, the
torques will almost never exceed 5 Nm.

The driving tests require rotational speeds of up to 1000 degrees per second.
However if rotational speeds are increasing (e.g. during driving tests), the steer-
ing wheel torques are rapidly increasing as well. This is due to the fact that the
power steering mechanism can no longer power the steering mechanism. It can
even give resistance to the steering wheel torque instead.

The required nominal torque is set at 25 Nm and it needs to be available at 1000
degrees per second, when the torque is needed most. The GDA specification is
comparable with the competition.

2.5.2 Pedal robot

European legislation prescribes that the travel distance of a braking pedal is at
most 15 cm [AMN86]. Furthermore it prescribes that the braking system must
withstand pedal forces of 1500 N. This force is related to the highest possible
force a human can apply.

TNO estimated the pedal forces and speeds to be similar to the ABD BR2000
(see table 2.2) during actual driving tests. In conclusion, there is no need to
produce more than 1500 N and at 800 N brake pedal speeds must be reached
of at least 0.5 m/s by the GDA.

- 12 -

Chapter 3

Controller design

’C makes it easy to shoot yourself in the foot; C++ makes it harder, but when
you do, it blows away your whole leg.’

Bjarne Stroustrup (Inventor C++)

In this chapter the design of the GDA controller without safety measures is dis-
cussed. Since the three robots have a similar hardware design, only the steering
robot design is described in this chapter. First the hardware components are dis-
cussed and in the next sections the torque controller and the position controller
are developed respectively.

3.1 Hardware

The steering robot has an electromechanical actuator installed, which is used
to turn the steering wheel. The control system performs torque and motion
control and an extra component converts controller output to actuator input.
The steering robot also has two types of sensors installed: an angle sensor to
give motion feedback and a torque sensor for test analysis purposes.

Figure 3.1: Hardware setup of the steering robot

The steering robot is schematically shown in figure 3.1 and the components are
described below.

- 13 -

Controller design

• Actuator : The steering wheel is driven by a brushless AC motor. Brushless
AC motors are used, because DC motors suffer from too much torque
ripple due to the abrupt voltage changes. The actuators drive the main
axle via a drive belt.

• Servo amplifier : A brushless AC motor uses three phase sinusoidal com-
mutation1, which is fed by a servo amplifier.

• Angle sensor : The absolute steering wheel angle is sensed by a Netzer
rotational electric encoder (see appendix A.1).

• Torque sensor : The steering wheel torque is sensed by strain gauges (see
appendix A.2).

• Control system: The MACS (Modular Automotive Control System) will
be used to compute the system’s control actions. The MACS is a rapid
control prototyping tool developed at TNO. With this tool it is possible
to design real-time controllers for dynamical systems in a fast and efficient
way. It will be used to control steering torque and steering wheel angle,
which will be described in the following sections.

3.2 Torque controller

In the first section the design of the torque controller is described. In the second
section the performance is analyzed.

3.2.1 Design

The used setup is schematically shown in figure 3.2.

Figure 3.2: Schematic setup of torque control

1Commutation is the action of applying currents or voltages to the proper electrical motor
phases so as to produce optimum motor torque at a motor’s shaft [WIK]

- 14 -

3.2. Torque controller

From the required torque, the required currents in the rotor can be computed.
These rotor currents need to be converted to currents in the stator coils. This
conversion between rotor and stator frame is first explained.

In figure 3.3 an AC motor is shown with one pole. The rotor position is given
in the dq-frame and the position of the stator coils is given in the uvw-frame.

Figure 3.3: Different coordinate systems of the AC motor

The currents in the rotating dq-frame can be converted in the static xy-frame
by using the angle of the pole (αm). This transformation is called the Park
transformation [DV04].[

Ix
Iy

]
=

[
cos αm − sin αm

sin αm cos αm

]
·
[
Id
Iq

]
(3.1)

The currents in the two-phase frame can be converted in the three-phase frame.
This transformation is called the Clarke transformation [DV04]. Iu

Iv
Iw

 =

√
2
3
·

 1 0
− 1

2

√
3

2

− 1
2 −

√
3

2

 · [Ix
Iy

]
(3.2)

The motor torque (Tm) can be computed in the dq-frame from the rotor fluxes
(ψd and ψq), the rotor currents and the number of poles (np) according to
[DV04].

Tm =
3
2
np (ψd · Iq − ψq · Id) (3.3)

The previous equation can be simplified, since there is no flux in the q-direction
ψq = 0. The current Id must be kept zero, otherwise the rotor magnet will be
demagnetized and this current will not contribute to the motor torque.

Tm =
3
2
np (ψd · Iq) (3.4)

- 15 -

Controller design

The motor torque is also given by the following equation.

Tm = Kt · Iq where Kt: Torque constant (3.5)

The steering torque (Tst) is the product between the steering ratio (ist) and
motor torque (Tm).

Tst = ist · Tm (3.6)

The steering torque can now be converted to rotor currents by combining (3.5)
and (3.6).

Tst = ist ·Kt · Iq (3.7)

This steering torque can then be converted to stator currents by using (3.1) and
(3.2) to obtain the phase currents needed for the servo amplifier. The resulting
Simulink block is shown in figure 3.4. In this model only two out of three stator
currents are outputted. The missing third phase is internally computed by the
servo amplifier.

Figure 3.4: Torque controller block in Simulink

The offset between measured angle and motor angle is estimated. The offset is
used, which has the largest rotation speed or highest torque at a specific current
setpoint.

The torque constant (Kt) also needs to be computed experimentally. This cal-
ibration needs to be done, since a difference is to be expected between the
theoretical and the delivered torque. This is primarily due to differences in the
actual setup and the setup used to retrieve the motor specification.

The calibration procedure is shown in the figure 3.5. A small metal beam is
attached to the steering robot’s axle and a force transducer is attached to the
beam to measure force in steady state. The delivered torque can easily be
computed with (3.8).

- 16 -

3.2. Torque controller

Figure 3.5: Calibration procedure

Tst,meas = Fmeas · l where l: Beam length (3.8)

The measured torques at different currents (Iq) are fitted by a linear fit to re-
trieve the torque constant.

The results of the steering robot are shown in figure 3.6. The figure shows that
the delivered torque is far less than the ideal torque.

−20 −10 0 10 20
−15

−10

−5

0

5

10

15
Calibrating torques

I
q
 (A)

T
 (

N
m

)

Ideal
Fit
Motor 1
Motor 2

Figure 3.6: Calibration procedure results

- 17 -

Controller design

3.2.2 Performance

Obviously the controller will operate correctly in steady state, since the pro-
duced torque in steady state is used to design the controller. However if the
torque control is used at high speed the produced torque can decrease dramat-
ically. This loss will not be corrected by the controller, since it is designed as
a feedforward controller without feedback. Torque feedback will not be used
to improve performance, since the produced torque can not be measured quick
enough and it will not remove the cause of the problem.

The decrease in performance at high speed has two causes:

• Sample frequency of the controller

• Computation delay

The controller is a zero-order-hold controller. Each time sample one control
action is computed and is used during that particular time sample. This is
not a problem, when the actuator speed is significantly lower than the sample
frequency. However if the actuator speed gets close to the sample frequency,
the produced torque drops during a time sample. The control action is based
on the actual actuator angle and if the angle changes too much during a time
sample, the produced torque will be significantly smaller.

For example, if the sample frequency (fs) is 25 times higher than the actuator
speed (fact) and the actuator has 6 pole pairs (np), the electrical angle rotation
(∆γ) will be approximately 90 degrees according to (3.9).

∆γ = np ·
fact

fs
· 360 (3.9)

In other words, at the end of the time sample no torque is delivered by the
actuator. In figure 3.7 (left) the produced torque is shown. The effective torque
is indicated by the dotted line.

0 0.002 0.004 0.006 0.008 0.01
0

10

20

30

40

50

60

70

80

90

100
Effect of sample frequency

Time (s)

P
er

ce
nt

ag
e

(%
)

Produced torque
Effective torque

0 0.002 0.004 0.006 0.008 0.01
−80

−60

−40

−20

0

20

40

60

80
Effect of computation delay

Time (s)

P
er

ce
nt

ag
e

(%
)

Produced torque
Effective torque

Figure 3.7: Effect of sample frequency (left) and computation delay (right)
on produced torque

- 18 -

3.2. Torque controller

Similar problems occur if the computation delay is large compared to the ac-
tuator speed. The control action no longer corresponds to the current actuator
angle and the produced torque will be less. To illustrate the effect of compu-
tation delay, a half time sample delay is introduced in the previous example.
The produced torque is shown in figure 3.7 (right). The effective torque (dotted
line) is almost zero.

Both effects can be combined to compute the effective torque percentage (Teff).
The average value is computed during one time sample.

Teff = 100% · [
∫ ts

0

cos(np fact 2 π(t+ tdelay)) dt]/ts (3.10)

In figure 3.8 the combined effect of sample frequency and computation delay on
performance is shown. The actuator again has six pole pairs.

0 0.5 1 1.5 2
−100

−80

−60

−40

−20

0

20

40

60

80

100
Effective torque

Delay (time samples)

P
er

ce
nt

ag
e

(%
)

 f
s
 / f

actuator

25

50

100

200

Figure 3.8: Combined effect of sample frequency and computation delay on
produced torque

The steering robot’s maximal rotation speed needs to be 1000 deg/s. To achieve
this, the maximal frequency of the actuator needs to be 17 Hz. The current con-
trol system (MACS) runs at 500 Hz and this can not be increased further. The
computation time can be assumed to be at least half the sample time, because
the controller runs at full speed. According to figure 3.8, the performance is
not acceptable at maximal rotation speed. The performance should be close to
100%, since everything else is pure loss.

The controller’s sample frequency is insufficient to provide smooth control. In
[DV04] a solution to this problem was proposed, but unfortunately it did not
work in reality. The solution was to generate the sine commutation by using
a synthesizer chip. This component can generate sinusoidal signals at a high
frequency (25 MHz). The controller would only have to calculate amplitude,
frequency and phase information at a much lower frequency and the synthesizer
would use this information to generate a smooth sinusoidal signal. However to
calculate the parameterized sine, the rotation speed is needed. This can not be

- 19 -

Controller design

measured with reasonable accuracy, making it impossible for the synthesizer to
compute a smooth sinusoidal signal.

The only way to increase the performance at high rotation speed, is to increase
the ratio between controller’s sample frequency and the actuator frequency. A
new generation MACS is needed or another control system has to be used,
which can be run at a higher sample frequency. It is also possible to redesign
the system to reduce the actuator speed, e.g. a lower steering ratio.

3.3 Position controller

In the first section the design of the position controller is described. In the
second section the performance is analyzed in simulation.

3.3.1 Design

The position controller consists of a torque controller and a Proportional-Integral-
Derivative controller (PID controller). The PID controller computes a torque
based on the error in the measured angle and the angle setpoint. This torque
is then used by the torque controller developed in section 3.2. The Simulink
model is shown in figure 3.9.

Figure 3.9: Position controller block in Simulink

One of the most basic position controllers is used. Nevertheless it is expected
that the performance of the position controller will be sufficient, because the
required steering frequencies are relatively low (up to 2 Hz).

To design the PID controller, Ziegler-Nichols tuning is used [FPE94]. Ziegler
and Nichols wanted to specify satisfactory controller settings based on simple
experiments without having to obtain the complete system dynamics.

One of the methods is based on evaluating the system at the limit of stability.
The system is controlled by a proportional controller only. The gain of the con-
troller is increased until the system becomes marginally stable. The resulting
gain is called the ultimate gain (Ku). This tuning method also needs the period
of oscillation, which is called the ultimate period (Tu).

- 20 -

3.3. Position controller

With both parameters known a PID controller (C(s)) can be designed based on
(3.11) and table 3.1. The proposed controllers must be seen as good average
controllers, which are a good starting point, but need to be fine-tuned.

C(s) = K(1 +
1

Ti · s
+ Td · s) (3.11)

Type controller Optimum gain
Proportional K = 0.5 ·Ku

PI K = 0.45 ·Ku

Ti = 5
6 · Tu

PID K = 0.6 ·Ku

Ti = 0.5 · Tu

Td = 1
8 · Tu

Table 3.1: Ziegler Nichols controller design estimates

Because the produced torque is bounded, care must be taken with the integra-
tor action. If the actuator saturates, the integrated value keeps on growing.
This results in a big overshoot to get the integrated value close to zero again.
The performance decreases and can even become instable. This phenomenon is
called integrator windup.

To remove this phenomenon, the integration action is turned off, when the
actuator saturates. This needs to be done, if the error and total actuator action
have the same sign (i.e. the torque tries to minimize the error). The resulting
PID controller is shown in figure 3.10.

Figure 3.10: PID controller block in Simulink

3.3.2 Performance

The position controller of the steering robot must be a generic controller. It
must be possible to use the steering robot in different vehicles under different

- 21 -

Controller design

circumstances without adjusting the controller. When the steering robot is fit-
ted, it must be operational at once with reasonable performance.

Due to the problems with the steering robot, it was not possible to design the
position controller in reality and test the performance. However, to illustrate
the proposed approach, the PID controller can still be designed in simulation.

To be able to design the PID controller, a simulation model needs to be built
in Simulink with the dynamics of the controlled system. The simulation model
consists of the control system, steering robot dynamics and a representative
steering mechanism. These submodels are described in detail in chapter 6. The
generated tyre forces are regarded as disturbances on the controlled system and
will be neglected in the first controller design attempts. The setup is schemati-
cally shown in figure 3.11.

Figure 3.11: Simulation model

The PID controller can now be designed using Ziegler-Nichols tuning (see previ-
ous section). The steering angle target is set at 40 degrees, which is an average
steering angle under normal driving circumstances. In figure 3.12 the response
of a marginally stable proportional controller is shown. The gain (Ku) and
period (Tu) of this controller are used to estimate the parameters of the PID
controller based on table 3.1. The response of the resulting PID controller is
also shown in figure 3.12.

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50
Step function response

Time [s]

A
ng

le
 [D

eg
re

e]

Target
Marginally stable
Ziegler−Nichols

Figure 3.12: Ziegler-Nichols tuning (Step function response)

Although the response of the PID controller is satisfactory at first glance, it is
no longer acceptable if the tyre forces are taken into account. The relatively

- 22 -

3.3. Position controller

high tyre forces result in an angle offset2, which is shown in figure 3.13.

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50
Step function response

Time [s]

A
ng

le
 [D

eg
re

e]

Target
Ziegler−Nichols
Fine tuning

Figure 3.13: Fine-tuning (Step function response)

The angle offset can be removed. The parameter to remove this offset is the in-
tegral control action (Ti). This control action compensates for the accumulated
error between actual angle and angle setpoint. If the integral control action
(Ti) is increased, the target will be reached earlier. Furthermore the other para-
meters are also fine-tuned to dampen the controller’s response. The fine-tuned
PID controller is also shown in figure 3.13.

Figure 3.14 shows the response to a continuous sinusoidal steer input. In this
figure angle, angular velocity and the applied steering torque are shown. Al-
though the frequency of around 3 Hz is extremely high for steering input, the
position control is still accurate.

2In this simulation the forces acting on the steering rack are simplified by using two springs
on each side of the steering rack to reduce simulation times. These springs generate forces
comparable to the forces generated by complex vehicle models, however it is only valid for
small steering angles.

- 23 -

Controller design

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

40

Time [s]

A
ng

le
 [D

eg
re

e]

Target
Actual

0 0.2 0.4 0.6 0.8 1

−800

−400

0

400

800

Time [s]

S
pe

ed
 [D

eg
re

e/
s]

Target
Actual

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8

Time [s]

A
pp

lie
d

to
rq

ue
 [N

]

Figure 3.14: Continuous sine response

- 24 -

Chapter 4

Safety-critical hardware
design

’Software does not fail, hardware always fails’

Paul Niquette

In this chapter different strategies are explained on how to make the hardware
design of chapter 3 more safe. The focus for safety-critical hardware design will
be on fault tolerance. First a general introduction is given to safety. In the next
section the different fault-tolerant hardware strategies are explained and in the
last section the fault-tolerant strategies are applied to the GDA.

4.1 Introduction

A system is said to be safe, if it will not endanger human life or the environ-
ment. The ability of a system to fulfil its safety requirements is limited by the
presence of faults.

A fault is defined to be any kind of defect in the system. Faults can be either
systematic (design faults) or random. Random faults are associated with hard-
ware component failures. Although hardware component failures can also be
caused by design faults, it is mostly caused by random faults, such as a break
in the wiring, loose connectors, shorts, etc.

A fault can lead to a system failure, i.e. the system requirements can no longer
be fulfilled. In a safety-critical system, such as the GDA, the risk of safety-
critical failures needs to be reduced to a minimum, such that life-threatening
situations can be regarded as eliminated.

The risk of failure can be reduced in different phases in system lifetime using
different reliability strategies (see figure 4.1). Fault prevention techniques can

- 25 -

Safety-critical hardware design

be used before the system becomes operational and tries to reduce the number
of systematic faults being present. Fault prevention can be split in two parts
fault avoidance (design phase) and fault removal (test phase). Fault tolerance
techniques try to reduce the effect of faults when the system is operational for
both the random and the remaining systematic faults.

Figure 4.1: Reliability strategies during system lifetime [AL90]

Fault avoidance tries to reduce the number of systematic faults during design
time. One way to reduce faults is by choosing a suitable design methodology
to tackle the complexity of software and/or hardware design. An example of
such a design methodology is the methodology discussed in chapter 5: formal
methods. Another way to reduce faults is by selecting the proper techniques
and technologies. By selecting reliable components the number of faults will
certainly be reduced.

Fault removal tries to reduce the number of systematic faults by testing. Usu-
ally faults remain in the system, especially in complex systems. Test procedures
can be used to find faulty hardware components or to detect remaining design
faults. In chapter 6 fault seeding will be used to test safety. Different component
failures will be presented to the system to see if the safety requirements can still
be fulfilled, i.e. if the system remains safe.

Fault prevention is used to remove systematic faults. However it is impossible to
remove random faults, since hardware components can never be 100% reliable.
To increase reliability of hardware components fault tolerant strategies are used.
Different strategies are explained in section 4.2.

The reliability of hardware components during its lifetime changes. The failure
rate characteristic, also known as the ’bathtub’ curve [STO99], is shown in fig-
ure 4.2.

In the first period failure rate is high due to undetected manufacturing defects.
At the end of the components life it decays, resulting in a rising failure rate. In
between the component has a more or less constant failure rate (λ). This failure
rate will be used to characterize the reliability of a hardware component.

- 26 -

4.2. Fault-tolerant strategies

Figure 4.2: Component failure rate against time

4.2 Fault-tolerant strategies

Fault-tolerant strategies are used to cope with faults, when the system is op-
erational. Fault-tolerant strategies to improve hardware safety are based on
redundancy. Hardware components are duplicated, so that duplicated compo-
nents can take over tasks, when others are failing. Although the number of faults
increases due to the hardware redundancy, the number of failures decreases in
general. Hardware redundancy increases reliability (less failures in general) and
increases safety (less safety-critical failures). The strategies can be divided in
two major groups: static redundancy and dynamic redundancy.

Figure 4.3: Static redundancy (TMR)

Static redundancy uses a voting mechanism and a number of redundant hard-
ware components, which are performing the same tasks in parallel. In figure 4.3
the most basic static redundant setup is shown: Triple Modular Redundancy
(TMR). In this setup three modules are performing the same task and their
output is compared by a voting mechanism. The majority view is then taken
by the voter, which masks a possible fault on a single module.

In the previous setup the voting mechanism can still be a potential risk, since
it can also fail. To reduce the risk of a failing voting mechanism, it needs to be
duplicated as well. An improved TMR setup is shown in figure 4.4. Note that
this setup only works if the next component is able to receive three inputs or
has a similar setup where the three outputs are used as inputs.

- 27 -

Safety-critical hardware design

Figure 4.4: Static redundancy (TMR with multiple voters)

Dynamic redundancy also uses a number of redundant hardware components,
but it tries to detect faults and reconfigures the setup. Unlike static redundancy
it uses only one component at the same time. Another component is used as
a spare and its output will not be used until a failure is detected on the main
component. This spare can either be a cold or a hot stand-by, based on the
desired power consumption and reconfiguration time. The most basic setup of
dynamic redundancy is shown in figure 4.5.

Figure 4.5: Dynamic redundancy (single spare)

The intention of dynamic redundancy is to use less hardware components com-
pared to static redundancy to achieve the same level of fault tolerance. This
makes the setup cheaper and it reduces power consumption, since it has fewer
components. However dynamic redundancy lacks the ability to mask faults.
It costs time to detect faults and reconfigure the system. Another problem is
the fact that it is not always easy to detect component failure. The success of
dynamic redundancy depends heavily on the ability to detect faults and failure
rate of the fault detection mechanism.

The redundancy strategies can be adjusted to cope with more than one com-
ponent failure by using additional redundant components. However it is also
possible to use hybrid redundancy, which combines the advantages of both re-
dundancy strategies. It can mask faults without a large amount of redundant
hardware components and the fault detection is a lot easier, since the voter can
be used for that purpose. A setup is depicted in figure 4.6 to cope with two
component failures1.

1This can only be guaranteed under the assumption that the second component failure
occurs after reconfiguration has succeeded.

- 28 -

4.2. Fault-tolerant strategies

Figure 4.6: Hybrid redundancy (TMR with single spare)

Fault tolerance in general consists of three phases:

• Fault detection
The first phase is to detect the faults. If the fault is not detected, it can
not be handled in the first place. Different checks can be done to detect
faults. Various examples are given below:

– Signal comparison: Functionality is duplicated to be able to compare
outputs and conclude if one is faulty.

– Watchdog timing : It checks if a component is still operational.

– Plausibility checks: It checks if a component has produced a reason-
able output, for example if the output is within a certain range.

– Loopback testing : The communication is checked by returning the
received data to the sender. The returned data can then be compared
with the sent data by the sender.

– Input checks: It checks if the input is acceptable to produce output.

• Fault recovery :
If the fault is detected, the fault can be handled properly to prevent sys-
tem failure. If in a dynamic redundant system one component fails, this
fault can be prevented from becoming a system failure by using the spare
component instead. In a static redundant system the failing component
will be masked by taking the majority view.

• Fault treatment
The last phase is fault treatment. Fault recovery makes sure that the fault
is properly handled, but this does not mean that the defect is removed.
The defect need to be removed to guarantee a safe system. For example
if one hardware component breaks down in a TMR design, this fault is
handled. The next failing component however can not be handled. The
safety of the system can not be guaranteed as long as the failing component
is not replaced by a new one.

- 29 -

Safety-critical hardware design

4.3 Fault-tolerant GDA

The GDA needs to be fault-tolerant. The safety must be guaranteed for single-
point failures. If a single-point failure is detected in the system, the GDA is
supposed to continue in a safe error mode, which will be designed in chapter
6. The GDA will be prevented from further utilization, until the component is
either repaired or replaced. The possibility for a second component failure to
occur is therefore limited and will be ignored.

To achieve fault tolerance the safety-critical hardware components need to be
duplicated. The safety-critical hardware components are those components,
which are needed for control: angle sensor, actuator, servo amplifier and control
system.

4.3.1 Angle sensor

Triple Modular Redundancy is used for the angle sensor. The used angle sensors
are relatively cheap and small, which does not limit the number of redundant
components to be used. It is also easy to implement the voting mechanism, since
voting can be done in software on the control system by taking the median of
the three angles. The median is easy to calculate and it rules out the effect of
the incorrect value. The fault-tolerant sensor design is shown in figure 4.7.

Figure 4.7: Fault-tolerant sensor design

4.3.2 Actuator and servo amplifier

For the actuator only dynamic redundancy can be used, but it is adapted to use
the potential of both actuators. Unlike using a single spare component waiting
to take over, both actuators are used simultaneously under normal conditions.
If an actuator failure occurs, the other actuator tries to maintain safety. Due
to the packaging and performance requirements, it is not possible to have spare
actuators in the system.

Actuator failure can be detected by the servo amplifier. In general servo ampli-
fiers have onboard functionality to protect against over/undervoltage problems,
short circuits, overheating, etc. Actuator failure will be detected by the servo
amplifier as a short circuit between motor power outputs and therefore actuator
failure will be part of the fault detection of the servo amplifier. Because a servo
amplifier is also responsible for one particular actuator, a servo amplifier and

- 30 -

4.3. Fault-tolerant GDA

the corresponding actuator are treated as one module, which is duplicated. The
fault-tolerant actuator design is shown in figure 4.8.

Figure 4.8: Fault-tolerant actuator design

The ’switch’ is placed within the control system for two reasons. First of all no
hardware is needed to implement the switch. Secondly and most importantly
the switch is not a normal switch. During normal operation both actuators are
performing half the control job. Furthermore both actuators need their own
current setpoints. This makes the implementation in hardware more difficult.

4.3.3 Control system

The only component left is the control system. Static redundancy would be best
to improve fault tolerance. This strategy will not introduce a control gap during
failure, since no time is needed to switch between components. However it uses
three control systems, which is a relatively expensive part of the GDA. Dynamic
redundancy will be used for the control system, because the introduction of a
small control gap during failure will not lead to dangerous situations.

Figure 4.9: Fault-tolerant control system design (Single spare)

In figure 4.9 the conventional setup is shown using a single spare. In this setup
a complex hardware component is needed, which is responsible for the switch
and the fault detection (e.g. alive mechanism). This component also needs to
be made fault tolerant to reduce the safety risks. If it fails, the safety can not
be guaranteed, because no control can be done at all.

- 31 -

Safety-critical hardware design

Another possibility is to give a control system the responsibility for one par-
ticular actuator. This setup is comparable to the actuator setup and is shown
in figure 4.10. The fault detection is done by the other control system and the
switch is distributed over the control systems.

Figure 4.10: Fault-tolerant control system design (Dual control)

Both designs have advantages and disadvantages. The advantages of the single
spare setup are given below:

• Software complexity : The software is less complex, since the tasks are not
distributed over both control systems.

• Safety after fault recovery : This setup will handle the second failure better,
since control system safety is independent of actuator safety. For example
if one control system fails and is replaced by the other, than actuator
safety is not effected.

• Performance after fault recovery : If the control system is replaced after it
failed, both actuators can still be used.

• Power consumption: Power consumption is significantly reduced, if a cold
standby is used. Unfortunately the control gap will be lengthened by a
cold standby.

The dual control setup has the following advantages:

• Performance in control gap: If one control system is failing, the other
control system is still doing 50% of the job. This means that during failure
at least half of the required torque is delivered. However it is possible that
the failing control system is thwarting.

• Flexibility : The design is more flexible, since it is implemented in software.

• Hardware complexity : The hardware design is more transparent, because
one control system is responsible for one actuator and no (safety-critical)
additional hardware is needed to implement the fault detection and switch.

The dual control setup will be used for the GDA, since its behaviour in the
control gap is superior and no additional hardware is needed. Furthermore the
safety and performance after fault recovery are not that important due to the
introduction of the error mode.

- 32 -

Chapter 5

Safety-critical software
design

’A computer program does what you tell it to do, not what you want it to do.’

Greer

This chapter describes the software design and verification of the control sys-
tem using redundant hardware. Formal methods will be used to guarantee the
requirements of the GDA’s software. First an introduction is given on safety-
critical software design and how formal methods fit in. In the next sections
formal methods are used to specify, design and verify the GDA’s software. In
the final section the designed software is implemented in Simulink.

5.1 Introduction

Unlike hardware design, the only possible causes for software failure are design
faults. This can either be a high-level (e.g. C# code and Matlab models) or a
low-level (machine language) design fault. Duplication of software can not be
applied, because identical software will always give identical results and these
faults will not be detected. Therefore the fault-tolerant strategies described in
section 4.2 will not work for software.

In literature the following fault-tolerant strategies are proposed to increase soft-
ware safety:

• Exception handling : Exception handling can intercept software errors.
These errors can then be avoided in code. However not all errors can be
accounted for, since it is nearly impossible to handle all.

• N-version programming [AVI85]: Different code is used to perform the
same tasks. This strategy is similar to the static redundancy strategy in
section 4.2. N-version programming can be used to remove lower-level

- 33 -

Safety-critical software design

design faults by using different processors and different compilers. Litera-
ture proclaims that this can also be done with high-level programming by
using different design teams who implement multiple versions of the same
algorithm. However this is disputed in [STO99], since research shows that
different design teams are likely to make similar design faults.

• Recovery blocks [AL90]: If the first algorithm does not succeed (i.e. gives
an acceptable result), the second (and different) algorithm tries to suc-
ceed and so on. This strategy is comparable to the dynamic redundancy
strategy in section 4.2. Recovery blocks are not commonly used.

The difference between hardware and software fault tolerance is the type of re-
dundancy used. Software fault-tolerant strategies use heterogenous redundancy,
while hardware fault-tolerant strategies use homogenous redundancy. In general
there is no reason to use less reliable hardware components, if component failure
is random and independent. It only reduces the overall reliability of the system.

Although the fault-tolerant strategies mentioned above can improve software
safety, the main focus need to be on fault prevention. Software failures are due
to design faults and these need to be reduced during design time. The need for
fault-tolerant strategies could be removed entirely for software design. At least
in theory it could.

Fault avoidance can be done in many different ways (see section 4.1). During
this thesis formal methods are used to design the software. Formal methods
are mathematical techniques to specify, design and verify the system. These
techniques will be explained in detail in the next sections and will be applied
to the control system software. First a description of the system is made. The
interface of the control system is described and how the signals should effect the
control system. In the next sections the requirements are summarized and the
specification is built in a process algebraic language. Finally the requirements
are converted to modal logic and are verified.

The use of formal methods also has some disadvantages. The users have to have
a high degree of mathematical ability, especially to verify the requirements and
to keep the system manageable. Secondly the current tools can not cope with
complex systems.

Fault removal is the last phase in the development of software. Although it is
impossible to test and debug all functionality, due to the complexity of software,
it is a crucial part in software design. Especially when formal methods can not
be used, it is the only way to check the requirements. If the requirements are
verified, it is still important to check if the code is implemented properly accord-
ing to the specification. Software test methods will not be further explained.
The GDA as a whole will be tested in chapter 6.

5.2 Interface description

In this section the interface description of the control system is given. The archi-
tecture of the GDA using redundant hardware (see section 4.3) is schematically

- 34 -

5.2. Interface description

shown in figure 5.1. Although the GDA uses three robots, only one robot will
be used throughout this chapter. This will not effect the functionality of the
GDA as a whole, because it only effects the number of signals. Certain signals
need to be replaced by tuples of signals.

Figure 5.1: Architecture of the GDA using redundant hardware

5.2.1 Operational modes

First three conceptual modes are introduced to make the description clearer.
The control system can be in one of three operational modes.

• Menu mode: The control system is in a mode, where none of the actuators
is powered by the control system. The human driver is in full control of
the vehicle.

- 35 -

Safety-critical software design

• Driving mode: The control system drives the actuators and is in full con-
trol of the vehicle.

• Error mode: The control system signals an error. In this mode the actua-
tors are utilized to control the vehicle safely to a stop in case of an error.
The control system’s behaviour in error mode will be further explained in
chapter 6.

5.2.2 User interface

The user can give various signals to the control system. These signals are ex-
plained here.

The user can give signals effecting the mode of the control system:

• Start signal : If a start signal is provided in menu mode, the control system
goes into driving mode. However if a sensor or actuator is failing operation,
it stays in menu mode. Start signals in other modes are ignored by the
control system.

• Stop signal : If a stop signal is provided in driving mode, the control
system goes into menu mode directly. The driver will be in full control of
the vehicle at once. Stop signals in other modes are ignored by the control
system.

• Reset signal : If the control system detects a failing sensor or actuator in
driving mode, it goes into error mode with an internal action (τ). If a
reset signal is provided in error mode, the control system goes back into
menu mode. Reset signals in other modes are ignored.

• Emergency signal : If an emergency signal is provided, the control system
will go into error mode, whatever the mode it was in already. The control
system’s behaviour in such a situation is explained in chapter 6.

Summarizing this behaviour, results in the transition diagram shown in figure
5.2.

Figure 5.2: Modes of the GDA

The user can also provide and receive signals in driving mode:

- 36 -

5.2. Interface description

• Setpoints: The user can give setpoints, which are used during driving
mode to control the vehicle. There are different ways to provide setpoints
(setpoint mode). However to reduce the complexity of the system, it is
assumed that during driving mode only position setpoints are provided by
the user.

• Logging values: In driving mode, real-time sensor signals are acquired by
the control system either for control and logging (position) or for logging
alone (force). These signals will be passed via the interface for logging.
The logging signals are LoggingPosition and LoggingForce. These logging
signals will not be modeled and analyzed.

5.2.3 Component interface

The interface between the control system and other components is explained in
this section. These signals can directly be obtained from the hardware descrip-
tion of the GDA, introduced earlier.

• Actuator signals: The control system can send or receive the following
signals to the actuator. The amplifiers will be part of the actuators for
simplicity.

– ActuatorControl signal : This signal contains the control values, which
are sent to the actuator.

– ActuatorEnable signal: The control system can enable the actuator,
whenever it wants.

– ActuatorState signal: The control system receives information, about
the actuator’s current state of operation.

• Sensor signals: The control system receives several sensor values:

– SensorPosition signals: Three signals are provided, containing three
independent position measurements.

– SensorForce signal : Only one force measurement is provided. This
signal will not be modeled and analyzed, because it is not used by
the control system and will only be passed on for logging purposes.

5.2.4 Canbus interface

The communication between the two control systems will be via a canbus. The
interface with the canbus is explained in this section. The communication signals
are the following:

• Mode signals: The mode of the control systems are communicated over
the canbus, to be able to synchronize modes.

• Error mode signals: The detected error of the control systems are sent
over the canbus, to be able to adjust the error mode control based on the
detected errors.

• Alive signals: Alive signals are communicated to detect if the other control
system has crashed.

- 37 -

Safety-critical software design

5.3 Requirements

The control system has the following requirements on its behaviour:

• Deadlock freeness: The control system can never be in a state, where no
action can be performed anymore.

• Requirement I : When in driving mode with hardware operating correctly
and no user actions received, the control system stays in driving mode.

• Requirement II : When a start signal is provided in menu mode with the
hardware operating correctly and no other user actions received, the con-
trol system goes into driving mode as fast as reasonably possible.

• Requirement III : When a stop signal is provided in driving mode and no
other user actions are received, the control system goes back into menu
mode as fast as reasonably possible.

• Requirement IV : When the emergency signal is sent and no other user
actions are received, the control system goes into error mode as fast as
reasonably possible.

• Requirement V : When one sensor, actuator or the other control system
fails in driving mode and no user actions are received, the control system
goes into error mode as fast as reasonably possible.

• Requirement VI : The modes of both control systems have to be synchro-
nized. This means that if one control system goes into another mode, both
control systems go into the same mode as fast as reasonably possible, un-
less one control system is not responding. Note that it does not have to
be the initial mode. If both control systems are in menu mode and one
control system goes into driving mode, it is allowed to synchronize in error
mode.

• Requirement VII : During driving mode, a difference between sensor value
and setpoint will result in actuator action in the same time step. Unless
it goes into error mode first.

• Requirement VIII : An actuator pair is synchronized during driving mode.
Both actuators perform a similar action at the same time and will not
perform opposing actions.

These requirements can only be fulfilled, under the assumption that there is at
most one component failing. This is a valid assumption, since component fail-
ures are independent of each other in this setup and after a component failure
the GDA is prevented from further usage. Therefore it is highly unlikely for a
second component failure to occur.

5.4 Specification

In this section the specification of the control system is built in µCRL. But first
a small introduction is given to µCRL.

- 38 -

5.4. Specification

5.4.1 Introduction to µCRL

Process algebra has been developed to express concurrent processes algebraically
in an attempt to study their behaviour. Classical process algebras like CCS, CSP
and ACP have proven to be a good way of specifying, analyzing and verifying
the behaviour of distributed systems.

In this thesis the specification language µCRL is used, it is an extension of
the process algebra ACP [BW90]. The main difference between µCRL and the
classical process algebras is the formal treatment of data in µCRL. This makes
µCRL more expressive than the classical process algebras.

A specification built in µCRL consists of two parts: data types and processes.
The formal description of the syntax and semantics of µCRL can be found in
[GP95].

Data types are declared by the keyword sort. Elements of a data type are de-
clared by the keyword func. The keyword map is used to declare the syntax of
a function and the semantics are defined with rew. No predefined data types
are present in µCRL.

As an example the data type Bool and the equality function on Bool is imple-
mented in µCRL. The data type Bool needs to be specified for every µCRL
specification.

sort Bool
func T,F:→Bool
map eq: Bool×Bool→Bool
var b:Bool
rew eq(T,T) = T

eq(T,F) = F
eq(F,T) = F
eq(F,F) = T

Processes can be built from actions, operators and processes. The keyword proc
is used to declare processes in µCRL.

User-defined actions are declared by the keyword act. Each user-defined action
can have one or more data parameters. Only two predefined actions are intro-
duced in µCRL: δ and τ . The δ is used for an inaction to indicate deadlock, i.e.
the process stops performing actions. The τ indicates an internal action, i.e. an
action that can be abstracted from.

The standard process algebraic operators are (+), (·) and (||). The operator
(+) is used to indicate non-deterministic choice. p+ q means that process p or
process q will be executed. Sequential composition is indicated by the operator
(·). p · q means that first process p and then process q is executed. The operator
(||) is used to indicate parallel composition. p || q means that process p as well
as process q can perform actions at the same time. To be able to work with
data two new operators are introduced in µCRL: sum and (/ .). The first

- 39 -

Safety-critical software design

operator is introduced to represent a (possibly infinite) choice between processes
of a specific data type. For example sum(i : N, p(i)) means that one specific
process p can be executed with a random natural number as a parameter. The
second introduced operator indicates conditional choice. p / b . q means that
if boolean b is true process p will be executed and otherwise process q will be
executed.

Synchronization between actions is achieved by the keyword comm. Actions
may only synchronize if the data parameters are equal. To force synchronization
between two actions the keyword encap is used. Otherwise the actions can also
execute on their own.

Another important operator is hide. With this operator it is possible to hide
the actions, which are not important for the analysis of the specification. These
actions will than be transformed to τ actions. For example, if only the behav-
iour of two specific actions needs to be analyzed, all other actions can be hidden.
One can abstract away from all unimportant actions for a particular analysis.

As an example a memory process is implemented in µCRL. The memory can
receive both T or F and can send the boolean value, which is present in the
memory.

act recv_Bool: Bool
send_Bool: Bool

proc Memory(f: Bool) =
sum(f_new: Bool, recv_Bool(f_new)·Memory(f_new)) +
send_Bool(f)·Memory(f)

5.4.2 Data types

In this section several data types are introduced. Since redundant hardware
is introduced for safety reasons, datatypes are defined to index the hardware
components: MacsIndex and SensorIndex. An actuator index is not needed for
the two actuators, because each control system has its own actuator.

sort MacsIndex
func macs1,macs2:→MacsIndex
map other: MacsIndex→MacsIndex
rew other(macs1) = macs2

other(macs2) = macs1

sort SensorIndex
func sensor1,sensor2,sensor3:→SensorIndex

For the hardware also data types are needed to represent the data received from
the sensors and the actions performed by the actuators: SensorValue and Actu-
atorAction. The data type SensorValue only has three elements to represent all
possible positions: sensorValueL5 (negative position), sensorValue0 (neutral
position) and sensorValueR5 (positive position). The data type SensorValue

- 40 -

5.4. Specification

also has functions to compute the median of the three sensor values and to detect
a failing sensor. A failing sensor means that a sensor differs from the median by
more than one step. This can only be modeled with at least three data elements,
otherwise no unambiguous decision can be made whether or not a sensor is fail-
ing. Each motion can then result in the conclusion ‘failing sensor’, when this
motion falls between two sensor readings. The data type ActuatorAction also
has three elements to represent all possible actions: actuatorActionL (negative
force), actuatorAction (no force) and actuatorActionR (positive force). The
requirements can be validated by only using the direction of actuator actions
and three sensor values.

sort SensorValue
func SensorValueL5,SensorValue0,SensorValueR5:→SensorValue

map match: SensorValue×SensorValue→Bool
map min: SensorValue×SensorValue→SensorValue
map max: SensorValue×SensorValue→SensorValue

map median: SensorValue×SensorValue×SensorValue→SensorValue
var sv1,sv2,sv3:SensorValue
rew median(sv1,sv2,sv3) =

max(max(min(sv1,sv2),min(sv1,sv3)),min(sv2,sv3))

map fault: SensorValue×SensorValue×SensorValue×SensorValue
→SensorValue

var svMedian,sv1,sv2,sv3:SensorValue
rew fault(svMedian,sv1,sv2,sv3) = ...

sort ActuatorAction
func actuatorActionL,actuatorAction0,actuatorActionR

:→ActuatorAction

For the interface with the user, two simple data types are introduced: UserAc-
tion and SetpointValue. The data type SetpointValue has three similar elements
as the data type SensorValue.

sort UserAction
func userStart,userStop,userEmergency,userReset:→UserAction

sort SetpointValue
func setpointValueL5,setpointValue0,setpointValueR5:→SetpointValue

The current status needs to be saved for the behaviour of the control system
in the next time sample. For this reason two data types are defined: Mode
and Error. The data type Error is a summation of all possible errors that
can occur: errorSensor, errorMACS (other control system has detected an
error), errorAlive, errorController (control algorithm produces an error)
and errorActuator. In this summation, the data elements are ordered by their
priority and this ordering can be compared by a function. The data element
errorNo is also added to indicate error mode by using the emergency button.

- 41 -

Safety-critical software design

sort Mode
func modeMenu,modeDrive,modeError:→Mode

sort Error
func errorNo,errorSensor,errorMACS,errorAlive,

errorController,errorActuator:→Error

map higherPriority: Error×Error→Bool
rew higherPriority(errorNo,errorNo) = F

higherPriority(errorSensor,errorNo) = T
...

5.4.3 Processes

In this section the specification of the complete control system using redundant
hardware is explained. The specification treated here is simplified, the complete
µCRL specification can be found in appendix D.1.

The control system and its environment are modeled by five major processes,
which operate in parallel: MACS(macs1), MACS(macs2), Canbus, Hardware and
User. The process Canbus is modeled as a memory with a single delay. The
processes Hardware and User can be used to model restrictions on the input
signals.

proc System =
MACS(macs1) || MACS(macs2) ||
Canbus ||
Hardware || User

The two MACS processes are symmetrical, both performing the same actions.
The control system performs its tasks sequentially and time-driven, a com-
putation is done each time sample. A time sample consists of five subsequent
processes: Monitor_In, Position, Supervisor, Controller and Monitor_Out.
The process MACS then waits until it is allowed to start a new time sample: Time.
The timing mechanism is treated later in this section. Each control system also
has five internal memories to store variables, these memories are run in parallel
with the control system.

proc MACS(i:MacsIndex) =
Monitor_In(i) · Position(i) ·
Supervisor(i) · Controller(i) ·
Monitor_Out(i) ·
Time(i) · MACS(i)

The Monitor_In process monitors the other control system. First it checks if it
is still operating by receiving alive signals over the canbus. If the other control
system is no longer alive it sends an error to the memory Memory_Error, which
is used by the Supervisor process. It also checks the mode and the detected

- 42 -

5.4. Specification

error of the other control system. If it is in error mode, it also sends an error to
the memory Memory_Error. The error kept in this memory will only be changed
by an error with a higher priority. The detected error of the other control system
is kept in the memory Memory_ErrorOther and will be used by the Controller
process. The Monitor_Out process makes sure the other control system gets the
same information back.

The Position process computes the best position. The median is computed
from the three sensor values, received from the Hardware process. Furthermore
it checks whether or not a sensor is failing. These two values are kept in a
memory: Memory_SensorValue and Memory_SensorError. These values can
then be used in the processes Supervisor and Controller.

proc Position(i:MacsIndex) =
sum(sv1:SensorValue, recv_Position_Sensor(i,sensor1,sv1) ·

sum(sv2:SensorValue, recv_Position_Sensor(i,sensor2,sv2) ·
sum(sv3:SensorValue, recv_Position_Sensor(i,sensor3,sv3) ·
send_Position_SensorValue(i,median(sv1,sv2,sv3)) ·
send_Position_SensorError(i,fault(median(sv1,sv2,sv3),sv1,sv2,sv3))

)
)

)

The Supervisor process takes care of the computation of the operational mode.
This responsibility can be split up in two parts (Supervisor_Systemcheck and
Supervisor_Mode). First a system check is done to find out if all components
(sensors, actuator and other control system) are still working properly. If one
component is failing, the error is stored in the memory Memory_Error. Then
the operational mode is determined.

proc Supervisor(i:MacsIndex) =
Supervisor_Systemcheck(i) ·
Supervisor_Mode(i)

The Supervisor_Mode process determines the operational mode from the pre-
vious mode, the system check and the user action:

• Menu mode: The mode is changed to driving mode, if a start signal is
received. If however not all components are functioning, the mode remains
the same and a reset signal is needed to clear the errors stored in the
memory Memory_Error. An emergency signal changes the mode to error
mode and a stop signal is ignored in menu mode.

• Driving mode: A stop signal changes the mode to menu mode. If an
emergency signal is received or if not all components are functioning, the
mode changes to error mode. The other two user signals are ignored.

• Error mode: This mode can only be changed by a reset signal and the
mode change to menu mode.

- 43 -

Safety-critical software design

proc Supervisor_Mode(i:MacsIndex) =
sum(m: Mode, recv_Spv_Mode(i,m) ·
(
(Supervisor_Menu(i) / eq(m,modeMenu) . δ) +
(Supervisor_Drive(i) / eq(m,modeDrive) . δ) +
(Supervisor_Error(i) / eq(m,modeError) . δ)

)
)

proc Supervisor_Menu(i: MacsIndex) =
sum(ua: UserAction, recv_Spv_UI(i,ua) ·
(
(Supervisor_Start(i) / eq(ua,userStart) . δ) +
(τ / eq(ua,userStop) . δ) +
(send_Spv_Mode(i,modeError)·send_Spv_Error(i,errorNo)
/ eq(ua,userEmergency) . δ) +
(send_Spv_Reset(i) / eq(ua,userReset) . δ)

)
)

proc Supervisor_Start(i: MacsIndex) =
sum(e: Error, recv_Spv_Error(i,e) ·
(send_Spv_Mode(i,modeDrive)
/ eq(e,errorNo) .
errorMessage(e))

)

proc Supervisor_Drive(i: MacsIndex) =
sum(e: Error, recv_Spv_Error(i,e) ·
(

sum(ua: UserAction, recv_Spv_UI(i,ua) ·
(
(τ / eq(ua,userStart) . δ) +
(send_Spv_Mode(i,modeMenu) / eq(ua,userStop) . δ) +
(send_Spv_Mode(i,modeError) / eq(ua,userEmergency) . δ) +
(τ / eq(ua,userReset) . δ)

)
)
/ eq(e,errorNo) .

send_Spv_Mode(i,modeError) · Supervisor_Error(i)
)

)

proc Supervisor_Error(i: MacsIndex) =
sum(ua: UserAction, recv_Spv_UI(i,ua) ·
(send_Spv_Reset(i) · send_Spv_Mode(i,modeMenu)
/ eq(ua,userReset) . τ)

)

- 44 -

5.4. Specification

The Controller process takes care of the control action in a specific mode:

• Menu mode: The controller does not have to perform any control actions.

• Driving mode: The controller computes a control action based on the
computed sensor value and the setpoint. The controller can also give an
error, if the control action can not be computed.

• Error mode: The controller computes an error mode control action, if the
corresponding actuator is functioning properly. If the error mode control
action can not be computed, the controller also gives an error.

Three dummy actions (menu, drive and error) are added to this process to
make verification easier in section 5.6.

act menu: MacsIndex
drive: MacsIndex
error: MacsIndex

proc Controller(i:MacsIndex) =
sum(m: Mode, recv_Spv_Mode(i,m) ·
(
(menu(i) / eq(m,modeMenu) . δ) +
(drive(i) · Controller_Drive(i) / eq(m,modeDrive) . δ) +
(error(i) · Controller_Error(i) / eq(m,modeError) . δ)

)
)

proc Controller_Drive(i: MacsIndex) =
sum(sv: SensorValue, recv_Ctrl_SensorValue(i,sv) ·

sum(s: SetpointValue, recv_Ctrl_Setpoint(i,s) ·
(
send_Ctrl_ActuatorAction(i,action(sv,s)) +
send_Spv_Error(i,errorController)

)
)

)

proc Controller_Error(i: MacsIndex) =
sum(e: Error, recv_Spv_Error(i,e) ·
(send_Ctrl_ActuatorAction(i,actuatorAction0)
/ eq(e,errorActuator) .

(
send_Ctrl_ActuatorAction(i,actuatorActionError)) +
send_Spv_Error(i,errorController)

)
)

During normal operation both control system will operate almost in turn and it
is highly unlikely that one control system will compute 5 time samples before the

- 45 -

Safety-critical software design

other computes another time sample. To be able to achieve this a timing mecha-
nism is built, which will guarantee that both control systems will operate almost
synchronous. The process Time of one control system sends actions send_time
and the process Time of the other control system sends actions recv_time. The
processes are synchronized by enforcing communication between these actions.

act comm_time send_time recv_time
comm send_time | recv_time = comm_time

proc Time(i:MacsIndex) =
(
(
send_time · send_time +
send_time · send_time · send_time

)
/ eq(i,macs1) .
(
recv_time · recv_time +
recv_time · recv_time · recv_time

)
)

The actions of a control system during one time sample are independent of the
other except for the communication over the canbus. To reduce parallelism
these actions are split up in two indivisible blocks using binary semaphores (see
[DYK65]). This makes the verification in the next section a lot easier, since the
time samples are now (almost) sequential. This new technique and its validity
is further explained in appendix B. The process MACS is adjusted as follows:

proc MACS(i:MacsIndex) =
send_Semaphore(P) ·
Monitor_In(i) · Position(i) ·
Supervisor(i) · Controller(i) ·
send_Semaphore(V) · send_Semaphore(P) ·
Monitor_Out(i) ·
send_Semaphore(V) ·
Time(i) · MACS(i)

All processes and their communication are shown in figure 5.3. In this figure
only one control system is shown, since their behaviour is completely symmet-
rical.

- 46 -

5.5. Analysis results

Figure 5.3: Overview of all processes in µCRL design

5.5 Analysis results

During verification of the requirements, some problems were found in the re-
quirements and the original specification. These problems resulted in modifica-
tions to the requirements and the specification and are discussed in this section.
In section 5.6 the final version of the specification is verified.

5.5.1 Problem 1

The first problem is related to the requirements. The last two requirements can
not be fulfilled at the same time, since they are in contradiction. Every change
in setpoint can lead to a situation with two actuators performing opposing ac-
tions, if the actuator is supposed to respond to a difference between sensor value
and setpoint in the same time step. This contradiction is shown in figure 5.4.
Both actuators try to turn left by performing force in that direction. If the
setpoint is then changed to a neutral position, the actuators can momentarily
perform opposing forces.

The specification built only fulfills requirement VII, but it is also possible to ad-
just the specification to fulfill the actuator synchronization requirement instead.
Two options are given:

- 47 -

Safety-critical software design

Figure 5.4: Example showing conflicting requirements

• Communicate actuator actions over canbus: This method results in a
delay for all actuator actions. This is unacceptable according to section
3.2, since it will result in poor controller performance.

• Don’t allow opposing actuator actions on a single control system in sub-
sequent time samples: If the direction of the actuator action changes no
actuator action is performed to prevent opposing forces. It only works if
there are two time samples with no actuator action, this is shown in figure
5.5. This strategy will certainly have a negative effect on controller per-
formance, especially with position control where many direction switches
occur.

Figure 5.5: Second option to fulfill requirement VIII

The actuator synchronization requirement is dropped, because the negative ef-
fect on actuator synchronization is regarded as less important than the negative
effect on performance.

- 48 -

5.5. Analysis results

5.5.2 Problem 2

The second problem is shown in UML in figure 5.6 (left). If a start signal is
provided by the user in menu mode, the control system can decide to go into
driving mode or stay in menu mode if it has detected an error. If one control
system stays in menu mode while the other goes into driving mode, the modes
could not be synchronized.

Figure 5.6: Problem starting driving mode: Original problem (left) and
solution (right)

The problem is solved by synchronizing both control systems in error mode.
Two modifications are needed to achieve this. First a special mode is needed to
indicate a menu mode with detected errors, which is sent over the canbus. If a
control system is in driving mode and receives a mode signal indicating menu
mode with detected errors, the control system goes into error mode immedi-
ately. Secondly the specification is changed to make it possible to go to error
mode from menu mode if a error mode signal is received from the other control
system. A new datatype ModeOther needs to be introduced and the process
Monitor_In needs to be adjusted.

sort ModeOther
func otherMenu,otherMenuError,otherDrive,otherError:→ModeOther

proc Monitor_In(i:MacsIndex) =
Monitor_In_Alive(i) ·
sum(m: ModeOther, recv_Mon_Mode_Other(other(i),m) ·
(
(τ / eq(m,otherMenu) . δ) +
(send_Spv_Error(i,errorMACS) / eq(m,otherMenuError) . δ) +
(τ / eq(m,otherDrive) . δ) +
(send_Spv_Error(i,errorMACS) · send_Spv_Mode(i,modeError)

- 49 -

Safety-critical software design

/ eq(m,otherError) . δ)
)

)

After these modifications the modes synchronize properly in error mode. This
is shown in figure 5.6 (right).

5.5.3 Problem 3

The third problem is shown in UML in figure 5.7 (left). If a reset signal is
provided in driving mode and one of the control systems detects an error, it
is possible to have one control system in driving mode and the other in menu
mode. The problem is caused by the fact that mode signals on the canbus can
be overwritten. The error mode signal is overwritten by a menu mode signal and
the other control system therefore stays in driving mode without ever noticing
the error mode signal.

Figure 5.7: Problem with reset action: Original problem (left) and solution
(right)

This synchronization problem is solved by changing the process Supervisor_Drive
in such a way that the reset signals also results in a transition from driving mode
to menu mode. The effect is depicted in figure 5.7 (right).

proc Supervisor_Drive(i: MacsIndex) =
sum(e: Error, recv_Spv_Error(i,e) ·
(

sum(ua: UserAction, recv_Spv_UI(i,ua) ·
(
(τ / eq(ua,userStart) . δ) +

- 50 -

5.6. Verification

(send_Spv_Mode(i,modeMenu) / eq(ua,userStop) . δ) +
(send_Spv_Mode(i,modeError) / eq(ua,userEmergency) . δ) +
(send_Spv_Mode(i,modeMenu)τ / eq(ua,userReset) . δ)

)
)
/ eq(e,errorNo) .

send_Spv_Mode(i,modeError) · Supervisor_Error(i)
)

)

5.6 Verification

In this section the requirements will be verified. First some theory is presented
about model-checking by using modal logics. The requirements can then be
rewritten in modal logics and the transition system is generated. In the last
section results of the verification are presented.

5.6.1 Introduction to model-checking

With the specification designed in the previous section, it is possible to gen-
erate a transition system and to verify the requirements on the specification.
The transition system can be visualized by using one of the tools described in
appendix C.3.

However in most cases the verification can not be done by hand, because the
transition system is too complex. Especially when many parallel processes are
introduced, the transition system grows exponentially. This problem is called
the state-explosion problem. This phenomenon introduces a need for automatic
verification of systems: model-checking. A model-checker is a tool which decides
whether a given specification satisfies a certain requirement which is expressed
by a logical formula φ.

All actions, which are not used in the requirements, are hidden. After abstract-
ing away from the internal behaviour, a reduced branching bisimilar1 transition
system can be computed. The resulting transition system is a lot smaller than
the original transition system, which increases the model-checker’s performance.

There are several different modal logics introduced to express the requirements
on the system. The most important modal logics are PLTL, HML, CTL and
modal µ-calculus. A short introduction to these different logics can be fount
in [MSS99]. Only modal µ-calculus will be treated here, since it is used by the
main model-checkers and it is claimed to be the most powerful modal logic.

One specific form of modal µ-calculus is used, which is developed for the model-
checker Evaluator2: regular alternation-free µ-calculus. The syntax of regular

1Branching bisimilarity is an equivalence on transition systems which preserves the validity
of modal logic. A formal definition can be found in [FGR05]

2Model-checker in the Cæsar Aldébaran Development Package (see appendix C.2)

- 51 -

Safety-critical software design

alternation-free µ-calculus is as follows [MS00]:

α ::= a | ¬α | α1 ∨ α2 | α1 ∧ α2

β ::= α | β1 · β2 | β1|β2 | β∗
φ ::= F | T | φ1 ∨ φ2 | φ1 ∧ φ2 | Y | µY.φ | νY.φ | 〈β〉φ | [β]φ

The action formulae α are built from action names a and the boolean opera-
tors (¬), (∨) and (∧). Furthermore the sign > is introduced to indicate the set
of all actions. The regular formulae β are built from action formulae and the
standard regular expressions operators (·), (|) and (∗). The operators denote
concatenation, choice and transitive-reflexive closure respectively. For example
(a1|a2)∗ means zero or more times a choice is made between action a1 and a2.
The operator (+) is also introduced. (a)+ means at least one action a is per-
formed.

The state formulae φ are built from propositional variables Y by using the
standard boolean operators. Two operators are introduced for possibility and
necessity. 〈β〉φmeans ‘it is possible to do a sequence of actions β to a state where
φ holds’ and [β]φ means ‘φ holds in all states reachable by a sequence of actions
β’. Least and greatest fixpoint operators are denoted by µY.φ and νY.φ. With
the fixpoint operators recursion could be introduced in the original versions of
modal µ-calculus. However working with fixpoint operators is very tricky and
hard to understand. Therefore the (∗) is introduced in regular alternation-free
µ-calculus, which is more intuitive. The fixpoint operators and (∗) are related
as follows:

µY.(φ ∨ 〈α〉Y) ≡ 〈α∗〉φ
νY.(φ ∧ [α]Y) ≡ [α∗]φ

An enlightening introduction to modal µ-calculus and the fixpoint operators can
be found in [BS01].

5.6.2 Expressing requirements in modal logic

Before expressing the requirements in modal logic, some macros are introduced
to make the requirements more readable. First some action formulae are intro-
duced. The action formulae can be used with or without control system index
i.

• The action formula αuser is to indicate all user actions.

αuser(i) ≡ start(i) ∨ stop(i) ∨ emergency(i) ∨ reset(i)

αuser ≡ αuser(macs1) ∨ αuser(macs2)

• The action formula αerror is to indicate the actions when a system error is
detected. Since these errors are all kept in the memory Memory_Error, the
internal communications can be used to indicate detected system errors.

αerror(i) ≡
comm_Error_Set(i, errorSensor) ∨
comm_Error_Set(i, errorMACS) ∨

- 52 -

5.6. Verification

comm_Error_Set(i, errorAlive) ∨
comm_Error_Set(i, errorController) ∨
comm_Error_Set(i, errorActuator)

αerror ≡ αerror(macs1) ∨ αerror(macs2)

• The action formula αerrorknown is to indicate the actions when a system er-
ror is known. Since these errors are already in the memory Memory_Error,
the internal communications can be used to indicate known system errors.

αerrorknown(i) ≡
comm_Error_Get(i, errorSensor) ∨
comm_Error_Get(i, errorMACS) ∨
comm_Error_Get(i, errorAlive) ∨
comm_Error_Get(i, errorController) ∨
comm_Error_Get(i, errorActuator)

αerrorknown ≡ αerrorknown(macs1) ∨ αerrorknown(macs2)

• The action formula αmode is to indicate all mode actions.

αmode(i) ≡ menu(i) ∨ drive(i) ∨ error(i)

αmode ≡ αmode(macs1) ∨ αmode(macs2)

Some system properties are expressed in regular formulae.

• The regular formula βmenu is to indicate each state reachable where both
control systems are in menu mode. It states that after a random sequence
of actions, the last two mode actions performed on both control systems
are the menu actions.

βmenu ≡ >∗ ·
(menu(macs1) · (> ∧ ¬αmode(macs1) ∧ ¬αerror(macs1))∗ · menu(macs2) +
menu(macs2) · (> ∧ ¬αmode(macs2) ∧ ¬αerror(macs2))∗ · menu(macs1))

• The regular formula βdrive is to indicate each state reachable where both
control systems are in driving mode.

βdrive ≡ >∗ ·
(drive(macs1) · (>∧¬αmode(macs1)∧¬αerror(macs1))∗ ·drive(macs2)+
drive(macs2) · (> ∧ ¬αmode(macs2) ∧ ¬αerror(macs2))∗ · drive(macs1))

• The regular formula βerror is to indicate each state reachable where both
control systems are in error mode.

βerror ≡ >∗ ·
(error(macs1) · (> ∧ ¬αmode(macs1))∗ · error(macs2) +
error(macs2) · (> ∧ ¬αmode(macs2))∗ · error(macs1))

The requirements, specified in section 5.3, can now be expressed in modal logic
using the introduced macros. The following requirements are split in two parts:
a safety part and a liveness part. The first expresses that something bad will
never happen and the second expresses that something good can happen.

- 53 -

Safety-critical software design

• Deadlock freeness:

[>∗]〈 > 〉 T

This modal formula states that in every state reachable by some sequence
of actions at least one action can be performed, i.e. deadlock free.

• Requirement I:

[βdrive · α∗other · αmode\{drive}(i)] F
∧
[βdrive]〈 α∗other · drive(i) 〉 T

with αother ≡ > ∧ ¬αuser\{start} ∧ ¬αerror ∧ ¬αmode

The safety part of the modal formula states that with both control systems
in driving mode, it is impossible to go to another mode than driving mode
without system errors and without performing user actions (other than
start). The liveness part states that it is possible to stay in driving
mode.

• Requirement II:

[βmenu · α∗other · start(i) · α∗other · αmode\{drive}(i)] F
∧
[βmenu · α∗other · start(i)]
〈 α∗other · (drive(i) | (αerrorknown · αother · menu(i))) 〉 T

with αother ≡ > ∧ ¬αuser ∧ ¬αerror ∧ ¬αmode ∧ ¬αerrorknown

The safety part of the modal formula states that when a start action
is given with both control systems in menu mode, it is impossible to go
to another mode than driving mode without system errors and without
performing user actions. The liveness part states that it is possible to go
to driving mode.

The verified modal formula (see appendix D.2) also expresses that under
the same circumstances both control systems go to driving mode after a
start action.

• Requirement III:

[βdrive · α∗other · stop(i) · α∗other · αmode\{menu}(i)] F
∧
[βdrive · α∗other · stop(i)]〈 α∗other · menu(i) 〉 T

with αother ≡ > ∧ ¬αuser ∧ ¬αerror ∧ ¬αmode

The safety part of the modal formula states that when a stop action is
given with both control systems in driving mode, it is impossible to go
to another mode than menu mode without system errors and without
performing user actions. The liveness part states that it is possible to go
to menu mode.

- 54 -

5.6. Verification

The verified modal formula (see appendix D.2) also expresses that under
the same circumstances both control systems go to menu mode after a
stop action.

• Requirement IV:

[βdrive · α∗other · emergency(i) · α∗other · αmode\{error}(i)] F
∧
[βdrive · α∗other · emergency(i)]〈 α∗other · error(i) 〉 T

with αother ≡ > ∧ ¬αuser ∧ ¬αmode

The safety part of the modal formula states that when a emergency action
is given with both control systems in driving mode, it is impossible to go
to another mode than error mode without performing user actions. The
liveness part states that it is possible to go to error mode.

The verified modal formula (see appendix D.2) also expresses that under
the same circumstances both control systems go to error mode after a
emergency action.

• Requirement V:

[βdrive · α∗other · αerror(i) · α∗other · αmode\{error}(i)] F
∧
[βdrive · α∗other · αerror(i)]〈 α∗other · error(i) 〉 T

with αother ≡ > ∧ ¬αuser\{start} ∧ ¬αerror ∧ ¬αmode

The safety part of the modal formula states that when a system error
occurs with both control systems in driving mode, it is impossible to go
to another mode than error mode without performing user actions. The
liveness part states that it is possible to go to error mode.

• Requirement VI:

This requirement states that the modes of both control systems have to
be synchronized. If one control system goes into another mode, both
control systems go into the same mode as fast as reasonably possible. The
requirement need to be split in similar modal formulae, one for each mode
transition.

[>∗ · menu(macs1) ·
(α∗other · αmode(macs2))∗ ·
α∗other · drive(macs1) ·
(βoutofsync)n] F
∧
[>∗ · menu(macs1) ·
(α∗other · αmode(macs2))∗ ·
α∗other · drive(macs1)]
〈 βinsync | (α∗other · αmode · (βinsync | (α∗other · αmode · (...)))) 〉 T

with αother ≡ > ∧ ¬αmode

βoutofsync ≡ (αother · menu(macs1) · αother · drive(macs2) | ...)

- 55 -

Safety-critical software design

βinsync ≡ (αother · menu(macs1) · αother · menu(macs2) | ...)

The safety part of the modal formula states that if one control system
goes into driving mode (starting in menu mode), it is impossible to stay
out of sync for n time samples. The liveness part states that it is possible
to synchronize under the assumption that the recursion ends. Note that
nothing is said about how fast the mode synchronization is, only that the
modes ultimately synchronize. During verification (in section 5.6.4) the
performance of the mode synchronization is analyzed.

• Requirement VII:

This requirement states that during driving mode, a difference between
sensor value and setpoint value will result in actuator action in the same
time step. The requirement must be split in similar modal formulae, one
for each combination of sensor value and setpoint.

[βdrive · α∗other ·
comm_SensorValue_Get(i,SensorValueL1) ·
setpoint(i,setpointValueR1) ·
(actuator(i,actuatorActionL1)|actuator(i,actuatorAction0))] F
∧
[βdrive · α∗other ·
comm_SensorValue_Get(i,SensorValueL1) ·
setpoint(i,setpointValueR1)]
〈 actuator(i,actuatorActionR1) 〉 T

with αother ≡ > ∧ ¬αuser\{start} ∧ ¬αerror ∧ ¬αmode

The safety part of the modal formula states that with both control systems
in driving mode, it is impossible to have an actuator action other than
turning right, if the computed sensor value indicates -5 degrees and the
setpoint is +5 degrees. The liveness part states that it is possible to have
an actuator action turning right.

• Requirement VIII:

This requirement states that during driving mode both actuators are syn-
chronous. The requirement must be split in similar modal formulae, one
for each combination of opposing actuator values actuatorActionR1 and
actuatorActionL1.

[βdrive ·
α∗other · drive(macs1) ·
α∗other · actuator(macs1,actuatorActionR1) ·
α∗other · drive(macs2) ·
α∗other · actuator(macs2,actuatorActionL1)] F
∧
[βdrive ·
α∗other · drive(macs1) ·
α∗other · actuator(macs1,actuatorActionR1) ·
α∗other · drive(macs2)]
〈 α∗other ·

- 56 -

5.6. Verification

(actuator(i,actuatorActionR1)|actuator(i,actuatorAction0)) 〉 T

with αother ≡ > ∧ ¬αuser\{start} ∧ ¬αerror ∧ ¬αmode

The safety part of the modal formula states that with both control systems
in driving mode, it is impossible to have an actuator action on one control
system opposing the actuator action on the other control system. The
liveness part states that it is possible to have similar actuator actions on
both control systems under the same circumstances.

5.6.3 Generation transition system

Figure 5.8: Single control system using FSM Visualizer

To verify the control system specification, first the transition system needs
to be generated. This is done by using the µCRL toolset (see appendix C.1).
First the transition system of a single control system is generated. The transi-
tion system is visualized in figure 5.8 using FSM Visualizer3.

33D Visualization tool to analyse transition systems (see appendix C.3)

- 57 -

Safety-critical software design

The FSM Visualizer is also used to analyze the behaviour of the specification
in an early stage. With this tool it is possible to interactively explore the tran-
sition system in 3D. This has removed errors from the specification and gains
an insight into the system. Some subsystems are indicated in figure 5.8.

NoodleView4 can also be used to analyze the control system’s behaviour. How-
ever it focuses on state variables and these are only used for the mode switching
behaviour. In figure 5.9 the mode switching behaviour is shown. The state
variables belonging to Memory_Mode and Memory_Error are clustered, giving all
states in a particular mode with a particular error. Their corresponding transi-
tions are depicted clockwise. Several conclusions can be drawn from this figure.
For example, it is impossible to make a transition to driving mode from error
mode and it is impossible to make transitions between menu and driving mode
if an error has been detected. NoodleView also shows that the controller error is
missing in menu mode, since this type of error can only occur in driving mode,
when it tries to perform control actions.

Figure 5.9: Mode switching behaviour in NoodleView

4Visualization tool to analyse transition system focused on state variables (see appendix
C.3)

- 58 -

5.6. Verification

Unfortunately the µCRL toolset is not capable in generating the complete tran-
sition system at once. By using Exp.Open5 it is possible to generate one tran-
sition system from several communicating transition systems. With this tool it
is possible to first reduce parts of the transition system, before combining these
parts. The resulting transition system will then be a lot smaller compared to
generating the complete transition system at once. Due to the introduction of
the binary semaphores in section 5.4.3 the complete transition system is reduced
by a factor 10 in this particular case. But still it has 1.5 million states, mak-
ing it impossible to understand the behaviour of the resulting transition system
graphically. A detail of the transition system is visualized in figure 5.10 using
FSM Visualizer to show the complexity.

Figure 5.10: Detail of complete control system

NoodleView can also not be used for the complete transition system. The
necessary reductions for building the transition system deletes all state vari-
able information, since it maps different states to one state based on trace and
branching equivalence.

5.6.4 Results

According to the model-checker Evaluator, the specification is deadlock free and
the first five requirements are fulfilled. These five requirements are verified with
random input i.e. without restrictions on the environment.

5Tool in the Cæsar Aldébaran Development Package to generate communicating transition
systems (see appendix C.2)

- 59 -

Safety-critical software design

The synchronization requirements however can only be verified with restrictions
on the environment. Random and fast alternating input can never be handled
properly. The operational modes wil never be synchronized, if one control sys-
tem only receives start signals and the other control system only receives reset
signals. (Something similar holds for actuator synchronization.) This problem
needs to be resolved in the hardware. The hardware must guarantee that the
input signals are available long enough that both control systems see the input
signal and can respond to the input signal. The synchronization requirements
can only be verified by building a new transition system with restrictions on the
processes Hardware and User.

To be able to verify mode synchronization, the user actions need to be restricted.
The process User is only allowed to change the user action once in every 10 time
samples. The mode synchronization requirement (requirement VI) can now be
fulfilled.

In table 5.1 the worst case synchronization times are shown for the different
mode transitions. These values are retrieved by verifying different values n un-
til the requirement is fulfilled.

Mode transition Synchronization time
menu → drive 6 time samples
menu → error Immediately
drive → menu 4 time samples
drive → error 4 time samples
error → menu Immediately

Table 5.1: Worst case synchronization times

There are three mode transitions where the synchronization costs time. This is
due to the fact that the worst case synchronization is achieved in error mode.
One control system makes a mode transition while the other detects an error.
The resulting error mode needs to be communicated to the other via canbus
and this communication costs time. The transition from menu mode to driving
mode is the worst case synchronization overall, since it needs to communicate
twice via canbus. This special sequence is shown later in this section.

The other two transitions are synchronized immediately, because these transi-
tions can only be made after user signals and these user signals are also received
by the other control system.

The last two requirements could not be fulfilled at the same time, since they are
in contradiction. The synchronization requirement is dropped and the other is
fulfilled.

- 60 -

5.7. Implementation

5.7 Implementation

The software for the control system is designed in µCRL to be able to validate
the software design. However µCRL code can not be compiled to run on a
control system directly. This means the µCRL code has to be implemented in
another programming environment first. Since it is only possible to use Simulink
to generate code for the MACS control system, it needs to be implemented in
a Simulink model.

To preserve validity of the software, a formal relation must be made between
Simulink and µCRL to map the functionality of the original code to the Simulink
model. Unfortunately it is impossible due to the semantical differences between
the two programming languages. Simulink is a graphical tool to design and
analyze dynamical systems, while µCRL is a process-algebraic programming
language to design and analyze communicating processes with data.

The µCRL code can not be simply mapped. To be able to implement the
functionality in Simulink, adjustments need to be made. However changes can
introduce new faults and can destroy validity. The new model needs to be as
close to the original code as possible. Fortunately the model is not changed
much to implement the code in Simulink.

One of the differences between the two designs is the treatment of memory
and communication. For example memory processes are needed in µCRL to
remember values of the previous time sample, but also to control the signal flow
between internal processes. In Simulink the values of the previous time sample
can be obtained by simply using the predefined memory block, which delays a
signal by one time sample. The signal flow can be controlled by linking outputs
with inputs of different processes. These changes also make the design more
transparent in comparison to the µCRL code.

The general composition of the Simulink model is shown in figure 5.11. The ma-
jor internal processes still exist and the signal flow between internal processes
remains the same. First the position is computed from the sensor values, the
supervisor6 process computes the mode of the control system, the controller
process computes the control actions and finally information is sent to the other
control system via canbus.

In the µCRL model, the controller is simplified to reduce the complexity of the
transition system (to avoid state explosion) without losing the characteristics
of a controller. This simplified controller can now be replaced by the two con-
trollers which are developed in chapter 3.

The controller process is shown in figure 5.12. The processes controlvoter and
controlswitch are used to choose the right control strategy: no control, torque
control or position control.

Furthermore code is added in the Simulink model to calculate the three posi-

6This process also includes monitoring the other control system, unlike the µCRL model.

- 61 -

Safety-critical software design

Figure 5.11: Control system model in Simulink

Figure 5.12: Controller process in Simulink

tions from the electrical signals (see appendix A.1) and to be able to send the
output and to receive the input.

The Simulink code of the control system did not lead to a single error during
testing. Formal methods removed errors in an early stage of the development,
making the implementation of code an easy and straightforward task.

- 62 -

Chapter 6

Safety during driving tests

’Simulation is like masturbation: the more you do it, the more you think it is
the real thing.’

Maarten Steinbuch

In this chapter the safety during driving tests is analyzed in simulation. Fur-
thermore a strategy is designed to maintain safety during component failures
and external emergencies. But first a simulation model needs to be built in
Simulink. The model consists of three parts (figure 6.1): the control system
(section 6.1), the robot dynamics (section 6.2) and the vehicle model (section
6.3). In this chapter the focus will be on the overall behaviour of the steering
robot in representative driving tests.

Figure 6.1: Simulation model for steering robot

6.1 Control system

The software for the control system is developed in chapter 5. For the simulation
also the behaviour of the control system needs to be implemented. Otherwise
the effects of sample frequency and computation delay, described in section 3.2,
will not occur.

- 63 -

Safety during driving tests

To realize the effect of sample frequency, the control system is developed as
a discrete-time model in a continuous-time environment. The continuous-time
signals and operations are discretized. The input signals are converted to dis-
crete signals by using zero-order hold. This means that the input signals are
held at fixed values during one time sample. Continuous operations like inte-
grators and differentiators are replaced by their discrete counterparts.

The computation delay could simply be achieved by using a time delay in the
output signals. The delay is not exactly known. However the control system
runs at the highest possible sample frequency without failing to fulfill all compu-
tations and therefore the delay is expected to be half the sample time. Although
the delay is random due to differences in computation times, the delay is simu-
lated as a constant delay to reduce complexity of the simulation model.

0 0.1 0.2 0.3 0.4 0.5
0

5

10
Step torque

T
or

qu
e

[N
]

0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

Time [s]

A
ng

le
sp

ee
d

[d
eg

/s
]

0.1 0.105 0.11 0.115 0.12
7

7.5

8

T
or

qu
e

[N
]

0.1 0.105 0.11 0.115 0.12
0

100

200

300

400

500

Time [s]

A
ng

le
sp

ee
d

[d
eg

/s
]

0.112 0.113 0.114 0.115

7.6

7.8

8

T
or

qu
e

[N
]

0.112 0.113 0.114 0.115
300

350

400

450

500

Time [s]

A
ng

le
sp

ee
d

[d
eg

/s
]

Delay
No delay

Figure 6.2: Step torque by the control system

The effects of sample frequency and computation delay in the control system
model are shown in figure 6.2. In this figure a torque step is computed by the
control system and used to manipulate a simple second-order system (mass-
spring-damper). The delivered torque1 is shown in the upper figure. The lower
figures are magnifications to show the decrease in delivered torque during one
time sample. The lower left figure shows the dependency on angular velocity
and the lower right figure shows the computation delay of one half time sample.

1The torque is computed from the three phase currents and the actual angle. The compu-
tation will be further explained in section 6.2

- 64 -

6.2. Robot dynamics

6.2 Robot dynamics

To be able to make a realistic simulation the dynamics of the steering robot
needs to be estimated. A second order system is built with non-linear exten-
sions (friction and backlash) to be able to simulate experiments realistically.
The parameters of the dynamics are fitted by real experiments.

6.2.1 Second order estimation

First the dynamic behaviour is represented by a second order system (mass-
spring-damper). The dynamic behaviour of the steering robot consists of a
mechanical part and an electrical part. It is expected that electrical effects
will not play a significant role in the dynamic behaviour, since the mechanical
components are much slower. Therefore a realistic fit should be possible by
modeling a second order system.

Figure 6.3: The locked steering robot

The parameters of the second order system (inertia Jgda, spring constant kgda

and damping constant dgda) can be identified experimentally by locking the
steering wheel as shown in figure 6.3. Because the steering wheel angle is fixed
and the sensor is located in the motor, the sensor measures the angle (α) be-
tween steering wheel hub and motor instead of the steering wheel angle. This
situation can be modeled as shown in figure 6.4.

Figure 6.4: Second order system

The resulting differential equation is described as follows.

- 65 -

Safety during driving tests

Jgdaα̈ = Tgda − Td − Tk

⇔
Jgdaα̈+ dgdaα̇+ kgdaα = Tgda

(6.1)

6.2.2 Friction

The friction of the system is determined experimentally by measuring the min-
imal forces needed to change the steering wheel angle. This is done in the same
way as the measurement of the torque constant in section 3.2.

The friction forces are fairly high in this setup and the value changes with the
steering wheel angle. The steering wheel has preferred positions due to the use
of the drive belt. The measured friction coefficient (Kgda) is between 0.5 and 1
Nm and is independent of direction.

In this section, the friction force is modeled by coulomb friction only. Viscous
friction can be ignored, because it is included in the fitted damping constant.
Viscous friction is dependent of speed and can be seen as a damping force.
Although it is a rather simple estimation for a complex term like friction, it
gives acceptable results without compromising simulation time.

6.2.3 Backlash

Backlash2 can be measured by applying positive and negative torques to the
steering robot, when the steering wheel is locked. The angles give an estimation
of the backlash, because after a positive torque the steering robot will be in its
positive maximum position and vice versa. The results of the experiments are
shown in figure 6.5.

0 1 2 3 4 5 6 7

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Backlash

Time [s]

A
ng

le
 [d

eg
]

Angle
Torque direction
Backlash zone

Figure 6.5: Backlash of steering robot

Unfortunately other effects are measured as well, like hysteresis and friction.
However the effects are expected to be low. Hysteresis effects can be kept

2Backlash is the mechanical term for loss of motion due to clearance between mechanical
components. [WIK]

- 66 -

6.2. Robot dynamics

small by applying small forces to the steering robot. The effect of friction is
expected to be small, since friction is also small. Backlash (αbacklash) is therefore
estimated at 0.2 degrees.

6.2.4 Fit parameters

The second order model can now be extended with friction and backlash. The
model is shown in figure 6.6.

Figure 6.6: Second order system with non linear effects

This model will be used to fit the remaining parameters with a least square
fit. Some experiments need to be done to measure the relation between applied
torque and motor angles. These experiments can be fitted in the time domain
and the frequency domain.

In the frequency domain a transfer function of the steering robot is computed
from the relation between torque input and motor angle output. However com-
puting a transfer function is difficult due to the nonlinear effects in the system.
Especially the effects of backlash are difficult to model and makes fitting a la-
borious task.

In the time domain backlash can be avoided by fitting an experiment without
backlash. If torque does not change direction (i.e. a step response), backlash
plays no role and does not have to be modeled. Only friction has to be added.
The differential equation is described as follows.

Jgdaα̈ = Tgda − Td − Tk − Tfric (6.2)

This experiment can be fitted directly to obtain the remaining parameters of
the model.

Although this fit can be used to identify all model parameters, one of the para-
meters can already be determined without fitting the model. The spring con-
stant (kgda) can be identified by simply measuring the relation between applied
torque and relative motor angle. Note that it is only valid if the measurements
are done in steady-state.

- 67 -

Safety during driving tests

6.2.5 Model

In the previous sections the parameters of the system are retrieved and these
parameters are used to model the dynamics of the steering robot. A new differ-
ential equation can be designed, where the steering wheel is no longer secured.
The relatively small backlash effect is ignored to avoid simulation problems.

Jgdaα̈gda = Tgda − Td − Tk − Tfric

⇔
Jgdaα̈gda + dgda(α̇gda − α̇st) + kgda(αgda − αst) + Tfric = Tgda

with Tgda = istTm and αgda = αm/ist

(6.3)

The relation between actual steering torque and motor torque (3.6) needs to be
adjusted to include the dynamic behaviour of the steering robot. By rewriting
(6.3) the actual steering torque can now be described by (6.4).

Tst(= Td + Tk) = Tgda − Jgdaα̈gda − Tfric (6.4)

The relation between actual steering wheel angle and measured angle (in mo-
tor) also needs to be adjusted due to the steering robot dynamics. This relation
can be derived from the differential equation, since αgda is the only unknown
variable.

The Simulink model can now be implemented. It is shown in figure 6.7.

Figure 6.7: Dynamics in Simulink

Ultimately friction is removed from the simulation model to prevent simulation
problems. Furthermore the high friction force measured is unacceptable and
will be removed in a new design.

6.3 Vehicle model

The last part of the simulation model is the vehicle model. The vehicle model is
implemented in Advance, which is a vehicle simulation environment developed

- 68 -

6.3. Vehicle model

by TNO. First an introduction is given to Advance and in the next sections the
vehicle model and steering mechanism is built.

6.3.1 Advance

Advance is a modular vehicle simulation environment, developed at TNO. The
tool consists of an extensive library of both vehicle dynamics and powertrain
modules, which can be interconnected easily to compose a vehicle model. Ad-
vance is developed to be used in the vehicle development process to investigate
design effects in simulation.

As mentioned before, the model set up is completely modular. The setup is
based on the components which are present in vehicles. This setup allows users
to adjust or redesign particular vehicle components using the standard Simulink
library. Particular components and control loops can then be tested in simula-
tion. The modular approach also simplifies the setup of hardware-in-the-loop
testing, i.e. part of the advance model is replaced by a physical component and
tested in a real-time simulation.

6.3.2 Vehicle

The vehicle model can be built from standard Advance blocks, which need to be
interconnected. For the simulation a set of parameters is used of an arbitrary
mid-sized vehicle. The vehicle model consists of three major parts:

• Powertrain / Powercontrol : The powertrain consists of an internal com-
bustion engine, a torque converter, an automatic gearbox and a differen-
tial. The differential only drives the front wheels.

• Chassis: The chassis consists of four wheels and two roll stabilisers (front
and rear). Each wheel has a brake, a spring and a damper. The tyre forces
are computed with the Magic Formula-Tyre Model described in [PAC02].

• Body : The body behaves as a rigid body, which is subjected to the forces
and moments produced by the chassis and powertrain.

6.3.3 Steering mechanism

In Advance no predefined blocks are available to simulate the behaviour of the
steering mechanism. The vehicle model only uses wheel angles to control the
vehicle direction. The steering mechanism needs to be designed.

The developed steering mechanism is similar to the steering model proposed in
[DV03]. The steering model is schematically shown in figure 6.8. It consists of
the steering column, the steering rack and power steering unit. The hydraulics
of the power steering unit is also modeled, which includes hydraulic delay and
a realistic boost curve.

The forces acting upon both ends of the steering rack are the forces generated
by the front tyres. The forces are created by two tyre forces: the self-aligning

- 69 -

Safety during driving tests

Figure 6.8: Model of steering mechanism

moment and the lateral tyre force. The lateral tyre force does not apply in the
center of the wheel and therefore creates a torque around the vertical axis.

The specification of the steering robot is very much influenced by the power
steering unit as already mentioned in section 2.5. The efficiency of the power
steering unit reduces at higher speeds and ultimately it produces counteracting
forces.

The steering model proposed in [DV03] has a realistic model of a power steering
unit, but it does not include the steering speed effects. The power steering unit
is extended to be able to simulate these effects. It is assumed that the efficiency
drops linearly when rotation speeds exceed 360 deg/s and when rotation speeds
exceed 720 deg/s the power steering starts producing opposing forces.

In figure 6.9 the effect of power steering on maximum steering speed is shown.
Initially the power steering helps to achieve high steering speeds compared to
a steering mechanism without power steering. However to realize even higher
steering speeds significantly more torque is needed. In this figure the original
design proposed in [DV03] is also shown.

- 70 -

6.4. Simulation

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500
Maximum steering speed

Torque (Nm)

A
ng

le
sp

ee
d

(D
eg

/s
)

No power steering
Power steering (original)
Power steering (speed dependent)

Figure 6.9: The effect of power steering on maximum steering speed

6.4 Simulation

In previous chapters overall safety is realized by validating the software require-
ments and by duplicating the hardware to make it fault-tolerant. Until now
the error mode strategy is not determined. In this section different strategies
are investigated to maintain safety during a hardware failure and during exter-
nal emergencies. However the steering capabilities need to be analyzed first to
make sure that the GDA can steer when it is fully operable and more impor-
tantly when one of the steering actuators fails.

6.4.1 Steering capabilities

The steering capabilities of the steering robot can best be analyzed using the
circle test described in [ISO03]. The steering wheel is instantly set at a constant
steering angle, which ultimately leads to a constant steering torque. First the
steering capabilities are analyzed without having hardware failures and secondly
an analysis is done with failing hardware.

Circle test

In this section the circle test is investigated without having hardware failures.
In figure 6.10 a circle test is shown in which the steering wheel angle is instantly
set at 20 degrees (top) and 40 degrees (bottom). These values are representative
for normal road driving conditions. The actual steering angles and the applied
steering torques are shown.

The effect of sample frequency is clearly visible in the applied steering torques.
The steering speed is high in the beginning of the circle test to realize the steering
angle target, which results in a loss of steering torque as described in section 6.1.

The figure also shows that the static steering torque is relatively low when equi-
librium is reached during cornering. The steering torques to maintain these
steering angles are around 2 Nm. The high steering torques are only needed to
quickly reach the steering angle target.

- 71 -

Safety during driving tests

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30
Steering angle

Time (s)

A
ng

le
 (

D
eg

)

Target
Actual

0 0.1 0.2 0.3 0.4 0.5
−10

0

10

20

30
Steering torque

Time (s)

T
or

qu
e

(N
m

)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50
Steering angle

Time (s)

A
ng

le
 (

D
eg

)

Target
Actual

0 0.1 0.2 0.3 0.4 0.5
−10

0

10

20

30
Steering torque

Time (s)

T
or

qu
e

(N
m

)

Figure 6.10: Steering angle target of 20 degrees (top) and 40 degrees (bot-
tom)

The resulting trajectory of a circle test with the steering angle instantly set at
40 degrees is shown in figure 6.11.

Figure 6.11: Trajectory of circle test

Now it can be verified that during normal driving conditions the steering torques
will not exceed 10 Nm, which was concluded in section 2.5 based on low speed
road experiments. Simulations are performed in which the steering angle is in-
creased to find the maximum static steering torque during static cornering. The
results are shown in figure 6.12 for different speeds.

- 72 -

6.4. Simulation

−200 −100 0 100 200

−5

0

5

Steering angle sweep

Steering angle (Deg)

S
te

er
in

g
to

rq
ue

 (
N

m
)

30 km/h
60 km/h
100 km/h

Figure 6.12: Maximum steering torques during static cornering at different
speeds

The tyre forces of the circle tests are shown in figure 6.13. The overturning mo-
ment Mx and lateral tyre force Fy are directly related to the required torques
on the steering wheel as shown in section 6.3. The figures not only show that
the overturning moments and overall lateral forces increase if the steering an-
gle increases (until the limit forces of the tyre are reached), but also that the
difference between the inner and outer wheel increases. This is due to the fact
that the mass is transferred to one side of the vehicle (the roll angle increases)
and the vertical tyre forces Fz increase for the outer wheels and decrease for
the inner wheels. The simulated tyre forces strongly resemble the typical tyre
forces as described in [PAC02].

The results in this section show that 10 Nm will not be needed during nor-
mal driving conditions, which was concluded in section 2.5. The static steering
torques will not exceed 6 Nm when performing extreme cornering. Based on
these torques and the response times it can be concluded that the GDA is ca-
pable of steering this vehicle properly.

- 73 -

Safety during driving tests

−200 −100 0 100 200

−4000

−2000

0

2000

4000

Lateral tyre force

Steering angle (Deg)

F
y (

N
)

Left front wheel
Right front wheel
Left rear wheel
Right rear wheel

−200 −100 0 100 200

−200

−100

0

100

200

Self aligning moment

M
x (

N
)

Left front wheel
Right front wheel
Left rear wheel
Right rear wheel

Steering angle (Deg)

−200 −100 0 100 200
0

2000

4000

6000

Vertical tyre force

Steering angle (Deg)

F
z (

N
)

Left front wheel
Right front wheel
Left rear wheel
Right rear wheel

Figure 6.13: Tyre forces during static cornering at 60 km/h

- 74 -

6.4. Simulation

Hardware failure during a circle test

The most critical hardware failures are failures which result in a loss of one of
the two actuators. This means that only half of the maximum steering torque
can be used. The loss of one actuator in the current setup can be caused by
a hardware failure of a control system, a servo amplifier or the actuator itself.
The effect of this loss is analyzed in this section.

First of all a failure needs to be detected and this will take time. Failure of an
actuator and the servo amplifier can be detected by the onboard error detec-
tion functionality of the servo amplifier (see section 4.3). The control systems
monitor each other by using alive signals (see chapter 5). If a hardware failure
is detected, the controller needs to be adjusted to compensate for the loss of an
actuator. The control system will double its control effort within the capabili-
ties of the remaining hardware.

The hardware failure detection needs to be investigated. In figure 6.14 the effect
of an undetected hardware failure is shown. During a circle test one actuator is
lost and the other controller still proceeds with the original algorithm, which is
no longer adequate. In this particular circle test the steering angle drops by 5
degrees and it takes almost 0.5 seconds to reach the target again.

0 0.2 0.4

96

98

100
Steering angle

Time (s)

A
ng

le
 (

D
eg

)

0 0.2 0.4
2

4

6

Steering torque

Time (s)

T
or

qu
e

(N
m

)

Figure 6.14: Undetected hardware failure

Figure 6.15 shows what happens if the hardware failure is detected and the
controller is adjusted. For a short period the controller is still unaware of the
loss of the other actuator and the applied steering torque is only half of the re-
quired steering torque. During the detection time the steering angle will deviate
from the target value. When the controller is aware of the hardware failure, it
will double its control effort. Unfortunately this control effort is limited by the
maximum steering torque of a single actuator.

The monitoring mechanism is expected to be the slowest fault detection mech-
anism and therefore the most critical. Based on the simulations of chapter 5
the monitoring mechanism takes roughly 5 time samples to conclude a control
system failure. Therefore detection times are simulated of 5 milliseconds and
10 milliseconds. In this circle test the steering angle drops by at most 1 degree

- 75 -

Safety during driving tests

and it takes less than 0.2 seconds to reach the target again.

−0.1 0 0.1 0.2
98

99

100

101
Steering angle

Time (s)

A
ng

le
 (

D
eg

)

−0.1 0 0.1 0.2
2

4

6

Steering torque

Time (s)

T
or

qu
e

(N
m

)

−0.1 0 0.1 0.2
98

99

100

101
Steering angle

Time (s)

A
ng

le
 (

D
eg

)

−0.1 0 0.1 0.2
2

4

6

Steering torque

Time (s)

T
or

qu
e

(N
m

)

Figure 6.15: Hardware failure detected in 5 time samples (top) and 10 time
samples (bottom)

Obviously the reduced maximal steering torque will also effect the circle test.
However it will only effect the settling time, because the steering torques of a
single actuator is still more than enough to achieve reasonable steering torques
for the static behaviour. The settling time decreases, because the maximum
steering speeds decreases.

Figure 6.16 shows the effect of a hardware failure on the maximum steering
speeds. With two actuators functioning steering speeds of 1400 deg/s can be
achieved, when only one actuator can be used, maximum steering torque drops
and the maximal steering speed is reduced to 875 deg/s. The steering speeds
achieved by one actuator are relatively high compared to two actuators. This
is caused by the behaviour of the power steering at high steering speeds, which
is described in section 6.3. Note that the effect of sample frequency (described
in section 6.3) is clearly visible and is extremely high.

Based on the results of the circle test, it must still be possible to control the
vehicle with only one actuator. Although high steering speeds can no longer
be achieved, which would limit driving tests with high demands on steering,
one actuator can still produce enough torque to steer the vehicle under normal
driving conditions. For example, to stop the vehicle safely in error mode.

- 76 -

6.4. Simulation

−0.02 0 0.02 0.04 0.06
0

20

40

60

80

100

120
Steering angle

Time (s)

A
ng

le
 (

D
eg

)

−0.02 0 0.02 0.04 0.06
0

10

20

30
Steering torque

Time (s)

T
or

qu
e

(N
m

)
Figure 6.16: Effect of a hardware failure on maximum steering speeds

Note that one actuator can only steer the vehicle as long as the steering torques
can be produced by one actuator. In this circle test a mid-sized vehicle is
used for which a single actuator can produce enough steering torque. If for
example the vehicle mass is doubled, the tyre forces will increase and as a
result one actuator can no longer produce the required steering torque under all
circumstances during the circle test.

6.4.2 Error mode strategy

So far the best way to control the vehicle in error mode is not investigated. It
is not yet clear, whether the GDA should brake or attempt to continue the pre-
scribed track in case of hardware failure or emergency. First a suitable driving
test is determined to analyze the dynamic behaviour of the GDA. This driving
test is then used to determine the error mode strategy for failing hardware and
when an emergency occurs.

Double lane change test

The effect of failing hardware is best analyzed by using driving tests with high
demands on steering speed. The double lane change is one of the most demand-
ing driving tests, because the vehicle is pushed to the limit to drive through
the desired trajectory at the highest possible speed. For this analysis, the ISO
3888 [ISO99] double lane change driving test is chosen. Angle setpoints are
determined experimentally, which let the vehicle drive through the desired tra-
jectory at its highest possible speed. The maximum speed for the trajectory
is determined at 60 km/h. The actual steering angles and steering torques are
shown in figure 6.17.

- 77 -

Safety during driving tests

0 1 2 3 4 5
−400

−200

0

200

400
Steering angle

Time (s)

A
ng

le
 (

D
eg

)

Target
Actual

0 1 2 3 4 5
−30

−15

0

15

30
Steering torque

Time (s)

T
or

qu
e

(N
m

)

Figure 6.17: Double lane change at 60 km/h

Figure 6.18 shows the resulting double lane change trajectory with normal func-
tioning control. The vehicle drives along the desired trajectory without hitting
the traffic cones.

Figure 6.18: Trajectory of double lane change at 60 km/h

Hardware failure strategy

Based on the double lane change test and the circle test described earlier a
strategy needs to be designed during a hardware failure. If one actuator is lost
due to a hardware failure, the other actuator tries to double its efforts within
its specification. Unfortunately some performance is lost.

The actual steering angles and steering torques are shown in figure 6.19 when
the double lane change test is continued with a single actuator and the same
steering setpoints. After 1.4 seconds an actuator failure occurs and the maxi-
mum steering torque is reduced.

The actual steering angles do not deviate much compared to the situation with
both actuators available. The high torques are only needed for maximal steering
speed, which is already shown by the circle test. Fortunately the difference in
steering speed is not that high, because the extra steering torque is partly lost

- 78 -

6.4. Simulation

to the power steering (described in section 6.3).

0 1 2 3 4 5
−400

−200

0

200

400
Steering angle

Time (s)

A
ng

le
 (

D
eg

)

Target
Actual

0 1 2 3 4 5
−30

−15

0

15

30
Steering torque

Time (s)

T
or

qu
e

(N
m

)

Figure 6.19: Double lane change at 60 km/h: Single actuator after 1.4 s

Figure 6.20 shows the resulting trajectory of the double lane change driving
test. Although the prescribed trajectory can no longer be fulfilled with a single
actuator, the followed trajectory is acceptable from a safety point of view.

Figure 6.20: Trajectory of double lane change at 60 km/h: Single actuator
after 1.4 s

It is also an option to stop the vehicle if a hardware component fails. However
chances are that the vehicle gets into an slip, which can not be controlled. Dur-
ing a double lane change driving test the vehicle momentarily starts drifting,
which makes braking a risky strategy. The effect of braking is shown in figure
6.21. The vehicle clearly gets out of control.

Another strategy to stop the vehicle is to steer the vehicle in a straight line
before braking. However it is not possible to steer the vehicle in a straight line
without feedback of vehicle parameters like slip angle, yaw rate, etc. Simulation
showed that simply setting the steering angle to zero degrees or decreasing the
steering torque leads to a similar trajectory as the trajectory shown in figure
6.21.

- 79 -

Safety during driving tests

Figure 6.21: Double lane change at 60 km/h: Braking after 1.4 s

Based on the results of the double lane change and the circle test, the best
open-loop strategy during hardware failure is to try to complete the trajectory
with the remaining hardware. Performance will degrade, but it is better to de-
viate slightly from the desired trajectory than to cause the vehicle to get out
of control. Even driving tests with high demands on steering speeds will not
deviate much from the desired trajectory.

To reduce the risk of complete loss of control (two subsequent hardware fail-
ures), the driver needs to be informed of the hardware failure and the GDA is
prevented from further use until the hardware is replaced or fixed.

Although comparable vehicles may behave differently during a double lane
change test, the effect on its behaviour during a hardware failure will be simi-
lar. Other mid-sized vehicles (and smaller vehicles) will need similar (or smaller)
steering torques, which can also be produced by a single actuator. Furthermore
the steering robot will also have short periods in which the required steering
speeds can no longer be achieved. However this will not effect the steering
characteristics much either and the same conclusions can be drawn for simi-
lar vehicles. Therefore the behaviour of other mid-sized (and smaller) vehicles
during the double lane change is not discussed here.

Emergency strategy

The strategy during an emergency also needs to be designed. Following the
desired trajectory is not an option. If something goes wrong due to external
factors, the driving test has to stop at once. One can think of people or other
vehicles which are on the track accidentally.

Two situations can be distinguished: driving tests with and driving tests with-
out a test driver. A test driver can take over the vehicle in case of an emergency.
The GDA is simply shut down, when an emergency signal is given by the test
driver.

If something goes wrong during an autonomous driving test, the vehicle needs
to stop directly. Without further information, the best strategy to achieve this
is by full braking. The fact that the vehicle can get in a slip is inevitable.

- 80 -

6.4. Simulation

Safe test area

With the error mode designed, it is possible to predict which area is needed for
a particular driving test regardless of possible hardware failures and emergen-
cies. In other words safety can be guaranteed as long as the test platform is big
enough and if people stay outside this area.

Figure 6.22: Area needed for double lane change at 60 km/h

The driving test is simulated with emergencies at different times in figure 6.22.
The figure only gives an indication for the area needed for a double lane change
driving test for this particular speed and vehicle. Other vehicles may drive at
a higher speed and behave differently at full braking, which results in another
area.

- 81 -

Chapter 7

Conclusions &
Recommendations

’Reality is both continuous and discrete.’

Geoff Haselhurst

7.1 Conclusions

The conclusions are split up in three parts. Conclusions are given on controller
design, safety-critical design and safety during driving tests.

7.1.1 Controller design

For the development of the GDA, first the steering robot needs to be operational.
The development of the steering robot has been disappointing. Looking back
the project has been too ambitious. The steering robot design has too many
uncertain factors and experimental components. Some of the problems are
stated below:

• Sine generation principle does not work

• The original control system (MACS 555) is not powerful enough. Subse-
quently a more powerful prototype is used (MACS 565). Unfortunately
it has had failing IO and some problems have occurred with its code
generation. These problems are caused by the fact that it is still under
development during this project.

• Off-the-shelf servo-amplifiers are not performing well enough. The output
currents are generally too low for low-voltage amplifiers available.

• A beta-prototype with improved hardware layout is designed but due to
time and budget restrictions, it isn’t manufactured during this project.

- 83 -

Conclusions & Recommendations

• The motor output is much less than specified.

The steering robot has been operational albeit with reduced performance and
with only one motor. The torque controller is tested in reality. The position
controller however is only tested in simulation due to the problems with the
hardware.

7.1.2 Safety-critical design

The safety of the steering robot is improved by using redundant hardware. If
one hardware component fails, at least one other component is functioning and
the steering robot can still produce torque. It is assumed that the produced
torque is large enough to outperform the failing component

Using spare actuators is not an option due to packaging vs. performance issues.
To maintain control two actuators are used simultaneously. This way at least
one actuator can try to prevent unsafe situations.

Two hardware designs are proposed to improve safety. The first hardware design
compromises software safety, because it introduces a need for synchronization.
However the other hardware design needs difficult additional hardware compo-
nents. Ultimately the dual control setup is chosen for the control system, where
each actuator has its own controller. This setup reduces hardware complexity,
but increases software complexity due to the synchronization problems.

By looking at both hardware and software aspects in the design process (so-
called hardware/software codesign), a better understanding of all possible op-
tions is obtained, which ultimately leads to a better decision.

The development of the control system software has had little problems. The
use of (classical) formal methods certainly proves to be a good way to manage
the complexity even in this hybrid environment. The requirements of the con-
trol system can be verified in µCRL and the implementation of the model in
Simulink works without any problems.

During the verification of the model problems with the original software design
have been found, which are almost impossible to detect without formal meth-
ods. Sequences of user actions have been discovered, which conflicted with the
requirements. Furthermore conflicting requirements have been found. Although
the basic functionality of the control system is fairly simple, the hardware re-
dundancy introduces a lot of synchronization problems due to the parallelism.

By using redundancy there is definitely a trade-off between hardware safety and
software safety. Additional hardware components are used to improve hardware
safety, but makes the synchronization a lot more complex, which can deteriorate
software safety. In this case the GDA becomes safer, because the safety of the
software is verified. However care must be taken when hardware redundancy is
introduced. It is not unimaginable that hardware redundancy makes the com-
plete system even less safe.

- 84 -

7.2. Recommendations

The formal languages (like µCRL) are useless without good tools to support
them. The µCRL toolset contains powerful tools to generate transition sys-
tems, but it needs to become more user-friendly. For example by making a user
interface, where you can choose between operations and options. The visual-
ization tools (FSM Visualizer and NoodleView) proved to be good tools to get
insight in the models. CADP is used to generate the GDA transition systems
and to verify the requirements using modal logic.

The transition system of the GDA is too large for the tools and some tricks
are used to reduce its size. First parallelism is reduced by grouping actions
in critical sections. Secondly the transition system is significantly reduced by
reducing parts of the transition system before combining them.

7.1.3 Safety during driving tests

Since the GDA is not operational on time, driving tests can only be done with
simulations. A simulation model is built in Simulink to analyze the behaviour
of the GDA during driving tests. The model includes the control system, the
steering robot dynamics and a vehicle model. The safety during driving tests
can not be verified formally, simulations are used instead.

The behaviour is analyzed using a circle test and a double lane change test.
Simulations show that if a hardware failure occurs, one actuator can still per-
form reasonably. Two actuators are only needed to oppose the counteracting
moments of the power steering unit for extreme steering speeds. Therefore sta-
tic steering angles can still be maintained and the maximum steering speed only
drops slightly.

The simulation model is also used to find out what the best strategy is for
the error mode. Based on the results of simulations with the circle test and
the double lane change driving test, the best strategy during hardware failure
turned out to be to complete the trajectory with reduced capabilities. To design
a better strategy to stop the vehicle, feedback on particular vehicle parameters
would be needed. The best strategy during an external emergency turned out
to be to switch off the GDA if a test driver is in the vehicle and to brake
immediately in case of an autonomous driving test.

7.2 Recommendations

The major recommendation of this thesis is getting the GDA operational. The
hardware problems with the GDA’s steering robot need to be resolved:

• Direct drive design
The new direct drive design needs to be built to replace the current steering
robot with drive belt. This will eliminate the friction problem and the new
motors will produce sufficient power. Due to the direct drive design the
steering ratio is significantly reduced, which removes the sample frequency
problems.

- 85 -

Conclusions & Recommendations

• Servo amplier
A new and more powerful servo amplifier is built to replace the off-the-shelf
product. The final problems with the electronics need to be resolved.

With the GDA operational, it is possible to validate the driving simulations
done during this project. The submodels can also be improved. Now some
parameters are estimated (e.g. steering robot dynamics), because they simply
couldn’t be retrieved without an operational GDA.

Furthermore the hardware safety can be tested by making components fail de-
liberately, i.e. fault seeding.

The next phase in the development of the GDA should be towards a path
following robot. This way the behaviour during handling tests will be more
representative, and we expect that the added feedback possibilities will improve
the safety in error mode. This can be achieved by extending the GDA with a
GPS unit and use its output to correct the followed path.

In the future it should be possible to model both the continuous and discrete be-
haviour of the GDA by using hybrid languages like χ [BR00], HyPA [CUI04] and
hybrid automata [HEN96]. The advantage of such combined languages is that
we do not need to worry whether the decoupling between software and hardware
in our models is justified. However, the current tools for such languages do not
support models of the desired complexity.

- 86 -

Chapter 8

Discussion

’There are no hybrid systems, there are only hybrid models.’

Peter Struss

During my graduate studies I noticed how a lot of research on the university
is too narrowly focussed on one particular field, neglecting to consider (par-
tial)solutions in other areas. Unfortunately many problems are not easy to put
in one particular research area.

I truly believe that disciplines should be mixed in an early design phase to get
a better understanding of each other. This means that problems should be
tackled by interdisciplinary teams more often. It is a common misconception
that supporting software can quickly be developed as a final step in the process
instead of creating hardware and software in parallel (which ensures better com-
patibility).

The problem is that the complexity of software and the developing time is
hugely underestimated in many cases by non-computer scientists (and even by
computer scientists). This leads to project delays or even to failing projects.
Engineers can no longer explain why their software is malfunctioning under par-
ticular circumstances due to the complexity of the software.

Fortunately a lot of research is done on formal methods to get an insight in the
complexity. Hybrid languages are being developed to be able to simulate and
verify the discrete and continuous behaviour: e.g. χ [BR00], HyPA [CUI04] or
hybrid automata [HEN96]. This makes it possible to design a single model with
both discrete and continuous elements (e.g. software and hardware) and verify
their combined requirements.

In this master’s thesis an artificial split is made between discrete and continuous
behaviour to be able to verify the requirements individually. µCRL is used to
verify the discrete behaviour and Simulink is used to simulate the continuous

- 87 -

Discussion

behaviour. By using a hybrid language this split could be avoided. However
hybrid languages are still in its infancy, verification of hybrid models is not pos-
sible yet and the simulation model of the GDA is too large for current simulation
tools.

- 88 -

Bibliography

[AL90] Anderson, T., Lee, P.A., Fault Tolerance: Principles and practice,
Springer-Verlag, second edition, ISBN 3-211-82077-9, (1990)

[ABD04] Anthony Best Dynamics, Description and specification - Steering robot
SR30-Lite / SR30-Omni, Anthony Best Dynamics, (2004)

[AMN86] Arkenbosch, M., Mom, G., Nieuwland, J., De nieuwe Steinbuch - Het
rijdende gedeelte, Kluwer Technische Boeken, ISBN 90-201-1972-9, (1986)

[ATI97] ATI/Heitz, The ATI programmable steering machine, ATI/Heitz,
(1997)

[AVI85] Avižienis, A., The N-version approach to fault-tolerant software, Pub-
lished in IEEE Trans. Software Eng., Volume 11 pp. 1491-1501, IEEE,
(1985)

[BR00] Beek, D.A. van, Rooda, J.A. Languages and applications in hybrid mod-
elling and simulation: Positioning of Chi, Published in Control Engineering
Practice vol. 8, nr. 1 pp. 81-91, Elsevier, (2000)

[BS01] Bradfield, J.C., Stirling, C., Model logics and mu-calculi, Published in
Handbook of Process Algebra pp. 293-330, Elsevier, (2001)

[BV04] Braig, M., Verschuren, R.M.A.F., Development of a Simulink Model of
a Brushless AC Motor, TNO, TNO Report 04.OR.AC.022.1/RMV, (2004)

[BW90] Baeten, J.C.M., Weijland, W.P., Process Algebra, Cambridge Univer-
sity Press, ISBN 0-521-40043-0, (1990)

[CES86] Clarke, E.M., Emerson, E.A., Sistla, A.P., Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications, Pub-
lished in ACM Transanctions on Programming Languages and Systems 8
pp. 244-267, ACM, (1986)

[CUI04] Cuijpers, P.J.L., Hybrid Process Algebra, Eindhoven University Press,
ISBN 90-386-0972-8, (2004)

[DV03] Duringhof, H.M., Verschuren, R.M.A.F., Confidential report, TNO,
TNO Confidential Report, (2003)

[DV04] Duringhof, H.M., Vermeer, E., Brushless AC Motor for Steer-By-Wire
application, TNO, TNO Report 04.OR.AC.042.1/HMD, (2004)

- 89 -

BIBLIOGRAPHY

[DYK65] Dijkstra, E.W., Cooperating sequential processes, Reprinted in ”Pro-
gramming languages” (1968), Academic Press, (1965)

[FGR05] Fokkink, W.J., Groote, J.F., Reniers, M.A., Modelling Distributed Sys-
tems, Technical University of Eindhoven, Draft version, (2005)

[FPE94] Franklin, G. F., Powell, J.D., Emami-Naeini, A., Feedback control of
dynamic systems, Addison-Wesley Publishing Company, Inc., third edition,
ISBN 0-201-53487-8, (1994)

[GM98] Groote, J.F., Mateescu, R., Verification of temporal properties of
processes in a setting with data, Centrum voor Wiskunde en Informatica,
SEN-R9804, (1998)

[GPW01] Groote, J.F., Pang, J., Wouters, A.G., Analysis of a Distributed
System for Lifing Trucks, Centrum voor Wiskunde en Informatica, SEN-
R0111, (2001)

[GP95] Groote, J.F., Ponse, A., The syntax and semantics of µCRL, Published
in Algebra of Communicating Processes ’94 pp. 26-62, Springer-Verlag,
(1995)

[HEN96] Henzinger, T.A., The theory of hybrid automata, Published in 11th
Annual IEEE Symposium on Logic in Computer Science (LICS’96) pp.
278, IEEE, (1996)

[ISO99] ISO, Passenger cars - Test track for a severe lane-change manoeuvre ,
ISO, ISO 3888, (1999)

[ISO03] ISO, Road vehicles - Lateral transient response test methods - Open-loop
test procedure, ISO, ISO 7401, (2003)

[LEW96] Lewis, E.E., Introduction to Reliability Engineering, Wiley, second
edition, ISBN 0471-01833-3, (1996)

[MS00] Mateescu, R., Sighireanu, M., Efficient On-the-Fly Model-Checking for
Regular Alternation-Free Mu-Calculus, INRIA, INRIA Research Report
RR-3899, (2000)

[MSS99] Müller-Olm, M., Schmidt, D., Steffen, B., Model-Checking - A Tutorial
Introduction, Published in Lecture notes in Computer Science, Volume 1694
pp. 330-354, Springer-Verlag, (1999)

[PAC02] Pacejka, H., Tyre and vehicle dynamics, Butterworth-Heinemann, first
edition, ISBN 0-7506-5141-5, (2002)

[SAE96] SAE, Steady-state directional control test procedures for passenger cars
and light trucks, SAE, SAE J266, (1996)

[STO96] Storey, N., Safety critical computer systems, Addison-Wesley, ISBN
0-201-42787-7, (1996)

[STO99] Storey, N., Design for Safety, Published in Towards System Safety:
Proc. 7th Safety-Critical Systems Symposium pp. 1-25, (1999)

[WOU01] Wouters, A.G., Manual for the µCRL tool set, Centrum voor
Wiskunde en Informatica, SEN-R0130, (2001)

- 90 -

BIBLIOGRAPHY

[ABD] Anthony Best Dynamics, http://www.abd.uk.com, (2005)

[ATI] ATI/Heitz, http://www.atiheitz.com, (2005)

[HOR] Horiba Instruments, http://www.emd.horiba.com, (2005)

[STA] Stähle, http://www.stahle.com, (2005)

[WIK] Wikipedia, http://en.wikipedia.org, (2007)

- 91 -

BIBLIOGRAPHY

- 92 -

Appendix A

Hardware

In this chapter the angle measurement and torque measurement is further ex-
plained.

A.1 Angle measurement with the Netzer encoders

In the first section the Netzer encoder itself is shortly explained. In the second
section the algorithm is given how to compute the electrical angle from the
Netzer signals.

A.1.1 Netzer encoder

The Netzer electrical encoders give sine and cosine signals, which provide a
unique combination to identify a mechanical angle. It is shown in figure A.1.

Figure A.1: Netzer electrical encoder

It can be operated in two modes: coarse mode and fine mode. The coarse mode
can be used to find the mechanical angle during initialization, because it has
only one electrical cycle per revolution. After the initialization phase the fine
mode can be used. The fine mode has several electrical cycles per revolution,
making it possible to calculate the mechanical angle more precisely.

The Netzer encoder has one input and three output signals. The input signal is
a signal to select fine or coarse mode. Two of the output signals are the sine and

- 93 -

Hardware

cosine signals. The sine and cosine signals of the Netzer encoder are relative
to the third output: reference voltage signal. The next section explains how to
compute the electrical angle from the sine and cosine signals.

A.1.2 Electrical angle computation

To be able to compute the mechanical angle an algorithm needs to be designed
to compute an electrical angle from the sine and cosine signals.

The implemented algorithm works as follows:

• Compare the signs of the sine and cosine signals, and identify the corre-
sponding quadrant.

• Compare the absolute values of the sine and cosine signals, and identify
the corresponding octant.

• Divide the smaller absolute value by the larger one to determine the tan-
gent of the electrical angle, shifted into the first octant.

• The arctangent provides the electrical angle, shifted into the first octant.

• Relocate the shifted angle to its original octant.

A.2 Torque measurement

The torque is measured with strain gauges. Due to the applied torque, the
length of an individual strain gauge changes, resulting in a change in electrical
resistance. This resistance change can then be measured and used to predict
torque.

In the steering robot four strain gauges are placed in a Wheatstone bridge
configuration, which is shown in figure A.2. A Wheatstone bridge consists of
two parallel voltage dividers. One voltage divider consists of R1 and R3; the
other consists of R2 and R4. These four strain gauges are identical, making it
a balanced bridge. If a torque is applied, two strain gauges laying opposite will
compress and the other two will stretch. As a result, the output voltage Vout

will change. If the proper materials are used for the strain gauges, the voltage
is linear with the applied torque in a certain range.

Figure A.2: Strain gauges in Wheatstone bridge

- 94 -

Appendix B

Transition system reduction
using binary semaphores

B.1 Introduction

In many cases the transition system is too large to be generated due to the state
explosion problem. The transition systems need to be reduced. Mostly this is
done by hiding the majority of the actions. Smart techniques are then used to
find smaller branching bisimilar transition systems. However a lot of informa-
tion is lost, making it very hard to find the causes of errors in the specification.

An important cause for state explosion is the use of parallel processes in the
specification, k parallel processes with ni transitions have in the worst case∏k

i=1(ni + 1) combined states. Parallel processes will quickly generate more
states than computers can handle. The number of states caused by parallelism
can be reduced by using binary semaphores in the specification.

B.2 Technique

This new technique is based on the fact that particular parts of the processes
are independent and can be treated as such. If these parts are within a parallel
composition, their behaviour will not be effected by actions of other processes.
Therefore it is allowed to treat the independent parts as indivisible sections:
so-called critical sections. This can restrict the number of choices due to paral-
lelism, especially when the independent parts are large. To implement critical
sections semaphores can be used.

Semaphores are protected variables to restrict access to shared resources in a
multi-thread environment and are first introduced in [DYK65]. If only one is
allowed access a binary semaphore is used. Binary semaphores are used to im-
plement mutual exclusion algorithms. It can prevent critical code from being
executed in parallel.

- 95 -

Transition system reduction using binary semaphores

Two actions can be performed on semaphores: P and V actions. The name
P action is derived from the Dutch fictional word blend prolaag, which means
’try-to-decrease’. If a P action is executed, it waits until the semaphore can be
decreased. After the P action, it is allowed to execute some critical code. The
name V action is derived from the Dutch word verhoog, which means ’increase’.
If the critical code is executed, the semaphore is increased with a V action. This
gives other critical code the opportunity to be executed afterward.

The binary semaphores make it possible to treat parts of certain processes as
critical sections. This limits the number of choices due to parallelism. For exam-
ple, if two parts are run in parallel (a1 ·a2 · ... ·an−1 ·an || b1 ·b2 · ... ·bm−1 ·bm), it
generates (n+1)(m+1) states. If the same two parts are treated as two critical
sections, it only generates 2n + 2m states. Only one choice needs to be made,
which critical section goes first. The original and reduced transition system are
shown in figure B.1.

Figure B.1: Transition system with two parallel processes: original (left)
and reduction using binary semaphores (right)

Binary semaphores can easily be implemented in process algebra. A process
Semaphore needs to be build, which acts as a semaphore receiving P and V
actions in turn. This process is run in parallel with the original specification.
The P and V actions can then be implemented as communications with process
Semaphore. The specification is shown below.

sort SemaphoreAction
func P,V:→SemaphoreAction

act comm_Semaphore: SemaphoreAction
send_Semaphore: SemaphoreAction
recv_Semaphore: SemaphoreAction

comm send_Semaphore | recv_Semaphore = comm_Semaphore

- 96 -

B.2. Technique

proc Semaphore() =
recv_Semaphore(P) · recv_Semaphore(V) ·
Semaphore()

Of course, there are limitations to this technique, since it is not allowed to use
binary semaphores randomly to reduce parallelism. Due to careless use of binary
semaphores, it is possible to introduce deadlocks and it is possible to remove
too many traces (resulting in a loss of system behaviour).

The first problem occurs if direct communication is possible between two processes
with critical sections. A simple example is shown in figure B.2. Two processes (p
and q) are run in parallel and both processes have a critical section. A deadlock
occurs, because process p (or process q) will wait forever trying to communicate
with the other process, which is waiting for a P action.

Figure B.2: Direct communication

The second problem occurs if two processes (or more) with critical sections can
influence each other’s behaviour. All process actions, which are responsible for
this, need to be in different critical sections (or outside critical sections). Other-
wise system behaviour is lost by the reduction. Note that it can be very tricky
to conclude, how and where the behaviour of one process can be influenced by
another process. It can be influenced via several other parallel processes.

In figure B.3 a simple example is given for the loss of system behaviour. Two
processes (p and q) are run in parallel and both processes have critical sec-
tions. A third process Memory is used to hold a state variable. Process p sets
the state variable once and process q reads the state variable twice during one
loop. If only one critical section is used for process q, than it is impossible to
set the state variable between two read actions. Some system behaviour is lost,
since this behaviour is valid without the introduction of critical sections. This
problem can be solved by putting both read actions in a different critical section.

Figure B.3: Loss of behaviour: Problem (left) and solution (right)

- 97 -

Transition system reduction using binary semaphores

B.3 Conclusion

Binary semaphores can be used to create critical sections in an attempt to re-
duce the generated transition system without losing system behaviour. These
indivisible sections restrict the number of choices due to parallelism.

The validity of this technique can only be guaranteed, if a critical section is
allowed to perform its actions independent of the other critical sections. The
technique is valid under the following restrictions:

• Processes with critical sections are not allowed to have direct communica-
tion.

• Each process action, which effects the behaviour of another critical section
or is effected by it, needs to be in its own critical section.

B.4 Steering robot

For the steering robot a binary semaphore is also used to restrict the number
of choices due to parallelism. Critical sections are introduced in two parallel
processes: MACS(macs1) and MACS(macs2). These two processes communicate
via canbus only and do not have direct communication1.

The canbus is a delayed buffer. One proces writes to the buffer, while the other
reads from that same buffer with a small delay. Both actions need to be in a
different critical section to maintain all possible system behaviour. This means
that the processes need to be split in two. The exact location of the division is
unimportant, as long as the actions are seperated from each other. Even the size
of the generated transition system is independent of the location of the division.

The processes of the steering robot are schematically shown in figure B.4.

Figure B.4: Steering robot

Due to the use of binary semaphores the number of generated states is reduced
by a factor 10. The original 5 million states are reduced to half a million states
without losing system behaviour. With this smaller transition system, it is
now possible to use the tools without the need of hiding too much information,
making it a lot easier to find errors in the specification.

1Note that the model does not need an implementation of the dynamics of the steering
robot to validate the requirements, otherwise there would be another indirect communication
possible via the dynamics: reading sensor angle and performing actuator action. These actions
would than lead to additional critical sections.

- 98 -

Appendix C

Process algebraic tools

The specification of the controller is built in µCRL. For the specification, analy-
sis and verification several tools are used. In this appendix the used tools are
briefly described.

C.1 µCRL toolset

Most tools used are in the µCRL toolset developed at CWI1. The following tools
are part of this toolset:

• Mcrl : This tool checks if the µCRL specification is well-formed. It can
also transform µCRL specifications to so-called linear process operators
(LPOs). All other tools work with LPOs. The LPO is outputted in a
TBF file.

• Msim: This tool can simulate the behavior of the system step by step and
interactively. It uses an LPO or a µCRL specification. Unfortunately not
all functionality can be used in a Windows environment.

• LPO Reduction tools: These tools try to reduce the complexity by rewrit-
ing the LPO and by eliminating specific µCRL elements. Several reduction
tools are included: Rewr, ConstElm, ParElm, SumElm and StructElm.

• Confcheck : This tool tries to reduce the LPO by confluent τ reduction.

• Instantiator : This tool reads an LPO and generates a transition system.

• LtsMin: This tool can be used to reduce transition systems. One of the
available reduction techniques is branching bisimulation.

The dependence between the different tools in the toolset is shown in figure C.1.

The toolset can be downloaded from http://homepages.cwi.nl/∼mcrl/mutool.html.
Unfortunately the toolset is developed on a Unix platform, making it difficult
to run the toolset on a Windows platform. The installation procedures for
Windows can be found at http://www.win.tue.nl/oas.

1Centrum voor Wiskunde en Informatica

- 99 -

Process algebraic tools

Figure C.1: µCRL toolset dependence

C.2 Cæsar Aldébaran Development Package

Some tools are used of the Cæsar Aldébaran Development Package (CADP).
This toolset is developed at INRIA2. The tools can best be used from within
the GUI Eucalyptus, but can also be used from command line. The following
tools are mainly used:

• Exp.Open: Tool capable of generating a combined transition system from
several communicating transition systems.

• Evaluator : Model-checker for regular alternation-free mu-calculus formu-
las on generated transition systems. It can also give counterexamples to
disprove certain modal formulae.

The toolset can be downloaded from http://www.inrialpes.fr/vasy/cadp. This
toolset can only be run on a Unix platform.

C.3 Visualization tools

For the visualization of the transition systems interactive tools are used, which
are developed at TU/e. The following tools are used:

• FSM Visualizer : The FSM Visualizer can be used to visualize transition
systems in 3D. The output is visualized on screen and can be explored in-
teractively. The tool can be downloaded from http://www.win.tue.nl/∼fvham.

• NoodleView : NoodleView can be used to visualize the state variables of
transition systems and to explore them interactively. The tool can be
downloaded from http://www.win.tue.nl/∼apretori.

2Institut National de Recherche en Informatique et en Automatique

- 100 -

Appendix D

Formal methods code

In this appendix the complete specification of the GDA is given in µCRL. The
verified modal formulae are also given.

D.1 Specification

%==

% Rules to reason about bools

%==

sort Bool

func T,F :-> Bool

map not:Bool->Bool

or,and:Bool#Bool -> Bool

eq:Bool#Bool->Bool

var x:Bool

rew not(T)=F

not(F)=T

and(T,x)=x

and(x,T)=x

and(x,F)=F

and(F,x)=F

or(T,x)=T

or(x,T)=T

or(x,F)=x

or(F,x)=x

eq(x,T)=x

eq(T,x)=x

eq(F,x)=not(x)

eq(x,F)=not(x)

%==

% MacsIndex Type

%==

sort MacsIndex

- 101 -

Formal methods code

func macs1,macs2 :-> MacsIndex

map other: MacsIndex -> MacsIndex

eq: MacsIndex#MacsIndex->Bool

rew other(macs1)=macs2

other(macs2)=macs1

eq(macs1,macs1) = T

eq(macs1,macs2) = F

eq(macs2,macs1) = F

eq(macs2,macs2) = T

%==

% UserAction type

%==

sort UserAction

func userStart, userStop, userEmergency, userReset :-> UserAction

map eq:UserAction#UserAction -> Bool

rew eq(userStart,userStart) = T

eq(userStart,userStop) = F

eq(userStart,userEmergency) = F

eq(userStart,userReset) = F

eq(userStop,userStart) = F

eq(userStop,userStop) = T

eq(userStop,userEmergency) = F

eq(userStop,userReset) = F

eq(userEmergency,userStart) = F

eq(userEmergency,userStop) = F

eq(userEmergency,userEmergency) = T

eq(userEmergency,userReset) = F

eq(userReset,userStart) = F

eq(userReset,userStop) = F

eq(userReset,userEmergency) = F

eq(userReset,userReset) = T

%==

% Semaphore type

%==

sort SemaphoreAction

func P,V :-> SemaphoreAction

map eq:SemaphoreAction#SemaphoreAction -> Bool

rew eq(P,P) = T

eq(P,V) = F

eq(V,P) = F

eq(V,V) = T

- 102 -

D.1. Specification

%==

% Mode type

%==

sort Mode

func modeMenu, modeDrive, modeError: -> Mode

map eq:Mode#Mode -> Bool

rew eq(modeMenu,modeMenu) = T

eq(modeMenu,modeDrive) = F

eq(modeMenu,modeError) = F

eq(modeDrive,modeMenu) = F

eq(modeDrive,modeDrive) = T

eq(modeDrive,modeError) = F

eq(modeError,modeMenu) = F

eq(modeError,modeDrive) = F

eq(modeError,modeError) = T

%==

% ModeOther type

%==

sort ModeOther

func otherMenu, otherMenuError, otherDrive, otherError: -> ModeOther

map eq:ModeOther#ModeOther -> Bool

rew eq(otherMenu,otherMenu) = T

eq(otherMenu,otherDrive) = F

eq(otherMenu,otherError) = F

eq(otherMenu,otherMenuError) = F

eq(otherDrive,otherMenu) = F

eq(otherDrive,otherDrive) = T

eq(otherDrive,otherError) = F

eq(otherDrive,otherMenuError) = F

eq(otherError,otherMenu) = F

eq(otherError,otherDrive) = F

eq(otherError,otherError) = T

eq(otherError,otherMenuError) = F

eq(otherMenuError,otherMenu) = F

eq(otherMenuError,otherDrive) = F

eq(otherMenuError,otherError) = F

eq(otherMenuError,otherMenuError) = T

%==

% Error type

%==

sort Error

func errorNo, errorMACS, errorActuator, errorSensor,

- 103 -

Formal methods code

errorController: -> Error

map eq:Error#Error -> Bool

rew eq(errorNo,errorNo) = T

eq(errorNo,errorMACS) = F

eq(errorNo,errorActuator) = F

eq(errorNo,errorSensor) = F

eq(errorNo,errorController) = F

eq(errorMACS,errorNo) = F

eq(errorMACS,errorMACS) = T

eq(errorMACS,errorActuator) = F

eq(errorMACS,errorSensor) = F

eq(errorMACS,errorController) = F

eq(errorActuator,errorNo) = F

eq(errorActuator,errorMACS) = F

eq(errorActuator,errorActuator) = T

eq(errorActuator,errorSensor) = F

eq(errorActuator,errorController) = F

eq(errorSensor,errorNo) = F

eq(errorSensor,errorMACS) = F

eq(errorSensor,errorActuator) = F

eq(errorSensor,errorSensor) = T

eq(errorSensor,errorController) = F

eq(errorController,errorNo) = F

eq(errorController,errorMACS) = F

eq(errorController,errorActuator) = F

eq(errorController,errorSensor) = F

eq(errorController,errorController) = T

%==

% SetpointValue type

%==

sort SetpointValue

func setpointValueL1, setpointValue0, setpointValueR1 :-> SetpointValue

map eq:SetpointValue#SetpointValue -> Bool

rew eq(setpointValueL1,setpointValueL1) = T

eq(setpointValueL1,setpointValue0) = F

eq(setpointValueL1,setpointValueR1) = F

eq(setpointValue0,setpointValueL1) = F

eq(setpointValue0,setpointValue0) = T

eq(setpointValue0,setpointValueR1) = F

eq(setpointValueR1,setpointValueL1) = F

eq(setpointValueR1,setpointValue0) = F

eq(setpointValueR1,setpointValueR1) = T

%==

% SensorIndex type

%==

- 104 -

D.1. Specification

sort SensorIndex

func sensor1, sensor2, sensor3: -> SensorIndex

map eq:SensorIndex#SensorIndex -> Bool

rew eq(sensor1,sensor1) = T

eq(sensor1,sensor2) = F

eq(sensor1,sensor3) = F

eq(sensor2,sensor1) = F

eq(sensor2,sensor2) = T

eq(sensor2,sensor3) = F

eq(sensor3,sensor1) = F

eq(sensor3,sensor2) = F

eq(sensor3,sensor3) = T

%==

% SensorAngle type

%==

sort SensorAngle

func sensorAngleL1, sensorAngle0, sensorAngleR1 :-> SensorAngle

map eq:SensorAngle#SensorAngle -> Bool

rew eq(sensorAngleL1,sensorAngleL1) = T

eq(sensorAngleL1,sensorAngle0) = F

eq(sensorAngleL1,sensorAngleR1) = F

eq(sensorAngle0,sensorAngleL1) = F

eq(sensorAngle0,sensorAngle0) = T

eq(sensorAngle0,sensorAngleR1) = F

eq(sensorAngleR1,sensorAngleL1) = F

eq(sensorAngleR1,sensorAngle0) = F

eq(sensorAngleR1,sensorAngleR1) = T

map match:SensorAngle#SensorAngle -> Bool

rew match(sensorAngleL1,sensorAngleL1) = T

match(sensorAngleL1,sensorAngle0) = T

match(sensorAngleL1,sensorAngleR1) = F

match(sensorAngle0,sensorAngleL1) = T

match(sensorAngle0,sensorAngle0) = T

match(sensorAngle0,sensorAngleR1) = T

match(sensorAngleR1,sensorAngleL1) = F

match(sensorAngleR1,sensorAngle0) = T

match(sensorAngleR1,sensorAngleR1) = T

map min:SensorAngle#SensorAngle -> SensorAngle

rew min(sensorAngleL1,sensorAngleL1) = sensorAngleL1

min(sensorAngleL1,sensorAngle0) = sensorAngleL1

min(sensorAngleL1,sensorAngleR1) = sensorAngleL1

min(sensorAngle0,sensorAngleL1) = sensorAngleL1

- 105 -

Formal methods code

min(sensorAngle0,sensorAngle0) = sensorAngle0

min(sensorAngle0,sensorAngleR1) = sensorAngle0

min(sensorAngleR1,sensorAngleL1) = sensorAngleL1

min(sensorAngleR1,sensorAngle0) = sensorAngle0

min(sensorAngleR1,sensorAngleR1) = sensorAngleR1

map max:SensorAngle#SensorAngle -> SensorAngle

rew max(sensorAngleL1,sensorAngleL1) = sensorAngleL1

max(sensorAngleL1,sensorAngle0) = sensorAngle0

max(sensorAngleL1,sensorAngleR1) = sensorAngleR1

max(sensorAngle0,sensorAngleL1) = sensorAngle0

max(sensorAngle0,sensorAngle0) = sensorAngle0

max(sensorAngle0,sensorAngleR1) = sensorAngleR1

max(sensorAngleR1,sensorAngleL1) = sensorAngleR1

max(sensorAngleR1,sensorAngle0) = sensorAngleR1

max(sensorAngleR1,sensorAngleR1) = sensorAngleR1

map median:SensorAngle#SensorAngle#SensorAngle -> SensorAngle

var sv1, sv2, sv3: SensorAngle

rew median(sv1,sv2,sv3) = max(max(min(sv1,sv2) , min(sv1,sv3)) , min(sv2,sv3))

map fault:SensorAngle#SensorAngle#SensorAngle#SensorAngle -> Bool

var svMedian, sv1, sv2, sv3: SensorAngle

rew fault(svMedian,sv1,sv2,sv3) = not(and(and(match(svMedian,sv1) ,

match(svMedian,sv2)) , match(svMedian,sv3)))

%==

% ActuatorAction type

%==

sort ActuatorAction

func actuatorActionL1, actuatorAction0, actuatorActionR1,

actuatorActionError :-> ActuatorAction

map eq:ActuatorAction#ActuatorAction -> Bool

rew eq(actuatorActionL1,actuatorActionL1) = T

eq(actuatorActionL1,actuatorAction0) = F

eq(actuatorActionL1,actuatorActionR1) = F

eq(actuatorActionL1,actuatorActionError) = F

eq(actuatorAction0,actuatorActionL1) = F

eq(actuatorAction0,actuatorAction0) = T

eq(actuatorAction0,actuatorActionR1) = F

eq(actuatorAction0,actuatorActionError) = F

eq(actuatorActionR1,actuatorActionL1) = F

eq(actuatorActionR1,actuatorAction0) = F

eq(actuatorActionR1,actuatorActionR1) = T

eq(actuatorActionR1,actuatorActionError) = F

eq(actuatorActionError,actuatorActionL1) = F

eq(actuatorActionError,actuatorAction0) = F

- 106 -

D.1. Specification

eq(actuatorActionError,actuatorActionR1) = F

eq(actuatorActionError,actuatorActionError) = T

%..

% action

%

% This method computes the controller action from measured

% angle and setpoint respectively.

%..

map action:SensorAngle#SetpointValue -> ActuatorAction

rew action(sensorAngleL1,setpointValueL1) = actuatorAction0

action(sensorAngleL1,setpointValue0) = actuatorActionR1

action(sensorAngleL1,setpointValueR1) = actuatorActionR1

action(sensorAngle0,setpointValueL1) = actuatorActionL1

action(sensorAngle0,setpointValue0) = actuatorAction0

action(sensorAngle0,setpointValueR1) = actuatorActionR1

action(sensorAngleR1,setpointValueL1) = actuatorActionL1

action(sensorAngleR1,setpointValue0) = actuatorActionL1

action(sensorAngleR1,setpointValueR1) = actuatorAction0

%==

% Semaphore actions

%==

act recv_Semaphore: SemaphoreAction

send_Semaphore: SemaphoreAction

act comm_Semaphore: SemaphoreAction

comm send_Semaphore | recv_Semaphore = comm_Semaphore

%==

% Semaphore Process

%==

proc Semaphore =

recv_Semaphore(P) . recv_Semaphore(V) . Semaphore

%==

% Time actions

%==

act comm_time

send_time

recv_time

comm send_time | recv_time = comm_time

%==

% Time processes

%==

%..

- 107 -

Formal methods code

% Time

%

% MACSes are synchronous

%..

%proc Time(i: MacsIndex) =

% (send_time

% <| eq(i,macs1) |>

% recv_time)

%..

% Time

%

% MACSes are asynchronous

%..

proc Time(i: MacsIndex) =

(

(

send_time.send_time +

send_time.send_time.send_time

)

<| eq(i,macs1) |>

(

recv_time.recv_time +

recv_time.recv_time.recv_time

)

)

%==

% User actions

%==

act recv_Spv_UI: MacsIndex # UserAction

%==

% User processes

%==

%==

% Setpoint actions

%==

act recv_Ctrl_Setpoint: MacsIndex # SetpointValue

%==

% Setpoint processes

%==

%==

% System actions

%==

- 108 -

D.1. Specification

act recv_Angle_Sensor: MacsIndex # SensorIndex # SensorAngle

recv_Spv_ActuatorState: MacsIndex # Bool

send_Spv_ActuatorEnable: MacsIndex # Bool

send_Ctrl_ActuatorAction: MacsIndex # ActuatorAction

%==

% System processes

%==

%==

% Internal Buffer actions

%==

act recv_Spv_Mode: MacsIndex # Mode

recv_Mon_Mode: MacsIndex # Mode

send_Spv_Mode: MacsIndex # Mode

recv_Spv_Error: MacsIndex # Error

recv_Mon_Error: MacsIndex # Error

send_Spv_Error: MacsIndex # Error

send_Spv_Reset: MacsIndex

recv_Spv_SensorError: MacsIndex # Bool

send_Angle_SensorError: MacsIndex # Bool

recv_Ctrl_SensorValue: MacsIndex # SensorAngle

send_Angle_SensorValue: MacsIndex # SensorAngle

act comm_Mode_Get: MacsIndex # Mode

comm_Mode_Get_Mon: MacsIndex # Mode

comm_Mode_Set: MacsIndex # Mode

comm_Error_Get: MacsIndex # Error

comm_Error_Get_Mon: MacsIndex # Error

comm_Error_Set: MacsIndex # Error

comm_Error_Reset: MacsIndex

comm_SensorError_Get: MacsIndex # Bool

comm_SensorError_Set: MacsIndex # Bool

comm_SensorValue_Get: MacsIndex # SensorAngle

comm_SensorValue_Set: MacsIndex # SensorAngle

act recv_Buf_Mode: MacsIndex # Mode

send_Buf1_Mode: MacsIndex # Mode

send_Buf2_Mode: MacsIndex # Mode

recv_Buf_Error: MacsIndex # Error

send_Buf1_Error: MacsIndex # Error

send_Buf2_Error: MacsIndex # Error

recv_Buf_Reset: MacsIndex

recv_Buf_SensorError: MacsIndex # Bool

send_Buf_SensorError: MacsIndex # Bool

recv_Buf_SensorValue: MacsIndex # SensorAngle

send_Buf_SensorValue: MacsIndex # SensorAngle

comm send_Buf1_Mode | recv_Spv_Mode = comm_Mode_Get

send_Buf2_Mode | recv_Mon_Mode = comm_Mode_Get_Mon

recv_Buf_Mode | send_Spv_Mode = comm_Mode_Set

- 109 -

Formal methods code

send_Buf1_Error | recv_Spv_Error = comm_Error_Get

send_Buf2_Error | recv_Mon_Error = comm_Error_Get_Mon

recv_Buf_Error | send_Spv_Error = comm_Error_Set

recv_Buf_Reset | send_Spv_Reset = comm_Error_Reset

send_Buf_SensorError | recv_Spv_SensorError = comm_SensorError_Get

recv_Buf_SensorError | send_Angle_SensorError = comm_SensorError_Set

send_Buf_SensorValue | recv_Ctrl_SensorValue = comm_SensorValue_Get

recv_Buf_SensorValue | send_Angle_SensorValue = comm_SensorValue_Set

%==

% Internal Buffer Processes

%

% Internal buffer processes are used to store certain

% values: sensorerror, sensorvalue, mode, error and alive

%==

proc Buffers(i: MacsIndex) =

Buffer_Mode(i, modeMenu) || Buffer_Error(i, errorNo) ||

Buffer_SensorError(i, F) || Buffer_SensorValue(i, sensorAngle0)

proc Buffer_Mode(i: MacsIndex, m: Mode) =

sum(n:Mode, recv_Buf_Mode(i,n) . Buffer_Mode(i,n)) +

send_Buf1_Mode(i,m) . Buffer_Mode(i,m) +

send_Buf2_Mode(i,m) . Buffer_Mode(i,m)

proc Buffer_Error(i: MacsIndex, e: Error) =

sum(f:Error, recv_Buf_Error(i,f) . Buffer_Error(i,f)) +

send_Buf1_Error(i,e) . Buffer_Error(i,e) +

send_Buf2_Error(i,e) . Buffer_Error(i,e) +

recv_Buf_Reset(i) . Buffer_Error(i,errorNo)

proc Buffer_SensorError(i: MacsIndex, f: Bool) =

sum(g:Bool, recv_Buf_SensorError(i,g) . Buffer_SensorError(i,g)) +

send_Buf_SensorError(i,f) . Buffer_SensorError(i,f)

proc Buffer_SensorValue(i: MacsIndex, sv: SensorAngle) =

sum(sv_new:SensorAngle, recv_Buf_SensorValue(i,sv_new) . Buffer_SensorValue(i,sv_new)) +

send_Buf_SensorValue(i,sv) . Buffer_SensorValue(i,sv)

%==

% Canbus Actions

%==

act send_Can_Mode: MacsIndex # ModeOther

recv_Can_Mode: MacsIndex # ModeOther

send_Can_Alive: MacsIndex # Bool

recv_Can_Alive: MacsIndex # Bool

act recv_Mon_Mode_Other: MacsIndex # ModeOther

send_Mon_Mode_Other: MacsIndex # ModeOther

recv_Mon_Alive: MacsIndex # Bool

send_Mon_Alive: MacsIndex # Bool

- 110 -

D.1. Specification

act comm_Mode_Other_Get: MacsIndex # ModeOther

comm_Mode_Other_Set: MacsIndex # ModeOther

comm_Alive_Get: MacsIndex # Bool

comm_Alive_Set: MacsIndex # Bool

comm send_Can_Mode | recv_Mon_Mode_Other = comm_Mode_Other_Get

recv_Can_Mode | send_Mon_Mode_Other = comm_Mode_Other_Set

send_Can_Alive | recv_Mon_Alive = comm_Alive_Get

recv_Can_Alive | send_Mon_Alive = comm_Alive_Set

%==

% Canbus Processes

%==

proc Can_Mode(i: MacsIndex, m: ModeOther, m_prev: ModeOther) =

sum(n:ModeOther, recv_Can_Mode(i,n) . Can_Mode(i,n,m)) +

send_Can_Mode(i,m_prev) . Can_Mode(i,m,m_prev)

proc Can_Alive(i: MacsIndex, e: Bool, e_prev: Bool) =

sum(f:Bool, recv_Can_Alive(i,f) . Can_Alive(i,f,e)) +

send_Can_Alive(i,e_prev) . Can_Alive(i,e,e_prev)

proc Canbus =

Can_Alive(macs1,T,T) ||

Can_Alive(macs2,T,T) ||

Can_Mode(macs1,otherMenu,otherMenu) ||

Can_Mode(macs2,otherMenu,otherMenu)

%==

% Monitor actions

%==

%==

% Monitor processes

%==

proc Monitor_In(i:MacsIndex) =

Monitor_In_Alive(i) . Monitor_In_Mode(i)

proc Monitor_In_Alive(i: MacsIndex) =

sum(f: Bool, recv_Mon_Alive(other(i),f) .

(tau

<| f |>

send_Spv_Error(i,errorMACS))

)

proc Monitor_In_Mode(i: MacsIndex) =

sum(m: ModeOther, recv_Mon_Mode_Other(other(i),m) .

(

(tau <| eq(m,otherMenu) |> delta) +

(send_Spv_Error(i,errorMACS) <| eq(m,otherMenuError) |> delta) +

(tau <| eq(m,otherDrive) |> delta) +

(send_Spv_Error(i,errorMACS) . send_Spv_Mode(i,modeError)

<| eq(m,otherError) |> delta)

- 111 -

Formal methods code

)

)

proc Monitor_Out(i: MacsIndex) =

send_Mon_Alive(i,T) . Monitor_Out_Mode(i)

proc Monitor_Out_Mode(i: MacsIndex) =

sum(e: Error, recv_Mon_Error(i,e) .

sum(m: Mode, recv_Mon_Mode(i,m) .

(

(

(send_Mon_Mode_Other(i,otherMenu)

<| eq(e,errorNo) |>

send_Mon_Mode_Other(i,otherMenuError))

<| eq(m,modeMenu) |> delta

) +

(send_Mon_Mode_Other(i,otherDrive)

<| eq(m,modeDrive) |> delta

) +

(send_Mon_Mode_Other(i,otherError)

<| eq(m,modeError) |> delta

)

)

)

)

%==

% Angle process

%==

proc Angle(i: MacsIndex) =

sum(sv1:SensorAngle, recv_Angle_Sensor(i,sensor1,sv1) .

sum(sv2:SensorAngle, recv_Angle_Sensor(i,sensor2,sv2) .

sum(sv3:SensorAngle, recv_Angle_Sensor(i,sensor3,sv3) .

send_Angle_SensorValue(i,median(sv1,sv2,sv3)) .

send_Angle_SensorError(i,fault(median(sv1,sv2,sv3),sv1,sv2,sv3))

)

)

)

%==

% Supervisor actions

%==

act errorMessage: MacsIndex # Error

%==

% Supervisor processes

%

% Supervisor takes care of:

% -System check

% -Controller mode selection

- 112 -

D.1. Specification

%==

proc Supervisor(i: MacsIndex) =

Supervisor_Systemcheck(i) .

Supervisor_Mode(i)

%--

% Supervisor system check

%--

proc Supervisor_Systemcheck(i: MacsIndex) =

Supervisor_Sensor(i) .

Supervisor_Actuator(i)

%..

% Check if the sensor gave an error (internal sensor error buffer)

%..

proc Supervisor_Sensor(i: MacsIndex) =

sum(f: Bool, recv_Spv_SensorError(i,f) .

(send_Spv_Error(i,errorSensor)

<| f |>

tau)

)

%..

% Check the actuator’s state (hardware actuator buffer) and

% turn it off if it’s not functioning

%..

proc Supervisor_Actuator(i: MacsIndex) =

sum(f: Bool, recv_Spv_ActuatorState(i,f) .

(send_Spv_Error(i,errorActuator) . send_Spv_ActuatorEnable(i,F)

<| not(f) |>

send_Spv_ActuatorEnable(i,T))

)

%--

% Controller mode selection

%--

proc Supervisor_Mode(i: MacsIndex) =

sum(m: Mode, recv_Spv_Mode(i,m) .

(

(Supervisor_Menu(i) <| eq(m,modeMenu) |> delta) +

(Supervisor_Drive(i) <| eq(m,modeDrive) |> delta) +

(Supervisor_Error(i) <| eq(m,modeError) |> delta)

)

)

%..

% Menu mode:

% - start: Driving mode (if no errors in system)

% - stop: Menu mode

% - emergency: Error mode

% - reset: Menu mode, reset internal error buffer

%..

proc Supervisor_Menu(i: MacsIndex) =

- 113 -

Formal methods code

sum(e: Error, recv_Spv_Error(i,e) .

sum(ua: UserAction, recv_Spv_UI(i,ua) .

(

(Supervisor_Start(i,e) <| eq(ua,userStart) |> delta) +

(tau <| eq(ua,userStop) |> delta) +

(send_Spv_Mode(i,modeError) . send_Spv_Error(i,errorNo)

<| eq(ua,userEmergency) |> delta) +

(send_Spv_Reset(i) <| eq(ua,userReset) |> delta)

)

)

)

proc Supervisor_Start(i: MacsIndex, e: Error) =

(send_Spv_Mode(i,modeDrive)

<|eq(e,errorNo)|>

errorMessage(i,e))

%..

% Drive mode:

% - systemcheck error: Error mode

% - start/reset: Driving mode

% - stop: Menu mode

% - emergency: Error mode

%..

proc Supervisor_Drive(i: MacsIndex) =

sum(e: Error, recv_Spv_Error(i,e) .

(sum(ua: UserAction, recv_Spv_UI(i,ua) .

(

(tau <| eq(ua,userStart) |> delta) +

(send_Spv_Mode(i,modeMenu) <| eq(ua,userStop) |> delta) +

(send_Spv_Mode(i,modeError) <| eq(ua,userEmergency) |> delta) +

(send_Spv_Mode(i,modeMenu) <| eq(ua,userReset) |> delta)

)

)

<| eq(e,errorNo) |>

send_Spv_Mode(i,modeError) . Supervisor_Error(i)

)

)

%..

% Error mode:

% - start/stop/emergency: Error mode

% - reset: Menu mode, reset internal error buffer

%..

proc Supervisor_Error(i: MacsIndex) =

sum(e: Error, recv_Spv_Error(i,e) .

sum(ua: UserAction, recv_Spv_UI(i,ua) .

(send_Spv_Reset(i) . send_Spv_Mode(i,modeMenu)

<| eq(ua,userReset) |>

errorMessage(i,e))

)

)

- 114 -

D.1. Specification

%==

% Controller actions

%==

act menu: MacsIndex

drive: MacsIndex

error: MacsIndex

%==

% Controller processes

%

% The controller takes care of the specific controller

% action to be taken

%==

proc Controller(i: MacsIndex) =

sum(m: Mode, recv_Spv_Mode(i,m) .

(

(menu(i) <| eq(m,modeMenu) |> delta) +

(drive(i).Controller_Drive(i) <| eq(m,modeDrive) |> delta) +

(error(i).Controller_Error(i) <| eq(m,modeError) |> delta)

)

)

%--

% Control actions in driving method

%--

proc Controller_Drive(i: MacsIndex) =

sum(sv: SensorAngle, recv_Ctrl_SensorValue(i,sv) .

sum(s: SetpointValue, recv_Ctrl_Setpoint(i,s) .

(send_Ctrl_ActuatorAction(i,action(sv,s))+

send_Spv_Error(i,errorController))

)

)

%--

% Control actions in error method

%--

proc Controller_Error(i: MacsIndex) =

sum(e: Error, recv_Spv_Error(i,e) .

(send_Ctrl_ActuatorAction(i,actuatorAction0)

<|eq(e,errorActuator)|>

(send_Ctrl_ActuatorAction(i,actuatorActionError)) +

send_Spv_Error(i,errorController))

)

%==

% Main processes

%==

proc MACS(i: MacsIndex) =

send_Semaphore(P) .

Monitor_In(i) .

Angle(i) . Supervisor(i) . Controller(i) .

- 115 -

Formal methods code

send_Semaphore(V) .

send_Semaphore(P) .

Monitor_Out(i) .

send_Semaphore(V) .

Time(i) . MACS(i)

proc System =

MACS(macs1) ||

Buffers(macs1) ||

MACS(macs2) ||

Buffers(macs2) ||

Canbus ||

Semaphore

%==

% Initialisation

%==

init

encap(

{

%Timing mechanism: Comment if single MACS analysis is done

send_time, recv_time,

%Semaphore

send_Semaphore, recv_Semaphore,

%Canbus connection between both MACS

send_Can_Mode, recv_Mon_Mode_Other, recv_Can_Mode, send_Mon_Mode_Other,

send_Can_Alive, recv_Mon_Alive, recv_Can_Alive, send_Mon_Alive,

%Internal buffers of a single MACS

send_Buf1_Mode, recv_Spv_Mode,

send_Buf2_Mode, recv_Mon_Mode,

recv_Buf_Mode, send_Spv_Mode,

send_Buf1_Error, recv_Spv_Error,

send_Buf2_Error, recv_Mon_Error,

recv_Buf_Error, send_Spv_Error,

recv_Buf_Reset, send_Spv_Reset,

send_Buf_SensorError, recv_Spv_SensorError,

recv_Buf_SensorError, send_Angle_SensorError,

send_Buf_SensorValue, recv_Ctrl_SensorValue,

recv_Buf_SensorValue, send_Angle_SensorValue

},

System

)

- 116 -

D.2. Modal formulae

D.2 Modal formulae

Three requirements were verified with additional conditions to express that the
second control system also behaves in the same way as the first control system
after a user action. The verified modal formulae are given in the following
subsections.

D.2.1 Requirement 2

[βmenu · α∗other · start(i) · α∗other · αmode\{drive}(i)] F
∧
[βmenu · α∗other · start(i)]
〈 α∗other · (drive(i) | (αerrorknown · αother · menu(i))) 〉 T
∧
[βmenu ·
(α∗other · start(i) · α∗other · drive(i))+ ·
α∗other · start(other(i)) · α∗other · αmode\{drive}(other(i))] F
∧
[βmenu ·
(α∗other · start(i) · α∗other · drive(i))+ ·
α∗other · start(other(i))]
〈 α∗other · (drive(other(i)) | (αerrorknown · αother · menu(other(i)))) 〉 T

with αother ≡ > ∧ ¬αuser ∧ ¬αerror ∧ ¬αmode ∧ ¬αerrorknown

D.2.2 Requirement 3

[βdrive · α∗other · stop(i) · α∗other · αmode\{menu}(i)] F
∧
[βdrive · α∗other · stop(i)]〈 α∗other · menu(i) 〉 T
∧
[βdrive ·
(α∗other · stop(i) · α∗other · menu(i))+ ·
α∗other · stop(other(i)) · α∗other · αmode\{menu}(other(i))] F
∧
[βdrive ·
(α∗other · stop(i) · α∗other · menu(i))+ ·
α∗other · stop(other(i))]
〈 α∗other · menu(other(i)) 〉 T

with αother ≡ > ∧ ¬αuser ∧ ¬αerror ∧ ¬αmode

- 117 -

Formal methods code

D.2.3 Requirement 4

[βdrive · α∗other · emergency(i) · α∗other · αmode\{error}(i)] F
∧
[βdrive · α∗other · emergency(i)]〈 α∗other · error(i) 〉 T
∧
[βdrive ·
(α∗other · emergency(i) · α∗other · error(i))+ ·
α∗other · emergency(other(i)) · α∗other · αmode\{error}(other(i))] F
∧
[βdrive ·
(α∗other · emergency(i) · α∗other · error(i))+ ·
α∗other · emergency(other(i))]
〈 α∗other · error(other(i)) 〉 T

with αother ≡ > ∧ ¬αuser ∧ ¬αmode

- 118 -

Appendix E

Paper SCSC

In this appendix a paper is added, which is accepted for the 2007 Summer
Computer Simulation Conference (SCSC) in San Diego, CA.

- 119 -

