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Summary

In this thesis we investigate the entropy of hidden Markov models. A hidden Markov model
is a stochastic process {Yn}n≥0, which can be seen as a noisy observation of a Markov chain.
The entropy is a measure for the randomness of the process. It is known that the conditional
probability P[Y0 = y0 | Y1 = y1, . . . Yn = yn] converges at an exponential rate. The literature
on this is reviewed and different upper bounds for the convergence rate are compared. Next we
give series expansions for this conditional probability in the special case of the so-called binary
symmetric model. We consider expansions in different variables. A remarkable result for these
expansions is that the coefficients in the beginning of the expansion will not change anymore as n
becomes larger. Finally we describe a method to obtain a series expansion for the entropy making
use of a recurrence relation for the given conditional probability.
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Chapter 1

Introduction

In this thesis we investigate hidden Markov models: stochastic processes with an infinite memory.
These processes can be seen as a noisy observation of a Markov chain. Where as for ordinary
Markov chains the transition probabilities of going from one state to another depend only on the
previous state, for hidden Markov models they depend on the entire history of the process.

Because of the mathematical structure of hidden Markov models, they have a wide range of
applications. Examples are machine recognition, like speech and optical character recognition,
and bioinformatics. In the last one they can be used to model dna and protein sequences. The
power of these models is that they can be very efficiently implemented and simulated.

The main focus of this work will be the entropy of hidden Markov models. The entropy is a
measure for the amount of information a stochastic process contains. For this we will particularly
look at the binary symmetric hidden Markov model, the simplest but non-trivial instance of these
models.

The structure of this thesis is as follows. First hidden Markov models as well as entropy are
introduced more precisely, and we will state the problem of interest. We will give a convergence
result for the conditional probabilities in hidden Markov models, and we will review some liter-
ature for this result. Then we turn our attention to the entropy of these processes, especially to
series expansions for this. Subsequently, making use of recurrence relations for the conditional
probabilities, we derive an efficient way to compute the coefficients in one of these expansions.
Finally we will give the most important conclusions of our work and recommendations for further
research.
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Chapter 2

Mathematical background

In this chapter we start by introducing hidden Markov models. These stochastic processes can be
seen as a noisy observation of an ordinary Markov process. Hidden Markov processes give rise to
three problems, which have already been solved efficiently in the literature. They will be briefly
addressed. We will also briefly discuss some applications of hidden Markov models. We then focus
on the binary symmetric case, the simplest hidden Markov models, which will be the main focus
of this thesis. Given some conditions, a convergence result is proved. Two other definitions of a
hidden Markov model are given as well, and it is proved that they are equivalent.

Next we will introduce the notion of entropy, especially the entropy rate of a stochastic process.
We review a remarkable result from the literature, concerning the power series expansion for the
entropy rate of a hidden Markov model. We will state and prove a theorem about the convergence
of the conditional probabilities in the process. Finally we give the problem description of this
thesis.

2.1 Hidden Markov models

2.1.1 Definition

A hidden Markov model is a stochastic process, wherein the transition probabilities of going from
one state to another depend on the entire history of the process. It can be seen as a noisy
observation of an ordinary Markov model. For this let S be a discrete state space, and let P be
the |S| × |S| stochastic matrix with transition probabilities. Let X = {Xn}n≥0 with Xn ∈ S be a
Markov chain with transition probability matrix P = (pij), i.e.,

P[Xn+1 = xj | Xn = xi] = pij ,

for all xi, xj ∈ S, and some initial distribution π for X. Let S ′ also be a discrete state space,
not necessarily with an equal number of states as S. Let Π be the so-called emission probability
matrix, a stochastic matrix with dimension |S| × |S ′|. The states of S ′ are called the observed
states. Then Y = {Yn}n≥0 is a hidden Markov model, where

P[Yn = yk | Xn = xj ] = Πjk,

3



Section 2.1: Hidden Markov models

for all yk ∈ S ′ and all xj ∈ S. So each state of X has a probability distribution over the possible
states of Y. Given the state of X the state of Y is selected according to this distribution. These
distributions are, for each state of X, given in the matrix Π.

Only the process Y is observed and the X-process is not known, i.e. hidden, which explains the
name of these processes. The X-process will be referred to as the hidden or underlying Markov
chain. In this way, the Y -process can be interpreted as observing the X-process through a noisy
channel.

For a Markov process the next state of the process depends only on the previous state, or sometimes
a fixed number of previous states. For hidden Markov models the transition probabilities depend
on the entire history of the process, assuming that the underlying Markov chain is unknown.
States further back in the past have fewer influence on these probabilities, although they still have
some. This loss of influence happens at an exponential rate, as will be shown further on. Note
that, although all past states have influence, hidden Markov processes can be efficiently simulated
without having to keep track of the entire past. This is possible because of the fact that the
underlying process X is Markovian, i.e. for that process only the last state has to be known. In
order to simulate realizations of the process Y, one only has to keep track of the current state
of X. Given the state Xn the observed state Yn can be drawn, as well as the next state Xn+1.

2.1.2 Fundamental problems

Hidden Markov models have given rise to three fundamental problems, see [14, 31]. All three
have already efficiently been solved in the literature. These problems as well as their solutions are
briefly discussed here.

The first one, known as the Evaluation problem, asks for the probability that a given sequence of
observations occurs, given the model parameters π, P and Π. So it asks for

P[{Yi, . . . , Yj} | π, P, Π ].

This probability can be calculated using the Forward-Backward Algorithm.

The second one is the Decoding problem, which aims to find the most likely sequence of states of
the underlying Markov process such that the probability of observing a sequence {Yi, . . . , Yj} is
maximal. So it searches for the sequence {Xi, . . . , Xj} that maximizes

P[{Xi, . . . , Xj}, {Yi, . . . , Yj} | π, P, Π ].

A naive approach would be to calculate the probabilities for all possible sequences {Xi, . . . , Xj}.
An efficient algorithm however is the Viterbi Algorithm, see [16, 37].

The third fundamental problem is the Learning problem. For this the model parameters π, P, Π
are supposed to be unknown and these are tried to be optimized given a sequence of observations,
a so-called training sequence. So, which π, P, Π maximize

P[{Yi, . . . , Yj} | π, P, Π ].

This is the hardest problem of the three. Although there is no known analytical method to solve
this [31], the Baum-Welch Algorithm [4, 9] gives an iterative procedure to find a local maximum.
Another algorithm for this is the Segmental K-means Algorithm [24].

4



Chapter 2: Mathematical background

2.1.3 Applications

We will briefly point out a few applications of hidden Markov models. More elaborate discussions
can be found in [7, 12, 28].

One of the first applications was in speech recognition [31] to convert spoken language into text.
For this, training sequences are used, to adapt the parameters of the model in order to obtain
the best possible recognition. Other examples of pattern recognition are the recognition of optical
characters, such as text and handwriting, gestures, body motion, etcetera.

Another field where hidden Markov models are used, is bioinformatics, see [11, 26], for instance
in the modeling of dna and protein sequences.

2.1.4 Binary symmetric case

The simplest non-trivial hidden Markov model is the binary symmetric one. For this let the state
space of X be given by S = {−1, 1}, and let the transition probability matrix P be given by

P =
(

1− p p
p 1− p

)
,

for some p ∈ [0, 1]. Let the state space of Y be given by S ′ = S, and let the emission probability
matrix Π be given by

Π =
(

1− δ δ
δ 1− δ

)
,

for some δ ∈ [0, 1].

The process X is a Markov process consisting of 1’s and −1’s. With probability p the state of X
is ‘flipped’ with respect to the previous state, and so with probability 1− p it stays the same. For
each Xn it is decided by means of an (unfair) coin flip if Yn is just the value of Xn, or that it
becomes −Xn. For this, let Zn ∈ {−1, 1}, n = 0, 1, . . . be independent and identically distributed
Bernoulli random variables, independent of the process X, with common distribution {δ, 1 − δ},
i.e.

P[Zn = 1] = 1− δ = 1− P[Zn = −1].

Now define Yn as
Yn = Xn · Zn.

This gives the process {Yn}n≥0. In this way this process can be seen as observing the process X
through a so-called binary symmetric channel [8] with error probability δ. So with probability δ
an error occurs and the state 1 is observed as an −1 or vice versa. Note that the process obtained
in this way is symmetric both in p and in δ.

The initial distribution π of the X-process is taken to be equal to the stationary distribution of
it, which is by symmetry:

P[Xi = −1] = P[Xi = 1] =
1
2
.

Again by symmetry this is also the stationary probability distribution for the Y -process:

P[Yi = −1] = P[Yi = 1] =
1
2
.

When investigating the entropy of hidden Markov processes in the sequel of this thesis, we will
almost entirely focus on this binary symmetric process.

5



Section 2.1: Hidden Markov models

2.1.5 Alternative definitions

Hidden Markov models were introduced in Section 2.1.1 by the use of two stochastic matrices P
and Π. Now two alternative definitions are given. The first one is named Markov source, the second
one grouped Markov chain. It is proved that these definitions are equivalent to the previous one.

A Markov source, also called a function of a Markov chain, is defined as in [15]. Let X̃ = {X̃n}n≥0

be a Markov chain with values in a finite set of states S̃, with transition probability matrix ∆.
Let the process Ỹ = {Ỹn}n≥0 with state space S̃ ′ be defined by the coordinate-by-coordinate
transformation f : S̃ 7→ S̃ ′ given by

Ỹn = f(X̃n).
Here the number of values that Ỹn can take is smaller than that of X̃n, i.e. |S̃| ≤ |S̃ ′|. The
process Ỹ is a Markov source.

In [22] a grouped Markov chain is defined. Let X̂ = {X̂n}n≥0 with X̂n ∈ Ŝ be a Markov chain,
with transition probability matrix P̂ . Let the states of the chain be divided into K = |Ŝ| mutually
exclusive and exhaustive nonempty subsets B1, . . . ,BK . Define the process Ŷ = {Ŷn}n≥0 with
Ŷn ∈ {1, 2, . . . ,K} by

Ŷn = i ⇔ X̂n ∈ Bi.

The process Ŷ is called a grouped Markov chain.

It is straightforward that a grouped Markov chain and a Markov source are equivalent. The
following proposition, which is stated in [15] as an exercise, gives equivalence of hidden Markov
models and grouped Markov chains.

Proposition 2.1. Every grouped Markov chain can be written as a hidden Markov model, and
conversely every hidden Markov model can be written as a grouped Markov chain.

For the proof we refer to Appendix A.1.

Defining the binary symmetric process as a Markov source, one has the Markov process V =
{Vn}n≥0 where

Vn = (Xn, Zn).
The state space of this process is given by

S̃ = S × S ′ = {(−1, 1), (−1,−1), (1, 1), (1,−1)}.

Now f(Vn) where f : S̃ 7→ S ′ defined by

f(Vn) = f(Xn, Zn) = Xn · Zn,

gives the hidden Markov process Y. Let ∆ be the transition probability matrix of the process V,
which as in (A.1.1) is given by

∆ =


(1− p)(1− δ) (1− p)δ p (1− δ) p δ
(1− p)(1− δ) (1− p)δ p (1− δ) p δ

p (1− δ) p δ (1− p)(1− δ) (1− p)δ
p (1− δ) p δ (1− p)(1− δ) (1− p)δ

. (2.1.1)

This matrix gives the correct conditional probabilities for the individual processes X and Y. One
could easily check that

P[Xn = Xn+1] = 1− p, P[Yn = Xn] = 1− δ,
P[Xn 6= Xn+1] = p, P[Yn 6= Xn] = δ,

equivalent to the processes given by the matrices P and Π.

6



Chapter 2: Mathematical background

2.2 Entropy

The entropy is a measure for the amount of information a random variable or a stochastic process
contains. We will only focus on the so-called Shannon entropy [32, 33]. This notion comes from the
field of information theory [8]. The entropy gives a bound for the maximal achievable compression
for the data generated by the process, and it that way it gives whether the data can be reliably
transmitted over a given channel.

2.2.1 Definition

The entropy H(U) [8] of a discrete random variable U , taking values in a set U , is defined by

H(U) = −
∑
U

P[U ] logP[U ],

with the assumption 0 log 0 = 0. Here and throughout the sequel of this thesis, we use the
notation P[U ] = P[U = u], and the summation should be understood as to be over all u ∈ U .
Note that H(U) itself is not a random variable. From the definition it follows that the more
uncertainty there is in U , the larger H(U) will be. Note that the entropy can also be written as

H(U) = −E[ logP[U ]],

which also defines the entropy of a continuous random variable.

Suppose that

U =
{

1 with probability p,
−1 with probability 1− p,

for some p ∈ [0, 1]. Then the entropy of U is a function of p and is given by

H(U) = −p log p− (1− p) log(1− p) =: h(p).

The entropy rate h(Y ) [8] of a stochastic process Y = {Yn}n≥0 is defined by

h(Y) = lim
n→∞

1
n + 1

H(Y0, . . . , Yn), (2.2.1)

where

H(Y0, . . . , Yn) = −
∑
Y0

∑
Y1

. . .
∑
Yn

P[Y0, . . . , Yn] logP[Y0, . . . , Yn]

= −E [ logP[Y0, . . . , Yn ] ] ,

using the notation
P[Y0, . . . , Yn] = P[Y0 = y0, Y1 = y1, . . . , Yn = yn],

is the entropy of the random variable U = (Y0, . . . , Yn).

If the process Y is stationary, then the limit in (2.2.1) exists and is finite. In the next section we
will give a proof of this, making use of the so-called subadditivity lemma.

Let H(Yn | Yn−1, . . . , Y0) denote the conditional entropy, defined by

H(Yn | Yn−1, . . . , Y0) = −E[ logP[Yn | Yn−1, . . . , Y0] ].

In [8] the following result for this is given:

7



Section 2.2: Entropy

Lemma 2.2. For a stationary stochastic process Y it holds that

lim
n→∞

1
n + 1

H(Y0, . . . , Yn) = lim
n→∞

H(Yn | Yn−1, . . . , Y0).

This lemma gives an alternative way to calculate the entropy. The proof of is given in Ap-
pendix A.2.

In the sequel we will let the time run backwards. So we will consider the conditional probabilities
P[Y0 | Y1, . . . , Yn] and we consider the entropy as

h(Y) = lim
n→∞

H(Y0 | Y1, . . . , Yn).

In [8] the following bounds are given for the entropy:

H(Y0 | Y1, . . . , Yn, Xn) ≤ h(Y ) ≤ H(Y0 | Y1, . . . , Yn),

with equality in the limit as n tends to infinity.

2.2.2 Subadditivity lemma

In this section we prove that the limit in (2.2.1) exists. We follow the approach in [34] to prove
the next proposition.

Proposition 2.3. For a stationary stochastic process Y it holds that lim
n→∞

1
n + 1

H(Y0, . . . , Yn)

exists and is finite.

For the proof we need the following lemma.

Lemma 2.4 (Subadditivity Lemma). If a sequence of real numbers {xn} satisfies the subadditivity
condition

xm+n ≤ xm + xn, for all m,n ≥ 1, (2.2.2)

then
lim

n→∞

xn

n
= inf

m≥1

xm

m
.

The proof is given in Appendix A.3. Making use of this lemma, the proof of Proposition 2.3
follows.

Proof of Proposition 2.3. For the entropy rate of the process Y it holds that [34]:

H(Y0, . . . , Ym+n−1) ≤ H(Y0, . . . , Ym−1) + H(Ym, . . . , Ym+n−1),

and so, by stationarity,

H(Y0, . . . , Ym+n−1) ≤ H(Y0, . . . , Ym−1) + H(Y0, . . . , Yn−1).

Let hn := H(Y0, . . . , Yn−1), then this last line becomes

hm+n ≤ hm + hn, for all m,n ≥ 1,

so {hn} satisfies the subadditivity condition (2.2.2). By Lemma 2.4 it then holds that

lim
n→∞

hn

n
= inf

m≥1

hm

m
.

As hn ≥ 0 we have hn

n ≥ 0 for all n, and the statement follows.

8



Chapter 2: Mathematical background

2.3 Problem description

2.3.1 Series expansion entropy

We now return to the setting of hidden Markov models. The entropy rate of the binary symmetric
hidden Markov model depends only on p and δ:

h(Y) = lim
n→∞

1
n + 1

H(Y0, . . . , Yn) =: hY (p, δ).

No closed-form expression for this seems to be known [39].

Han and Marcus [20] show that, under the assumption p ∈ (0, 1), hY (p, δ) is a real analytic function
of p and δ. This will be discussed in Section 4.2. It implies that hY (p, δ) can be expressed as a
convergent power series:

p ∈ (0, 1) : hY (p, δ) =
∞∑

k=0

Ckδk,

where the Ck are functions of p.

Recall that h(Y) = limn→∞ H(Y0|Y1, . . . , Yn). Zuk et al. [40] give a remarkable result for this,
which holds for general hidden Markov processes:

H(Y0|Y1, . . . , Yn) =
∞∑

k=0

C
(n)
k δk,

where C
(n)
k = Ck for n ≥ dk+1

2 e. So the coefficients C
(n)
k ‘stabilize’ for n large enough. A proof of

this is given in [40], but no intuition for this ‘stabilization’ of the C
(n)
k ’s is given. The outline of

this proof will be sketched in Section 4.1.3.

2.3.2 Convergence conditional probabilities

Given strict positivity of the matrices P and Π, the conditional probabilities in a general hidden
Markov model can be shown to be positive and continuous. Recall the notation

P[Y0 | Y1, . . . , Yn] = P[Y0 = y0 | Y1 = y1, . . . , Yn = yn].

Proposition 2.5. Given P,Π > 0 it holds that

∃ a, b ∈ (0, 1) ∀ n ∀ Y0, . . . , Yn ∈ {−1, 1} :
0 < a ≤ P[Y0|Y1, . . . , Yn] ≤ b < 1.

This property is known as finite energy. It means that, regardless how much is known about the
past, there is no absolute certainty about the next symbol of Y. This proposition will be proved
in Section 3.1.

Let g be the limiting conditional probability as n tends to infinity, i.e.

P[Y0|Y1, . . . , Yn] n→∞−→ g(Y0, Y1, . . . , Yn, . . .).

9



Section 2.3: Problem description

Proposition 2.6. Given P, Π > 0 it holds that P[Y0|Y1, . . . , Yn] converges uniformly as n→∞.
More precisely, let

gn(Y ) = P[Y0|Y1, . . . , Yn],

then there exist α > 0 and C such that for all Y :

|gn(Y )− gm(Y )| ≤ Ce−αn, ∀ n, m : n < m.

The proof of this proposition will be given in Section 3.1 as well. As a consequence of Proposi-
tion 2.5 and Proposition 2.6, we have that g is positive and continuous, hence P is a g-measure [25].
In the sequel of this thesis we will assume P, Π > 0.

For h(Y) we have:

h(Y) = lim
n→∞

H(Y0|Y1, . . . , Yn)

= − lim
n→∞

E[ logP[Y0|Y1, . . . , Yn] ]

= −E[ log g(Y0, Y1, . . . , Yn, . . .)],

where interchanging limit and expectation is allowed because of Proposition 2.6.

2.3.3 Result settlement coefficients

We now state one of the main results of this thesis, concerning the so-called ‘settlement’ of the
coefficients in the power series expansion of the conditional probabilities.

Theorem 2.7. Given transition probabilities P > 0 and emission probabilities Π > 0, there exist
Fk, F̃k : Rk+3 7→ R such that

g(Y0, Y1, . . . , Yn, . . .) =
∞∑

k=0

Fk(p ;Y0, . . . , Yk+1)δk,

and even

g(Y0, Y1, . . . , Yn, . . .) =
∞∑

k=0

F̃k(p ;Y0, . . . , Yk+1)(δ(1− δ))k.

Here F
(n)
k = Fk, for n ≥ k + 1. This is called the ‘settlement’ or ‘stabilization’ of the coefficients.

It implies that the Fk are computable by a finite computation:

P[Y0|Y1, . . . , Yn] =
∞∑

k=0

F
(n)
k δk,

The coefficients could be derived either analytically or by numerical computations.

This theorem will be proved in Section 4.1.2. It is a similar result to that found by Zuk et al. [39],
which give this statement for the series expansion for the entropy, see Theorem 4.1.

This result is important as it reduces the computational complexity of the problem significantly.
Instead of having to compute F

(n)
k for all n to be able to compute limn→∞ F

(n)
k , we now only have

to compute F
(n)
k for one value of n large enough. Section 4.3 and Section 4.4, where we try to

find an general expression for the coefficients Fk for the binary symmetric model, are based on
this result.
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Chapter 3

Literature review convergence

As stated in Section 2.3.2, it holds that P[Y0|Y1, . . . , Yn] converges uniformly as n tends to infinity.
In this chapter we will review the literature on this result. We start by the work of Baum and
Petrie (1966), who prove it along the lines of the two propositions given in Section 2.3.2. Then we
focus on the work of Harris (1955), who gives a proof based on couplings. These were introduced
by Doeblin (1937) and also studied by Vasershtein (1969). Next we look at the work of Birch
(1962) and at the more recent work of Fernández, Ferrari and Galves (2002). The results hold
for general hidden Markov models. The different upper bounds found for the rate of convergence,
will be compared for the binary symmetric hidden Markov model.

3.1 Baum and Petrie

We follow the approach of Baum and Petrie [3] to prove the uniform convergence of P[Y0|Y1, . . . , Yn]
as n→∞. The proof follows by proving Proposition 2.5 and Proposition 2.6, which we shall do in
this section. We recall that the first proposition gave uniform bounds strictly between 0 and 1 for
the conditional probability, where the second stated the convergence of it at an exponential rate.

3.1.1 Bounds conditional probability

In order to prove Proposition 2.5, we need the following lemma.

Lemma 3.1. Suppose xi > 0, yi > 0 for all i, then

min
i=1,...,n

xi

yi
≤
∑n

i=1 xi∑n
i=1 yi

≤ max
i=1,...,n

xi

yi
.

Proof. As

min
j

xj

yj
≤ xi

yi
≤ max

j

xj

yj
, ∀i,

11



Section 3.1: Baum and Petrie

we have

min
j

xj

yj
=

n∑
i=1

yi min
j

xj

yj

n∑
i=1

yi

≤

n∑
i=1

xi

n∑
i=1

yi

=

n∑
i=1

yi
xi

yi

n∑
i=1

yi

≤

n∑
i=1

yi max
j

xj

yj

n∑
i=1

yi

= max
j

xj

yj
.

We now prove Proposition 2.5, which holds for general hidden Markov models:

Proof of Proposition 2.5. The proof is based on writing out P[Y0|Y1, . . . , Yn]. For this the following
four ideas will be used.

(1) By Bayes’ Theorem we have

P[Y0|Y1, . . . , Yn] =
P[Y0, Y1, . . . , Yn]
P[Y1, . . . , Yn]

.

(2) By conditioning on the states of X, we can write

P[Y0, . . . , Yn] =
∑

X0,...,Xn

P[Y0, . . . , Yn|X0, . . . , Xn]P[X0, . . . , Xn].

(3) As X is a Markov Chain, we have

P[X0, . . . , Xn] = P[X0]P[X1|X0] . . .P[Xn|Xn−1]

= P[X0]
n−1∏
i=0

P[Xi+1|Xi].

(4) As Yi only depends on Xi, for i = 0, . . . , n, we have

P[Y0, . . . , Yn|X0, . . . , Xn] = P[Y0|X0]P[Y1|X1] . . .P[Yn|Xn]

=
n∏

i=0

P[Yi|Xi].

This gives:

P[Y0|Y1, . . . , Yn]

(1)
=
P[Y0, Y1, . . . , Yn]
P[Y1, . . . , Yn]

(2)
=

∑
X0,X1,...,Xn

P[Y0, . . . , Yn|X0, . . . , Xn]P[X0, . . . , Xn]

∑
X1,...,Xn

P[Y1, . . . , Yn|X1, . . . , Xn]

(∑
X0

P[X1, . . . , Xn|X0]P[X0]

)

(3,4)
=

∑
X0,X1,...,Xn

P[Y0|X0]P[X0]
n−1∏
i=0

P[Xi+1|Xi]
n∏

i=1

P[Yi|Xi]

∑
X0,X1,...,Xn

P[X0]
n−1∏
i=0

P[Xi+1|Xi]
n∏

i=1

P[Yi|Xi]

.

12



Chapter 3: Literature review convergence

Note that the nominator and denominator are equal up to the term P[Y0|X0]. Lemma 3.1 now
gives

min
X0
P[Y0|X0] ≤ P[Y0|Y1, . . . , Yn] ≤ max

X0
P[Y0|X0].

As Π > 0 it follows that one could take

a = min
X0
P[Y0|X0] > 0, b = max

X0
P[Y0|X0] < 1,

which proves the statement of the proposition.

For the binary symmetric case, we find, assuming 0 < δ ≤ 1
2 :

0 < δ = min
X0
P[Y0|X0] ≤ P[Y0|Y1, . . . , Yn] ≤ max

X0
P[Y0|X0] = 1− δ < 1.

In Appendix A.4 we will give two alternative proofs of this proposition.

3.1.2 Uniform convergence conditional probability

In this section we prove Proposition 2.6. The proof is rather long, but the result of this proposition
is important, as it established the converges of P[Y0|Y1, . . . , Yn] as n→∞.

Proof of Proposition 2.6. Let

gn(Y ) = P[Y0|Y1, . . . , Yn],
gn(Y, i) = P[Y0|Y1, . . . , Yn, Xn+1 = i],
gn(Y ) = max

i
gn(Y, i),

g
n
(Y ) = min

i
gn(Y, i).

First we prove that
g

n
(Y ) ≤ gn(Y ) ≤ gn(Y ).

We have that, by conditioning on Xn+1,

gn(Y ) =
∑

i

gn(Y, i) P[Xn+1 = i | Y1, . . . , Yn]

≤
(

max
j

gn(Y, j)
)∑

i

P[Xn+1 = i | Y1, . . . , Yn]

= gn(Y ),

and
gn(Y ) ≥ min

j
gn(Y, j) = g

n
(Y ).

Now we prove that, for some κ ∈ (0, 1):

gn+1(Y ) ≤ κg
n
(Y ) + (1− κ)gn(Y ),

g
n+1

(Y ) ≥ κgn(Y ) + (1− κ)g
n
(Y ).

13



Section 3.1: Baum and Petrie

For gn+1(Y, i) we have:

gn+1(Y, i)
= P[Y0|Y1, . . . , Yn+1, Xn+2 = i]

=

∑
j P[Y0, Y1, . . . , Yn+1, Xn+1 = j, Xn+2 = i]∑

j P[Y1, . . . , Yn+1, Xn+1 = j, Xn+2 = i]

=

∑
j P[Y0, Xn+2 = i|Y1, . . . , Yn, Xn+1 = j]P[Y1, . . . , Yn, Xn+1 = j]P[Yn+1|Xn+1 = j]∑

j P[Y1, . . . , Yn+1, Xn+1 = j, Xn+2 = i]

=

∑
j gn(Y, j)P[Xn+2 = i|Xn+1 = j]P[Y1, . . . , Yn, Xn+1 = j]P[Yn+1|Xn+1 = j]∑
j P[Xn+2 = i|Xn+1 = j]P[Y1, . . . , Yn, Xn+1 = j]P[Yn+1|Xn+1 = j]

=
∑

j

gn(Y, j)q(j, i),

where

q(j, i) =
P[Xn+2 = i|Xn+1 = j]P[Y1, . . . , Yn, Xn+1 = j]P[Yn+1|Xn+1 = j]∑

j′ P[Xn+2 = i|Xn+1 = j′]P[Y1, . . . , Yn, Xn+1 = j′]P[Yn+1|Xn+1 = j′]
.

This gives that gn+1(Y, i) is a weighted sum of the gn(Y, j)’s.

Note that

P[Y1, . . . , Yn, Xn+1 = j]∑
j′ P[Y1, . . . , Yn, Xn+1 = j′]

=
P[Y1, . . . , Yn, Xn+1 = j]

P[Y1, . . . , Yn]

= P[Xn+1 = j|Y1, . . . , Yn],

and 0 < P[Xn+1 = j|Y1, . . . , Yn] < 1, by the same reasoning as in Proposition 2.5.

Let
κ := min

j,i
q(j, i)

then

κ ≥ min P[Xn+2 = i|Xn+1 = j]min P[Yn+1|Xn+1 = j]
maxP[Xn+2 = i|Xn+1 = j]maxP[Yn+1|Xn+1 = j]
·minP[Xn+1 = j|Y1, . . . , Yn] =: κ′. (3.1.1)

Assuming P > 0,Π > 0 we have κ′ > 0. As κ ∈ (0, 1), either κ or 1 − κ is in (0, 1/2]. We can
assume w.l.o.g. that κ ∈ (0, 1/2] (otherwise take κ = 1−minj,i q(j, i)).

It follows that:

gn+1(Y ) = max
i

gn+1(Y, i)

≤ κg
n
(Y ) + (1− κ)gn(Y ),

and

g
n+1

(Y ) = min
i

gn+1(Y, i)

≥ κgn(Y ) + (1− κ)g
n
(Y ).

14
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Now

gn+1(Y )− g
n+1

(Y ) ≤
(
(1− κ)gn(Y ) + κg

n
(Y )
)
−
(
(1− κ)g

n
(Y ) + κgn(Y )

)
= (1− 2κ)(gn(Y )− g

n
(Y )).

Taking

κ̃ = 1− 2κ (3.1.2)

this gives that for some 0 ≤ κ̃ < 1:

0 ≤ gn+1(Y )− g
n+1

(Y ) ≤ κ̃
(
gn(Y )− g

n
(Y )
)

.

Note that as κ ∈ (0, 1/2] we have that κ̃ = 1− 2κ ∈ [0, 1) as desired.

Iterating gives:

gn+1(Y )− g
n+1

(Y ) ≤ κ̃
(
gn(Y )− g

n
(Y )
)

≤ κ̃2
(
gn−1(Y )− g

n−1
(Y )
)

...

≤ κ̃n+1
(
g0(Y )− g

0
(Y )
)

≤ κ̃n+1,

where the last inequality holds as 0 ≤ g0(Y )− g
0
(Y ) ≤ 1.

We have

gn+1(Y )− gn(Y ) ≤ gn+1(Y )− g
n
(Y )

≤ (1− κ)gn(Y ) + κg
n
(Y )− g

n
(Y )

= (1− κ)
(
gn(Y )− g

n
(Y )
)

,

and

gn+1(Y )− gn(Y ) ≥ g
n+1

(Y )− gn(Y )

≥ (1− κ)g
n
(Y ) + κgn(Y )− gn(Y )

= (1− κ)
(
g

n
(Y )− gn(Y )

)
.

From this it follows that

|gn(Y )− gn+1(Y )| ≤ (1− κ)(gn(Y )− g
n
(Y ))

≤ κ̃n.
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Section 3.2: Harris

Using telescoping sums and the triangle inequality we have that for all m,n such that m ≥ n:

|gn(Y )− gm(Y )| =
m−1∑
l=n

|gl(Y )− gl+1(Y )|

≤
m−1∑
l=n

κ̃l

=
κ̃n − κ̃m

1− κ̃

≤ κ̃n

1− κ̃
.

This proves the exponential convergence, with C = 1
1−κ̃ and α = − log κ̃ > 0.

3.2 Harris

Another proof of the convergence of P[Y0 | Y1, . . . , Yn] can be found in Harris [22]. This proof is
based on a technique called coupling, which dates back to Doeblin [10]. This technique will be
introduced first, especially couplings for Markov chains. We give two examples of such a coupling,
one by Doeblin and one by Vasershtein [36]. Next the notion of a successful coupling is explained,
and we will show how this can be used to show the convergence result for hidden Markov models.
This leads to three convergence rates, based on the results of Doeblin, Vasershtein and Harris.
Finally we will prove that the second one will always give the best result of these three.

3.2.1 Coupling

A coupling [27, 35] of two or more random variables Xi, i = 1, . . . , n is a n-dimensional random
variable X̃ = (X̃1, . . . , X̃n) such that

X̃i d= Xi, ∀ i,

where d= denotes equality in distribution. So the Xi are the marginal distributions of X̃, while
the joint distribution of (X1, . . . , Xn) is in general not the same as the distribution of X̃.

Couplings for Markov chains

We consider a coupling for Markov chains consisting of two running Markov chains, constructed
in such a way that from the first moment on they meet, they will coincide. More precisely, let
{Xn}n≥0 be a Markov chain with state space S and with transition probability matrix P = (pij).
Let {X̃n}n≥0 be a stochastic process, where X̃n = (X1

n, X2
n). Denote the state of X̃n by x̃n =

(x1
n, x2

n) ∈ S × S. So X̃ consists of two copies of the Markov chain X. Let X1 start in g and X2

start in h, for some g, h ∈ S. Now construct the transition probabilities for X̃ in such a way, that
from the first time on X1 and X2 take on the same value, both will keep taking on the same value.
Denote these transition probabilities for X̃n by P̃ = (p̃ij). The time when both chains first meet
is called the coupling time [18], denoted by T :

T = min
j≥0
{j | X1

j = X2
j }.

16
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By definition X1
n = X2

n for n ≥ T .

As in [18], we introduce two examples of such a coupling X̃n. The Doeblin coupling [10] is given
by:

X̃n X̃n+1 p̃..

(i, i) (k, k) pik,
(i, j) (k, l) pikpjl,

(3.2.1)

for i 6= j. This was the first known coupling, and it is often referred to as Doeblin’s coupling or the
classical coupling. For the Vasershtein coupling [36] for Markov chains, the transition probabilities
are given by:

X̃n X̃n+1 p̃..

(i, i) (k, k) pik,
(i, j) (k, k) min{pik, pjk},
(i, j) (k, l) (pik−pjk)+(pjl−pil)

+

1−
P

k min{pik,pjk} ,

(3.2.2)

for i 6= j, k 6= l, where a+ = max{a, 0}.

Successful coupling

Denote by P̃g,h the probability distribution of X̃ with X̃0 = (g, h). A coupling is called successful
if with probability 1 both chains meet in finite time, so if

P̃g,h[T <∞] = 1, ∀ (g, h) ∈ S × S.

Proposition 3.2. If pij > 0 for all i, j, then both Doeblins and Vasershteins coupling as given
in (3.2.1) respectively (3.2.2) are successful.

Proof. Let D = {(k, k) | k ∈ S}. By definition

min
j≥0
{X̃j ∈ D} = T,

and X̃n ∈ D for n ≥ T . We have:

P[T > m] = P[X̃m /∈ D | X̃m−1 /∈ D] . . .P[X̃1 /∈ D | X̃0 /∈ D]P[X̃0 /∈ D]

≤ P[X̃m /∈ D | X̃m−1 /∈ D] . . .P[X̃1 /∈ D | X̃0 /∈ D]

=
m∏

n=1

P[X̃n /∈ D | X̃n−1 /∈ D].

We derive an upper bound for P[X̃n /∈ D | X̃n−1 /∈ D]. For Doeblins coupling, with i 6= j, we have

P[X̃n = (k, k) ∈ D | X̃n−1 = (i, j) /∈ D] = pikpjk, (3.2.3)

P[X̃n ∈ D | X̃n−1 = (i, j) /∈ D] =
∑

k

pikpjk,

P[X̃n ∈ D | X̃n−1 /∈ D] ≥ min
i,j

∑
k

pikpjk,

P[X̃n /∈ D | X̃n−1 /∈ D] ≤ 1−min
i,j

∑
k

pikpjk.
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Writing
λD := min

i,j

∑
k

pikpjk, (3.2.4)

this is
P[X̃n /∈ D | X̃n−1 /∈ D] ≤ 1− λD.

So continuing we have

P[T > m] ≤
m∏

n=1

P[X̃n /∈ D | X̃n−1 /∈ D]

= (1− λD)m.

As all pij > 0 we have 0 ≤ (1− λD) < 1 and it follows that T <∞ almost surely. So both chains
meet in finite time with probability 1, and hence the coupling is successful.

Along the same lines it can be proved that the Vasershtein coupling is successful. For this cou-
pling (3.2.3) becomes

P[X̃n = (k, k) ∈ D | X̃n−1 = (i, j) /∈ D] = min{pik, pjk},

from which the same result follows, with parameter

λV := min
i,j

∑
k

min{pik, pjk} (3.2.5)

instead of λD.

Weak ergodicity

The Markov chain X is called weakly ergodic if for all g, h ∈ S it holds that

lim
n→∞

∑
k

|p(n)
gk − p

(n)
hk | = 0,

where p
(n)
ij is the n-step transition probability from i to j. This property implies that there is an

asymptotic ‘loss of memory’ for the initial state of the Markov chain.

Proposition 3.3. If the coupling X̃ is successful, then X is weakly ergodic.

The proof is given in Appendix A.5.

3.2.2 Harris’ result

Harris [22] states that for any Markov chain X with Xn ∈ S and transition probabilities pij > 0
for all i, j:

|P[Xn+1 ∈ An+1 | X0 = g,X1 ∈ A1, . . . , Xn ∈ An]
−P[Xn+1 ∈ An+1 | X0 = h, X1 ∈ A1, . . . , Xn ∈ An]| ≤ (1− λH)n,
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where λH ∈ (0, 1), Ai, i = 1, . . . , n non-empty subsets of S, and g, h ∈ S two arbitrary states.
Without any proof or explanation, Harris gives the following expression for λH :

λH = min
i,j,k,l

pkjpil

K2pijpkl
, (3.2.6)

where K = |S|.

From this statement the convergence of P[Y0 | Y1, . . . , Yn] follows. For this, consider the Markov
chain V = {Vn}n≥0 where Vn = (Xn, Yn), with state space V = S × S ′. Here X is the underlying
Markov chain, and Y is the hidden Markov process. Now K = |V|. Let A1, . . . ,A|S′| be a partition
of S̃, such that

Vn = (Xn, Yn) ∈ Ai ⇔ Yn = i.

This gives:∣∣∣P[Y0 = y0 | Y1 = y1, . . . , Ym = ym, Ym+1 = ym+1, . . .]

− P[Y0 = y0 | Y1 = y1, . . . , Ym = ym, Ym+1 = y′m+1, . . .]
∣∣∣ ≤ (1− λH)m−1. (3.2.7)

3.2.3 Proof λV ≥ λD ≥ λH

For the three convergence rates found, it holds that

λV ≥ λD ≥ λH .

This means that the Vasershtein coupling gives a faster convergence than the Doeblin coupling,
which in turn gives faster convergence than Harris. In other words, (1− λV )n goes faster to zero
than (1− λD)n, which goes faster to zero than (1− λH)n.

The first inequality is straightforward. As 0 < pij < 1 we have

min{pik, pjk} ≥ pikpjk,

and it directly follows that λV ≥ λD:

λV = min
i,j

∑
k

min{pik, pjk} ≥ min
i,j

∑
k

pikpjk = λD.

The next proposition states that λD ≥ λH , from which it follows that

λD = min
i,j

∑
k

pikpjk ≥ min
i,j,m,n

pimpjn

K2pjmpin
= λH .

Proposition 3.4. For any K ×K stochastic matrix P = (pij) > 0, we have for all i, j:∑
k

pikpjk ≥
1

K2
min
m,n

pimpjn

pjmpin
.

The proof of this is given in Appendix A.6.
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3.3 Birch

Birch [5, 6] gives a similar result similar to that of Harris, see (3.2.7), for the convergence of
P[Y0 | Y1, . . . , Yn]. Instead of Harris’ value for λH of (3.2.6), Birch gives the value, say λB . So
Birch states that for a general hidden Markov process Y, when the transition probability matrix
of the process (Xn, Yn) is strictly positive, it holds that∣∣∣P[Y0 = y0 | Y1 = y1, . . . , Ym = ym, Ym+1 = ym+1, . . .]

− P[Y0 = y0 | Y1 = y1, . . . , Ym = ym, Ym+1 = y′m+1, . . .]
∣∣∣ ≤ (1− λB)m−1.

For this again the definition for Y as a grouped Markov chain is used, as was the case for Harris’
result. We consider the Markov chain V = {Vn}n≥0 where Vn = (Xn, Yn). Let A1, . . . ,A|S′| be a
partition of the state space V of V, such that

Vn = (Xn, Yn) ∈ Ai ⇔ Yn = i.

Define
Kmin := min

i
|Ai|, Kmax := max

i
|Ai|.

We have 1 ≤ Kmin ≤ Kmax ≤ K = |V|.
The expression for λB is given by:

λB = min
i,j,k,l,m

Kmin

K2
max

(
pilplk

pijpjm

)2

. (3.3.1)

3.4 Fernández, Ferrari, Galves

In this section we state the claim of [15] for the upper bound on the convergence rate. It is based
on regeneration times of the underlying Markov chain. First we introduce Countable Mixtures of
Markov Chains. Next we introduce regeneration times and show that the regeneration times for
a Markov chain have a geometric distribution. Then we give the main result of this section: the
upper bound for the convergence rate based on regeneration times.

3.4.1 CMMC

A Countable Mixtures of Markov Chain (CMMC) [15] is a process whose transition probabilities
are a countable convex combination of Markov transitions of increasing order. Denote by xi

j the
vector (xi, . . . , xj), then the general form of a CMMC is given by

P[a | x] = λ0P
(0)[a] +

∞∑
k=1

λkP
(k)[a | x−k

−1 ],

where λk ≥ 0,
∑∞

k=0 λk = 1, each P(k)[a | x−k
−1 ] is a Markov transition of order k for k ≥ 1 and

P(0) is a probability measure. By a Markov transition of order k we mean that the transition
probabilities for the next state depend only on the last k states. A hidden Markov model can be
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written in this form, as can a Markov chain. For this last one, we have λk = 0 for k ≥ 2, as a
state depends only on the previous state. There is not necessarily a unique representation in this
form for a Markov chain. We will exploit this in Section 3.4.3.

The regeneration time [15] for the window (Xl, . . . , Xm) is given by

τ [l,m] := max {t ≤ l | t ≤ n− Ln, for all n ∈ [t, m]} ,

with the convention τ [l, m] = −∞ if the set in the right-hand side is empty. Here Ln, n ∈ Z,
called random orders, give on how many states back the transition probabilities for the state Xn

depend. Write τ [l] := τ [l, l]. We have that, when τ [l] is a regeneration time, then {Xn+τ [l]}n≥0

and {Xτ [l]−n}n≥0 are independent.

3.4.2 Geometric distribution

In the next lemma we consider a CMMC whose transition probabilities either depend only on the
previous state or do not depend on the past at all.

Lemma 3.5. For a CMMC defined by

P[a | x] = λ0P
(0)[a] + λ1P

(1)[a | x−1], (3.4.1)

with λ0 + λ1 = 1, it holds that, for any l ∈ Z, τ [l] has a geometric distribution with parameter λ0.

Proof. Noting that in this case Ln ∈ {0, 1}, we have

τ [l] = max{n ≤ l | Ln = 0}. (3.4.2)

We have

Ln = 0 ⇔ {0 ≤ Un ≤ λ0},
Ln = 1 ⇔ {λ0 ≤ Un ≤ 1},

with (Un) a sequence of i.i.d. random variables uniformly distributed on [0, 1]. If Un < λ0 then the
next state depends not on the past at all, otherwise it depends on the previous state. It follows
that Ln is a Bernoulli distributed random variable: With probability λ0 it is equal to 0 and it is
equal to 1 otherwise. We can interpret l as the number of times Ln = 1 occurs before the first
time Ln = 0 occurs. This directly gives that τ [l] has a geometric distribution, with parameter
1− λ1 = λ0.

In general (3.4.2) does not hold for a CMMC, as for this Ln ∈ {0, 1, . . .}.

3.4.3 Result Fernández, Ferrari, Galves

We now give the claim made by [15].

Claim 3.6. Denote by τX the regeneration time for X0. Then it holds that

sup
Y,Ỹ

∣∣∣P[Y0 | Y −1
−∞]− P[Y0 | Y −1

s Ỹ s−1
−∞ ]

∣∣∣ ≤ P[τX < s],

for every Y0 and s ≤ 0.
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Section 3.5: Comparison convergence rates

As the underlying Markov chain can be written as in (3.4.1), it follows that τX has a geometric
distribution, so

P[τX < s] = (1− λ0)−s.

3.5 Comparison convergence rates

In the previous sections we found a number of different upper bounds for the convergence rate

γ(n) := sup
Y,Y ′

∣∣P[Y0 | Y1, . . . , Yn, Yn+1 . . .]− P[Y0 | Y1, . . . , Yn, Y ′
n+1 . . .

∣∣ .
Now will compare these for the binary symmetric hidden Markov model, see Section 2.1.4 and
Section 2.1.5. Throughout this section we assume 0 < δ ≤ 0.5 and 0 < p ≤ 0.5. Note that the
result of Baum and Petrie is based on the definition of hidden Markov model as given 2.1.4, where
all others make use of the definition as a Markov source, see Section 2.1.5. For this we consider
the so-called extended Markov chain V with Vn = (Xn, Zn). The hidden Markov model Y follows
from this by the function f which gives

Vn = f(Xn, Zn) = Xn · Zn.

3.5.1 Convergence rates

Baum and Petrie

For Baum and Petrie’s approach we consider the hidden Markov model which was defined as in
Section 2.1.4. So Xn ∈ {−1, 1} with transition probability matrix P , and Yn ∈ {−1, 1} with
emission probability matrix Π. From Proposition 2.6 it follows that

γ(n) ≤ (1− κ̃)nen log κ̃,

where is in (3.1.2) κ̃ = 1− 2κ. From (3.1.1) we have that κ′ is a lower bound for κ, given by:

κ′ =
min P[Xn+2 = i|Xn+1 = j]min P[Yn+1|Xn+1 = j]
maxP[Xn+2 = i|Xn+1 = j]maxP[Yn+1|Xn+1 = j]
·minP[Xn+1 = j|Y1, . . . , Yn]

=
p2 δ

(1− p)(1− δ)
.

Harris

For the Markov chain V we have from (3.2.6) and (3.2.7):

γ(n) ≤ (1− λH)n, λH = min
i,j,k,l

pkjpil

K2pijpkl
.

Here K = 4 and the transition probabilities are the elements of matrix ∆ as given in (2.1.1), so

λH =
p2

16(1− p)2
.
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Birch

For the Markov chain V we have from (3.3.1):

γ(n) ≤ (1− λB)n, λB = min
i,j,k,l,m

Kmin

K2
max

(
pilplk

pijpjm

)2

.

Here Kmin = Kmax = 2 and the transition probabilities are elements from ∆, so we get

λB =
p4δ4

2 (1− p)4(1− δ)4
.

Fernández, Ferrari, Galves

Consider the extended Markov chain V. Recall that the representation of a Markov chain as
CMMC is not unique, see Section 3.4.1. This enables us to write V as in (3.4.1) in the following
way:

P[(Xn+1, Zn+1) | (Xn, Zn)] = 2p P(0)[Xn+1]P(0)[Zn+1]

+ (1− 2p)P(1)[Xn+1 | Xn]P(1)[Zn+1 | Zn],

where

P(1)[Xn+1 | Xn] =
{

1 if Xn+1 = Xn,
0 if Xn+1 6= Xn.

This can be easily checked to be correct by plugging in all possibilities of 1’s and −1’s. By
symmetry we have P(0)[Xn+1] = 1

2 for Xn+1 ∈ {−1, 1}, and P(1)[Zn+1 | Zn] = P(0)[Zn+1] by
independence of the Zi, and

P(0)[Zn+1] =
{

1− δ if Zn+1 = 1,
δ if Zn+1 = −1.

This representation gives that λ0 = 2p =: λF , so the distribution of τV is given by

P[τV > n] = (1− 2p)n.

According to Claim 3.6, it follows that for the binary symmetric model

γ(n) ≤ (1− 2p)n,

for all n ≥ 0.

Doeblin’s and Vasershtein’s coupling

For comparison we calculate the value of λD for the extended Markov chain V with transition
probabilities ∆. From (3.2.4) it follows that

λD = min
i,j

∑
k

pikpjk = 2 p (1− p)
(
(1− δ)2 + δ2

)
.
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From (3.2.5) we have
λV = min

i,j

∑
k

min{pik, pjk} = 2p.

Recall that these results give a bound on the convergence rate of a coupling of two Markov chains:

|P[X0 | Xn = g]− P[X0 | Xn = h] | ≤ (1− λD,H)n.

The results of Baum and Petrie, Harris, Birch and Fernández, Ferrari and Galves hold for the
convergence rate of a hidden Markov model.

3.5.2 Comparison

We compare the upper bounds for γ(n) for the values p = 0.4 and δ = 0.1. The upper bounds of
Birch, Harris and Fernández, Ferrari and Galves (FFG) are given by (1 − λ∗)n. For these values
of p and δ the expressions for λ∗ become:

Birch λB ≈ 1.505 · 10−5, Doeblin λD = 0.3936,
Harris λH ≈ 2.777 · 10−2, Vasershtein λV = 0.8,
FFG λF = 0.8.

The values of λD and λV are added for comparison as they give a result for the convergence rate
of a Markov chain, where the other three hold for hidden Markov models.

For Baum and Petrie’s result p = 0.4 and δ = 0.1 give κ′ = 4
135 and

γ(n) ≤ (1− 2κ′)n

2κ′
≈ 16.9 · (1− 0.06)n.

For small n this upper bound is large, but as n grows this will drop rather fast to zero. Note that
it becomes smaller than 1 only for n ≥ 47.

The plot of the convergence rates plotted against (continuous) n is given in Figure 3.1.

20 40 60 80 100
n
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0.6

0.8
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upp.bnd ΓHnL

F
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Figure 3.1: Upper bounds for convergence speed γ(n) plotted against (continuous) n, for Birch (B),
Harris (H), FFG (F) and Baum and Petrie (BP).
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Chapter 4

Series expansions

In this chapter we investigate series expansions for the entropy. We start with the remarkable
result of Zuk et al. [39], who give a so-called ‘stabilization’ for the coefficients in these expansions.
We will show that the same idea is applicable for the conditional probabilities P[Y0 | Y1, . . . , Yn],
and we will give a proof of this. The idea of the ‘stabilization’ will be illustrated by a simple
example. Next we discuss the results of Han and Marcus [19, 20], concerning the analyticity of the
series expansions for the entropy. These results all hold for general hidden Markov models. We
then focus on the binary symmetric model. For this we derive several series expansions in various
parameters. The aim is to find a general expression for the coefficients that appear in these, but
this turns out to be quite challenging.

4.1 Settlement coefficients

4.1.1 Result Zuk et al.

In [38, 39, 40, 41, 42] Zuk et al. study series expansions for the entropy of general as well as binary
symmetric hidden Markov models. In [39] they give the following result:

Theorem 4.1. Let Y be a general hidden Markov model. Given the series expansions

h(Y0, Y1, . . . , Yn) =
∞∑

k=0

C
(n)
k δk

and

h(Y0, Y1, Y2, . . .) =
∞∑

k=0

Ckδk,

where C
(n)
k and Ck are functions of P . Then

n ≥
⌈

k + 1
2

⌉
⇒ C

(n)
k = Ck.
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Section 4.1: Settlement coefficients

We say that the coefficients ‘settle’ or ‘stabilize’. The term dk+1
2 e does not depend on the alphabet

size. Note that we use a different indexing than in [39]. In that indexing the result holds for
n ≥ dk+3

2 e. The statement is proved for an arbitrary hidden Markov model Y. We will give a
short outline of the proof in Section 4.1.3.

For the binary symmetric model, the coefficients Ck are given up to eleventh order in [42]:

C0 = −p log p− (1− p) log(1− p),

C1 = 2(1− 2p) log
(

1− p

p

)
,

C2 = −2(1− 2p) log
(

1− p

p

)
− (1− 2p)2

2p2(1− p)2
,

C3 = −16 (5λ4 − 10λ2 − 3)λ2/ 3(1− λ2)4,
...

C11 = 8192 (98142λ30 − 1899975λ28 + 92425520λ26 + 3095961215λ24

+ 25070557898λ22 + 59810870313λ20 − 11635283900λ18

− 173686662185λ16 − 120533821070λ14 + 74948247123λ12

+ 102982107048λ10 + 35567469125λ8 + 4673872550λ6

+ 217466315λ4 + 2569380λ2 + 2277)λ6/ 495(1− λ2)20,

where we abbreviate λ = 1 − 2p. These coefficients are found making use of a one-dimensional
random-field Ising model representation [29]. Note that the first three terms involve the log-
function, whereas higher terms are rational functions of λ. According to [42] the zeroth and
first-order terms were already known in [23, 30], while the second and higher-order terms were not
know before.

4.1.2 Settlement coefficients conditional probability

An analogous result of Theorem 4.1 hold for the series expansion of the conditional probability
P[Y0 | Y1, . . . , Yn]. In this expansion the coefficients also settle, but only for n ≥ k + 1, as stated
in the next theorem.

Theorem 4.2. Given the series expansions

P[Y0 | Y1, . . . , Yn] =
∞∑

k=0

F
(n)
k δk

and

P[Y0 | Y1, Y2, . . .] =
∞∑

k=0

Fkδk,

where F
(n)
k and Fk are functions of P and y. Assume P > 0 and Π > 0. Then

n ≥ k + 1⇒ F
(n)
k = Fk.
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Chapter 4: Series expansions

As a result, the settled coefficients Fk only depend on y0, . . . , yk+1. The proof of this theorem
will be exactly along the lines of the proof in [39] for the entropy. We give three lemmas which
combined together prove the theorem.

First we introduce a more general process W = {Wn}n≥0 with Wn ∈ {−1, 1}. For this we let the
probability of an erroneous observation of Xi depend on i. So let P[Z ′

i = 1] = 1 − δi, and let
Wn = Xn · Z ′

n. Setting all δi’s equal will give the original process Y.

Denote a vector by
vn
0 = (v0, v1, . . . , vn).

We abbreviate P[X] for P[X = x]. Define

Gn = Gn(δn
0 , wn

0 ) = P[W0 |Wn
1 ].

Note that Gn((δ, δ, . . . , δ), yn
0 ) = P[Y0 | Y n

1 ].

Lemma 4.3. For all 0 < j ≤ n it holds that if δj = 0 then Gn = Gj.

Proof. If δj = 0 then Wj is equal to the underlying Markov chain, i.e. Wj = Xj . This gives that
P[W j−1

0 | Wn
j ] = P[W j−1

0 | Wj ], as conditioning on Wn
j+1 will give no extra information in this

case. So let δj = 0, then

Gn = P[W0 |Wn
1 ]

=
P[Wn

0 ]
P[Wn

1 ]

=
P[W j−1

0 |Wj ]
P[W j−1

1 |Wj ]

= P[W0 |W j
1 ] = Gj .

Let ~k = kn
0 , where ki ∈ N ∪ {0}. Define the weights of ~k as w(~k) =

∑n
i=0 ki, and define

G
~k
n =

∂w(~k)Gn

∂δk0
0 . . . ∂δkn

n

∣∣∣∣∣
~δ=0

.

Lemma 4.4. Let ~k(c) = (k0, k1, . . . , kn−1, kn = 0, 0, . . . , 0︸ ︷︷ ︸
c

), then, for all c ∈ N,

G
~k(c)

n+c = G
~k
n.

Proof. Note that we do not differentiate with respect to δn, so setting δn = 0 implies, by
Lemma 4.3, that Gn+c = Gn. This gives

G
~k(c)

n+c =
∂w(~k(c))Gn+c

∂δk0
0 . . . ∂δ

kn−1
n−1

∣∣∣∣∣
~δ=0

=
∂w(~k)Gn

∂δk0
0 . . . ∂δ

kn−1
n−1

∣∣∣∣∣
~δ=0

= G
~k
n.
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As F
(n)
k is the kth coefficient of the series expansion of P[Y0 | Y1, . . . , Yn] it can be written as

F
(n)
k =

1
k!

∂k

∂δk
P[Y0 | Y1, . . . , Yn]

∣∣∣∣
δ=0

.

Let the vector ~k give the number of times we differentiate to each of the δi, i = 0, . . . , n in the
process W, then we can write

F
(n)
k =

1
k!

∑
~k: w(~k)=k

G
~k
n.

Many terms G
~k
n in this sum equal zero, as the next lemma shows.

Lemma 4.5. If there exists i, j with 0 < j < i ≤ n for which ki > kj = 0 then G
~k
n = 0.

Proof. From kj = 0 it follows that δj = 0 and so, again using Lemma 4.3, we get Gn = Gj . This
gives

G
~k
n =

∂w(~k)Gn

∂δk0
0 . . . ∂δkn

n

∣∣∣∣∣
~δ=0

=
∂w(~k)Gj

∂δk0
0 . . . ∂δkn

n

∣∣∣∣∣
~δ=0

=
∂w(~k)−1

∂δk0
0 . . . ∂δki−1

i . . . ∂δkn
n

(
∂Gj

∂δi

) ∣∣∣∣∣
~δ=0

= 0.

The last equality holds as Gj does not depend on δi. Note that the one but last step is possible
as ki ≥ 1.

Now we give the proof of Theorem 4.2:

Proof of Theorem 4.2. Let ~k = kn
0 with k = w(~k). Define the length of ~k as l(~k) = max{i | ki > 0}.

Then Lemma 4.5 gives
G

~k
n 6= 0⇒ l(~k) ≤ k,

as the maximum length is achieved when ~k = (0, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0).

From Lemma 4.4 it follows that for all ~k with l(~k) ≤ k

G
~k
n = G

(k0,...,kk+1)
k+1 ,

and so
G(k)

n = G
(k)
k+1, ∀ n ≥ k + 1.

Assuming analyticity of P[Y0 | Y1, Y2, . . .] and F (n) around δ = 0, we have limn→∞ F
(n)
k = Fk and

therefore

F
(n)
k = Fk, ∀ n ≥ k + 1.
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4.1.3 Settlement coefficients entropy

We now give the outline of the proof of Theorem 4.1, as given in [39]. It is along the same lines
as the proof of Theorem 4.2. Define

G̃n = G̃n(δn
0 ) = h(Y0 | Y1, . . . , Yn),

then G̃n((δ, δ, . . . , δ)) = Cn. The following lemmas can easily be proved along the same lines of
the corresponding lemmas in Section 4.1.2. For detailed proofs we refer to [39].

Lemma 4.6. For all 0 < j ≤ n, if δj = 0 then G̃n = G̃j .

Lemma 4.7. If there exists i, j with 0 < j < i ≤ n, for which ki ≥ 1, kj ≤ 1 then G̃
~k
n = 0.

Lemma 4.8. For ~k(c) with kn ≤ 1 and for all c ∈ IN : G̃
~k(c)

n+c = G̃
~k
n.

Note that the conditions in Lemma 4.7 slightly differ from those in Lemma 4.5. From this the
different bound follows:

G̃
~k
n 6= 0⇒ l(~k) ≤

⌈
k + 1

2

⌉
,

which gives the corresponding result for the settlement of the coefficients C
(n)
k .

4.1.4 Example settlement coefficients

We will illustrate the settlement of the coefficients in the series expansion of the conditional
probability by means of a simple example. Consider the binary symmetric model. We calculate
the conditional probabilities for the all-one vector y, and express this as a power series in δ
around δ = 0. So we derive

P[Y0 = 1 | Y1 = 1, . . . , Yn = 1] =
∞∑

k=0

F
(n)
k (p ; 1, . . . , 1) δk,

for n ≥ 0. For details on the calculation of this, see Section 4.3. The coefficients F
(n)
k (p ; 1, . . . , 1)

are now given by:

n F
(n)
0 F

(n)
1 F

(n)
2 F

(n)
3 F

(n)
4

0 1/2
1 p 2(1− 2p) −2(1− 2p)

2 p 1−2p
p

(1−2p)(3p−2)
p2

−4(p−1)(1−2p)2

p3

−2(1−2p)2(5p2−10p+4)
p4

3 p 1−2p
p

−(1−p)2(1−2p)
p3

−(1−2p)2(2p2−1)
p5

−(1−2p)2(5p4−5p2+1)
p7

4 p 1−2p
p

−(1−p)2(1−2p)
p3

2(1−p)2(1−2p)2

p5

−(1−2p)2(p4−4p3+14p2−14p+4)
p7

5 p 1−2p
p

−(1−p)2(1−2p)
p3

2(1−p)2(1−2p)2

p5

−(1−p)2(1−2p)2(p2−10p+5)
p7

6 p 1−2p
p

−(1−p)2(1−2p)
p3

2(1−p)2(1−2p)2

p5

−(1−p)2(1−2p)2(p2−10p+5)
p7

Here we fixed the values of the yi. In general the coefficients of the series expansion will depend
on these. Because of the settlement the coefficient Fk = Fk(p ; y0, . . . , yk+1).
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4.2 Analyticity of series expansions

In this section we give the results of Han and Marcus [19, 20] concerning the analyticity of the
series expansions for h(Y ).

Consider the Markov chain {Vn}n≥0 with state space V and transition probability matrix ∆.
Let {Yn}n≥0 be a hidden Markov model with state space Y, defined by Yn = Φ(Vn) for some
function Φ : V 7→ Y. Then the main result is given by:

Theorem 4.9 ([20, Theorem 1.1]). Suppose that the entries of ∆ are analytically parameterized
by a real variable vector ~ε. If at ~ε = ~ε0,

i for all y ∈ Y, there is at least one j with Φ(j) = y such that the j-th column of ∆ is strictly
positive, and

ii every column of ∆ is either all zero or strictly positive,

then h(Y ) is a real analytic function of ~ε at ~ε0.

If all entries of ∆ are strictly positive, both conditions are met.

Real analyticity of a function at a certain point implies that it can be expanded as a convergent
power series in a neighborhood of the point. A derivation is given to determine a complex neigh-
borhood of ~ε0 where the function is analytic. There is no complete set of necessary and sufficient
conditions on ∆ and Φ known to [20] that guarantees analyticity of the entropy h(Y ). Only for a
very special case of hidden Markov models these conditions are given, when there exists a y such
that Φ−1(y) contains exactly one element.

For the binary symmetric model, we have Vn = (Xn, Yn) with transition probability matrix ∆ as
given in (2.1.1). We have that h(Y ) is analytical as a function of δ and p, when both are in (0, 1).
But, by Theorem 4.9, this constraint can be relaxed. Also for δ = 0 and p ∈ (0, 1) analyticity
of h(Y ) still holds, as it can be easily checked that in this case both conditions hold.

For the binary symmetric case a system of inequalities is given in [20], which involves an r such that
the entropy is an analytic function of δ for |δ| < r. From this a lower bound on the convergence
radius is estimated for given values of p. We will discuss another idea to derive the convergence
radius, for an expansion of the entropy in δ(1− δ), in Section 5.7.

4.3 Series expansion in δ

From now on we will focus on the binary symmetric hidden Markov model. We derive a series
expansion in δ around δ = 0 for the conditional probabilities P[Y0 | Y1, . . . , Yn]. For this, we first
observe that we can write

P[Y0, Y1, . . . , Yn] =
n+1∑
k=0

f
(n)
k δk.

The coefficients f
(n)
k = f

(n)
k (p ; y0, . . . , yn) are found by differentiation of this probability on the

left-hand side:
1
k!

∂k

∂δk
P[Y0 = y0, . . . , Yn = yn]

∣∣∣∣
δ=0

.
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Using this expansion we derive an expansion for the conditional probabilities

P[Y0 | Y1, . . . , Yn] =
∞∑

k=0

F
(n)
k δk.

We give the expressions for the first few terms, from that we show the earlier discussed settlement
of the coefficients for the first two: F

(n)
0 = F0 and F

(n)
1 = F1 for n ≥ k + 1. We note some

structure in the coefficients, but this turns out not to be sufficient to find a general expression for
them.

4.3.1 Series expansion P[Y0, Y1, . . . , Yn]

As mentioned before, the probability P[Y0 = y0, . . . , Yn = yn] is a polynomial in δ of degree n + 1
and can therefore be written as

P[Y0 = y0, . . . , Yn = yn] =
n+1∑
k=0

f
(n)
k δk,

where

f
(n)
k = f

(n)
k (p ; y0, . . . , yn)

=
1
k!

∂k

∂δk
P[Y0 = y0, . . . , Yn = yn]

∣∣∣∣
δ=0

. (4.3.1)

We write P[Y0 = y0, . . . , Yn = yn] in such a way that we can easily take the derivative of it with
respect to δ. For this, we will condition on the number of yi’s that are ‘flipped’ with respect to the
underlying Markov chain xi. Such a flip will occur when zi = −1, see Section 2.1.4. As the zi are
i.i.d. distributed Bernoulli random variables, the probability of a certain number of flips, say l,is
binomially distributed with success probability δ. So for all z0, . . . , zn, having exactly l flips:

P[Z0 = z0, . . . , Zn = zn] = δl (1− δ)n−l+1.

Denoting by #{i : zi = −1} the number of flips, we can now write

P[Y0 = y0, . . . , Yn = yn]

=
n+1∑
l=0

∑
#{i:zi=−1}=l

P[Y0 = y0, . . . , Yn = yn | Z0 = z0, . . . , Zn = zn]P[Z0 = z0, . . . , Zn = zn]

=
n+1∑
l=0

δl(1− δ)n−l+1
∑

#{i:zi=−1}=l

P[Y0 = y0, . . . , Yn = yn | Z0 = z0, . . . , Zn = zn]

=
n+1∑
l=0

δl(1− δ)n−l+1
∑

#{i:zi=−1}=l

P[X0 = y0z0, . . . , Xn = ynzn]

=
n+1∑
l=0

δl(1− δ)n−l+1cl(p ;n ; y0, . . . , yn), (4.3.2)
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Section 4.3: Series expansion in δ

where
cl(p ;n ; y0, . . . , yn) :=

∑
#{i:zi=−1}=l

P[X0 = y0z0, . . . , Xn = ynzn]. (4.3.3)

This is the probability of observing the sequence y0, . . . , yn when exactly l bits of it are flipped.
The sum is over

(
n+1

l

)
terms. In the sequel we will abbreviate this probability by cl(n). Note that

it does not depend on δ.

Note that we can write

P[Xi = xi | Xi+1 = xi+1] =
1
2

+
1
2
(1− 2p)xixi+1,

so

P[X0 = x0, . . . , Xn = xn] =
1
2

n−1∏
i=0

(
1
2

+
1
2
(1− 2p)xixi+1

)
. (4.3.4)

This provides a way to calculate the probabilities in cl(n). As

P[X0 = y0z0, . . . , Xn = ynzn] =
1
2

n−1∏
i=0

(
1
2

+
1
2
(1− 2p)yi zi yi+1 zi+1

)
.

we have

cl(n) =
1
2

∑
#{i:zi=−1}=l

n−1∏
i=0

(
1
2

+
1
2
(1− 2p)yi zi yi+1 zi+1

)
. (4.3.5)

Continuing with (4.3.1), we now have

f
(n)
k =

1
k!

[
n+1∑
l=0

cl(n)
∂k

∂δk

(
δl(1− δ)n−l+1

)] ∣∣∣∣∣
δ=0

.

We can work out this last term. Note that by Leibniz’s rule [1]:

∂k

∂δk
δl(1− δ)n−l+1 =

k∑
m=0

(
k

m

)
∂m

∂δm
δl ∂(k−m)

∂δ(k−m)
(1− δ)n−l+1.

The two terms in the right-hand side are given by

∂m

∂δm
δl =

l!
(l −m)!

δ(l−m), for m ≤ l,

and zero otherwise, and

∂(k−m)

∂δ(k−m)
(1− δ)n−l+1 = (−1)(k−m) (n− l + 1)!

(n− l + 1− (k −m))!
(1− δ)(n−l+1−(k−m)),

for k −m ≤ n− l + 1,

and zero otherwise.
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Chapter 4: Series expansions

Now we plug in δ = 0. The first term is only non-zero for m = l and then equals one. For m = l
the constraint for the second term reduces to k ≤ n + 1, and in this case it equals one for all
n, l, k, m. We have:

f
(n)
k =

1
k!

[
n+1∑
l=0

cl(n)
∂k

∂δk

(
δl(1− δ)n−l+1

)] ∣∣∣∣∣
δ=0

=
1
k!

n+1∑
l=0

cl(n)
k∑

m=0, m≤l,
k−m≤n−l+1

δ(l−m) (−1)(k−m)

(
k

m

)
l!

(l −m)!
(n− l + 1)!

(n− l + 1− (k −m))!

∣∣∣∣
δ=0

.

Working this out gives f
(n)
k = 0 for k ≥ n + 1, and

f
(n)
k =

n+1∑
l=0

cl(n) (−1)(k−l) 1
k!

(
k

l

)
l!

(l − l)!
(n− l + 1)!
(n− k + 1)!

=
n+1∑
l=0

cl(n)
(k − l)!

(−1)(k−l) (n− l + 1)!
(n− k + 1)!

(4.3.6)

otherwise. The first f
(n)
k ’s are given by:

f
(n)
0 = c0(n),

f
(n)
1 = −(n + 1)c0(n) + c1(n),

f
(n)
2 =

{
n(n+1)

2 c0(n)− nc1(n) + c2(n) if n ≥ 1;
0 otherwise,

f
(n)
3 =

{ −(n−1)n(n+1)
6 c0(n) + (n−1)n

2 c1(n)− (n− 1)c2(n) + 1
6c3(n) if n ≥ 2;

0 otherwise.

4.3.2 Series expansion P[Y0 | Y1, . . . , Yn]

In the last section we wrote P[Y0, Y1, . . . , Yn] as a polynomial in δ. Using Bayes’ Rule we will
use this to express the conditional probability P[Y0|Y1, . . . , Yn] as a series expansion in δ around
δ = 0:

P[Y0|Y1, . . . , Yn] =
P[Y0, Y1, . . . , Yn]
P[Y1, . . . , Yn]

=

n+1∑
k=0

a
(n)
k δk

n∑
k=0

b
(n)
k δk

=
a0

b0
+

(a1b0 − a0b1)
b2
0

δ +

(
a2b

2
0 − a1b1b0 + a0

(
b2
1 − b0b2

))
b3
0

δ2 + . . .

=
∞∑

k=0

F
(n)
k δk, (4.3.7)
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Section 4.3: Series expansion in δ

where the ai and bi in the second line should be read as a
(n)
i and b

(n)
i respectively, and F

(n)
k =

F
(n)
k (p ; y0, . . . , yn). The general form for F

(n)
k is given in [17]:

F
(n)
k =

(−1)k

bk+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0b1 − b0a1 b0 0 . . . 0
a0b2 − b0a2 b1 b0 . . . 0
a0b3 − b0a3 b2 b1 . . . 0

...
...

...
...

a0bk−1 − b0ak−1 bk−2 bk−3 . . . b0

a0bk − b0ak bk−1 bk−2 . . . b1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where again ai should be read as a
(n)
i , and bi as b

(n)
i . Note that

a
(n)
k = f

(n)
k (p ; y0, . . . , yn),

b
(n)
k = f

(n−1)
k (p ; y1, . . . , yn),

(4.3.8)

where the f
(n)
k are as given in (4.3.6).

4.3.3 Calculating Fk’s

We will now give a few of the coefficients in the series expansion (4.3.7). Because of the settlement
of the coefficients, see Theorem 4.2, we have Fk = F

(n)
k for n ≥ k +1. So to calculate Fk it suffices

to consider the expansion of P[Y0 | Y1, . . . , Yk+1].

In order to find F0, we calculate P[Y0 | Y1] = P[Y0, Y1]/P[Y0]. The denominator is trivially 1/2,
and for the nominator we have from (4.3.3) and (4.3.6):

P[Y0 = y0, Y1 = y1] = f
(1)
0 + f

(1)
1 δ + f

(1)
2 δ2

= c0(1) +
(
c1(1)− 2c0(1)

)
δ +

1
2
(
2c0(1)− 2c1(1) + 2c2(1)

)
δ2,

where ci(1) = ci(p ; 1 ; y0, y1). These can, using (4.3.5), be determined:

c0(1) = P[X0 = y0, X1 = y1]

=
1
2

(
1
2

+
1
2
(1− 2p)y0y1

)
,

c1(1) = P[X0 = ȳ0, X1 = y1] + P[X0 = y0, X1 = ȳ1]

=
1
2
− 1

2
(1− 2p)y0y1,

c2(1) = P[X0 = ȳ0, X1 = ȳ1]

=
1
2

(
1
2

+
1
2
(1− 2p)y0y1

)
.

We now have

P[Y0 = y0, Y1 = y1] =
1
2

(
1
2

+
1
2
(1− 2p)y0y1

)
− (1− 2p)y0y1 δ + (1− 2p)y0y1 δ2.
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Chapter 4: Series expansions

This gives

P[Y0 | Y1] =
P[Y0, Y1]
P[Y1]

= 1
2 (1 + (1− 2p)y0y1)− 2(1− 2p)y0y1δ + 2(1− 2p)y0y1δ

2,

so
F0 = 1

2 (1 + (1− 2p)y0y1).

In the same way we can derive higher-order coefficients. For F1 we consider P[Y0 | Y1, Y2], which
turns out to be

P[Y0 | Y1, Y2] = 1
2 (1 + (1− 2p)y0y1)−

2(1− 2p)y0y1

1 + (1− 2p)y1y2
δ + O

(
δ2
)

and so

F1 =
−2(1− 2p)y0y1

1 + (1− 2p)y1y2
.

Using P[Y0 | Y1, Y2, Y3] we find F2:

F2 =
2(1− 2p)y0y1((1− 2p)y2y3 − (1− 2p)y1y2(3− (1− 2p)y2y3) + 1)

((1− 2p)y1y2 + 1)2((1− 2p)y2y3 + 1)
,

and from P[Y0 | Y1, Y2, Y3, Y4] the F3 follows:

F3 =
16λ2y0y

2
1y2

(
y1y

2
2y2

3y4λ
3 − y2y3(y1(y2 + y4)− y3y4)λ2 − (y1y2 + y3(y2 − y4))λ + 1

)
(λy1y2 + 1)3(λy2y3 + 1)2(λy3y4 + 1)

,

where λ = 1− 2p.

Our aim was to find a general form for these coefficients. From the expressions for F0, F1, F2

and F3 we see that the denominators have a very nice structure. Unfortunately we are not able
to detect a nice structure in the nominators.

Coefficients in λi

In the expressions for the Fk in the previous section, we spotted the terms (1− 2p) yi yi+1. These
come in because of (4.3.5). This suggests that the expression can become more clear using the
terms

λi = (1− 2p) yi yi+1.

This gives for the first four terms:

F0 =
1
2
(λ0 + 1), (4.3.9)

F1 = − 2λ0

λ1 + 1
,

F2 =
2λ0(λ1(λ2 − 3) + λ2 + 1)

(λ1 + 1)2(λ2 + 1)
,

F3 =
16λ0λ1(λ1(λ2(λ3 − 1)− λ3 − 1) + λ2(λ3 − 1) + λ3 + 1)

(λ1 + 1)3(λ2 + 1)2(λ3 + 1)
.

From this we see again the nice structure of the denominators, but the nominators stay unclear.
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Section 4.4: Series expansion in ξ = δ/(1− δ)

4.3.4 Settlement F
(n)
0

In Theorem 4.2 it is proved that the coefficients F
(n)
k settle for n ≥ k + 1. We will show this here

for F
(n)
0 . In Appendix B.2 we will show it for F

(n)
1 .

From (4.3.7) it follows that

F
(n)
0 =

a
(n)
0

b
(n)
0

,

where

a
(n)
0 = c0(p ;n ; y0, . . . , yn),

b
(n)
0 = c0(p ;n− 1 ; y1, . . . , yn).

According to (4.3.4) we have, writing again λi = (1− 2p) yi yi+1:

a
(0)
0 =

1
2
,

a
(n)
0 =

1
2n+1

(1 + λ0)(1 + λ1) . . . (1 + λn−1), for n ≥ 1.

Furthermore

b
(0)
0 = 1, b

(1)
0 =

1
2
,

b
(n)
0 =

1
2n

(1 + λ1) . . . (1 + λn−1), for n ≥ 2.

Almost all terms cancel out in the division a
(n)
0 / b

(n)
0 , and it follows that:

F
(0)
0 =

1
2
, F

(n)
0 =

1
2
(1 + λ0), for n ≥ 1.

As by (4.3.9) F0 = 1
2 (1 + λ0), this gives that F

(n)
0 = F0 for n ≥ 1 = k + 1. Note that F0 only

depends on y0 and y1.

The settlement of F
(n)
1 follows along the same lines. It involves more work, as for this also a

(n)
1

and b
(n)
1 need to be calculated. Tedious bookkeeping then gives

F
(0)
1 6= F

(1)
1 6= F

(2)
1 = F

(3)
1 = . . . = F1,

which shows the desired settlement, see Appendix B.2.

4.4 Series expansion in ξ = δ/(1− δ)

We now consider the series expansion of P[Y0|Y1, . . . , Yn] in ξ = δ
1−δ around ξ = 0:

P[Y0 | Y1, . . . , Yn] = (1− δ)
∞∑

k=0

g
(n)
k ξk.

In the sequel it will turn out that it is convenient to have the term (1−δ) in front of the summation.
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Chapter 4: Series expansions

4.4.1 Series expansion

From (4.3.2) we have

P[Y0, . . . , Yn] =
n+1∑
k=0

δk(1− δ)n−k+1ck(n).

Let ξ = δ
1−δ , then we can write:

δk(1− δ)n−k+1 =
(

δ

1− δ

)k

(1− δ)n+1 = (1− δ)n+1ξk.

This gives

P[Y0|Y1, . . . , Yn] =
P[Y0, Y1, . . . , Yn]
P[Y1, . . . , Yn]

=

(1− δ)n+1
n+1∑
k=0

a′
(n)
k ξk

(1− δ)n
n∑

k=0

b′
(n)
k ξk

= (1− δ)
∞∑

k=0

g
(n)
k ξk,

where g
(n)
k = g

(n)
k (p ; y0, . . . , yk+1). For these coefficients we see the same settlement for n ≥ k + 1

as we did for the F
(n)
k .

A simple example of the settlement will be given in the next section.

4.4.2 Example settlement g
(n)
k

For the case y = {1, 1, . . .} we calculate

P[Y0 = 1 | Y1 = 1, . . . , Yn = 1] = (1− δ)
∞∑

k=0

g
(n)
k (p ; 1, . . . , 1)ξk,

where the coefficients are given by

n g
(n)
0 g

(n)
1 g

(n)
2 g

(n)
3 g

(n)
4

0 1 1
1 1− p 3p− 1 2(1− 2p) −2(1− 2p) 2(1− 2p)

2 1− p p2

1−p
(1−2p)(3p−1)

(1−p)2
(1−2p)(5p2−1)

−(1−p)3
(1−2p)(7p3+7p2−7p+1)

(1−p)4

3 1− p p2

1−p
p2(1−2p)
(1−p)3 − (1−2p)(p2−3p+1)2

(1−p)5
(1−2p)(p3−p2−2p+1)2

(1−p)7

4 1− p p2

1−p
p2(1−2p)
(1−p)3 −p2(1−2p)(p2+2p−1)

(1−p)5
(1−2p)(p6+6p5−15p4+28p3−23p2+8p−1)

(1−p)7

5 1− p p2

1−p
p2(1−2p)
(1−p)3 −p2(1−2p)(p2+2p−1)

(1−p)5
p2(1−2p)(p4+6p3+p2−4p+1)

(1−p)7

6 1− p p2

1−p
p2(1−2p)
(1−p)3 −p2(1−2p)(p2+2p−1)

(1−p)5
p2(1−2p)(p4+6p3+p2−4p+1)

(1−p)7

In Appendix B.3 we give the coefficients gk for general y. Also we determine the coefficients for
the expansion of the logarithm of the conditional probability. We remark some structure for the
coefficients in both cases, but we are not able to express them in a general form.
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Chapter 5

Recurrence relations

In this chapter we will derive a power series expansion for the entropy of the binary symmetric
hidden Markov model, making use of two recurrence relations for the conditional probability
P[Y0 = 1|Y1, . . . , Yn]. This expansion will be in ζ = δ(1− δ) around ζ = 0, where the coefficients
are functions of p. For these recurrence relations one only has to keep track of the previous
transition probabilities of the process, instead of the entire history of it.

We start by giving and proving the two recurrence relations. Iterating these enables us to compute
the conditional probability P[Y0|Y1, . . . , Yn], and we find a strict upper and lower bound for it. The
main part of this chapter will be the method to derive a power series expansion for the entropy,
based on the use of the two relations. The expansion will be derived by substituting one expansion
into another. We will give a conjecture for the domain on which it converges. Finally we give a
small but efficient simulation to estimate the entropy for given parameters p and δ. We end this
chapter by comparing the expansion we found with the result of Zuk et al. [42]. Note that in this
chapter we entirely focus on the binary symmetric hidden Markov model.

5.1 Recurrence relations f1 and f−1

For the conditional probability that Y0 = 1 given the past, we define:

wn(y1, . . . , yn) := P[Y0 = 1|Y1 = y1, . . . , Yn = yn].

This wn can be expressed in wn−1 by two recursive relations given in the following theorem.

Theorem 5.1. We have

wn(1, y2, . . . , yn) = f1(wn−1(y2, . . . , yn)),
wn(−1, y2, . . . , yn) = f−1(wn−1(y2, . . . , yn)),

(5.1.1)

where

f1(x) := 1− p− δ(1− δ)(1− 2p)
x

,

f−1(x) := p +
δ(1− δ)(1− 2p)

1− x
.

(5.1.2)
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Section 5.2: Proofs recurrence relations

Both f1 and f−1 are defined on the interval around x = 1
2 on which they are strictly between 0

and 1, as will be commented later.

The theorem states that for this hidden Markov process, the transition probabilities form a Markov
process, as

wn(y1, . . . , yn) =
{

f1(wn−1(y2, . . . , yn)) with prob. wn−1(y2, . . . , yn),
f−1(wn−1(y2, . . . , yn)) with prob. 1− wn−1(y2, . . . , yn). (5.1.3)

In this way the transition probabilities depend only on the previous ones. This enables us to
simulate the process very efficiently without having to keep track of the entire history of it, see
Section 5.9.

5.2 Proofs recurrence relations

We will give two proofs of Theorem 5.1. For the first one we express the probability P[Y0, . . . , Yn]
in terms of P[Y1, . . . , Yn] and P[Y2, . . . , Yn]. This proof is given below. For the second proof we
condition on the state of X1, and this proof is given in Appendix A.7.

Define
pn(y0, . . . , yn) := P[Y0 = y0, Y1 = y1, . . . , Yn = yn].

The next proposition gives a recurrence relation for this probability:

Proposition 5.2.

pn(y0, . . . , yn) =
λ y0 y1 + 1

2
pn−1(y1, . . . , yn)− δ(1− δ) λ y0 y1 pn−2(y2, . . . , yn), (5.2.1)

where λ := 1− 2p.

The proof of this proposition is given in Appendix A.8. We now prove the theorem.

Proof of Theorem 5.1. Note that by definition and by Bayes’ Law:

wn(y1, . . . , yn) = P[Y0 = 1 | Y1, . . . , Yn]

=
P[Y0 = 1, Y1 = y1 . . . Yn = yn]

P[Y1 = y1 . . . Yn = yn]

=
pn(1, y1, . . . , yn)
pn−1(y1, . . . , yn)

. (5.2.2)

Using this and (5.2.1), we get

wn(1, y2, . . . , yn) =
pn(1, 1, y2, . . . , yn)
pn−1(1, y2, . . . , yn)

=
λ+1

2 pn−1(1, y2, . . . , yn)− δ(1− δ)λpn−2(y2, . . . , yn)
pn−1(1, y2, . . . , yn)

=
λ + 1

2
− δ(1− δ) (1− 2p)

wn−1(y2, . . . , yn)
,

40



Chapter 5: Recurrence relations

where the last equality holds, as by (5.2.2) we have that wn−1(y2, . . . , yn) = pn−1(1,y2,...,yn)
pn−2(y2,...,yn) . As

λ = 1− 2p we have λ+1
2 = 1− p, and we find

wn(1, y2, . . . , yn) = 1− p− δ(1− δ)(1− 2p)
wn−1(y2, . . . , yn)

,

which proves the first equation of the theorem. Analogously we can derive

wn(−1, y2, . . . , yn) = p +
δ(1− δ)(1− 2p)

1− wn−1(y2, . . . , yn)
,

which proves the second one.

5.3 Symmetry

By symmetry, it holds that

wn(y1, . . . , yn) = 1− wn(−y1, . . . ,−yn),

because

wn(y1, . . . , yn) = P[Y0 = 1|Y1 = y1, . . . , Yn = yn]
= P[Y0 = −1|Y1 = −y1, . . . , Yn = −yn]
= 1− P[Y0 = 1|Y1 = −y1, . . . , Yn = −yn]
= 1− wn(−y1, . . . ,−yn).

Furthermore the process is symmetric in δ, which directly follows from the fact that f1 and f−1

only depend on δ via the term δ(1− δ). It also holds that f1(x, p, δ) = f−1(1− x, 1− p, δ) and

f±1(x, p, δ) = 1− f±1(x, 1− p, δ).

This last relation will turn out to be important when investigating the radius of convergence of
the series expansion given in Section 5.6.

5.4 Iteration of f1 and f−1

We can express wn(y1, . . . , yn) in terms of f1 and f−1:

wn(y1, . . . , yn) = fy1

(
fy2

(
. . .
(
fyn−1

(
fyn

(
1
2

)))
, (5.4.1)

which directly follows from (5.1.1). The fraction 1
2 comes in because

w0 = P[Y0 = 1] = 1
2 .

We can illustrate this by plotting f1, f−1 and x, see Figure 5.1. This plot is for the values p = 0.3
and δ = 0.1, but the shape of the curves will essentially be the same for other choices of 0 < p < 1/2
and 0 < δ < 1, δ 6= 1/2. For 1/2 < p < 1 the graphs are mirrored in the line x = 1/2.
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Figure 5.1: Plot of f1, f−1 and x, for p = 0.3 and δ = 0.1, with the lower and upper bounds WL

and WU indicated.

For the iteration we start at x = w0 = 1
2 , and repeatedly apply either f1 or f−1, depending on the

realization of yi. From the plot it directly follows that w1, w2, . . . will always be in the interval
between the two indicated intersections, those closest to x = 1/2. Repeatedly applying f−1 will
give convergence to the left intersection, and repeatedly applying f1 to the right one. This holds
as the derivatives of f−1 respectively f1 in these points are smaller than 1. The two indicated
intersections are the solutions of f−1(x) = x and f1(x) = x. They will be closer investigated in
the next section.

5.5 Upper and lower bound

From the plot and the reasoning in the previous section, it followed that wn is bounded. We will
derive tight uniform lower and upper bounds, denoted by WL respectively WU . These bounds are
tight, so WL is the largest and WU the smallest value such that

∀n ∀ {y1, . . . , yn} : WL ≤ wn(y1, . . . , yn) ≤WU .

First we state a result which follows from expression (5.4.1).

Lemma 5.3. For p ∈ (0, 1
2 ) it holds that, for all n:

WL(n) := f−1

(
f−1

(
. . .
(
f−1

(
1
2

))))
≤ wn(y1, . . . , yn) ≤

f1

(
f1

(
. . .
(
f1

(
1
2

))))
=: WU (n),

i.e. n times f−1 applied to 1
2 , c.q. n times f1.

This follows from the fact that f−1(x) ≤ f1(x) for all x such that WL(n) ≤ x ≤WU (n), for all n.
The proof is given in Appendix A.9. By symmetry, we have for these bounds

WL(n) = 1−WU (n),
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Chapter 5: Recurrence relations

for all n. These bounds are tight: For wn(−1, . . . ,−1) and wn(1, . . . , 1) the lower respectively
upper bounds hold with equality. For p > 1

2 the upper and lower bounds are switched. Assume
throughout the sequel that 0 < p < 1

2 . From the lemma it follows that tight uniform lower and
upper bounds are:

WL = lim
n→∞

WL(n),

WU = lim
n→∞

WU (n).

Lemma 5.4. Both lim
n→∞

WL(n) and lim
n→∞

WU (n) exist and are finite.

Proof. We first prove by induction that WL(n) is decreasing in n.

WL(1) = f−1( 1
2 ) = p + 2δ(1− δ)(1− 2p)

≤ p + 1
2 (1− 2p) = 1

2 = w0 = WL(0),

where the inequality holds as δ(1− δ) ≤ 1
4 . Now assume that WL(n + 1) ≤WL(n) then

WL(n + 2) = p +
δ(1− δ)(1− 2p)
1−WL(n + 1)

≤ p +
δ(1− δ)(1− 2p)

1−WL(n)
= WL(n + 1).

We have WL(n) ≤ 1
2 , and WL(n) ≥ 0 as it is a probability. By completeness of the real numbers,

it follows that limn→∞ WL(n) exists and is finite.

By the same reasoning as above it follows that WU (n) is increasing in n. As 1
2 ≤ WU (n) ≤ 1,

we have that limn→∞ WU (n) exists and is finite. Note that this also follows from the equality
WL(n) = 1−WU (n).

Proposition 5.5. As tight uniform lower and upper bounds for wn(y1, . . . , yn), we have:

∀n ∀{y1, . . . , yn} : WL ≤ wn(y1, . . . , yn) ≤WU .

Proof. The statement directly follows from Lemma 5.3 and Lemma 5.4.

For the limit WL it holds that WL = f−1(WL), which is the intersection of f1(x) and the line y = x
in the interval [0, 1

2 ], see Figure 5.1. So we have

WL = p +
δ(1− δ)(1− 2p)

1−WL
.

This gives a quadratic equation in WL, from which WL can be solved in terms of p and δ:

WL =
1 + p−

√
(1− p)2 − 4δ(1− δ)(1− 2p)

2
, (5.5.1)

where we took the solution of the quadratic equation the gives WL ∈ [0, 1
2 ] for all δ and all p < 1

2 .
Analogously it holds that WU = f1(WU ) and we find

WU =
1− p +

√
(1− p)2 − 4δ(1− δ)(1− 2p)

2
. (5.5.2)
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Section 5.6: Expansion entropy

This is the intersection of f1 and y = x in [12 , 1]. Note that WU = 1−WL.

By the relation P[Y0 = −1 | Y1, . . . , Yn] = 1− wn(y1, . . . , yn), the given bounds are by symmetry
also bounds for this probability and hence for P[Y0 | Y1, . . . , Yn]. These bounds are much better
than the bounds found in the proof of Proposition 2.5, which gave δ and 1− δ.

The functions f1 and f−1 map the interval [WL,WU ] to itself. So both functions are in (0, 1) on
this domain, which should be true for a probability. The next proposition proves the claim made
in Section 5.4.

Proposition 5.6. The derivatives of f−1 and f1 in WL respectively WU are in (0, 1).

This gives that both WL and WU are attracting fixed points of f−1 respectively f1. The proof of
this is given in Appendix A.10.

5.6 Expansion entropy

We now derive a power series expansion for hY = hY (p, δ) in ζ = δ(1− δ) around ζ = 0:

hY =
∞∑

k=0

hY,k(p) ζk, (5.6.1)

where the hY,k’s depend only on p. The outline of the approach used to derive expressions for
the hY,k’s will be as follows. First we consider the expansion

hY = c0(p) + 2 c1(p) ζ +
∞∑

n=2

cn(p) dn−1(p, ζ) ζn, (5.6.2)

for some coefficients cn and dn, where the dn depend on ζ. The factor 2 in front of the second
coefficient will become clear later. Then we give an expansion for these coefficients:

dn(p, ζ) = rn,0(p) + 2 rn,1(p) ζ +
∞∑

k=2

rn,k(p) dk−1(p, ζ) ζk. (5.6.3)

Here all but the first two coefficients depend on ζ. By repeadetly plugging in dn(p, ζ) into its own
expansion, we find

dn(p, ζ) =
∞∑

k=0

Rn,k(p) ζk, (5.6.4)

where the Rn,k depend only on p. This expansion we plug in into (5.6.2), to find an expansion
for hY where the coefficients do not depend on ζ any more. This is the desired power series
expansion (5.6.1).

5.6.1 Expansion entropy, coefficients depending on ζ

The entropy of the process Y is given by

hY := lim
n→∞

E[− logP[Y0 | Y1, . . . , Yn]].
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A series expansion for this as in (5.6.2) will be given by the next theorem. For this we introduce
the random variable W, which is the limit of wn as n tends to infinity:

W := lim
n→∞

wn(Y1, . . . , Yn).

By Proposition 2.6 this limit exists.

Theorem 5.7. The entropy of the process Y is given by

hY = h(p) + 2h′(p) (1− 2p) ζ +
∞∑

k=2

h(k)(p)
k!

(1− 2p)kζk E [gk−1(W )] , (5.6.5)

where
h(p) = − (p log p + (1− p) log(1− p)) ,

and
gn(W ) :=

1
Wn

+
1

(1−W )n
.

Proof. From (5.1.3) it follows that

E[wn(Y1, . . . , Yn)] = E[wn−1(Y2, . . . , Yn−1) f1 (wn−1(Y2, . . . , Yn−1))
+ (1− wn−1(Y2, . . . , Yn−1)) f−1 (wn−1(Y2, . . . , Yn−1))].

Let
h(p) = − (p log p + (1− p) log(1− p)) .

This gives for the entropy hY

hY = lim
n→∞

E[h (wn(Y1, . . . , Yn))]

= lim
n→∞

E
[
wn−1(Y2, . . . , Yn)h (f1 (wn−1(Y2, . . . , Yn)))

+ (1− wn−1(Y2, . . . , Yn))h (f−1 (wn−1(Y2, . . . , Yn)))
]
.

Recall that wn(Y1, . . . , Yn) = P[Y0 = 1|Y1, . . . , Yn], and that the random variable W is the limit
of this:

W = lim
n→∞

wn(Y1, . . . , Yn).

By Lebesgue’s Bounded Convergence Theorem [2] we can interchange the limit and the expectation
in the expression for hY, which gives

hY = E[Wh(f1(W )) + (1−W )h(f−1(W ))].

We plug in the expressions for f−1 and f1, and use that h(x) = h(1− x):

hY = E
[
Wh

(
1− p− ζ(1− 2p)

W

)
+ (1−W )h

(
p +

ζ(1− 2p)
1−W

)]
= E

[
Wh

(
p +

ζ(1− 2p)
W

)
+ (1−W )h

(
p +

ζ(1− 2p)
1−W

)]
.
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Section 5.6: Expansion entropy

We now replace both h by its series expansion in ζ around ζ = 0, and collect the powers of ζ.
This gives

hY = E
[
Wh(p) + (1−W )h(p)

+ ζ(1− 2p)h′(p) + ζ(1− 2p)h′(p)

+ ζ2 (1− 2p)2

2W
h′′(p) + ζ2 (1− 2p)2

2(1−W )
h′′(p) + . . .

]
=

∞∑
k=0

h(k)(p)
k!

(1− 2p)kζk E

[
1

W k−1
+

1
(1−W )k−1

]
= h(p) + 2h′(p) (1− 2p) ζ

+
∞∑

k=2

h(k)(p)
k!

(1− 2p)kζk E

[
1

W k−1
+

1
(1−W )k−1

]
.

The last step holds as for k = 0 respectively k = 1 we have, for all W :

1
W−1

+
1

(1−W )−1
= 1,

1
W 0

+
1

(1−W )0
= 2.

Defining

gn(W ) :=
1

Wn
+

1
(1−W )n

,

gives the statement of the theorem.

The given series expansion (5.6.5) corresponds to (5.6.2) with

ck(p) =
h(k)(p)

k!
(1− 2p)k, (5.6.6)

dk(p, ζ) = E [gk(W )] ,

where W depends on p and ζ. The h(k)(p) denote the kth derivative of h in p. It is straightforward
to derive that they are given by

h′(p) = log
1− p

p
,

h(k)(p) = (k − 2)!
(

(−1)k−1

pk−1
− 1

(1− p)k−1

)
, for k ≥ 2.

Denote by hY,k be the kth term in the series expansion of hY , so

hY =
∞∑

k=0

hY,k(p) ζk.

Then from (5.6.5) it directly follows that

hY,0 = h(p)
= −p log p− (1− p) log(1− p),

hY,1 = 2 h′(p) (1− 2p)

= 2(1− 2p) log
1− p

p
.
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In order to find the hY,k for k ≥ 2, we will derive a series expansion for E[gn(W )], as will be done
in the next section.

5.6.2 Expansion E [gn(W )]

To find higher-order terms in the expansion (5.6.5), we express

E[gn(W )] = E

[
1

Wn
+

1
(1−W )n

]
as a series expansion in ζ around ζ = 0.

Proposition 5.8. A series expansion of E [gn(W )] is given by

E [gn(W )] = gn(p) + 2ζ(1− 2p)g′n(p) +
∞∑

k=2

g
(k)
n (p)
k!

(1− 2p)k ζkE[gk−1(W )].

Proof. We will prove this statement in a way similar to the proof of Theorem 5.7. Note that
gn(x) = gn(1− x). We have for n ≥ 1:

E [gn(W )] = E [Wgn(f1(W )) + (1−W )gn(f−1(W ))]

= E

[
Wgn

(
p +

ζ(1− 2p)
W

)
+ (1−W )gn

(
p +

ζ(1− 2p)
1−W

)]
= E

[
W

(
gn(p) +

ζ(1− 2p)
W

g′n(p) + . . .

)
+ (1−W )

(
gn(p) +

ζ(1− 2p)
1−W

g′n(p) + . . .

)]
= gn(p) + 2ζ(1− 2p)g′n(p) +

1
2
ζ2(1− 2p)2g′′n(p)E[g1(W )] + . . .

=
∞∑

k=0

g
(k)
n (p)
k!

(1− 2p)k ζkE[gk−1(W )]

= gn(p) + 2ζ(1− 2p)g′n(p) +
∞∑

k=2

g
(k)
n (p)
k!

(1− 2p)k ζkE[gk−1(W )],

where for the last step we used that g−1(W ) = 1 and g0(W ) = 2 for all W .

This expresses E [gn(W )] in terms of E [gk(W )], for k = 1, 2, . . .. Note that the first two coefficients
only depend on p. We can repeatedly plug in the expansion into itself. In that way we can find
coefficients for the series expansion only depending on p. This will be demonstrated in the sequel
of this section. Doing this, we find a power series expansion for E [gn(W )], where an arbitrary
coefficient can be found in finite time.

To simplify notation, write as in (5.6.3):

E [gn(W )] = rn,0(p) + 2 rn,1(p) ζ +
∞∑

k=2

rn,k(p) ζk E [gk−1(W )] , (5.6.7)
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Section 5.6: Expansion entropy

where

rn,k(p) =
g
(k)
n (p)
k!

(1− 2p)k.

We want to derive a power series expansion like (5.6.4):

E [gn(W )] =
∞∑

k=0

Rn,k(p) ζk.

Writing out the first few terms of (5.6.7) gives

E [gn(W )] = rn,0 + 2rn,1 ζ

+ rn,2 ζ2E[g1(W )]

+ rn,3 ζ3E[g2(W )]

+ rn,4 ζ4E[g3(W )] + . . . .

Now plug in this expansion for n = 1 into E[g1(W )], and collect the powers of ζ:

E [gn(W )] = rn,0 + 2rn,1 ζ

+ rn,2 ζ2
[
r1,0 + 2 r1,1 ζ1 + r1,2 ζ2E[g1(W )] + . . .

]
+ rn,3 ζ3E[g2(W )]

+ rn,4 ζ4E[g3(W )] + . . .

= rn,0 + 2 rn,1 ζ

+ rn,2r1,0 ζ2

+ (rn,3E[g2(W )] + 2 rn,2r1,1) ζ3

+ (rn,4E[g3(W )] + rn,2r1,2E[g1(W )]) ζ4 + . . . .

Plugging the expansion for n = 2 into E[g2(W )] gives, after collecting the powers of ζ:

E [gn(W )] = rn,0 + 2 rn,1 ζ

+ rn,2r1,0 ζ2

+ (rn,3r2,0 + 2 rn,2r1,1) ζ3

+ (rn,4E[g3(W )] + rn,2r1,2E[g1(W )] + 2 rn,3r2,1) ζ4 + . . . .

In the next step, we have to replace E[g3(W )] and E[g1(W )] by their expansions. We can keep
doing this until we find all coefficients up to a desired order.

An arbitrary coefficient Rn,k can be found in finite time. For Rn,k one or more terms E[gi(W )]
have to be replaced in the coefficients of ζ2, . . . , ζk. This are k − 1 coefficients. In coefficient Rn,i

there are a maximum of i− 1 replacements, which gives that the number of replacements cannot
exceed

k∑
i=2

(i− 1) =
k (k − 1)

2
= O(k2).

So it takes O(k2) time to derive the expression for the coefficient Rn,k.
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The first Rn,k are given by:

Rn,0 = rn,0,

Rn,1 = 2rn,1,

Rn,2 = r1,0rn,2,

Rn,3 = 2r1,1rn,2 + r2,0rn,3,

Rn,4 = r1,0r1,2rn,2 + 2r2,1rn,3 + r3,0rn,4,

Rn,5 = 2r1,1r1,2rn,2 + r1,3r2,0rn,2

+ r1,0r2,2rn,3 + 2r3,1rn,4 + r4,0rn,5.

Close investigation of the way in which the expansions are plugged into each other gives us the
following system for Rn,k:

Rn,0 = rn,0, n ≥ 1, Rn,1 = 2 rn,1, n ≥ 1,

Rn,k+1 =
k∑

i=1

rn, i+1 Ri, k−i, n ≥ 1, k ≥ 1.
(5.6.8)

In this way we can express each Rn,k in terms of only p. This leads to the following proposition.

Proposition 5.9. The power series expansion for E[gn(W )] for n ≥ 1 in terms of ζ around ζ = 0
is given by

E [gn(W )] =
∞∑

k=0

Rn,k(p) ζk, (5.6.9)

where the Rn,k are as given in (5.6.8).

5.6.3 Power series expansion entropy

We now combine the results of the previous sections to find the desired power series expansion
for hY . For this we plug in the expansion for E[gn(W )] as given in (5.6.9) into the expansion (5.6.5).
Collecting the powers of ζ gives

hY = c0(p) + 2 c1(p) ζ +
∞∑

n=2

cn(p) ζnE[gn−1(W )]

= c0(p) + 2 c1(p) ζ +
∞∑

n=2

[
cn(p) ζn

( ∞∑
k=0

Rn−1,k(p) ζk

)]

= c0(p) + 2 c1(p) ζ +
∞∑

n=2

[
ζn

(
n∑

m=2

cm(p)Rm−1,n−m(p)

)]
.

This gives us the main result of this chapter, which is stated in the next theorem.

Theorem 5.10. The entropy of a binary symmetric hidden Markov model Y, expanded in ζ =
δ(1− δ) around ζ = 0 is given by

hY = c0(p) + 2 c1(p) ζ +
∞∑

n=2

[
ζn

(
n∑

m=2

cm(p)Rm−1,n−m(p)

)]
(5.6.10)

where the cn are as given in (5.6.6) and the Rn,k as in (5.6.8).
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Figure 5.2: Plot of f1, f−1, x and 1−f1, for p = 0.3 and δ = 0.1, with the intersection 1−f1(x) = x
indicated.

The first ten coefficients are given in Appendix C. As will be shown in Section 5.10, these coeffi-
cients coincide with the coefficients found by Zuk et al. [42], which give the power series expansion
of hY in δ.

5.7 Radius of convergence

We state a conjecture for the interval on which the power series expansion of hY converges. First
we explain the idea that suggested this conjecture. The given conjecture is supported by numerical
results.

Consider
E [gn(W )] = E [Wgn(f1(W )) + (1−W )gn(f−1(W ))] .

As gn(x) = gn(1− x) we have

gn(f−1(W )) = gn(min{f−1(W ), 1− f1(W )}).

We have that 1− f1, see (5.1.2), is given by

1− f1(x) = p +
ζ(1− 2p)

x
.

Its graph is given in Figure 5.2.

In this way, we get in each step of the iteration actually four terms: f1(W ), f−1(W ), 1 − f1(W )
and 1− f−1(W ). This leads to four fixed points. Iterating with f−1 and f1 gives respectively WL
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and WU , see (5.5.1) and (5.5.2). The series expansion for these will converge for

|ζ| < (1− p)2

4(1− 2p)
,

as in general the series expansion for
√

a− b ζ will converge for |ζ| < a/b. We have that this
fraction is larger than 1/4 for all p ∈ (0, 1/2], so we have convergence of the expansions for WL

and WU for all ζ ∈ [0, 1/4], i.e. for all ζ for which the series expansion of hY has an interpretation
as entropy.

Now consider the two fixed points which follow from iterating with 1−f1 and 1−f−1. By symmetry
we only have to consider one of these. Denote the solution of 1− f1(x) = x by W ∗. It is given by

W ∗ =
p +

√
p2 + 4(1− 2p)ζ

2
.

For all ζ and p ∈ (0, 1/2] we have WL ≤W ∗ ≤ 1/2. The expansion for W ∗ will converge for

|ζ| < ζW∗ =
p2

4(1− 2p)
,

for p ∈ (0, 1/2]. Only for p >
√

2− 1 we have that ζW∗ > 1/4. This gives that for smaller values
of p the expansion will not converge for all ζ. Based on this, we state the following conjecture
concerning the radius of convergence for the expansion of hY :

Conjecture 5.11. The interval for p and ζ for which the series expansion (5.6.10) converges
to hY is given by

4ζ <


p2/(1− 2p) if 0 < p <

√
2− 1,

1 if
√

2− 1 < p < 2−
√

2,

(1− p)2/(2p− 1) if 2−
√

2 < p < 1.

Here the results for p > 1/2 followed by symmetry. This conjecture gives that there is at least an
interval with positive length where the expansion will converges. The graph corresponding to this
area is given in Figure 5.3.

The radius of convergence ζr of an arbitrary power series
∑∞

k=0 ak ζk is given by

ζr = lim
k→∞

∣∣∣∣ ak

ak+1

∣∣∣∣ ,
when this limit exists or is ∞. The series then converges for |ζ| < ζr. As the coefficients of the
expansion for hY are too complex to straightforwardly take this limit, we approximated it by
calculating the fraction for increasing k, for given values of p ∈ (0, 1). Although the convergence
of this is very slow, the results of this look like to support the conjecture.

5.8 Plots entropy

In Figure 5.4 we plot the entropy hY against p, for p ∈ [0, 1] and three values of δ: 0.01, 0.1 and
0.5. We give the series expansion using up to the first eighteen orders, so we give:

hY ≈
kmax∑
k=0

hY,kζk,
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Ζ

Figure 5.3: The interval for p and ζ for which the series expansion (5.6.10) converges to hY , as
given in Conjecture 5.11.

for kmax = 0, 1, . . . , 17. Moreover we display the estimated convergence interval, which follows
from Conjecture 5.11. We also plot the approximation for hY found using the simulation given in
Section 5.9.

Note that for the case δ = 0.5 the entropy does not depend on the value of p, as every realization
of Y can be seen as a fair coin flip. In this case the entropy equals log 2. This is also the value for
the entropy in case p = 0.5. So hY (p, δ = 0.5) = hY (p = 0.5, δ) = log 2.

5.9 Simulation

Using equations (5.1.2) we can efficiently find a numerical approximation of the entropy by simu-
lation. This makes use of the fact that the transition probabilities of the process Y form a Markov
chain, see (5.1.3).

5.9.1 Idea simulation

We will simulate a realization of {Yn}n≥0 by drawing a y randomly from {1,−1}, where with
probability x it will be a 1, so P[y = 1] = x. We only keep track of the probability x, and not of
the history of outcomes. We start with x = w0 = 1/2 and update x depending on the outcome
of y, by applying either f1 in case y = 1, or f−1 in case y = −1:

x← f1(x) if y = 1,
x← f−1(x) if y = −1.

After every draw we calculate the conditional entropy H(Yi | Yi−1, . . . , Y0). This is

H(Yi | Yi−1, . . . , Y0) = −x log(x)− (1− x) log(1− x).

For this we only need the probability x, and not the history of the process. We keep the running
sum over the conditional entropy. At the end we divide it by n + 1, the number of realizations
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Figure 5.4: Plots of the first eighteen orders in the series expansion of the entropy hY , against
p ∈ [0, 1]. Also shown the convergence interval and the approximation found by simulation.
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that were simulated. The sum is equal to H(Y0, . . . , Yn), as, by the chain rule for entropy, see
Lemma A.2, we have:

H(Y0, . . . , Yn) =
n∑

i=0

H(Yi | Yi−1, . . . , Y0).

In this way we find an approximation for hY , as by (2.2.1):

hY = lim
n→∞

1
n + 1

H(Y0, . . . , Yn).

The approximation becomes better as n increases.

5.9.2 Program

The code of the program:

{n = 100, x = 0.5, sum = 0}

For[i = 0, i <= n, i++,
sum = sum + ( -x Log[x] - (1-x) Log[1-x]);
If[Random[] < x, x = fp[x], x = fm[x]];

];
sum/(n+1)

where fp = f1, fm = f−1, and Random draws a random number uniformly on [0, 1].

5.9.3 Results

We use the program to approximate the entropy for both p and δ in [0, 1] in steps of 0.02, for
n = 10, 000. The results are given in Figure 5.5. The maximum entropy is achieved in case δ = 1/2
or p = 1/2 and is equal to log 2 ≈ 0.69314 . . .; the minimum is 0 for p and δ both either 0 or 1.
Note that, as is to be expected, there is symmetry in both p and δ, i.e. the value of hY is equal
for p and 1− p, as well as for δ and 1− δ. This does not hold for interchanging p and δ, although
from Figure 5.5(a) this may look like to be the case.

5.10 Coefficients series expansions

In [42] Zuk et al. express hY (p, δ) as a power series expansion in δ around δ = 0. They give the
first twelve coefficients of this expansion, see Section 4.1.1. We show that these are implied by our
result from Section 5.6.3: the expansion in ζ = δ(1− δ).

Write f̃k = f̃k(p) := hY,k(p), i.e.

hY (p, δ) =
∞∑

k=0

f̃k(δ(1− δ))k. (5.10.1)
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Figure 5.5: Results of the simulation for the entropy hY .
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Let fk = fk(p) be the coefficients of the expansion in δ:

hY (p, δ) =
∞∑

k=0

fkδk,

found in [42]. We want to express the coefficients f̃k in fk and vice versa.

By the Binomial Theorem [1] we can write

(1− δ)k =
k∑

l=0

(−1)l

(
k

l

)
δl.

Plugging in this expansion for (1− δ)k in (5.10.1) gives:

∞∑
k=0

fkδk =
∞∑

k=0

f̃k(δ(1− δ))k

=
∞∑

k=0

k∑
l=0

(−1)l

(
k

l

)
δl+kf̃k.

Let m = k + l then this is

∞∑
k=0

fkδk =
∞∑

k=0

2k∑
m=k

(−1)m−k

(
k

m− k

)
δmf̃k.

Now interchange the sums to get

∞∑
k=0

fkδk =
∞∑

m=0

δm
m∑

k=dm
2 e

(−1)m−k

(
k

m− k

)
f̃k,

so the general expression for fm in terms of f̃k, k ≤ m is:

fm =
m∑

k=dm
2 e

(−1)m−k

(
k

m− k

)
f̃k. (5.10.2)

The first five fk’s are given by:

f0 = f̃0, f3 = f̃3 − 2f̃2,

f1 = f̃1, f4 = f̃4 − 3f̃3 + f̃2,

f2 = f̃2 − f̃1, . . .

which can be easily checked by plugging in the expressions for f̃k.

We can express the result in matrix form notation. Let f = {f0, f1, . . . }T and f̃ = {f̃0, f̃1, . . . }T .
Then

f = L f̃

where the lower diagonal matrix L is, using (5.10.2), given by:
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L =



1 0 0 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 0 0 . . .
0 −1 1 0 0 0 0 0 0 0 . . .
0 0 −2 1 0 0 0 0 0 0 . . .
0 0 1 −3 1 0 0 0 0 0 . . .
0 0 0 3 −4 1 0 0 0 0 . . .
0 0 0 −1 6 −5 1 0 0 0 . . .
0 0 0 0 −4 10 −6 1 0 0 . . .
0 0 0 0 1 −10 15 −7 1 0 . . .
0 0 0 0 0 5 −20 21 −8 1 . . .
...

...
...

...
...

...
...

...
...

...
. . .



.

Even though the matrix L has infinite dimension, in this case we can define its inverse. This is
possible as L is lower-triangular and has only 1’s on the diagonal. For an arbitrary dimension,
say n, the inverse of L with dimension n× n is the ordinary inverse of L restricted to be an n× n
matrix. Denoting the inverse of L found in this way by L−1, it holds that

f̃ = L−1f.

This gives that the coefficients we have found are implied by the coefficients found in [42]. The
matrix L−1 is lower diagonal again, and given by:

L−1 =



1 0 0 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 0 0 . . .
0 1 1 0 0 0 0 0 0 0 . . .
0 2 2 1 0 0 0 0 0 0 . . .
0 5 5 3 1 0 0 0 0 0 . . .
0 14 14 9 4 1 0 0 0 0 . . .
0 42 42 28 14 5 1 0 0 0 . . .
0 132 132 90 48 20 6 1 0 0 . . .
0 429 429 297 165 75 27 7 1 0 . . .
0 1430 1430 1001 572 275 110 35 8 1 . . .
...

...
...

...
...

...
...

...
...

...
. . .



.

57





Chapter 6

Conclusion and discussion

In this thesis we considered the entropy of hidden Markov models. First we gave different bounds
for the convergence rate of the conditional probability P[Y0 | Y1, . . . , Yn] for these models. It
turned out that the best rate was given by Fernandez, Ferrari and Galves [15].

We proved the settlement of the coefficients of the series expansion for this conditional probability,
in the same way as Zuk et al. [39]. We tried to find a general form for the coefficients in these
expansions for the binary symmetric case. Although we tried different strategies to do so, we did
not succeed in this. The coefficients found by the different methods, showed all some structure,
but it turned out that we were not able to spot enough structure to give a general form. So this
remains as a major challenge.

In the last chapter we derived a method to obtain a power series expansion for the entropy in the
binary symmetric case. This gave an expansion in ζ for the entropy hY in this case. Using this
method one can generate an arbitrary number of coefficients of this expansion. We also gave an
efficient way to simulate this entropy. Next to that we stated a conjecture concerning the radius
of convergence for the series expansion, but the proof that this is indeed the correct radius is still
open.
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Appendix A

Proofs

In this appendix we give the proofs which were left out from the main part of this thesis.

A.1 Proposition 2.1

In this section we prove that a grouped Markov chain can be written as a hidden Markov model,
and vice versa.

Proof of Proposition 2.1. ◦ Given a grouped Markov chain Ŷ as in Section 2.1.5. To write this as
a hidden Markov model, take for the underlying Markov process X the underlying Markov chain
of Ŷ, which is X̂. Take Y = {Yn}n≥0 to be the process defined by P[Yn = k | Xn = j] = Njk,
where the emission probability matrix N is given by

Njk =
{

1 if j ∈ Bk,
0 otherwise,

for j ∈ Ŝ and k ∈ Ŝ ′. Now this hidden Markov model Y gives the same process as the grouped
Markov chain Ŷ.

◦ Given a hidden Markov model: X the hidden Markov process with transition probability ma-
trix P, and Y the observed process with emission probability matrix Π. To write this as a grouped
Markov chain, define the process V = {Vn}n≥0 by Vn = (Xn, Yn). As Yn only depends on Xn, this
is a Markov chain. Its state space is given by S × S ′. Let ∆ be the transition probability matrix
of this process, given by

∆{i,k},{i′,k′} = Pii′Πi′k′ , (A.1.1)

for i, i′ ∈ S and k, k′ ∈ S ′. Let B1, . . . ,B|S′| be mutually exclusive and exhaustive nonempty
subsets of S × S ′, such that

Vn = (Xn, Yn) ∈ Bi ⇔ Yn = i.

Now this grouped Markov chain V gives the same process as the hidden Markov model Y.
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A.2 Lemma 2.2

In this section we give the proof of Lemma 2.2 as in [8]. This makes use of the following two
lemmas

Lemma A.1 (Cesáro mean). Let {an} be a sequence of real numbers. If an
n→∞−→ a and bn =

1
n

∑n
i=1 an, then bn

n→∞−→ a.

The proof of this can be found in, for instance, [2].

Lemma A.2 (Chain rule for entropy). For the random variable (U0, . . . , Un) it holds that

H(U0, . . . , Un) =
n∑

i=0

H(Ui | Ui−1, . . . , U0).

We give the proof of this as in [8].

Proof. First we show that it holds that

H(U0, U1) = H(U0) + H(U0 | U1).

This follows by just writing out the entropy and condition on U0:

H(U0, U1) = −
∑
U0

∑
U1

P[U0, U1] logP[U0, U1]

= −
∑
U0

∑
U1

P[U0, U1] logP[U0]P[U1 | U0]

= −
∑
U0

∑
U1

P[U0, U1] logP[U0]−
∑
U0

∑
U1

P[U0, U1] logP[U1 | U0]

= −
∑
U0

P[U0] logP[U0]−
∑
U0

∑
U1

P[U0, U1] logP[U1 | U0]

= H(U0) + H(U0 | U1).

Equivalently it holds that H(U0, U1) = H(U0) + H(U1 | U0). Repeadetly applying this gives the
statement of the lemma.

We now give the proof of Lemma 2.2.

Proof of Lemma 2.2. By Lemma A.2 we have:

H(Y0, . . . , Yn) =
n∑

i=0

H(Yi | Yi−1, . . . , Y0).

Dividing by n + 1 and taking the limit gives:

lim
n→∞

1
n + 1

H(Y0, . . . , Yn) = lim
n→∞

1
n + 1

n∑
i=0

H(Yi | Yi−1, . . . , Y0).

Now we apply Lemma A.1 to the right-hand side of this to get the desired result:

lim
n→∞

1
n + 1

H(Y0, . . . , Yn) = lim
n→∞

H(Yn | Yn−1, . . . , Y0).

62



Chapter A: Proofs

A.3 Lemma 2.4

In this section we prove the subadditivity lemma, from which the main argument in due to
Fekete [13].

Proof of Lemma 2.4. Assume that condition (2.2.2) holds for the sequence {xn}. With induction
on k it follows that xk m ≤ k xm, for all m, k ∈ N. Note that every n ∈ N can be written as
n = k m + r with 0 ≤ r ≤ m− 1. Let Cm = max0≤r<m xr. Then for all r ∈ [0, 1, . . . ,m− 1] and
all n, k ∈ N we have

xn = xk m+r ≤ xk m + xr ≤ xk m + Cm ≤ k xm + Cm.

Hence

xn

n
≤ k xm

n
+

Cm

n

=
k m

n

xm

m
+

Cm

n
.

Let n→∞, then we get

lim sup
n→∞

xn

n
≤ xm

m
, for all m ≥ 1,

as k m and Cm are constants not depending on n. So

lim sup
n→∞

xn

n
≤ inf

m≥1

xm

m
.

But on the other hand
xn

n
≥ inf

m≥1

xm

m
, for all n ≥ 1,

so it follows that

lim
n→∞

xn

n
= inf

m≥1

xm

m
.

A.4 Proposition 2.5

In this section we give two alternative proofs of Proposition 2.5. The first one is along the same
lines as the first proof:
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Second proof of Proposition 2.5. We have:

P[Y0|Y1, . . . , Yn]

=
P[Y0, Y1, . . . , Yn]
P[Y1, . . . , Yn]

=

∑
X0,X1,...,Xn

P[Y0, Y1, . . . , Yn|X0, X1, . . . , Xn]P[X0, X1, . . . , Xn]∑
X1,...,Xn

P[Y1, . . . , Yn|X1, . . . , Xn]P[X1, . . . , Xn]

=

∑
X0,X1,...,Xn

P[X0]
n−1∏
i=0

P[Xi+1|Xi]
n∏

i=0

P[Yi|Xi]

∑
X1,...,Xn

P[X1]
n−1∏
i=1

P[Xi+1|Xi]
n∏

i=1

P[Yi|Xi]

=

∑
X1,...,Xn

n−1∏
i=1

P[Xi+1|Xi]
n∏

i=1

P[Yi|Xi]

(∑
X0

P[X0]P[X1|X0]P[Y0|X0]

)
∑

X1,...,Xn

P[X1]
n−1∏
i=1

P[Xi+1|Xi]
n∏

i=1

P[Yi|Xi]

.

Using Lemma 3.1 this gives, assuming δ ≤ 1
2 ,

P[Y0|Y1, . . . , Yn] ≥ min
X1

∑
X0
P[X0]P[X1|X0]P[Y0|X0]

P[X1]
≥ min

X0,Y0
P[Y0|X0] = a,

and analogously

P[Y0|Y1, . . . , Yn] ≤ max
X1

∑
X0
P[X0]P[X1|X0]P[Y0|X0]

P[X1]
≤ max

X0,Y0
P[Y0|X0] = b.

As Π > 0 we have a > 0 and b < 0, and the statement of the proposition follows.

We will give the third proof only for the binary symmetric case, although it can be easily extended
to the general case. It is based on conditioning only on X0.

Third proof of Proposition 2.5 (for binary symmetric hidden Markov model). We have

P[Y0 = 1 | Y1, . . . , Yn]
= P[Y0 = 1 | X0 = 1, Y1, . . . , Yn]P[X0 = 1 | Y1, . . . , Yn]

+ P[Y0 = 1 | X0 = −1, Y1, . . . , Yn]P[X0 = −1 | Y1, . . . , Yn]
= P[Y0 = 1 | X0 = 1]P[X0 = 1 | Y1, . . . , Yn]

+ P[Y0 = 1 | X0 = −1]P[X0 = −1 | Y1, . . . , Yn]
= (1− δ)q + δ(1− q) ∈ [δ, 1− δ],
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as q := P[X0 = 1 | Y1, . . . , Yn] ∈ [0, 1], and assuming δ ≤ 1
2 . The analogous result holds for

P[Y0 = −1 | Y1, . . . , Yn]. As δ > 0 the proposition now follows.

A.5 Proposition 3.3

In this section we prove that if the coupling X̃ is successful, then X is weakly ergodic.

Proof of Proposition 3.3. We will prove this statement in the same way as in [18]. Observe that
for an arbitrary coupling it holds that

P̃g,h(x̃n = (k, k)) ≤ min{p(n)
gk , p

(n)
hk }, ∀ n.

Summing over k ∈ S gives

P̃g,h(x̃n ∈ D) ≤
∑

k

min
{
pn

gk, pn
hk

}
=: α

(n)
gh , ∀ n.

Note that {x̃n ∈ D} = {T ≤ n}, and α
(n)
gh ≤ 1 for all n. It now follows that

lim inf
n→∞

α
(n)
gh ≥ lim

n→∞
P̃gh(T ≤ n) = P̃gh(T <∞).

For a successful coupling P̃gh(T <∞) = 1, which gives

lim
n→∞

α
(n)
gh = 1. (A.5.1)

Using the identity min{a, b} = 1
2 (a + b− |a− b|) for any real a, b we get

α
(n)
gh =

∑
k

min
{

p
(n)
gk , p

(n)
hk

}
=

1
2

∑
k

(
p
(n)
gk + p

(n)
hk −

∣∣∣p(n)
gk − p

(n)
hk

∣∣∣)
= 1− 1

2

∑
k

∣∣∣p(n)
gk − p

(n)
hk

∣∣∣ .
Taking the limit of n to infinity gives, using (A.5.1)

lim
n→∞

∑
k

|p(n)
gk − p

(n)
hk | = 0,

which was to be proved.

A.6 Proposition 3.4

Proof of Proposition 3.4. Let
λ = min

m,n

pimpjn

pjmpin
.
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Then we have to prove that for any i, j

∑
k

pikpjk ≥
λ

K2
.

Note that
λ ≤ pikpjk

pjkpik
= 1.

Moreover, for any i, j, m, n
pimpjn

pjmpin
≥ λ ⇔ pim ≥ pjmλ

pin

pjn
. (A.6.1)

We now claim that, for all i, j ∈ S there exists a n ∈ S, such that

pin

pjn
≥ 1.

For this, suppose that for all n: pin

pjn
< 1. Then

∑
n pin <

∑
n pjn. But as

∑
n pin =

∑
n pjn = 1

this gives a contradiction, so the claim holds.

Now take such an n. Then, continuing at A.6.1, we conclude that for every m: pim ≥ pjmλ. This
gives ∑

k

pikpjk ≥
∑

k

λpjkpjk = λ
∑

k

p2
jk.

We now claim that
K∑

k=1

p2
jk ≥

1
K

.

Indeed, by the Cauchy–Schwartz inequality [21] we have

1 =
K∑

k=1

pjk · 1 ≤

(
K∑

k=1

p2
jk

) 1
2
(

K∑
k=1

1

) 1
2

⇒

(
K∑

k=1

p2
jk

)
K ≥ 1 ⇒

K∑
k=1

p2
jk ≥

1
K

.

Combining this gives ∑
k

pikpjk ≥ λ
∑

k

p2
jk ≥

λ

K
≥ λ

K2
,

which finishes the proof.

A.7 Theorem 5.1

In this section we give a second proof of Theorem 5.1, which is based on conditioning on X0.

Second proof of Theorem 5.1. By Bayes’ Law and conditioning on X1 in both the numerator and
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the denominator, we have

wn(1, y2, . . . , yn) = P[Y0 = 1 | Y1 = 1, Y2, . . . , Yn]

=
P[Y0 = 1, Y1 = 1 | Y2, . . . , Yn]

P[Y1 = 1 | Y2, . . . , Yn]
.

=
(
P[Y0 = 1, Y1 = 1 | X1 = 1]P[X1 = 1 | Y2, . . . , Yn]

+ P[Y0 = 1, Y1 = 1 | X1 = −1]P[X1 = −1 | Y2, . . . , Yn]
)

/(
P[Y1 = 1 | X1 = 1]P[X1 = 1 | Y2, . . . , Yn]

+ P[Y1 = 1 | X1 = −1]P[X1 = −1 | Y2, . . . , Yn]
)

Write q := P[X1 = 1 | Y2, . . . , Yn]. The other probabilities can be calculated straightforwardly.
By conditioning on X0 we have:

P[Y0 = 1, Y1 = 1 | X1 = 1]
= P[Y0 = 1, Y1 = 1 | X0 = 1, X1 = 1] P[X0 = 1 | X1 = 1]

+ P[Y0 = 1, Y1 = 1 | X0 = −1, X1 = 1] P[X0 = −1 | X1 = 1]

= (1− δ)2(1− p) + δ(1− δ)p,

and analogously
P[Y0 = 1, Y1 = 1 | X1 = −1] = (1− δ)δp + δ2(1− p).

Plugging this in gives:

wn(1, y2, . . . , yn) =
q(1− δ) ((1− p)(1− δ) + p δ) + (1− q)δ (p (1− δ) + (1− p)δ)

q(1− δ) + (1− q)δ
.

We rearrange the terms in the numerator and cancel out common factors:

wn(1, y2, . . . , yn) =
(1− p) (q(1− δ) + (1− q)δ) + δ(1− δ)(1− 2p)

q(1− δ) + (1− q)δ

= 1− p− δ(1− δ)(1− 2p)
P[Y1 = 1 | Y2, . . . , Yn]

= 1− p− δ(1− δ)(1− 2p)
wn−1(y2, . . . , yn)

.

So
wn(1, y2, . . . , yn) = f1 (wn−1(y2, . . . , yn)) ,

and analogously

wn(−1, y2, . . . , yn) = p +
δ(1− δ)(1− 2p)

1− wn−1(y2, . . . , yn)
= f−1 (wn−1(y2, . . . , yn)) .
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A.8 Proposition 5.2

In order to prove Proposition 5.2 we need the following lemma, which will be proved afterwards.

Lemma A.3. For the binary symmetric hidden Markov model Y it holds that for all y0, . . . , yn:

pn(y0, . . . , yn) =
1
2

pn−1(y1, . . . , yn)

+
(1− 2δ)2

2n+1
y0

n∑
l=1

2n−l (1− 2p)l yl pn−1−l(yl+1, . . . , yn). (A.8.1)

Proof of Proposition 5.2. The proof of the proposition follows by manipulating (A.8.1). First we
take out l = 1 from the summation, and then use the identity 1

4 (1− 2δ)2 = 1
4 − δ(1− δ):

pn(y0, . . . , yn)

=
1
2

pn−1(y1, . . . , yn) +
1
4

(1− 2δ)2 λ y0 y1 pn−2(y2, . . . , yn)

+ (1/2)n+1 (1− 2δ)2 y0

n∑
l=2

2n−l λl yl pn−1−l(yl+1, . . . , yn)

=
1
2

pn−1(y1, . . . , yn) +
1
4

λ y0 y1 pn−2(y2, . . . , yn)− δ(1− δ) λ y0 y1 pn−2(y2, . . . , yn)

+ (1/2)n+1 (1− 2δ)2 y0

n∑
l=2

2n−l λl yl pn−1−l(yl+1, . . . , yn).

Now we take out the factor y0y1λ/2 from the second and fourth term, noting that y1y1 = 1:

pn(y0, . . . , yn)

=
1
2

pn−1(y1, . . . , yn)− δ(1− δ) λ y0 y1 pn−2(y2, . . . , yn)

+ y0y1
λ

2

[ 1
2

pn−2(y2, . . . , yn)

+ (1/2)n (1− 2δ)2 y1

n∑
l=2

2n−l λl−1 yl pn−1−l(yl+1, . . . , yn)
]
.

By (A.8.1) the part between the large braclets is just pn−1(y1, . . . , yn). This gives

pn(y0, . . . , yn) =
λ y0 y1 + 1

2
pn−1(y1, . . . , yn)− δ(1− δ) λ y0 y1 pn−2(y2, . . . , yn),

which was to be proved.

It remains to prove Lemma A.3.

Proof of Lemma A.3. As shown in the proof of Proposition 2.5 we have

pn(y0, . . . , yn) =
∑

X0,X1,...,Xn

P[Xn]
n−1∏
i=0

P[Xi|Xi+1]
n∏

i=0

P[Yi|Xi].
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1x 2x nx0x n - 1x

1y 2y ny0y n - 1y

.    .    .

Figure A.1: Graphical interpretation of the expansion of the product in (A.8.2). An edge be-
tween xi and yi represents the term (1 − 2δ)xiyi and an edge between xi and xi+1 the term
(1− 2p)xixi+1.

For the binary symmetric model, we can write

P[Xi = xi | Xi+1 = xi+1] =
1
2

+
1
2
(1− 2p)xixi+1,

P[Yi = yi | Xi = xi] =
1
2

+
1
2
(1− 2δ)xiyi,

which can be easily checked by distinguishing whether xi = xi+1 or xi 6= xi+1, respectively whether
xi = yi or xi 6= yi. As P[Xn] = 1/2, this gives

pn(y0, . . . , yn) =
∑

X0,X1,...,Xn

1
2

n−1∏
i=0

(
1
2

+
1
2
(1− 2p)xixi+1

) n∏
i=0

(
1
2

+
1
2
(1− 2δ)xiyi

)

=
1

22n+2

∑
X0,X1,...,Xn

n−1∏
i=0

(1 + (1− 2p)xixi+1)
n∏

i=0

(1 + (1− 2δ)xiyi) . (A.8.2)

Writing out the product behind the summation sign gives all possible combinations of choosing
from each term either the 1 or the 1+(1−2p)xixi+1 c.q. 1+(1−2δ)xiyi. We can give an interpre-
tation of this using Figure A.1. Writing out the product gives exactly all possible combinations of
subsets of the edges. Here an edge between xi and yi represents the term (1−2δ)xiyi and an edge
between xi and xi+1 represents the term (1 − 2p)xixi+1. This gives the sum over 22n+1 terms.
But, as the summation is over xi ∈ {−1, 1} most of the terms will cancel out. To be more precise,
this will happen to all terms that contain a factor xi an odd number of times, or actually exactly
once as xixi = 1. Left over are the terms where each xi, i = 0, . . . , n is included an even number
of times and thus has disappeared. Now the terms that are left over are all possible combinations
of ‘U–forms’ in the figure. For a given n there are 1, 2, . . . ,

⌈
n+1

2

⌉
U–forms possible, so the number

of terms left over after the summation is equal to

dn+1
2 e∑

j=1

(
n + 1

2j

)
.

Now we want to express pn(y0, . . . , yn) in terms of pn−1(y1, . . . , yn), pn−2(y2, . . . , yn), . . . , p0(yn).
For this observe that pn(y0, . . . , yn) consists of the U–forms that do contain y0 and that do not
contain y0. The latter ones are equal to the term pn−1(y1, . . . , yn). For the others we have
that y0 is connected to yl for some l ∈ 1, . . . , n. If it is connected to yl, this gives the term
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(1 − 2δ)2 (1 − 2p)l y0yl, and the possibilities left over for the other U–forms are equal to that of
pn−1−l(yl+1, . . . , yn). Multiplying by 1

2 the correct number of times gives the desired result:

pn(y0, . . . , yn) =
1
2

pn−1(y1, . . . , yn)

+
(1− 2δ)2

2n+1
y0

n∑
l=1

2n−l (1− 2p)l yl pn−1−l(yl+1, . . . , yn).

A.9 Lemma 5.3

Proof of Lemma 5.3. Assuming p ∈ (0, 1/2) we will prove that for all x such that WL ≤ x ≤WU :

f−1(x) ≤ f1(x).

So applying f−1 will always give a smaller result than applying f1. From this it follows that the
smallest result is achieved by repeatedly applying f−1, and the largest by repeatedly applying f1.
We have

f−1(x)− f1(x) = −(1− 2p) +
δ(1− δ)(1− 2p)

x(1− x)
.

This is maximal for x(1− x) closest to zero, so for x ∈ {WL,WU}, as WU = 1−WL. This gives

f−1(x)− f1(x) ≤ −(1− 2p) +
δ(1− δ)(1− 2p)

WL(1−WL)

= (1− 2p)
(

δ(1− δ)
WL(1−WL)

− 1
)

.

Note that WL depends on δ and p, see 5.5.1. It is straightforward but tedious work to check that
δ(1− δ)/(WL(1−WL)) is maximal for δ = 1/2, and then equals 1 for all p. Using this and noting
that 1− 2p is positive, we find

f−1(x)− f1(x) ≤ (1− 2p)
(

δ(1− δ)
WL(1−WL)

− 1
)
≤ 0.

One could easily check that for δ 6= 1/2 we have strict inequality. So for all δ ∈ [0, 1]\{1/2} and
for all p ∈ (0, 1/2) it holds that

f−1(x)− f1(x) < 0.

A.10 Proposition 5.6

In this section we prove Proposition 5.6, which stated that the derivatives of f−1 and f1 in WL

respectively WU are in (0, 1).

Proof of Proposition 5.6. It is straightforward that both derivatives are strictly larger than 0, as
both f−1 and f1 are increasing:

∂f−1(x)
∂x

=
δ(1− δ)(1− 2p)

(1− x)2
> 0,

∂f1(x)
∂x

=
δ(1− δ)(1− 2p)

x2
> 0.
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For the derivative of f−1 in WL we have

∂f−1(x)
∂x

∣∣∣∣∣
x=WL

=
δ(1− δ)(1− 2p)

(1−WL)2
.

Note that WL depends on p and δ, see (5.5.1). It is straightforward to check that the right-hand
side of the equation is maximal for p = 0, and

∂f−1(x)
∂x

∣∣∣∣∣
x=WL

≤ 4δ(1− δ)
(1 + |1− 2δ|)2

=

{
δ/(1− δ) if δ ∈ (0, 1/2],
(1− δ)/δ if δ ∈ [1/2, 1),

with strict inequality when p > 0. Both cases evaluate to be smaller or equal to 1 on the indicated
domain of δ, so for p > 0:

∂f−1(x)
∂x

∣∣∣∣∣
x=WL

< 1.

By symmetry it follows that
∂f1(x)

∂x

∣∣∣∣∣
x=WU

< 1.
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Appendix B

Series Expansion

In this appendix we give some of the derivations and tables of coefficients which were left out of
Chapter 4.

B.1 Function of P[Y0 | Y1, . . . , Yn]

As the series expansion of P[Y0 | Y1, . . . , Yn] did not lead us to a general form for its coefficients,
we try the logarithm of this probability and consider the series expansion of that.

In general

log

( ∞∑
k=0

ckxk

)
= log(c0) +

c1

c0
x +

2c0c2 − c2
1

2c2
0

x2 +
c3
1 − 3c0c2c1 + 3c2

0c3

3c3
0

x3 + O(x4).

Let

log (P[Y0 | Y1, . . . , Yn]) =
∞∑

k=0

F̃
(n)
k δk,

then

log (P[Y0 | Y1, . . . , Yn])

= log
(
P[Y0, Y1, . . . , Yn]
P[Y1, . . . , Yn]

)
= log

(
n+1∑
k=0

a
(n)
k (y0, . . . , yn) δk

)
− log

(
n∑

k=0

b
(n)
k (y1, . . . , yn) δk

)

= log a0 +
a1

a0
δ +

2a0a2 − a2
1

2a2
0

δ2 + O(δ3)

− log b0 −
b1

b0
δ − 2b0b2 − b2

1

2b2
0

δ2 + O(δ3)

= log
(

a0

b0

)
︸ ︷︷ ︸

F̃0

+
(

a1

a0
− b1

b0

)
︸ ︷︷ ︸

F̃1

δ +
1
2

(
2a0a2 − a2

1

2a2
0

− 2b0b2 − b2
1

2b2
0

)
︸ ︷︷ ︸

F̃2

δ2 + O(δ3).
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(n)
1

This shows that only the term F̃0 involves a logarithmic function. The other F̃k’s are rational
functions. They first three are given by

F̃0 = log
(

1
2

+
1
2
(1− 2p)y0y1

)
,

F̃1 =
−λy0y1(

1
2 + 1

2λy0y1

) (
1
2 + 1

2λy1y2

) ,
F̃2 =

4λy0y1

(
y0y

2
1y2

2y3λ
3 + y1y2(y2y3 − y0(3y1 + y3))λ2 + (y2(y3 − 3y1)− y0y1)λ + 1

)
(λy0y1 + 1)2(λy1y2 + 1)2(λy2y3 + 1)

.

We calculated many more terms. Unfortunately also for these coefficients were are not able to
spot that much structure that we can give a general form for them.

B.2 Settlement F
(n)
1

In Section 4.3.4 the settlement of F
(n)
0 for n ≥ 1 = k + 1 was shown. In this appendix we do the

same for F
(n)
1 . To do this, by (4.3.7) we should show the settlement of:

F
(n)
1 =

a
(n)
1 b

(n)
0 − a

(n)
0 b

(n)
1(

b
(n)
0

)2 ,

for n ≥ 2 = k + 1, where from (4.3.8):

a
(n)
1 = −(n + 1) c0(p ;n ; y0, . . . , yn) + c1(p ;n ; y0, . . . , yn),

b
(n)
1 = −n c0(p ;n− 1 ; y1, . . . , yn) + c1(p ;n− 1 ; y1, . . . , yn).

Note that c0(n) = a
(n)
0 and c0(n−1) = b

(n)
0 . Now consider c1(n). Recall that this is the probability

of observing the sequence y0, . . . , yn when exactly one yi is flipped. So, by (4.3.3) this is:

c1(n) = P[X0 = ȳ0, X1 = y1, . . . , Xn = yn]
+ P[X0 = y0, X1 = ȳ1, . . . , Xn = yn]
. . .

+ P[X0 = y0, X1 = y1, . . . , Xn = ȳn],

where ȳi = −yi. We can write this as the product of terms 1± λi. When y0 is flipped, this gives
that λ0 comes with a minus sign, but when y1 is flipped, both λ0 and λ1 come with a minus sign.
This gives the following structure for the minus signs:

λ0 λ1 λ2 . . . λn−2 λn−1

−
− −

− −
. . . . . .

− −
−
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This gives

c1(n) =
1

2n+1

(
(1− λ0) (1 + λ1) . . . (1 + λn−1)

+ (1− λ0) (1− λ1) . . . (1 + λn−1)
+ . . .

+ (1 + λ0) (1 + λ1) . . . (1− λn−1)
)
.

Along the same lines we can derive

c1(n− 1) =
1
2n

(
(1− λ1) (1 + λ2) . . . (1 + λn−1)

+ (1− λ1) (1− λ2) . . . (1 + λn−1)
+ . . .

+ (1 + λ1) (1 + λ2) . . . (1− λn−1)
)
.

Recalling that F
(n)
0 = a

(n)
0 / b

(n)
0 , we now have

F
(n)
1 =

a
(n)
1 b

(n)
0 − a

(n)
0 b

(n)
1(

b
(n)
0

)2 =
a
(n)
1

b
(n)
0

− F
(n)
0

b
(n)
1

b
(n)
0

.

We calculate both terms in the right-hand side separately. For the second one we have

F
(0)
0

b
(0)
1

b
(0)
0

= 0, F
(1)
0

b
(1)
1

b
(1)
0

= 0,

F
(n)
0

b
(n)
1

b
(n)
0

= −nF0 +
(1 + λ0)(1− λ1)

2(1 + λ1)

+
1 + λ0

2

(
(1− λ1)(1− λ2)
(1 + λ1)(1 + λ2)

+ . . . +
(1− λn−2)(1− λn−1)
(1 + λn−2)(1 + λn−1)

+
(1− λn−1)
(1 + λn−1)

)
,

for n ≥ 2. The first one is

a
(0)
1

b
(0)
0

= 0,
a
(1)
1

b
(1)
0

= −2λ0,

a
(n)
1

b
(n)
0

= −(n + 1)F0 +
1− λ0

2

(
1 +

1− λ1

1 + λ1

)
+

1 + λ0

2

(
(1− λ1)(1− λ2)
(1 + λ1)(1 + λ2)

+ . . . +
(1− λn−2)(1− λn−1)
(1 + λn−2)(1 + λn−1)

+
(1− λn−1)
(1 + λn−1)

)
.

for n ≥ 2.

Note that the second lines of both are the same and they will cancel out, as well as the term nF0,
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as we calculate the difference of the two. So we find:

F
(0)
1 = 0,

F
(1)
1 = −2λ0,

F
(n)
1 =

a
(n)
1

b
(n)
0

− F
(n)
0

b
(n)
1

b
(n)
0

= −F0 +
1− λ0

2

(
1 +

1− λ1

1 + λ1

)
− (1 + λ0)(1− λ1)

2(1 + λ1)
.

=
−2λ0

1 + λ1
= F1, for n ≥ 2.

This shows the settlement of F
(n)
1 for n ≥ 2 = k + 1. Note that F1 = F1(p ; y0, y1, y2).

B.3 Coefficients gk

In Section 4.4 we gave the series expansion

P[Y0 | Y1, . . . , Yn] = (1− δ)
∞∑

k=0

g
(n)
k ξk.

Here we will give the first four coefficients expressed in products of yi, and we give the first three
coefficients for the series expansion for the logarithm of this probability.

B.3.1 Coefficients in products of yi

We want to express the gk as a linear combination of products of y0 and yi’s:

gk = c(p) +
∑

fi1,...,im(p) · y0yi1 . . . yim ,

where c(p) and fi1,...,im
(p) are some functions of p. Doing this, we find that for a given k all f

have the same denominator, which is, for k ≥ 1:

2k(p− 1)2k−1p2k−1.

For better readability, we write this on the left-hand side. Note that only g0 and g1 have a constant
term. The coefficients are given by:

g0 =
1
2

+
1
2
(1− 2p)y0y1,

2(p− 1)p · g1 =
1
2
− y0y1 · (2p− 1)

(
p2 − p + 1

)
− y0y2 · (2p− 1)2,

76



Chapter B: Series Expansion

g2 · (4(p− 1)3p3) = y0y1 · (2p− 1)
(
2p4 − 4p3 + 6p2 − 4p + 1

)
+ y0y2 · (2p− 1)2

(
2p4 − 4p3 + 4p2 − 2p + 1

)
+ y0y3 · (2p− 1)3

(
2p2 − 2p + 1

)
+ y0y1y2y3 · (2p− 1)4,

g3 · (8(p− 1)5p5) =

− y0y1 · (2p− 1)
(
4p8 − 16p7 + 96p6 − 232p5 + 294p4 − 220p3 + 100p2 − 26p + 3

)
− y0y2 · (2p− 1)2

(
4p8 − 16p7 + 52p6 − 100p5 + 130p4 − 112p3 + 62p2 − 20p + 3

)
− y0y3 · (2p− 1)3

(
12p6 − 36p5 + 54p4 − 48p3 + 32p2 − 14p + 3

)
− y0y4 · (2p− 1)4

(
2p2 − 2p + 1

)2
− y0y1y2y3 · (2p− 1)4

(
6p4 − 12p3 + 14p2 − 8p + 3

)
− y0y1y2y4 · (2p− 1)5

(
2p2 − 2p + 1

)
− y0y1y3y4 · (2p− 1)6

− y0y2y3y4 · (2p− 1)5
(
2p2 − 2p + 1

)
.

We calculated many more coefficients with the aim to find a general form for them. Unfortunately
we did not succeed in this. However, we can make a number of observations. First of all, there
are no terms with an odd number of yi multiplied. We have that 1 − 2p = (1 − p)2 − p2 and
2p2 − 2p + 1 = (1− p)2 + p2. For the terms with y0yi the power of the term (1− 2p) is equal to i.
If yn+1 is part of the product of the coefficient gn, then f is given by

±((1− p)2 − p2)2n−j((1− p)2 + p2)j

for some j, but we are not able to determine an expression for this j.

B.3.2 Coefficients for log

We also look at logP[Y0 | Y1, . . . , Yn] expanded in ξ:

log P[Y0 | Y1, . . . , Yn] = log

(
(1− δ) ·

∞∑
k=0

g
(n)
k ξk

)

= log(1− δ) +
∞∑

k=0

G
(n)
k ξk,

where G
(n)
k = Gk for n ≥ k + 1, and Gk = Gk(p ; y0, . . . , yk+1). It turns out that it now is not

possible any more to write Gk as a linear combination of products of y0 and yi’s. Also products
are included which do not contain the factor y0.

G0 =
1
2
(log(1− p) + log(p))

+ y0y1 ·
1
2
(log(1− p)− log(p)),
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G1

(
4(p− 1)2p2

)
=
(
2p2 − 2p + 1

)2
+ y0y1 · (2p− 1)

+ y0y2 · (2p− 1)2

+ y1y2 · (2p− 1)3,

G2

(
4(p− 1)4p4

)
= (−2p8 + 8p7 − 28p6 + 56p5 − 70p4 + 56p3 − 28p2 + 8p− 1)

− y0y1 · (2p− 1)
(
2p2 − 2p + 1

) (
3p2 − 3p + 1

)
− y0y2 · (2p− 1)2

(
p2 − p + 1

) (
2p2 − 2p + 1

)
− y0y3 ·

1
2
(2p− 1)3

(
2p2 − 2p + 1

)
− y1y2 · (2p− 1)3

(
2p4 − 4p3 + 4p2 − 2p + 1

)
− y1y3 ·

1
2
(2p− 1)4

(
2p2 − 2p + 1

)
− y2y3 ·

1
2
(2p− 1)5

− y0y1y2y3 ·
1
2
(2p− 1)4.

Again we see some structure, but this does not give us a general form for the coefficients either.
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Coefficients power series
expansion hY in ζ

The first ten coefficients of the power series expansion

hY =
∞∑

k=0

hY,k · ζk,

where hY,k = hY,k(p), are given by:

hY,0 = −(1− p) log(1− p)− p log(p),

hY,1 = 2(1− 2p) log
(

1− p

p

)
,

hY,2 = − (1− 2p)2

2(1− p)2p2
,

hY,3 = −
(1− 2p)4

(
4p2 − 4p− 1

)
6(1− p)4p4

,

hY,4 =
(1− 2p)4

(
32p6 − 96p5 + 145p4 − 130p3 + 57p2 − 8p− 1

)
12(1− p)6p6

,

hY,5 = −
(1− 2p)6

(
56p6 − 168p5 + 268p4 − 256p3 + 124p2 − 24p− 1

)
20(1− p)8p8

,

hY,6 = −
(
(1− 2p)6

(
464p10 − 2320p9 + 4770p8 − 5160p7 + 2436p6 + 1008p5 − 2250p4

+ 1440p3 − 440p2 + 52p + 1
))

/(30(1− p)10p10),

hY,7 =
(
(1− 2p)8

(
448p12 − 2688p11 + 9512p10 − 22920p9 + 36943p8 − 39820p7 + 27792p6

− 10702p5 + 330p4 + 1776p3 − 787p2 + 116p + 1
))

/(42(1− p)12p12),
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hY,8 = −
(
(1− 2p)8

(
30336p14 − 212352p13 + 777777p12 − 1906086p11 + 3330383p10

− 4240516p9 + 3952433p8 − 2657486p7 + 1230229p6 − 342608p5 + 25403p4

+ 18326p3 − 6559p2 + 720p + 3
))

/(168(1− p)14p14),

hY,9 = −
(
(1− 2p)10

(
3072p16 − 24576p15 + 52912p14 + 59696p13 − 631512p12 + 1894816p11

− 3520624p10 + 4585368p9 − 4349324p8 + 3017504p7 − 1497304p6 + 498216p5

− 91824p4 + 712p3 + 3364p2 − 496p− 1
))

/(72(1− p)16p16).
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