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Abstract

The influence of an error between the parameters in an indirect field oriented controller and
an induction machine on the static and dynamic behaviour have been analyzed by means of
simulations. A nonlinear model is derived which describes both the steady state behaviour and
dynamical behaviour when there exists a parameter mismatch between the parameters in the
indirect field oriented controller and the induction machine. This error model is used to design
a robust controller which makes use of Roo theory. The controller is developed in such a fashion
that the closed loop remains stable and reduces the influence of the load torque on the angular
velocity of the rotor axis, despite the presence of plant perturbations. The main objective of
the design procedure is to attenuate the influence of the load torque on the angular velocity of
the rotor axis. A fast tracking system was not a major design objective. Simulations have been
carried out.

Another topic that has been studied is the control of the current in the stator windings by
using a voltage converter. A method is outlined which makes it possible to control the current
in the stator windings of an induction machine by manipulating the stator voltage. A robust
controller is designed which guarantees robust stability and robust performance.
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Chapter 1

Problem statement

1.1 The induction machine

An ind uction machine or asynchronous machine converts electrical energy to mechanical energy.
The electrical energy can be supplied by a converter and enters the induction machine in the
stator windings. The electrical power can be expressed by means of the inner product of the
electrical current and voltage. The mechanical power can be expressed by means of the inner
product of the electromagnetic torque and the angular velocity of the rotor axis. The conversion
from electrical power to mechanical power takes place via the mutual flux of the stator windings
and rotor windings. An electromagnetic torque Te can only be produced when the angular
velocity W m of the rotor axis differs from the angular velocity Wo of the stator field. This
difference in angular velocity, called Wslip = Wo - W m induces a voltage in the rotor windings
with a corresponding current. The vector product of the rotor current and the rotating field
produces an electromagnetic torque.

The induction machine can be considered as a white box J M which has been depicted in
figure 1.1. The orthogonal stator current components Jexs and J{3s produce a magnetizing current
Jm and an electromagnetic torque Te • The electromagnetic torque causes an acceleration or
deceleration of the rotor axis when Te is greater or smaller than the load torque 'Ft. The
variables J and D denote respectively the inertia and damping coefficient.

Figure 1.1: Block diagram of an induction machine

The physical laws that constitute the behaviour of the induction motor will be derived in chap­
ter 2.
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The objective of the indirect field oriented controller (indirect FOC) is to control the electromag­
netic torque Te and the magnetizing current 1m of the induction motor. The physical laws that
describe the behaviour of the induction machine can also be used to control the induction ma­
chine. These physical laws can be used to construct a so called indirect field oriented controller
that utilizes a feed forward scheme to control the induction machine. This technique is based
on a coordinate transformation from stator coordinates to field coordinates. The stator coordi­
nate system is a reference frame that is attached to the world. The field coordinate frame is a
frame that coincides with the rotor flux vector. A linear expression for the the electromagnetic
torque can be obtained when the magnetizing current is kept at a constant value. It is therefore
desirable to control the magnetizing current. The theoretic background of this controller will be
given in chapter 2.

The indirect flux oriented controller can also be looked upon as a white box that has been
depicted in figure 1.2. Teo is the desired electromagnetic torque in the induction motor. 1mo is
the desired magnetizing current in the induction motor. Also the angular velocity of the rotor
axis is needed to compute the corresponding stator current components lexs and l{3s' The main

Figure 1.2: Block diagram of an indiTect field oriented controller.

advantage of indirect field oriented control lies in the fact that the controller only requires the
rotor speed which can be measured by means of a tacho generator. As opposed to direct field
oriented control which requires the value of the flux which can either be obtained by means of
Hall sensors in the stator or observers that calculate the flux values from stator measurements.

1.3 The control scheme

The physical properties of the induction motor can be described by means of a set of nonlinear
differential equations which can be characterized by four parameters i.e. the rotor resistance,
magnetizing inductance, stator resistance and the leakage inductance. It is known that especially
the rotor resistance and the magnetizing inductance deviate from their nominal values due to
temperature influences and magnetic saturation. This deviation confuses the applicability of an
indirect field oriented controller. The indirect FOC inhabits the inverse model of an 1M. This
means that a concatenation of the indirect FOC, characterized by parameter set e' and an
1M, characterized by parameter set e yields a linear transfer function if the parameters of the
indirect FOC are estimated correctly. Thus when the parameters in eo equals the parameters
in e. This scheme is depicted in figure 1.3. The contents of both block FOC and 1M can be
described by nonlinear differential equations. Concatination of both blocks results in a linear
transfer function that is depicted in figure 1.4. It will be possible to control the electromagnetic
torque immediately by adjusting the desired torque at the Te • port. The magnetizing current can
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Figure 1.3: 1M represents the induction machine and FOe represents the indirect field oriented
controller.
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Figure 1.4: Ideal transfer function after concatenation of the induction machine and the indirect
field oriented controller if e' = e.

be adjusted by means of reference input 1m •. The desired value will not be reached immediately,
due to the fact that the reference 1m • is linked with the ideal 1m via a first order network Hmo
This model will be derived in chapter 3.

However, this representation of the controlled induction motor requires some very strict
conditions. The first conditions is correct knowledge of the motor parameters. This condition
can in practice never be met due to the fact that these parameters deviate from their nominal
values caused by temperature influences and magnetic saturation. The second condition is the
absence of converter delay. The converter is supposed to react instantaneously on its reference
input. It is not possible in practice to eliminate the influence from the converter delay. An
approach will be outlined in chapter 5 which gives us the possibility to incorporate a voltage
converter in the control scheme. The reference port of a voltage converter is manipulated in
such a fashion that the current in the stator windings tracks its reference value.

Lets consider the behaviour of the induction machine when the parameter set (e') in the
indirect FOe does not equal the parameter set e in the induction machine, which will always be
the case in practice. The simplified transfer function from figure 1.4 will not be obtained but this
transfer function will be corrupted with nonlinear transfer functions. These nonlinear transfer
functions can also be represented as uncertainties from a linear model. This leads to the block
diagram of figure 1.5. The study will result in a transfer function of the robust controller K.
Our first aim will be to describe the structure and bounds of block ~. Secondly, we will develop
a controller that stabilizes the induction machine for every possible perturbation. Thirdly, the
controller K will have to be developed in such a fashion that conditions will be met such as good
tracking properties and prevention of converter overflow, in the face of perturbations, defined in
~.

The control scheme can also be reconstructed to the general block scheme that has been
depicted in figure 1.6. The block diagram contains three blocks. Block P(s) represents the ideal
linear process when no parameter perturbations exist. These perturbations will be modelled in
block~. The third block is the controller K that has to be developped. The control input u
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Figure 1.5: Control scheme of the concatenated indirect field oriented controller and the induc­
tion motor.
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Figure 1.6: General control scheme.

of P is the output of the controller and drives the input of the indirect field oriented controller­
induction motor combination. The exogenous input vector w contains the setpoint values of
the induction motor which is the rotor speed, set by W m •. The output vector Yk contains the
measured values from the induction motor that are fed back to the controller K. Vector z
contains the variables we wish to regulate such as the error signal from the reference input value
wm • and the actual rotor speed W m and the stator voltage Us' Chapter 4 will elaborate on the
contents of the three blocks in figure 1.6.



Chapter 2

Field oriented control

The physical laws that describe the behaviour of the induction will be derived in this chapter.
First, we will derive a model that can only be used to analyse the behaviour of the induction
motor with a locked rotor. After that we will extend the obtained model with a so called Ideal
Rotating Transformer (IRTF) that enables us to describe the relationship between the stator
circuit and the rotor circuit. Transformations between the various coordinate systems such as
stator, rotor and field coordinate system will be explained. The physical laws expressed in field
coordinates will eventually lead to the indirect field oriented controller. Concatenation of both
the indirect FOC and the 1M will result in a linear relation between the inputs of the indirect
FOe and the outputs of the motor, provided that the parameters of the 1M have been identified
correctly. We will not go into the situation of incorrect identified motor parameters in this
chapter. This will be done in chapter 3.

2.1 The multi phase induction machine

An induction machine can be described by means of the electromagnetic laws that describe the
interaction of rotor and stator variables. These electromagnetic laws can be combined in such a
fashion that a model is obtained that describes the behaviour of the induction motor by means
of a two phase electrical model [13]. This is represented in figure 2.1. Two reference frames
can be distinguished in figure 2.1: a stator frame and a rotor frame. The rotor frame is rotated
relative to the stator frame by angle 8m • The induction motor is supplied by two voltage sources
Usa and Us/J that constitute together a rotating space vector uf = Usa + jUs/J' All voltages
and currents are complex variables. Superscript Os and subscript (0, {3) indicate that the space
vector is described in stator coordinates. A quantity can also be expressed in rotor coordinates
which will be indicated by means of superscript OR and the subscripts (a, b).

2.1.1 The locked rotor model

Energy transfer takes place by means of the flux in the air gap between the stator and the rotor.
The stator flux is produced by the stator current and contains two components: Il's = Il'm + Il'us'

Flux component Il'us is the leakage flux which is not linked with the rotor. The part of the stator
flux that does reach the rotor is denoted by Il'm. The same can be said about the rotor flux
which can be expressed as Il'r = Il'Tn - Il'O'r where Il' O'T represents the rotor flux that is not linked
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Figure 2.1: General orthogonal 2 phase equivalent machine representation.

with the stator. The stator flux and the rotor flux can be expressed as

'It s 'Itm + 'ItqS = LmagIm + LqsIs
wr = 'lt m + wqr = LmagITTl - LqrIr

9

(2.1)

(2.2)

The total stator current is defined as Is = 1m + Ir. This leads together with the equations 2.1
and 2.2 to the phase locked rotor model that is depicted in figure 2.2.

Figure 2.2: phase locked rotor model.

Inductance L"s and L"T represent the leakage inductance and Lmag represents the mutual
inductance. The rotor resistance Rro represents the active losses in the rotor circuit and stator
resistance R so represents the active losses in the stator windings.

It is possible to simplify the model depicted in figure 2.2 by applying Thevenin's theorem
[13]. A resulting leakage inductance L" can be computed that replaces both the stator leakage
inductance and the rotor leakage inductance. The parameter transformations are conducted by
means of the following formulas

(2.3)
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L = L + LmagLur
u (rs L

mag
+ L

ur

Lm ki(Lmag + Lur )

Rr kiRro

Rs = Rso

Field oriented control

(2.4)

(2.5)

(2.6)

(2.7)

The model presented in figure 2.2 can than be obtained. This model is only valid for a locked

+

R

J 2 3

Figure 2.3: Simplified locked rotor model.

rotor situation. Therefore the model can not applied to analyse transients. A model is needed
that incorporates a stator section, a rotor section and a mechanical section. This is done in the
Ideal Rotating Transformer (IRTF).

2.1.2 The dynamic induction motor model

The IRTF provides us with the opportunity to represent a quantity in stator coordinates or
rotor coordinates [6]. The angle between the coordinate systems is the mechanical axis angle
em' The IRTF has graphically been depicted in figure 2.4. If IS is input then IJ.1R must be input

Figure 2.4: IRTF

on the rotor side to maintain computational causality. The flux vector and the current vector
on stator and rotor side are related by the following expressions

IS = I R ej9m

wR = IJ.1
Se- j8m

(2.8)

(2.9)
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It should be noted that the magnitude of the current and flux does not change, there is only a
rotation performed over angle ()m' This rotation can also be expressed as follows

IS = Arot(()m)IR

\lTR Arot (-()m)\lTs

(2.10)

(2.11)

Expanding equation 2.10 yields

(2.12)

The amplitude of both flux \lTs and \lTR remains constant on the stator and rotor side. The current
on the rotor side and stator side have the same amplitude. Also the phase angle between current
and flux remains constant on the stator side and the rotor side. This can be explained by the
[RTF property that no energy loss nor energy storage occurs in the [RTF. This also means that
the [RTF can be inserted in three different locations in figure 2.3. Insertion of the !RTF at
position 2 yields the following model.

R,

+

Lm

[RTFL--_-----, ,---__----, ---,

+

Us

T8, m

Figure 2.5: Dynamical induction machine model.

(2.13)

This model can be translated in a simulation model [13] that enables us to simulate the
dynamic behaviour of the induction motor. This model will be used for the simulations that
will be carried out later on in this report.

The relation between the stator voltage on the stator side and rotor side has not been
mentioned sofar. The voltage can be computed by expanding

U R = d\lT
R

dt

Substitution of equation 2.9 yields the following expression for the relation between the voltage
in stator coordinates and rotor coordinates

(2.14)

(2.15)

We can expand equation 2.15 when we assume that the rotor axis rotates with a constant angular
velocity Wm . This also means that the voltage at the stator side is periodic with frequency Wo

and has a constant amplitude U;
(2.16)
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Substitution of equation 2.16 in equation 2.15 yields

U R Wo - Wm USe-jwmt

Wo

= Wo - W m (; ej(wo-wm)t
s

Wo
WI" •= ~U3ejW."'il,t

Wo

Field oriented control

(2.17)

It can be seen that the amplitude of the voltage on the rotor side depends on the rotor speed.
Also the angular velocity of the rotor voltage depends on the rotor velocity. We can also use
this result to derive an alternative model of the stator circuit in the induction machine by
transforming the rotor voltage to the stator circuit. Thus

(2.18)

and slip is defined as slip = W()-W m
• The alternative model has been depicted in figure 2.6

wo

La lr----..

IJ +

R'v. L "'rm slip

Figure 2.6: A lternative dynamical induction machine model.

2.1.3 Computation of the electric torque

The torque is a function of the current, the flux and the angle between these two quantities and
is

Te = _Is x wS = _IR X wR

or equivalently

Te = -Im[Isw S ] = -Im[IRw R ]

T e = - wsaIs{3 + Ws{3I.a = - wraIrb + WrbIra

(2.19)

(2.20)

(2.21 )

The transition from equation 2.19 to equation 2.20 in steady state has been proved in [6]. The
stator current in the rotor section can in the steady state (constant wm ) be represented by

This results in a rotor voltage

UR = jWslipLmRr j ej(W.,.pt+€O)

r R r + jWsltpLm

(2.22)

(2.23)
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The flux can be obtained by integration of the voltage UrR

Substitution of the obtained expressions for iI!~ and I;: in Te = -Im[I~iI!~J yields

13

(2.24)

=

I [ j
2

R r Lm
]

- m R r + jWslipLm

j2 RrL;"wslip

R; + W;lipL:n

j2 Ws1ipL;"

R r 1 + 2 (b.u..)2W s1ip Rr

(2.25)

(2.26)

(2.27)

The electromagnetic torque with fixed current amplitude has been plotted as a function of the
slip frequency. This has been done in figure 2.7. Equating derivative d:~:I' of equation 2.27 to

05

oO~-:':'0'--2:::-0---=30:---:':'0'--5:::-0---=OO:---::70'--OO~--:'OO:--:-'.'00
.1Ip fr~ncy [rMJIs)

Figure 2.7: Torque slip frequency characteristic.

zero yields the maximum torque value Tema •

j 2 LT. = __m_
eHI~I:.I; 2

and the corresponding WsliPmo%'

Rr
WI> --

S lP"lO:T. - L
m

The induction machine has a stable working point if Wslip < Wslipmaz'

2.2 Field coordinates

(2.28)

(2.29)

2.2.1 Representation of the currents in an phasor diagram

A phasor diagram gives us insight in the behaviour of the currents in an induction machine. The
stator and rotor frames become apparent. The angular relationship between the stator current
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a)

Field oriented control

bi

Figure 2.8: Phasor diagram of the stator current in stator coordinates a) and field coordinates
b)

vector, flux vector and rotor axis has been depicted in figure 2.8a for an induction machine
which rotor axis rotates with an angular velocity W.,w The stator currents are impressed in the
induction motor in the stator windings and can be expressed as

Iso Re [I;]

I S {3 = 1m [I;]
(2.30)

(2.31 )

The field coordinate system rotates synchronously with the rotor flux. Thus it is possible to
express the stator current with respect to field coordinate frame. The stator current vector
in field coordinates is shown to consist of two orthogonal components and can be obtained by
rotating Is by angle -po These components have been depicted in figure 2.8b and are defined as

Re [I;e- iP ]

1m [I;e-JP ]

(2.32)

(2.33)

The field coordinate system rotates synchronously with the rotor flux vector. It can be seen in
figure 2.8 that Ids is pointed in the direction of the magnetizing current and the other component
Iqs perpendicular to it. In steady state condition Ids and I qs are constant apart from converter

induced ripple. The stator current If and the magnetizing current I~ = f rotate with angular

velocity Wo = ~ and Wf = ~ respectively with respect to the stator frame. The stator current
and magnetizing current can be expressed as If = Isei € and I~ = ImeiP . In which 1m, p, Is
and ~ are all scalar functions which are a function of time. The two current vectors I; and I~

rotate synchronously under steady state conditions. This means that Wo = wI in steady state.
An elaboration on this will be made in section 2.2.2.

2.2.2 Coordinate transformations

In flux oriented control all vectors are described in field coordinates. This coordinate system
is chosen in such a fashion that the rotor flux coincides with the real axis of the field coordi­
nate frame. According to the IRTF model in figure 2.5 the following expression holds in each
coordinate system:

(2.34)
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The magnetizing current, stator current and the rotor current can be subdivided in a real and
an imaginary part

IF = Idm + jIqmm

IF = Ids + jIqss
IF Idr + jIqrr

(2.35)

(2.36)

(2.37)

The imaginary part of I:;' equals zero by definition (Iqm = 0) due to the fact that magnetizing
current vector I.m rotates synchronously with the flux vector. Substitution of equation 2.35, 2.36
and 2.37 in equation 2.34 and equating the real and the imaginary part yields

(2.38)

(2.39)

Equation 2.39 can be simplified by substitution of Idr = 0 in the steady state. This can be proved
by transforming the rotor current to the field coordinate frame (It! = J)wollt~). Rearranging
the complex description of the stator, rotor and magnetizing current results in the following
formulas

IF Idm = Ids (2.40)m

IF = Ids + jIqs (2.41)s
IF = jIqr = jIqs (2.42)r

It follows from equation 2.42 that the rotor current rotates perpendicular to the flux vector in
steady state. These vecturs have been depicted in figure 2.9a and b. A transformation of flux and

a) b)

Figure 2.9: Phasor diagram in steady state.

current in stator coordinates to the field coordinates system can be established by multiplying
an expression in stator coordinates with e-jp

• Likewise, a transformation from rotor to stator
coordinates can be performed by multiplying a vector with ej8m • The various transformations
have been depicted in figure 2.10. For example, the stator current can be transformed to field
coordinates in the following fashion

I R I ej(~-6",)
s s

IS = I R e- j6m = I ej~s s sI: I;e- jp = Isej(~-p)

(2.43)

(2.44)

(2.45)
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---------------- ~

R ....---------------- S

F

Figure 2.10: Transformation diagram between 5, Rand F coordinates.

The latter transformation results in a phase angle that is described by ~ - p. The magnitude
from the rotor current does not change by transforming a vector from one coordinate frame to
the other. Only the phase angle changes when a transformation from one system to the other
is performed. The stator current angle ~ is impressed by the current converter and the angle p
between the field coordinate system and the stator coordinate system is defined as follows

(2.46)

and depends on the electrical transients. The machine rotates in the steady state with a constant
mechanical speed and the angular velocity of the field vector equals the angular velocity of the
stator current, therefore W f = Woo

2.3 Control of an 1M in field coordinates

2.3.1 Thansformation from stator coordinates to field coordinates

Application of Kirchoffs voltage law on the induction machine model from figure 2.5 yields the
following expression

R I R L dI;;,r r - mdt = 0 (2.47)

In order to obtain the complete model of the induction motor in field coordinates, I;;' is now
inserted into the rotor voltage equation.

(
R R dI;;,

R r Is - 1m) - Lmdt = 0

Substitution of IR = I Se- j9m and I R = ISe- j O". yields an expression in stator coordinates.
5 5 m m

dI! IS ( . ) S
Trdt + m1 - JWmTr = Is (2.48)
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with rotor time constant T r = ~. The next step involves a transformation from stator co­
ordinates to field coordinates. This means that the magnetizing component is expressed with
respect to the rotating flux vector 'lJ~. Substitution of I; = I:ejp and expanding the left hand
expression results in

(2.49)

In which OF indicates that the vectors are expressed in field coordinates. This equation may be
split in a real and imaginary part by defining I;' = 1m and It' = Ids + j1qs ,

I qs
W m + -1- = W m + Wslip

Tr m

(2.50)

(2.51)

The torque equation (eqn. 2.19) also holds in field coordinates.

Substitution yields

(2.52)

(2.53)

(2.54)

In which the overline indicates that a complex conjugation operation has to be performed. The
magnetizing current in stator coordinates can be expressed as

By substitution it follows

Te = Lmlm[I; Ime- jp
]

LmIm1qs

(2.55)

(2.56)

(2.57)

This simple expression gives us a clue why the transformation from stator coordinates to field
coordinates is the key to control of induction machines. The torque is proportional to the
quadrature current component Iqs and the magnetizing current 1m . The electromagnetic torque
can directly be manipulated by maintaining the magnetizing current on a constant level and
vary Iqs . It is not possible to control the torque instantaneous when Iqs is kept constant and Ids
will be varied, because 1m tracks Ids via a first order network described by equation 2.50.

The mechanical section can be represented by the following differential equation

(2.58)

in which variables J and D represent respectively the inertia and the damping and input ~
denotes the load torque.
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(2.64)

We can conclude by stating that the induction motor can be modelled in field coordinates
by means of the following equations.

IF I '[ - IS -jp If' ... ,,\.

~ ri .• + J q. - s e ~~.<>::I)

dIm
Ids (2.60)Tr&+Im

dp Iqs
(2.61)

dt
Wm + -1- = W m + W.lip

Tr m

dWm Te - T1 (2.62)J---;jt+Dwm

Te LmImIqs (2.63)

These five linear and nonlinear equations can be used to construct the induction machine model
that is depicted in figure 2.11 in which H m is defined as

H
m

= 1
TrS + 1

EferrroftU,gnefic section T,

+

Mechanical st!<orion

Figure 2.11 : Model of the induction motor in field coordinates.

2.4 Field oriented control

Having derived the equations that can be used to model the induction motor it is now time
to focus on block FOe in the general block scheme in figure 1.2 on page 5. Block FOe can
be constructed by several methods. Field Oriented Control is one of the methods that can be
applied. It uses equations 2.60, 2.61, 2.62 and 2.63 that have been derived in section 2.3. Two
methods can be distinguished:

• Direct field oriented control

• Indirect field oriented control

Both methods will be explained in the next two subsection
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This block contains, as can be seen in figure 2.12, a torque controller and a flux controller, which
are PI-controllers. This choice has been made in order to make the steady state error between
the desired inputs (Te • and 1m .) and outputs (Te and 1m ) zero. A D-action has been ommitted
due to the fact that the noise component would have a considerable influence on the controller
behaviour. The output of these controllers produce respectively 1qs and Ids> which are inputted
in the field to stator coordinate transformation block F / S.

torque
controller

fLux
controller

P.

Figure 2.12: Direct fieLd oriented control scheme

This control technique is based on the knowledge of the flux vector i.e. flux angle p. and
flux magnitude Wr '"" 1m . There are a number of techniques that can be applied, among which
the direct and the indirect method. An elaboration on these two techniques will be made in the
following sections.

Direct measurement of the air gap flux From the previous chapters it becomes clear that
up to date information on the magnitude and phase of the fundamental flux wave is of great
importance since this is the basis of coordinate transformation. In order to obtain the flux
signals one could attempt to measure the flux density in the air gap of the machine directly by
placing suitably spaced Hall sensors on the face of the stator teeth. However apart from the fact
that tiny Hall sensors are mechanically fragile sensors which would not stand up very well under
the severe vibrations and thermal stress, there are large harmonics caused by the rotor slots, the
frequency of which changes with speed. Furthermore, the accuracy of a torque signal computed
from this signal is likely to be poor since torque is an integral surface related quantity which
is difficult to estimate on the base of a few local field measurements. Another disadvantage of
this scheme is that the motor would have to be fitted with these sensors, therefore it would no
longer be a standard motor. [7]

Estimating the air gap flux In order to avoid active semiconductor elements a quite different
approach can be applied. This approach is based on the model equations of the motor in flux
coordinates as described section 2.3. These equations have been plotted block schematically on
the righthand side of figure 2.13.

The stator current Is and the speed Wm serve as input functions with the motor being
described by a single parameter T r . Before the stator current is expressed in field coordinates
one transformation has to be performed from a stator coordinate frame to a field coordinate
frame. This transformation requires knowledge of the flux angle P., which can be obtained
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Figure 2.13: Block diagram of the observer

by integration of equation 2.51. The coordinate transformation block inhabits the following
expression

cos p.
- sin p.

sin p. ] ( I scr )

cos p. I s13
(2.65)

It is obvious that a false angle p. of the flux wave could lead to undesirable coupling between the
d- and q axes and could eventually invalidate the idea of control in field coordinates. Proceeding
to the right in figure 2.13 it is seen that equations 2.60 and 2.61 are schematically depicted.
Block H o symbolizes the transfer function

1
H o =--­

T;S + 1
(2.66)

This expression has been derived by transferring equation 2.60 to the s-plane. Finally the electric
torque can be obtained by evaluating

(2.67)

This expression is correct when p. equals p.

2.4.2 Indirect field oriented control

It is learned in the previous section that direct field control requires the magnitude of the
momentary electromagnetic torque and magnetizing current. These two values can not be
measured easily, but can be estimated when the rotor speed and stator current have been
measured. When indirect field oriented control is applied only the angular velocity of the rotor
axis Wm has to be known. Instead of applying a feedback control loop with a measured or
observed rotor flux use can also be made of feed forward control. The indirect field oriented
controller is essentially a nonlinear feed forward controller which has been depicted in figure 2.14.
The model has been constructed by making use of equations 2.60 and 2.61. The F / P block
symbolizes a field to polar coordinates transformation. The rotor flux angle p. is obtained from
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Figure 2.14: Indirect field oriented control

the angular velocity W m and the setpoint values Te• and 1m • and can be expressed as

p. em + es1ip•

p. = 1t

wm(-r)dr +1t

Wslip.(r)dr

One other thing that can be seen in figure 2.14 is the equality
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(2.68)

(2.69)

(2.70)

It can be seen in figure 2.14 that the parameters R; and L':r, have an impact on the computation
of the flux angle P•. Therefore a deviation between (R;, L':r,) on the one hand and (Rr , Lm ) on
the other hand will result in a deviation between p. and p.

These deviations are common practice in induction machines control, normally due to tem­
perature and saturation effects.



Chapter 3

Analysis of parameter mismatches
an indirect FOC

3.1 Introduction

•In

In the previous chapter we assumed that the parameters of the induction motor have been
identified perfectly. Or in terms of figure 1.3 on page 6: the parameters from set e· are the same
as the parameters in set e. In this chapter we will analyse the behaviour of the electromagnetic
torque, magnetizing current and slip frequency when there exists an error between the motor
parameters and the indirect controller parameters. We argued in chapter 1 that a concatenation
of an indirect FOe and an induction machine could be modelled by means of figure 1.4 when the
parameters have been identified without any error. A parameter error will result in nonlinear
coupling terms between the input set (Te., 1m .) and output set (Tel 1m ),

In section 3.2 we will first discuss the steady state behaviour of the concatenated indirect
FOe and the induction machine by analysis of the control scheme. The influence from parameter
deviation on the phasor diagram becomes apparent in this fashion. This approach gives us
however no useful tools to describe the transient behaviour of the indirect controlled induction
machine which are caused by parameters deviations between controller parameters and motor
parameters. A different approach gives us the opportunity to separate the nonlinear coupling
terms from the ideal transfer function of the concatenated indirect FOe and the induction
machine. This will be done in section 3.3.

3.2 Steady state behaviour of an indirect controlled induction
machine

The indirect field oriented control scheme which has been introduced in section 2.4.2 will be
applied on an induction machine. For configurating the indirect field oriented controller we have
two parameters at our disposal i.e. the rotor resistance R; and the magnetizing inductance L;".
The asterix indicates that we are considering estimated values. We will show that it is more
appropriate to use the parameters r; and L';.. because they determine both the steady state
properties and the the dynamical properties. The parameters that are used in the indirect field
oriented controller will not be equal to the parameters in the induction machine in practice. A
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Figure 3.1: Concatenation of the indirect FOC and the induction machine.

distinction between indirect controller parameters and motor parameters will also result in a dis­
tinction between controller variables and motor variables. The variables have been summarized
in table 3.1.

I name ] controller I machine I
stator angle (. (
slip angle ()slip. ()slip
torque angle (t. (t
direct component of I; Ids. Ids
quadrature component of I; I qs• Iqs
magnetizing current 1m• 1m

Table 3.1

Our aim is now to obtain an expression that describes the relationship between motor vari­
ables and controller variables. In order to get that expression we will focus on the angles in the
controller and in the motor. The angles have been depicted in figure 3.2. The stator current
angle ( can be expressed in two ways

• In machine variables: ~ = ()T11 + Oslip + (t

• In controller variables: (. = Om. + Oslip. + (/.
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Figure 3.2: Phasor diagram

Both equations have two common variables i.e. stator current angle ~ and rotor axis angle em
when we assume that we can neglect the delay of the converter and the tacho generator. The
stator current angle ~ is impressed in the stator windings by the converter and em is the rotor
axis angle. Therefore~. = ~ and em. = em' Expansion of these two equalities leads to the
following equation

(3.1)

It becomes clear from this equation that the sum of the machine angle es1ip + ~f equals the sum
impressed by the indirect controller. There will however be an other distribution between both
esl,p and ~f on the one hand and (}slip* and ~f' on the other hand when the machine parameters
have not been identified properly. The only restriction is that the sum of both summations in
equation 3.1 has to be equal. This can be seen in figure 3.3a, which shows an arbitrary phasor

aJ b)

Figure 3.3: Phasor diagram of an indirect FOC a) and an 1M b) in case of de tuning

diagram of an indirect field oriented controller. There is a fixed distribution between the angles
e.1ip• and ~f" In the motor will be an other distribution between es1ip and ~f' The dashed line
in figure 3.3b represents the phasor diagram of the motor and the continuous line depicts the
phasor diagram of the indirect field oriented controller. It can be seen that there is a small angle
E between both phasor diagrams.
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The angles Bs1ip* and Bs1ip increase with angular velocity Wslip. and Wslip respectively in the
steady state. As opposed to the angles ~f. and ~f that remain constant in the steady state. An
increase of for instance input Te• will result in an instantaneous increase of the slip frequency
Wslip.' This will subsequently result in the fact that (}slip. will increase faster than before. This
increase of the slip frequency will not immediately be followed in the motor in the case of
detuning. There will be a transient response on this sudden increase of one of the input ports.
This can be noticed by an increase or decrease of the magnetizing current magnitude, which is
caused by a rotation over some angle lO from one steady state to an other. Eventually, Wslip. will
be equal to Wsl,p in the steady state which can be proved by differentiating equation 3.1 and
substitution of Wslip = es1ip and ~f = O.

Another equality that always holds is

I;.
1Js. + l~s.

(3.2)

(3.3)

The stator current that is impressed by the indirect field controller equals the stator current in
the stator windings when we assume that we have an ideal current converter at our disposal.

A question that has not been answered sofar is: How are Ef and (}slip distributed internally
in the machine? To answer this question we will use the following equations that have been
derived in section 2.4.2

Wslip
1qs (3.4)

TrIm

dp
W m + Wslip (3.5)=

dt

dIm
Ids (3.6)Trd7 + 1m =

Te = LmlmIqs (3.7)

These equations have been used to construct the block scheme of figure 3.1. The transient
behaviour can be described by the linear and nonlinear equations 3.3 to 3.7 and can be analysed
by simulating the block scheme of figure 3.1. An elaboration on this will be made in section 3.4.
The steady state properties are much simpler to describe than the dynamic properties.

The steady state equality Wslip. = Wslip will hold during steady state and substitution of
equation 3.4 yields

(3.8)

Equation 3.6 learns us that 1m = Ids in the steady state. Furthermore, the equality 1m • = Ids.

holds always as can be seen in figure 2.14. Thus the torque angle in the motor

~f = arctan (~::) (3.9)

goes over to

Ef = arctan (~:) (3.10)

in steady state. The same goes for the torque angle ~f* in the field oriented controller. Thus

Ef* = arctan (~::) (3.11)
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Equation 3.8 relates the internal angle C,f with the impressed torque angle C,/. by means of

(3.12)

This last expression gives us a clue about the influence of the rotor time constant on the torque
angle ratio between C,/ and C,/.. Equation 3.3 determines with equation 3.8 the steady state
values of 1m and I qs . Equation 3.8 can be rewritten as

(3.13)

and describes a line in the (Im,Iqs) plane with a derivative that depends on the values of the
parameters T; 1 Tr and the desired values 1m • and I q... This line intersects with a circle described
by the steady state version of equation 3.3

(3.14)

This can be seen in figure 3.4. The continuous vector represents the stator current vector in the

I'l
s

• f···· ..·········· :.n.

I q,f········.. ··.. ··· .. ···:,_··:....·.. ·+··rL....~P:\

Figure 3.4: Relationship between 1m and I qs when T; < Tr in the steady state

induction machine and the dashed vector represents the impressed stator current Is. generated
by the field oriented controller. It can be seen that both Is and Is. have the same magnitude
which is consistent with equation 3.3. A closer look at figure 3.4 learns us that 1m in the machine
will be bigger than 1m • when C,/. > C,/.

The dependence of the electromagnetic torque Te on 1m. and Iqs in the steady state can also
be obtained from figure 3.4 by recalling equation 3.7. Substitution learns us that Te increases
as torque angle C,/ increases.

It is possible to compute the torque deviation with respect to T e• due to the parameter
detuning in steady state by combining equation 3.3 and equation 3.8. This yields the following
expressions for 1m and Iqs as a function of the known signals 1m • and Iqs•.

I~s. + [;..
1 + (1':1, .. )21'r 1m •

(3.15)

(3.16)
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The steady state error between the actual electromagnetic torque and the desired electromagnetic
torque can be computed by expanding

oTe Te - Teo

= Lmlmlqs - L~Im.lqs* (3.17)

Substitution of equation 3.15 and 3.16 yields an expression which relates oTe with Teo. This
yields

T
OL", + orr (1 + 8L...) + (8 L", - 8r J(1 + 8r J (r:fu:-f

.0 2

1 + (1 + Orr)2 (L;~iL)

This relation is characterized by means of 8Tr and 8Lm which are described by

T;(1 + 8T ,)

L;"(l + 8L .J

(3.18)

(3.19)

(3.20)

The derivation of equation 3.18 is given in appendix B.1 Equation 3.18 can now be plotted in
several plots which gives us an impression about the error between the actual torque and the
desired torque in steady state when there exists a parameter mismatch between the indirect
controller and the motor.

0.9,------r-----,----.------..---~-___,

06

100 120

T,.[Nm]

Figure 3.5: Relation between ~ and
Teo when 8Lm = 0.3 and orr varies be­
tween -0.3 and 0.3.

05,------r----.,----.--~---~

04

oT, 0.3

1;.

100 120

T,. [Nm]

Figure 3.6: Relation between ~ and
Teo when 0L", = 0 and OTr varies be­
tween -0.3 and 0.3.
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Figure 3.7: Relation between ~ and Teo when OL", = -0.3 and OT
r

varies between -0.3
and 0.3.

Figure 3.5, 3.6 and 3.7 depict the ratio ~ = T·T.~T. as a function from Teo when OT
r

and
oL", vary between -0.3 and 0.3. This plot reveals that the nonlinear relationship between T e •

and oTeo is solely caused by OTr ' Parameter OL m causes also an error between oTe and Teo, but
this results in a linear relation between Te • and oTe • This can be seen by the straight lines in
figure 3.5, 3.6 and 3.7 when OT

r
= O.

It can be seen that the ratio f:: can amount to 0.83 when OL m = 0.3 and OTr = 0.3. Another
remarkable conclusion is the fact that the nonlinear behaviour manifests itself especially when
Teo E [O,O.4Te,mux]'

3.3 A nonlinear error model

Until safar we only focussed on the steady state behaviour of the indirect controlled induction
machine. A derivation of a model that describes the dynamical behaviour will be made in
this section. We will first derive a nonlinear model that describes the behaviour of the output
variables (Te, 1m ) as a function from the input variables (Teo, 1m .). The dynamical relation
between the input and output set is characterized by means of the parameters Lm , RTl L':n and
R;. Use will also be made of the time constant in the motor T r = ~ and the time constant in

the controller T; = %. It also became apparent in the previous section that the error between
the actual torque andrthe desired torque is determined by OT

r
and OL",. Note that rotor resistance

Rr only has an indirect influence on the static behaviour via Tr •

We can model the magnetizing current in the motor by means of a vector 1m and the
magnetizing current in the indirect controller by means of 1m •• The angle between both currents
is denoted by E. This means that we can distinguish two rotating frames with respect to the
stator frame. The indirect controller frame denoted by means of an (f super script and the
second frame is the motor frame, denoted by super script OM. These vectors have been depicted
in figure 3.8. It can be seen that the motor frame rotates synchronously with the magnetizing
current 1~ and that the controller frame rotates synchronously with the desired magnetizing
current I;". Angle E is the angle between the controller frame and the motor frame due to
parameter errors and is defined as

( 1mb )E = arctan 1
ma

(3.21)
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Figure 3.8: Phasor diagram.

(3.22)

The dynamical behaviour of the magnetizing current in the induction machine can be charac­
terized by means of the equation for the rotor circuit in motor coordinates

dI!:! . (. O· )IM 1M 1M
T r -- + JTr P - m m + m = s

dt
This equation has already been derived in section 2.3.1. A transformation from motor coordi­
nates OM to controller coordinates Oe is necessary in order to relate the motor variables with
the indirect controller variables. Both frames are related by means of angle E. Thus

1M Iee-j <
m m

I::!.. = Ie e- j <
m.

1M Ie e- j <
s s

p. = p-E

(3.23)

(3.24)

(3.25)

(3.26)

with the following decompositions of I;:', I;:'. and If

Ie = Ima + jImbm

I~. 1m•
Ie = 1m• + jIqs•s

(3.27)

(3.28)

(3.29)

where I ma is related with the desired magnetizing current 1m • by means of the following expres­
sion

The magnetizing current is represented in the motor frame by means of

I;: = I;;'e- j
< = (Ima + jImb)e- j <

Furthermore, we can relate T r with T; by means of

Tr = T;(l + 8r.)

Substitution of equation 3.25, 3.26, 3.27, 3.30 and 3.32 in 3.22 yields

d - . -
T;(l + br.} dt [(Ima + jImb)e-J<j + jT;(l + 8r,.)(p. + E- Om)(Ima + jImb)e-J

< +
+(Ima + j1mb )e- j <= 1~e- j <

(3.30)

(3.31 )

(3.32)

(3.33)
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Rearranging this equation and inserting equation 3.30 yields

d
T; dt [I~. - t::.Ima + jImb] - jT; f(I;:'. - t::.Ima + jImb)

+ 0 .(. +' _ e )(IC _ t::.I +"1 ) + I~. - t::.Ima + jImb = 1 IC
JTr P. E m m. ma J mb 1 + 0 1 0 •

ro- + rr
(3.34)

(3.35)

The nominal model from equation 3.34 which is defined as

• dI~. 0'( . O· )IC I C IC
T r & + JTr p. - m m. + m. = •

can be subtracted from 3.34. This yields the following result

.dt::.Ima o.dImb
o • • (IC AI '1) 0.(' O· ')(01 AI)-Tr dt + JTr T - JETr m. - .u. ma + J mb + JTr p. - m + E J mb - U ma

+ °T·fIC _ IC Orr + jImb - t::.Ima = _IC Orr (336)
J r m' m' 1 + Drr 1 + Or,_ s 1 + Orr .

This equation can be split in a real part and an imaginary part this yields

dt::.Ima A ( • e')I 1:' dIm.
Tr dt + uIma = -Tr P. - m mb - U rr Tr ----;It

dImb (' )TrT + 1mb = Tr p. - Om t::.Ima - Iqs.Drr

(3.37)

(3.38)

(3.40)

(3.39)

This can be expanded to equation 3.39 and 3.40 by inserting the equality P. - em = r~"i.:.

dt::.Ima
Tr dt + t::.Ima =

The electromagnetic torque can now be computed by expanding

[ M-M] [ C-£]Te = Lmlm Is 1m = Lmlm Is 1m (3.41)

where the overline indicates that a complex conjugation operation should be performed. This
leads to

Te = Lmlm[(Im. + jIqs.)(Ima - jImb)]

Lm(-Im.lmb + ImaIqs .)

= Lm(-Im.Imb + (Im. - t::.Ima)Iq.. )

The deviation between the actual torque Te and the desired torque Te • is expressed by

(3042)

oTe = Te - Te • (3.43)

= Lm(-Im.Imb + (Im. - t::.Ima)Iqs.) - L;"Im.lq•• (3.44)

= (L m - L;")Im.Iqs• + Lm(-Im.Imb - t::.ImaIq•• ) (3.45)

The linear model and its nonlinear error model are depicted in figure 3.9. The NL-blocks inhabit
the following nonlinear algebraic functions

(3.46)

81m = J(Im. - t::.Ima )2 + I;'b - 1m•

oTe = (Lm - L;")Im.Iq•• + Lm(-Im.lmb - t::.lmaIq•• )

(3.47)

(3.48)
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Figure 3.9: Linear model and nonlinear error model.

We now have an ideal linear process model that describes the dynamical behaviour when the
parameters have been identified perfectly and a nonlinear error model that describes the additive
terms that appear when there exists a deviation between the controller parameters and the motor
parameters.

Analysis of equation 3.45 learns us that the magnetizing inductance is solely responsible for
the static gain in the error model and that the rotor time constant T r determines the dynamics
in the error model. This also means that the transient behaviour in the error model only occurs
when OT. f:. O. Substitution of OT•. = 0 and OL", yields that oTe follows its reference instantaneous.
It can also be seen that the presented nonlinear error model is consistent with the results from
section 3.2. We can prove this by checking the steady state version from equation 3.39 and 3.40

(3.49)

(3.50)

Substitution of equation 3.50 in 3.49 yields the following expression

(
I qH)2 I q• o

.6.Ima = - Tr-;---I .6.Ima - Tr-;---I OTrIq••
T r m. T r m.

(3.51)

or

oT~AI Tr r T: 1m •

U ma = 2
1+ (T:I•... )

T r Int.

Substitution from equation 3.49 in 3.50 yields the following expression for 1mb

I
OTrlq.o

mb = - 2
1 + (T.~I•... )

T r 1m •

(3.52)

(3.53)
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These two components can now be inserted in equation 3.45.

This has been done in appendix B.2. The steady state expression for oTe , computed by
focussing on the steady state behaviour of the nonlinear differential equations has the same
result as equation 3.18 in section 3.2 where we only considered static behaviour. It can be seen
that both ~Ima and 1mb will equal zero when OTr = O. Furthermore 1mb will become negative
when OTr > 0 which means, as can be seen in figure 3.8 that torque angle ~f will increase. This
is consistent with equation 3.12.

3.4 Transient behaviour of the induction machine

The scheme that has been depicted in figure 3.1 inhabits the nonlinear equations which char­
acterize the behaviour of the induction motor. This model can only be used to analyse the
transient behaviour of the induction machine if we assume that the stator current can be im­
pressed without any delay and that the angular velocity of rotor axis can be measured without
an error.

We will subsequently present the internal variables such as the magnetizing current in motor
field coordinates I;;;, slip frequency Wslip and torque angle ~f in the motor. These variables
result eventually in an electromagnetic torque Te that is generated in the induction machine.
The transient behaviour of Te will be presented in section 3.4.2

3.4.1 Simulation of the internal variables

The concatenation of an indirect FOe and an 1M is supplied with a pulsating input signal Te •

with a period time of 4 seconds and a constant magnetizing current 1m • = 20 A. Te • has been
depicted in figure 3.10 when the amplitude of Teo varies between 0.15Te,max and 0.78Te,max'

The internal variables Wslip, 1m and ~f have been simulated. Each simulation is carried out for
different values of OTr i.e. OTr = -0.3,0,0.3 and OL", = O.
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Figure 3.10: Input signal Teo.
Figure 3.11 .. ~f when OTr varies between
-0.3 and 0.3 and OL m = O.
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Magnetizing current The magnetizing current can ideally be described by the first order
process depicted by block Hm in figure 1.4 on page 6 and will remain constant when the rotor
time constant has been identified perfectly. Thus when the angle ~f in figure 3.4 does not change.
As opposed to the situation when the rotor time constant in the indirect controller deviates from
the actual value in the motor. This will result in a magnitude and phase change of vector 1m •

This vector will rotate to an other position in figure 3.4. Torque angle ~f will increase when
T; < Tr in conformance with equation 3.12. A bigger torque angle ~f will also result in a smaller
1m magnitude. It is clear that in case of a parameter mismatch an undesired coupling between
Teo and 1m occurs. This can be seen in figure 3.14 where a change of input Te* affects the
magnitude of the magnetizing current.
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Slip frequency The transient behaviour of the electromagnetic torque and magnetizing cur­
rent is caused by a. changing distribution between the angles Oslip(t) and ~/' The slip frequency
Wslip(t) in the motor will change during a change over from one angle distribution to an other.
This difference in slip frequency between the indirect controller and the motor will only be
present when T; /; T r • The steady state values from Wslipo and Wslip will be equal, independent
from the error in the rotor time constant. The results can be found in figure 3.12 and 3.13.
Figure 3.11 shows that torque angle f"f becomes smaller than angle f"fo in the indirect FOe
(cont. line in figure 3.11) when 0.,.. = -0.3 and bigger than c'f* when o"'r = 0.3.

The slip frequency will not reach its desired value immediately when the rotor time constant
in the indirect field oriented controller is not correct. This transient of Wslip causes also a
transient behaviour of the torque angle f"f which has been depicted in figure 3.12. This transient
behaviour is caused by the magnetizing current, which magnitude changes due to the new angle
distribution in the induction motor.

3.4.2 The electromagnetic torque

The electromagnetic torque Te follows its reference Teo immediately when 0.,.. = 0 and OLm = o.
Te follows its reference value without any delay, due to the fact that [m remains at the same
magnitude which can be seen by the continuous line in figure 3.14. The electromagnetic torque
Tel produced by the motor will be smaller than the desired torque Teo when T; < Tr and the
electromagnetic torque will be bigger than Teo when T; > T•. This can be explained by means
of equation 3.12 which tells us that torque angle f"f in the motor will be smaller than the desired
angle f"f when T; > T r • The undesirable transient behaviour of Te when T; /; Tr is caused by the
fact that the magnetizing current 1m has to change its magnitude which is described by a first
order transfer function with time constant Tr •

Three situations have been simulated

• The torque variation for various values of OL m have been depicted in figure 3.15 when
orr = O. We stated in section 3.3 that there is only a static deviation between Teo and Te
when OL m /; 0 and 0.,.. = O. The simulations have been carried out when 1mo remains on a
constant value (Im o = 20A) and Teo changes as has been plotted in figure 3.10. It can be
seen that there is no transient behaviour due to the fact that [m remains constant during
a changeover from one steady state to another as can be seen in figure 3.14.
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Figure 3.15: T e when 0.,.. = 0, OL m = 0.3, OL m = 0 and OL m = -0.3.
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• Simulations have been carried out when we consider the parameter deviations that have
been listed in table 3.2.

'" r

0.3 0.3 C.l
0.3 -0.3 C.2
0 0.3 C.3
0 -0.3 CA

-0.3 0.3 C.5
-0.3 -0.3 C.6

~appendixl

table 3.2

The plots show that all step response plots in appendix C contain a harmonic oscillation
with a frequency of approximately 5 Hz which is equal to :::::: ..L.

T r

It can also be seen that OL", results in a feed through component. For example comparison
of figure C.l and C.2 shows that there is a feed through component. oTe follows Te•

instantaneous until oTe = 30Nm. The harmonic oscillation starts from this feed through
level. The same can be said for the cases when OL", = 0 and OL", = -0.3. The plot when
bL", = 0 does not show a feed through component and the feed through component is
6Te = -30Nm when 8L ", = -0.3.

Another aspect that becomes apparent is the steady state value of oTe after a step signal has
been supplied to the nonlinear error model. The steady state value has a different value for
every perturbation. These values have graphically been depicted in figure 3.5, 3.6 and 3.7.
The oscillation is positive going if the final value, which depends on figure 3.5, 3.6 and 3.7
is bigger than the starting value, which depends on the feed through value. The opposite
can be said for a negative going oscillation.

• Besides a dependence of oTe = Te - Teo on the parameters mismatches 6L", and OTr is there
also a dependency of 6Te on input signal Teo. This can be seen in appendix D when we
take 6L", = -0.3 and OTr = 0.3. Increment of the step size of Teo leads to a more oscillatory
signal with an also increasing relative error between the steady state value of Te and Te•.

The final value of oTe can be described by figure 3.7.

In practice will there of course be a combination of these three degrees of freedom (OL", , OT
r

and Te.)



(4.3)

(4.4)

Chapter 4

Robust control of an induction
machine

The dependence of the induction machine behaviour on parameter deviations has been simu­
lated in chapter 3 and has resulted in a linear nominal model with a nonlinear error model. This
nonlinear error model inhabits both the static and dynamic properties of a detuned indirect
field oriented controlled induction machine and depends on the difference between the param­
eters in the indirect field oriented controller and the induction machine. Absence of parameter
mismatches and other model deviations would result in an ideal linear model.

In this chapter we will introduce a control loop which can be used to control the angular
velocity of the rotor axis. The objective will be to minimize the influence of the load torque
on the angular velocity of the rotor axis, despite the presence of a badly tuned indirect field
oriented controller. The controller will be developed by applying H oo theory on the linear
nominal system and the nonlinear error model. This error model is described by two coupled
nonlinear differential equations. The approach which eventually lead to a robust controller will
be commented in section 4.2 and 4.3. We will start with a description of the control scheme.

4.1 The control scheme

4.1.1 Model description

A nonlinear model has been derived in section 3.3 which consists of an ideal model and a
nonlinear error model ~ which has schematically been depicted in figure 4.1 and can be described
by

Te = FTJTeo ,Imo, bLm,Dr.) = Teo + b..TJTeo ,1m ., DL", DrJ (4.1)

1m = F1m(Teo,Imo, Drr , DLm) = Hm1mo + ~Im(Te.,Im.,DLm,8r.) (4.2)

The tilde n denotes the fact that we are considering a nonlinear function. The outputs Te and
1m are linear dependent on respectively Teo and 1mo when there are no parameter mismatches,
which are denoted by DL

m
and Dr•. They represent the relative deviation between the indirect

FOe parameters and the ind uction machine parameters and are described by

L m = L;" (1 + 8L.J

1'r = 1';(1 + Dr.)
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37

T,.

+

Nonlinear error model ;;

Figure 4.1: Block scheme of nominal model with the nonlinear error model.

Figure 4.2: Complete feedback system.

Te* and 1m * are respectively the desired electromagnetic torque and the desired magnetizing
current.

The nonlinear function PT. between Te* and T. is determined by a feed through line and a
nonlinear error part which is represented by AT•. This dynamical nonlinear function describes
the coupling terms that have been derived in section 3.3. Furthermore, the nonlinear function
PI", between 1m * and 1m is determined by the linear first order transfer function H m and the
nonlinear error function Arm'

The error model A, that has been depicted in figure 4.1, can now be narrowed down to AT.
by stating that the desired magnetizing current Im * remains at a constant level and plays as
such no important role in rotor speed control of the induction machine. We will therefore only
focus on error model AT.'

4.1.2 The control loop

The complete scheme has been depicted in figure 4.2 and the ranges for both the input nodes
and the output nodes of the control scheme have been summarized in table 4.1.
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I bandwidth IrangeI variable ~

input Set point angular velocity rotor axis W m • 0- 100 rad small
Load torque T L 0- 70 Nm O-?O r'!!!.

.- - .
output Electromagnetic torque T. 0-100 Nm

angular velocity rotor axis W m 0- 100 r'!!!..

I input/output I name

table 4.1

The bandwidth of W"'. is small and will be specified when we design the controller in section 4.3.
It can be seen that the actual angular velocity of the rotor axis Wm is fed back and the error
signal between the desired angular velocity Wmo and the actual angular velocity is supplied to
the controller C. The angular velocity of the rotor axis is measured by a tacho generator.

The output of controller C is the command signal Teo. This is the electromagnetic torque
we wish to excite in the induction machine and is disturbed by the nonlinear error model. This
error model can also be regarded as a multiplicative error model of Js~D' This approach will be
used in section 4.2.

The electromagnetic torque Te is a quantity that can not be measured but determines the
angular velocity of the rotor axis with disturbance input TL , inertia J and damping factor D.
Both J and D have been chosen as a constant in this set up, but might change in practice due
to the fact that they are dependent on the load that is driven by the induction machine.

It will not be possible to compute a controller that is applicable in the complete setpoint
range due to the fact that the tracking bandwidth is limited by the electromagnetic torque
that can be generated ill the induction machine. This means that the maximimum amplification
factor between W m • and Te• is limited by 2:: = ~~~ = 1 if we want to prevent converter overflow.
This constraint would reduce the tracking bandwidth significantly. This constraint can however
be weakened by supplying input UA with a feed forward controller that adjusts reference Te • in
such a fashion that the rotor axis accelerates until the desired angular velocity of the rotor axis
is reached. This means in practice that UA is set on the maximal allowable Te • value until the
desired angular velocity is reached. Input UA bypasses the controller C until the desired W m • is
reached. The controller C takes over from there. This has been depicted in figure 4.3.

w.
[rad/sl

Feed forward
region

Control region
of C

time [sl

Figure 4.3: Angular velocity of the induction machine.

This approach tells us that a fast tracking system will not be possible. The design objectives
will be commented in the next section.
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Figure 4.4: Linear fractional transformation.

4.1.3 The design objectives

The controller C is not designed to guarantee a fast tracking of reference input W m • but to
attenuate the influence of disturbance input TL on error signal e = W rn - W m •• It is necessary
to define the control objectives before we start designing the controller. The following design
objectives can now be formulatecl with decreasing priority.

• Stability of the control loop for every possible perturbation.

• The influence of disturbance TL on the error between W rn and W m • is supposed to be as
small as possible.

• A small steady state error between W rn and W m •.

• Preservation of performance in the presence of plant uncertainties.

• Prevention of actuator overflow. The induction machine can only generate an electromag­
netic torque in a range that depends on the machine characteristics.

Actuator overflow is not a major criterion in the design of the controller. Because reference
value W rn • is kept on a constant value.

4.2 Structuring the control loop in an Hoo setting

The control scheme of figure 4.2 can now be reconstructed as a Linear Fractional Transformation
(LFT) which has been depicted in figure 4.4. Block M has a total of two input vectors (wand
u~) and two output vectors (z and y~). The exogenous input vector wand output vector z in
our set up are defined as

(4.5)

Block M has therefore a total of three inputs and three outputs. However, a closer look at
the closed loop system in figure 4.2 learns us that the transfer function between u~ and y~ is



40 Robust control of an induction machine

M

Figure 4.5: Complete feedback system with the weighting filters.

equivalent to the transfer function between T L and Te•• This has consequences for the size of
matrix M, which had an initial size of 3x3, but can be reduced to a 2x2 matrix.

The control objectives can be translated in shaping functions and weighting functions that
are augmented to M. These filters have been augmented to the control loop in figure 4.5. This
changes the exogenous input vector wand output vector z to

(4.6)

The shaping functions are used to scale the input signals as

(4.7)

(4.8)

with IlTr-II2 ~ 1 and Ilwm .1I2 ~ 1. Note that Wm • and 'h are not input signals that can be
manipulated, but they are necessary to scale the input signals in such a fashion that the following
expression holds for a class of input signals. Thus

(4.9)

and

(4.10)

The filters VL can be used to shape the power spectra of the expected class of input signals.
This can be seen by applying Parsevals theorem on equation 4.9 and 4.10

(4.11)
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and

(~ leo /wm * /2 dW)! ~ 1
27r -eo Vw

(4.12)

which shows us that when for example Vw is a low pass filter, the power spectrum of W m * would
be confined to the profile of Vw ' The objective is to compute the controller C in such a fashion
that

lIell2 < 1 and 1I'T..lb < 1 (4.13)

This is obtained when IIMlioo < 1. LFT matrix M with the augmented shaping filters and
weightfilters VL , Vw , We and W a is defined as

--L.....)w h!:L..V ( )e 1+ JC'+D L WT;."lL'
W h!LV

a 1+ h+D L

(4.14)

The four transfer functions that can be distinguished have been listed in table 4.2.

I bound I transfer function I
Mll tracking --.::f..- 1

W .. V", 1+ .I .•
G

J)

M12 disturbance attenuation ---.::r...- ~W .. VL. 1+J.~

lvJ21 converter overflow prevention ---.::r...-
WuVl,oI 1+:-5

Mn model robustness ---.::r...- ~WuVL. 1+ .~

I criterion I description

table 4.2

The main goals of the control design procedure are to guarantee stability in the face of plant
uncertainties and to attenuate the influence of the load torque on the angular velocity of the
rotor axis. Therefore the 'model robustness' bound and the 'disturbance attenuation' bound
prevail over the 'tracking' bound and the 'converter overflow' bound. A system with a large
tracking bandwidth is not our aim. The only control property that we require with respect to
tracking is a small steady state error.

4.2.1 Nominal performance

The criteria M u (tracking), M 21 (actuator overflow) and M 12 (disturbance attenuation) have
been mentioned in table 4.2 and are the criteria that are to be optimized. These goals can be
formulated in weighting filters and shaping filters which have been augmented to M. Those
goals are achieved when IIWe Mll Vwll oo < 1, IIWa M21 Vwll oo < 1 and IIWe M12 VLileo < 1.

We already stated that a small steady state error and 'disturbance attenuation' are more
important objectives than a large tracking bandwidth.

4.2.2 Robust stability

In this section we will compare the situation when the error model is described by a linear
function !:::J.. and when it is described by a nonlinear function ~. Lets first focus on the situation
when the error model is described by a linear function. The control loop remains stable if
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IIM22 .6lloo < 1. This can be analysed by means of the Bode diagrams of both M Z2 and .6.
The H oo norm of the closed loop system M 22 .6 in the magnitude plot of the Bode diagram is
supposed to be smaller than one in order to obtain robust stability. This is a sufficient condition,
whkh means that even if it is violated it call :;tiil be stabie. We can say that the profile ofMn
is bounded by

1
Vw: IMd< ~ (4.15)

1.61 bounds the profile of M 22 in the Bode diagram. We can say that the maximum value in
the magnitude plot of the Bode diagram is the supreme for all bounded signals in L 2 • Each
input signal can be described as a summation of various Fourier components. Each component
is amplified by the corresponding value in the magnitude plot and delayed by the corresponding
phase lag in the phase plot. The output signal is composed by adding each resulting frequency
component.

This can be generalized for every signal in L 2 , due to the fact that the superposition theorem
can only be applied on linear systems. This means that if we consider two linear systems
II : UI -t Yl and 12 : Uz -t Y2 the following expression holds

(4.16)

(4.17)

This property enables us to use Bode diagrams because there are no cross dependencies between
the individual frequency components. For example, supplying a linear system with a sinusoidal
input signal with a constant amplitude and constant angular velocity will result in a sinusoidal
output signal which has a certain amplitude and a phase angle with respect to the input signal
and the same angular frequency as the driving frequency. As opposed to nonlinear systems
which can produce components at multiples of the driving angular frequency.

The bound for M 22 with the nonlinear error model Li can now be obtained by applying the
small gain theorem to M22 and Li. The product of the Hoc-norm of the nonlinear function Li
and the linear function M22 should be smaller than one. This means that the transfer function
M 22 has a magnitude which is supposed to be smaller than the reciprocal of IAI. Thus

1
Vw: IMnl < -_­

I~I

The question that still has to be answered is: How do we compute the H oo norm of the nonlinear
error model? This can be done by selecting an input signal which satisfies liTe. liz < 1 and
selecting a controller which satisfies 116Te liz < 1. The obtained controller will not satisfy this
last condition for every input signal due to the fact that we are dealing with a nonlinear system.
We therefore ignored the described dynamics for a while and regarded the input/output set
(Te., 8Te ) as if the relationship between both signals was described by a linear description. This
enables us to describe the relation ship between both input and output signals by a filter W~,i'

Thus

with

8T,,(t) =1: W~,i(t - T)Te.(T)dT (4.18)

(4.19)

The obtained filter W ~.il ,i E IN only holds for that particular data set and will differ from an
other filter W~,i, i E IN. The filters W~.i, i E IN will be computed for different parameter
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perturbations (orr' OL.J. The input signal that is suplied to the nonlinear error model is a step
signal. It appeared in the simulations that the oscillations of output signal cTe was the biggest
when Te• was a step signal. We now have for every data set a filter W ~.i' Thus, the following
holds for a particulary dataset.

with 1160 1100 :5 1. Application of the small gain theorem yields

\lw: IW~,i~oM221 < 1

(4.20)

(4.21)

Every W~,i that is obtained from the computations is supposed to be bounded by W~. Thus

(4.22)

The uncertainty filters W ~,,, i E IN can be computed by means of the power spectral density
functions of Te • and fJTe , which are respectively denoted by <PT". and <PaTe' The relationship
between input <I>T.. and output <P5Te is described by

(4.23)

(4.24)

Thus,

IW~I = J:~~:
The power density spectra. of <PTe. and <PeT" for several perturbations of 8Lm and orr have been
computed. The corresponding uncertainty filters WA,i are listed in table 4.3 and have been
included in appendix E.

Or._ OL", Teo Uncertainty appendix
[Nm] filter

0.3 0.3 85 W~,l E.1
-0.3 0.3 46 W~,2 E.2

().3 0 109 W~,3 E.3
r----

W~,4 E.4-0.3 0 60
c---

0.3 -0.3 155 W~,5 E.5
-0.3 -0.3 89 W~,6 E.6

table 4.3

The computation of W ~.i(i = 1, ... ,6) has been conducted for different input signals for each
perturbation in table 4.3. This is necessary because each perturbation results in a different steady
state value for Teo. We can however compute the weighting filters for several perturbations and
determine a worst case filter W~ that bounds all other uncertainty filters W ~,i (i = 1, ... , 6).

The steady state value of torque command signal Teo depends on 8L,n and 8rr . This has
already been concluded in section 3.2. Supplying the disturbance input T L with its maximum
value results in a certain value of Te., which depends on 8Lm and OTr and can be described by

(4.25 )
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Te -TL

D (4.26)

And T. can be expressed as

(4.27)

This value of Te can be obtained when a certain value ofTe• is supplied and depends on bLm
and DTr , which can be computed with the use of figure 3.5, 3.6 and 3.7 on page 27. Uncertainty
filter Wt. is designed when W m = 100r~d and TL = 70. These are the maximum values that are
supposed to be supplied. Inserting these values in equation 4.26 yields a certain value of Te •

which depends on DL m and br ,.• For example Teo in the second row of table 4.3 can be found as
follows. Te is computed first

Te = DWm +TL

= 0.1.100 + 70 = 80

and Te is related with Teo via the following expression

Te = Te• + bTe

(
bTe)= Teo 1 + Teo

(4.28)

(4.29)

(4.30)

(4.31)

The values Teo and ~ for which this equality holds is Te• = 46Nm. This value is found with
the aid of figure 3.5 o~~ page 27.

The power density spectra of the input signal Teo and output signal fJTe are computed in
Matlab and application of equation 4.24 yields a plot of Wt.,;(i = 1, ... ,6) for every perturbation.
The total uncertainty Wt. is supposed to bound all the uncertainty filters that have been found
in appendix E.l to E.6. This gives us the rather messy magnitude plot of figure 4.6. Every
uncertainty filter Wt.,i(i = 1, ... ,6) for every perturbation that is listed in table 4.3 has been
depicted in figure 4.6. Every possible perturbation is bounded by uncertainty filter Wt.. It can
be seen that the filter is to conservative for higher frequencies. The optimal Wt. filter bounds the
maximum values of Wt.,i( i = 1, ... ,6) exactly. This requires the application of a higher order
filter. Implementation of a higher order filter in mhc.m [4] meets numerical problems. A choice
has therefore been made for a second order filter that bounds especially the lower frequencies as
good as possible. The following filter has been plotted

Wt. = 0.8 <10 + 1)(10 + 1)
(2~O + 1)(2~o + 1)

This filter determines the robust stability constraint which is expressed by

(4.32)

(4.33)

This bound can be imposed on the controller design process by demanding that the following
bound is satisfied for every frequency.

(4.34)
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Figure 4.6: Design of uncertainty filter W~.

4.2.3 Robust performance
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We would like to maintain the performance bounds that we stated in section 4.2.1 by means of
the weighting filters in the presence of the perturbations in A. This can be realized when the
following condition is satisfied

00

<1 (4.35)

4.3 Design procedure

In this section we will develop a robust controller which is stable in the face of the nonlinear error
model and has optimal performance and robustness properties. We will first define the design
steps that will be followed to obtain controller C. These design steps will be commented in
section 4.3.2. The controller will eventually be incorporated in a control loop with the nonlinear
error model and simulations will be carried out. This will be done in section 4.3.3

4.3.1 Design steps

The design procedure contains two design phases which are outlined in the following two steps.

Design step 1 'Model robustness' and 'Disturbance attenuation' are more important than the
criteria 'tracking' and 'actuator overflow'. We will develop the controllers in such a fashion that
M 22 and M21 are the limiting transfer functions which means that there is little space between
the actual transfer function and their bounds which are respectively~ and U. "y is defined
as the upper bound of the Hoc norm. If we scale the Hoo norm of M to one, then 'Y becomes a
scaling factor for the weighting functions.
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The input shaping filter VL and Vw are respectively set on

V = 70 1Ofuio + 1
L ..£ + 1

20

and

(4.36)

(4.37)

Shaping filter VL is designed in such a fashion that all possible input signals TL are confined in
VL . We assume that TL has a bandwidth of 20T~d and a maximum amplitude of 70Nm. The
zero in s = -10000 is necessary to keep VL proper. The other shaping filter Vw is set on a small
value for the time being in order to optimize M 12 (disturbance attenuation) and M 22 (model
robustness) but will be altered in the second design step. The small value of shaping filter Vw

practically eliminates the influence of the input wm • on the computation of the controller.
The functions M I2 (disturbance attenuation) and M22 (model robustness) are supposed to

be the limiting functions, which means they match the inverse of the corresponding inverse
weighting functions in a certain frequency range. The profile of these functions can be imposed
by means of We, Wa and VL •

The weighting filter We is designed in such a manner that a high penalty is set on low fre­
quencies and a low penalty on high frequencies. This will reduce the influence of the disturbance
input on the error node e. Weighting filter W a puts a high penalty on high frequencies and a
low penalty on the low frequencies. The filters are adjusted so that the scaling factor 'Y < 1.

design step 2 Until safar we disregarded input W m • by fixing Vw to a very small value. In the
second phase we will compose Vw in such a fashion that Vw has a passband-level of 100 which is
consistent with values that have been listed in table 4.1. The scaling factor 'Y will become bigger
than one when we weigh all frequencies equally. The scaling factor 'Y can be lowered by changing
the profile of Vw to a low pass filter. This also means that the total set of input signals that
can be supplied to the control system becomes smaller. Which still meets our design objectives
because we stated that fast tracking is not our objective. The only property that we require
with respect to tracking is a small steady state error.

4.3.2 Execution of the design steps

First step A few remarks can be made with respect to the first step. A trade off is made
between the criteria 'disturbance attenuation' (M1Z ) and 'model robustness' (M22 ) which are
described by

1 5
Js+D

1
= C Js+DS

when

1
5 = c

1 + Js+D

Filter Wa is designed in such a fashion that the robust stability constraint

1
'iw: IM22 1 < IWA~ol

(4.38)

(4.39)

(4.40)

(4.41)
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is satisfied. The H 00 norm of error model .6. bounds the tracking of the closed loop system,
because the bandwidth of complementary sensitivity function M 22 is limited by the profile of
W A · This profile of W A can only be imposed on M 22 by means of Wa and VL . W a and VL bound
the 'model robustness' criterion M 22 according to table 4.1.

Robust stability for all possible perturbation has to be paid for by a poorer disturbance
attenuation. This is the trade off that has to be made.

Robust stability can be accomplished when the following inequality holds

(4.42)

or

Thus

238.183 + 2.143.104
8 2 + 6.19.105

8 + 5.714.106

Wa = 83 + 1.045.10482 + 4.55.1068 + 5.108

(4.43)

(4.44)

This filter has been depicted in figure 4.14. The filter We is now updated in such a fashion that
scaling factor "Y < 1 or in other words

00

<1 (4.45)

Filter We puts a high penalty on the low frequencies and a low penalty on the high frequencies
and has therefore a low pass profile. Application of shaping filter VL = 1.10-9 that we initially
defined in section 4.3.1 resulted in numerical problems. Vw was therefore altered to

Vw = 0.001

The following third order filter of We has been found

w = 2.5
e 83 + 0.0982 + 0.00238 + 0.000015

(4.46)

(4.47)

This results in the magnitude plots of figure 4.7 and 4.8. The magnitude plot of Mu and M 12

have been omitted, because they do not produce extra information since Vw was set on a small
value.
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Figure 4.8: Model robustness M 22

Second design step The weighting filters We and Wa have been designed in the first design
step but can be altered in the ~econd design step. This is the case when the design objectives
that are to be optimized in the second design step are not met. The following two criteria are
optimized

s
CS

(4.48)

(4.49)

which arc respectively the functions that determine the 'tracking' criterion and the 'actuator
overflow' criterion.

The shaping filter Vw that has been designed in the first design step is to small. It can be
altered by designing Vw in such a way that all possible input signals are confined in Vw ' A large
bandwidth of Vw will not be necessary because reference Wm • will remain on the same value
during operation and has a maximum value of 100r~d. The pass band of Vw will therefore have
a value of 100. A small steady state error is the main goal of this design step. This also means
that actuator overflow criterion is not an important criterion.

It appears that scaling factor 'Y = 1.0 when the following filter is chosen

V
w

= 100~ + 1
O.~l + 1

(4.50)

This shaping filter has a small bandwidth but meets our objective to have a small steady state
error. This filter has also been depicted in figure 4.14. This results eventually in the following
four transfer functions that have been depicted in figure 4.9 to 4.12
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Figure 4.10: Actuator overflow M 21
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Figure 4.12: Model Robustness M 22

It can be seen that the 'model robustness' plot M 22 in figure 4.12 and the disturbance
attenuation plot M 12 in figure 4.11 are the functions which are closer to their bound than the
remaining functions MIl and M 21 . The 'model robustness' plot is bounded by the weights in the
angular frequency range over 3 r~d as the disturbance attenuation plot is bounded for angular
frequencies up to 2 rad.

s

The controller C that lead to these transfer functions has been depicted in figure 4.13.
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Figure 4.13: Controller magnitude
plot

Figure 4.14: Shaping filters and
weighting filters

The controller that was originally computed was described by a ninth order transfer function
but could be reduced to a sixth order controller by eliminating compensating poles and zeros.
The following poles and zeros have been obtained (Static gain=3.88.105

). An asterix denotes a
pole zero cancellation.

zeros

-1.104 *
-250
-200
-20*

-1.14 ± 2.39i
-0.001*
-2.36

poles

-1.89.104

-1.104*
-904.31

-64
-20*

-0.0484
-0.0329
-0.0087

-9.98.10-4*

Table 4.4

The sixth order controller has been plotted in figure 4.13 with the original eleventh order
controller. It can be seen that the magnitude plot of the sixth order controller completely
overlaps the original controller in the frequency range that we consider.

4.3.3 Simulation of the controller

Simulations have been carried out when the reduced controller is incorporated in the control
scheme with the nonlinear error model that has been depicted in figure 4.2. The simulation lead
to the following responses when the rotor rotates with a constant angular velocity of 100r~d and
a load torque is switched on. The reference value of TL changes stepwise to 70Nm and is filtered
by a first order filter with different bandwidths which have been listed in table 4.5.
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'" r

70 20 Tad -0.3 0.3 F.l.
70 20 T~..!!. -0.3 -0.3 F.2
70 1 T~ -0.3 0.3 F.3
70 1 Tl!!! -0.3 -0.3 FA.. -
70 20 Tad 0 0 F.5.
70 1 T~ 0 0 F.6.

IMagnitude of TL IBandwidth of TL~ Appendix I

table 4.5

The behaviour of error signal e = Wm - Wm ., torque command signal Te• and the output of
the uncertainty model have been depicted. It appears that there is, in the case we consider,
a maximum speed change of 4 r~d when the maximum allowable load torque is supplied to the
control loop with a bandwidth of 20 T~d and a speed change of 1T~d when the load torque is
switched on via a first order filter with a bandwidth of 1T~d. This higher amplitude of e when
a fast increasing TL is supplied, can be understand by looking at the disturbance attenuation
plot of figure 4.11 where can be seen that signals with an angular frequency higher than 3T~d

are amplified with -20dB (=0.1). As opposed to low frequent signals which are amplified by a
factor which is smaller than -20dB.

4.4 Comparison of the H00 controller with a PI controller

In the previous section we saw that the disturbance input TL had a big influence on the angular
velocity of the rotor axis. This is mainly caused by the fact that the 'model robustness' criterion
bounds the complementary sensitivity function of the closed loop and determines therefore the
disturbance attenuation criterion in an indirect way.

The magnitude plot of the H 00 controller in figure 4.13 resembles the magnitude plot of a PI
controller, described by

(4.51)

Approximation of the H oo controller by a PI controller lead to a closed loop system that remained
stable for the perturbations that have been listed in table 4.3. Increasing the proportional part kp

to a higher level than the controller in figure 4.13 will result in a better disturbance attenuation
but destabilized the loop when kp becomes too big. It appeared in the simulation that the closed
loop system remained stable when kp < 55dB. Ti is meanwhile kept on such a value that the
zero of H . remains between 10-1 m and 2Tad

•pt s s

The fact that the control loop remains stable when we implement a PI controller in the
control loop does not mean that stability is guaranteed for every possible perturbation due to
the fact that the error model is described by nonlinear equations and we only analyzed a finite
number of perturbations. But, the cases that have been listed in table 4.3, remained stable
when the robust stability constraint of equation 4.33 was violated. We therefore conclude that
the small gain theorem that was utilized to guarantee stability is probably a too conservative
constraint. Application of a method that makes use of the structure in the error model, such as
jl-synthesis, will probably give better results.



Chapter 5

Robust control of a current converter

The study safar has been based upon the assumption that the stator current could be impressed
by an instantaneous responding current converter. If the delay is not negligible, undesirable
coupling terms will arise which will confuse indirect field oriented control. Measures can be
taken to compensate for these coupling terms by adding decoupling terms in field coordinates
prior to the transformation into stator coordinates. The reader is referred to [7] for a detailed
explanation of this method.

In this chapter a method is outlined that controls the stator current by manipulating the
voltage at the stator windings of the 1M, when we assume that we are dealing with an ideal
voltage converter. A linear model will be derived in section 5.1 which will be incorporated into
an H oo setting in section 5.3.

5.1 A linear model of the current converter

The induction machine model that has been depicted in figure 2.6 on page 12 will be used
to derive a linear model of the current converter. The stator current control scheme of the
asynchronous machine has been depicted in figure 5.1. The actual stator current I! is fed back

I.~

I,--.
+

Figure 5.1: Stator current control scheme.

and the error between the desired stator current I;' and the actual stator current I! is supplied
to the controller. One important consideration is the maximum value of the voltage at the input

of the stator windings, which is set on a value of -If 380 V.
The controller has to be designed in such a fashion that:
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• Only a small phase deviation exists between the desired stator current and the actual
stator current.

• There is absence of converter overflow when we know that the converter provides a max­

imum voltage of If 380 V = 320 V. The If is added as a result of the three phase to
two phase transformation that has been made [13J.

The objective of the to be designed controller will be to reduce the settling time from the stator
current by manipulating the voltage source. We can do this by first analysing the dynamic
properties from the stator circuit. A complication in the development of a linear model is the
presence of -!tip in figure 5.1. The slip, defined as Wn:,w m

, is dependent on the load that is driven
by the induction machine. The stator current control scheme from figure 5.1 can however be
simplified as has been done in figure 5.2. It follows that the stator current can be expressed in

+ +
U = lif S

ljI 'l'r

Figure 5.2: Simplified stator current control scheme.

the s-plane as

1;(s) =
1 -s s

R L U. (s) + R L 'It r ( 8 )
s+S IT s+8 IT

(S.l)

1;(8) =

Substitution of 'It~(s) = Lm1~(s) yields

1 -sLm s
R L U.(s) + R L Im(s)
.+s IT s+s IT

(5.2)

Introducing

H(s) = (S.3)

and

(5.4)
1

G(8) =
R. + sLIT

yields the following expression for I;
1;(s) = G(s)U(s) + H(s)I;'(s) (5.5)

which has been depicted in figure 5.3. Describing the stator current in this fashion gives us the
opportunity to interpret I;' as a disturbance input with H representing the 'noise filter' and G
the 'process model'. The spectrum of I;' will be given in section 5.4. The magnitude plots of G
and H have been depicted in figure 5.4. Until safar we did not use the relation between I;' and
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Figure 5.3: Block scheme of a volt­
age controlled induction machine

I;. Which can be expressed as

Figure 5.4: Magnitude plot ofG and H

(5.6)

with the knowledge that If is determined by !tip which can be seen in figure 5.1. Therefore, the
block scheme of figure 5.3 can be expanded to the scheme that is depicted in figure 5.5.

Figure 5.5: Block scheme of a volt­
age controlled induction machine

Figure 5.6: Simplified block scheme.

Figure 5.5 can be simplified as 5.7. I; is presented as a disturbance input, but is in fact
related with I; in a nonlinear fashion via the slip denoted by block £i in figure 5.5. Two different
approaches can be followed to obtain a linear model.

1. Include block Li in the model as a nonlinear uncertainty description.

2. Use magnetizing current I!, as disturbance input and disregard everything to the right of
the dotted line in figure 5.5.
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(5.7)

Approach 1 Uncertainty block ~ is described by a nonlinear expression and the Hoc norm is
defined by

1

'

-" 111!1I2
.6. 00 = sup -IIIsll

I;EL2 s 2

We can however also look upon 1,6.1 as if it was described by

(5.8)

with II~olloo ~ 1. This has been depicted in figure 5.7 when both i! and if are in the unit ball
of bounded power. This tells us that there is no fundamental difference between modelling the
relation between I! and If as an unstructured uncertainty or modelling I! as an independent
input with a shaping filter that is described by V6.

Approach 2 There is no difference between choosing either I;' or I! as a disturbance input.
This can be understand by looking at figure 5.1. The voltage U", is determined by I! or I;'
(1;' = L JU",dt and I! = !ft). Both currents are related with U", and determine therefore
both voltage Ut/J.

A choice is made by using a priori information we have about the character of I;' and I!.
I;' is a signal with a constant amplitude when the parameters in the indirect FOe are correct
and there is only a relatively small amplitude deviation of ±10% when there is a parameter
mismatch. As opposed to I! which does not have a constant amplitude because it is dependent
on the torque that is generated in the induction machine. This can also be seen in figure 5.5
where two signals with a varying amplitude (I! and In yield a signal with a more or less
constant amplitude. It is therefore more appropriate to choose I;' as disturbance input.

5.2 The control loop

In the previous section did we make a choice for the model that has been depicted in figure 5.3
where we regard I;' as a disturbance input. The objective of the controller design process will be
to minimize the influence of the disturbance input I;' in the output signal. Another objective is
robust performance: the actual stator current I; is supposed to track the desired stator current
in the face of perturbations in G. The parameters L,n Lm and Rs have a multiplicative error
with a relative deviation from their nominal value of ±30%.
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The complete control scheme with feed forward controller C!f' feed back controller Gfb and
uncertainty ~ has been depicted in figure 5.8.

I s .I..
s' ---+

+

+

u

Cfb

Figure 5.8: Control set up.

Uncertainty ~ can either be modelled as a structured or an unstructured uncertainty. Mod­
elling ~ as a structured uncertainty is possible in this case, due to the fact that the parameters
in G can be extracted from G [10] and a controller can be developed that makes use of the
structure in the uncertainty description by applying IL-synthesis.

In our case we did not make use of this structure. \Ve can extract the unstructured uncer­
tainty from G by rewriting G as a multiplicative uncertainty description

Pc = {G(l + Wc~o)I"~o"oc S I} (5.9)

in which uncertainty weight We describes the uncertainty profile of the uncertainty as a function
of the frequency. The parmeters R s and £(7 can be described as follows

=

R s = R;(l + 0RJ

£(7 = L;(l + OLJ

The transfer function Pc can now be described as follows

p. _ 1
c - 8£;(1 + OLJ + R;(1 + OR.)

=

(5.10)

(5.11)

The objective is now to find error filter We which bounds the multiplicative errors that can
occur. Filter We has been in depicted in figure 5.9 and 5.10 when OL" E [-0.3,0.3] and when
OR. E [-0.3,0.3]. It appears from the plots that the upper bound of the uncertainties can be
described by

We = 0.42 = -7.5dB (5.15)

The computation of the controller set (C jb , CIf) can be performed by application of Hoc
theory which will be done in the next section. Topics like disturbance rejection, tracking,
converter overflow and robust performance will be elaborated on.
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5.3 Hoo control of a voltage controlled current converter

In Hoo control [3] we compare transfer functions by their (Xl-norm which is defined as

IIHlloo = sup(a(H))
w

(5.16)

where u(H) is the largest singular value of H.
A control scheme can be represented as a Linear Fractional Transformation (LFT) in which

the controller C (in our case the controller set C fb , Cff ) and uncertainty ~o are extracted from
the control scheme. The LFT is depicted in figure 5.11.

.10 I· I
I

u. I I Y.

w P z

Figure 5.11: Linear fractional transformation

Block P denotes the generalized system and block C represents the generalized controller.
The generalized system has three inputs (ua, wand u) and three outputs (Yo, z and y). The
exogenous input vector w contains all primary input signals of interest such as disturbances,
measurement noise and command signals which are characterized by means of shaping filters.
Vector w belongs to the unit ball of bounded power.

The output vector z contains all the outputs we wish to regulate such as the error signal and
the actuator command signal. The control objectives can be described by means of weighting
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filters which should be designed in such a fashion that w also belongs to the unit ball of bounded
power. The exogenous input vector wand output vector z are defined as

(5.17)

We can abbreviate the contents of M as

(5.18)

In which eis the tracking error and it is the stator voltage that is supplied to the stator windings.
This matrix contains however some redundant information due to the fact that the nodes Yn
and it are the same as can be seen in figure 5.8. The size of M therefore reduces to a 2 x3
matrix. The objective will be to minimize the power of output vector z(t) when input vector
w(t) contains time signals that exist in the unit ball of bounded power. We can achieve this by
computing an appropriate controller set (Cfb,Cff ) that satisfies

(5.19)

in which 'Yo is the minimal norm that can be achieved. This is a hard to solve problem and is
therefore relaxed to the suboptimal problem which is defined as

(5.20)

Our aim is to construct a controller set in such a fashion that the control loop has maximum
tracking properties and that there exist no overflow of the voltage converter.

The desired control properties can be translated in a set of shaping and weighting filters
which are augmented to M and are depicted in figure 5.12. This can also be expressed as

( e) (-~_ I-GC /,
it - W"HC/htm

I-Gefh

W. (1 - I~gg,,) V.
W"Cull:.
I-GC/h

- l~c?;'6h ) ( ~U~s6" )W"GC'b V6 ...

I-GCtb

(5.21)

The criteria have been summarized in table 5.1.

I criterion I description I Bound I transfer function I
M u disturbance attenuation ---L- _----!1-

W,-Vm, l-GC'h

M I2 tracking --..:L-.. 1-~
WeV. I-GC'b

M l3 uncertainty attenuation --..:L-.. -~
W eV6 I-GC",

M 21 converter overflow ---..:::t..- ~

w"v~ I-C/bG

due to 1m •

M 22 converter overflow --..:L-.. ~

W"V. I-GCfb

due to Is.
M 23 model robustness --..:L-.. ~

~v" V6 I-GC /.

table 5.1
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Figure 5.12: Control set up with weighting filters.

M

The factor, represents the H 00 bound and is supposed to satisfy, ::; 1. A certain choice of the
weighting filters will not always obtain a result that satisfies this demand. The scaling factor,
is therefore appended to matrix M.

A design procedure can be formulated which will result eventually in a set of weighting filters
that guarantees robust stability and optimizes nominal performance. A trade off has to be made
between the tracking bandwidth of the converter and the amplitude of the stator current that is
to be supplied to the converter. The limiting factor is the output range of the voltage converter.
On the one hand will a large tracking frequency range have to be paid for by a large voltage
command signal which might violate the output range of the voltage converter. On the other
hand will a large tracking bandwidth be possible when a small input signal is supplied to the
converter.

5.3.1 Nominal performance

The transfer functions M ll (disturbance attenuation), M 1Z (tracking), M Z1 (converter overflow
due to I;') and Mn (converter overflow due to I;') determine the nominal performance. Our ob­
jective is to minimize the power of the output signals z(t) by selecting a controller set (C[b, Cff )

that meets this objective.

5.3.2 Robust stability

To this point we have discussed performance specifications for a stable feedback system. How­
ever, this feedback can be destabilized by means of the parameter deviations in G. The uncer­
tainties form a loop with the dynamics of the nominal process which can destabilize the control
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loop. Transfer function G describes actually only one transfer function from a set of possible
transfer fUQctions which can be described by

in which uncertainty weight WG describes the uncertainty profile of the uncertainty as a function
of the frequency and has been derived in section 5.l.

Robust stability can now be guaranteed when the following condition is satisfied

or

IIWc 1 ~~:GAolloo < I

Substitution of IIAoiloo ::; 1 yields

IIWGI :~~Glloo < 1

II
GfbG II 1

1 - GfbG 00 < IWGI
The uncertainty weight WG is described by

W G = -7.5dB = 0.42

(5.23)

(5.24)

(5.25)

(5.26)

The uncertainty WGAo is connected with M via node UA and YA which means that the
robust stability constraint from equation 5.24 can be incorporated as entry M23 in LFT matrix
M which has been defined by equation 5.21. The bound that is expressed in equation 5.25 also
puts a constraint on Wu and Va' Robust stability is guaranteed when

IWu Val 2: IWGI

This can be seen by combining equation 5.25 and 5.27.

(5.27)

5.3.3 Robust performance

Until sofar we only looked at nominal performance and robust stability individually. But what
we are really looking for is that performance, imposed by the weights, and robust stability is
guaranteed for a certain set of perturbations in process model G.

Robust performance can be guaranteed by

_ W.HVl/l
I-GCfb

W"HC,I,V...
I-GC,I,

We (1 - 1~~b~J V.
W"CuV.
I-GCfb

_ WeGV"
I-GCfb

W"CC,I,v"
I-GCfh

00

< 1 (5.28)

5.4 Design procedure

5.4.1 Design procedure

First of all we have to specify the type of input signals that will be used. Disturbance input
I~ will have a constant amplitude and a bandwidth that is determined by the design procedure
as will be shown later when we discuss the design steps. Input I;' does not have a constant
amplitude, but depends on the torque that is generated in the induction machine. The minimal
stator current that is supplied to the induction machine equals I! when no torque is generated
and the maximum value of I;' is determined by the converter and the induction machine that
are used. The following limits have been defined.
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I input/output I description I symbol ~ range I bandwidth

61

input desired stator current I;' 20-60 A 600 r¥i
magnetizing current p:; 20 A determined in 'design step 2'm

output actual stator current IS 20-60 As

stator voltage U 0-320 V

table 5.2

The following design objectives are defined before we continue discussing the design steps.

• guaranteed stability in the presence of plant perturbations

• maximal tracking bandwidth (M12 < -40 dB).

• prevention of overflow (M22 < 30dB)

• disturbance attenuation

• robust performance

Design step 1 First, we will optimize the criteria M 12 (tracking) and M22 (Converter overflow
due to Is.). We will show that both M 12 and M22 are the limiting functions which means that
these functions match the inverse weighting functions in a certain frequency range. This is done
by ignoring the other inputs 1m • and U6 for a moment by fixing Vm and 116 to a very small
value. The weighting filters We and Wu are to be designed in such a fashion that the maximum
amplification factor of MZ2 is not violated and that scaling factor I ::; 1.

Design step 2 Until safar we ignored inputs Is. and U c by fixing V6 and Vm to a small value,
which also means that 1\;111 , !vIz 1 , !v113 and lvf23 have been disregarded. This situation is altered
in the second design step by defining shaping filter Vm as a low pass filter with a bandwidth that
corresponds with the actual magnetizing current in the induction machine. Vm has to be scaled
in such fashion that the following expression holds: 1m = vmimwith lIim llz < 1. We stated in
section 5.1. that 1~ remains more or less on the same magnitude. The other shaping filter 116 is
determined by the constraint in equation 5.27. Thus

(5.29)

The smallest penalty is set on M23 when

(5.30)

Addition of the filters Vc and Vm to M will not likely lead to a solution with a scaling factor
that satisfies I ::; 1. There are two degrees of freedom at our disposal to lower scaling factor I
which are

• Reduce the bandwidth of Vm .

• Alter the weighting functions Wa or We' The passband of We can be reduced or the
passband of Wa can be shifted to a higher frequency range.
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5.4.2 Execution of the design steps

Design step 1 In this design step we will make focus on M I2 and M 22 which are described by

_ effG
iVII2 = I - C G (5.31)

1 - fb

and

M
_ Cff

22 -
1 - GCjb

both criteria are bounded by respectively w;v; and &. Shaping filter Vm and V6 are defined
as follows

and

V6 = 1.10-9

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

Shaping filter Vs has the following transfer function

s + 1
Vs = 60 lO~OO

600 + 1

This limits all allowable Is. to a set of signals that are smaller than 60A with a bandwidth
of 600 T~d. This means that reference input if. (depicted in figure 5.12) remains in the unit
ball of bounded power. The desired tracking properties can be translated in weighting filter We
by putting a high penalty on the small frequencies and a low penalty on the high frequencies.
Converter overflow is difficult to prevent, due to the fact that actuator overflow is a time phe­
nomena, but is not likely to occur when we put a high penalty on the high frequencies and a
low penalty on the small frequencies. A trade off is now made between M I2 and M 22 when the
design objectives with respect to these two criteria are

• The maximum allowable value of M22 is set on 30 dB.

• The tracking bandwidth determined by M 12 is to be maximized.

The slope of high pass filter Wu has been chosen in such a way that the maximum amplification
factor of M 22 , set on 30dB, has not been violated. Wu is expressed as

W = 2.52882 + 36668 + 1.327.106

u 82 + 1.45.1058 + 5.29.109

and depicted in figure 5.13 The maximum value of M 22 is also dependent on filter We' This filter
is now chosen in such a way that the tracking bandwidth of M I2 is maximized, the maximum
value of M22 does not exceed 30dB and scaling factor 'Y < 1. This lead to the low pass filter We
that has been depicted in figure 5.13 and can be described by

W = 2.931.1010

e 84 + 53583 + 1.071.10582 + 9.521.1068 + 3.167.108

Shifting the positive slope of Wu and the negative slope of We to the left would result in a smaller
maximum value of M 22 and a detoriating disturbance attenuation plot, since u is weighted more
and e is weighted less. The magnitude plots of all criteria with the inverse weighting functions
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Figure 5.13: Shaping filters and weighting filters after the first design step.

(dashed) have been plotted in figure 5.14 and 5.15. It can be seen that M 12 is the limiting
function up to 1000 Tad and M 12 from 10.103 Tad to 40.103 Tad

s s s

The other criteria M ll , M 21 , M 13 and M 23 which are partially bounded by Va and Vm have
not been depicted because they do not give any additional information since Va and Vm were set
on a small value.
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Figure 5.14: Tracking M12
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Figure 5.15: Converter overflow due to
If. M22

The second design step The control loop is supposed to be stable in the face of plant
perturbations in G. Robust stability is therefore a constraint that should not be violated and
can be adjusted, according to 5.29, by means of shaping filter V6 and weighting filter Wu and is
determined by

(5.38)
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(5.39)

where W,. has already been designed during the first step and WG is the uncertainty profile that
is describe by equation 5.26. Thus V6 has the following transfer function

0.166282 + 2.4098 + 8.72.108
TI" _

• b - 82 + 1450s + 5.25.105

and is depicted in figure 5.16. The remaining shaping filter Vm is a low pass filter with a break
off frequency that is to be chosen so that the scaling factor, does not exceed one. Another
method that could be applied is adjustment of weighting filters We and W u' This would however
have to be payed for by a, that is higher than one or violation of the design objectives that we
stated.

We can see by looking at the magnitude plots in figure 5.14 that an acceptable tracking can
be achieved when w ~ 350 r

:
d

• We will first check if, remains smaller than one when Vm has a
bandwidth that is higher than 350 r:d. Vm is defined as

v: = 0.0025.102
8

2 + 162.5s + 2.625.106

m S2 + 650s + 1.05.105
(5.40)

(5.41)

and has been depicted in figure 5.16. The break off angular frequency of Vm is supposed to be
higher than 350 r~d because this is also the angular frequency at which the tracking properties
are satisfactory. Implementation of a shaping filter with a bandwidth of 350 r:d resulted however
in a scaling factor 'Y that is higher than one. We now have two degrees of freedom at our disposal,
as has been stated in section 5.4.1, to lower scaling factor ,. We could either shift the break off
frequency of Vm to a smaller value or alter weighting filter We or W a • A choice has been made
to alter We to

W = 3.664.1010

e 84 + 53583 + 1.071.10582 + 9.521.1068 + 3.167.108

which has been depicted in figure 5.17. The amplification factor of We that was found in design
step 1 is changed from 2.931.10 10 to 3.664.1010

• This choice of We results in a scaling factor,
that equals one.

101 ld IOJ

co [rad/5]

w,
w. 0

10' lO' \oJ
CJ) IrcuJls}

Figure 5.16: Shaping filters Va, Vm and
V8

Figure 5.17: Weighting filters We and
Wu
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The magnitude plots of all entries in matrix M i.e. Mll to M23 have been depicted in
figure 5.18 to 5.23. It can be seen that M 12 and M22 did not change when we compare them

to the results from the first design step. The tracking bandwidth remains therefore on 350 r~d .
The disturbance attenuation plot shows that the influence from 1m on e is acceptable in the
bandwidth that we consider.

250,.---.....----.,.......,.--.---.----.--.........,

100

·100 '

.150

Figure 5.18: Disturbance attenuation
M ll

101 IO
J

OJ [radls)

Figure 5.19: Converter overflow due to
1m • M 21

..,
200

M/2 150
M12:>l"J

[dB]
[dB]

20
100

10
50

·"'{OL,~~~~.......,~~I...,O'~~,...,O·~~....,...................,lO·
OJ [radls]

Figure 5.20: Tracking M 12
Figure 5.21: Converter overflow due to
Is. M22
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Figure 5.22: Uncertainty attenuation
M13

Robust control of a current converter
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Figure 5.23: Model robustness M 23

The feed forward controller Cff and C fb have been depicted in figure 5.24 and 5.25. Cff and
Cfb were both initially a thirteenth order controller but could be reduced to an eleventh order
controller.

Crr 1201~...c...;..,."""""'''''''''''''''''''''''''~ __i"

{dB] 100

80

00

.,,~., ""."", ..

20

Figure 5.24: Controller Cf f

Cf/I 1:lO~--'-'-~"""":':-=-"";"'~
(dB]

100

'"
60'

40

~O'-:-,~~.,.......~....,....~........,IO',...-'~.....,.....~~-~

fJ) {racUs}

Figure 5.25: Controller Cfb

The following poles and zeros have been found for Cff' Asterix * denotes the fact a pole
zero cancellation takes place. (Static gain Cff = 2.228.105 )
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zeros

-7.5.104

-7.104

-2.91.104

-1.55.104 ± 1.26.104 i
-3.42.102 ± 8.22.102 i
-8.52.102 ± 2.97.102 i

-252.07
-198.19

-41*

poles

-2.44.105

-1.105

-3.09.104 ± 1.36.104 i
-748.35
-701.48
-249.2

-200.64
169.52

-1.30.102 ± 2.89.101 i
-104.93

-41*
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Table 5.4

The same has been done for the feedback controller C fb (Static gain Gfb = -4.2116.106 ).

zeros

-1.105 *
-7.5.104

-7.104

-3.06.102 ± 1.24.103 i
-1.25.103 ± 3.00.102 i
-8.96.102 ± 8.50.102 i

-252.07
-198.19

-41*

poles

-2.44.105

-1.105*
-3.09.104 ± 1.36.104 i

-748.35
-701.48
-249.2
-200.64
169.52

-1.30.102 ± 2.89.101 i
-104.93

-41*

Table 5.5

5.5 Simulations

Simulations have been carried out for the frequency range to 350r~d. The results have been
depicted in figure G.! to G.6. Two cases have been simulated

• There are no perturbations in R s , L" and L m • The output signals e and u have been
plotted in figure G.3 and G.4 in appendix G.

• There are perturbations in R s and L" (6R • = 0.3 and o£" = 0.3). Error signal e and
converter command signal u are depicted in figure G.5 and G.6 in appendix G.

Comparison of the responses shows that the maximum value of the error signal is in both cases
0.23. Only the actuator signal is bigger when the perturbations are OR. = 0.3 and o£" = 0.3.
Other perturbation (OR .. = -0.3 and o£" = -0.3), which have not been depicted, showed an
even lower actuator signal. The error signal had also in this case a maximum value of 0.23.
The relative error between Is. and e is 0.38%. This is still smaller than the -40dB(=1%) we
demanded.



Chapter 6

Conclusion and recommendation

6.1 Conclusion

• It is possible to describe a concatenated indirect field oriented controller and an induction
machine by means of a linear equation with a nonlinear error model. This nonlinear
error model inhabits the cross dependencies between the input signals 1m • and Teo 011

the one hand and output signals 1m and Te on the other hand. The nonlinear equations
are characterized by means of a parameter deviation between the indirect field oriented
controller and the induction machine.

• The steady state error between the actual torque and the desired torque has a nonlin­
ear relation with the desired torque. An equation has been derived which describes this
relation.

• A distinction has to be made betv.;een the rotor time constant 7"r and the magnetizing
inductance L m . A deviation between the actual rotor time constant and the identified
rotor time constant results in a transient behaviour of the internal variables such as the
slip frequency, the torque angle and the magnetizing current. An error between the actual
magnetizing inductance in the machine and the identified magnetizing inductance in the
indirect field oriented controller only results in a static error between the actual torque
and the desired torque.

• A controller has been designed that attenuates the influence from the load torque on the
angular velocity of the rotor axis and remains stable in the face of perturbations. It is not
possible to develop a fast tracking system, since this would require a much larger actuator
input range.

• The controller that has been designed is probably too conservative. This is caused by
the fact that no use is made of the structure of the nonlinear error model. It appeared
that a PI controller which violated the stability constraint resulted in a stable closed loop
system. The disturbance attenuation properties from this PI controller are much better
than disturbance attenuation properties from the H-x; controller.

• The nonlinear error model has been incorporated in a H"", setting by bounding the harmon­
ics that occur by means of an overall uncertainty filter. This overall uncertainty filter has
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been obtained by computing an uncertainty filter for several perturbations. All uncertainty
filters that have been obtained are bounded by this overall uncertainty filter.

• The controller is designed in two design steps. The model robustness criterion and the dis­
turbance attenuation criterion have been optimized first by selecting appropriate shaping
filters and weighting filters. The shaping filters that do not influence the model robustness
criterion and the disturbance attenuation criterion directly are set on a small value in this
first design step. The remaining shaping filters are composed in the second design step in
such a fashion that robust performance is obtained which means that the Hoo-norm of the
generalized system is smaller than one.

• The input circuit of an induction machine can be modelled by a first order transfer function
with an additive disturbance input. The magnetizing current is the disturbance input.

• A controller has been designed that enables us to manipulate the reference nodes of the
voltage converter in such a fashion that the current in the stator windings follows a refer­
ence stator current instantaneously. Use is made of a first order model with an additive
noise filter. The objective of the control design process is to attenuate the influence of the
magnetizing current on the stator current. The tracking bandwidth of the control loop is
limited by the output range of the voltage converter. A small error between the actual
stator current and the desired stator current has to be paid for by a large actuator signal.

6.2 Recommendations

• The developed controller for the outer loop should be implemented in a practical set up.

• The developed controllers that convert a voltage converter to a current converter should
be applied on an actual converter.

• The controllers that arc used to manipulate the reference side of a voltage converter can
be improved by applying jl-synthesis because then use is made of the structure of the
nonlinear error model.



Appendix A

Machine parameters

Reemaf EM 3008; SKA-machine nr. 552047; Type NK 58-6

~Y 220/380 V 41.5/24 A
11 kW/15 pk cos (/=0.83
rated speed 950 rpm
rated slip 5%
rated frequency 50 Hz
number of pole pairs 3

Te,max 100 Nm

I parameter I value

Lm 29.6 mR
L(7 5.8 mR
R r 0.1637 n
Rs 0.238 n



Appendix B

Derivation of steady state equation

B.l Derivation of the steady state equation by using the results
from section 3.2

Substitution of

Igs • + I;'.
1+(1'./7 ... )2

T; 1m •

and

(
Trl., ... ) (/2 + 12 )
r;l",. qS$ m.

1 + (='~ 1" .. ) 2
, r 1"._

in

yields with Tr = T;(1 +01'.)

({2 +/2 )(1'./7
",)

oT
e

= L qS' m' r; I.... _ L' 1 1
m ()2 m m. qs.1 + Tr {7"

r;.lrn.

Lm(1 + 01',.) (/m.lqs• + i::-) - L':r,lm.lqs • (1 + ((1 + OTJE )2)
= 2

1 + ((1 + Or.)~ )

Im.lqs.(Lm - L':r,) + LmoT,Im.1q•• + LTnlq•• /m• ((1 + 01'.) (Ef)
= 2 +

1 + ((1 + OT,.)~)I u ,.

L':r,lm.lq•• ((1 + 01'.)2 (i::-f)
1 + ((l + 01'.)Ef

(B.l)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.i)
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(B.8)

(B.9)

B.2 Derivation of steady state equation from the nonlinear error
model

The following two steady state expression for £:i.1ma and 1mb have been derived

o T 1,;..•
T.,.. TT;I",.

1 + .,..1"...
r; lUl.

These two equations can be substituted in

with

(B.IO)

(B.ll)

(B.I2)

(B.I3)

1m • + E(1 + 0.,.,)
==

1 + ((1 + 0.,.,)~f
yields

(

o.,.,.Iq•.Im. +1m.Iqso + ~(I + 0.,.,)) .
L m 2 - L m 1m .lqso

1+ (1 + b.,.,)!.=)1m •

Lm(I + bTJ(Im.1q•• + t:-) - L';JmJqso (1 + (1 + O.,.,)t::- )2)
==

1 + ((1 + 0.,.,)ef
Im.Iqs.(Lm - L;") + Lmo.,.,.Im.Iqs. + Lm1q•• l m.(1 + bTJ~

= 'II. +
1 + ((1 + bT,)2ef

L;"ImJqs.(I + 0.,.J2~

1+ (1 + b.,.,)t::-f
and substitution of

(B.I4)

(B.I5)

(B.I6)

(B.17)

(B.I8)
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leads to

I
(

L;"OL'" + L;"(1 + OL,,.)OTr + L;"(1 + 8TJ(1 + 8L",)~
m.1qs. 2 u .. +

1 + ((1 + 8T ,) t.;:-)
_ L;"Im.lqs.(1 + 8rJ2~)

1 + ((1 + 8TJt.;:-f

(

OL... + (1 + OL... )Orr + ((1 + oT,.)(l + OL,,.) - (1 + 8rJ2)~)
L:r,Im.lqso 2 ....

1 + ((1 + 8r ,.)t.;:-)
8L", + (1 + 8L,,.)8rr + (8Lm + 8Tr + 8r ,8Lm - 28rr - 8;J~

L:n1m.1qs. 2 "..

1 + ((1 + Or,.)E)
8Lm + 8r rCl + 8e ,.) + (8Lm - 8r J(1 + 8T ,.) (Ff

= L:n1m.1qs* 2 nt.

1 + ((1 + 8r ,)t:::-)
8L". + Or,(1 + 8L,,.) + (8Lm - 8rJ(1 + or,.) (L.TY2 )2T YU HI_

•• 1 + (1 + Or,)2 (L:~j~,. ) 2
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(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

The steady state description of equation is identical to the results that was obtained in equa­
tion B.9.
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Simulation results error model
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Figure C.I: Stepresponse when 0L", =
0.3 and 8.,.. = 0.3 with T•• dashed
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Simulation results error model 75

Of---....---?........ ·.. ,:- .......... ·:.. ·· .... ·· .. :· .... ·.. ,.. ~

. . . .......... r- ---- --:-- -----:-- --.. _- -~-- --_ ..
i

.... J ..
1
I

·····i· : .; .

i\iVI\·A;~--'----..;-----1
.. .. ,1, ·.. c : , ..c ~

!

100

T,"
oT,

[Nm1!>J

..- -- -- .... - ..- ... ---- ----- ------ .. -._- ----· .
1

i
·

. ..••.. -.- ··• ..4····· .

··

time [s]

T," 100

oT, 80

[Nm]
60

40 ..

20

o 0,5 1.5 2
time {s1

2,5 3

Figure C.3: stepresponse when 8L... =
o and 8"'r = 0.3 with Te • dashed

Figure C.4: stepresponse when 8Lm

0.3 and 8"'r = 0.3 with Te• dashed

c.. ,

40 .........., . ... ...... :.. ....;. .........
!

20 L.

i~0 .. ..

-20
W

-40a 0,5 1.5 2 2,5 3
time [s]

T," 100

oT, 80

[Nm]60 f ..... ,: ....... !; .. .. c....... C'''''''''C'''''''~

40

20

Ol----'----j

-20

-40 \fv v :

-60'-----'--------.:---'-----'~--'-------'

o 0.5 1.5 2 2,5 3

time {s1

100
T,"
oT, 80

[Nm] 60

···r·····
1

....•. 1..... . '

l

Figure C.S: stepresponse when OL", =
-0.3 and 8"'r = 0.3 with Te• dashed

Figure C.6: Stepresponse when OL", =
-0.3 and 8"'r = -0.3 with Te • dashed



Appendix D

Stepresponse plots
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Uncertainty filter
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Simulation results of the control loop

F.l Simulation results when 8Tr = -0.3, 8Lm = -0.3 and TL has a
bandwidth of 20 Tad
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F.2 Simulation results when 8Tr
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F.4 Simulation results when bTr

bandwidth of 20r~d
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F.5 Simulation results when bTr = 0, bLm = 0 and TL has a band­
width of 20 rad
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F.6 Simulation results when 8Tr = 0, 8Lm = 0 and TL has a band­
width of 1 Tad
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Current converter simulations

G.1 Input signals
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G.2 Output signals e and u when 6Rs = 0 and 8Lu = 0
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Figure C.3: Error signal e when oR, =
o and OL n = 0

Figure C.4: Converter command signal
u when OR. = 0 and OL n = 0

G.3 Output signals e and u when 8Rs = -0,3 and 8Lq = -0,3
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Figure C.S: Error signal e when OR. =
0.3 and OL" = 0.3

Figure C.6: Converter command signal
u when OR., = 0.3 and OL n = 0.3
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List of symbols

{3
G
Gfb

GIf
D
~

~

~o

l:i. Te

AIm

OL<7
8R•

orr
oTe
e
e
f

<PT••
<P6Te

(PF
¢m
¢R
¢r
¢;:
¢;
¢s

¢~
¢;

Constant
Constant
Transfer function of controller
Feedback controller
Feed forward controller
Damping coefficient
Linear error model
Nonlinear error model
Function with property lI~olloo = 1
Nonlinear function that determines 8Te

Nonlinear function that determines OIm

Difference between impressed magnetizing current and the real part of I;;"
Relative error between L m and L;"
Relative error between L", and L~

Relative error between R. and R;
Relative error between Tr and T;
Difference between desired torque and actual torque
Error signal between actual angular velocity and desired angular velocity
As e, but with property lIell2 < 1
Angle between 1m and 1m •

Power spectrum of Te •

Power spectrum of oTe
Flux expressed in field coordinates
Mutual flux magnitude
Flux expressed in rotor coordinates
Rotor flux magnitude
Rotor flux expressed in rotor coordinates
Rotor flux expressed in stator coordinates
Flux expressed in stator coordinates
Stator flux expressed in rotor coordinates
Stator flux expressed in stator coordinates
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CPs
CPsa
cP s/1

cP l1S

cP l1r

FOe
'Y
G
H
Hm

H o

H pi

las
1/15

I dm

I dr

Ids
IdS*
IF
1M
1m

I ma

1mb

Ie
m

IF
m

1M
m

IR
m

IS
m

I;' (s)
1m •

I:.
I~.
I::'.
I:!..
I;'.
I qm

I qr

I qs

I qs •

I R

I r

IF
r

I R
r

I;
IRTF
Is
150
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Stator flux magnitude
Real part of stator flux in stator frame
Imaginary part of stator flux in stator frame
Flux component which is not linked with the rotor
Flux component which is not linked with the stator
Field oriented Controller
Scaling factor
Process model
Noise model
First order network with time constant T r

First order network with time constant T;
Transfer function of a PI controller
Real part of the stator current
Imaginary part of the stator current
Real part of magnetizing current in the field frame
Real part of rotor current in the field frame
Real part of stator current in the field frame
Desired value of the real part of stator current in the field frame
Current in field coordinates
Induction Machine
Magnitude of the magnetizing current
Real part of 1m expressed in indirect controller frame coordinates
Imaginary part of 1m expressed ill indirect controller frame coordinates
Magnetizing current vector expressed in indirect FOC coordinates
Magnetizing current vector expressed in field coordinates
Magnetizing current vector expressed in machine coordinates
Magnetizing current vector expressed in rotor coordinates
Magnetizing vector expressed in stator coordinates
Magnetizing vector expressed in stator coordinates in the s-plane
Magnitude of the desired magnetizing current
As 1m ., but with property Ileib < 1
Desired magnetizing current vector expressed in indirect FOC coordinates
Desired magnetizing current vector expressed in field coordinates
Desired magnetizing current vector expressed in rotor coordinates
Desired magnetizing vector expressed in stator coordinates
Imaginary part of magnetizing current in field frame
Imaginary part of rotor current in field frame
Imaginary part of stator current in field coordinates
Desired imaginary part of stator current in field coordinates
Current in rotor coordinates
Magnitude of the rotor current
Rotor current vector expressed in field coordinates
Rotor current vector expressed in rotor coordinates
Rotor current vector expressed in stator coordinates
Ideal rotating transformer
Magnitude of the stator current
Desired stator current
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I.!
I scr

1<:3
Ie

s
IF

s

1M
s

I R
s

IS
s

I;(s)
J
K
k1

kp

L mag

L m

L':n
La
!vI

WI
Wm

Wslip

W s lip,1nax

Wslip.

Wo

PT -.

j\..
Pc
Rro
R r

R;
Rso
R.
p

p.
5
slip
Te

Te,max

Te •

Te•

8
8·
Om
Oslip

oslip.

As I~.l but with property 111:.112 < 1
Real part of stator current in stator frame
Imaginary part of stator current in stator frame
Stator current vector expressed in indirect FOC coordinates
Stator current vector expressed in field coordinates
Stator current vector expressed in machine coordinates
Stator current vector expressed in rotor coordinates
Stator current vector expressed in stator coordinates
Stator current vector expressed in stator coordinates in s-plane
Inertia
Controller
Transformation parameter
Parameter that determines the proportional part of the PI controller
Mutual inductance
Magnetizing inductance in the 1M
Magnetizing inductance in the indirect FOC
Leakage inductance
generalized system
Angular velocity of rotor flux
Angular velocity of the rotor axis
Angular velocity of the rotor axis
As W m • but with property IIwm .112 < 1
Slip angular velocity
Maximimum slip angular velocity
Desired slip angular velocity
Angular velocity of the stator current
Nonlinear function that determines the torque
Nonlinear function that determines the magnetizing current
Uncertainty description of transfer function G
Rotor resistance
Rotor resistance in the 1M
Rotor resistance in the indirect FOC
Stator resistance
Stator resistance
Angle between flux and stator frame
Desired angle between flux and stator frame
Sensitivity
slip
Actual electromagnetic torque
Maximal flux that can be generated
Desired electromagnetic torque
As Te ., but with property 11T..1I2 < 1
Parameter set in the induction machine
Parameter set in the FOC
Angle between rotor axis and stator frame
Angle between flux vector and rotor axis angle
Desired angle between flux vector and rotor axis angle
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ri Parameter of the PI-controller.
rr Rotor time constant in the induction machine
r; Rotor time constant in the indirect FOe
TL Load torque
TL As TL , but with property WfLlb < 1
UA Input signal of uncertainty model
UA As UA, but with property !\UA 112 < 1
Uk Output signal of controller
U R Voltage expressed in rotor coordinates
Ur

R Rotor voltage expressed in rotor coordinates
US Voltage expressed in stator coordinates
u Magnitude of the stator voltage
U As u, but with property Iluib < 1
Us Stator voltage magnitude
Usa Real part of stator voltage
Us{3 Imaginary part of stator voltage
Uf Stator voltage expressed in stator coordinates
V6 Shaping filter of UA

VL Shaping filter of input TL

Vw Shaping Filter of input W m *

Wa Weighting filter of Te •

W A Uncertainty filter
We Weighting filler of e
We Uncertainty filter
Wu Weighting filter of stator voltage
w Exogenous input vector
~ Angle between stator current vector and stator frame
~. Desired angle between stator current vector and stator frame
~f Torque angle
~f. Desired torque angle
YA Output signal of uncertainty model
Yk Measured output signals
z Output vector with variables that are to be controlled
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