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Abstract.

CISC (Complex Instruction Set Computer) processors have been used in embedded
applications since the introduction of the microprocessor, mainly because of its flex­
ibility. Low cost solutions can be achieved when the peripherals are integrated into
the microprocessor chip to form a microcontrol/er. During the last decade another
kind of processors has been developed to respond to the increasing demand of per­
formance, from those applications of intensive data manipUlation like a workstation:
The RISC (Reduced Instruction Set Computer) processor.

There are different implementations of RISC, every producer has its own architec­
ture. The common features are the use of cache memory for those pieces of code
and data that are often used by the processor, and the substitution of microcode by
hardwired techniques. These characteristics have proven to boost the performance
of the conventional processor, but imply a certain degree of uncertainty or non deter­
ministic behaviour which might affect negatively the operation of real time applica­
tions.

Certain applications of the embedded sector, that also require high performance for
intensive data processing, have taken advantage of the RISC developments, an ex­
ample is a laser printer. But in real time systems, which are interrupt driven, the con­
text switching can make the effectiveness of the RISC approach less notorious.

Even though, the combination real time and RISC is not an obvious one, those RISC
processors that are used in the industrial sector offer other benefits like long term
availability and often more performance when compared to the existing CISC proc­
essors and microcontrollers.

This work deals with the implementation of the control of a digital copier based on the
Intel 80960SA RISC processor, a member of the i960 family of embedded proces­
sors. This processor offers the benefits of RISC , but its internal facilities have been
simplified (no MMU, no FPU) as well as the external data bus (16 bits multiplexed
address/data bus), which makes the processor interesting for low cost applications.

The control of a digital copier is a multitask real time system. Because of its digital
character, more functionality is available than with the analog counterpart. Further­
more, the copier can behave like a printer or like a scanner. This makes possible the
integration of the copier (or portions of it) in other environments. To cope with all this,
there is an increasing performance demand of the control unit of the machine.

Several hardware architectures are considered in order to find a soluition that short­
ens the time to market. An implementation for the short term start of production is
given as well as a development plan 10r the future versions.

One important engineering trade-off is the integration 01 the control panel into the
control unit. By doing this, the price of the system is maintained low, but this will in­
crease the required processor power, because the control unit will be in charge 01
generating and manipulating bitmaps for a graphic Liquid Crystal Display.

Because RiSe may involve risks in real time applications, an analysis of the extent
of these problems is given. An important conclusion is that the contribution of the
RISC architecture to the latency time (for asynchronous context sWitchings) is in av­
erage slightly higher than the time required by the scheduler to perform its adminis­
tration tasks in this application.
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1 Introduction.
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Analog copiers that are controlled by digital means have been produced by Oce dur­
ing the past 15 years. The digitalization has gained even more territory influencing
also the copier process of the machine. This has created a number of possibilities
that has transformed the copier from a "black box" document reproducer into a sys­
tem that can be integrated in other environments. A digital copier can for instance
operate like a printer and the digital image processing functions can service alien de­
vices like an external scanner. This results in an increasing performance demand to
the control unit of the copier.

The complex image processing items are available to the user through a control pan­
el with a graphic Liquid Crystal Display. The control unit will be in charge of generat­
ing and manipulating the necessary bitmaps

To cope with this functionalities as well as the multitasking real time aspects of the
engine control, a high performance hardware architecture is needed.

This work deals with the analysis of different hardware architectures under the fol­
lowing constraints:

• Strategic need to exchange, to remove and to add modules, in order to reduce

the time to market.

• Overall price of the system should be as low as possible.

o Reserve processing power for future applications.

• Flexibility items in the design to support the development of functions.

• A solution should be ready for production by the summer of 1995.

Furthermore the implications of using a RiSe processor for this real time multitasking
system should be identified.
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2 Control of a digital copier.

A brief description of the activities of the control of a digital copier are given in this
chapter. Some items have already been used for years by the analog copiers, but
the digital character of the system gives them an extra dimension: the digital copy
process involves an implicit storage of the scanned information, this makes the re­
trieval of the original information independent of the actual copy process.The follow­
ing figure depicts the different functions in a digital copier:

PAPER I
( CONTROL

HANDLING

ORIGINAL
HANDLING

COPIER
PROCESS

CONTROL

IMAGE PROCESSING
PANEL

OPEN SERVICE
INTERFACE DIAGNOSIS

Figure 2.1: Digital copier, control functions.

• Copier process.

This function involves a number of actions that constitute the oce technology of an·
alog copiers: A light sensitive master is uniformly moved and passed through a series
of stations, at the first one, electrostatic charge is deposited on the master, then the
printhead creates an electrostatic image of the document by illuminating and in con­
sequence reducing the impedance of those positions where the charge will flow to
ground. The charge image is developed by the accumulation of toner particles at the
places where the charge is still present. The toner is transferred to a silicon band,
taking advantage of the higher adhesion coefficient of the band to the toner particles
than the cohesion coefficient of the particles. Then the particles are pressed and
fused into the recipient paper under high temperature.

This is a real time control system that needs a master position reference clock and a
real time clock, to perform a number of simultaneous controls. The productivity of the
copier (amount of copies per minute: cpm) and the precision of the registration de­
pend on the performance of the processor and its interrupt latency_ The last param­
eter includes the context switching and the scheduling time of the last functional task.
For a productivity of 60 cpm and 0.1 mm registration error, the maximum interrupt
error may be:

t= .1 mm x 1 sec /210 mm = 476 microsec.

• Original handling.

The original information is retrieved in two phases: during the first phase, the scanner
moves to its start position and delivers rough information to the image processing to
determine the background compensation. In case that the Automatic Document
Feeder (ADF) is used, both original and scanner move to the start position (the orig­
inal is transported to the same position it would have if no ADF is used). During the
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second phase the actual scanning process is started: the CCD (Charge Coupling De­
vice) is uniformly moved from the start position.

The ADF function consists of the accurate control of motors to separate. transport
and eventually to turn a duplex document. The precision of the registration is closely
related to the stability and precision of the velocity profile of the scanner motor. The
speed of the scanner motor determines also the zoom factor gain in one direction.
For reductions the zoom factor is determined by the image processing for both direc­
tions.

Because of the fact that the scanning process is independent of the print process,
the velocity of the motors does not need to be synchronized to the master motion.
Furthermore, the information is stored in a set memory in order to be able to repro­
duce the original several times (Electronic Recycle Document Feeder): scan one,
print many (this improves the reliability of the system).

• Paper Handling.

This function is related to the storage, separation, transport. precise feeding into the
(toner) transfer unit and output of the paper. All along the paper trajectory, there are
a number of sensors to signal a possible paper-jam.

• Control Panel.

The functionality of the copier is made available to the user by means of the control
panel. The last generation of analog copiers of Oce makes use of dedicated key­
boards and standard graphic LCD's. Graphic information is used to warn about pos­
sible positions of paper-jams and to generate fancy menus for the different operating
modes.

• Service Diagnosis.

This is actually a function that covers the whole machine. It applies hardware feed­
backs and software routines to verify the different functions and to monitor the sen­
sors. The installation parameters are also introduced through this function.

• Image Processing.

This function characterizes the digital behaviour of the copier. It consists mainly of
the following operations:

Scanner compensation.

Photo quality reproduction algorithms.

Zoom.

Background histogramming.

Conversion of 400 dpi scanned information with gray values into a 600 dpi bitmap.

Rotation (90°, or 180°).

Overlay functions.

Compression.

Storage into a set memory (dram).

Decompression.

Deliver of processed information to the printhead.

The implementation of these operations require sequential manipulation of 34 Mpix­
els (A4 document), this can only be achieved by the use of dedicated components:
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ASICS. A certain degree of flexibility is attained by parameters that are updated by
the image processing control.

The image processing control is in charge of the control of the asics and synchroni­
zation with the copy and original processes. The retrieval of document information
(scan process) is validated by a real time signal generated by the original information
control, and the print process is enabled by a real time signal generated by the copy
control.

• Open interface

A document can also be a bitmap delivered by an alien scanner or a computer. The
copier behaves then as a printer. In case the information comes from a computer, a
SCSI interface is used.

The functions of a digital copier can also be roughly divided into two categories: Data
Processing (Image Processing control, and open interface) and Engine control (the
rest of the functions).

ENGINE
CONTROL

control L..----,._--r-'

Figure 2.2: Digital copier, rough division of the control.

The image processing with its dedicated functionality is a stable unit with limited de­
gree of flexibility. Future needs will require a technology migration towards a new
generation of DSP's. The Image processing control will keep its present implemen­
tation for the years to come and will be used as a black box by the different versions
of the basic copier. This functional block will have its own control unit.

The functions related with the analog part of the copier have been controlled during
the last decade by clse processors of the fourth generation: Motorola 68000 or sim­
ilar.

The engine controller depends in a great extent on the configuration of the machine.
There is the need to add, to remove or to exchange modules. The basic machine will
have for instance three paper reservoirs and no sorter. Another spin-off product will
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require a sorter and a fancy finisher. Other project will require the same ADF/
Scannner but different copy control and paper handling.

One of the SUbjects of this report is to find the most suitable engine control architec­
ture to satisfy the different configurations of the machine, so that the time to market
can be shorten.

By the time this work was started, fundamental development was taken place on the
ADF/Scanner and the behaviour of the master during the production process was an­
alysed in order to improve its yield. One important constrain was the fact that a hard­
ware solution should be ready for production by the summer of 1995
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3 Hardware architectures of a digital copier.

The strategic need to exchange, to add and to remove modules of the machine to
shorten the time to market of spin-oft projects asks explicitly for a field network. In
such a network, the different functions are implemented as individual modules that
receive operating instructions from a central control unit. The communication medi­
um is a bus or a ring that gives the possibility to expand or remove functions without
considerable deterioration of the quality of the signals.

(FUN~TION )

I ( EXTENSION)

.,/
communication
bus

Figure 3.1: Modular approach for the hardware architecture.

The digital nature of the machine with features that may be used by the outside world
demands whether spare processing power or the possibility to add it when neces­
sary.

A modular approach implies a very flexible solution, and when a serial bus is used,
the reliability of the system is increased due to the low amount of wring. However the
communication overhead poses limitations to the real time behaviour of the system.
Another factor that determines the hardware architecture is the overall price of the
system. By choosing a different module per function, a great deal of resource sharing
is lost and the price increases. Activities involved in one function can not easily be
distributed among the intelligent elements of the network and idle items of the mod­
ules are not ready to be used by the others. Furthermore, because of the fact that a
design should be flexible enough to support the development of the functions (see
chapter 2) a serial bus might introduce limitations. The trade-ofts to be taken into ac­
count can be summarized as follows:

• Strategic need to exchange and add modules.

• Overall price of the system.

• Reserve processing power for future applications.

• FleXibility items in the design for development support.

• A hardware solution should be ready for production by the summer of 1995.
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The need of spare processing power can be satisfied by choosing a processor with
more than enough power to control certain functions of the copier. Spare processing
power means that the infrastructure of the processor should also be available or ex­
pandible in order to cope with the required functionality. The advantages of having
spare processing power instead of adding it when necessary, are that the costs of
interfacing the processor are spent one time and the communication overhead with
the eventual extra processor is avoided. Besides the system remains simple which
reduces the chance of failures. The powerful processor will get the role of main or
central processor, and its functionality will be referred to in the following paragraphs
as the control-core functionality.

The following figure depicts the possible combinations to form the basic functionality.

..

(VI)
__ .J

.:: .J

I :. -. --. -- _. -. --_...-~~.----·· : ( Copier Process) ~I
· : (I)'( scanne~·I · ( Control panel)·· · (II)·· ·L ·--t--..-.-.--------...............-- . __ ._---- ._----_.-

(III)
(paper handling)

L __ . _______________

(V)

r·--------------------.
r----·----·--------·----,
• ( ADF ) (IV) :

I

Figure 3.2: Basic functionality, possible combinations.

There are three kinds of modules:

a) Fixed modules.

These are present in all the different configurations without alterations (copier proc­
ess, control panel).

b) Exchangeable modules.

Which can be removed or added to the system (ADF/Scanner).

c) Configurable modules.

That are built upon submodules whose amount depend on the product (paper han­
dling: amount of paper reservoirs).

It is obvious that the control-core will be at least in charge of the fixed modules: the
copier process and the control panel.The interfacing to the control-core should be as
simple as possible in order to keep the communication overhead low, and guarantee
the real time behaviour of the machine. This can be implemented by four intelligent
modules: The control-core, the ADF. the Scanner and the paper handling. The com·
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plexity of the paper handling is low and its actual control functionality can be added
to the control-core without significant perlormance deterioration, the modular behav­
iour can still be kept by using remote i/o submodules for this configurable function.
This leads to combination III.

Modules 0 and C have a high influence on the real time behaviour of the machine,
both need the accurate control of motors, a close synchronization with each other
and the Image Processing control, and fast detection of errors to prevent damage of
documents and mechanic elements. The use of microcontrollers (embedded control­
lers) for these functions is the most practical choice. The fact that the scanner only
controls one motor, the processor capacity and the integrated i/o peripherals of the
eventual scanner microcontroller may be available to the control-core (combination
V). This introduces a great amount of resource sharing that allows the main proces­
sor to reserve even more perlormance for future applications and reduces the overall
price of the system. A fast communication medium for both processors is required in
order to optimize the resource sharing and comply with the real time requirements of
the system.

ADF)

/ ADF processor

·.------+~comm.bus

r _____ - -_ .. _ .. _ .. ,
· ·· ·I I
· (Paper handling) (Scanne9 ·· ·I I· (Copier Process) ·· ~c~n~r'p~e~~o~1 - - - - . --

(Control Panel)

Main processor
Control Core

Figure 3.3: Modular solution with a certain amount of resource sharing.

The combination of the original retrieval functions (ADF and Scanner) might be an
interesting alternative. Both functions could be implemented by one processor, but
the lost of modUlarity does not render the advantages of the solution depicted above.

The introduction of a bus between the control-core, the ADF and the paper handling
submodules, makes automatically possible the expansion of the system.

A problem needs still to be solved: how can the development of the functions be sup­
ported by means of a hardware implementation ready for production? The functions
that might require expansions or modifications are spread among three different
processors. The kind of modifications can be as simple as the addition of control lines
or more complex electronics that need to be accessed by one of the functions at high
speed. Flexibility items at the different processor buses might be an altemative, but
it would increase the cost and the complexity of the system. A more adequate solu­
tion is the addition of one expansion I/O bus to the processor with the highest per­
formance, and let also the ADF processor share the high speed communication
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medium of the control-eontrol, this way all the functions would access directly or in­
directly (through the main processor) the needed hardware functionality. The physi­
cal modular approach is lost but the start of production would not be in danger.
Furthermore the real time risks of a serial bus are avoided. In order to regain modu­
larity at a later stadium, the following development phases are proposed:

• Phase 1.

A Flexible solution with three processors that communicate with each other by
means of a high speed communication medium. The main processor will have an iJ
o expansion channel for extra hardware functionality for any function.

.J

High speed

l1li ~ comm. medium

~~~=s) /
~

ADF pr or

,

(coPier process)
(scannev

( Control Panel)
Scanner processor

(Paper handling)

Main processor
Control-core

Single module-- -- -----------------
( Expansion)

L

r---------------------,

Figure 3.4: Flexible solution.
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• Phase 2.

A value engineering step to decide whether or not to separate the ADF processor,
and investigate the real time implications of a serial bus.

d ADF p~~Oorl
Comm. bus

High speed

CPaper handling)
comm. medium.,.......

I
( Copier Process)

(scannev
-

(Control panel)
Scanner processor

Main processor

Control-core

( Expansion)

Modular or expandible 10

Figure 3.5: Modular solution.

This report will deal with the further realization of phase 1, and in particular with the
performance issues of the main processor and its real time behaviour.
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4 Implementation of the engine control, phase 1.

This chapter deals with the implementation of a flexible solution for the engine control
of the digital copier. As stated in the previous chapter, the control-core will be based
on a high performance processor, which is tight coupled to the scanner embedded
controller. The ADF controller will be so far also coupled to the internal high speed
communication medium of the control-core so that it can take advantage of the ex­
tension i/o bus of the main processor.

We are going to concentrate our attention to the performance items of the main proc­
essor: the clock frequency, the eprom interface, the high speed communication me­
dium and the context sWitching during interrupts. A brief discussion of the
considerations that led to the choice of the Intel 80960 SA-processor follows first:

4.1 Choice of the Main Processor.

The factors that contribute to the choice of the 80960 SA were:

• Compatibility with the ADF/Scanner-processors.

The B0196KC microcontroller was chosen for the ADF/Scanner functions, a member
of the MCS-96 family. This embedded controller will operate at 16 MHz and zero wait
states for eprom accesses. It contains a number of analog functions (ADC's and
PWM's) which can be used for the implementation of the temperature and motor con­
trols of the machine. Besides, it has normal and high speed i/o lines (HSIIO) that op­
erate in combination with the 2 internal 16 bits timers for accurate Vo control. A serial
channel is available. Furthermore a Peripheral Transaction Server (PTS) provides
DMA-Iike response to an interrupt with few CPU-overhead. Single and block trans­
fers are supported, as well as special modes to service the AD-converter and the
HSIO.

By choosing Intel microcontrollers and the fact that a high speed communication me­
dium is needed, a compatible main processor is required to guarantee the simplicity
and the transparency of the hardware: the data should be interpreted the same way
by all the participants of the communication medium. To illustrate this, consider the
following 16 bits aligned structure:

struct {
short a;
char c;
short d;
char f,g;
long h;
};

/* 16 bits a = AB *1
r B bits c = C *1
/* d =DE *1
r f = F, g = G *1
/* h= HIJK
A through K are bytes·1
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The data is stored into memory by a little endian machine (Intel processors) in a dif­
ferent way than a big endian processor (e.g. Motorola):

15

bit number

8 7 o •
15

bit number

8 7 o
n

n+2

n+4

n+6

n+8

n + 10

address

A B

C waste

0 E

F G

H I

J K

A B

waste C

0 E

G F

J K

H I

16 bits ram

Figure 4.1: Little endian vs. big endian; memory allocation.

Byte swapping takes place at addresses n+2 and n+6 and word swapping at n+8 and
n+10. A detection and eventually a correction of this situation need that the sequen­
tial accesses of one data type occur within the same machine cycle. The Motorola
processors that comply with this requirement are the MC68020 and its successors,
because they feature a dynamic data bus sizing. In order to keep low the complexity
and cost of the system a little endian processor is chosen.

• Availability.

The general purpose market has been dominated by Intel with its 80x86 line. Intel
has been able to confirm its position by introducing every couple of years more pow­
erful processors maintaining their instruction set compatibility. The kind of applica­
tions of the personal computer area demands increasing of performance, which
limits the life cycle of the processors (about 3 years). Embedded controllers on the
other hand, are intended for a complete different market segment, where price is
mostly the steering factor. Extra performance does not always results in attractive
items for the end user (e.g. washing machine). The life time of this kind of processor
is often longer: about 7 years. An indication that the embedded controller market is
a different area is illustrated by the fact that 60% of the applications is still implement­
ed by 4-bits processors, 30% by 8-bits processors, 9% by 16 bits processors and
0.8% by 32 bits processor (according to the Intel representantion in the Netherlands).
Taking this into consideration it is recommended to make use of an embedded proc­
essor for this kind of application.

• Performance.

Taking into account that a MC68000 has already proven to control an analog copier
with similar requirements, a processor with a comparable performance to that of the
MC68020 is needed, which has more than two times processor power. This way, ca­
pacity would be available for future applications. The nature of this application: con­
trol and a certain degree of bit manipUlation for the graphic display, makes a MMU
and a floating point processor unnecessary. Possible embedded candidates are the
AMD29K, the i960 family or one 80386-based microcontroller. The 80376 was about
to be discontinued by Intel because of the planned introduction of the i386EX micro­
controller. A choice had to be made between a low end processor of the 1960 family
of one of the AMD29K. A benchmark report [1] indicates that the 80960SA performs
almost two times better than the AMD29200 using the Standford benchmark and
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about 30% better when the Dhrystone is used. This figures give only an indication of
the possible performance of the processors, because they do not reflect the de­
mands of the actual application. These benchmarks do not include operating system
calls and i/o control. However they suggest that the 80960SA might be a better
choice.

• Cost, support and development equipment.

Even though these are engineering aspects, these factors are also mentioned to give
a complete picture of the items that are taken into account during the development
of a system in the industry. The cost of the 80960SA at 16 MHz is about USD 20.00
when quantities of 5 000 pieces/year are purchased. The cost of the AMD29200 is
slightly higher. There are cross language systems for both processors and in circuit
emulators are available.

Because of the fact that the 80960SA is an Intel processor, which guarantees com­
patibility with the other processors, and that the price and the performance are better.
this Intel embedded processor has been chosen. A clock frequency of 16 MHz has
been selected in order to accommodate standard memory components with low
amount of wait states. The inherent characteristics of this risk processor and its im­
plications to the real time behaviour of the system need to be analysed.

4.2 The 80960SA processor.

A brief description of the 80960 processor follows. We are going to concentrate our
attention on the features of the processor that might affect the real time behaviour of
the system: call/return mechanism and interrupt mechanism. The interprocessor
communication, and the memory interfaces are considered later on, these items are
tightly related to the performance of the processor.

4.2.1 Processor highlights.

• Load and store model: most of the operations are performed in registers rather
than in memory. The architecture provides an amount of general purpose registers:
For each procedure, 16 global- and 16 local-registers are available. The global-reg­
isters maintain their contents across procedure boundaries, whereas the processor
allocates a new set of local registers each time a new procedure is called. There are
four local register-sets on chip. The processor can perform burst transfers of 1, 2, 4,
8, 12, or 16 bytes of information between memory and registers during one machine
cycle.

• On-chip caching of code and data: the size of the instruction cache is 512
bytes. Data caching is provided by means of the general purpose registers.

• Overlapped Instruction execution: This is accomplished through register
score-boarding, which permits instruction execution to continue while data is being
fetched from memory. When a load instruction is executed, the processor sets one
or more scoreboard bits to indicate the target registers to be loaded. While the target
registers are being loaded, the processor is allowed to execute other instructions that
do not use these registers. The processor uses the scoreboard bits to ensure that
target registers are not used until the loads are complete.

• Single-clock instructions: The processor is able to execute commonly used in­
structions such as move, add, substract, logical operations compare and branch in a
minimum number of clock cycles. All the instructions are 32 bits or 64 bits long and
aligned on 32-bit boundaries, this feature allows instructions to be decoded in one
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clock cycle. It also eliminates the need for an instruction-alignment stage in the pipe­
line. About 50 instructions are one-clock-cycle-executable.

• Procedure Call Mechanism: Each time a call instruction is issued, the proces-
sor automatically saves the current set of local registers and allocates a new set of
local registers for the called procedure. Likewise, on a return from a procedure, the
current set of local registers is deallocated and the local registers for the procedure
being returned to are restored. On a procedure call, the program thus never has to
explicitly save and restore local variables that are stored in local registers.

• 4-gigabyte address space.

• On chip trace facilities to ease debugging.

4.2.2 Execution environment.

The execution environment of the processor consists of a set of general purpose reg­
isters, an arithmetic control register, Instruction Pointer (IP), Processor Controls reg­
ister, Trace Control register and an address space of 4 gigabyte. The process
controls register shows the current execution state of the processor. The trace facil­
ities of the processor are controlled through the trace controls register.

• Register Model.

The 80960SA provides two types of data registers: global and local. The 16 global
registers constitute a set of general purpose 32-bits registers, the contents of which
are preserved across procedure boundaries. The 16 32-bits local registers are pro­
vided to hold parameters specific to a procedure. For each procedure that is called,
the processor allocates a separate set of 16 local registers; there are four available
sets. The general purpose global registers gO through g14 are general purpose; g15
is reserved for the current frame pointer (FP), that contains the address of the first
byte in the current stack frame. The local registers r3 through r15 are general pur­
pose registers; register rO contains the previous frame pointer (PFP), r1 contains the
stack pointer (SP), and r2 contains the Return Instruction Pointer (RIP; for branch
and link instructions g14 contains the RIP). The follOWing figure shows the register
organization. A description of the pointers is given in the next paragraphs.
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Figure 4.2: 80960SA, Register model.
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4.2.3 System Data Structures.

The data structure offers a means to configure the processor to operate in a specific
way

INTERRUPT TABLE FAULT TABLE INTERRUPT PROCEDURE
STACK STACK

SP.STAC/< D
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SYSTEM PROCEDURE
TABLE

CHECKSUM WORDS

SAT POINTER
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SYSTEM ADDRESS TABLE
(SAT)

g15 I FRAME POINTER

PROCESSOR CONTROL BLOK
(PRCB)

INITIALIZATION CODE

IMI

D
SYSTEM PROCEDURE
STACK

Figure 4.3: System data structures.

The IMI (Initial Memory Image) contains the minimum data structures required for the
processor to initialize itself and begin executing code. It contains pointers to the other
data structures. It is a common practice to copy a portion of the IMI into RAM during
initialization. This can be necessary because of the dynamic character of the pointers
as well as the processor scratch space. If the interrupt posting mechanism is used,
the interrupt table must also be copied into RAM for the processor to operate properly
because it contains the interrupt pending fields, which the processor must be able to
write to. After the copy process, the processor is reinitialized with the new addresses
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of the System Address Table and the Processor Control Block. (This reinitialization
is performed through an lAC, Intra-Agent Communication, message. The primary
function of the lAC mechanism is to provide an alternative to the external interrupt
facilities to communicate with the processor, without the need of context switching.
The processor handles an lAC in much the same way as it handles an instruction. All
lACs have the highest priority level. The lAC messages are used for setting break­
point registers, purging the instruction cache, or sending software initiated inter­
rupts).

Upon power up the processor is in the interrupted state. It is a common practice to
take the processor out of the interrupted state through the execution of a call state­
ment, then the frame is fixed up to cause a return from interrupt. Before calling the
application software, the frame pointer and the stack pointer should be initialized with
the corresponding addresses at the user stack.

4.2.4 CalVReturn mechanism.

The processor has two structures to support this mechanism: the local registers (on
the processor chip) and the procedure stack (in memory).The stack consists of con­
tiguous frames, one frame for each active procedure. For each procedure, the proc­
essor allocates a set of local registers and a frame on the procedure stack. It
additional space for local variables is required, it can be allocated in the stack frame.

When a procedure call is made, the processor automatically saves (if necessary) the
contents of the local registers on the stack frame for the calling procedure and sets
up a new set of local registers and a new frame for the called procedure. When the
number of nested procedure calls exceeds the number of registers sets (= 4), the
processor automatically stores the contents of the oldest set of local registers on the
stack to free up a set of local registers for the most recently called procedure.

The processor aligns each stack frame on a 54-byte boundary. Each frame provides
besides a space for the local registers an optional area for additional variables; when
the processor creates a new frame on a procedure call, it will jf necessary, add a pad­
ding area to the stack so that the new frame starts on a 64 byte boundary.

Global register g15, and local registers rO·r2 contain information to link procedures
together and to link the local registers to the procedure stack. The frame pointer
(g15) is the address of the first byte of the current stack frame; the stack pointer (r1)
is the address of the next available byte of the stack frame; the previous frame point­
er (rO) is the address of the first byte of the previous stack frame; the return instruc­
tion pointer (r2) is the address of the instruction that the processor is to execute after
returning from a procedure call. The following figure depicts the use of the pointers:
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Figure 4.4: Procedure stack structure.

Occasionally, it is necessary to have the contents of all local registers sets match the
contents of the register save areas in their associated stack pointer. The processor
proVides the f1ushreg instruction to allow voluntary flushing of the local registers.

There are three different kinds of procedure calls: local call, system call and branch
& link.

• Local Call.

During a local call, the processor performs the following operations:

1. Stores the RIP in r2 (of the calling procedure).

2. Allocates a new set of local registers for the called procedure.

3. Allocates a new frame on the procedure stack (RIP is invalid).

4. Changes the instruction pointer to point to the first instruction in the called proce­
dure.

5. Stores the FP for the calling procedure in new local register ro (PFP).

6. Stores the FP of the new frame in global register g15.

7. Allocates a save area for the new local registers in the new stack frame.

8. Stores the SP in the new local register r1.

On a return the processor performs the following operations:
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1. Sets the FP in global register g15 to the value of the PFP in current local register
rOo

2. Deallocates the current local registers for the procedure that initiated the return
and switches to the local registers assigned for the procedure being returned to.

3. Deallocates the stack frame for the procedure that initiated the return.

4. Sets the IP to the value of the RIP in new local register r2.

• System Call.

The system call is similar to the local call, except that the processor gets the IP for
the called procedure from a data structure called the system procedure table

, "",

PROCEDURE STACK POINTER::III::

'"

"

ADDRESS (IP)

ADDRESS (IP)

ADDRESS (IP)

ADDRESS (IP)

ADDRESS liP)

ADDRESS (IP)

entry type

I-C_A_L_LE_D_P_R_OC_ED_U_R_E.... >
CAlliNG (
PROCEDURE

entries 00 - local procedure
01 - reserved
10 • supervisor

procedure
11 - reserved

Figure 4.5: System call mechanism.

The System Procedure table contains a list of Instruction Pointers (IPs) which can be
accessed through the system call mechanism. IP's for fault handlers may be stored.
(The fault table contains a pointer to a specific entry of the System Procedure Table).

If the entry type specifies a supervisor call the processor switches to Supervisor ex­
ecution mode and the Supervisor Stack becomes active. The processor gets a point­
er to this stack from entry 12 of the System Procedure Table. When the supervisor
mode is invoked. the field RRR of the local register rO of the calling user procedure
is set to 01 X to indicate that mode and stack switch has taken place.

The processor provides a mode and stack SWitching mechanism called the user-su­
pervisor protection model. This protection model allows a system to be designed in
which kernel code and data reside in the same address space as user code and data.
but access to the kernel procedures (called supervisor procedures) is only allowed
through a system call.

The processor remains in the supervisor mode until a return is performed from the
procedure that caused the original mode switch. When using the user-supervisor
mode mechanism, the processor maintains two separate stacks in the address
space, one for the procedures executed in the user mode (local procedures) and an­
other for procedures executed in the supervisor mode (supervisor or system proce­
dures). Both stacks are identical, except that the processor obtains the stack pointer
for the supervisor stack from the system procedure table.

In the supervisor mode the Process Controls register can be modified through the
modpc instruction. An application may be a modification of the processor priority.
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• Branch and Link.

A branch and link instruction save the address of the next instruction (RIP-return in­
struction pointer) in a specified location, then branches to a target instruction. A re­
turn instruction specifies the RIP. The state of the local registers and the stack
remains unchanged.

For the bal (branch and link) instruction the RIP is stored in g14; for the balx (branch
and link extended), the RIP is specified with one of the instruction operands.

This kind of procedure call does not cause context SWitching. It is commonly used for
the so called leave-procedures.

4.2.5 Interrupts.

The 80960SA supports a vector interrupt mechanism. An interrupt vector is 8 bits in
length and has a predefined priority (= vector/8). At each priority there are 8 possible
vectors. An incoming interrupt is serviced if the current priority is lower than the re­
quested interrupt. A priority 31 is always serviced immediately (if the processor pri­
ority < 31; priority level 0 is not supported, because the memory locations that would
be required for the interrupt vectors, are use by the interrupt table header).

PENDING PRIORITIES 0

4
PENDING INTERRUPTS

321-------------1 36

ENTRIES

976
980

1008
1012

I-- --l 1024

INSTRucnoN POINTER roD""l
----------~

ENTRY

Figure 4.6: Interrupt Table.

A vector number specifies an entry to the Interrupt Table. The first 36 bits of the in­
terrupt table are used to record pending interrupts. This section is divided into two
fields: pending interrupt priorities and pending interrupts. When a pending interrupt
is logged, its corresponding interrupt pending bit and interrupt pending priority are
set.

The processor execution mode is set to supervisor while an interrupt is being han­
dIed. When an interrupt service routine is called, the states of the process controls
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and arithmetic controls for the interrupted program are saved. The interrupt handler
shares the global registers with the user/system procedures.

Except from the interrupt record, the interrupt stack has the same structure as the
local procedure stack.

The method that the processor uses to service an interrupt depends on the state the
processor is when it receives the interrupt: execute or interrupted. In the first case
the processor switches to the interrupt stack. In both cases an interrupt record is also
stored on the top of the stack prior to the new frame that is created for use in servicing
the new interrupt.

+-1 FP plS
CURRENT
FRAME SP INTERRUPT STACK

R-~'SOR RIP
OR INTERRUPT NSPSTACKI

PADDING AREA

RESUPTlON
r

ItfTERRUPT
RECORD(') RECORD

1
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SP
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24
NT. STACK POINTER

(1)
Ii FOR TIlE B0960 SB

Figure 4.7: Framing manipulation during interrupts.

The following events take place:

1. If necessary, the processor switches to the interrupt stack. The interrupt stack
pointer becomes the new stack pointer (NSP) for the processor.

2. The processor saves the current state of process controls and arithmetic controls
in an interrupt record on the interrupt stack.

3. The processor allocates a new frame on the interrupt stack and loads the new
frame pointer in register g15.

4. If necessary, the processor switches to interrupted state.

5. The processor, sets the state flag in its internal process controls to interrupted, its
execution mode to supervisor, and its priority to the priority of the interrupt.
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6. The processor sets the frame return status field (associated with the PFP in reg­
ister 0) to 111 (interrupt retum).

7. The processor performs an implicit call-extended operation. The address for the
procedure call is that specified in the interrupt table by the corresponding interrupt
vector.

10. The frame is linked to the previous frame through the address of the previous
frame being written into rO of the new created frame.

Once the processor has completed the interrupt procedure, it performs the following:

1. The interrupt record is restored.

2. The processor deallocates the current stack frame and if necessary switches to
the user or system stack.

3. The processor checks the interrupt table for pending interrupts that are higher than
the priority of the program being returned to. If a higher interrupt pending interrupt is
found, it is handled as if the interrupt occurred at this point.

4.2.6 Signaling interrupts.

The 80960SA can be interrupted by: signals on its interrupt pins, signals on the in­
terrupt pins of an external interrupt controller, an lAC message from a program or a
pending interrupt. The processor has four interrupt pins, two of which can be config­
ured for handshaking with an interrupt controller such as the 8559A programmable
interrupt controller.

In this application more than 4 interrupt lines will be needed. the following figure
shows the how these lines are going to be used:

POWER DOWN. +~'I.I

MASTER PULSE INTERRUPT

REAl TIME CLOCK INT. ---+
SCANNER TO MASTER INT. ---+
ADF TO MASTER INT. ---+
DUART CHl INT. ---+
DUART CH2 INT. ---+
10 BOARD INT 1 ---+
10 BOARD INT 2
CORE EXP. MODULE INT. ==:

8259A

Figure 4.8: Interrupt signals.
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The interrupt control register is memory mapped at address Off000004. Only the
processor can access this register through two instruction (synld, synmov), which
prevents the register from being modified by another external agent. The interrupt
vector for INTO is specified at the first byte of the interrupt register, that for INT1
should be specified in the next byte.

Important to know now is that both the real time clock and master pulse interrupts are
used by the executive. The first one provides the time reference, the other one the
position reference with respect to the master belt. The frequency of the master pulse
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is 300 Hz and that of the real time clock is 200 Hz. The resolution of the events is
determined by these figures. Some precise actions need to be activated through
hardware timers.

4.2.7 Internal Structure of the 80960SA processor.
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Figure 5.9: a0960SA, block diagram.

The i960 architecture defines several mechanisms for increasing performance
through the use of pipelining and parallel execution of instructions. The 80960SA
processor is composed by five major functional units. These units are described be­
low:

• Bus Control logic (BCl).

The Bus Control logic provides the interface between the processor and the external
world. It accepts requests from other units. It attempts to maximize bus access effi­
ciency through buffering ad burst accesses.

It prOVides a queuing mechanism that can buffer up to three outstanding requests at
any given time. This allows other internal units to continue operation without waiting
for bus requests to be completed. As a result, the execution of most memory refer­
ence instructions require little delay in the instruction execution pipeline.

The BCl generates burst cycles on the external bus, which allow 1" 2-,4-,8-,12-,
or 16-bytes of read or written in a single operation. Instructions can be fetch in 16­
byte bursts.

• Instruction Fetch Unit (IFU) and Instruction Cache.

The IFU acts as an intelligent buffer for the Instruction Decoder. The IFU contains a
512 byte, direct mapped instruction cache. While the other units in the processor are
executing instructions, the IFU looks ahead in the flow of instructions stored in the
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instruction cache, if a cache miss is detected, the IFU issues a prefetch to the BeL.
Upon receiving the requested instruction, the IFU updates the instruction cache. The
fetch and load might take place before the 10 requires the instruction cache. The ma­
jor exception to this rule happens on branch conditions.

The 10 informs the IFU of any branch operations that are about to take place; the IFU
checks for a cache hit, if the instruction is not present, the IFU begins fetching in­
structions for the new control path. To further minimize delays in the instruction pipe­
line, the 10 sends a special signal to the IFU whenever instructions are required
immediately. The IFU then passes the fetched instruction directly, rather than writing
them back to the cache and reading them back again (jnstruction-cache bypassjng).

The Instruction Pointer (IP) register in the processor and the IFU maintain several in­
struction pointers. These pointers point to instructions at various stages of the fetch­
decode-execute pipeline.

• Instruction Decoder (10).

The 10 decodes the instructions it receives from the IFU and routes them to the ap­
propriate execution units

The 10 decodes the so called simple instructions (shift; integer add and substract; or­
dinal add and sUbstract), and passes them to the Instruction Execution Unit (lEU),
where they are executed, usually in a single clock period.

The 10 executes branch instructions directly. If the branches are unconditional, no
interaction with the other execution units is required. On conditional branches, the 10
uses a condition code scoreboard (various mechanisms within the processor can be
marked as in use). When the 10 prepares to execute a conditional branch, it checks
the condition code scoreboard, if it is clear, the ID signals the IFU immediately if a
change in program is about to happen.

The complex instructions (those that are executed using one or more microcode in­
structions: flushreg (flush local registers), mark and 'mark, are decoded by the 10 and
forwarded to the Micro-Instruction Sequencer (MIS). The MIS sends the equivalent
microcode to the lEU.

load and store instructions are sent directly to the BCl, the 10 is responsible for con­
verting the address information encoded in load, store, branch and call instructions
into effective memory addresses. These instructions are executed by the 10 or the
BCl; this preserves the pipeline.

• Micro-Instruction Sequencer (MIS) and ROM.

When the ID receives a complex instruction, the MIS supplies the microcode to the
execution unit for that instruction, which can be the lEU or BCL. The MIS also sup­
plies microcode for the power-up and self-test sequences. which are performed dur­
ing processor initialization.

• Instruction Execution Unit (lEU).

It contains the AlU and the mechanism for register and condition code scoreboard­
ing. It also manages the 16 global registers and the 4 sets of 16 local registers.

The lEU handles the reading and writing of global and local registers. It also handles
the allocation of local register sets on procedure calls. The EIU allocates a new set
of local registers on each procedure call. If all register sets become allocated, the lEU
automatically flushes the oldest frame to the stack on the next procedure call. The
lEU retrieves automatically any local register frame from the stack when required by
a return operation.

The register scoreboard provides scoreboarding for the local and global registers:
when one or more registers are being used in an operation, they are marked in use.
The register scoreboard allows the processor to continue executing SUbsequent in-
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structions, as long as those instructions do not require the contents of the score­
boarded registers.

One feature of the lEU that enhances instruction-execution performance is register
bVD8ssina. This is a mechanism that allows an instruction that would ordinarily re­
quire source operands to be placed in registers to be executed without accessing
one or both of the source registers. This can be achieved in two situations: When the
lEU executes an instruction with two source operands and one or both of the oper­
ands are literals (5 bits). Register bypassing will also occur when the second of two
source operands is the result of the previous instruction. The net result of register by­
passing is the saving of one clock cycle. Most instructions that the lEU executes can
be executed in a single cycle when register bypassing occurs.
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4.3 The Interprocessor Communication.

A communication medium for the three processors, which operates at a high trans­
mission rate should be defined. An important condition is the fact that the perform­
ance of the processors should not suffer a considerable deterioration. A balanced
communication medium is therefore one which is isolated from the buses of the dif­
ferent processors and is fairly granted to any of them. A communication ram, whose
bus is independent to the local buses satisfies this requirement. The communication
memory arbiter needs to comply with another requirement:

• Data present in memory should be unambiguously interpreted by the proces-
sors at any time. In order words, the validity of the messages or data types that in­
volve more than one memory access should be protected.

One way to solve this problem is by the use of semaphores. This mechanism in­
volves read modify write accesses to control and set a flag. The 80196KC processor
do not support this kind of operations. and in consequence a hardware solution
would be necessary.

The best way to satisfy this requirement is that the processors agree upon the max­
imum size of the data types and implement an arbitration mechanism that grants the
bus until the maximum amount of bytes has been transferred. In order to calculate
the effect of the maximum data size to the transfer rate and the stall time of the proc­
essors, the following arbitration mechanism is assumed:

BUSAEQUESTn

---'~_.....I-------L.. __--.Jr-

BUSGRAN;)

---.t.:-----lI"'C""C)--'L--
REAO_Y_" -r2jr- _

Figure 4.10: Arbitration Mechanism.

1) When a processor wants to access the communication memory, it will request it
by activating BUSREQUESTn.

2. If no other device is performing an access, the communication bus is granted
(BUSGRANTn active).

3. The processor will relinquish the bus and activate READYn. This will allow another
device to perform an access.

The data bus width of the 80960SA is 16 bits. This processor does not have a dy­
namic bus sizing mechanism, which implies that the communication memory should
also be 16 bits. The 80196KC can operate with a data bus of 8- or 16-bits. The
80960SA can access 8 consecutive memory locations within the same machine cy­
cle in the so called burst mode, while the 80196KC can only access one location per
machine cycle.
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The machine cycle time of the main processor as a function of the amount of wait
states and the number of consecutive accesses is [13]:

---------- Tmain-n-----------

SYSCLK
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address cycle
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data
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Figure 4.11: 80960SA, machine cycle.

Tmain(M) = (NxM + M + 2) x Tclk

N = amount of wait states to accommodate standard rams =2 (if Tclk =62.5 ns).

M = amount of consecutive accesses during one machine cycle

The machine cycle time of the 80196KC as a function of the amount of wait states is
[14]:
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Figure 4.12: 80196, machine cycle.

tslave = (2xN + 4) x Tclk

N =amount of wait states to accommodate standard rams =1 (if Tclk =62.5 ns).

Assuming that the arbiter clock has the same frequency as the reference clock of the
processors, the arbitration and synchronization introduce the following amount of
wait states:

Synchronization of request signal

Arbiter change of state

Synchronization of grant signal

Synchronization of ready signal

- 1 cycle

- 1 cycle

- 1 cycle (80960SA»

- 2 cycles (80196KC)

(Tclk =2 x Txtalclk)

- 1 cycle
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Toverhead_main = 4 Tclk

Toverhead_slave = 5 Tclk

The stall time as a function of the amount of allowed accesses is:

Tstall_main(M) = (2xToverhead_slave + 2x Tslave) x M;

Tstall_slave(M) = (Toverhead_slave + Tslave) x M + Tmain(M)

+ Toverhead_main;

The access time as a function of the amount of allowed accesses is:

Tacc_main(M) = Tstall_main(M) + Tmain(M);

Tacc_slave(M)= TstaILslave(M) + MxTslave;

The effect of the amount of allowed states is summarized in the following table:

Table 1: Effect of amount of accesses

M MxTslave Tmain(M) Tstall_ Tstall_ Tacc_ Tacc_
slave(M) main(M) slave(M) rnain(M)

expressed in amount of clock periods #Tclk #Tc1k - Mbytelsec
(felk =16 MHz)

1 6 5 16 22 22-1.45 27-1.18

2 12 8 30 44 42-1.52 52-1.23

4 24 14 58 88 82-1.56 102-1.25

8 48 26 114 176 162-1.58 202-1.26

The transfer rate (access time) remains almost constant and the stall time increases
linearly, its effect per byte is slightly less notorious for the slave processors at high
values of M. Increasing M does not contribute in a big extent to the transfer rate. By
choosing M = 2 almost all the data types may be supported (max. 4 bytes). Further­
more by choosing M low, the complexity and price of the arbiter will be kept low.

A problem remains to be solved: the fairness of the arbitration. None of the partici­
pants of the communication memory should get priority over the others, in order to
prevent high stagnation of one of the low priority processors. In a VME solution for
instance, fair bus requesters are implemented, that do not request the bus after an
own transaction has taken place and other requests are pending. A VME configura­
tion has a daisy chain grant mechanism, that even if a single priority is used, the
boards located far from the arbiter have an intrinsic low priority. This justifies the fair­
ness to be implemented on the requester. As far as this application is concern, all the
processors will generate its own request signal, this way, the arbiter can decide
whether or not to grant the bus to a device. An arbiter that polls the requests of the
processors has the properties we are looking for.

The arbiter should have the following characteristics:

• The arbiter should allow the slave processors to execute two consecutive

accesses.

• The main processor may acquire the bus only for one machine cycle.

" Because of the fact that the amount of software code of the slave processors
will be low (less than 64 KByte) compared to that of the main processor (more than
3 MByte if all the different languages for the messages of the user interface are sup­
ported), the software code of the Scanner and ADF controllers may be stored in the
main processor eproms. During initialization, the code could be down loaded. This
approach eases the replacement of the eprom modules and makes down load of dif­
ferent kinds of software possible for service diagnosis and testing. This operation can
take place while the controllers are in the reset situation, because the buses float or
have a high impedance. A dma access during the normal operation of the processors
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will not be implemented because it does not have practical applications and in case
of a dma access is requested while the slave processor tries to communicate via the
share memory, the dma request would have to be postponed until the slave proces­
sor access has taken place. This would increase the complexity of the hardware.

The architecture of the shared memory looks as follows:

Arbiter and
ramldma contra

Icomm. RA3
r------------, data addressr-----------,

Figure 4.12: The communication memory interface.

The state diagram of the arbiter is depicted below:

scan granted 2

AOFRDYn.O

( ~dfwait

\.../ =~:~ .>----'-....
AOFROYn.O

Figure 4.13: The communication memory arbiter (state diagram).
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The implementation of the arbiter and communication memory/dma controller has
been realized by means of Generic Array Logic (GAL) components, the hardware de­
scription listings are shown in appendix A1.

4.4 The Eprom Interface.

The 80960SA provides a 512-byte cache for instructions. When the processor fetch­
es an instruction or group of instructions from memory, they are stored in this cache
before being fed into the instruction execution pipeline. In order to load the cache at
a high rate, the processor can access 8 consecutive memory locations within one
machine cycle (burst mode). If we want to take advantage of this feature of the proc­
essor, a mechanism should be found to be able to perform high speed accesses
even in combination with standard commercial eproms. The 80960SA operating at
16 MHz has the following timing for a burst cycle of two accesses:

SYSCU<
address Iwait Idata Iwan Iwait Idata
cycle Tl cycle cycle cycle cycle cycle

T5

ASn

T3

DATA

T2 Tacc

READYn-------------""'1\.....__-',,..---------"\'-.
BLASTn--------------.....\......_---------

Figure 4.14: Eprom access.

During the first cycle, the access is determined by the last generated signal among
EPAOMCSn and the less significant address lines that are latched from the multi­
plexed data/address bus. If the chip select is generated by means of a 15 ns GAL,
and a commercial 120 ns eprom is used, the amount of wait states during the first
cycle is calculated below (the timing parameters of the processor can be found in ref.
[13]):

T1 = T5 =25 ns.

T2 =15 ns.

T3 =10 ns.

Tacc =120 ns.

Tclk = 62.5 ns.

WaiCstates1 = (T1 + T2 + T3 + Tacc)/Tclk-2

= 170ns/62.5ns - 2= 0.72 wait states

1 wait states is necessary.
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The amount of wait states during the following accesses is determined by the lowad­
dress lines that specify the memory location during the burst cycle [A1,A3]:

WaiCstates2 =(T5 + Tacc + T3)n-c1k -1 =1.48 wait states.

2 wait states are necessary.

The amount of wait states can be reduced by defining an eprom array of 32 bits and
making use of two interleaved banks. While the processor is accessing one bank, the
access of the other bank is started by an eprom_control interface.

EPROMCSn

a bus

A2even

~
Eprom_control
Interface

A3 ~ ..
eprom(A3.- A2even.A2odd] /\.

Even address :i);
bank II;: L/.II

I "\ .. ~ ~ ..
A20dd

,.....-

Oddaddr6SS ... '"~ ... ...
bank l:..:II

" .. Li. '
.... '1

dat

Figure 4.15: Interleaved eprom interface.
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The eprom_controller interface generates the two least significant address lines and
enables the buffers of the proper bank at the correct moment. The following figure
illustrates this:

add wait1 wai12 data wait1 data wait1 data wait1 data
SYSCLK

A2EVEN
LI r--------,L-__

A20DD
LI -I------,

A3

(continuation)

wait1 wail2 data wait1 data wait1 data wait1 data recover
SYSCLK

EVEN ACCESS I ODD ACCESS I EVEN ACCESSI ODD ACCESS I

A2EVE:,N r -------"'""1. _
A20DD

A3

--------------------~l__

Figure 4.16: Interleaved eprom access.

The state machines were implemented also in GAL's, see appendix A2.

Note that transceivers were used in order to be able to make use of Flash Eproms in
the future. This has influenced the amount of wait states, along with the fact that the
state machine that produces the RDYn signal to the processor is also used for the
other memory components. The average amount of states is 1.25 waiCstates/ac­
cess. Without this configuration, the amount of wait states would have been 1.875
waiCstates/access.

4.5 The RAM interface.

Standard static ram devices are used in this application. This avoids the use of re­
fresh circuitries that are required by dynamic rams. Furthermore, the low power re­
quirements for battery back up are met. The amount of wait states is 2, this is
necessary to compensate the propagation delay introduced by the protection circuit
(which prevents accesses to take place during power down). The accesses to ram
are controlled by means of the same state machine of the rom interface.

An interleaved configuration makes the hardware very complex and expensive, due
to the selection of the proper byte during write cycles.

This choice might have strong implications on the behaviour of the processor during
context SWitching. The amount of clock cycles as a function of the amount of access­
es (M) during one machine cycle is given by:

Tmain(M) =(3xM + 2) x Tclk
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4.6 The hardware system architecture.

r;::=================;-;J CONNECTOR

CONNECTOR FOR EXPANSIONS

CONNECTOR TBV EPROM MODULE

(2 x INTERLEAVED BANKS)

TOLCO

CORE BOARD

.....
tBUS

RS232

RS422

10
8US

10 BOARD

Rs.22 SCAN 6otKCOD 604 K COD RS422

kRAMOR kRAMOR
PROM) PROM)

ffiP
SCAN 10

Figure 4.17: The hardware board architecture.



37

The previous figure shows the final implementation of the hardware. Note that two
boards are used:

• The Core Board.

It contains the main processor, the communication memory, the display interface and
the peripherals of the processor. By separating this board from the i/o functions (in­
cluding the ADF/Scanner processors) a possible migration to other main processor
can take place. At the core board an i/o bus is implemented to access the i/o devices
located on the i/o board as well as the extension connector which has, besides an 8­
bits i/o-data bus, a couple of chip select lines, an interrupt line and the four least sig­
nificant address lines. This way, devices of low complexity can be added. The
amount of wait states for this eventual devices can be programmed in one GAL lo­
cated at the core board. There is also a connector available for expansions that
would require a large amount of address lines (memory components).

• The I/O board.

This board contains the i/o devices. The Scanner and the ADF processors are tightly
coupled to the main processor by means of the communication bus. One can decide
whether to make use of EPROM's or to let the main processor down load the pro­
gram code at dma basis through the communication bus.

This solution has so far proven to comply the requirements of the copier and the flex­
ibility items in the design (expansion connectors) have been used to adapt some
functions; one example: The control of one motor of the ADF function needed a 16
bits up/down counter as well as its related logic that generates the control signals
from the phase of the rotary encoder that is coupled to the motor. The temporary so­
lution was a module with such a counter that has been installed at the expansion con­
nector of the i/o board; the value of the counter was retrieved by the main processor
and stored in the communication memory. The ADF processor could access later on
the communication memory and get the value of the counter.
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5 Implications of using a RiSe processor for the control of a digital
copier.

Rise processors were intended to be used in applications where a great deal of data
processing takes place. In this kind of applications, the processor remains in a cer­
tain routine for a long period of time until the necessary result is found. Some embed­
ded applications show this behaviour, e.g. the description language interpreter of a
laser printer. The RiSe architecture becomes more and more popular due to its at­
tractive features such as high speed.

The architecture of the processor can affect the behaviour of the software as well as
its development. In the following paragraphs an investigation is done of the possible
problems that the 80960 RiSe processor introduces in this real time application.

5.1 Context Switching.

One of the factors which makes the RiSe fast is the large number of internal regis­
ters. They enable the RiSe processor to perform many operations internally, hence
reduce the access time to the external memory. However, the Berkeley-RiSe (spare)
and Standford-RISe (MIPS) architectures for instance, do not provide enough sup­
port for task switching. This is also the case for the 80960SA processor. The window
structure of the Berkeley-RiSe as well as the register organization of the 80960
makes them suitable for procedure handling, but if a context switch takes place, a
great number of register contents should be moved to/from the processor. These
processors make in general use of standard cisc techniques in savinglloading the
task state.

In real time applications there are a lot of interactions with the external agents. Fur­
thermore, in multitasking solutions, several tasks require processor services at the
same time; for every task a stack is needed. The task state is stored in the stack
when the task relinquishes the processor to other task.

Context switches can take two forms: synchronous and asynchronous. The first one
occurs when the task voluntarily gives up the cpu for another task to run. An asyn­
chronous context switch occurs when the task has to unexpectedly give up its cpu
time, this usually happens as a result of an interrupt. In the last case the running task
mayor not get continued during interrupt, depending on its priority. Preemption takes
place if a task is temporary suspended, for a higher priority task.

5.1.1 Asynchronous context switching.

We are going to examine the different asynchronous control transitions that take
place upon receiving an interrupt. For this purpose, the first version of a real time
multitasking kemel is going to be used. This kemel has been ported from an existing
one and even though it needs to be optimized, it constitutes a valuable tool that al­
lows us to analyse the behaviour of the processor. The kernel has, as far as the hard­
ware related items are concerned, the following characteristics:

a) The time reference interrupt (or real time clock interrupt-RTel) and master belt po­
sition interrupt (or master pulse interrupt-MPI) force the running task to relinquish the
cpu to the scheduler, if preemption should take place, otherwise the interrupted task
is resumed. If a higher priority task gets the cpu, it might be also preempted or it fin­
ishes its operation and gives up voluntarily the cpu. The scheduler will then reactivate
the preempted task.

b) The other interrupts produce signals to the scheduler. The scheduler makes use
of this information in order to activate the relevant tasks later on. The scheduler gets
control of the cpu after the interrupted task completes operation.

c) The kernel has its own stack. However, this stack will only be used if the scheduler
happens to be interrupted. For the other control transitions, the stack of the previous
activated task is used. This approach limits the number of stack swltchings and
avoids eventual problems that might occur if the processor resumes its operation
with invalid stacks.
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d) The processor will operate constantly in the interrupt mode. This will ensure the
robustness of the kemel.

The latency time is defined here as the time that elapses from the moment that one
interrupt arrives until one task becomes operative. This definition covers the case
that one task is preempted for the sake of a higher priority one, as well as the case
that the scheduler is interrupted, and because of the interrupt, one task acquires a
higher priority and is scheduled.

The latency time increases when a higher priority interrupt arrives than the one being
serviced or by posting an equal or lower priority interrupt during an interrupt service
routine.

In case a RTCI is being serviced and a MPI is requested, this last one will be imme­
diately nested but no preemption takes place. The program will return to the RTCI
service routine, which will eventually cause preemption, if the scheduler was not in­
terrupted. In this particUlar case of preemption, the scheduler has the information of
both interrupts in order to activate the proper task.

If the program is executing a MPI service routine and a TRCI arrives, this last one will
be posted. The program will execute the TRCI service routine as soon as the sched­
uler performs a return from interrupt. The cpu handles the pending interrupt as if it
has just arrived, however, the "latency" will be slightly lower. Note that the actual la­
tency time with respect to the moment that the interrupt arrived may vary considera­
bly due to preemption.

It is not allowed that a RTCI is posted if the cpu is processing a RTCI service routine
(the same applies for the MPI) because it would mean that the time (or position) ref­
erence has been lost.

Multilple Peripheral Interrupt Controller (PIC) interrupts will cause naturally one inter­
rupt being posted per interrupt service routine.

All the processor activity that is not related to the application software is called .Ql!m:
~ The software administration (the kernel), and the hardware characteristics
(cpu-architecture, amount of wait states for external accesses, clock frequency) are
responsible for both latency an overhead.

A calculation of the cpu contribution to the latency time follows. We are going to use
these results to make later an estimation of the right balance between the task
processing time and the overhead.

When a RTCI or a MPI arrives. three different situations can occur:

1) The scheduler is interrupted. This will only cause a restart of the scheduling mech­
anism in order to reinitiate the cpu-granting priorities. Then a waiting task can be ac­
tivated.

2) A task was running when the interrupt arrived. The interrupt service routine gives
the cpu to the scheduler, which may decide that the interrupted task should be
preempted for the sake of a task with higher priority.

3) A RTCI service routine was running (or because of a RTCI-preemption one task
was running) when a MPI arrives. The MPI service routine is nested. After the service
routine notifies that a MPI has taken place to the scheduler (through increasing the
MPI-counter), the program returns to the preempting task or to the RTCI service rou­
tine, in which case it will then call the scheduler for an eventual preemption. Nesting
of RTCls or MPls within the other Peripheral Interrupt Controller interrupts result in
immediate return to the previous interrupt routine.

These cases are depicted in the following figure:
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MPI :-:-z---.
orRTCI __~~~~======

RETURN TO
INTERRUPTED
INT. SERVICE ROUTINE

to previous
interrupt service
routine (or preempting
task)

to task

slall time caused by communication
memory arbiter

frame cache fUll
Instruction cache miss
interrupt posted
8259A Interrupt expansion

to task

Figure 5.1: Asynchronous context switching (due to RTel or MPI).

Possible expansions to the latency time are indicated by square blocks. The amount
of cache misses, that is indicated in the figure gives an indication of the procedure
nesting.
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The timing calculations that follow are approximations, because of the internal paral­
lelism of the processor; the introduced fault is marginal if we take into consideration
that the timing is mainly determined by the external accesses. The ram accesses are
performed with 2 wait states, and those to the eprom in a sequence of 2-1-1-1-2-1­
1-1 wait states. The access times can be expressed as follows:

Access_time_ram =2 + 3 x M ; M = amount of accesses = [1,8]

Access_time_eprom = 2 + 3 x M1 + 2 x M2 + 3 x M3 + 2 x M4

M = M1 + M2 + M3 + M4 = amount of access = [1,8]

M1=1

M2 =[1,3] if M>1

M3= 1 if M>4

M4 = [1,3] if M>5

• Basic latency: Interrupt service routine in cache, Master pulse interrupt.

Hardware recognition: 4 cycles

Stop current instruction flow assuming a RISC instruction: 4 cycles

Determine next IP and save:

This value is taken from the instruction cache, afterwards 2 external

accesses (M=2) are necessary to store this value onto the stack (at

the location that corresponds to local register r2. The reference

manual specifies 8 cycles for zero wait states. In case of 2 wait

states: t =8 + 2 x M= 12 cycles.

Read interrupt vector number: 18 cycles.

Check interrupt priority: 8 cycles.

Read Interrupt table pointer (2 external accesses M = 2):

15 cycles are specified in the reference manual [2] for zero wait

states. In case of 2 wait states t =15 + 2 x M= 19 cycles

Check if processor already interrupted: 6 cycles.

• Current process in interrupt:

The reference manual specifies 14 cycles. We can assume that no

external accesses are performed. The processor might need this

time to re-establish the local register allocation mechanism.

Save process control and write interrupt record (M = 5 external

accesses). 14 cycles are specified [2] for zero wait states. In case

of 2 wait states t = 14 + 2 x M =24 cycles
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Compute interrupt record address of new local register set:

10 cycles.

Allocate new local register set: 3 cycles.

Fetch new instruction and start decoding: 2 cycles.

124 cycles

• Check if processor in interrupt mode: 6 cycles

• Save global registers:

To save the global registers the following sequence of instructions is assumed:

t = eft. add. calculation + external access + internal working

Ida 64(sp),sp M = 2; t = 2 + 8 + 1= 12 cycles.

stq gO,64(fp) M = 8; t = 2 + 26 + 1 = 29 cycles.

stq g4,80(fp) M = 8; t = 2 + 26 + 1 = 29 cycles.

stq g8,96(fp) M = 8; t = 2 + 26 + 1 = 29 cycles.

stt g12,112(fp) M = 6; t = 2 + 20 + 1 ::: 23 cycles.

123 cycles

• Retum from interrupt:

The processor copies the arithmetic- and process-control information from the inter­
rupt record into its internal registers, and then it would return to the execute state. In
this application the processor does not perform this transition and remains in the in­
terrupted mode. In consequence no stack SWitching takes place and the local regis­
ter frame does not necessarily need to be restored from memory upon return from
interrupt.

In the Intel reference manual [2], a typical time of 80 cycles is specified for the return
from interrupt instruction. This is equal to the time it would be necessary to read and
copy the interrupt record into the internal registers + the necessary time to restore
the local registers frame and deal/ocate the interrupt frame that was used by the in­
terrupt service routine. Approximately 40 cycles are required for restoring the local
registers frame with zero wait states ram. 40 cycles remain to retrieve the information
of the two control registers and deal/ocate the local register frame of the interrupt
service routine.

With two wait states ram access, 8 cycles should be added to this latency time:

t = 40 + 8 ::: 48 cycles.

• Flush local registers: 3 frames = 312 cycles.

• Retum from procedure: 7 cycles.

• frame cache restore:
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This involves the restitution of the local registers that were stored on the stack (1
frame) upon a procedure call. On returning to the original procedure, a restitution of
the local registers is necessary if the local registers have been flushed or another
task has become active: 104 cycles.

• Global registers restore:

To load the global registers the following sequence of instructions is assumed (gO
contains the address of the first global register on the stack):

t = eft. add. calculation + external access + internal working

mov gO, r3 t = 0 + 0 + 1= 1 cycles.

Idq 64(r3),gO M =8; t =2 + 26 + 1 = 29 cycles.

Idq 80(r3),g4 M = 8; t = 2 + 26 + 1 =29 cycles.

Idq 96(r3),g8 M =8; t =2 + 26 + 1 =29 cycles.

Idq 112(r3),g12 M =6; t = 2 + 20 + 1 =23 cycles.

111 cycles

• Processor stall time due to communication ram arbiter: 44 cycles.

• Frame cache full:

A frame cache full occurs when more than 4 procedures are nested, the oldest as­
signed register set is stored into ram to make place for the new procedure. The time
required to perform this mechanism is almost equal to the amount of external access­
es to write one frame into memory: 104 cycles.

• Instruction cache miss:

The processor performs 2 accesses to the eprom during one machine cycle =

M1 =1 , M2 = 1; t =7 cycles

• Posting a pending interrupt:

This includes a comparison between the processor priority and that of the incoming
interrupt. Two atomic read/write operations are performed to the pending priorities
and pending interrupt records at the header of the Interrupt Table. The effect of post­
ing one interrupt is an addition of 67 clock cycles [2], if zero wait states ram accesses
are considered. In case of 2 wait states this time become: 67 + 8 = 73 cycles.

• 8259A interrupt expansion:

The interrupt controller interface is implemented with 6 wait states; during an inter­
rupt acknowledge cycle, two accesses are performed to the interrupt controller. be­
tween both accesses, the processor introduces 5 idle cycles to compensate the
timing of the controller:

t = 5(idle-cycles) + 2 x (2 + (amounCoCwaiCstates + 1)) = 23 cycles

• Upon returning from interrupt, the processor detects an interrupt pending.

When the processor finds a pending interrupt, it handles it as if it has just received
the interrupt. According to the reference manual no latency is introduced. However,
during the interrupt return execution the processor performs a check to the interrupt
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pending fields. updates these fields accordingly, and the interrupt record is built up
on the stack.

The reference manual specifies an effect of the pending interrupt to the return to 67
clock cycles if zero wait states ram accesses are implemented. To read and modify
the interrupt priorities word and the appropriate pending interrupts word 4 accesses
are needed. The interrupt record built up requires 5 accesses. For 2 wait states, the
effect of the interrupt pending is: 67 + 2 x (4 + 5) =85 cycles.

The latency time contributions for the three different situations are summarized in the
following tables. The third column indicates the contribution of the cpu to the latency
time if a second (pending) interrupt is serviced upon completion of the first one.

Table 2: CPU contribution to the latency time, asynchronous
context switching, task is preempted

Maximum
best case worst case conlribution to

Processor activity seeondint

[II 16 MHz cycles]

Stall time caused by comm. 44
memory arbiter

Interrupt basic latency 124

8259A interrupt expansion 23 23

Frame cache full 104 104

Instruction cache miss 7 7

Interrupt posted 73

Save global registers x 2 246 246

Instruction cache miss x 10 70 70

Restore g[obal registers III 111 111

Rush local registers x 2 624 624 624

Return 7 7 7

Frame cache restore 104 [04 107

TOTAL-TAl 1216 cycles 1537 cycles 1299 cycles
76 usee 96 usee 81.1 usee
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Table 3: CPU contribution to the latency time, asynchronous
context switching, scheduler is interrupted

Maximum

best case worst case contribution to

Processor activity 2nd int.

1# 16 MHz cycles]

Stall time caused by comm. 44
memory arbiter

Interrupt basic lalency 124

8259A interrupt expansion 23 23

Frame cache full 104 104

Instruction cache miss 7 7

Interrupt posted 73

Save global registers 123 123

Instruction cache miss x 12 84 84

Hush local registers 3 936 936

Return from interrupt 48 48

A pending interrupt is detected 85
during return

Frame cache restore x 2 208 208 208

Return 7 7 7

TOTAL-TA2 1446 cycles 1866 cycles 1540 cycles
90.37 usec 116.6 usee 96.2 usee

Table 4: CPU contribution to the latency time, asynchronous
context switching, nested interrupt.

Processor activity

Stall time caused by comm.
memory arbiter

Interrupt basic latency

8259A interrupt expansion

Frame cache full

Instruction cache miss

Interrupt posted

Maximum
best case worst case contribution to

2nd in!.

[# 16 MHz cycles]

44

124

23 23

104 104

7 7

73 73
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Table 4: CPU contribution to the latency time, asynchronous
context switching, nested interrupt.

Maximum
best case worst case contribution to

Processor activity 2ndint.

[# 16 MHz cycles)

Save global registers 123 123 123

Flush local registers 312 312 312

Restore global registers 111 111 III

Instruction cache miss x 4 28 28

Return from interrupt 48 48

A pending interrupt is detected 85
during return

Restore frame cache 104 104 104

TOTAL-TA3 822 cycles 1186 cycles 933 cycles

51.37 usee 74.1 usee 58.3 usee

The results of table 4 should be added to those of table 2, 3 or 5 depending on the
state of the scheduler and the interrupt being serviced.

The PIC interrupts (except RTCI) do not pass the control to the kernel. Instead they
produce signals to the scheduler. Hereafter they return to the interrupted program.

stall time caused by communication
memory arbiter

PIC interrupts

except RTCI _z_~~c::::======
'-------------'

frame cache lull
Instruetion cache miss
interrupt posted
8259A interrupt expansion

Figure 5.2: Asynchronous context SWitching (due to PIC).
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Table 5: CPU contribution to the latency time, asynchronous
context switching, PIC interrupts (except RTCI)

Maximum
best case worst case contribution to

Processor activity 2nd intelTUpt

[# t6 MHz cycles)

Stall time caused by corom. 44
memory arbiter

Interrupt basic latency 124

8259A interrupt expansion 23 23

Frame cache full 104 104

Instruction cache miss 7 7

Interrupt posted 73 73

Save global registers 123 123

Restore global registers III III

Instruction cache miss x 2 28 28

Return from interrupt 48 48

A pending interrupt is detected 85
during return

Restore frame cache 104 104 104

TOTAL- TA4 533 cycles 874 cycles 621 cycles
33.3 usec 54.6 usec 38.8 usee

5.1.2 Synchronous context switching.

If one task needs an event in order to keep on processing (a period of time, the acti­
vation of an external line, or the output of another task), it gives up the cpu and be­
comes inactive. The scheduler will then activate a waiting task or a task that has
been preempted by a higher priority one upon interrupt, if the conditions for its acti­
vation are valid. The program will not switch to the system stack. During the control
transitions, the stack of the previous task is used.

The latency time is defined here as the time that is required to switch from one task
to the other.
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The contribution of the processor to the latency time is depicted in the following fig­
ure:

return 10 waiting task

~~"'"'"'i---~---
lind next task

to waiting task

<::::::: Is X instruction cache missI

IlnteI1l1Pt pending I

to preempted task

Figure 5.3: Synchronous context switching.

Table 6: CPU contribution to the latency time, synchronous context switching,
a waiting task is activated

Processor activity
best case worst case

Save global registers

Instruction cache miss ){ 6

Restore global registers

Rush local registers

Return

Frame cache restore

TOTAL·TSI

[II 16 MHz cycles]

123

42

III III

312 312

7 7

104 104

657 cycles 699 cycles
41 usee 43.7 usee
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Table 7: CPU contribution to the latency time, synchronous context switching,
a preempted task is resumed

best case worst case

Processor activity
[# 16 MHz cycles)

123

42

III III

312 312

7 7

208 208

48 48

85

Instruction cache miss x 6

Frame cache restore x 2

Return

Restore global registers

Return from inteITUpt

flush local registers

A pending inteITUpt is detected
during return

Save global registers

TOTAL-TS2 809 cycles
50.5 usee

940 cycles
57.) usee

5.1.3 Effects of the CPU to the context switching.

The results of the calculations of the latency times are summarized in the following
table:

Table 8: Summary of the cpu contributions to the latency time

Maximum

Type of context best case worst case contribution to
2nd inlelTUpt

switching
[usee!

Asynchronous. task is 76 96 81.1
preempted. TAl

Asynchronous. scheduler is 90.37 116.6 96.2
inteITUpted. TA2

Asynchronous. nested inter- 51.37 74.1 58.3
rupt. TA3 (*)

Asynchronous. PIC inteITUplS 33.3 54.6 38.8
(except RTCI), TA4

Synchronous, a waiting task is 41 43.7
activated, TS I

Synchronous. a preempted task 50.5 58.7
is activated TS2

(*) This time should be added to the TA1. TA2 or TA4 if the interrupt is nested in the
interrupt service routine of the respective cases.

When the machine is in stand-by the master belt stands still and in consequence no
master pUlse interrupts (MPI) are generated. The program performs polling tasks (to
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the keyboard, the security sensors, etc.) and controls the temperature of the paper
trajectory. Only the real time clock interrupt is generated.

It is very likely that the scheduler will be waiting for an event to occur when a RTCI
arrives. One task will then be asynchronous scheduled. Subsequent tasks may be
activated afterwards as a result of a signal generated by the first task, or because the
conditions for their activation are valid but these tasks have a lower priority than the
task that has been activated first. This situation is depicted in the following figure:

Processor activity

timeTtn

task ntask n-1task1

leall

appl. software

scheduler idle
cpu

1

RTCI
Asynchronous
context switch

Synchr.
context
switch

Tsa - Scheduler asynchronous
lalencylime

Tss - Scheduler synchronous
latency time

Tea - CPU asynchronous
lalency lime

Tt - Task running lime

Tcs - CPU synchronous
latency time

Figure 6.4: Context switching during stand-by.

In the figure above, only interrupts from the real time clock are received. If a MPI ar­
rives, two situations may occur: two MPls take place within 2 RTCls (none, one or
both will cause preemption), or a MPI-service routine is being processed when a
RTCI is requested; in this situation the RTCI will be posted. A second MPI will be re­
quested before the next RTCI is generated. This MPI mayor may not cause preemp­
tion.

The latency time for the first RTCI is:

TA= Tsal + Teall + Tca21

Measurements of TA during stand-by (by means of a prototype version of the soft­
ware) delivered an average value of TA of 200 usee, with small deviation.

According to this measurements, the time between the RTCI and the acknOWledge
to the hardware has also a fairly constant value of 22 usec, which is 6 usee greater
than the basic cpu latency + the PIC expansion + the time required to save the global
registers. This time is needed for program execution; no local registers frame needed
to be flushed in order to allocate a frame for the interrupt service routine.

If we assume that the typical case cpu contribution to the latency time is equal to the
average of best and worst cases, the average case when the scheduler is interrupted
would be equal to 102 usee. This accounts for 51% of the latency time.
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The latency time for synchronous context switchings is:

Ts= TSS1 + Tcs1 + Tcs2

The value of Tsaccording to the measurements is in average 200 usec. Even though
the deviation was small, the spreading of Ts felt within the [168 usee, 336 usee]
range. The typical cpu contribution is 42.35 usee which accounts for 21 % of the av­
erage latency time.

If at least one synchronous context switching occurs after one interrupt, the contribu­
tion of the processor to the latency time will be in average less than 36%.

These results show that the latency is mainly caused by the software administration.
The cpu latency will become greater if for instance an interrupt becomes pending.
Obviously, no precision actions should be undertaken by only software means (the
precision of the copy registration of 0.1 mm allows a latency time of 476 microsec­
onds maximum). In this cases hardware timers should be used.

Between two RTCls there is a period of no activity. No tasks are scheduled. If we only
take into consideration the periods of time where application software activity takes
place, one fraction of this period will be consumed by the kernel and the intrinsic la­
tency of the processor. This fraction expressed in percentages is what we call the
overhead.

Measurements during stand-by indicate that the average task processing time is
about 98 usee. This low value is due to the tasks that monitor inputs or set/clear out­
puts. Low processing times down to 48 usec were measured.

During stand-by the overhead is then 200/(200 +98) = 67%.

During run time, the average task processing time is about 123 usee (tasks of more
than 500 usee or even more than 700 usec are sporadically scheduled). The latency
time is also somewhat greater than in the stand-by situation: about 239 usee. The
overhead remains 67% (this can be explained by the fact that the complexity of the
tasks increases with the same factor as the latency time; furthermore, the number of
synchronous context sWitchings is greater than the amount of asynchronous switch­
ings, so that the effect of the interrupts is limited).

If we take into account that, if at least one synchronous context SWitching occurs after
one interrupt, less than 36% of the latency time during stand-by is due to the cpu­
architecture, the processor overhead will be less than 24% (processor activity that is
not related to the application software; the result is more favourable for the run situ­
ation because of the increase of latency time due to the scheduler). This result shows
that the RISC architecture of the 80960SA is not the biggest responsible for this high
overhead.

Actually, the modularity extent of the application software, in combination with the
characteristics of the kernel determine in a great extent the efficiency of the system.
If the application software is optimized for a lower administration overhead, the cpu
overhead will automatically decrease. This can be accomplished by designing the
system with the fewest number of tasks possible [12] (each task will do as much work
as possible before relinquishing the cpu).

If for instance an overhead of 50% could be attained, this would imply a processor
overhead of about 18%. The running time of the applications tasks would be about
200 usec.

The effeet of the context SWitching to the latency time may be reduced through the
use of faster memory devices. If zero wait states could be attained (tacc < 62.5ns),
the cpu latency time could be reduced with factor ranging between 2 to 3, but this will
increase the cost of the system.

Note1: The measurements during running time do not cover all the different situa­
tions, only the start of a job with steady master speed was considered.



52

Note 2: Interrupts from other sources were not produced. As long as the (combined)
repetition rate of the interrupts is lower than the real time clock frequency, the results
that have been found here will be valid. The PIC interrupts will not introduce a high
latency; about 40 usec will be produced by the CPU; the administration software will
not be involved in the interrupt handling, so that no scheduler latency will be intro­
duced. The service routines for these interrupts should be kept as simple as possible.

Note 3: The processor was running constantly in the interrupted state. And the use
of the system stack was limited to those situations that the scheduler is interrupted.
This causes less frame manipulations.

Note 4. Cumulative measurements show that the application software activity is con­
centrated within a period equal to 1/3 of the interval between two RTCls, with spo­
radical schedulings dUring the rest of the time.

Note 5. Only the asynchronous latency time when the scheduler is interrupted and
the synchrounous cases have been measured. The effect of preemption has not
been explicitly measured, but the effect of the cpu will be more limited because the
scheduler does not need to be reinitialized.
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5.2 Non deterministic behaviour.

For architectures based on pipelines (like MIPS), there is an intrinsic non determin­
istic behaviour, because it is difficult to predict the state of the pipelines upon recep­
tion of an interrupt. The working of the caches introduces a time uncertainty. These
aspects are accentuated in high performance applications, where the tolerances that
are introduced are not acceptable.

The resolution of the actions that are controlled by means of software, is related to
the highest reference frequency, in this case the frequency of the signal generated
by the master belt: 300 Hz.

The scheduler has an action table that assigns priorities to the different tasks de­
pending on the status of the time reference (real time clock counter), the position ref­
erence (the master pUlse counter) and the sensor information. This assignation table
may be tuned to the characteristics of the system.

The uncertainty of the processor (in microseconds) compared to the tolerances of the
system (hundreds of microseconds), is not an issue for this application. More rele­
vant is the problem of testing and debugging.

5.2.1 Debug facilities.

As performance-enhancement technics such as the caching of parallel operations
and pipelined instruction execution are applied to RiSe processors, debugging sup­
port becomes increasingly difficult [7].

The i960 architecture provides on chip tracing. With tracing the i960 can detect and
trap on any combination of the following events:

• Instruction execution (single step).

• Execution of a taken branch instruction.

• Execution of a subroutine call (through a call instruction).

• Execution of a subroutine retum instruction.

• Detection that the next instruction is a subroutine return.

• Execution of a call to a supervisor routine.

• Software break point (mark instruction).

• Hardware event.

Event-detection is done at the instruction decode stage of the i960 pipeline. The
processor executes at full speed until the instruction decoder detects an event. When
an event is detected, the processor transfers control through a vector to a debugging­
support routine. When the i960 traps to the debugging routine, the stack provides the
details of the trace event, including the type of debugging event that caused the trap
and the address at which the event occurred. At the same time the pipeline is auto­
matically cleared and the execution state preserved. Program execution can contin­
ue without impact by executing a return instruction.

Access to these events is controlled through the trace-control register. In the lower
half of the register, one bit is provided for each type of event; the kernel may set the
appropriate bit. The upper half reports the occurrence of events. The kernel's debug­
ging routine can read this register to determine what events have occurred.

Breakpoint events allow breaking execution of any instruction, even those from the
on chip instruction cache.

To monitor stack usage, a trap can be taken on any call or return operation. The han­
d/er logs the call depth and the stack position, which later can be used to recreate a
dynamic map of stack utilization.
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5.2.2 Amount of software code.

The main characteristic of a RiSe processor is its reduced instruction set. If complex
instructions need to be emulated through multiple simple instructions, the amount of
code may increase considerably with respect to that of a conventional cisc proces­
sor. Measurements of the produced code have shown, that due to the simplicity of
the data manipulation, there is no increase in the amount of code with respect to an
equivalent software running on a 80188-platform.
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6 Conclusions.

• Architecture development, a flexible solution.

A Flexible solution ready for production with three processors, that communicate with
each other by means of a high speed communication medium, has been implement­
ed by means of two boards:

.J

High speed

4 ~
comm. medium

~~~;) /ADF pr or

( Copier Process)
(scannev

( Control panel)
Scanner processor

(paper handling)

Main processor
Control-core

Single module- - -- ._---------------
( Expansion)

L

r--------------·-----·j

Figure 6.1: Flexible solution.

The Core Board.

It contains the main processor, the communication memory, the display interlace and
the peripherals of the processor. By separating this board from the i/o functions (in­
cluding the ADF/Scanner processors) a possible migration to other main processor
can take place. At the core board an i/o bus is implemented to access the i/o devices
located on the i/o board as well as the extension connector which has, besides an 8­
bits i/o-data bus, a couple of chip select lines, an interrupt line and the four least sig­
nificant address lines. This way, devices of low complexity can be added. The
amount of wait states for this eventual devices can be programmed in one GAL lo­
cated at the core board. There is also a connector available for expansions that
would require a large amount of address lines (memory components).

The I/O board.

This board contains the i/o devices. The SCanner and the ADF processors are tightly
coupled to the main processor by means of the communication bus. One can decide
whether to make use of EPROM's or to let the main processor down load the pro­
gram code at dma basis through the communication bus.

This solution has so far proven to comply the requirements of the copier and the flex­
ibility items in the design (expansion connectors) have been used to adapt some
functions; one example: The control of one motor of the ADF function needed a 16
bits up/down counter as well as its related logic that generates the control signals
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from the phase of the rotary encoder that is coupled to the motor. The temporary so­
lution was a module with such a counter that has been installed at the expansion con­
nector of the Vo board; the value of the counter was retrieved by the main processor
and stored in the communication memory to be accessed by the ADF processor.

The flexibility of the design has made possible the use of some sections of the hard­
ware by other projects. This has reduced their development time. However, the com­
plexity of the solutions is high and the hardware is concentrated in one place. This
results in a great deal of wiring.

• Architecture development, a modular solution.

For the most applications, based on this project, one solution has been found that
compromises modularity with resource sharing. This is shown in the following figure:

Modular or expandible 10

Comm. bus

High speed

( Paper handling)
comm. medium

."..... I
(copier process)

(scannev
-

( Control Panel)
Scanner processor

Main processor

Control-core

( Expansion)

Figure 6.2: Modular solution.

A two processors-core functionality is in charge of the copier process, the control
panel, the paper handling and the scanner functionality. This core is coupled to the
ADF through a communication bus. Modular or remote io-functions can be coupled
to implement the functionality of the different versions of the machine (to accommo­
date the different amount of paper reservoirs for instance).

This architecture has not been further investigated, but the expansion connectors of
the implementation make possible the research of the real time implications of the
communication bus.
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• Rise combined with standard components.

Standard components have been used in order to keep low the price of the system.
Some optimizations for the proper utilization of the RISe processor have been
achieved:

1) The eprom interface makes use of an interleaved configuration that reduces the
amount of wait states to an average of 1.25. A low eprom access time is important to
maintain full the pipelines of the processor.

2) The communication memory arbiter grants the bus fairly in order to avoid stagna­
tion of any of the processors.

However, the ram interface needs 2 wait states, this has repercussions on the con­
text switching of the processor. The cpu overhead introduced by external accesses
to ram can be reduced by a factor ranging between 2 to 3 if zero wait states are at­
tained. This would imply access times shorter than 62.5 ns and the corresponding
increase in price of the system.

• RiSe and amount of software code.

The main Characteristic of a Rise processor is its reduced instruction set. If complex
instructions need to be emulated through mUltiple simple instructions, the amount of
code may increase considerably with respect to that of a conventional cisc proces­
sor. Measurements of the produced code have shown, that due to the simplicity of
the data manipulation, there is no increase in the amount of code with respect to an
equivalent software running on a 80188-platform.

• RiSe and Real Time.

One of the factors that make RiSe fast is the large number of internal registers. They
enable the RiSe processor to perform many operations internally, hence reduce the
access time to the external memory. In real time applications there are a lot of inter­
actions with external agents. Furthermore in multitasking solutions, like this one, sev­
eral tasks require processor services at the same time, for every task a stack is
needed. The task state is stored in the stack when the task relinquishes the proces­
sor to another task (synchronous context SWitching) or when an interrupted is re­
quested (asynchronous context switching).

The complexity of the tasks of the control of the copier is generally low, and therefore
they do not require much processor power. The multiple switchings from one task to
the other imply more overhead than the actual required application performance. The
RiSe processor architecture accounts for less than 24% overhead if at least one syn­
chronous context SWitching occurs after one master pulse interrupt or one real time
clock interrupt (the overhead is defined here as the percentage of time the processor
performs activities that are not directly related to the application software, without
taking into account the idle periods of the scheduler). The estimated total overhead
of context SWitching is 67%.

The total (synchronous or asynchronous) latency time is in average 200 usec dUring
stand-by and 239 usec during run time. This time may increase if an interrupt be­
comes pending. This latency time is acceptable.

The contribution of the RiSe architecture to the latency time during stand-by is in av­
erage 51% for the asynchronous context switching and 21% for the synchronous
context SWitching. During run time is the cpu contribution lower because of the in­
crease of administration tasks of the scheduler.

The modUlarity extent of the application software, in combination with the character­
istics of the kernel determine in a great extent the efficiency of the system. If the ap­
plication software is optimized for lower administration overhead, the cpu overhead
will automatically decrease. This can be accomplished by designing the system with
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the fewest number of tasks possible (each task will do as much work as possible be­
fore relinquishing the cpu). If for instance an overhead of 50% could be attained, this
would imply a processor overhead of about 18% in average. The average running
time of the application tasks would be 200 usee.

There is no need at this moment to tune the software to the RISC-architecture. Meas­
urements on the prototype software show that the application activity is concentrated
during one third of the time between two real time clocks with sporadical schedulings
during the other time periods.

• CPU architecture and future developments.

The 80960SA satisfies the requirements of this application. Even though the soft­
ware is not tailored to the architecture of the CPU there is still processor power for
eventual expansions of the system.

The cpu vendors have realized the possible drawbacks of the RISC architecture in
real time applications. Papers [5] have been produced about techniques to improve
the behaviour of the RISC processor (in silicon). This kind of architecture is gaining
more and more terrain. It is recommended to spend more time to investigate the de­
bug- and development-techniques involved.

Acknowledgments.

I would like to thank the Oce organization for the opportunity and support they gave
me to realize this work, in particular Mr. Cees van Tilborg and Mr. Lou Dohmen for
the time they spent to correct this report, as well as Mr. Erik Willemsen, Mr. John Arts,
Mr. Hans Wierink and Mr. Chris Wieckardt for their advice during the preparation of
the presentation.

I would like also to express my gratitude to Prof. Stevens for his valuable recommen­
dations.

My special thanks goes to my family in the Netherlands for their patience during all
these years of toil.



59

7 Literature Index.

1

2

3

4

5

6

7

8

9

Intel Corporation.

80960 Application Engineering.

i960 MICROPROCESSOR;

COMPETITIVE BENCHMARK REPORT.

July 29, 1993.

Intel.

i960SA/SS Microprocessor REFERENCE MANUAL.

Order Number: 270929-003, 1991.

Simpson, David.

REAL TIME RISCs.

System Integration, vol. 22, july 1989, p.34-38.

Intel, (Feldkrigen, West Germany).

USER RISC HINAUS.

Elektronik Industrie, vol. 20 (1989), Iss. 10 p.23-24.

Elkateeb, Ali &Thea le-Ngoc.

A PRIORITY STRATEGY ON RISC FOR REAL TIME.

MULTITASKING SOFTWARE APPLICATIONS.

Computer Architecture news, vol. 17 (1989), p.62-68.

Goering, Richard.

IS RISC READY FOR REAL TIME APPLICATIONS?

High Performance Systems, vol. 11 (march 1990), p.22-24,28-29.

Baker, T.

MAXIMIZING HARDWARE/SOFTWARE TRADEOFFS IN

REAL TIME RISC-BASED SYSTEMS.

High Performance Systems, vol. 11 (1990), Iss. 3, p.49,52-54.

Willenz, Avigdor & Philip Saurekas.

CHOOSING THE RIGHT RISC ARCHITECTURE.

High Performace Systems, vol. 11 (1990), Iss. 3, p.42-43,46-48.

Sursky, David.

REGISTER WINDOWS SPEED REAL TIME CONTROL TASKS.

Electronic Design, vol. 38, Nov. 1990, p.57-58,60-61.



10

11

12

13

14

60

Wynia, Todd.

RISC AND CISC PROCESSORS TARGET EMBEDDED

SYSTEMS.

Electronic Design, vol.39, 1991, Iss. 2, p.55-56,58,

62,67,69-70.

Ball, T.

REAL TIME OPERATING SYSTEM PERFORMANCE ISSUES

& TECHNIQUES WITH RISC.

In: lEE colloquium on "RISC Architectures and Applications",

London: lEE, 1991, lEE Colloquium,

Disert No. 163, p.7/1-7/8.

Burnel, Mitchel.

MAXIMIZING PERFORMANCE OF REAL TIME RISC

APPLICATIONS.

Dr. Dobb's Journal, vol.19 (1994) Iss. 1,

p.54,56,58,60,62,64,90,94,96.

Intel Corporation.

960SA EMBEDDED 32-BIT MICROPROCESSOR WITH

16-BIT BURST DATA BUS.

Data Sheets

Order Number: 272206-002, 1994.

Intel Corporation.

80C196KC

User's Guide.

Order Number: 270704-003, 1990.



APPENDIX A1-1

Communication memory Interface

(Do not use for production)_

MODULE arbiter;

FLAG '-r3';

TITLE 'communication ram arbiter'

"Device declaration

_arbiter

"Pin declarations

"clock pin

ClK pin

device 'P22V10C';

2;

"input pins

QREQ1n pin 3',

QREQ2n pin 4-,

QREADY1n pin 5-,

QREADY2n pin 6-,

AH19 pin 7-,

AH20 pin 9;

AlE960 pin 10;

NRESETIO pin 11 ;

CRAMn pin 12;

OE pin 13;

DMA1ENn pin 16;

"output pins

GRANT1n pin 27 ;

GRANT2n pin 26 ;

DMARDREQn pin 25 ;

DMAWRREQn pin 24 ;

GRANTQO pin 23 istype 'reg,neg';

GRANTQ2 pin 21 istype'reg,neg';

GRANTQ1 pin 20 istype 'reg,neg';

GRANTQ3 pin 19 istype 'reg,neg';



"Vo pins

CYCLEEND

DMA2ENn

APPENDIX A1-2

pin

pin

18 ;

17;

L,H ::: 0,1;

Z,X,C ::: .Z.t.X.,.C.;

RDREQn ::: [DMARDREQn];

WRREQn ::: [DMAWRREQn];

ADDRESS ::: [CRAMn,AH20tAH19];

COMM ::: [LtL,L];

DMAREAD ::: [L,L,H];

DMAWRITE= [L,H,L];

notused ::: [L,H,H];

dontcare ::: [H,X,X];

" A dema request to the processors is done with a combination of the DMA

"READ or WRITE signals with AH18 which is also present on the IO-board

" AH18 DMARDREQn DMAWRREQn

"0 0 1 dma read access to coprocessor 1 memory

"0 1 0 dma write access to coprocessor 1 memory

"1 0 1 dma read access to coprocessor 2 memory

"1 1 0 dma write access to coprocessor 2 memory

" The dma interface waits until a confirmation of the hardware returns

" that a dma can take place, by means of the DMAENABLE signals.

" The choice to use two different addresses for dma-read and dma-write

" has been done in order to limit the overhead to place the transceivers

" in the correct mode, notice that the DMA accesses are not different from

" the accesses to the communication memory (the amount of wait states is

"the same).

GRANT::: [GRANTQ3,GRANTQ2,GRANTQ1,GRANTQO];

P1_GRANTED2

P1_IDLE2

PCGRANTED1

P1_IDLE1

P2_GRANTED2

P2_JDLE2

P2_GRANTED1

::: "b0000; " 0

="b1001;" 9

="b0001; " 1

="b1100;" c

="b0011; " 3

= "b1010;" a

="b0111; " 7



P2_IDLE1

MAIN_IDLE

MAIN_GRANTED

DMA_READ

DMA_WRITE

APPENDIX A1-3

="b1110;" e

= "b1111;" f

="b0110; "6

= "b0100;" 4

= Ab0010; "2

BEGINMAINACCESS = "b0101;" 5

reserve2

reserve3

reserve4

random

= I\b1000;" 8

="b1101;"d

=I\b1011;" b

= [X,X,X,X];

"main_idle -> main granted -> p2_idle1

" dmaread -> main_idle

dmawrite -> main_idle

p2_idle1

"p2_idle1 -> p2_granted1 -> p2_idle2

P1_idle1

"p2_idle2 -> p2_granted2 -> pl_idlel

" p1_idle1

"pCidlel -> pl_9ranted1 -> pl_idle2

main_idle

"p1_idle2 -> p2_9ranted2 -> main_idle

.. main_idle

STATE_DIAGRAM GRANT

state reserve2: goto MAIN_IDLE;

state reserve3: goto MAIN_IDLE;

state reserve4: goto MAIN_IDLE;

state MAIN_IDLE:

if ICYCLEEND & (CRAMn & NRESETIO then BEGINMAINACCESS

else P2_IDLE1;

state MAIN_GRANTED:

if CRAMn then P2_IDLEl

else MAIN_GRANTED;

state P2_IDLE1:
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if ICYCLEEND & IQREQ2n then P2_GRANTED1

else PCIDLE1;

state P2_IDlE2:

if CYCLEEND then P2_IDLE2 else

if lCYCLEEND & lQREQ2n then P2_GRANTED2

else P1_IDLE1;

state Pl_IDLE1:

if ICYCLEEND & IQREQln then P1_GRANTED1

else MAIN_'DLE;

state Pl_IDLE2:

if CYCLEEND then P1_IDLE2 else

if ICYCLEEND & IQREQ1 n then P1_GRANTED2

else MAIN_'DLE;

state P2_GRANTED1:

if (CYCLEEND) then P2_'DLE2

ELSE P2_GRANTED1;

state P2_GRANTED2:

if (CYCLEEND) then P1_IDLE1

ELSE P2_GRANTED2;

state P1_GRANTED1:

if (CYCLEEND) then Pl_IDLE2

ELSE P1_GRANTED1;

state P1_GRANTED2:

if (CYCLEEND) then MAIN_IDLE

ELSE P1_GRANTED2;

state DMA_READ:

if (CRAMn) then MAIN_IDLE

else DMA_READ;

state DMA_WAITE:

if (CRAMn) then MAIN_IDLE

else DMA_WRITE;

state BEGINMAINACCESS:

if (ADDRESS == COMM) then MAIN_GRANTED

else if (ADDRESS == DMAREAD) & (IDMA1ENn # IDMA2ENn)

then DMA_READ

else if (ADDRESS == DMAWRITE) & (IDMA1ENn # !DMA2ENn)

then DMA_WRITE;

else BEGINMAINACCESS ;

EQUATIONS
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IGRANT1n::; ((GRANT.FB = P1_GRANTED1) # (GRANT.FB == P1_GRANTED2))

& ICLK & ICYCLEEND & NRESETIO

# IGRANT1 n & IGRANTQ3.FB & NRESETIO

& ICYClEEND & QREADY1 n;

!GRANT2n = ((GRANT.FB == P2_GRANTED1) # (GRANT.FB = P2_GRANTED2»

& IClK & ICYCLEEND & NRESETIO

# IGRANT2n & IGRANTQ3.FB & NRESETIO & ICYClEEND & QREADY2n;

IDMARDREOn =

(ADDRESS == DMAREAD) & DMA1ENn & DMA2ENn

# IDMARDREOn & ICYClEEND & NRESETIO;

IDMAWRREOn =

(ADDRESS== DMAWRITE) & DMA1ENn & DMA2ENn

# IDMAWRREOn & ICYCLEEND & NRESETIO;

"A dma access is started every time ADDRESS == DMAREAD of DMAWRITE.

" The 80196's can be reset under 80960 control.

" The main processor then accesses the memory.

"

CYCLEEND =

CRAMn & (GRANT.FB == MAIN_GRANTED)

# CRAMn & (GRANT.FB == DMA_READ)

# CRAMn & (GRANT.FB == DMA_WRITE)

# IOREADY1n & (GRANT.FB == P1_GRANTED1)

# IOREADY1n & (GRANT.FB == P1_GRANTED2)

# IOREADY2n & (GRANT.FB == P2_GRANTED1)

# lOREADY2n & (GRANT.FB == P2_GRANTED2)

# CYCLEEND & NRESETIO & IGRANTQ3.FB

# CYCLEEND & !OREADY1 n & NRESETIO

# CYClEEND & IOREADY2n & NRESETIO

# CYCLEEND & IDMA1ENn &NRESETIO

# CYCLEEND & !DMA2ENn &NRESETIO

END arbiter;

GRANTOO.C=

GRANTQ1.C =

GRANTQ2.C=

GRANT03.C=

GRANTQ3.AR =

CLK;

CLK;

eLK;

CLK;

INRESETIO;
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MODULE crcntr;

FLAG '-r3';

TITLE 'communication ram controller'

"Device declaration

_crcntr

"Pin declarations

"clock pin

device 'P22V10C';

ClK pin 2;

"input pins

NRESET pin 3;

CEND pin 4"I

GRANTQO pin 5"I

GRANTQ2 pin 6;

GRANTQ1 pin 7-
I

GRANTQ3 pin 9",
WEOn pin 10;

WE1n pin 11;

DEVOEn pin 12;

ENDMAn pin 13;

OE pin 16;

"output pins

CRAMCSn pin 27;

CRAMROn pin 26;

CRAMW1n pin 25;

CRAMW2n pin 24;

POSTPONEn pin 23;

OIRBUFEXT pin 21;

WAIT pin 20 istype 'reg';

M2ERDn pin 19;

M2EWRln pin 18;

M2EWRHn pin 17;



L,H

Z,X,C

=

=
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0,1;

.Z.,.X.,.C.;

P1_GRANTED2 =
PCIDLE2 =
P1_GRANTED1 =

P1_IDLE1 =
P2_GRANTED2 =

P2_IDLE2 =
P2_GRANTED1 =
P2_IDLE1 =
MAIN_IDLE =
MAIN_GRANTED =

DMA_READ =
DMA_WRITE =

BEGINMAINACCESS =

GRANT

dontcare

reserve2

reserve3

reserve4

=

=

=

=
=

[GRANTQ3,GRANTQ2,GRANTQ1,GRANTQO];

[X,X,X,X];

"bOOOO;"O

"b1001; "9

"b0001; " 1

"b1100; "c

"b0011; "3

"b1010; "a

"b0111; "7

"b1110; "e

"'b1111; .. f

"b0110; .. 6

"'b0100; .. 4

"b0010; "2

"b0101; "5

"b1000; "8

"'b1101; U d

"b1011;"b

CSn = [CRAMCSn];

RDn = [CRAMRDn];

W1 n = [CRAMW1 n];

W2n = [CRAMW2n];

DIR =[DIRBUFEXT];

WAITn = [POSTPONEn];

EXRDn =[M2ERDn];

EXW1 n = [M2EWRLn];

EXW2n = [M2EWRHnj;

.. main_idle -> main granted -> p2_idle1

.. dmaread -> main_idle

" dmawrite -> main_idle
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p2_idle1

W p2_idle1 -> p2_grantedl -> p2_idle2

N P1jdle1

N p2_idle2 -> p2_granted2 -> pLidle1

N pLidlel

N pLidlel -> pl_grantedl -> pl_idle2

N main_idle

N p1_idle2 -> p2_granted2 -> main_idle

N main_idle

EQUATIONS

lCRAMCSn =«GRANT == MAIN_GRANTED) & ICEND

# (GRANT == Pl_GRANTE01) & ICEND

# (GRANT == Pl_GRANTED2) & ICEND

# (GRANT == P2_GRANTED1) & ICEND

# (GRANT == P2_GRANTE02) & ICEND) & lClK

# ICRAMCSn & IGRANTQ3 & ICEND;

ICRAMRDn = (GRANT == MAIN_GRANTED) & IDEVOEn & lCEND

# (GRANT == P1_GRANTED1) & IM2ERDn & ICEND

& lENOMAn & IDIRBUFEXT

# (GRANT == Pl_GRANTED2) & IM2ERDn & !CEND & IENDMAn

& IDIRBUFEXT

# (GRANT == P2_GRANTED1) & IM2ERDn & ICEND

& lENDMAn & IDIRBUFEXT

# (GRANT == P2_GRANTED2) & IM2ERDn & ICEND

& !ENDMAn & IDIRBUFEXT;

ICRAMWl n = (GRANT == MAIN_GRANTED) & IWEOn & ICEND

# (GRANT == PCGRANTED1) & IM2EWRln & ICEND

# (GRANT = Pl_GRANTED2) & IM2EWRln & ICEND

# (GRANT == P2_GRANTED1) & IM2EWRln & lCEND

# (GRANT = P2_GRANTED2) & lM2EWRln & ICEND;

ICRAMW2n = (GRANT == MAIN_GRANTED) & IWE1n & ICENO

# (GRANT = P1_GRANTED1) & IM2EWRHn & ICEND

# (GRANT == P1_GRANTED2) & IM2EWRHn & ICEND

# (GRANT == P2_GRANTED1) & IM2EWRHn & ICEND

# (GRANT == P2_GRANTED2) & IM2EWRHn & ICEND ;
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WAIT:=

(GRANT == BEGINMAINACCESS)

# (!ENDMAn) & «GRANT == P1_GRANTED1)

# (GRANT == P1_GRANTED2)

# (GRANT == P2_GRANTED1)

# (GRANT == P2_GRANTED2))

& IGRANTQ3 & (IM2ERDn)

# WAIT.FB & IGRANTQ3;

POSTPONEn = WAIT.FB & (

(GRANT == MAIN_GRANTED) #

(GRANT == DMA_READ ) #

(GRANT == DMA_WRITE » #

POSTPONEn & ICEND;

IM2ERDn = IDEVOEn;

IM2EWRLn = IWEOn;

IM2EWRHn = IWE1 n;

DIRBUFEXT = «GRANT == P1_GRANTED1) & (M2ERDn) & IWAIT.FB

# (GRANT == P1_GRANTED2) & (M2ERDn ) & IWAIT.FB

# (GRANT == P2_GRANTED1) & (M2ERDn) & IWAIT.FB

# (GRANT == P2_GRANTED2) & (M2ERDn) & !WAIT.FB

# (GRANT = DMA_READ »

M2ERDn.OE

M2EWRLn.OE

M2EWRHn.OE

CRAMCSn.OE

CRAMRDn.OE

CRAMW1n.OE

CRAMW2n.OE

POSTPONEn.OE

WAIT.OE=OE;

DIRBUFEXT.OE

END crcntr;

= (GRANT == DMA_READ);

= (GRANT == DMA_WRITE);

= (GRANT == DMA_WRITE);

=OE;

=OE;

=OE;

=OE;

=OE;

=OE;
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MODULE bufcnt;

TITLE 'communcation ram, buffers controller'

"Device declaration
"*****.*.****•••*.*

_bufcnt

"Pin declarations
u••***••••*******

"Input/clock pin

device 'P16V8R'; "GAL16V8B-7LJ

SYSCLK2

ENGALn

"Input pins

"- ...------.

pin

pin

1;

11 ;

CYCLEEND

GRANTQO

GRANTQ2

GRANTQ1

GRANTQ3

DEVOEn

WEOn

WE1n

"output pins

"-----------------

pin 2-,
pin 3-,

pin 4',
pin 5;

pin 6;

pin 7;

pin 8;

pin 9;

ADRDIREXT pin

OESUFEXTn pin

ENABLEDMAn pin

NOECOMn pin

ACCESSISREADn pin

_1 STCYCLEn pin

_2NDCYCLEn pin

"Input/output pins

19 istype 'invert';

17 istype 'invert';

16 istype 'invert';

15 istype'invert';

14 istype 'reg,neg';

13 istype 'reg,neg';

18 istype 'reg,neg';
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"Constant declarations
"*************.*******

L,H = 0,1;

Z,X,C,P = .Z.,.X.,.C.,.P.;
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pin 12;

GRANT = [GRANTQ3,GRANTQ2,GRANTQ1 ,GRANTQO];

P1_GRANTED2

P1_'DLE2

P1_GRANTED1

P1_IDLE1

P2_GRANTED2

P2_'DLE2

P2_GRANTED1

P2_'DLE1

MAIN_IDLE

MAIN_GRANTED

DMA_READ

DMA_WRITE

reserve2

reserve3

reserve4

dontcare

= "b0000;" 0

="b1001;"9

= "b0001; " 1

= "b1100;" c

= "b0011;" 3

= "b1010;" a

= "b0111;" 7

= "b1110;" e

="b1111;"f

= "b0110;" 6

= "b0100;" 4

= "b001 0; " 2

= "b1 000; " 8

="b1101;"d

="b1011;"b

= [X,X,X,X];

_1 STn = L 1STCYCLEn];

_2NDn = L2NDCYCLEn];

BEGINMAINACCESS = "b0101;" 5

" main_idle -> main granted -> p2_idle1

dmaread -> mainjdle

dmawrite -> main_idle
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.. p2_idle1

.. p2_idle1 -> p2_granted1 -> p2_idle2

P1_idle1

.. p2_idle2 -> p2_granted2 -> p1_idle1

.. p1jdle1

.. p1_idle1 -> p1_granted1 -> p1_idle2

.. main_idle

.. p1_idle2 -> p2-9ranted2 -> main_idle

.. main_idle

EQUATIONS

IACCESSISREADn := (GRANT == MAIN_GRANTED) & IDEVOEn #

(GRANT == DMA_READ) & IDEVOEn ;

.. direction signals for coprocessors address transceivers.

.. dma is default

ADRDIREXT =1_2NDCYClEn.FB & «GRANT = P1_GRANTED1)

# (GRANT == P1_GRANTED2)

# (GRANT == P2_GRANTED1)

# (GRANT == P2_GRANTED2» & NRESETIO & ICYClEEND

# ADRDIREXT & lOEBUFEXTn;

.. coprocessor's data/address transceivers

IOEBUFEXTn =
«( GRANT == PCGRANTED1)

# (GRANT == P1_GRANTED2)

# (GRANT == P2_GRANTED1)

# (GRANT == P2_GRANTED2)) & ADRDIREXT & ICYClEEND

# (GRANT == DMA_READ) & '-2NDCYClEn.FB

# (GRANT == DMA_WRITE)& 1_2NDCYClEn.FB) & NRESETIO;

.. transceiver for:

.. 1. control signals from coprocessors

.. 2. dma control signals

IENABlEDMAn =
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«( GRANT == P1_GRANTED1)

# (GRANT == PCGRANTED2)

# (GRANT == P2_GRANTED1)

# (GRANT == P2_GRANTED2)) &ADRDIREXT & ICYCLEEND

# (GRANT == DMA_READ) & '-2NDCYCLEn.FB

# (GRANT == DMA_WRITE)& 1_2NDCYCLEn.FB) & NRESETIO;

.. 80960 data/address transceivers (direction = DRn)

'-1 STCYCLEn := (GRANT == BEGINMAINACCESS) & IGRANTQ3 ;

,-2NDCYCLEn := 1_1STCYCLEn.FB & IGRANTQ3

# (GRANT = P1_GRANTED1) & IGRANTQ3

# (GRANT == P1_GRANTED2) & IGRANTQ3

# (GRANT = P2_GRANTED1) & IGRANTQ3

# (GRANT == P2_GRANTED2) & IGRANTQ3

# (GRANT == DMA_READ) & IGRANTQ3

# (GRANT == DMA_WRITE) & IGRANTQ3;

.. BEGINCYCLEn prevents spikes on NOECOMn due to transitions between states.

INOECOMn = '-1 STCYCLEn.FB & ICYCLEEND

# INOECOMn & IGAANTQ3 & ACCESSISAEADn.FB

& NRESETIO & ICYCLEEND

# INOECOMn & IGRANTQ3 & IDEVOEn &

NRESETIO & ICYCLEEND;

ADRDIREXT.OE :;:; IENGALn & H ;

OEBUFEXTn.OE =IENGALn & H;

ENABLEDMAn.OE =!ENGALn & H;

NOECOMn.OE =IENGALn & H;

ACCESSISREADn.OE = IENGALn;

_1 STCYCLEn.OE = IENGALn;

_2NDCYCLEn.OE =IENGALn;

END bufcnt
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Eprom interface.

(Do not use for production).

MODULE memcnt;

FLAG '-r3';

TITLE 'memory controller gal'

"Device declaration

_memcnt device 'P22V10C';

" The state machines contained in this gal will be also used for flash eproms,

"The read signal for the RAM's and the related ROY line are also generated

" here.

" The EPROM is interleaved, the amount of wait states is as follows:

" 2-1-1-1.

" For the RAM, there are 2 wait states introduced_

"Pin declarations

"clock pin

CLK3 pin 2-,

"input pins

IEPROMCS pin 3;

IPCYCLE pin 4',

DISNRDY pin 5-,
lAD pin 6',
IBEO pin 7-,

IBE1 pin 9;

A1PROL pin 10;

A2PROL pin 11 ;

IPOSTPONE pin 12;

IDISRAMCS pin 13;

ICOMRAMCS pin 16;

"output pins

IENABLEROY pin 27 istype 'neg';

ISYSRAM pin 26;
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!I0RDY pin 25;

IRDY pin 24 ;

WEO pin 23 istype 'reg,neg';

WEl pin 21 istype 'reg,neg';

IMEMRDY pin 20 istype 'reg,neg';

51 pin 18 istype 'reg,neg';

50 pin 19 istype 'reg,neg';

DEVOE pin 17 ;

l,H = 0,1;

Z,X,C = .Z.,.X.,.C.;

ADDR =[A2PROL,A1PROll;

MEM_CNT =[Sl,SO,!MEMRDY];

IDLE = "bl11;

W2 = "bl01;

Wl = "b001;

01 =:: "bl00;

02 ="bl10;

5P1 ="bOlO;

SP2 ="bOll;

SP3 ="b000;

dontcare =[X'x'X];

ENRDY =[ENABLEROy];

state IDLE:

WEO :=0;

WEl :=0;

if IPCYCLE then IDLE

else if (EPROMCS & ISYSRAM & IDISRAMCS

# SYSRAM & (IEPROMCS & IDISRAMCS & ICOMRAMCS »
then Wl

else if

ISYSRAM & (DISRAMCS &

lEPROMCS # COMRAMCS) then SP2;

else IDLE;
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.. If the communication ram or the display ram are selected, the state

.. machine goes to SP2 to wait until the bus is granted (POSTPONE or DISplay

.. NotReaDY active)

state W1:

if

(DISRAMCS # COMRAMCS) & (WEO.FB # WE1.FB ) then 01

with

WEO :=0;

WE1 :=0;

endwith;

elseW2 with

WEO:= IRD & BEO;

WE1 := IRD & BE1;

endwith;

state W2:

if (oISRAMCS # COMRAMCS) & IRo

then W1 with

WEO := IRD & BEO;

WE1 := IRD & BE1;

endwith;

else 01 with

WEO:= 0;

WE1 :=0;

endwith;

state 01:

WEO :=0;

WE1 :=0;

if lPCYCLE then IDLE

else if DISRAMCS then SP2

else if (EPROMCS & A1PROL &

A2PROL # IEPROMCS) then W1

elseW2;

state 02:

goto IDLE;
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state SP2:

if (COMRAMCS & POSTPONE # DISRAMCS & OISNRDY) then SP2

with

WEO := 0;

WE1 :=0;

endwith;

else W1 with

WEO:= 0;

WE1:= 0;

endwith;

state SP1: goto IDLE;

state SP3: goto IDLE;

EQUATIONS

ROY = ENABLERDY ;

ENABLEROY =MEMRDY.FB # IORDY

" the ready signal is enabled from the first wait state until the recovery

" cycle, inclusive this last one. Another device may enable this line

" dUring an overlaping period, from the first wait- or data state.

" SYSRAM is activated from the beginning of the cycle in case of RAM accesses,

" for accesses to the other local devices, SYSRAM is activated after

" the address cycle. In both situations, this signal will stay active

" during the whole cycle until BLASTn is deactivated in the recovery cycle.

RDY.OE =SYSRAM;

DEVOE =
RD

& «MEM_CNT.FB == W1)) #

DEVOE & !SO.FB;

.. The outputs are enabled after the state machine starts the access

.. until the recovery time. This signal is not clocked in order to compensate

.. the clocks skew.

END memcnt
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MODULE roment;

TITLE 'rom controller gal'

"Device declaration
u ••****••••******.*

_roment device 'P22V10C';

"Pin declarations
U*.*******.**.***

"Input/clock pin

"-..----..----....--

SYSCLK3 pin 2;

"Input pins

"----------

IPCYCLE pin 3;

!RD pin 4;

A1PROL pin 5;

A2PROL pin 6;

A3 pin 7-,
IBE1 pin 9;

IBEO pin 10;

IROMRDY pin 11;

IEPROMCS pin 12;

IASPROL pin 13;

AH21 pin 16;

"output pins
..-----..--_ .._---- ..-

IMA2EV pin 27 istype 'reg';

IMA20DD pin 26 istype 'reg';

IMA3 pin 25 istype 'reg';

IROMEVOE pin 24;

IROMODDOE pin 23;

IEPROM1CS pin 21;

IEPROM2CS pin 20;
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PROCYClEQn pin

.. Vo pins

19;

nc

AH22

"Constant declarations

pin

pin

18;

17;

ADD_EV_STATE

AD0_0D_STATE

MA2PROl_O

MA2PROL_1

MA3_STATE

MA3_0

MA3_1

= [!MA2EV];

= [IMA20DD]:

= "b1;

= "bO;

= [!MA3];

= "b1;

= "b0;

ACTIVE = "b0;

INACTIVE = "b1;

ADDR = [A3,A2PROl,A1PROl]:

ADD = [AH22,AH21];

EPROM1 = "baa;
EPROM2 = "b01;

EPROM3 = "b1 0;

.. the eproms are placed contiguously, the size of the banks is 2 MBytes.

.. In case components of higher density are used modify the address combinations

l,H = 0,1;

Z,X,C,P = .Z.,.X.,.C.,.P.;

state MA2PROL_O:

if (ASPROl & A2PROl & !A1PROl

# ASPROl & IA2PROl & A1PROl

# IASPROl & IROMRDY & IA2PROl & A1 PROl)

then MA2PROl_1

else MA2PROl_0;

state MA2PROl_1 :
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if (ASPROL & IA2PROL & IA1PROL

# ASPROL & A2PROL & A1PROL

# IASPROL & IROMRDY & A2PROL & A 1PROL)

then MA2PROL_O

else MA2PROL_1;

state MA2PROL_O:

if (ASPROL & A2PROL #

IASPROL & IROMRDY & A2PROL & IA1PROL) then MA2PROL_l

else MA2PROL_O;

state MA2PROL_1:

if (ASPROL & IA2PROL #

IASPROL & IROMRDY & IA2PROL & IA1PROL) then MA2PROL_O

else MA2PROL_1;

state MA3_0:

if (ASPROL & A3 # IASPROL & IROMRDY & A3) then MA3_1

else MA3_0;

state MA3_l:

if (ASPROL & IA3 # IASPROL & IROMRDY & !A3) then MA3_0

else MA3_1;

EQUATIONS

IPROCYCLEQn == PCYCLE

# (IPROCYCLEQn) & (BEQ # BEl);

ROMEVOE == EPROMCS & IA1PROL & RD & ROMRDY & IPROCYCLEQn

# ROMEVOE & IA1PROL & EPROMCS & IPROCYCLEQn ;

ROMODDOE = EPROMCS & A1PROL & RD & ROMRDY & IPROCYCLEQn

# ROMODDOE & A1PROL & EPROMCS & IPROCYCLEQn;

EPROM1CS = EPROMCS & (ADD == EPROM1);

EPROM2CS =EPROMCS & (ADD == EPROM2);

END rament
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