
 Eindhoven University of Technology

MASTER

A converter from IDaSS design files to synthesizable VHDL

Pont, J.F.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/35f720ba-d8b1-4068-a6f4-116d5d4c8146

Technische Universiteit tea Eindhoven

Faculty of Electrical Engineering

Section of Digital Information Systems

Master's Thesis:

A converter from IDaSS design
files to synthesizable VHDL.

J.F. Pont

Coach

Supervisor

Period

: Dr. Ir. A.C. Verschueren

: Prof. Ir. M.PJ. Stevens

: January 1995 - August 1995

The Faculty of Electrical Engineering of Eindhoven University of Technology does not
accept any responsibility regarding the contents of Master's Theses.

Abstracl

ABSTRACT

This report describes the work that has been done to implement a converter that converts IDaSS
design files to VHDL files. IDaSS is an Interactive Design and Simulation System that makes it
possible to test and simulate the designs at register transfer level. To shorten the design time from
an IDaSS design to a real chip layout it is necessary to quickly transfer the design files to a
language used as the input of a silicon compiler. The implementation of the convereter is started
by W.M. Kruytzer but some problems were not solved when he left the TV Eindhoven. These
problems mostly are caused by the fact that the silicon compilers available by now do not accept
the complete VHDL syntax.

The IDaSS operator blocks were transferred with the use of VHDL procedures and functions, the
latter for the complex operators that are not able to be written in a simple assignment. The
procedures are used to describe the different IDaSS functions. The functions written, are
constructed of VHDL standard statements so they can be used in combination with every silicon
compiler wanted.
Control connectors are written in case statements. These control connectors and finite state
machines control amongst others the behaviour of the three state output connectors. These three
state outputs are written in separate VHDL processes.
These three state outputs can be connected together to one three state bus when the VHDL files
are used as the input of most silicon compilers. Compass however, used at the TV Eindhoven,
requires that the behavioural files that describe a three state bus, are written differently. Three
possible solutions for this problem are presented in this report, but none of them is implemented
in the current compiler.
A last improvement to the converter is the addition of a file containing all user defined options.
This file is read by the converter in the beginning of the program execution and makes the
converter suitable for all wanted silicon compilers. The users interaction is now very much
improved. because the complete C-code does not have to be re-compiled every time the user
changes an option.

2

Con~nlS

CONTENTS

1 INTRODUCTION 5

2 IDASS 7
2.1 IDaSS components 8

2.1.1 Schematic 8
2.1.2 State machine controller 8
2.1.3 Operator 9
2.1.4 Register 10
2.1.5 Buffer 10
2.1.6 Constant generator 10
2.1.7 RAM 10
2.1.8 ROM 11
2.1.9 FIFO 11
2.1.10 LIFO 11
2.1.11 CAM or associative memory 12

2.2 IDaSS description files 14
2.2.1 Basic data items 14
2.2.2 Some important switch characters 15
2.2.3 Connectors 15
2.2.4 Buses, Signals and Blocks placed on a schematic 16
2.2.5 Complete file formats 17

3 LEXICAL ANALYSING AND PARSING 18
3.1 Global description of LEX 18
3.2 Lexical analyzer for IDaSS 19
3.3 Global description of YACC 20
3.4 Parsing IDaSS des-files 21

4 THE DATA STRUCTURE 23
4.1 Lists 23
4.2 Some important constructs 23
4.3 Expressions 25
4.4 Tree of a simple design 26

5 VHDL 28
5.1 Entity specifications 28
5.2 Structural style architectures 28
5.3 Behavioural style architectures 29
5.4 Library and USE clauses 30

3

Contents

6 IDASS CONSTRUCTS IN VHDL
6.1 IDaSS names and VHDL names
6.2 Registers
6.3 Operators
6.4 Finite state machines
6.5 Buses with multiple drivers

7 VHDL CONFIGURAnON FILE
7.1 File format and contents

8 CONCLUSIONS

LITERATURE

APPENDIX 1 IDASSLEX.L

APPENDIX 2 TYPES.H

APPENDIX 3 STRUCTURAL VHDL OF THE RUNLIGHT

APPENDIX 4 RESERVED WORDS

APPENDIX 5 VHDL FUNCTIONS FOR COMPLEX IDASS OPERATORS

APPENDIX 6 8 BIT MSOMASK

APPENDIX 7 FIRST POSSIBILITY FOR A THREE STATE BUS

APPENDIX 8 SECOND POSSIBILITY FOR A THREE STATE BUS

APPENDIX 9 THIRD POSSIBILITY FOR A THREE STATE BUS

31
31
31
33
37
40

44
44

45

46

50

53

58

60

61

68

69

70

71

APPENDIX 10 SWITCHES OF THE FILE USER DEF WITH THEIR DEFAULT
SETTINGS 72

4

Imroduclion

1 INTRODUCTION

To fully automate the design trajectory from specification to the actual implementation of a design,
at the Digital Information Systems Group of the Eindhoven University of Technology a lot of work
has been done to create different tools, which all handle a part of this design trajectory. One of
these tools is the interactive design program IDaSS (Interactive Design and Simulation System).
With this tool it is possible to specify and simulate a certain digital system at register transfer level.

To make the design time shorter from an IDaSS specification to the real chip we would like to
translate the design files of IDaSS to files written in a certain language that can be used as the input
of a silicon compiler. The target language we use for this purpose is VHDL (Very High Speed
Integrated Circuits Hardware Description Language). This language originally was designed to
simulate the behaviour of different digital systems, but the language is currently used more and
more as the input of a silicon compiler. Because VHDL was not designed for this 'new'
application, certain problems are rising. For example, not all the constructs that are allowed in
VHDL will be accepted by the silicon compilers or will not generate an IC that works properly.

This report handles the implementation of the converter that translates the IDaSS design files in
VHDL. This converter is an extension of the converter that was implemented by W.M. Kruytzer.
The existing compiler was not able to translate every operator correctly to VHDL, even as the
behaviour of the three state ports present in registers and operators. Also problems with the
translation of registers, finite state machines, IDaSS names used for different objects, buses, etc.
and the behaviour of three state buses are solved or solutions are presented. The little bugs found
in the converter are 1)ot handled here. If more information about the previous work is wanted, see
the reports of W.M. Kruytzer ([Kru 94] and [Kru 95]). The C-code of the converter contains lots
of comment making the code more understandable, so if more information is wanted about the
details of the implementation of the converter, check the C-code.

The current converter first reads the design file coming from IDaSS. The converter uses the tools
LEX and YACC for this purpose. After reading the design a complete data tree is present in
memory containing all the important information to write the IDaSS design to correct synthesizable
VHDL. This design tree is passed to different C-functions that do amongst others certain
calculations, add information, optimizes the expressions and last but not least writes the structural
and behavioural VHDL files. In figure 1 the converter is presented in a simple flow diagram. The
structure of this figure can be recognized back when the C-code is read of the file des2vhdl.c.
The code in this file calls the different functions and passes the design tree to the next function.

The last chapter of this report describes the implementation of the use of an user definitions file.
This file contains all the possible things that can be changed by the user without recompiling the
complete C-code and is read every time a translation from IDaSS to VHDL is made.

5

Introduction

DES file

~----",­

, Make the dock
and reset nets

~-------------,

~--'---~

" I' Checking for
(,....:.:.' VHDL reserved
~\ words

/--C-hecki-'-ng-a-II~

/~ r system names
~ i for uniqueness

-,

:L-- ---~ ~-ra-te-i/O-U-s~"
-----.."""'1 I by the FSM's

~---------.

_ ,~'- . Write the structural
_ ~" and behavioural
--,..- VHDL code

VHDL files

Figure 1 Flow diagram of the DES2VHDL compiler.

Readers interested in the further progresses made, by the Digital Infonnation Systems Group, on
this project have to wait for another episode of this marvellous piece of work, that is present in the
graduation report of M. Dassen.

6

[DaSS

2 IDASS

IDaSS for ULSI (Interactive Design and Simulation System for Ultra Large Scale Integration) Is
an interactive design and simulation system that is used for digital circuits. The program describes
a design as a tree like hierarchy of schematics. These schematics can contain registers, memories,
buffers, state machines and so on. The different 'blocks' of a schematic and the schematics
themselves can be connected with buses that are displayed as lines on the screen. The behaviour
of the designed machine can be simulated one clock step at a time and the contents of the different
registers, buses and other elements can be watched with the help of viewers, you are able to
connect wherever you like. A screendump of an IDaSS session is given in the next figure.

~EG_rILE: a lower level schematic

lSI S imu lator:

lSI WC) Contra I: ALU ® e:l

step ~== Compiling control input

Qb sre npOe
g.c=;;I~Q;;;b"rre

~f----:.E=a~"ARAM

~~~~liOOiol
TS rbdis

,
~8 .. 2)

1~--~~-s~~~pO--e--s-J"%888passA.
~I %881 add.

puh %818 and.
%811 xor.

S~

r~ %188 add mod.
W~

%181 testAzero.
shU %118 passB.
MerS

PCC

R13H2

ienetrl ienetrl
~ti ... "

Simulator: PCC

•

t'qi

poe

rCC: a lower level schematic

Simulator: PCC8ZB

Figure 2 Screen dump of an IDaSS session.

7



maSS

2.1 IDaSS components

The different components that can be used within an IDaSS design are:
• schematic,
• state machine controller,
• operator,
• register,
• buffer,
• constant generator,

• RAM,
• ROM,
• FIFO,
• LIFO and
• CAM or associative memory.
These components will be discussed in this chapter. For a more thorough description see [Ver 90a].

2.1.1 Schematic

Because IDaSS is hierarchical it is possible to place complete schematics inside another schematic.
In such a schematic every IDaSS component can be placed. so it is also possible to place another
lower level schematic inside a schematic and so on. The data transfer across the boundaries of a
schematic is done with bidirectional connectors, which connect the buses outside the schematic and
the buses inside the schematic.

2.1.2 State machine controller

The state controllers are described by a number of states with an optional label that can be used
for referencing during state transitions. In the description of the states, test points can be included
to make conditional program execution possible. These test points (register values, register
semaphores and some other values) are clocked directly, and are therefore stable during the
evaluation of a state description.

Every state controller can have a stack for the storage of return addresses or states, this is
necessary when a subroutine is called. The dept of this stack is user defined and the contents will
be adjusted when states are inserted in or removed from the stack.

Its possible to control a block that is in a hierarchically lower schematic, or use the value of such
a block as a test point. Controllers are able to communicate with the help of 'signals'. These are
one bit semaphores that can be tested, reset and set by every state controller in the design. Four
types of signals are available:
• Pulsed only.

These signals are able to set themselves high the next clock period and then fall back
automatically.

8



IDaSS

• Level only.
These signals can be set high or low and will keep their value indefinitely.

• Level/Pulse.
These signals are a combination of the first two signals. The level mode is considered to be
the most important.

• Pulse/Level.
These signals are a combination of the first two also but the difference with the third signal
is that the pulse mode is considered to be the most important.

The controllers can be controlled by the use of the 'run/halt' flip-flop which, when in halt,
disables every control output and keeps the state of the controller stable. Controllers can influence
the behaviour of each other and themselves by using the commands: hold, stop, start, goto:
<label> and reset.
The next figure shows a state machine controller together with one of its state descriptions as it is
displayed during an IDaSS session.

lSI cue)
~TEP_Bl:

[HSI
\8 B3 ENABLE;

TABLEI LOAD;
OPERATOR Bl;
-) STEP Bl

11 £TABLEI at: Z8 "TableZ Present bit"
\1 B3 ENABLE;

TABLEZ LOAD;
OPERATOR BZ;
-} STEP BZ

\8 OPERATOR IDLE;
-} IDLE

]

\IIill come here

Figure 3

2.1.3 ()perator

IDaSS screen dump of a state machine controller together with one of its state descriptions.

Operators can model all the asynchronous elements in a schematic. The operators can have an
unlimited amount of in- and outputs and are able to execute one or more user defined functions.
These functions are mathematical descriptions and can vary from a simple adder to a complete
ALU. The function that has to be executed can be controlled by a state controller or by a control
cOlU1ector. Also a default can be defined. The control cOlU1ector acts just like a normal input in the
way that its contents can be used in the calculations that are executed in the operator. The control
cOlU1ector will select a function asynchronously.

9



(DaSS

2.1.4 Register

The register models a master-slave register with a maximum of 64 bits. Simple operations the
register can execute are:
• hold,
• load,
• inc,
• dec,
• loadinc,
• loaddec,
• setto: < value> ,
• ressem and
• reset.
The reset command overrules every action. The contents of the register after a reset command are
defined by the 'synchronous reset contents'. Every register carries a semaphore bit that is set by
a load command (also loaddec and loadinc). This semaphore can be tested and reset by the
controller(s). The ressem command resets the semaphore but has lower priority than a set caused
by a load action.
The register can simulate a battery backed register (that keeps the same contents during a system
reset) by typing hold for the 'asynchronous reset contents' instead of a value or 'UNK' for an
unknown value.

2.1.5 Buffer

A buffer models a simple three-state buffer that is unidirectional and asynchronous. Whether the
three-state output is enabled or not is controlled by a controller. The in- and output must have the
same width.

2.1.6 Constant generator

A constant value that is generated by a controller can be injected into the schematic by using a
constant generator. This block has one optional three-state output and one command
(setto: < value». This command generates the wanted value at the output for the current clock
period asynchronously.

2.1.7 RAM

The RAM is a model of a random access read/write memory with the possibility to have more than
one read or write port. Writing is done synchronous with the clock and the output of a read port
follows the address input directly (is asynchronous). A read port can be used to read a fixed
memory location. In this case an address input is not necessary. The commands a RAM can be
given are:
• write.

Writing at all the write ports is enabled. This command can only be given if at least one port
has a default function nowrite.

10



maSS

• write: <DatalnputName > .
This command enables writing at the specified port (only possible if the default function is
nowrite)

• nowrite.
Writing at all the write ports is disabled. This command can only be given if at least one
port has a default function write.

• nowrite: < DatalnputName > .
This command disables writing at the specified port (only possible if the default function is
write).

2.1.8 ROM

A ROM actually is a RAM without the possibility of attaching write ports. The only possible
command a ROM can be given is to enable or disable its outputs (if these are three-state outputs
of course).

2.1.9 FIFO

The FIFO models a First In First Out buffer which may have a single write port to add data words
at the tail of the list and a read port that reads the head of the list. Extra asynchronous read ports
can be added to the FIFO, addressing the memory relative to the head (address = 0) of the list.
These ports could have an address input or they could be attached to a fixed address.
A controller is able to check the contents of the head of the list as well as the length of the queue
(the number of words in the memory).
The commands a FIFO can be given are:
• write.

At the next clock the value present at the write port will be written in the memory. It is
allowed to give the command read at the same time.

• write: < value> .
The given value is stored in the memory the next clock. A read at the same time is allowed.

• read.
The value at the head of the list is removed the next clock.

• reset.
All the contents of the FIFO will be lost at the next clock. Reset overrules the other
commands.

2.1.10 LIFO

This block gives a model of a Last In First Out memory and can be seen as a stack. The main read
port is connected to the head of the stack as well as the single write port that adds the new words
to the top of the stack. Extra (asynchronous) read ports can be connected to the memory with
relative addresses (fixed or with an address input).
The LIFO is controlled by making use of the next commands.

• reset.
This command overrules all the commands and will reset the LIFO at the next clock.

11



lDaSS

• push.
The data that is available at the write port is placed at the top of the stack at the next clock
(this is the memory location before the current head).

• push: < value> .
The given value is placed at the top of the stack at the next clock.

• pop.
The value at the top of the stack will be removed the next clock.

• replace.
This function acts the same way as a pop followed by a push in just one clock cycle.

• replace: < value> .
This function acts the same way as a pop followed by a push: < value> in just one clock
cycle.

• poprepl.
This function is a combination of the three functions pop, pop and push in just one clock
cycle.

• poprepl: < value> .
This function is a combination of the three functions pop, pop and push: <value> in just
one clock cycle.

• swap.
This function switches the contents of the head of the stack with the contents of the memory
location just below the head.

• pop2.
This function is a combination of two pop's in just one clock cycle.

• pushcopy.
This function makes a copy of the head of the stack and places this copy at the top of the
stack at the next clock.

2.1.11 CAM or associative memory

The Contents Addressable Memory models a type of memory in which data words can be
addressed by comparing bits in these words with a given reference word. The CAM is synchronous
except for the optional extra read ports.
A memory word is matching when the memory word matches the match data in the bits that are
'1' in the match mask word. The match data and the match mask can be set by the controllers or
by the use of a control connector or can come from an input port. The number of matching
memory words even as the address of the first matching word is returned and can be tested by a
controller. The first matching address and the contents of that memory address can also be the
result of an output.
The commands a CAM recognizes are:

• reset.
Reset overrules all other commands and replaces the contents of the CAM with the contents
as they are defined by the user (synchronous reset values). Reset also executes the default
function.

• match.
This function checks the contents of the CAM by using the match mask and the match data.
The next clock step the number of matches is counted, the data output (if present) outputs

12



IDaSS

the contents of the first matching memory location and the address output will give the
address of the first matching memory location'.

• wrfirst.
According to which port is available or which command has been given, wrfirst adds the
following to the match function. If a match write data port is available or a
mdata: < value> command is given, the contents of the first matching cell are replaced by
the given value at the next clock.
If match write set/reset ports are available or mset: < value> and/or mres: < value>
commands are given, the contents of the first matching cell are replaced by the given value
at the next clock using the following formula:

contents: = (contents 1\ (,resetmask» V setmask (2.1)

So setting bits has a higher priority than resetting,

• wrall.
This function behaves like the function match and changes all the matched cells like wrfirst.
The cells that do not match are changed also like wrfirst but now using the NOmatch data
or the set/reset specifications.

• rdaddr.
With this function a normal read can be established. If the address output works in the 'first
match' mode, it will output the value of the address input. If it works in the 'match mask'
mode, a bitmask containing a 'one' corresponding to the addressed location, will be carried.

• wraddr.
This function works like rdaddr and writes at the addressed location, using the algorithms
of wrfirst.

The following commands are not overruled by a reset and can be used to set match and write
values which are not provided by the input ports.
• mask: < value> .

This command sets the bitmask that is used to select the bits that have to be matched against
the match data.

• data: < value> .
This command sets the data bits used for matching.

• mset: <value> .
This command sets a mask for bits that will be set during all write actions.

• mres: < value> .
This command sets a mask for bits that will be reset during all write actions.

• mdata: < value> .
This command sets the data to write during all write actions,

• nmset: < value> .
This command sets the mask for bits that will be set during the wrall action.

• nmres: < value>.
This command sets the mask for bits that will be reset during the wrall action.

• nmdata: < value> ,
This command sets the data to write during the wrall action.

This is only !he casc: if !he address OUlpUl is in ftr1S malCh mode. Is !he pon in maleh mask mode !hen it will carry a bianask containing '" bits for each

matched address. This mode is only allowed when !he CAM has not more than 64 memory locations.

13



maSS

2.2 IDaSS description files

IDaSS makes use of two file formats. The first and simplest one is a format to store the contents
of a memory that is present in a design. For these files the standard Intel HEX format is used.
These files are currently not used in the conversion of IDaSS designs and therefore not handled
here.
The other file format is a textual description of the design. In this file all the design and simulation
state information is stored.
Each line in the design file (des-file) starts with a kind of switch. Following this switch, a second
and even a third switch may be present, depending on the meaning of the line. Data items may be
placed after these switch characters.
The following paragraphs describe the basic IDaSS file format elements and handles the format of
an example of an lDaSS block (the operator). The following description of the des-files makes use
of the EBNF2 notation that is commonly used to specify formal grammars or programming
languages and describes version 0.07 and 0.08 of the lDaSS file format, which the des2vhdl
compiler currently supports.
For a more thorough description see [Ver 90b].

2.2.1 Basic data items

IDaSS makes use of five basic data items:
• Integer
• String
• Point
• Integer with a given number of bits

• Nil
The integer and string are standard and points are used for graphics information and therefor not
important for the des2vhdl compiler.
The fourth item is used for the internal calculations within IDaSS. The values used are called
"BoundedInteger" because they are bounded by the number of bits present. Because these
BoundedIntegers are used very often, a special data item is introduced.

< boundedlnt > :: = < value> 'w' < width> .
<value> ::= <Integer>.
<width> ::= <Integer>.

If the value is unknown then -3 denoting 'UNK' for the value is used.

Nil is used to flag empty objects or to indicate that something is not used.

<nil> ::= 'r.

2
Extended Backus-Naur Fonn

14



maSS

2.2.2 Some important switch characters

The use of switch characters is an important construct to correctly parse an IDaSS des-file. The
following characters are important switch characters.
,#' Starts the description of any major object in the system. This switch is followed by two

names. The first is the type of object and the second is the name of the object.
The following objects are used within IDaSS:
'SuperBlock'
'SuperConnector'

'Bus'
'StateControl'
'Signal'

'Buffer'
'Constant'
'Register'
'Operator'
'RAM'
'ROM'
'FIFO'
'LIFO'
'CAM'

describing a schematic.
describing an object placed in a schematic to provide a logical
connection to one of the connectors on the schematic symbol.
describing a bus.
describing a state machine controller object.
describing a system wide signal for communication between
controllers.
describing a three-state buffer object.
describing a constant generator object.
describing a register.
describing an operator.
describing a random access read/write memory.
describing a read only memory.
describing a first in first out memory.
describing a last in first out memory.
describing a contents addressable memory.

, I

'/'

II'

,n,

This character concludes the description of any major object in the system. The switch is
followed by the same two names as the corresponding' #'. Together with the'#' line, this
line forms a pair of braces.

This switch starts a line containing graphics information. This information can be skipped
by the des2vhdl compiler.

This single quote starts a line containing textual information which is compiled by IDaSS and
describes the behaviour of an object.

This double quote starts a line containing comments. The comment lines can be skipped by
the compiler (although it could be of use to copy this text to the generated VHDL output).

2.2.3 Connectors

Five types of connectors are used in IDaSS (Input, Output, Three-state, Bidirectional and Control
Input). The description of a connector always follows one or more switch characters which are
interpreted by the block when loading from the des-file. The connector description starts with
another switch that describes the type of the connector.
The following rules describe an Input connector. The other types of connectors are almost the same
as this Input connector and therefore not handled here in particular.

15



maSS

< inputConnector >

<connName>

< name Needed >
<connValue>

"­.. -

.. -

.. -

'I' < connName > < nameNeeded > < connValue > < LF > 3

{"" < comment> < LF > }
'/P' < connPos > < namePos > < LF > .

<name> I
,*-,

I.

< boolean4 > .
< boundedlnt>.

2.2.4

Whether a name is mandatory is indicated by < nameNeeded >, If the designer did not give a
name to this connector the name is '* i'. The lines with the comments and the graphics information
are not used by the compiler so they are not explained any further.

Buses, Signals and Blocks placed on a schematic

Buses, signals and the blocks that can be placed on a schematic all have their own set of description
rules. Also a schematic itself which may contain any of the other blocks or even a schematic again,
has a set of rules. As an example the rules of an operator are shown here, An operator is used to
describe combinatorial logic (see 2.1.3).

< operator> :: = '#Operator' < blockname > < LF >
'/P'<blockPos> <blockSize> <LF>
{'''' < comment> < LF > }
['Z' < operatorControl > ]
{'I' < operatorlnput > }
{'O' < operatorOutput > }
{'F' < functionName > < compiledFlag > < LF >
{'" < functionText > < LF>}}

'5' < function> < defFunc > < LF >
'.Operator' < blockname > < LF > .

< blockName > .. - <name> .
< operatorControl > .. - < controlConnector > .
< operatorlnput > .. - < inputConnector > .
< operatorOutput > .. - < outputConnector > .
< functionName > .. - <name> .
< compiled Flag > .. - < boolean> .
< functionText > .. - {< anyPrintableCharacter>}.
<function> .. - < integer> I <name>.
<defFunc> .. - < integer> I <name>.

An operator starts with a line beginning with '#Operator' and ends with' .Operator' as was said
earlier. The optional control input and the lines starting with 'F', '" and '5' contain the

A < LF > describes !he end of a line, as well in DOS fonna! as in UNIX fonnal.

4
A boolean is an integer wilh value 0 for 'false' and 1 for 'true'.

16



lDaSS

behavioural infonnation of this operator, the other lines and again the line describing the control
connector are used for the structural description (a control input can now be seen as a nonnal
input).

2.2.5 Complete file fonnats

Three different combinations of the used objects can be present in a des-file. These depend upon
the way the file was created.
• At first it is possible to detect a file only containing signals. These files can be made from

each signal editor or from an entry in the 'signals ... ' menu on the top level simulator
window. It is also possible to file out a single signal from a signal editor. A signal file has
to follow the rule:

< signalFile > :: = < signal> {< signal> }.

• The second possibility is a file containing data for a single block. This kind of file can be
created from each of the block menu's (except for the super connector) and has to follow the
rules:

< singleBlockFile >

< c1ockCount >

< stateMachineController >
< TSbuffer > I
< constantGenerator>
< register> I
< operator> I
<RAM> I
<ROM> I
<FIFO> I
<LIFO> I
<CAM> I
'K'<c1ockCount> <LF>
< schematic> .

<integer> .

• The last possibility is a complete system file. These files are saved while making use of the
'save system' entry in the top level simulator window menu. These files must follow the next
two rules:

< completeSystemFile >

< clockCount >

.. - 'K' < clockCount > < LF >
{<signal> }
< schematic> .

<integer> .

17



*
[]

Lexical analyzing and parsing

3 LEXICAL ANALYSING AND PARSING

This chapter describes the lexical analyzer and the parser used to construct the des2vhdl compiler.
The tools used are Lex and Yacc, because these tools are available on most UNIX work stations
and versions for most other operating systems are widely spread. At first the tool Lex, used for
lexical analysis (lexing for short) and the design of the IDaSS tokenizer is described. The second
part of this chapter describes the tool Yacc that is used to parse the des-files. The last section of
this chapter handles the problems that arise while parsing a des-file. For more information about
Lex and Yacc see [LMB 92]. This book was used during the design of the lexical analyzer and the
parser used for the IDaSS des-files.

3.1 Global description of LEX

Lex is a tool for building Lexical analyzers. A lexer takes an arbitrary input stream and divides
this stream into lexical tokens. To create a set of patterns which Lex matches against the input
stream, a Lex specification has to be written. The provided C-code, which does something with
the matched text, is invoked every time a pattern matches. Lex does not produce an executable but
it translates the Lex specification into a file containing a C-routine called yylex(). To run the lexer
the program has to call yylex().

A Lex program consists of three parts: the definition section, the rules section and the section with
the user defined subroutines.

." definition section ...
%%
... rules section ...
%%
... user subroutines

Only the rules section is mandatory the other two sections may be empty.

The definition section can include a literal block, definitions, internal table declarations, start
conditions and translations. The user subroutines section is copied verbatim to the C-file and
typically includes routines that are called from the rules. The rules section is the most important
one. It contains pattern lines and C-code. When a Lex scanner runs, it matches the input against
the patterns in the rules section and when a match is found the corresponding C-code is executed.

The rules are created while making use of regular expressions. The characters that form these
regular expressions are (only the characters used in the lexer for the des-files are handled):

Matches any single character except the newline character ("\n").
Matches zero or more occurrence of the preceding expression.
A character class which matches any character within the brackets. If the first character
within the brackets is a "A II the meaning is changed to match any character except the ones
within the brackets. A dash indicates a range of characters, e.g., "[0-9]" has the same
meaning as "[0123456789]".

18



Lexical analyzing and parsing

\

+
?

/

()

Matches the beginning of a line.
Used to escape characters like. or * that fonn the regular expressions and as part of the
usual C-escape sequences.
Matches one or more occurrence of the preceding regular expression.
Matches zero or one occurrence of the preceding regular expression.
Matches either the preceding regular expression or the following regular expression.

" Matches everything within the quotation marks literally.
Matches the preceding regular expression but only if followed by the following regular
expression. The material matched by the pattern following the slash is not consumed and
remains to be turned into subsequent tokens. Only one slash is permitted per pattern.
Groups a series of regular expressions together into a new regular expression.

3.2 Lexical analyzer for IDaSS

The file named idasslex.1 is the lexical analyzer that recognizes all basic data items and switch
characters used in an IDaSS design file.
The comment lines, the lines containing graphics information and the white spaces in a des-file can
be skipped. The definitions that are in the definition section for this purpose are:

graphics
comment
ws

\t. *
\". *
[\t \r] +

The first two definitions start with a \ because the character that has to be matched is a special Lex
character. Every empty string, character or series of characters that follow this first character is
matched by . * until the end of a line ("\n"). The corresponding rules are:

{ws}
A{graphics}
A{comment}

No actions are taken when one of these rules is matched and that is exactly what was intended.
The other used definitions that are placed in the definition section are:

name
no iname
no oname
no cname
val start
decimal
value
val end
xvalue
binaryop
integer
boundedint
nil

[A-Za-zHA-Za-zO-9J *
\ * niH
\*"0"
\ *"e"
[%&$]
[0-9] +
[0-9a-fA-F] *
[bBdDhHoOqQl
[0-9a-fA-FxXl *
[ + \- * /\\ > < = - ] +
-?[0-9] +
{integer} "W" {integer}
"?"

19



Lexical analyzing and parsing

The rules are much easier to understand while making use of these definitions.
Another feature that is used while making idasslex.1 is the use of start states. These states limit
the scope of certain rules. Two kinds of start states exist, regular and exclusive start states. The
difference is that a rule without a start state is not matched when an exclusive state is active and
it is matched when a regular start state is active. The start states used in the des2vhdl compiler are
defined in the definition section by the line:

%x connector filespec comptext comment

The x means that the specified states are exclusive start states (%5 would have meant regular
states). The states can be entered by the command:

BEGIN(state_name);

The following set of rules recognizes and handles a line in an IDaSS des-file that defines a file
specification.

AtlL"I. *
< filespec> [A\n] *

{ BEGIN(filespec);
{ BEGIN(INITIAL);

j* other C-code * / }
j* other C-code * j }

To return to the normal situation without the limitation of any start states the statement
BEGINlINITIAL); is used. Every character is matched against this second rule only in the case that
the first character of the line was an L, because that is the only way to come into state filespec.
So context information can be saved while making use of start states.
Because we want to tokenize the complete IDaSS des-file we have to return a special token to the
calling procedure or function, every time Lex recognizes an IDaSS switch character or a basic data
item. This is simply done by the C-command:

retu rn(token_name);

The last part of idasslex.1 is the part with the user subroutines. This section only contains a
procedure that will properly handle the errors that are able to occur (invalid characters in the des­
file). The total file idasslex.1 is shown in Appendix 1.

3.3 Global description of YACC

Yacc takes a grammar that you specify and writes a parser that recognizes valid sentences in that
grammar. A grammar is a series of rules that the parser uses to recognize syntactically valid input.

Similar to a Lex grammar a Yacc grammar consists of three sections: the definition section, the
rules section and the user subroutines section.

... definition section ...
%%
... rules section ...
%%
... user subroutines

20



Lexical analyzing and parsing

The first two sections are required, although a section may be empty. The third section and the
preceding" % %" may be omitted.
The definition section can include a literal block (this C-code is copied verbatim to the beginning
of the generated C-file) , usually containing declarations and #include lines. Also all kinds of
declarations may be present using the Yacc terms:
%union, %start, %token, %type, %Ieft, %right and %nonassoc.
The user subroutines typically includes routines called from the actions and is copied verbatim
to the generated C-file. In the parser for IDaSS des-files this third section is empty and all the
called routines are in separate files to keep the complete written program well organized.
The rules section contains the rules and the actions to be taken when a rule is matched. Each rule
starts with a non-terminal symbol, a colon and a possible empty list of symbols, literal tokens, and
actions. Every rule ends with a semicolon. A rule that defines a date could be:

date : month ' -' day' -' year ;

(The month, day and year symbols must be defined elsewhere in the grammar.) The left-hand
side of this rule is date: the rest is the right-hand side of this rule and therefore may be empty.
When this rule is matched an action can be executed like:

date: month '-' day '-' year { printf("Date recognized.\n"); } ;

The C-code in these actions may have some special constructs starting with a .. $ ". The name "$ $ "
would refer to the left-hand side of the rule and" $n" to the n-th component of the right-hand side
of the rule.
Some other special characters used in Yacc are:
% All of the declarations in the definition section start with a %.

, Literal tokens are enclosed in single quotes.
< > In a value reference in an action, you can override the value's default type by enclosing the

type name in angle brackets.
When two consecutive rules have the same left-hand side, the second rule may replace the
left-hand side by a vertical bar. The next rule therefore gives two possible ways to write a
date:

date month ' -' day ,-' year
month '1' day' I' year

3.4 Parsing IDaSS des-files

Having a lexer that returns tokens it is not very complicated to construct the rules belonging to the
IDaSS des-files. The start state is defined in the definition section by the line:

%start r_CompleteSystem

This is the first rule the parser uses. As an example of a rule used in the parser, the rule used to
parse an operator is explained (see section 2.2.4 for the way the operator is written in a des-file).

21



Lexical analyzing and parsing

r_Operator: T_Operator_begin T_Name
o GenericControl
1_Operatorlnput
1_OperatorOutput
I FunctionName
T_Sswitch r_Operfunction r_Operfunction
T_Operator_end T_Name

Most of the parts of the operator rule are defined themselves in other rules. Only the four elements
starting with a T are tokens returned by the lexer. These tokens therefore are defined in the
definition section of the file idass.y in the lines:

%token < string> T_Name ...
%token ... T_Operator_begin T_Operator_end

22



lbe data ,truowe

4 THE DATA STRUCTURE

The previous chapter described in what way the des-files are parsed. The recognized data items and
IDaSS elements are to be collected in a data structure. This data structure then can be passed to
the next parts of the program that do certain calculations and transfonnations on it (see the figure
in the introduction). This chapter will describe the way the different lists, used in the data
structure, are built. Some important structures used are discussed and an example of an expression
tree and of design tree of a little system is given.

4.1 Lists

Instead of making use of a simple linked list with in each element one field that points to the next
element, the compiler makes use of a somewhat more complex kind of list (figure 4). The
advantage is that the length of the list is easy to find without stepping through the complete list.
To find the end of the list its not necessary to visit every element too. Another advantage of this
kind of list is that every wanted structure can be chosen as the elements of the list. A disadvantage
is that this implementation uses more memory than the simple kind of list.
The pointers in the dptr fields point to the listed data and the first field points to the next element
in the list.

struct LIST_ELEMENTstruct LIST struct LIST_ELEMENT

- 'J__h;" -i -f[ _"ext 1-" ·····-I--",-:-n-e-xt---}- --

~I-·_~d-PtrI •tail I --, ' dptr _ ,i.=fl L______ -- - ----....- -- r
Figure 4 The used structure for all lists.

To create such a list, list_initO has to be called. This function returns a pointer to a struct LIST.
The structures of type LIST_ELEMENT are created when an element is added to the list. To add,
insert or delete elements and to obtain pointers to elements with for instance a certain value or
name, different functions are available.

4.2 Some important constructs

Because IDaSS designs are hierarchically built the data structure of a design in the compiler is
hierarchically too. The data structure makes use of the linked list of the previous section and saves
all the inputs, outputs, buses, contacts, systems (IDaSS buffers, registers, operators, etc.) and
lower level schematics and everything else that is important to create correct VHDL files.

23



The data SlrUclUre

The complete design is a linked list of structure LEVEL (see the next figure).

-~;-- _J'~ L1ST_* ..

name I char*

I bu~sesi
systems

-----_..__ ..

struct LIST *

struct LIST *

i
: contacts I struct LIST *

I POStfiX~_char .... ...__._.__

! prefix ! char *

Figure 5 struct LEVEL.

The fields postfix and prefix are not added to field name because the original name is used in
all kinds of references (like in bus connections) and therefore has to be saved. The other fields in
this structure all contain a pointer to the beginning of a list. These lists contain lower level
schematics, the buses on the current level, the IDaSS objects (no schematics) on the current level
and the contacts of this schematic. These contacts are always bidirectional initially. The width and
the exact direction of these connectors are determined in one of the next steps in the program.
An IDaSS object is saved in a structure SYSTEM (see the next figure).

I" ----..---------.-- ..--..---.

I name char *
I. _--_ .._-- --- ---_... _--_ ...

I _ inputs_ .__I_struct L1S~*__.

r outputs I struct LIST * ---.
! !

----_ .. ---- ---'._--'" .__ .

type enum SYSTEMTYPE
1---'---"-'--- ...---'.

Lctrlcon I struct CTRlCON *

I 'CX)'mmand~----r;~;~ct LIST ~-------

sys union
{ struct REGISTER *reg;
struct OP *op;
struct FSM *fsm;

}

i postfix char
~---+-------------
! prefix char *

Figure 6 struct SYSTEM.

This structure also contains a separate field to save the pre- and postfix. When the IDaSS object
that is collected in this structure is a register, an operator or a finite state machine then the

24



The data <lIUClUre

field sys contains a pointer to another structure containing specific information of these objects
(states, functions, default functions, etc.).
The file types.h (Appendix 2) shows all the other structures and types used by the compiler.

4.3 Expressions

The expressions used in an operator are saved in a structure ASSIGNMENT with two fields. The
first saves the name of the variable and the second the expression belonging to this assignment. In
a state machine expressions are only used in condition blocks. The structure EXPR contains the
type of the used operator and a left and a right argument (and some other fields to make writing
VHDL files somewhat easier). The expression tree ends with constants or operands at the leaves.
As an example the tree of the next expression is drawn in figure 7.

(bit)
if0: (in1 /\ in2)
if1: (in1 \I in2).

l
!

y

- expr

~
... r Y, .-'-_.

and ! -_.
.. _... __._ .. L_

,operand --._..

L f 1'- .....
! .:J.n2 ,---= f .1.dummYI
: : or : - )

l In2

I!:J

Figure 7 Simplified expression tree.

25



The clara StruClUre

The structures with the type dummy are also used to make a list of all the ifOif1 and if1 itO
operators. This list makes use of the fact that the right argument pointer in the second dummy
points to NULL. This pointer is now used to point to the next ifOif1 or if1 ifO. In this way its
possible to first write all the temporary VHDL variables used while writing these operators in the
VHDL files without searching the complete expression trees for these operators.

4.4 Tree of a simple design

Simulator: TopLevel

out• in!.

Iwork•op

Simulator: TopLevel

~ ........,
~~.!;

~ ......., in2 b·t ......~L::..:J ;~?; ...... 1_--'. ;~.~; ~

out
I!lI

TopLevel

sel
ID1

~opLevel: Directory: 'c:'d,step ~heet width: 4.6",

cue) Operator: op, 'work'

Cbit)
if8: Cinl,Ain2)
if1: CinlVin2)

Figure 8 Screendump of a simple design.

The design displayed in this figure, puts an OR or an AND function of the internal register
contents to its output, depending on the value present at the select input. The registers have the
functions inc and dec. The operator makes use of the function that is described in the previous
section so the expression tree belonging to this expression is not depicted in the next figure but a
reference (exprtree) is displayed at the place this expression tree has to be included in the real
tree. Also fields in a structure like prefix or postfix are neglected. Every part of a linked list is
displayed in grey.

26



LEGENDA



VHDL

5 VHDL

The Very High Speed Integrated Circuit Hardware Description Language is a language that was
designed to document the interconnection of components and the behaviour of an digital electronic
circuit. The VHDL design description can be the input of a simulator or a logic synthesis tool to
produce a physical design. IEEE standardized the language in December 1987 [STD 87]. If a more
complete description of the language is required than given in this chapter see for instance
[LSD 89] or [ML 92].

5.1 Entity specifications

The design entity defines a new component name, its input and output connections and the related
declarations. The entity is the 110 interface to a component design. VHDL separates the external
interface to a design from the details of architectural implementation. The entity describes the
direction and type of signal. An example of an entity of an adder of two 8 bit inputs is displayed
here.

ENTITY add IS
PORT(

in1,in2:
out:

);
END add;

IN bit_vector(7 DOWNTO 0);
OUT bit_vector(7 DOWNTO 0)

No behavioural information is described just the interface description is given. The actual adder
is seen as a black box from this point of view. The behaviour of the different entities is described
in the architecture bodies.

5.2 Structural style architectures

The VHDL structural style describes the interconnection of components within an architecture. In
a structural architecture, the components to be used are declared and instances of these components
are created. Also the mapping of the signal wires to the various pins of the components are created.
Component instantiation statements identify the wired connections.
An architecture description has the next general form:

ARCHITECTURE name OF entity_name IS
declarations

BEGIN
statements of the architecture

END name;

28



IN bit_vector(7 DOWNTO 0);
OUT bit_vector(7 DOWNTO 0)

VHDL

The architecture name defines the unique name of this architecture for the entity it refers to. The
architecture declarations are items used only in this architecture such as types, subprograms,
constants. The actual design description is given by the statements.

An example of a declaration of a component adder is given here:

COMPONENT adder
PORT (

in1 ,in2:
out:

)

END COMPONENT;

Now this adder is declared it can be used after instantiation. Two kinds of instantiation can be
used, one with a positional association

instance1: adder PORTMAP (a,b,c);

and one with a named association

instance1: adder PORTMAP (in1 = > a, in2 = > b, out = > c);

In this example the two instance declarations mean the same but only in the second example the
possibility exists to change the order of the IN- and OUTputs.
A structural description of the famous runlight example is given in Appendix 3.

5.3 Behavioural style architectures

Behavioural style architectures make use of the same form as the structural style only the
statements are different. The statements describe in a program-like or algorithmic manner the
behaviour of the design. The statements are sequential but when concurrent statements are
necessary, VHDL processes are used containing sequential statements that are executed in the same
time as the sequential statements in other processes. A process must be of the form:

PROCESS (A,B,C)
BEGIN

process_sta tements
END PROCESS;

The signals A, Band C are in the sensitivity list of this process, meaning that the process is waiting
for a change in these signals, before it starts with the execution of the statements.

29



VHDL

5.4 Library and USE clauses

Clauses in VHDL select and define declarations. A LIBRARY clause defines logical names for
design libraries in the host environment. The USE clause selects declarations made visible by the
selection.
The IEEE standard 1164 defines nine "logical" values within a VHDL package. These nine values
are more useful for simulation and synthesis than type bit. The nine values are:

U uninitialized
X forcing an unknown
o forcing 0
1 forcing 1
Z high impedance (three state)
W weak unknown
L weak 0
H weak 1

don't care

The available types in this library are:

stdJogic
std_logic_vector
std_ulogic
std_ulogic_vector

The first two types are resolved meaning that it is possible to have multiple drivers for signals of
this type. The last two types are unresolved and you cannot have more than one driver.
To use this package and these types the next lines must be present in the VHDL files above every
ENTITY that makes use of these types.

LIBRARY ieee;
USE ieee.std_logic_1164.all

In the structural VHDL file in the Appendix also a library compass_lib is declared to include
compass specific things, but this has to become a user defined library.

30



lDaSS constructs in VHDL

6 IDASS CONSTRUCTS IN VHDL

The different IDaSS objects and constructs have to be translated into correct, synthesizable VHDL.
For the problems W.M. Kruytzer solved see his reports [Kru 94] and [Kru 95].
This chapter discusses the problems that exist with the (re)naming of the IDaSS objects. Also the
VHDL equivalents of the registers are given and the different IDaSS operator commands are
discussed as well as the translation of the finite state machines. At last possible solutions are
discussed for the problems with the three state buses. These buses are still not implemented
correctly in the compiler.

6.1 IDaSS names and VHDL names

Some differences between IDaSS and VHDL exist regarding the names of objects, buses etc. In
IDaSS nearly everything is allowed. In VHDL however not every name is a correct one. At first,
VHDL has reserved words (see Appendix 4). Other IDaSS names can start with an '_' (temporary
variables) or with a '*' and that is not allowed in VHDL.
Other problems arise because it is not allowed in VHDL to give a bus or instance a name that has
been used somewhere else in the same architecture.
The functions that do the renaming add a postfix to the names or prepend a prefix to it. As
mentioned earlier these pre- and postfixes must not be added to the same field as the real name,
because this would mean that the "old" name will be lost. This name however is used in all kinds
of references and after adding a postfix or a prefix these references could not be resolved any
more.

6.2 Registers

The registers found in an IDaSS design are written in the VHDL behavioural files, according to
the next template.

PROCESS(e1k,reset)

declaration of the internal temporary variable of the register

BEGIN
IF (reset = ' 1') THEN

the optional output, the internal variable and the optional output
to the FSM will get the asynchronous reset value

ELSE IF (e1k'EVENT AND elk = '1') THEN
the commands of the register (mostly a case statement to decide which
command has to be executed)

ENDIF;
END PROCESS;

31



maSS constructs in YHDL

The register commands are mostly written as a VHDL case statement to select the various
functions. If the output of the register is a three state output then a separate process to handle that
output is generated. This process follows the next template.

< signal declarations> if necessary
PROCESS( < enablectrl > , < internal signal»
BEGIN

< test output> < = < internal signal> ;
IF « enable ctrl> = < enable» THEN

< real output> < = < internal signal>;
ELSE

<real output> <= (OTHERS => 'Z');
END IF;

END PROCESS;

The signal that controls the three state output (enablectrl), can be a signal coming from a finite
state machine or a internal controller signal. The latter case is present if the three state output is
controlled by a control connector on the register. In the process describing the commands of the
register this signal will be set in the VHDL case statement describing the commands of the register
when necessary (see the next example).

As an example the description of a control connector on a register (the name of the entity is reg)
is converted to VHDL. In IDaSS the control description is:

%Oxxx enable.
%xxOO hold.
%xx11 inc.

Assuming that the default function of this register is load, the next VHDL text will be present
(after removing the overlap in the command encoding (see [Kru 95]) in the first described process
in the part where the commands of the register are written:

d2v_enable < = '0'; -- describing the default value of this control signal

CASE to_integer(ctrl) IS
WHEN 3 1 7 = >

d2v_enable < = ' 1';
d2v_registertemp : = d2v_registertemp + "00000001 "; -- inc
d2v_reg_int < = d2v registertemp;

WHEN 014 = >
d2v_enable < = '1';
-- do nothing in hold state

WHEN 1 12 15 16 = >
d2v_enable < = '1';
d2v_registertemp : = input; -- load by default
d2v_reg_int < = d2v_registertemp;

WHEN 8 112 = >
-- do nothing in hold state

32



lDaSS constructs in VHDL

WHEN 11 I 15 = >
d2v_registertemp : = d2v_registertemp + "00000001 "; -- inc
d2v_reg_int < = d2v registertemp;

WHEN others = >
d2v_registertemp : = input; -- load by default
d2v_reg_int < = d2v_registertemp;

END CASE;

If the register is controlled by a finite state machine these extra internal controller signals are not
necessary. The bits defining the three state output are specificly added to the controller bus coming
from the FSM at a known bit position (see [Kru 95] for the structure of these controller buses
coming from an FSM). This part of the controller bus can be written immediately in the sensitivity
list of the second process that was handled here.

6.3 Operators

The function that writes the VHDL code for the IDaSS operator blocks optimizes the expressions
of the operator as a first step.
A function of an IDaSS operator is written as the body of a VHDL process. If there is more than
one function present in the operator, the assignments of these functions are written in separate
VHDL procedures. In the latter case the actual behaviour of the operator, controlled by a control
input or an input coming from a finite state machine, is written in the body of the VHDL process
in the form of a case statement to decide which procedure has to be executed. In the sensitivity list
of the VHDL process all the inputs of the operator have to be present.
An example of an operator in VHDL is given below.

ENTITY oper IS
PORT(

ctrl: IN std_ulogic;
in1: IN std_ulogic_vector(7 DOWNTO 0);
in2: IN std_ulogic_vector(7 DOWNTO 0);
0: OUT std_ulogic_vector(7 DOWNTO 0)

);
END oper;

ARCHITECTURE behaviour OF oper IS

BEGIN

PROCESS(in1,in2,ctrl)

PROCEDURE a function

BEGIN
o < = in1 AND in2;

END a_function;

33



maSS construCLS in VHDL

PROCEDURE another function

BEGIN
o < = in 1 OR in2;

END another_function;

BEGIN
CASE to_integer(ctrl) IS
WHEN 1 = >

a_function;
WHEN OTHERS = >

another_function;
END CASE;

END PROCESS;
END behaviour;

As can be seen the assignments present in an operator are sequentially written and all have the next
form:

signal < = expression; or variable : = expression;

After writing the signal or the variable name to the VHDL file the expression is passed to another
C-function that checks the operators and decides what to do with the expression and how to write
it in VHDL.
IDaSS recognizes three kinds of operators in expressions: unary operators, binary operators and
keyword operators. Some of the more complex IDaSS operators could not be translated to VHDL
immediately, but a VHDL function is necessary. The next tables (table 1, table 2 and table 3) show
all the IDaSS operators together with the operator representation in the C-code (enum
OPERATOR) and the construct that is written in VHDL (expr means the expression that is attached
to the operator, exprn means the n-th parameter of the operator).
Also two-input multiplexers have their own treatment but these operators are not explained here,
for more information see [Kru 95]. As mentioned in the previous chapter, the real actions of the
ifOif 1 and if 1ito operators have been done earlier. The only thing that has to be done when these
operators are found in the expression trees at this moment (writing the expressions) is just to write
the name of the already created temporary variable and use it in the expression just as a normal
operand.

34



maSS conslructs in VHDL

Table 1 IDaSS unary operators together with their VHDL representation.

IDaSS ope C code repre
VHDl construct

rator sen-tation

dec uDEC (expr - '1 ')
inc ulNC (expr + '1 ')
neg uNEG NOT (expr + '1 ')
not uNOT NOT expr
epty uEPTY (expr(O) XOR expr(1) XOR ... XOR expr(width-1))
opty uOPTY NOT (expr(O) XOR expr(1) XOR ... XOR expr(expr-1))
ones uONES "111. .. 1"
zeroes uZEROES "000...0"
width uWIDTH not written because this operator is already removed and handled

while optimizing the expressions

Table 2 IDaSS binary operators together with their VHDL representation.

IDaSS operator
C code

VHDl construct
representation

+ bADD expr + expr1
- bSUB expr - expr1
* bUNMUl expr * expr1
*+ bRMUl expr * signed'expr1
+* blMUl signed'expr * expr1
+*+ bSMUl signed'expr * signed'expr1
1\ bAND expr AND expr1
\I bOR expr OR expr1
>< bXOR expr XOR expr1
<> bXNOR NOT (expr XOR expr1 )
= bEOUAl bit2ulogicbit(boolean2bit(expr = expr1))

- = bNOTEO bit2ulogicbit(boolean2bit(expr 1= expr1))
< blESS bit2ulogicbit(boolean2bit(expr < expr1))
< =, =< blESSEO bit2ulogicbit(boolean2bit(expr < = expr1))
> bMORE bit2ulogicbit(boolean2bit(expr > expr1))
> =, => bMOREEO bit2ulogicbit(boolean2bit(expr > = expr1))
+=+ bSIEOUAl bit2ulogicbit(boolean2bit(expr = expr1))
+-=+ bSINOTEO bit2ulogicbit(boolean2bit(expr 1= expr1))

+<+ bSllESS bit2ulogicbit(boolean2bit(signed'expr < signed'expr1))
+ < = +, +=<+ bSllESSEO bit2ulogicbit(boolean2bit(s igned'expr < = signed'expr1))
+>+ bSIMORE bit2ulogicbit(boolean2bit(signed'expr > signed'expr1))
+> = +, +=>+ bSIMOREEO bit2ulogicbit(boolean2bit(signed'expr > = signed'expr1))
, bCONCAT expr & expr1

35



maSS conslruClS in VHDL

Table 3 IDaSS keyword operators together with their VHDL representation.

lDaSS C code
VHDL construct

operator representation

shl: kSHL SHL(expr,exprl I
shr: kSHR SHR(expr,exprl I
rol: kROL (SHL(expr,exprl I OR SHR(expr,(expr'length-exprl III
ror: kROR (SHR(expr,exprl I OR SHL(expr.(expr'length-exprl III
at: kAT expr(exprl I or expr(logic_type2integer(exprl II
from:to: kFROMTO expr(expr2 DOWNTO exprl I
ifO:ifl : klFOIFl The real work has already been done so it is enough to write the
ifl :ifO: klFllFO temporary variable's name appended with the correct number.
merge:mask: kMERGEMASK ((expr AND NOT expr21 OR (exprl AND expr211
copiesof: kCOPIESOF expr & expr & ... & expr (expr1 times)

The operators that have not been handled till now are too complex to write just in the middle of
an expression. Or in some special cases it is not possible to write the operators in the process body
(the operator "at:" and from:to: can be written as shown in table 3 in the process body except
when the left arguments are expressions).
If it is not possible to write the operators in the process body, a function call to a VHDL function
will be written. These VHDL functions already have been written at the declaration section of the
VHDL process at the top of the architecture description (at the same places as the VHDL
procedures are written).
It is possible that an IDaSS operator has different possible VHDL functions, for instance the
operator "maj:" has a different behaviour in case the width of the receiver is odd or even.

In Appendix 5 examples are given of the different VHDL functions of the IDaSS operators that
have not been handled yet. Most input signals have a width of 8 bit, if its possible to write an
operator in different VHDL functions, examples are given of all these possibilities.

Other problems rise when the parameters does not fit the correct types in the function header. To
solve this problem, sometimes user defined constructs like:

to_integer(no_integer)

are used when the VHDL function is called. These constructs are also used for variable input
parameters like the parameter of the operator "at:".

As an example of the hardware that will be generated while making use of these complex IDaSS
operators, the VHDL function of an operator with the easy assignment:

out: = in msomask.

is compiled by the des2vhdl compiler and a netlist has been generated by COMPASS. The
schematic that is drawn by COMPASS is depicted in Appendix 6.

36



maSS consU'UClS in VHDL

When an operator has a three state output, an extra process has to be generated just like the one
used for the three state outputs of the registers (see the previous section). The difference with
writing registers is, that it is possible to have multiple three state outputs, meaning multiple
processes describing the three state behaviour and in case of a control input on the operator,
multiple internal signals. Therefore the internal signals will get as part of the signal name, the
name of the output they are controlling, to keep the names unique.

6.4 Finite state machines

Finite state machines have to be described in VHDL by two processes (see [ASIC],[ARJ 93] and
[LHY 92]). The first process describes the actual state of the state machine with the help of two
signals. These signals are declared to have an enumerated type. The declaration of this type and
these signals is done by the next lines, present in the declaration section of the state machine's
behavioural architecture (the used names are the default settings the converter uses).

TYPE state_type IS (names of all possible states);
SIGNAL current_state: state_type;
SIGNAL next_state: state_type;

The first process called 'SYNC', follows the next template.

SYNC: PROCESS(clk,reset)
BEGIN

IF (reset = ' 1 ') THEN
current_state < = default state name;

ELSIF (clk'EVENT AND elk = '1') THEN
current_state < = next_state;

END IF;
END PROCESS SYNC;

This first process is a registered process to store the state variable. External influences ("goto:"
or "reset" commands) and stack actions can be handled in this process after the ELSIF line.
The second process is a combinational process to describe the state transitions and the actions that
have to be taken in a certain state. This process, called 'FSM' exists of a case statement to
determine the correct state. All the inputs of the FSM's entity have to be present in the sensitivity
list of this process, plus the internal signal current_state. For cosmetic reasons the inputs elk and
reset are not written in this list because they are already present in the sensitivity list of the
process 'SYNC'.

37



maSS consllUcts in VHDL

The template the process FSM follows, is given here.

FSM: PROCESS(current_state, all the inputs of the entity except clk and reset)
BEGIN

CASE current state IS
WHEN first state = >

list of assignments of all the default values
list of the real state commands of the first state

WHEN second state = >
list of assignments of all the default values
list of the real state commands of the second state

WHEN OTHERS = >
-- do nothing

END CASE;
END PROCESS FSM;

When the FSM processes are always written like this some problems will rise. In this case we
assume that in a condition block present in the commands of a state, only one entry is executed at
the time. In IDaSS however its possible to have parallel execution of commands (the test values
of a condition block have overlapping values). This problem is already handled in [Kru 95] so from
now on there are only non overlapping test values in a condition block.
Still one other problem stays, caused by the fact that IDaSS allows nested tests to be performed
and the way IDaSS treats state transitions. To illustrate the problem the next state is converted to
VHDL.

first state:
[TEST_REG
I %00 action 1;

[SECOND_TEST_REG
I %00 action2;
I % 10 action3;

];
action4;

I % 11 actionS;
];
action6;

If this state is just written to VHDL, a problem rise when for instance action2 describes a state
transition. In IDaSS the simulator immediately steps to that state, in VHDL however only an
assignment to the signal next_state is executed followed by action4 and action6 (assuming that
action4 is not a state transition). According to the ideas presented in [Ver 95] this has to be
transferred to a VHDL case in the FSM: PROCESS like this (assuming action2, action3 and
actionS to describe state transitions):

38



maSS constructs in VHDL

CASE to_integer(TESTREG) IS
WHEN 0 = >

action 1;
CASE to_integer(TESTREG2) IS

WHEN 0 == >
action2; -- state transition

WHEN 2 == >
action3; -- state transition

WHEN OTHERS = >
-- do nothing

END CASE;
IF NOT ((TESTREG2 = 0) OR (TESTREG2 = 2)) THEN

action4;
END IF;

WHEN 3 = >
action5; -- state transition

WHEN OTHERS = >
-- do nothing

END CASE;
IF NOT (((TESTREG = 0) AND ((TESTREG2 = 0) OR (TESTREG2 = 2))) OR

(TESTREG = 3)) THEN
action6;

END IF;

As can be seen the IF statements following the CASEs are already very complex and not practical.
In more complex state machines these guards will be even more incomprehensive and very complex
to calculate. A better solution to overcome this complexity is the next that has been implemented
in the des2vhdl compiler.

jump: = FALSE; -- default
CASE to_integer(TESTREG) IS

WHEN 0 = >
action 1;
CASE to_integer(TESTREG2) IS

WHEN 0 = >
action2; -- state transition
jump: = TRUE;

WHEN 2 = >
action3; -- state transition
jump : == TRUE;

WHEN OTHERS = >
-- do nothing

END CASE;
IF (jump = FALSE) THEN

action4;
END IF;

39



maSS COllSlnlCts in VHDL

WHEN 3 = >
action5; -- state transition
jump : = TRUE;

WHEN OTHERS = >
-- do nothing

END CASE;
IF (jump = FALSE) THEN

action6;
END IF;

The calculation of the guards is now left to the VHDL synthesizer and the VHDL text is much
more understandable. The only thing we have to add to the VHDL code to make this approach
work, is the declaration of the used boolean.

This boolean that has just been introduced is not necessary in all cases. If the guards of the CASE
statements cover all possible values and if all these possibilities contain a state transition the new
boolean is not necessary to control the state transitions and the following actions are never reached
so they can be skipped by the converter. To determine whether the CASE covers all values a C­
function is written that makes a list of all < value Imask> pairs of the test values of the CASE in
ascending order of value. When this list is generated, the function starts searching for a value in
the range 0 to (2(widlh of Ihe test expression) - 1) that is not covered by any of the < value Imask> pairs.
This test makes use of the formulae:

(TESTVALUE A (,MASK)) = VALUE (6.1)

I 6.5

If this formulae holds, a test value is covered by a certain < value Imask> pair. If just one value
is not covered, the boolean is necessary, only if all WHEN's seem to end in a state transition.

When the finite state machine only has one state a lot of work can be skipped. At first the
registered process containing the current state variable is not necessary any more. In the second
process the CASE that makes the decision which state is active can also be forgotten. Only the real
actions of the state have to be written in this combinational process.

Buses with multiple drivers

Despite the work that has been done to implement the three state output connectors correctly,
problems are still rising while connecting the buses together coming from these connectors.
Although these problems depend on the VHDL synthesizer used, possible implementations for three
state buses are presented in this sectionS ([ASIC]).

Three state logic can be created using a resolved signal that has multiple concurrent processes
driving the signal. The resolved signal must be of type std_logic or std_logic_vector, as defined
in the std_logic_1164 package.
The following example illustrates how to create a signal that is driven by multiple three state
drivers.

S
These solutions will work under !he ASIC Syn!hesizer V8R4.6 of COMPASS.

40



maSS constructs in VHDL

ENTITY threestate IS
PORT (x,v,en : IN std_logic;

trisig : OUT std_logic
);

END threestate;

ARCHITECTURE threestate OF threestate IS

BEGIN
PROCESS(x,en)
BEGIN

IF en = '0' THEN
trisig < = x;

ELSE
trisig < = '2';

END IF;
END PROCESS;

PROCESS(V,en)
BEGIN

IF en =' l' THEN
trisig < = y;

ELSE
trisig < = '2';

END IF;
END PROCESS;

END threestate;

In this example, the ASIC Synthesizer uses two three state buffers to create the circuit (see
Appendix 7). Assuming an active-HIGH three state buffer, the first process creates a three state
buffer whose input is connected to x. Its output is connected to trisig, and the (not en) signal is
connected to the enable pin of the three state buffer. Similarly, the second process creates a three
state buffer whose input is connected to v. Its output is connected to trisig, and the en signal is
connected to the enable pin of the three state buffer.

The ASIC Synthesizer performs an approximate test to check if multiple three state drivers are
mutually exclusive. If it cannot prove that the drivers are mutually exclusive, it issues a warning
message.

Three state flip flops can be similarly created by setting a resolved signal to 'z' in a clocked
process, as in the following example, but in IDaSS a clocked solution is never used so this three
state bus is not correct for the IDaSS buses:

41



IDaSS construct> in VHDL

ENTITY threestateff IS
PORT (x,y,c1k,en : IN stdJogie;

trisig : OUT std_logie
);

END threestateff;

ARCHITECTURE threestateff OF threestateff IS

BEGIN
PROCESS(elk)
BEGIN

IF (elk'EVENT AND elk = '1') THEN
IF en = '0' THEN

trisig < = x;
ELSE

trisig < = 'Z';
END IF;

END IF;
END PROCESS;

PROCESS(elk)
BEGIN

IF (elk'EVENT AND elk = '1') THEN
IF en = ' l' THEN

trisig < = y;
ELSE

trisig < = 'Z';
END IF;

END IF;
END PROCESS;

END threestateff;

Two three state flip flops are created in this example (see Appendix 8). One of them has x as its
D input, and the other has y as its D input. The outputs of the two flip flops are connected to the
trisig signal. The enable pin of these three state flip flops is controlled by two other flip flops that
take the en and (not en) signals as inputs to their D pin. The reason for these extra flip flops is
to prevent changes on the en signal between clock periods from affecting the outputs of the three
state flip flops. The three state flip flop outputs change only on a clock edge. If you do not want
these extra flip flops, the behaviour should be rewritten as follows:

42



maSS constructs in YHDL

ENTITY ffandts IS
PORT lx,y,elk,en : IN stdJogie;

trisig : OUT std_logic
);

END ffandts

ARCHITECTURE ffandts OF ffandts IS

SIGNAL ffout1, ffout2 : stdJogie;

BEGIN
PROCESSlelk)
BEGIN

IF (elk'EVENT AND elk
ffout1 < = x;

END IF;
END PROCESS;

'1') THEN

PROCESS(elk)
BEGIN

IF lelk'EVENT AND elk = ' 1') THEN
ffout2 < = y;

END IF;
END PROCESS;

trisig < = ffout1 WHEN en = '0' ELSE 'Z';
trisig < = ffout2 WHEN en = ' l' ELSE 'Z';

END ffandts;

In this example, the output of regular flip flops is connected to three state buffers that then connect
to the three state bus trisig (see Appendix 9). This solution will work for IDaSS because the buses
are combinatorial.

The des2vhdl compiler does not generate any of the possibilities presented in this section. The
converter just connects three state signals coming from different entities together to one bus. This
solution makes the Compass tool give several warnings (eg. multiple drivers present on bus ... ).
This solution however will work, when the user for instance works with Synopsis to synthesize the
VHDL code.

43



maSS COIlSllUClS in VHDL

7 VHDL CONFIGURATION FILE

To make user interaction a lot easier and to make the generated VHDL code suitable for different
VHDL synthesizers, a file containing different program settings is read during program execution.
The contents and the format of this file are discussed in this chapter. The file that contains all the
information that can be changed by the user is called user_def and is read by the compiler every
time a des-file is converted to VHDL. So it is not necessary to recompile the complete C-source
of the des2vhdl compiler.

7.1 File fonnat and contents

The settings wanted by the user have to be preceded by a certain switch in the user_def file. The
switches each have to start with a '#' character at the beginning of a new line, directly followed
by the name of the switch. Three types of information can be read. Integers, strings and multiple
strings. A string cannot contain any whitespace characters but a multiple string can. To be clear
where the multiple strings start and end all the user information has to be included in double quotes
(this is not necessary for normal strings). Examples of the three kinds of user definitions are given
here.

#INDENT 3
#CLK NAME clk
#FILE HEADER

integer
string
multiple string

-- This is the file header (starting and ending with a newline)

Also the reserved words of VHDL are included in this user file. The list of reserved words that
have to be collected in a hash table [CLR 90] starts with a switch character like all the other
information of the file but the last string of the list has to be !RESERVED to indicate that no other
reserved words will follow.
The des2vhdl compiler stops reading the file when it scans the character '.' at the start of a new
line. The information after this dot and all the other lines of the file (not starting with a '#') are
skipped by the compiler. The different names of the switches that are possible are shown in
Appendix 10 together with the used default settings of the variables.

The information, when read, is available in the C-code as a global variable (int for integers and
char * for strings and multiple strings). If the user does not want to give a user option for a
certain variable the lines containing the switch and the new value have to be removed from the
user def file (easier is to type a certain character in front of the switch in which case the lines are
simply not read by the compiler). The compiler will now use a default setting for these variables.

44



Conclusions

8 CONCLUSIONS

The designs made in IDaSS, can be translated automaticly to synthesizable VHDL while making
use of the converter that is now present. Most constructs can be handled and the corresponding
VHDL description is organized in such a way that the original design (in IDaSS) is reflected as
closely as possible.

In contrary to the converter that was present at the start of this graduation period the current
converter can also handle the next IDaSS constructs correctly.
At first, all the names in a IDaSS design are translated to correct names in VHDL, without name
clashes between for instance buses and components.
Secondly, the behaviour ofregisters is translated to correct synthesizable VHDL even when three
state outputs are present in the design. The registers make use of a internal variable containing the
actual contents of the register. The three state ports are written with the use of an extra VHDL
process (also in operators).
Thirdly, all the operators present in IDaSS operator blocks can be written in VHDL. The operators
that were to complex to be written in a simple assignment, were written in VHDL functions built
out of simple standard VHDL constructs, so the output can be used in combination with every
wanted silicon compiler.
Fourthly, the behaviour of the finite state machines is optimized, and written in simpler VHDL
code.
Fifthly, three possible solutions for the implementation of three state buses are presented. These
solutions are not implemented in the compiler because only Compass needs these constructs. Other
silicon compilers are happy with the present solutions.
At last the converter is extended with the possibility for the user to interact much easier in the way
the program executes. A file containing user definitions is read during execution so its not
necessary to recompile the complete C-code for every minor program change.

The converter is still not able to translate a design correctly that makes use of for instance a RAM,
a ROM, a LIFO, a FIFO or a CAM. Also register semaphores and multiple controllers, controlling
one block are not implemented correctly, although these last two problems are not very complex
to add to the converter.

45



Literalllre

LITERATURE

[ASIC] VHDL FOR THE ASIC SYNTHESIZER
V8R4.6
(Part of the online Compass manual)

[ARJ 93] Abrahams, M.S. and A. Rushton, P. Johnson
DESIGN USING VHDL FOR SYNTHESIS AND TEST
In: Proceedings of the lEE Colloquium on VHDL - Applications and CAE Advances,
London, United Kingdom, April 6, 1993.
London: lEE, 1993, p. 3/1-5.

[Ben 90] Bennet, J.P.
INTRODUCTION TO COMPILING TECHNIQUES. A FIRST COURSE USING
ANSI C, LEX AND YACC
London: Mc Graw Hill Book Company, 1990.

[CLR 90] Cormen, T.H. and C.E. Leiserson, R.L. Rivest
INTRODUCTION TO ALGORITHMS
New York: Mc Graw Hill Book Company, 1990.

[CST 91] Composano, R. and L.F. Saunders, R.M. Tabet
VHDL AS INPUT FOR HIGH-LEVEL SYNTHESIS
IEEE Design & Test of Computers, Vol. 8 (1991), no. 1, p. 43-49.

[DO 92] Debreil, A. and P. Oddo
SYNCHRONOUS DESIGN IN VHDL
In: proceedings of the EURO-DAC '92 European Design Automation Conference with
EURO-VHDL '92, Hamburg, Germany, Sept. 7-10, 1992.
Los Alamitos: IEEE Comput. Soc. Press, 1992, p. 680-681.

[Guy 92] Guyler, A.
VHDL 1076-1992 LANGUAGE CHANGES
In: proceedings of the EURO-DAC '92 European Design Automation Conference with
EURO-VHDL '92, Hamburg, Germany, Sept. 7-10, 1992.
Los Alamitos: IEEE Comput. Soc. Press, 1992, p. 672-678.

[HS 92] Hamer, P.L. and K. Scott
TOWARDS A STANDARD VHDL SYNTHESIS PACKAGE
In: proceedings of the EURO-DAC '92 European Design Automation Conference with
EURO-VHDL '92, Hamburg, Germany, Sept. 7-10, 1992.
Los Alamitos: IEEE Comput. Soc. Press, 1992, p. 706-712.

46



LileralUre

[KR 88] Kernighan, B.W. and D.M. Ritchie
C HANDBOEK
Schoonhoven: Prentice Hall, 1990.
Translated from the English: The C Progranuning Language.
London: Prentice Hall, 1988.

[Kru 94] Kruijtzer, W.M.
GENERATING A VHDL FRAMEWORK FROM IDASS DESIGN FILES
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven
University of Technology, 1994.
Report of practical training period.

[Kru 95] Kruijtzer, W.M.
GENERATING A VHDL FRAMEWORK FROM IDASS DESIGN FILES
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven
University of Technology, 1995.
Master's thesis.

[LHY 92] Lim, S.E. and D.C. Hendry, P.F. Yeung
EXPERIENCES AND ISSUES IN VHDL-BASED SYNTHESIS
In: proceedings of the EURO-DAC '92 European Design Automation Conference with
EURO-VHDL '92, Hamburg, Germany, Sept. 7-10, 1992.
Los Alamitos: IEEE Comput. Soc. Press, 1992, p. 646-651.

[LMB 92] Levine, J.R. and T. Mason, D. Brown
LEX AND YACC. 2nd ed.
Sebastopol: O'Reilly & Associates, Inc., 1992.

[LSU 89] Lipsett, R. and C.F. Schaeffer, C. Ussery
VHDL: HARDWARE DESCRIPTION AND DESIGN
Dordrecht: Kluwer Academic Publishers, 1989.

[ML 92] Mazor, S. and P. Langstraat
A GUIDE TO VHDL. 2nd ed.
Dordrecht: Kluwer Academic Publishers, 1992.

[Nav 93] Navabi, Z.
VHDL ANALYSIS AND MODELING OF DIGITAL SYSTEMS
Singapore: Mc Graw Hill Iternational Editions, 1993.

[NBD 92] Nogasamy, V. and N. Berry, C. Dangelo
SPECIFICATION, PLANNING, AND SYNTHESIS IN A VHDL DESIGN
ENVIRONMENT
IEEE Design & Test of Computers, Vol. 9 (1992), no. 2, p. 58-68.

47



Lilerature

[NS 90] Navabi, Z. and J. Spillane
TEMPLATES FOR SYNTHESIS FROM VHDL
In: Proceedings. Third Annual IEEE ASIC Seminar and Exhibit, Rochester, USA,
Sept. 17-21, 1990. Ed. by Hsu, K.W. and M.E. Schrader.
New York: IEEE Comput. Soc. Press, 1990, p. PI6/1.1-1.4.

[Pee 91] Peerbooms, M.
ANALYSE AND IMPLEMENTATIE VAN IDASS BOUWSTENEN IN VHDL
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven
University of Technology, 1991.
Graduation Report.

[STD 87] IEEE STANDARD VHDL LANGUAGE REFERENCE MANUAL
New York: IEEE, 1988.
IEEE Std. 1076-1987.

[VD 92] Vermeeren, J. and D. Donderman
OMSCHRIJVEN VAN IDASS OPERATOREN NAAR SID
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven
University of Technology, 1992.
Graduation Report.

[Ver 90a] Verschueren, A.C.
IDASS FOR ULSI (IDASS MANUAL)
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven
University of Technology, 1990.

[Ver 90b] Verschueren, A.C.
THE IDASS FILE FORMATS VO.07
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven
University of Technology, 1990.

[Ver 95a] Verschueren, A.C.
FLATTENING IDASS STATE DESCRIPTIONS TO NESTED VHDL IF/CASE
STATEMENTS
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven
University of Technology, 1995.

[Ver 95b] Verschueren, A.C.
IDASS VO.09 .DES FILE FORMAT
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven
University of Technology, 1995.

48



APPENDICES

49



APPENDIX 1

%{
#define NEED_STRING
#include "des2vhdl.h"
#include "types.h"

;" "" local types """;
struct BOUNDEDINT {

int value;
int width;

};
#include "y_tab.h"
#include "global.h"

IDASSLEX.L

;"
" This is a complete implementation of a tokenizer for the IDaSS design
" file format as stated in the internal report:
" The IDaSS me formats VO.08, September 27, 1993 which actually is
* the same as VO.07, March 19, 1990.

* The tokenizer skips U's, spaces, comments and all graphics info.
* It recognises all basic data items e.g integer, name, boundedlnt and nil
* and a lot of switch characters.
*j

;* *" exported * * *;
void yyerror(char ·5);

j* *. local variables *"";
int lineno = 1;

#ifdef ZTC
#define fileno(fp)
int isatty(int);
#endif

#define yywrapO
%}

graphics
comment
comptext
ws
name
no iname
no oname
no cname
val start
decimal
value
val end
xvalue
binaryop
integer
boundedint
nil

((fp)- > _file)
j" the flex scanner needs this .;
j" this is a non-ansi function "j

j. non-ansi function (see io.h) *j

/* so we declare it here .;

j" this is for flex version 2.4.6 (not needed for 2.3.7) ";

\/. *
\". "
\' ..
[\t \r] +
[A-Za-zHA-Za-zO-9 ].
\." i"
\·"0"
\·"c"
[%&$]

[0-91+
[O-9a-fA-F] *
[bBdDhHoOqQI
[0-9a-fA-FxXI·
!+\-"t\\> < = -l+
-?[O-91 +
{integer} "W" {integer}
"?"

%x connector filespec comptext comment

50



%%
{WS}
A{graphics}
A{comment}
A\'

\n
"#SuperBlock"
" .SuperBlock"
" #SuperConnector"
" .SuperConnector"
"#Bus"
" ,Bus"
" #StateControl"
" .StateControJ"
"#Signal"
".Signal"
" #Buffer"
" .Buffer"
"#Constant"
" .Constant"
" #Register"
" .Register"
"setto:"
"#Operator"
" ,Operator"
"#RAM"
" .RAM"
"#ROM"
",ROM"
"#FIFO"
" .FIFO"
" #lIFO"
",LIFO"
"#CAM"
".CAM"

A"V"/({name} I{boundedint} I {integer}: {nil})
A"O"/("O" I"T")({name}: {no_oname})
A"D" 1("0" I"T")({name} I{no_oname})
A" M"1("0" : "T")({name} I{no_oname})
A"Q"1("0" I"T")({name}: {no_oname})
A"Z" I"C"({name}: {no_cname})
A"C"I"B"{name}
A"I"I"I"({name} I{no_iname})
A"R"I"I"({name} I{no_iname})
A"A"1"1"({name} I{no_iname})
A" D" /"I" ({name} : {no_iname})
A"W"1"1"({name} I {no_iname})
A"M"1"1"({name} I{no_iname})
A" N"!" I" ({name} : {no_iname}l
A"B"1"1"({name}: {no_iname}l
A"C"I"I"({name} I{no_iname}l
A" E" I" I" ({name} 1{no_iname}l
A"G "/"I" ({name} : {no_iname})
A"C"/{integer}
A"T"/{integer}
A"P" I{integer}
A"W" I{integer}
A" X" I{integer}
A"K"/{integer}
A"F"/({name} I{integer} I {nil})
A"S"/({name}: {integer})
.... "L"I.·

{name}
{no cname}
{no=oname}

{ BEGIN(comptext); }
{ lineno + +; }
{return(T SuperBlock begin}; }
{return(T=SuperBlock=end); }
{ return(T SuperConnector begin);}
( return(T- SuperConnector-end);}
{ return((Bus_begin);} -
{ return(T_Bus_end}; }
{ return(T StateControl begin); }
{ return(T=StateControl=end); }
{return(T_Signal_begin); }
{ return(T_Signal_end); }
{ return(T_Buffer_begin}; }
{ return(T_Buffer_end}; }
{ return(T_Constant_begin); }
{ return(T_Constant_end); }
{ return(T_Register_begin); }
{return(T Register end); }
{return(T=Setto); r
{ return(T_Operator_begin); }
{ return(T_Operator_end); }
{return(T_RAM_begin); }
{return(T_RAM_end); }
{return(T_ROM_begin); }
{return(T_ROM_end}; }
{return(T FIFO begin); }
{ return(T=FIFO=end}; }
{return(T_L1FO_begin); }
{return(T_L1FO_end); }
{return(T_CAM_begin); }
{return(T_CAM_end); }

{ return(T_Vswitch); }
{ BEGIN(connector); return(T Oswitch); }
{ BEGIN(connector); return(T- Dswitch); }
{ BEGIN(connector); return(T- Mswitch); }
{ BEGIN(connector); return(T- Qswitch); }
{ BEGIN(connector); return(T- Zswitch}; }
{ BEGIN(connector}; return(T- Cswitch); }
{ BEGIN(connector); return(T-'switch); }
{ BEGIN(connector); return(T- Rswitch); }
{ BEGIN(connector); return(T- Aswitch); }
{ BEGIN(connector); return(T- Dswitch); }
{ BEGIN(connector); return(T- Wswitch); }
{ BEGIN(connector); return(T- Mswitch); }
{ BEGIN(connector}; return(T- Nswitch); }
{ BEGIN(connector); return(T- Bswitch); }
{ BEGIN(connector); return(T- Cswitch); }
{ BEGIN(connector); return(T- Eswitch); }
{ BEGIN(connector); return(T- Gswitch); }
{ return(T_Cswitch); } -
{ return(T Tswitch); }
( return(T=Pswitch); }
{ return(T_Wswitch); }
{ return(T_Xswitch); }
{return(T_Kswitch}; }
( return(TJswitch); }
( return(T_Sswitch); }
{ BEGIN(filespec); return(T_Lswitch); }

(yylval.string = yytext; return(T_Name); }
{yylval.string = yytext; return(T_No_cname}; }
{yylval.string = yytext; return(T_No_oname); }

51



{no_iname}
{boundedint}

{integer}
{nil}

< connector> "B"/{name}
< connector> "C"/({name} i {no cname}l
< connector> "1"/({name} I {no}name})
< connector> "0" I({name} I{no_oname}l
< connector>"T" I({name} I{no_oname}l

< filespec> nnJ·

< comment> \"
< comment> \n
<comment>.

< comptext > {ws}
< comptext > \"
< comptext > \n
< comptext>": ="
< comptext > \.
< comptext > \.\.
< comptext > \(
< comptext > \)
< comptext > "("
<comptext>"]"
< comptext > ", "
<comptext>";"
< comptext > " i "
<comptext>\1
< comptext > \\
<comptext>"!"
< comptext > "!'"
< comptext > "?"
< comptext > "??"
< comptext>"- >"
<comptext>" < <"
<comptext>"> >"
< comptext > {val_start} {value}
< comptext > ({decimal} I[O-9l{value }{val_end}l
< comptext > {val_start} {xvalue}
< comptext > [0-9 J{xvalue} {val_end}
< comptext > {binaryop}
< comptext > ":"
< comptext> {name}":" IW =])

< comptext > " _" {name}
< comptext > {name}

%%

{yylval.string = yytext; return(T_No_iname); }
{ char .p = strchr(yytext:W');

yylval.boundedint.value = atoi(yytext);
yylval.boundedint.width = atoi(p + 1);
return(T_Boundedlnt);

}
{yylval.value = atoi(yytext); return(T_Integer); }
{ return(T_Nil); }
{ yyerror("invalid character"); }

{ BEGIN(lNITIAl); return(T_conBswitch); }
{ BEGIN(lNITIAl); return(T conCswitch); }
{ BEGIN(lNITIAl); return(T=conlswitch); }
{ BEGIN(lNITIAl); return(T_conOswitch); }
{ BEGIN(lNITIAl); return(T_conTswitch); }

{ BEGIN(lNITIAl); return(T_Filename); }

{ BEGIN(comptext); }
{ lineno + +; }

{ BEGIN(comment); }
{ lineno + +; BEGIN(lNITIAl); }
{ return(T Equals); }
{ return(T=Period); }
{ return(T_dPeriod); }
{ return(T Leftbrace); }
{ return(T- Rightbrace); }
{ return(T=Leftbracket); }
{ return(T_Rightbracket); }
{yylval.string = yytext; return(T_Comma); }
{ return(T Semicolon); }
{ return(T- Bar); }
{ return(T=Slash); }
{ return(T_Backslash); }
{ return(T Exclamation); }
{return(T=dExclamation); }
{ return(T Question); }
{return(T=dQuestion); }
{ return(T Jumpstate); }
{ return(T=Holdstate); }
{ return(T Nextstate); }
{yylval.st~ing = strsav(yytext); return(T_Value); }
{yylval.string = strsav(yytext); return(T Value); }
{yylval.string = strsav(yytext); return(T=xValue); }
{yylval.string = strsav(yytext); return(T_xValue); }
{yylval.string = strsav(yytext); return(T_Binaryop); }
{ return(T Colon); }
{yylval.st~ing = strsav(yytext); return(T_Keywordop); }
{ yylval.string = strsav(yytext); return(T_Tempname); }
{yylval.string = strsav(yytext); return(T_Name); }

void yyerror(char ·5)

{
fprintf(stderr."%%LEX-E-ERROR, %s at %s in line %d \n", 5, yytext. lineno);

}

52



APPENDIX 2

#ifndef _TYPES_H
#define TYPES H- -

#inc\ude "number.h"

TYPES.H

j"

* Because I like my own 'boolean type' I undefine already existing
* definitions. GNU dbm for example defines an own boolean type.
*j

#ifdef TRUE
#undef TRUE
#endif
#ifdef FALSE
#undef FALSE
#endif

typedef enum {FALSE,TRUE} boolean; j* my own boolean definition *j

j*

* The following type definitions are used to construct the overall
* data-structure that contains the lOaSS design information.
*j

struct CONNECTION {
char "systemname;
char "contactname;

};

struct BUS {
char "name;
struct LIST "connections; /* this will become a list of struct CONNECTION *j

j* the following items are convenient for generating VHOL code *j

char postfix; /* Used as postfix if name is a reserved word *j

int width; j* Not in DES-file, calculated after parse *j

boolean need_extrabus; j* This boolean is TRUE if we have an external contact *j

j" of type continuous output and the bus has> 2 nodes. *j

struct CONTACT "contact; /* If the bus is connected to a contact this will *j

}; j* point to that contact, else it will be NULL *j

struct INPUT {
char "name;
int width;

j" the following item is convenient for generating VHDL code *j

char postfix; j" Used as postfix if name is a reserved word *j

};

enum OUTPUTTYPE {o_cont,o_TS};

enum DEFSTATE {TS_disable,TS_enable};

struct OUTPUT {
char "name;
int width;
enum OUTPUTTYPE type;
enum DEFSTATE defstate;
char "intname;

/* Only valid if type = = a TS. *j

j* Only valid if type == 0 TS. *j

j* the following item is convenient for generating VHDL code *j

char postfix; j* Used as postfix if name is a reserved word *j

};

53



struct CONTACT {
char ·name;
enum CONTACTTYPE type;

I" the following items are convenient for generating VHDL code OJ
char postfix; j. Used as postfix if name is a reserved word .j

int width; j. Not in DES-file, calculated after parse .j

};

enum SYSTEMTYPE {FSM.BUFFER,CONSTANT.REGISTER.OPERATOR.RAM,ROM.FIFO,L1FO.CAM};

struct SYSTEM {
char ·name;
struct LIST· inputs;
struct LIST ·outputs;
enum SYSTEMTYPE type;
struct CTRLCON ·ctrlcon;
struct LIST ·commands;
union
{ struct REGISTER ·reg;

struct OP ·op;
struct FSM ·fsm;

} sys;

j. this wl1l become a list of struct INPUT .j

I" this will become a list of struct OUTPUT OJ
I" The kind of system we have. OJ
I" pointer to control connector (if present). OJ
I" list of commands send from fsm to this system OJ

j. Used to store register specific things OJ
I" Used to store operator specific things .j

I" Used to store fsm specific things OJ

j. the following items are convenient for generating VHDL code .j

char postfix; j. Used as postfix if name is a reserved word .j

char ·prefix; I" Used as prefix if name is not unique OJ
};

struct REGISTER {
short width;
char • deffun;
short areset;
short sreset;

};

struct OP {
struct LIST ·functions;
char • deffun;

};

struct FSM {
struct LIST ·states;

};

struct LEVEL {
struct LIST ·Iower;
char ·name;
struct LIST • buses;
struct LIST ·systems;
struct LIST ·contacts;

I" pointer to default function .j

j. value to be loaded upon system reset .j

jO value to be loaded for 'reset' command .j

j. This will become a list of struct FUNCTION OJ
I" pointer to default function .j

j. This will become a list of struct STA TE .j

j. this will become a list of struct LEVEL .j

j. this WI'll become a list of struct BUS .j

j. this will become a list of struct SYSTEM .j

j. this wl1l become a list of struct CONTACT .j

j. the following items are convenient for generating VHDL code .j

char postfix; j. Used as postfix if name is a reserved word OJ
char inst_postfix; j. Used as postfix if the name of the instance

of this level is not unique *j

char ·prefix; j. Used as prefix if name is not unique OJ
};

54



1* Name of temporary. *1
I" Width of temporary variable. *1
1* Holds the number of the function where the var. is declared. *1

1* outputname or tmpname *1
1* pointer to complete expression *1

1* Kind of operator *1
1* width of the function input variable *1
r width of the functions result (kSIGNED and k WID THI °1
1° the expression tree started with the written operator *1
r written indicates that the VHDL function

of this operator has already been written *1

/*
* Used to construct a list of temporary variables used in an operator
* or state controller.
*1

struct TMPVAR {
char "name;
int width;
short fm;

};

1*
* This is used to hold the different functions of an operator.
* Each function can have a number of assignments (pointed to by assignments).
°1

struct FUNCTION {
char *name; 1* name of function *1
struct LIST *assignments; 1* This will become a list of struct ASSIGNMENT °1
struct LIST *tmpvars; 1* pointer to a list of struct TMPVAR °1

1° the fol/owing items are convenient for generating VHDL code °1
char postfix; r Used as postfix if name is a reserved word *1
char *prefix; r Used as prefix if name is the same as in- or output name *1

};

I"
° This is used to store one complete assignment e.g name and expression-tree.
*1

struct ASSIGNMENT {
char "name;
struct EXPR "expr;

};

1*
* Used to save aI/ the operators that need a VHDL function description
*1

struct FUNC_OP {
enum OPERATOR op;
int width;
long reswidth;
struct EXPR *expr;
boolean written;

};

Ie
* The fol/owing enumarated type is used to enumerate aI/ operators (currently)
* known in lDaSS (vO.08m). The fol/owing naming convention is used:
* enumerators that start with an 'a' are used for operands.
* enumerators that start with a 'u', 'b' or 'k' are used for resp. unary,binary
* and keyword operators.
* Because hard-coded constants are ugly-programming, there are a few dummy enumerators
* defined to set the end of the different operators. These are aEND, uEND, bEND and
* kENO. To find for example the number of unary operators one can use (uEND-aEND-1).
*1

enum OPERATOR {
aOPERAND,aCONSTANT,
aEND,
uDEC,uINC,uNEG,uNOT,uEPTY,uOPTY,uMAJ,uLSOMASK,uLSZMASK,uMSOMASK,uMSZMASK,
uLSONE,uLSZERO,uMSONE,uMSZERO,uONES,uZEROES,uREV,uONECNT,uZEROCNT,uWIDTH,
uEND,
bADD,bSUB,bUNMUL,bRMUL,bLMUL,bSMUL,bAND,bOR,bXOR,bXNOR,bEQUAL,bNOTEQ,bLESS,
bLESSEQ,bMORE,bMOREEQ,bSIEQUAL,bSINOTEQ,bSILESS,bSILESSEQ,bSIMORE,bSIMOREEQ,
bCONCAT,
bEND,
kSHL,kSHR,kSAR,kSOL,kSOR,kROL,kROR,kAT,kFROMTO,kATWIDTH,kIFOIF1,kIFlIFO,
kMERGEFROMTO,kMERGEMASK,kWIDTH,kSIGNED,kCOPIESOF,
kEND,kDUMMY

};

55



/* Width of expression. OJ
/* Kind of operator. OJ
jO Right side of expression. *j
/* Flag if expr. is within braces *j

/* Left side of expression if not an operand or constant. OJ
/* Name of operand. OJ
/* Value of constant (as bitstring). OJ

/*
° This rype defines a node of an expression-tree.
° If the operator is aOPERAND or aCONSTANT than the left argument is an operand(
° these are always leave-cells).
OJ

struct EXPR {
int width;
enum OPERATOR op;
struct EXPR • rightarg;
boolean brace;
union
{ struct EXPR • arg;

char • operand;
NumberPtr constant;

} left;
};

struct CTRLCON {
struct INPUT °ctrlinp;
struct LIST 'fieldspec;
struct LIST' ctrlspec;

};

/* Pointer to input connector that is used as control. OJ
/* This will become a list of struct FIELDSPEC. OJ
j' This will become a list of struct CTRLSPEC. OJ

j'

° The fieldspec can be seen as a 'preprocessor' for the values present on the
• control connector's bus.
OJ

struct FIELDSPEC {
short firstbit;
short lastbit;

};

struct CTRLSPEC {
struct LIST 'value_mask;
struct LIST 'commands;

};

struct STATE {
char 'name;
struct EXECSTR 'execstr;
struct LIST • assignments;
struct LIST 'tmpvars;

j' This will become a list of Numbers (Bitstrings). OJ
j* This will become a list of lists of commands. OJ

jO This will become a list of struct ASSIGNMENT OJ
/* This will become a list of struct TMPVAR OJ

/* the following items are convenient for generating VHDL code OJ
char postfix; /* Used as postfix if name is a reserved word OJ

};

enum EXEC_CMDTYPE {e_schemcmd,e_condblock};

struct EXEC_CMD {
enum EXEC_CMDTYPE type;
union
{struct SCHEM_CMD °schem_cmd;

struct COND_BLOCK *cond_block;
} exec;

};

struct EXECSTR {
struct LIST °exec_cmds; /* This will become a list of struct EXEC_CMD OJ
struct FLOW_CMD 'flow_cmd;

};

enum FLOW_CMDTYPE {fjump,f_call,f_return,f_hold,f_next};

56



struct FLOW_CMD {
enum FLOW_CMDTYPE type;
char • state;

};

struct SCHEM_CMD {
struct LIST 'blockname;
struct COMMAND 'block_cmd;

};

struct COND_BLOCK {
struct EXPR 'expr;
struct LIST 'executor;

};

struct EXECUTOR {
struct LIST • exectest;
struct LIST • execstr;
boolean empty_range;

};

/" This is the test expression 0/
/. This will become a list of struct EXECUTOR ./

/. This will become a list of Numbers < value/mask> "/
/. This will become a list of struct EXECSTR "/
/. Used to indicate if an empty range is present "/

enum COMMANDTYPE {cmd_reset,cmd_enable,cmd_disable,cmd_normal};

struct COMMAND {
enum COMMANDTYPE type;
char 'name;
boolean par_cmd;
char "parameter;
short firstbit;
short lastbit;
short code;

};

#endif I" TYPES H "/

/" indicates if command is a parameter command ITRUE) "/
/" Only valid if par_cmd = = TRUE. "/
/" first bitpos. in ctrl. vector of command code. "/
/" first bitpos. in ctrl. vector of command code. "/
/. The one and only command code. "/

57



APPENDIX 3

LIBRARY compass_'ib,ieee;
USE ieee.std_logic_11 54.all;
USE compass_lib.compass.all;

STRUCTURAL VHDL OF THE RUNLIGHT

ENTITY DISCO IS
PORT (

c2 : OUT std_ulogic;
c3: OUT std_ulogic;
outl : OUT std_ulogic_vector(7 DOWNTO 0);
c 1 : IN std_ulogic;
reset: IN std_ulogic;
clk: IN std_ulogic

);

END DISCO;

ARCHITECTURE structure OF DISCO IS

COMPONENT DIV
PORT (

clk : IN std_ulogic;
reset: IN std_ulogic;
0: OUT std_ulogic_vector(4 DOWNTO 0)

);

END COMPONENT;

COMPONENT SHIFT
PORT (

clk : IN std_ulogic;
reset: IN std_ulogic;
c : IN std_ulogic_vector(4 DOWNTO 0);
i : IN std_ulogic_vector(7 DOWNTO 0);
0: OUT std_ulogic_vector(7 DOWNTO 0);
d2v_SHIFT : OUT std_ulogic_vector(7 DOWNTO 0)

);

END COMPONENT;

COMPONENT NOTl
PORT (

i : IN std_ulogic;
o : OUT std_ulogic

);

END COMPONENT;

COMPONENT CONTROL
PORT (

elk : IN std_ulogic;
reset: IN std_ulogic;
d2v_SHIFT : IN std_ulogic_vector(7 DOWNTO 0);
d2v_SHIFTER_ctrl: OUT std_ulogic

);

END COMPONENT;

COMPONENT NOT3
PORT (
i: IN std_ulogic;
0: OUT std_ulogic

);

END COMPONENT;

58



COMPONENT NOT2
PORT (

i : IN std_ulogic;
o : OUT std_ulogic

);

END COMPONENT;

COMPONENT SHIFTER
PORT (

d2v_SHIFTER_ctri : IN std_ulogic;
i : IN std_ulogic_vectorI7 DOWNTO 0);
0: OUT std_ulogic_vector(7 DOWNTO 0)

);

END COMPONENT;

SIGNAL inl
SIGNAL c2l
SIGNAL c4
SIGNAL out2
SIGNAL c
SIGNAL d2v SHIFT
SIGNAL d2v_SHIFTER_ctrl

BEGIN

: std_ulogic_vector(7 DOWNTO 0);
: std_ulogic;
: std_ulogic;
: std_ulogic_vector(7 DOWNTO 0);
: std_ulogic_vector(4 DOWNTO 0);
: std_ulogic_vector(7 DOWNTO 0);

: std_ulogic;

i DIV

i SHIFT

i Non

: DIV PORT MAP (c1k,reset,c);

: SHIFT PORT MAP (clk,reset,c,inl ,out2,d2v_SHIFT);

: Non PORT MAP (c, ,c4);

i CONTROL : CONTROL PORT MAP (c1k,reset,d2v_SHIFT,d2v_SHIFTER_ctrl);

i NOT3 : NOT3 PORT MAP (c2l ,c3);

i NOT2 : NOT2 PORT MAP (c4,c2l);

i SHIFTER : SHIFTER PORT MAP (d2v_SHIFTER_ctrl,out2,inl);

c2 < = c2l;
outl < = out2;

END structure;

59



APPENDIX 4

abs
access
after
alias
all
and
architecture
array
assert
attribute
begin
block
body
buffer
bus
case
component
configuration
constant
disconnect
downto
else
elsif
end
entity
exit
file
for
function
generate
generic
guarded
if
in
inout
is
label
library
linkage
loop
map
mod
nand
new
next
nor
not

RESERVED WORDS

null
of
on
open
or
others
out
package
port
procedure
process
range
record
register
rem
report
return
select
severity
signal
subtype
then
to
transport
type
units
until
use
variable
wait
when
while
with
xor

60



APPENDIX 5 VHDL FUNCTIONS FOR COMPLEX IDASS
OPERATORS

lDaSS
operator

at:

at:width:

from:to:

C code
representation

kAT

kATWIDTH

kFROMTO

VHDL function

FUNCTION 8at3 (rec : std_ulogic_vector(7 DOWNTO 0)) RETURN
std_ulogic_vector IS

-- The function name exists of the width of the receiver, the string "at" and the
wanted position (prepended with a function prefix of course).

BEGIN
RETURN rec(3);

END 8at3;

This at-function is only written if the receiver is an expression, all other cases are
written at once in the operator's process.

FUNCTION atwidth8 (rec : std_ulogic_vector(7 DOWNTO O):at : integer;
width: integer) RETURN std_ulogic_vector IS

-- The function name exists of the string "atwidth" and the receiver width.

VARIABLE temp' : std_ulogic_vector(7 DOWNTO 0);
VARIABLE temp2 : integer;

BEGIN
temp' : = SHR("' 111"1'" ,(8 - width); -- 8 is the rec'length
temp2 : = to_integer(SHR(rec,at) AND temp');
RETURN (to_stdulogicvector(itobv(temp2, width)));

END atwidth8;

FUNCTION 8from2t06 (rec : std_ulogic_vector(7 DOWNTO Oll RETURN
std_ulogic_vector IS

-- The function name exists of the receiver width, the string "from·, the value of
from, the string "to· and the value of to.

BEGIN
RETURN rec(to DOWNTO from);

END 8from2to6;
-- with to and from the wanted positions

This from:to:-function is only written if the receiver is an expression all other cases
are written at once in the operator's process.

61



Isomask

Isone

Iszero

uLSOMASK

uLSONE

uLSZERO

FUNCTION Isomask8 (rec : std_ulogic_vector(7 DOWNTO 0» RETURN
std_ulogic_vector IS

.- The function name exists of the string "'somask" and the receiver width.

VARIABLE temp: integer;
VARIABLE mask: std_ulogic_vector(7 DOWNTO 0);

BEGIN
mask: = to_stdulogicvector(itobv( 1,rec'length));
temp: = rec'length;
FOR i IN (rec'length • 1) DOWNTO 0 LOOP

IF recti) = '1' THEN
temp: = i;

END IF;
END LOOP;
RETURN SHL(mask,temp);

END Isomask8;

FUNCTION Isone8 (rec : std_ulogic_vector(7 DOWNTO 0)) RETURN
std_ulogic_vector IS

•. The function name exists of the string "'sone" and the receiver width.

VARIABLE temp: std_ulogic_vector(7 DOWNTO 0);

BEGIN
temp: = to_stdulogicvector(itobv(rec'length,rec'length));
FOR i IN (rec'length • 1) DOWNTO 0 LOOP

IF recti) = '1' THEN
temp: = to_stdulogicvector(itobv(i,rec'length));

END IF;
END LOOP;
RETURN temp;

END Isone8;

FUNCTION Iszer08 (rec : std_ulogic_vector(7 DOWNTO 0») RETURN
std_ulogic_vector IS

-- The function name exists of the string "'sone" and the receiver width.

VARIABLE temp: std_ulogic_vector(7 DOWNTO 0);

BEGIN
temp: = to_stdulogicvector(itobv(rec'length,rec'length);
FOR i IN (rec'length • 1) DOWNTO 0 LOOP

IF recti) = '0' THEN
temp: = to_stdulogicvector(itobv(i,rec'length));

END IF;
END LOOP;
RETURN temp;

END Iszero8;

62



Iszmask uLSZMASK FUNCTION Iszmask8 (ree : std_ulogie_veetor(7 DOWNTO 0)) RETURN
std_ulogie_vector IS

-- The function name exists of the string "'szmask" and the receiver width.

VARIABLE temp: integer;
VARIABLE mask: std_ulogie_veetor(7 DOWNTO 0);

BEGIN
mask: = to_stdulogieveetor(itobv( 1,rec'length));
temp: = ree'length;
FOR i IN (ree'length - 1) DOWNTO 0 LOOP

IF ree(i) = '0' THEN
temp := i;

END IF;
END LOOP;
RETURN SHL(mask,temp);

END Iszmask8;

maj uMAJ
(even receiver
width)

FUNCTION maj8 (ree : std_ulogie_vector(7 DOWNTO 0)) RETURN
std_ulogie_vector IS

-- The function name exists of the string "mar and the receiver width.

VARIABLE temp : integer;

BEGIN
temp: = 0;
FOR i IN 0 TO (ree'length -1) LOOP

IF ree(i) = '1' THEN
temp : = temp + 1;

END IF;
END LOOP;
IF temp < (rec'length , 2) THEN

RETURN "01";
ELSE IF temp = (ree'length I 2) THEN

RETURN "00";
ELSE

RETURN "10";
END IF;
END IF;

END maj8;

maj
(odd receiver
width)

uMAJ FUNCTION maj7 (ree : std_ulogie_veetor(6 DOWNTO 01) RETURN
std_ulogie IS

-- The function name exists of the string "mar and the receiver width.

VARIABLE temp: integer;

BEGIN
temp:= 0;
FOR i IN 0 TO (rec'length -1) LOOP

IF rec(i) = '1' THEN
temp: = temp + 1;

END IF;
END LOOP;
IF temp < (ree'length I 2) THEN

RETURN '0';
ELSE

RETURN '1';
END IF;

END maj7;

63



merge:from:to: kMERGEFROMTO FUNCTION mergefromt08_8 (ree1 : std_ulogie_veetor(7 DOWNTO 0);
ree2 : std_ulogie_veetor(7 DOWNTO 0); from: integer; to: integer)

RETURN std_ulogie_vector IS

-- The function name exists of the string "mergefromto", the width of the first
receiver and the width of the second receiver.

VARIABLE temp' : std_ulogie_veetor(7 DOWNTO 0);

BEGIN
temp: = "", 1, 11 , ";
IF from < = to THEN

RETURN ((temp XOR (SHR((SHL(temp,(ree'length +from-to-1)) AND
(NOT ree')),from))) AND ree');

ELSE IF from> to THEN
RETURN ((temp XOR ((SHL((SHR(temp,(to-from + 1)) AND (NOT ree2)l.from))

OR(SHR((SHR(temp,(to-from + 1))AND (NOT ree211,(ree1'length-a)))))
AND ree1);

END IF;
END IF;

END mergefromt08 8;

msomask

msone

uMSOMASK

uMSONE

FUNCTION msomask8 (ree : std_ulogie_veetor(7 DOWNTO 0)) RETURN
std_ulogie_veetor IS

-- The function name exists of the string "msomask" and the receiver width.

VARIABLE temp: integer;
VARIABLE mask: std_ulogic_veetor(7 DOWNTO 01;

BEGIN
mask: = to_stdulogieveetor(itobv( 1,ree'length));
temp: = ree'length;
FOR i IN 0 TO (rec'length - 1) LOOP

IF recti) = '1' THEN
temp: = i;

END IF;
END LOOP;
RETURN SHL(mask,temp);

END msomask8;

FUNCTION msone8 (rec : std_ulogie_vector(7 DOWNTO Oll RETURN
std_ulogic_vector IS

-' The function name exists of the string "msomask" and the receiver width.

VARIABLE temp: std_ulogic_vector(7 DOWNTO 0);

BEGIN
temp: = to_stdulogieveetor(itobv(rec'length,rec'length»;
FOR i IN 0 TO (ree'length - ') LOOP

IF reelil = T THEN
temp: = to_stduiogievector(itobv(i,ree'length));

END IF;
END LOOP;
RETURN temp;

END msone8;

64



mszero

mszmask

onecnt

uMSZERO

uMSZMASK

uONECNT

FUNCTION mszer08 (rec : std_ulogic_vector(7 DOWNTO 0) RETURN
std_ulogic_vector IS

•. The function name exists of the string "mszero" and the receiver width.

VARIABLE temp: std_ulogie_vector(7 DOWNTO 0);

BEGIN
temp: = to_stdulogicvector(itobv(rec'length,ree'length));
FOR i IN 0 TO (ree'length - 1) LOOP

IF rec(i) = '0' THEN
temp: = to_stdulogicvector(itobv(i,rec'length»;

END IF;
END LOOP;
RETURN temp;

END mszer08;

FUNCTION mszmask8 (ree : std_ulogic_vector(7 DOWNTO 0)) RETURN
std_ulogic_vector IS

.- The function name exists of the string "mszmask' and the receiver width.

VARIABLE temp: integer;
VARIABLE mask: std_ulogic_vector(7 DOWNTO 0);

BEGIN
mask: = to_stdulogicvector(itobv( 1,rec'length»);
temp: = rec'length;
FOR i IN 0 TO (rec'length - 1) LOOP

IF recti) = '0' THEN
temp := i;

END IF;
END LOOP;
RETURN SHL(mask,temp);

END mszmask8;

FUNCTION onecnt8 (rec : std_ulogic_vector(7 DOWNTO 0» RETURN
std_ulogic_vector IS

-- The function name exists of the string "mszmask" and the receiver width.

VARIABLE temp: integer;

BEGIN
temp := 0;
FOR i IN 0 TO (rec'length • 1) LOOP

IF rec(i) = T THEN
temp: = temp + 1;

END IF;
END LOOP;
RETURN to_stdulogicvector(itobv(temp,rec'length»;

END onecnt8;

65



rev

sar:

signed:

sol:

uREV

kSAR

kSIGNED

kSOL

FUNCTION rev8 (rec : std_ulogic_vector(7 DOWNTO 0)) RETURN
std_ulogic_vector IS

-- The function name exists of the string "mszmask" and the receiver width.

VARIABLE temp: std_ulogic_vector(7 DOWNTO 0);

BEGIN
FOR i IN 0 TO (rec'length - 1) LOOP

temp(i) : = rec(rec'length - 1 • i);
END LOOP;
RETURN temp;

END rev8;

FUNCTION sar8 (rec: std_ulogic_vector(7 DOWNTO 0); a : integer) RETURN
std_ulogic_vector IS

-- The function name exists of the string "mszmask" Bnd the receiver width.

VARIABLE temp: std_ulogic_vector(7 DOWNTO 0);

BEGIN
temp: = • 11111111 .;
IF rec(rec'length - 1) = '1' THEN

RETURN SHR(rec,a);
ELSE

RETURN (SHR(rec,a) OR SHL(temp,(rec'length - al)l;
END IF;

END sar8;

FUNCTION signed8_11 (ree: std_ulogic_vector(7 DOWNTO 0)) RETURN
std_ulogic_vector IS

-- The function name exists of the string "signed", the receiver width and the
resulting width.

VARIABLE temp: std_ulogic;

BEGIN
temp: = rec(7); -- most significant bit
RETURN (temp & temp & temp & rec);

END signed8_11 ;

FUNCTION sol8 (rec : std_ulogic_veetor(7 DOWNTO 0); a : integer) RETURN
std_ulogic_vector IS

-- The function name exists of the string "sol" and the receiver width.

VARIABLE temp: std_ulogic_vector(7 DOWNTO 0);

BEGIN
temp: = "1 111 1111 .;
RETURN (SHL(rec,a) OR SHR(temp,(rec'length - a)));

END sol8;

66



sor:

width:
(width:3)

width:
(width: 12)

zerocnt

kSOR

kWIDTH

kWIDTH

uZEROCNT

FUNCTION sor8 (ree : std_ulogie_vector(7 DOWNTO 0); a : integer} RETURN
std_ulogic_vector IS

.• The function name exists of the string ·sol" and the receiver width.

VARIABLE temp: std_ulogic_vector(7 DOWNTO 0);

BEGIN
temp: = "111' 1, , 1·;
RETURN (SHR(rec,a) OR SHL(temp,(rec'length • a))};

END sor8;

FUNCTION width3 (rec: std_ulogic_veetor(7 DOWNTO 0)) RETURN
std_ulogic_vector IS

-- The function name exists of the string ·width· followed by the resulting width.

BEGIN
RETURN rec(2 DOWNTO 0);

END width3;

FUNCTION width 12 (ree : std_ulogic_vector(7 DOWNTO 0)) RETURN
std_ulogic_vector IS

-- The function name exists of the string ·width· followed by the resulting width.

BEGIN
RETURN "0000· & rec;

END width' 2;

FUNCTION zerocnt8 (rec : std_ulogic_vector(7 DOWNTO 0)) RETURN
std_ulogic_vector IS

-- The function name exists of the string ·width· followed by the resulting width.

VARIABLE temp: integer;

BEGIN
temp:= 0;
FOR i IN 0 TO (rec'length • ,) LOOP

IF rec(i) = '0' THEN
temp:= temp + ';

END IF;
END LOOP;
RETURN to_stdulogicvector(itobv(temp,rec'length»;

END zerocnt8;

67



APPENDIX 6 8 BIT MSOMASK

'i N ;<; .... :n
" ":; :> ::> :; :; :;

~ ~

~ ~ ~

g; .,.na-.
~ ::!::

~
= zz......

N

Z....

68



APPENDIX 7 FIRST POSSIBILITY FOR A THREE
STATE BUS

~
JSOUT

TSOUT _2 JSOUT
TSOUT 1

y ~-------j

X~---r------j

0TSOUT

69



APPENDIX 8 SECOND POSSIBILITY FOR A THREE
STATE BUS

°H
IJJ
H
0:::
I­
18J

NO
IH

N

1°..-H
Ill)

~ ~~ H
0:::

~ ~if
~ Ejl CjlI-

P:: t-.-
X X..- ..-

6>- 6
x ~

(
--

R R

X X..- ..-

~

~

~~ ~~
z
w 18J18J

X>-

70



APPENDIX 9 THIRD POSSIBILITY FOR A THREE
STATE BUS

y

FFOUT2_1_q
FFOUT1_l_q

TSOUT 2
TSOUT 1

FFOUT2 n
FFOUT1 n

1X

FOUT2
FOUTl

JSOUT
JSOUT
;y

JSOUT

ENr::a.---I-------F-N---------.---

x
lX

eLK c.-----'~----j)
L--_-'

JSOUT

~TSOUT

71



APPENDIX 10 SWITCHES OF THE FILE USER DEF
WITH THEIR DEFAULT SETTINGS

Switches of integer variables

INDENT
USR MAX IDENT LEN- - -

Switches of strings variables

INST PREFIX
PREFIX SEP
FILE PREFIX
DIR SEP
FILE POSTFIX
MUXVAR NAME
NAME PREFIX
FUNC PREFIX
CTRL APPEND
REGISTERTEMP
CLK NAME
RESET NAME
STATE T NAME
CUR STATE
NEXT STATE
JUMP BaaL
EMPTY STATE NAME- -
ULOGIC BIT TYPE
ULOGIC VECTOR TYPE- -
LOGIC BIT TYPE
LOGIC VECTOR TYPE- -
BIT2ULOGIC BIT
TO ULOGIC TYPE- -
BIT2LOGIC BIT
TO LOGIC TYPE- -
BOOLEAN2BIT
LOGIC TYPE21NT
INT2BITVECTOR

Switches of multiple string variables

LIBRARY HEADER
USE CLAUSES

FILE HEADER

default value

2
32

default value

-
beh
/
.vhd
if

d2v
d2vf
ctrl
registertemp
clk
reset
statetype
current state
next state
jump
empty_name
std_ulogic
std_ulogic_vector
std_logic
std_logic_vector
to_stdulogic
to_stdulogicvector
to_stdlogic
to_stdlogicvector
to bit
to_integer
itobv

default value

"LIBRARY compass_lib,ieee;\n"
"USE ieee.std_logic_1164.all;\n
USE compassJib.compass. all;\n"

n\n"

72


	Voorblad

	Abstract

	Contents

	1. Introduction

	2. IDASS

	3. Lexical analysing and parsing.

	4. The data structure.

	5. VHDL

	6. IDASS constructs in VHDL.

	7. VHDL configuration file.

	8. Conclusions

	Literature

	Appendices


