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Abstract

Improving technologies allow to integrate more and more complex systems on a chip. This de­
mands complex design methodologies, especially for analog and mixed analog/digital systems. So
the need for high-level simulation tools is growing, that can explore and trade-off different archi­
tectures in a fast and accurate way. FAST (Front-end Architecture Simulation Tool) is such a tool,
which is currently being developed at the MIRA group of IMEC. This tool is used for end-to-end
simulations of digital telecommunication transceivers. The Analog-to-Digital Converter (ADC)
is important for complete front-end architecture simulations including the analog and digital part.
This report describes a high-level model for n-bit flash ADCs, that can be implemented in FAST.

The model meets with the following demands. It is flexible, it is easy to change the architecture
and the number of bits. It is efficiently implemented in C++, and it is based only on circuit and
device parameters, such as transconductances, capacitances, poles and zeros, in order to give a
designer a suitable set of design parameters.

The non-idealities of the ADC are divided in functional blocks, that are modeled separately.
The following blocks with non-ideal behavior are discussed extensively: Input feedthrough, mis­
matches, clock jitter and the comparator function.

The feedthrough of the input signal on the reference ladder is caused by the capacitive coupling
between the input nodes of the comparator, that couples the input to the resistor ladder. The input
feedthrough is dependent on the number of bits, the comparator and the value of the resistor in the
reference ladder. The presented model can deal with all different values of the resistor, the number
of bits and the types of comparators.

The main effect of mismatches between transistors in a comparator is an offset voltage at the
input. A new method is described that can predict the variance of the offset voltage of a comparator
in a faster and more accurate way.

All blocks in the clock path, from the oscillator to the ADC included, contribute to the clock
jitter. A summary is given about the various aspects of clock jitter and a realistic way to model the
clock jitter is described.

The comparator is the most important part of the ADC. Three different models are studied and
finally the best model is selected.

To verify the validity of the model, a comparison is made with a 4-bit ADC, which is designed
in HSPICE. The same input signal is applied to HSPICE and the C++ model and the output codes
are compared. The results show a good agreement between the simulated output codes of HSPICE
and the model. The model is at least 6000 times faster than HSPICE.

Finally a program is written, that determines the performance of the ADC after every simula­
tion, by calculating the SNR and the INLIDNL values.

An article is published about this research at the "Southwest Symposium on Mixed-Signal
Design 2000", with the title "High-level modeling of a high-speed flash AID converter for mixed­
signal simulations of digital telecommunication front-ends". This paper can be found at the end of
this report. An updated version of this paper is written, also located at the end of this report.



Abbreviations and Conventions

This page contains abbreviations and conventions, that are used throughout the report.

The conception of sampling refers to the sampling of the ADC and also to the making of discrete
values out of continuous values used in simulations. Therefore, to avoid confusion, the term sampling
is used as little as possible. Simulation frequency refers to the time-steps used in a simulation and clock
frequency refers to the sampling of the ADC.

A complete comparator consists out of three parts, the input stage, the regenerative comparator (= ac­
tual comparator) and the output latch. Comparator refers to the complete comparator and regenerative
comparator is used, when only the actual comparator is meant.

clklength
clkperiods
ADC
DFT
DNL
ENOB
FFT
INL
LSB
PLL
SIH
SNR
SFDR

Tclk

Tduration

Tsim

VCO

Number of simulation points in a clock-period
Number of clock-periods in a simulation
Analog-to-Digital converter
Discrete Fourier Transform
Differential NonLinearity
Effective Number Of Bits
Fast Fourier Transform
Integral NonLinearity
Least Significant Bit
Phase Locked Loop
Sample and Hold
Signal to Noise Ratio
Spurious Free Dynamic Range
The clock period of the ADC
The length in seconds of the simulated time interval
The time in seconds between the used points in a simulation
Voltage Controlled Oscillator
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1 Introduction

The fast growing market of telecommunications demands faster and cheaper ways to design front-ends
of transceivers for digital telecommunications. This requires a high level simulation environment, that
can simulate complete end-to-end systems, including the analog front-end, mixed-signal and digital
functionality. These tools must be able to explore and trade-off different architectures in a fast and
accurate way. The Front-end Architecture Simulation Tool (FAST), that is currently being developed
at the MIRA group at IMEC, is such a mixed-signal simulation tool.

The goal of this research is to make a high level model of an n-bit flash ADC, that matches as good as
possible the transistor level circuit. The model has to include non-idealities, such as mismatches, non­
linearities, input feedthrough and clock jitter. Only circuit and device parameters can be used, in order
to give a designer a suitable set of design parameters. The model has to be efficiently implemented in
C++. It must be easy to change the building blocks, number of bits and the architecture.

As reference case a 4-bit, 400MHz, flash ADC is available, which is designed in HSPICE in 0.35
p,m digital CMOS technology. The simulation results of the C++ model must accurately match the
HSPICE simulations. The first step is to make an accurate model, the next step is make that model
faster.

First, the different methods of high level modeling are treated in the literature study of chapter 2.
Secondly, the HSPICE model of the ADC is described in chapter 3. Subsequently the non-idealities
of the ADC are divided in functional blocks in chapter 4. The functional blocks are input signal
feedthrough, the comparator, clock jitter and the mismatches. These are described in chapter 5 to 8.
The structures of these chapters are similar, first the model is described, next simulation results are
presented.

After each simulation in C++ the INLIDNL and the SNR are calculated with the method described in
chapter 9. Simulation results of the C++ model are compared with HSPICE simulations in chapter 10.
Conclusions are drawn in chapter 11. Finally topics for further investigation are listed in chapter 12.

At the end of some sections the location and name of the described program is cited, for example:
file:/i mec/users/dejong/cltotaladc.cpp
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2 Literature study

A literature study is performed before starting to design a new model of an ADC. There is looked
for a model that satisfies the following demands: The model must be accurate, flexible, include all
non-idealities and based on circuit and device parameters. Not only models of complete ADCs are
of interest, but also models of a single comparator, because the comparator will point out to be the
most difficult and important part of an ADC. The types of models can be divided in groups. A good
overview of the different types is given in [1]. Various types are listed here.

Circuit model: A circuit model is an equivalent circuit with less and usually more ideal circuit ele­
ments, which approximate the original behavior of the original circuit. But it is difficult to model
second order effects such as mismatches and feedthrough. Circuit models for a comparator are
described in [2] and [3]. These models are not suitable, because second order behavior is not
taken into account. Circuit model is sometimes called macromodel.

Statistical model: A statistical model tries to model every block by its statistical behavior. In [4],
[5], [6] and [7] models are presented that use a static ideal ADC as base. All the non-idealities,
such as mismatch and clock jitter, are added as statistical errors to the ideal ADC. This kind of
model is not suitable, because the statistical property demands much simulations to prove the
correctness of the model.

Analytical model: Every block of the ADC is modeled by a mathematical expression. The analytical
models can be divided in two groups:

Explicit model: This type of model calculates the output directly from the input with a mathe­
matical expression. A closed form expression is needed, that describes the input-output relation.
However this is not always possible. Models that calculate the output transient of a comparator
are given in [8] and [9]. The models use too less parameters and are therefore not accurate.

Implicit model: When no explicit model can be found, then a mathematical model description
can be used, such as differential equations and filters in the s or z-domain. In [10] an accurate
implicit model is presented. This model is not suitable, because it makes use of parameters that
can not directly be extracted from HSPICE.

Tabular model: First the circuit is simulated in HSPICE and the behavior is stored in a table. Then
during a simulation the needed values are fetched from the table. This method can model dif­
ficult behavior very easily. The model only describes the static behavior and it is not flexible,
because the table has to be extracted for every different configuration of the ADC. A good ex­
ample of a tabular model is [11].

There are no models available that satisfy the demands. So a new model has to be developed. The
implicit and explicit behavioral models are probably the best approaches.

2



3 The ADC circuit

The circuit of the flash ADC is presented in this chapter. There is a HSPICE netlist available for sim­
ulation purposes. In section 3.1 a block diagram is given of the total ADC. Thereafter, two important
parts of the ADC are explained in section 3.2 and 3.3, namely the comparator and the thermometer
decoder.

3.1 Block diagram of the flash ADC

For an n-bits flash ADC, the input signal is applied to 2n - 1 comparators. The comparators compare
the input signal with 2n

- 1 different reference voltages. These reference voltages are made by a
reference ladder, that consist out of 2n resistors. The endings of the reference ladder are connected to
two reference voltage sources, Vr~J and Vr~J' The reference voltages are equal to the input range of

the ADC (V'inputrange = Vr~J - Vr~J) , see Figure 1.

: Comparators:

CD
"C
o
(J
Q)

"C

CD
Qi
E
o
E
Q)
.r;
I-

Figure 1: General architecture of a flash ADC.

The flash ADC can be extended easily for different numbers of bits. However, a complete simulation
in HSPICE, including the encoding part, with more than 4-bits is very difficult, because of the long
simulation time which results in memory problems. The final C++ model does not have this problem.
The design of the reference ladder is very straightforward, in contrast with the comparator and the
thermometer decoder. The comparator is described in more detail in section 3.2 and the thermometer
decoder in section 3.3.

file:/imec/other/adsba/STUDENTS/dejong/spice/cmos035/flash/ftash4b.sp

file:/imec/other/adsba/STUDENTS/dejonglspice/cmos035/reftadlreftad_def4b.sp
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3.2 The comparator

A regenerative comparator is used because it is the fastest comparator. First the principle of the re­
generative comparator is explained and subsequently this theory is used to explain the comparator
circuit.

3.2.1 Principle of the regenerative comparator

A regenerative comparator consists of three parts, the input stage, the actual regenerative comparator
and the output latch, see Figure 2

Vin la Va Q

Output
latch

ClK ClK

Figure 2: General architecture of a regenerative comparator.

As is shown, the complete comparator is designed differentially, because this minimizes the effects
of mismatches. The input stage is a continuous time amplifier with a differential input voltage and a
differential output current. The transconductance of the input stage is gmin.

The regenerative comparator compares the output currents from the input stage by amplifying the
difference between the currents in a circuit with positive feedback. This circuit consists out of a clock
switch and two inverting amplifiers, which are placed in a loop, see Figure 3.

® ®

Figure 3: The principle of regenerative amplification.

The following steps are made for one comparison. At the beginning the switch is closed. The input
signal from the input stage is injected in the loop and causes a voltage difference between the nodes A
and B. When the switch is opened, the voltage difference is amplified by the two inverting amplifiers.
This process is called the regeneration. At the end of this regeneration the digital output is available
at the nodes A and B. For the next compare phase the nodes A and B are reset by closing the switch.
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From now on, regenerative comparator refers only to the regenerative part of the comparator, and
comparator refers to the complete comparator.

The output latch conditions the output of the regenerative comparator, in a way that it can be used by
digital circuits.

3.2.2 Circuit of the comparator

Figure 4 shows the input stage and the regenerative comparator. The input stage is a transconductor,
that converts the input voltage difference (Vin - vref) to a current difference (iin a - iin b). The tran­
sistors M2a, band M3a, b are identical and form two current mirrors. The gm of the input transistors
MIa, b is the gain factor gmin of the input stage.

voo

M3a M3b

Ibias MBa MBb
ib
.-

,..-+
I.

M' 1.15

Input stage ' Regenerative comparator

Figure 4: Circuit diagram of the input stage and the regenerative comparator of comparator.

The transistor pairs M6a, M7a and M6b, M7b form two inverters. The output of one inverter is
connected to the input of the other. In between is the clock transistor M elk. When M elk is closed the
regenerative comparator is in the reset phase. The transistors M9a and M9b convert the differential
current from the input stage to a voltage difference between nodes C and D and consequently in
a voltage difference between nodes A and B. When Melk is opened the initial voltage difference
between A and B is amplified. The transistors M6a en M6b can not pull the output to VSS because
they are limited by the drain source voltage of M9, therefore the transistors M8a and M8b are added.
These transistors can decline the output voltage to VSS.

Figure 5 shows a typical output response of the outputs of the regenerative comparator. For t < 0 the
comparator is in the reset phase. At t = 0 the clock voltage starts decreasing and the comparator starts
comparing. During the reset phase, the output voltage Va and Vb are at approximately half the VDD,
but start now to increase or decrease to VDD or VSS, depending on the sign of the input voltage of the
comparator. The little bump after t = 0 is explained in the following way. The clock input is coupled
capacitively with the output nodes. A change of the clock voltage causes a common mode effect on
the the nodes A and B. This will not affect the accuracy of the comparator.

The output of the regenerative comparator is only valid at the end of the compare phase. So the output
has to be latched in order to use the output. The circuit of the output latch is plotted in Figure 6.
Two separate output latches are connected to the outputs of the regenerative comparator, so that the
capacitive load of the comparator will be symmetrical. When Vclock is low, the input voltage is passed
to the output. The output voltage from the latch is preserved, when Vclock is high due to the capacitive

5
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Figure 5: Typical output response of the regenerative comparator.

VDD

Yin a

Figure 6: Circuit diagram of the output latch.

load of the gate~ of M 4 and MS. The regenerative comparator and the output latch use the same clock.

file:/imec/other/adsbalSTUDENTS/dejongispicelcmos035/comparator/comparator.sp

3.3 Thermometer decoder

The comparators in a flash ADC produce an output pattern that is known as a thermometer code. Every
time the input signal reaches a new reference level a '1' is added to the output code of the comparators.
The thermometer decoder converts the 2n - 1 output codes of the comparators into a normal binary
code with n-bits.

A comparator, that generates a false response, causes a bubble in the thermometer code pattern. There­
fore, a thermometer decoder with error correction is used. Figure 7 shows a thermometer decoder,
using a Wallace tree ([12]). The Wallace tree performs also error correction. Every block in Figure 7 is
an adder, that counts the number of logical ones at its entries and outputs a two bit binary coded output.

6
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Out2

Out3
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Figure 7: Wallace tree thermometer decoder for a 4-bit ADC, only full adders are used.

every next stage of adders decreases the number of codes. This Wallace tree is flexible, because it can
easily be adapted to the number of bits of the ADC.

file:/imec/other/adsba/STUDENTS/dejong/spice/cmos03S/encode/encode_wallace.sp
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4 The high-level model

The outline of the ADC model is given in this chapter. First in section 4.1 the used method of the
simulation is described, namely block processing. Secondly the ADC is divided in functional blocks
in section 4.2. In the sections 4.3 and 4.4 is described how filters and differential equations are solved
in the C++ model.

4.1 Block processing

The simulation method used by FAST for the ADC is called block processing, see [13]. An input array
is loaded and processed and afterwards passed on to the next block. In case of the ADC, an array with
the analog input voltage is loaded and converted to an array with the digital output code.

Three important simulation timing parameters must be adjusted for every simulation, see also figure 8:

1. Tduration : The duration of the simulation.

2. T sim : The time step used by the simulation.

3. Telk: The clock time of the ADC. l/Tclk is the clock frequency of the ADC.

Tduration
..

", :
"

'f llrrf
Tsim

Vin[c1kperiods x c1klength]

fclk

- - --I

I

I

Code_out[c1kperiods]

Figure 8: The definition of the three timing parameters Tduration, T sim and Tclk necessary for every
simulation.

The number of samples per clock period (clklength) is given by:

Tclk
clklength = -­

Tsim

And the total amount of clock periods is called clkperiods:

lk . d Tduration
c peno s = T

elk

(1)

(2)

The input array of the ADC contains clklength elements per clocking period and outputs one value
per clocking period. So the number of input values is clklength· clkperiods and the number of output
values is cl kperiods.

file:/imec/other/adsba/STUDENTS/dejonglc/include/globals,h
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4.2 The block diagram of the ADC

The ADC circuit described in chapter 3 is divided in blocks. The ADC model is hierarchically built-up,
see figure 9.

Timing parameters:

I I
To.Jrationi TSiml Telk

Vin[c1klength X c1kperiods]
Device + Circuit parameters:

#Bits, C,R, gm, "'t, pole, zero, etc.

,_J_____~e!~rence, I~~~:r _n:~~o!~
I I r R f I: Input I : e erence ,
I Feed- I , ladder ;..
I I 'th'
, through: : WI :
~ _________ ' ~ !)11s_~'!t£'le_s_.

J;1 I I
1 .1 Comparator", 2 j----: .. ------~

.' r- 3 I Mismatches l-
;.;- 4 ------1-------

1i :' -Tr~~;co~d~ci;r-:
------1------' Clock
:- - -I~t~;nai ~ti;r - - "- generator------l------' with.... _---------- ....
I Regenerative :- jitter
I
• comparator I

------f-------
r::~~~u~~~~::_~

)

• - - - - - - - "1- - ~ - ~ - IJ -
+ " + +

Decoding I
j,

( INUDNL Code_out[c1kperiods] SNR )

Figure 9: The block diagram of the ADC in C++.

The input of the ADC is an array with the input signal, with clkperiods . clklength elements, and a
list of parameters. These are timing parameters as well as device and circuit parameters. The timing
parameters are described in section 4.1. The device and circuit parameters are derived from simple
HSPICE operation point and AC simulations. The following chapters will describe how this is done
in more detail. The output of the ADC is an array called Code_out with clkperiods elements. The
device and circuit parameters are distributed over all the blocks in the model.

The reference ladder constructs 2n - 1 different reference voltages with clklength . clkperiods ele­
ments, that are passed on to the comparators. The reference ladder is composed with resistors with
mismatches, that make 2n -1 DC voltages. An unwanted effect in the reference ladder is the feedtrough
from the input signal on the reference ladder. This is caused by the capacitive coupling of the the two
inputs of a comparator, that couples the input of the ADC to the reference ladder. The variation of the
reference voltages caused by the feedthrough is modeled separately and added as extra with the DC
voltages from the resistor ladder, see chapter 5.

The main effect of mismatches in a comparator is a constant offset voltage at the input. The first block
in the comparator corrects the input voltage by adding the offset voltage to the input voltages of the
comparator. The effects of mismatches are treated in chapter 8 .

9



The comparator is the most important part of the ADC, especially the transconductor and the regen­
erative comparator. Therefore it is studied extensively, which resulted in various models, that are
described in chapter 6. The output of the comparator is digital, so the output code consists out of
clkperiods number of elements.

The total clock jitter is partially generated in the clock generator and partially in the comparator itself.
Therefore the jitter is divided, one jitter model in the clock generator and a jitter model in every
comparator. The clock jitter is discussed in chapter 7.

The decoder converts the thermometer code from the comparators to a normal binary output code
(Code_out). The modeling of the decoder of section 3.3 is very simple, because the decoder is com­
pletely digital. There is no further section dedicated to the decoder, because the implementation is
straightforward.

The Signal to Noise Ratio (SNR) and the Integral and Differential NonLinearity (INL/DNL) are cal­
culated from the output code, see chapter 9.

file:/imec/other/adsba/STUDENTS/dejong/c/totaladc.cpp

4.3 Filters in C++

Filters will appear to be very useful to model a number of behaviors of elements in the ADC. The
modeling of the filters is described in this section.

The poles and zeros in the s-domain of the transfer functions are saved in the parameter list of the C++
model. The filter is transformed to the z-domain in C++ with a bilinear transformation. The bilinear
transformation replaces every s according to equation (3).

2 z-l
s = -----

Tsim z + 1
(3)

A representation of a filter in the z-domain contains information about the simulation time (Tsim), the
filter can only be used at that simulation time. Therefore the filter information is saved in the s-domain,
so by doing the s to z transformation in C++ the filter can be used at any simulation frequency.

The first to fourth order filter are programmed in C++ as subroutines. An example is now given for the
following filter:

(4)

This filter must be transformed to a filter in the z-domain as shown by equation (5). Note that capitals
are used for the coefficients in the z-domain.

(5)

Equation (3) is substituted for both s in equation (4) to get a representation of the filter like (5). This
results in the following calculation of the coefficients.

A o = Tsim . al + 2 . ao;
B o = 2 . bo+ bl . Tsim;

Al = Tsim . al - 2 . ao
B I = - 2 . bo + bl . Tsim

10
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These equations give the s to z transfonnation of the coefficients for a first order filter using the bilinear
transformation. These equations are programmed in C++, for a first to a fourth order filter. The next
step is to normalize the coefficients with respect to Eo:

" AD
AD = Eo; (7)

The input signal, x[n], is filtered in the following way (y[O] = 0):

y[n] = AD .x[n] + A1 • x[n - 1] - 131 , y[n - 1]

file:/imec/other/adsba/STUDENTS/dejong/c/include/filter.h

4.4 Differential equations

(8)

A differential equation will be used in the sections 6.1 and 6.2. In this section is described how these
equations are solved in C++. The differential equations are of the fonn:

dv
dt = f(t, v)

The Euler forward formula is used in order to solve this equation numerically:

(9)

(10)

The variable Vi is the numerical expression for v(i· Tsim). Equation (10) is solved at run-time in C++.

file:/imec/other/adsba/STUDENTS/dejong/c/include/comparator.h
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5 Reference ladder with input feedthrough

Input feedthrough is the coupling of the input signal to the reference ladder. This input feedthrough
causes errors in the output code, and is therefore modeled. This chapter is organized as follows. Section
5.1 describes a model that calculates the input feedthrough. Simulation results are given in section 5.2.
In section 5.3 the maximum allowable input frequency in the reference ladder is calculated. The
implementation in C++ is treated in section 5.4.

5.1 Input signal feedthrough

The input feedthrough is caused by the capacitive coupling of the two input nodes of the comparators,
that couples the input ofthe ADC to the reference ladder, see Figure 1. Figure 10 shows the input gain
stage of the comparator of Figure 4. The gate source capacitances of the transistors MIa and Mlb
cause the input feedthrough. For the calculation of the input feedthrough, a comparator is modeled by
one capacitor (0). The value of 0 is the serial value of the two gate source capacitances (0 = 0 98 /2).

Vin --1~ Vref

egs-=c
2

Figure 10: The input stage of the comparator is modeled by one capacitor in order to calculate the
input feedthrough.

Vref+

R
C

Vref1

R
C

Vref2

R
C

Vin Vref3

R
C

:1'=""Vref·

Figure 11: The input signal feedthrough model of the ADC. The comparators are replaced by a capac­
itor in order to calculate the feedthrough of the input on the reference ladder.

When the comparators are replaced by a capacitor, the input feedthrough calculation model looks like
Figure] 1. Figure 1] is redrawn in Figure 12a for further calculations. The input feedthrough is
modeled by calculating the transfer function from the input signal to a node on the reference ladder.
Afterwards the variation of the voltage in the reference ladder is subtracted from the input voltage

12



difference of the comparator.
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Figure 12: Input signal feedthrough calculation model.

When the reference ladder is connected between Vr~f and Vr~f' and the input voltage is Vin, then

vt = Vr~f - Vin and v;; = Vr~f - Vin. The model is subdivided in two types of blocks, see Figure 12b
and 12c. By placing k sections of Figure 12b to the left and 1 sections to the right of the middle
section, Figure 12c, it is possible to calculate VI for any tap and any length of the ladder, according to
the formula k = 2n - 1 -1.

[ ~; ] = W . [ ~~ ]

[ ~: ] = M . [ ~: ] with: M= [1 -R]o -1

(11)

(12)

Formulas (11) and (12) describe the transfer matrix of Figure 12b and 12c. The relation between VI,

i l and v;;, i;; is given by formula (13):

(13)

(14)

Combining (13) with (12) according to Figure 12a results in:

Wi . [ ~f ]= M . W
k

• [ ~~ ]

The formulas (13) and (14) form a system with four equations and four unknowns (VI, ii, it, i;;). When
VI is solved from this system, the order of the transfer function is too high for efficient implementation
in C++. Therefore an approximation is made:

k k k . (k - 1) . B . B
W = [I + B] ~ I + k . B + -'----------'---­

2

with I = [~ ~] and B = [ _ j~C j:::C ]

13
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Formula (15) describes a second order approximation for Wk. This approximation is valid ([14]) ifthe
absolute values of the eigenvalues are much smaller than 1, so at high frequencies the approximation
is not valid any more. The approximation results in a fourth order transfer function for Vz!Vin, which
is implemented in the model as an 1IR filter.

5.2 Simulation results

The approximating model of section 5.1 will be compared with HSP1CE in this section. The approxi­
mation in equation (15) must be checked, before comparing HSP1CE with the model from section 5.1.
When the approximation is approved, the comparison is made with HSP1CE.

As a reference case a 4-bit 400 MHz ADC with Rrej = 100 n is used. The symbolic simulator ISAAC
([15]) gives results for the model of section 5.1 without making approximations. The results consist of
15 transfer functions from the input to every node in the reference ladder (Vrejl - Vre j15). The model
is symmetric around the middle node (vrejS). Therefore a transfer function of a node above the middle
is equal to his opposite node beneath the middle (Vrejl(S)/Vin(S) = Vre j15(S)/Vin(S). So when all
the transfer functions are plotted only 8 different lines will be perceived for the 4-bit case.

20
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Figure 13: The 8 different curves of the input feedthrough calculated with the model of section. 5.1
with and without approximation

The exact ISAAC results are plotted together with the results of the model with approximation in
Figure 13. The lowermost curve is the transfer function to the nodes Vrejl and Vre j15. The uppermost
curve belongs to the middle node (vrejS), in which is seen that the input feedthrough has the most
influence on the middle node. The approximated model fits very well for frequencies beneath 1 GHz.
This frequency is high enough, because the Nyquist bandwidth of the ADC is 200 MHz.

In Figure 14 the model of section 5.1 is compared with HSPICE. The value of Cgs is extracted from
a HSPICE simulation and inserted into the model. The Cgs value of the middle comparator is chosen,
because the input feedthrough has the most effect around the middle node. The HSPICE curves beneath
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Figure 14: The input feedthrough calculated by the model of section 5.1 and HSPICE

1 G H z are parallel to the curves of the model and deviate in a range of 0.51 dB to 5.37 dB from each
other. Note, that the HSPICE curves of symmetric nodes are not equal. This can be explained by the
different operation points for the various transistors in the input stages of the comparators, because they
are connected to different reference voltages (Vref,i). The operation points of the transistors change
also for different input voltages (Vin). The differences between HSPICE and the model for every node
are listed in Table 1.

Although the model deviates almost 6 dB in some cases, no further research is done for a more accurate
model in this report. It is perhaps interesting for later studies.

Table 1: The difference between HSPICE and the model in dB for !input < 1 GHz
~ Difference ~ ~ Difference I] ~ Difference ~

1 1.21 dB
2 0.96 dB

3 0.72 dB
4 0.56 dB
5 0.51 dB

6 0.61 dB

7 0.85 dB
I

8 1.19 dB
9 1.63 dB

10 2.17 dB

11 2.79 dB
12 3.47 dB
13 4.14 dB
14 4.77 dB

15 5.37 dB

fi Ie: Ii mec/other/adsba/STUDENTS/dejonglinpuLfeedthroughlinp_ft15_sym. m

file: limec/other/adsba/STUDENTS/dejonglc/inc1udelfilter.h

5.3 Maximum input feedthrough

An important design problem is the value of the resistors in the reference ladder. The resistors must be
as high as possible, because this results in a low power dissipation. However, when the resistor values
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(17)

increase the input feedthrough becomes a problem. So there is a trade-off between power and input
feedthrough. An equation is derived in this section, that determines an optimum value for the resistors.

Only the voltage on the middle node of the reference ladder is studied, because the maximum input
feedthrough occurs at that node. A general expression for the transfer function of the input to the
middle node (Vmid/Vin) is taken from section 5.1. This formula is simplified by truncating small terms
and results in:

Vmid = ~ linRC22n (16)
Vin 4

n is the number of bits of the ADC. When Ie is defined as Ie = 21rkc' formula 16 can be rewritten as:

Vmid = lin 22n- 3
Vin Ie

When a maximum allowable input feedthrough (Vmid,max) is chosen, an optimum value for R is cal­
culated by using formula 16. The optimum value for R is named Rapt and is given by:

4Vrnid,rnax

Rapt = 1r22:hnC (18)

¢ is defined as the maximum feedthrough of the input signal on the middle node in the reference ladder
in LSB, see formula (19).

¢ = Vmid,max = Vmid,max (19)
LSB Vin/2n

When formula (19) is inserted in formula (18), the optimum value for R is then given by:

4¢
Rapt = 1r23nlin C (20)

For example, a 4-bit ADC is considered with a maximum input frequency of 200 MHz and a maximum
of 1 LSB input feedthrough is allowed, and the comparator of Figure 4 is used (C = 14 I F). A
reference ladder resistor of 110 n has to be chosen.

In [16] an other way to calculate the maximum input feedthrough is described, the results are equal.

5.4 Input feedthrough in C++

The input feedthrough routine in C++ calculates the voltage on a node of the reference ladder, by
filtering the input signal. The fourth order filter of section 5.1 is used. The input feedthrough routine
performs 2n - 1 filtering functions. Therefore the following general formula is defined for the input
feedthrough:

Vre!x[clklength . clkperiods] = INP ..FT(Vin[clklength . clkperiods], R, 0, x) (21)

The input variables of the input feedthrough routine (INP ..FT) are the array with the input signal
with clklength . clkperiods elements (Vin), the value for R, 0 and the node in the reference ladder
(x). This function is used 2n - 1 times every simulation with variating values for x from 1 to 2n - 1.

The curves of Figure 14 have an increase of 20 dB per decade within the Nyquist bandwidth of the
ADC. A first order high pass filter has also an increase of 20 dB per decade. However it is not possible
to model the fourth order transfer function of the model with a first order transfer function, because
the phase shift of the fourth order transfer function is larger than 90 degrees.
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5.5 The total reference ladder

The reference ladder network in the ADC model, see Figure 9, consists out of the input feedthrough
and the reference ladder with mismatches. The reference ladder with mismatches calculates the DC
voltages on the nodes in the reference lad~er. In the input parameter list is saved the nominal value
of a resistor and the standard deviation of the resistors. At the beginning of a simulation 2n resistor
values are randomly generated on a Gaussian way with a mean of the nominal value and the adjusted
standard deviation. Then the DC reference voltages are calculated with these resistor values.

The total reference voltages are these DC voltages in addition with the input feedthrough.

file:/imec/other/adsba/STUDENTS/dejong/c/include/ref-ladder.h
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6 The comparator

The comparator is the most important and difficult part of an ADC. This chapter describes various new
methods to model the behavior of a comparator.

6.1 Differential equation model with a sine function

In this section the comparator behavior is modeled by studying the relation between the Output voltage
(va) of the comparator and its derivative to time (dvajdt). First the model is described and afterwards
simulation results are given.

6.1.1 The model

The basic comparator operation is modeled with a nonlinear differential equation:

(22)

with the comparator output va(t) and the differential input current gmin' (Vin(t) - vre/(t)) as ia(t) ­
ib(t), see Figure 4. The regenerative comparator has two stable positions (VSS and VDD). and one
meta-stable position (VDD/2) to which the comparator is reset every clock period. In (22) f > 0 in
the meta-stable point and this first derivative describes the exponential growth in the beginning of the
comparison phase. The function f = 0 and the derivate j < 0 in the stable points.
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Figure 15: Sine wave dependency of fJva(t)jJt as function of va(t) is feasible as modeling function.

In HSPICE the transients are studied for different input voltages at the comparator outputs. These
functions are differentiated with respect to time and plotted in Figure 15 as function of the output
voltage Va (t). The sine wave like behavior as depicted in Figure 15 is modeled with physical input
parameters which define the speed of the comparator:

fJ va(t) = -A. sin (27r' va(t))
fJt VDD

18
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6va(t) -A. 271" . va(t)
-6-t-Iva(t)-to ~ V DD (24)

In [8] it is proven that:

271"A·va(t) = gmr . v (t) => A = gmr .VDD
VDD cae 271"

(25)

If (25) is filled out in (23) and corrected for the difference in value of the input currents, the suggested
differential equation for modeling the behavior of the comparator during the compare phase is:

(26)

The start value of Va is determined by the difference ia(t) - ib(t), this is the differential current from
the input stage to the regenerative comparator, ia(t) - ib(t) = gmin . (Vin(t) - vref(t)). So different
input values result in different time delays at the output of the comparator. It is also seen that the
input difference ia(t) - ib (t) has still influence during the comparing. The parameter gmin is the
transconductance of the input stage, which is equal to the gm of transistor Ml in the comparator
circuit, so gm is a constant and independent of the input frequency. gmr is the transconductance of
the regenerative comparator. In the circuit of Figure 4 is gmr given by gmr = gm7 + gm8 + gm6,
according to [17]. C is the total capacity on a regenerative node including the capacitive load of the
output latch.

6.1.2 Simulation results

The parameters gmin, gmr and C are extracted from HSPICE operating point simulations only once
and inserted into the model. The differential equation (26) is efficiently solved at runtime in the C++
program. The time domain results are compared with HSPICE simulations in Figure 16 and show a
good agreement.

Line:: HSPICE

Dotted;= Model

2 4 6

--> t (sec) x10·"

2.6

3.2

3.0,

Figure 16: Transients of C++ model and HSPICE simulations agree well for the positive and negative
edges.
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Both graphs start at VDD/2 (= 1.65 V) and end at VSS or VDD (= 3.3 V). The maximum
differential input signal is set to 1 Vpp (input range flash ADC). With this input voltage the comparator
reacts fast, as shown in Figure 16. Further, it is seen in this figure that if the input signal is almost
equal to the reference voltage, then the comparator reacts much slower. During this small value for Va
the current difference ia(t) - ib(t) can still influence Va and can cause an error in the output code of
the ADC. Note, the logarithmic dependancy of the delay on the input voltage difference.

file: /imec/other/adsba/STUDENTS/dejonglc/include/comparator.h

6.2 Comparator with 4-MOS model

In this section is described another way to model the output transients of the regenerative comparator.
First the model is described in section 6.2.1 and next simulation results are given in section 6.2.2.

6.2.1 The model

The basic circuit of a regenerative comparator consists of two inverters. A NMOS and a PMOS form
an inverter. A new model is presented in Figure 17, that is named 4-MOS model. The currents from
the transconductance are modeled with the current sources i a and i b • The speed of the regenerative
comparator is determined by the total capacitances (Ca and Cb) on the output nodes A and B. This
model calculates the current that loads the capacitances, in order to calculate the output voltage (VA

and VB).

VDD

VA---I
® 1----1'-----.-----,-------1

I----Vs
®

VSS

Figure 17: The macromodel used for the 4-MOS model.

This model is used to describe the behavior of the circuit of Figure 4. As is seen the transistors M8
and M9 of this circuit are not modeled, which can cause deviations in the results.

The model starts in the meta-stable situation, va(O) = Vb(O) = VDD /2. First it calculates the current
through the capacitances, iCa and iCb. This is the current from the PMOS minus the current trough
the NMOS and the transconductance, see the following equation:

(27)

(28)

Secondly a value for dv / dt is calculated with the formula: ic = C . dv / dt. Finally, the next value for
Va,k+l and Vb,k+l is calculated, with the following formula:

dVa dVb
Va k+l = Va k + -d . Tsim and Vb k+l = Vb k + -d . Tsim, , t "t

20



Tsim is the simulation time step. This process is repeated, until Va and Vb have reached Vss or VDD.
Two transistor functions, iN and ip, are defined, that calculate the drain current as a function of Va and
Vb. These functions use the familiar MOS model with three working regions, subthreshold, linear and
a saturation region. The transistor function, iN, for a NMOS is given by:

(29)

The values for (3 and VT are extracted from HSPICE. The transistor function, i p is similar to the iN,

only v gs and Vds are replaced with VDD -vgs and VDD -vgs , in such a way that ip becomes a function
of Va and Vb. The dv / dT is given by:

dVa,k _ -iN (va,k, Vb,k) + i p (Vb,k, Va,k) - i a

dt C1

dVb,k -iN (Vb,k, Va,k) + ip(Va,k, Vb,k) - ib
=-----'----'----'--'--'---'----c::--.:........:..!....-C--'-'-'----

dt C2

(30)

(31)

Thus, by starting with va(O) = Vb(O) = VDD/2 and repeating formula (30), (31) and (28) the subse­
quent transient voltages for Va and Vb are calculated.

6.2.2 Simulation results

The values for C, (3 and VT are extracted from HSPICE and inserted in the model. This model is
programmed in C++. The first comparison of the HSPICE and C++ was not satisfying. A better
matching was found with an other value for (3. The transients with an adapted (3 are shown in Figure
18.
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Figure 18: Transients of the 4-MOS model and HSPICE (a) Negative slope (b) positive slope.

This figure shows that the 4-MOS model can simulate the transients of HSPICE very well. The devia­
tions in the (3 from HSPICE and the adapted value in the C++ model can be explained by the following
reasons. The transistors M8 and M9 of Figure 4 are not taken into account. The capacitance of Ca and
Cb are dependent on the voltage across the capacitors.
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The disadvantage of this model is that the parameters in this model can not directly be calculated or
extracted from HSPICE. The calculation of the parameters is done by trial and error. Therefore this
model is no subject for further study.

file: /imec/other/adsba/STUDENTS/dejonglc/include/comparator.h

file: /imec/other/adsba/STUDENTS/dejonglmatlab/gerd/mosx4.m

6.3 Comparator model with filter

The study of the models from section 6.1 and 6.2 resulted in some recommendations for a new model,
which is presented in this section.

6.3.1 The model

The switch of the comparator does not open in an infinite small time. During the opening of the switch
and while the regeneration starts, the input signal still has some influence on the regenerative nodes.
Especially when the input is changing fast. For example: The input voltage is very small at the start
of the compare phase, and then changes rapidly from sign, the comparator can give the wrong output
value. No clear simulation results show this effect.

The influence of the input signal after the clock instant is taken into account in the models from section
6.1 and 6.2. These models also simulate the complete output transients very good. However the shape
of the output transient is not interesting, because only the final digital output (high/low) is of interest.

However the delay from the input nodes to the regenerative nodes is not considered. The input stage
is modeled by the constant value of the transconductance, gmin. The model in this section only takes
into account the filtering function of the input stage and not the shape of the transient or the influence
of the input during the beginning of the compare phase.

The regenerative comparator amplifies the voltage difference between the regenerative nodes (nodes
A and B in Figure 4), that is present at the beginning of the compare phase. The comparator model
presented in this section uses the transfer function from the input voltage to the voltage difference on
the regenerative nodes. Figure 19 shows the complete model.

Inputstage filter

H(s) Vab(s)
Vin(s)-V",,(s)

Figure 19: The comparator model with the input stage filter and an ideal comparator.

The voltage difference between the regenerative nodes is named Vab (t) (= Va (t) - Vb (t)). An ideal
clocked comparator is connected to the output of the filter. HSPICE calculated the transfer function
from the input voltage difference to the voltage difference between the regenerative nodes (H(s)), see
Figure 20.

A third order IIR filter is fitted on the HSPICE curve. This third order filter is implemented in C++.
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The curve is almost flat for frequencies beneath 200 MHz. The phase shift at 200 MHz is only 0.35
degrees. However simulation showed, that this small phase shift is very important.

6.4 Conclusions

The models from section 6.1 and 6.2 describe the transient of the output of the comparator very good,
however it has no importance in the ADC model. Only the final output codes of the comparator are
interesting. These models have a constant value gmin for the input stage, and take into account the
effect of the input signal at the start of the compare phase. Simulations showed that this effect is
marginal. The filtering of the input stage before the actual comparison is more important and has more
influence on the output code.

This conclusion is only valid for this comparator circuit in HSPICE. In other situations it may be
possible that an ideal comparator is not sufficient and an entirely different model is needed.

The model from section 6.3 models this filter function. The regenerative comparator is modeled by a
simple ideal comparator, in contrast with the models of sections 6.1 and 6.2, that unnecessarily model
the output transient of the regenerative comparator. Simulations showed, that the model from section
6.3 is much better. Therefore only this model is used from now on.

The resistance of the clock transistor is small during the reset phase and large during the compare
phase. When the compare phase starts, the resistance changes gradually. So the regeneration starts
also gradually. This effect is not modeled in any of the models in this chapter.

23



7 Clock jitter

The modeling of clock jitter in an ADC is treated in this chapter. Section 7.1 describes the theory of
clock jitter. This theory is only a glance at the complicated origin of jitter. In section 7.2 the actual
modeling of the clock jitter is described.

7.1 Jitter in theory

This section is only an introduction to clock jitter theory, because it is very difficult and is beyond the
scope of this report. The theory and the references can be used as a beginning for further study.

There are two types of jitter in an ADC. One is the instability in the phase (phase noise) of the clock
signal, the other is the internal jitter of the comparator and the SIH. The phase noise of the clock signal
is caused by the oscillators and frequency dividers. First, in section 7.1.1 the phase noise from the
oscillator is described. The influence on phase noise of a special type of frequency divider, a PLL, is
described in section 7.1.2. In section 7.1.3 the internal jitter is explained. A maximum allowable value
for the clock jitter is defined in section 7.1.4. Formulas to calculate the phase noise power at the output
are given in section 7.1.5.

7.1.1 Phase noise in the oscillator

The output of an ideal sinusoidal oscillator can be characterized with Vout = A cos(wot +¢). However
in a practical oscillator the output is given in a more general way by:

Vout(t) = A(t) . j[wot + ¢(t)] (32)

The fluctuations of the amplitude (A(t)) and the phase (¢(t)) are caused by noise in the oscillator. The
fluctuation of the phase is called "phase noise". The phase noise is the interesting part, because the
influence of the amplitude fluctuations is reduced by amplitude limiting mechanism. The most used
way to characterize the phase noise is by looking at the frequency spectrum. The spectrum of an ideal
oscillator should only contain a pair of impulses at ±wo. However, by the fluctuations in the phase
and amplitude, the spectrum contains sidebands close to the oscillator frequency, see Figure 21a. The
phase noise is quantified in decibels below the carrier per Hertz (dBc), see equation (33).

L(l:lw) = 10 . log [Psideband(wo +.l:lw, 1 HZ)], [dBc] (33)
Pcarrzer

This is the ratio of the power, in a unit bandwidth (1 Hz) at an offset frequency l:lw, to the power of
the carrier Wo, see Figure 21a.

A measured spectrum of an output of an oscillator can be divided in three parts. In a part with a decline
of 1/ f3, 1/P and a constant part, see Figure 21b. Note that the frequency axis is logarithmic. The
model described in [18] and [19] calculates these curves.

7.1.2 Phase noise in the PLL

A PLL can be used to scale down the clock frequency for an ADC. It has his own influence on the
phase noise, therefore it is treated here. The phase noise at the output of a PLL, is caused in two ways.
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Figure 21: Phase noise (a) definition of phase noise (b) typical phase noise spectrum of an oscillator.

The PLL introduces phase noise itself and it shapes the input phase noise. The introduced phase noise
is generated in all the building blocks of a PLL. However the contribution of the YCO is dominant. The
phase noise of the YCO experiences a high-pass transfer function, when it propagates to the output.
The input phase noise from the oscillator is shaped by the characteristic low-pass transfer function of
the PLL. For more about noise in a PLL see [20].

7.1.3 Internal jitter

The internal jitter is caused by various effects, such as slewing dependency and finite aperture time.
The internal jitter is signal slew dependent, this is the sensitivity for variations in the rise and fall
time of the clock signal. It is not possible to take a sample in an infinite small time, there is always
some finite aperture time necessary. During this aperture time the output can still change. When
the regenerative comparator starts it's comparing, the transconductance can still inject current in the
regenerative comparator, which influences the output of the comparator. The study of a SIH is not in
the scope of this report. The S/H is implemented as an ideal SIH.

7.1.4 Maximum jitter

The maximum (~tmax) is defined as the deviation in sampling time for which the sampled value
deviates one LSB from the value at the ideal sampling instant. The maximum jitter (~tmax) is easily
calculated, with equation (34) from [21]. ~tmax is the number of bits of the ADC is n and the input
frequency is fin.

2-n

~tmax = --f­
n· in

(34)

Note that ~tmax is only dependent on the input frequency and the number of bits, which has a di­
rect relation with the value of LSB. For example, ~tmax is calculated for a 4-bit ADC with a clock
frequency of 400 MHz. Jitter has more influence at higher frequencies, so the Nyquist frequency
(fin = 200MH z) is inserted in equation (34). Then a value of lOOps is found for ~tmax.
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7.1.5 Noise power

Formulas are enumerated in this section, that calculate the Noise power in the output signal, caused by
jitter (Pj ). Noise power is caused by not taking a sample at k . T however at k . T + ti.tk. When the
input signal is Vin (t) = A cos (27f fin t) and N samples are considered, then [22] declares the following
equation:

p. = 1 _ Q(l - QN) with' Q = E(ej27rlintltk)
J N(l _ Q) . (35)

E(·) is the expected value operator. Note that the distribution of ti.tk does not have to be Gaussian.

In a situation, when the distribution (a) is Gaussian and the input is not necessarily one sine wave, the
noise can be calculated according to [23]. The Fourier transform (F(jw) of Vin must be known.

(36)

In an other situation, when the input signal is of the form Vin(t) = Acos(27fhnt) and the distribution
of ti.tk is Gaussian, the noise power is given by (see [22]):

Since the signal power is A2/2, the SNR is given by:

SNR = -10 log 2 (1 - exp( -27f2fi~a2)) [dB]

(37)

(38)

(39)

When for hn the Nyquist frequency is chosen and the Gaussian distribution is known, then the max­
imum achievable SNR can be calculated. Also the other way around, when a certain SNR is wanted,
equation (38) gives a maximum value for the variance (a) of the jitter. For example, a situation with
a 4-bit ADC with a sample frequency of 400 MHz. For the input frequency the Nyquist frequency
(Fin = 200MH z) is chosen. When a minimum SNR of 24 dB is desired, the maximum standard
deviation of the jitter is then, a = 60ps.

This model can be extended with noise caused by the finite aperture time effect (Pa ). This effect is
caused by the impossibility of sampling a signal in an infinite small time, a signal (Vin) is always
sampled during a certain aperture time (Ot). Then the output (vout) can be approximated with:

1 l tHt
/
2

Vout(t) = ~ vin(T)dT
ut t-fJt/2

A rectangular aperture window is assumed. When the input signal is given by Vin = Asin(27fhnt),
then the noise power (Pa ) according to [23] is given by:

A
2 ( ot ) 2

Pa = 2 1- sinc(27fh n"2) (40)

Finally, when the jitter ti.tk has a Gaussian distribution with a variance a2, and the aperture time is ot,
then the total noise power (PHa) caused by aperture jitter and the finite aperture time effects is [23]:
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7.2 Modeling clock jitter

In this chapter the actual modeling of the clock jitter is described. The place of the clock jitter model
in the ADC is first treated in section 7.2.1. Section 7.2.2 describes the implementation of the clock
jitter model.

7.2.1 The place of clock jitter in the ADC

When a S/H is connected to the ADC it is not necessary to add a jitter model to the comparators,
because the SIH keeps the input voltage of the comparator constant during the sampling of the com­
parator. It does not matter if the comparator takes a sample somewhat earlier or later. So, there are
two situations to be distinguished, a situation with and without a SIH. First the situation is described
without as/H.

IN

" Cornparalors

Reference ladder

Figure 22: The clock jitter in case no SIH is used.

Encoding Out

The jitter is split in two parts, a jitter caused by the clock generator (Jittercc) and a jitter caused by
the comparators itself (Jitterint). The contribution ofthe clock generator to the total jitter is the same
for all comparators. However the internal jitter of the comparators is different in every comparator, see
Figure 22. So, there is correlation of the total jitter in the comparators. This correlation is caused by
the clock generator part.

When a S/H is placed before the ADC, the situation becomes more simple. Because the SIH keeps the
input voltage of the comparator constant, which makes an accurate modeling of the jitter in the com­
parators unnecessary. So there is only one jitter model needed in the ADC, see Figure 23. Furthermore,
it is not necessary to split the jitter in a comparator and clock generator part.

7.2.2 Clock jitter implementation

There is not enough information about clock jitter at IMEC. The theory of section 7.1 does not provide
enough information to estimate the phase noise in a realistic way. However to get an impression of the
effect of clock jitter in an ADC a simple model is used, which is described in this section. The clock
jitter model is integrated in a regenerative comparator or in a SIH. The clock jitter model calculates a
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Figure 23: The clock jitter when SIR is used.

value for b.tk. The regenerative comparator or SIR uses this value to take a sample at an ideal sampling
instant plus b.tk. The calculation of the various b.tk values is performed by a random generator with
a Gaussian distribution. The choice for a Gaussian distribution is supported by [24]. However to
estimate a realistic value for the variance is not possible. First the clock jitter model is described in
combination with a regenerative comparator, then in combination with a SIR.
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Figure 24: Clock jitter model (a) in a regenerative comparator (b) in a SIR.

The clock jitter model in a comparator constructs from the input array with clklength . clkperiods
elements an output array with clkperiods elements. This output array contains the samples at the
sampling time with jitter (k· clklength +b.tk). The jitter (b.tk) is a summation of the clock generation
jitter plus the internal jitter (b.tint,i,k + b.tCG,k = b.tk). The values for b.tint,i,k and b.tCG,k are
calculated separately by a random generator. The clock jitter model is located between the input stage
filter and the ideal comparator of Figure 19. The final implementation in C++ is showed in Figure 9.

The ideal comparator uses the new sample array with clkperiods elements to calculate an output array
with clkperiods output codes of zeros and ones. Mostly, b.t is not a multiple of the simulation time
step; so the input array is interpolated to get a value for the output array.

The clock jitter model in a S/H passes the value of the input voltage at sampling time with jitter
(k . clklength + b.td to the output. The SIR keeps this value constant during one clock period, see
Figure 24b. The number of elements in the input array is equal to that of the output array. b.tk is the
total of the various jitter contributions.

file:/imec/other/adsbaiSTUDENTS/dejong/c/sample-.hold.h
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7.2.3 Conclusions

There are two situations. One with a clock jitter model for the SIH. And there is an other situation with
a clock generator with jitter and an internal clock jitter model in every comparator in case no SIH is
used.

It is difficult to give quantitative values to the jitter. A Gaussian distribution with an arbitrary variance
is chosen to model the jitter. The variances of f:1tint and f:1tCG ares saved in the input parameter list
of the c++ model.
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8 Mismatch in the comparator

The unwanted effects of mismatches in a comparator are studied in this chapter. First the theory of
mismatch is treated briefly. The main effect of mismatch in a comparator is an offset voltage at the
input. This is explained in section 8.2. Two methods to calculate the offset voltage are described in
section 8.3 and 8.4, the first method is taken from [25] and the second method is a new and faster one.
Finally some simulation results are presented in section 8.5.

8.1 Theory

Mismatch is the variation in physical quantities of identically designed components. This is caused by
random variations occurring during processing. There are several models that try to describe mismatch
in MOS transistors. The model described by Pelgrom ([26]) is used; this model uses less parameters
and is the most known. This section explains the model.

Variations in the width (W), the length (L) and the distance between two transistors (D) contribute
to the mismatch. These variations have a Gaussian distribution, with a mean of zero and a standard
deviation a. Three MOS model parameters are identified that are influenced by the variations in W, L
and D. These parameters are the threshold voltage (VT ), the current factor ({3) and the substrate factor
(K). The following formulas describe a relation between W, Land D and the variance (a2 ) of the
transistor parameters (VT , (3, K) by defining technology constants (Ax, Sx).

(42)

These variances describe the statistical behavior of the differences between two identically designed
transistors. The terms in the formulas with Sx are omitted because their impact is negligible, when
the distance between two transistors is kept below 100 /-lm. The variance of K is very small and is
therefore also left out. So the next formulas will be used in the mismatch calculation:

2 A~
a (VT) = wI ;

8.2 Mismatch in the comparator

A2
_(3

WL
(43)

Because of the differential structure of the regenerative comparator, the offset voltage of the compara­
tor should be zero. However by mismatches in the transistors, the offset voltage differs from zero.
The method described in this section ([25]) calculates the input referred offset voltage (Va!!) of the
comparator caused by the mismatches of all transistors.

First the offset voltage with no mismatches is calculated (Va!!,nominal), this should be zero. Second
the effect of every statistical variable (aVT,a (3) in one transistor on the offset is calculated separately.
One statistical variable, VT or {3, in one transistor is changed with the half of the mismatch, while
all other statistical variables are left at their mean value (0). Equations (43) gives a relation for the
difference between two transistors. Thus, by giving every transistor half of the mismatch, it is not
necessary to investigate which transistors form a pair. Then the offset voltage is calculated again. The
following formula defines the sensitivity (8Vo!! /8i). The sensitivity is the relation between the input
referred offset voltage and one changed statistical variable.
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oVo! ! Vol!,i - Vol !,nominal
~= ai

(44)

When all the sensitivities are known, it is possible to calculate the total variance of the input referred
offset voltage, by applying the following fonnula:

(45)

Where n is the number of transistors. So there are 2·n+1 separate offset voltage calculations necessary
to determine the offset voltage variance. Fonnula (45) assumes, that the mismatches are uncorrelated.
Two methods to perform these offset voltage calculations are described in the following two sections.

8.3 Offset voltage calculation method 1

In [25] a method is described to calculate the offset voltage. This method is programmed in Perl and
is described now. The program runs a lot of different HSPICE simulations with various analog input
voltages and uses the digital output.

START

o

Replace in HSPICE ~
all transistors a-G-I

with subcircuit: ,

Apply in 1 transistor 1 crVT or 1 crp
(Except in the first simUlation no mismalch)

VOrr5etmal = 1V

Vorrsetmin =-1V

Vln = (Vanllel mal + Vorlll(ll min)/2

Change V,n in HSPICE nellist

HSPICE
nellist of

comparator

Start 10 calclJate the ellecl
01 the following mismalcn.

When aD 5ensitivilies
ar9r:a1c~a18d.

Add all effects to calculate

croffset of the total comparator.

Figure 25: Program that calculates the input referred offset voltage.

In Figure 25 a flow diagram is plotted of the program. The input is a HSPICE netlist file of a com­
parator. The first step is to replace all the transistors with a subcircuit in which the mismatch can be
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adjusted, see Figure 26. The current factor l:1{3/ {3 is modeled by a current source between the drain
and the source. And the threshold voltage, VT, is modeled by placing a voltage source before the gate.

o

s

Figure 26: Each transistor is replaced by this subcircuit in order to apply mismatches to the transistor.

In the following block one mismatch is applied in the netlist, in order to calculate the offset voltage
it causes. Only no mismatch is applied in the first offset voltage calculation in order to calculate the
nominal offset (Voj j,nominal). The offset calculation starts with the initialization of two variables, an
upper boundary and a lower boundary for the offset (Voj jsetmax = IV and Voj jsetmin = -IV). Then
the middle of these boundaries is applied as input voltage of the comparator (Vin = (Vojjsetmax +
Voj jsetmin) /2) in the HSPICE netlist. Next a simulation is executed in HSPICE and the digital output
of the comparator is examined. When the output is high, the input voltage is above the offset voltage
(Vin > Voff )' So it is clear that the upper boundary can be lowered to Vin' When the output is low, the
input voltage is beneath the offset voltage (Vin < Voff)' So the lower boundary becomes Vin' So the
goal is to narrow the interval of Voj jsetmax - Voj jsetmin, while the zero crossing of the output voltage
is kept in the interval. This procedure is repeated until a sufficient accurate offset voltage is obtained.
In the program 15 iterations are used. Next the sensitivity of the offset for one mismatch is calculated
with equation 44. When all the sensitivities are calculated, the variance of the offset voltage of the
comparator is calculated with formula 45.

fi le:/i mec/other/adsba/STUDENTS/dejong/mismatch/mismatch1.perl

8.4 Offset voltage calculation method 2

In this section a new method is described to calculate the variance of the offset of a comparator caused
by mismatches. This method uses one operation point simulation per mismatch, in contrast with the
method described in section 8.3, that runs a lot of transient analysis to calculate the effect of one
mismatch.

In order to calculate the offset the regenerative comparator is simplified to a model as shown in Figure
27. The clock transistor is closed in the metastable situation and represented by a resistor Rclk. The
nodes connected to the clock transistor are called the regenerative nodes (A and B).

Block TC represents all transistors, that are between the input nodes, Vin, Vrej and the regenerative
nodes. This TC block propagates the input voltage difference to the regenerative nodes (VA - VB =
TC(vin - Vrej)).

The offset is calculated in three steps. The first step is to determine the function of TC. Second the
effect of each mismatch on the voltage difference between the regenerative nodes is calculated. Last,
all these voltage differences are calculated back to the input of the comparator with the function TC
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®

Figure 27: Model of the comparator used for the offset calculation.

and combined to the total offset of the comparator.

1. The function TC is determined by variating the input voltage difference (Vin - Vre!), while looking
at the voltage difference VA - VB. The function TC of the comparator circuit of Figure 4 is plotted in
figure 28.The figure shows several curves for the complete input range of Vin and Vre!, these curves
coincide. Only a small region around zero is interesting for the mismatch calculation. This method
uses the linear property of this region.
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Figure 28: Function TC; the relation between the differential input voltage and the differential voltage
on the regenerative nodes.

2. Both inputs are connected to a voltage source at the middle of the input range. A mismatch is applied
as described in section 8.3. Then the voltage difference between the regenerative nodes is determined
with an operation point simulation. This differential voltage is determined for every mismatch. One
operation point simulation is performed without applying a mismatch to determine the nominal offset

(Va! !,nominal).

3. All the differential voltages on the regenerative nodes are calculated back to the input using the
function TC. The formula (44) calculates the sensitivity of the input voltage for every mismatch in the
comparator. The final variance of the offset voltage of the comparator is calculated with formula (45).

This method is programmed in Perl, that automatically executes the necessary HSPICE simulations
and uses the simulation results to calculate the variance of the offset voltage.
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file:/imec/other/adsba/STUDENTS/dejong/mismatch/version2lmismatch2.perl

8.5 Simulation results

aVaIl 0.0180 V 0.0172 V

Voll,nominal 4.2.10-5 V 0
Simulation time 27 min. 30 sec.

The methods, that are described in section 8.3 and 8.4, are used to calculate the offset of the com­
parator of Figure 4. The simulation results of both methods are listed in table 2. The simulation time
for method 1 is much longer, because a lot of transient simulations are performed per mismatch, al­
though method 2 uses only one operation point simulation per mismatch. The nominal offset voltage
calculated with method 1 is not zero, so method 1 has at least an inaccuracy of 4.2 . 10-5 V.

Table 2: Simulation results of the mismatch calculations.
~ ~ method 1 I method 2 ~

The sensitivity per mismatch per method is listed in table 3. The difference between the two methods
is small. An opposite value of the sensitivity in a transistor pair is expected, because the comparator is
designed completely differential. This is not always the case for method 1. For example oVal1/OVT

for m1a (1.00 V) is not the opposite of m1b (-1.04 V). This is always correct for method 2. So the
accuracy of method 2 is bigger than the accuracy of method 1. The value of the variance of the offset
voltage of method 2 will be used in simulation.
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Table 3: Comparison of the sensitivities calculated by method 1 and 2.

Transistor OVof! /OVT oVoff/oj3
method 1 method 2 method 1 method 2

mla 1.00 1.00 0.10 0.082
mlb -1.04 -1.00 -0.081 -0.082
m2a 0.28 0.28 0.081 0.081
m2b -0.30 -0.28 -0.090 -0.081
m3a -0.34 -0.32 -0.11 -0.099
m3b 0.32 0.32 0.11 0.099
m6a -0.34 -0.33 0.12 0.14
m6b 0.33 0.33 -0.12 -0.14
m7a -0.65 -0.61 -0048 -0042
m7b 0.64 0.61 0048 0042
m8a -0041 -0040 0.23 0.25
m8b 0040 0040 -0.23 -0.25
m9a -0.038 -0.029 0.13 0.14
m9b 0.028 0.029 -0.14 -0.14

The assumption, that the mismatches are uncorrelated, is probably not correct. However there is
no information about correlation between mismatches whatsoever. The following conclusion can be
drawn: Method 2 is faster and more accurate, only a source of inaccuracy is the assumption of no
correlation between the mismatches.

The variance of the offset voltage (0.0172 V) is saved in the input parameter list of the C++ model.
Offset voltages for each comparator are generated randomly with this variance at the beginning of a
simulation. The mismatch block in every comparator block of Figure 9 adds these DC offset voltages
to the input voltage of the comparator.
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9 Calculating the ADC performance

Important specifications of an ADC are Signal to Noise Ratio (SNR) and Integral and Differential
NonLinearity (INL/DNL). They provide a quantitative measure of the performance of the ADC. These
are calculated after every simulation in C++. In section 9.1 the calculation of the SNR and also an
additional specification, the Spurious Free Dynamic Range (SFDR) is described. The calculation of
the INL/DNL is treated in section 9.2.

9.1 Signal to Noise Ratio

The SNR is the most important specification of an ADC. The SNR takes in account not only the
quantization noise but also all the non-idealities, such as distortion, nonlinearities and sampling time
uncertainty. The signal to noise ratio is the signal power (S) divided by the noise power (NADd and
is usually expressed in decibels, see the following equation.

SNR = 10.1
0

log (N:DC) [dB] (46)

(50)

When the input signal is of the form Vin(t) = A· sin(27fjt), the power is of the input signal is given
by:

A2
S = - (47)

2
The noise power is more difficult to calculate. Two DFT's are performed in order to calculate the noise
power. One DFT is calculated on the input signal and one on the output code. The two calculated
spectra are subtracted from each other. The remaining is the noise added by the ADC. The Noise
power calculation is now described in more detail.

The input signal contains clklength . clkperiods elements and the output code contains clkperiods
elements, see section 4.1. The values of the input signal at the sampling instants are used for the
calculation of the input signal spectrum. The number of values used for the input signal is in this
way equal to the number of output codes. The noise spectrum is given by calculating the DFT on the
difference between the input signal and the output code, see equation (48).

N(J) = DFT(Vin[k . clklength] - code_out[k]) (48)
clkperiods

After a DFT calculation, the results must be divided by the number of used points (cl kperiods) to get
the same voltage y-axis as in the time domain. Integrating the noise spectrum gives the noise power
added by the ADC:

rfclk/2 2
NADC = J

o
IN(J)I dj (49)

The DFT calculation is performed in C++ by a FFf, see [27]. After the noise power is calculated, the
SNR can be calculated with formula (46). The Effective Number Of Bits (ENOB) can be calculated
easily, when the SNR is known. The relation between SNR and ENOB is given by (see [21]):

ENOB = SNR(dB) - 1.76
6.02

The spectrum of the output and the SFDR are also calculated in every simulation in C++. In Figure
29 is plotted an example of an output spectrum. No windowing is applied. The frequency of the input
signal is 97 MHz and the ADC has four output bits and the clock frequency is 400 MHz.
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Figure 29: An example of the spectrum of the output code (Fin = 97MHz)

The SFDR specification is used when the spectral purity of the ADC is important. The SFDR is the
ratio between the input signal and the largest distortion component. The SFDR is 13.58 dB in the
example of Figure 29.

file:/imec/other/adsbalSTUDENTS/dejonglc/include/snr.h

9.2 INL and DNL

INL and DNL are measures for the linearity of an ADC. INL is the difference between the transition
level of an ideal ADC (Videal t) and a tested ADC (Vi). A transition level is the input voltage at which
the digital output code changes. DNL is the difference between two adjacent transition levels of the
tested ADC minus I·LSB. The transfer functions from analog input to digital output of an ideal ADC
and an ADC under test are plotted in Figure 30.

A code density calculation [28] uses a histogram to calculate the INL and DNL of an ADC. This
calculation is now explained. A triangular waveform is applied at the input of an ADC, and the number
of occurrence for every output code is counted. A histogram is composed from the counted samples
per bin. An equal number of samples per bin is expected. However when the ADC has nonlinearities,
the occurrence of an output code will change. The INL and DNL can be calculated from the histogram.

Nonlinearity in the ramp is a problem in practice, because the accuracy of the input signal must be
better than the tested ADC. Using a sine wave is a good solution. A sine wave can be generated with
very low harmonic distortion. The number of samples per bin are not expected to be equal in this
case. So the results have to be transformed back to the case with a triangular wave at the input. Most
HSPICE and C++ model simulations use a sine wave as input signal, so with a back transformation
the INL and DNL can be calculated.

The cumulative histogram is calculated from the Histogram H[j] with (51).

CH[i]=2: H [j]
j=O
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Figure 30: Transfer curve of a 3-bit ADC

Further the transition levels (Vi) are calculated with (52) or (53). Formula (52) is used for a ramp input.
Formula (53) is the back transformation, in case a sine wave is used.

Vi [i] = CH [i]

Vi [i] = -A· cos (_7f-
N
' _C_H--=[--=.i])

total

(52)

(53)

INL is the deviation between the transition level of the tested ADC and an ideal ADC expressed in
LSB, see (54).

INL [i] = Vi [i] - Videal t [i]
LSB

(54)

The ideal transient level are given by Videal t [i] = LSB . i. The expected distance between two
transition levels of a tested ADC is 1-LSB. DNL is the deviation ofthis distance expressed in LSB, see
(55) .

DNL I"i] = Vi [i + 1] - Vi [i] - LSB
" LSB

(55)

To estimate the number of samples needed for a certain accuracy formula (56) is used from [28]. The
minimum number of samples is Nand n is the number of bits of the ADC. The value of ~ can be
looked up in the table of the standard normal distribution. The confidence is 100(1 - a) with a (3 bit
precision. For example, when you want to know the INL and DNL of a 4- bit ADC with a confidence
of 95 % and with a precision of 0.1 bit, 9600 samples are needed.

(56)
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The advantage of the code density method is, that it can be perfonned at full speed, so all the dynamic
nonlinearities are taken into account. However the need for much samples for an accurate estimation
of the INL and DNL is a major disadvantage.

155 10
Code numbers

-0.3

-0.4 L-__--'---- -'-- --'

~
0.2 1\·,. /I:

I I i\: I \ •

0·'1\1\ / ~··A
en 0 ~\. J \ : I .. ..•.\ I \.
~ J \ I \ I \ I \
~ -0.1\11\I :·\\1\/·/

. i • i / I,
-0.2 I j !'r , \I

IIi Ii'
\I
Vi
f

155 10
Code numbers

0.2

-0.2

-0.3

.y-l
! I \

/\ !. \ A •
0.1 / \ 1\ /' \\/I\

i \ n I V \
en 0 J I I I I .\
~ \ I \ 1\1 I \
g \ I \1 i! \

-0.1.~ V \ I \
I I .\
\ I \
\/
\ )
\ /
V

Figure 31: An example of the results of a INL and DNL calculation.

In Figure 31 is an example plotted of an INL and DNL calculation..The mismatches in the resistors of
the reference ladder is set to 5% in this case and 400 samples are used of a 4-bit ADC.

file:/imec/other/adsba/STUDENTS/dejonglc/include/inLdnLh
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10 Simulation results

The C++ model is compared with HSPICE in this chapter. The perfonnance of the model is checked,
both the accuracy and the simulation time.

10.1 Simulation parameters

In this section all the parameters are enumerated, that have to be adjusted for every simulation. These
values can be changed easily in the C++ model.

• Timing parameters: Tduration, Tsim and Tclk

• The input signal has to be defined (vin[clkperiods . clklength]).

• The number of bits, n and the reference voltages v;.~f' Vr-;;-f

• The parameters for the input feedthrough are: Cgs of the input transistor of the comparator and
R, the resistor value of the reference ladder. The variance of the resistor values is saved in order
to calculate the DC reference voltages.

• The variance of the clock generator jitter (tltCG) and the internal jitter (tltint).

• The parameters of the comparator are the poles and zeros of the transfer function of the input
stage and the variance of the offset voltage.

These parameters are adjusted in the input parameter list, see Figure 9. A Gaussian random generator
is implemented, to choose values for the resistors in the reference ladder, the clock jitter and the input
referred offset voltage of the comparators.

file: /imec/other/adsba/STUDENTS/dejong/c/include/globals.h

file: /imec/other/adsba/STUDENTS/dejong/c/include/random.h

10.2 Accuracy

The accuracy of the C++ model is compared with the HSPICE transient simulations for a 4-bit 400
MHz ADC. To verify the accuracy, several transient simulations in HSPICE are performed for differ­
ent input frequencies. The C++ model should generate samples that accurately match the HSPICE
simulation. The input signal generated in HSPICE simulations is saved and used by the C++ model,
so both simulations use exactly the same input signal array.

The comparator of section 6.3 is used and all mismatches and clock jitter are adjusted to zero. The
length of the simulation is chosen the same for all simulations, namely Tduration = 1000 ns. The
sampling time is 2.5 ns (= T clk ), so 400 samples are generated. The simulation time step is 5 ps
(= Tsim), this results in 500 simulation points per clock period. To compare the C++ model with
HSPICE the output codes are compared, as shown in Figure 32.

In Figure 32 a part of the generated HSPICE and C++ output codes are plotted, also is plotted the
output code of an ideal quantizer. The left y-axis is the analog input voltage, the sine curve belongs to
this axis. The horizontal dotted lines are the quantization levels of the ADC. The right axis displays
the 16 digital output levels. The ADC samples the sine wave every 2.5 ns, which results in output
values indicated by a 0, 6 or x. Figure 32 shows that the ideal quantizer (x) differs 17 of the 40

40



0= C++ model;!1 = HSPICE; x = Ideal quanlizer
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Figure 32: Transient 4-bit flash ADC C++ model compared with HSPICE.

samples from the HSPICE simulations (6). Also shown is that the C++ model (0) differs one time
from HSPICE at the sample point of 90ns.
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Table 4: Percentage of wrong output codes of the C++ model and an ideal quantizer compared with
HSPICE.

Input freq. HSPICE in comparison with:
[MHz] Ideal quantizer our C++ model

9.7 17/400 0
97 153/400 6/400

147+33 132/400 3/400

In Table 4 the differences between the output codes of HSPICE and C++ are listed for various input
frequencies. The last row shows the results for the input signal Vin(t) = 0.5· cos(27f 147 ·106t) + 0.5·
cos(27f 33 . 106t).

With an input frequency of 97 MHz, 153 of the the 400 output codes of the ideal quantizer model are
different compared to HSPICE. The C++ model tracks this HSPICE output code with only 6 errors.
For low input frequencies, there is no difference between HSPICE and the C++ model.

HSPICE is compared with an ideal quantizer, because it shows that the behavior of the HSPICE model
is more complex than an ideal quantizer, so the C++ model has to include non-idealities. However the
153 different output codes do not mean that the HSPICE model is designed badly. The 153 deviations
in the code are explained by the delay from the input to the output of the ADC. This delay does not
result in a worse SNR.

The differences between the HSPICE and C++ results can be explained by the following error sources:

1. The transfer functions of the input feedthrough model of chapter 5 differ a few dB's from
HSPICE.

2. The gradual increase of the resistance of the clock transistor at the beginning of the compare
phase is not taken into account.

3. The C gs and Cds of the clock transistor inject some current into the regenerative nodes, while
the clock voltage changes.

4. Analog filters are approximated by digital filters.

The 6 errors in case a 97 MHZ input signal is used are explained in the following way: 5 errors
are caused by error source 2, and 1 error is caused by error source 1. The effect of error source 3
is marginal. No better results were obtained, when a fourth order filter for the input stage of the
comparator transfer function is used.

10.3 Simulation time

To compare the simulation CPU time results of the C++ model with full transistor-level HSPICE
transient simulations, the same time step, sample frequency and simulation length are taken as above.
All the simulations have been performed on a HP9000 design station with a HP-UXIO operating
system.

Table 5 gives an indication of the simulation speed improvement compared with HSPICE. Simulating
the 5-bit case in HSPICE resulted in memory problems. The reported simulation times in C++ don't
include the loading and saving of the input signal and output data.
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Table 5: CPU-time of C++ model compared with HSPICE.
# bits ADC HSPICE sim. C++ model

time [s] sim. time [s]

3 21,000 3.35
4 190,000 7.48
5 n.a. 15.17

The SNR calculation takes 0.01 seconds and INLIDNL calculation for a 8-bit ADC takes 0.04 seconds.
The most time consuming step in the C++ model is the filter function of the input feedthrough and the
transconductance. These functions take 0.49 seconds per comparator. The total C++ simulation time
can be approximated by the following formula:

Simulation time ~ 0.49· (2 n - 1) [sec.] (57)

n is the number of bits in the ADC. When Tsim is taken larger, the simulation time decreases and the
number of errors increases.
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11 Conclusions

In this work an efficient and accurate model for an n-bits ADC is developed. The model meets with
the assignment demands: it is flexible, efficiently implemented in C++ and based only on circuit and
device parameters. These parameters can be extracted from simple HSPICE simulations.

The feedthrough of the input signal on the reference ladder is caused by the capacitive coupling be­
tween the input nodes of the comparator, that couples the input to the resistor ladder. The input
feedthrough is dependent on the number of bits, the comparator circuit and the value of the resistor in
the reference ladder. The presented model can deal with all different combinations of these parameters.

The main effect of mismatches between transistors in a comparator is an offset voltage at the input. A
new method is described that can predict the variance of the offset voltage of a comparator in a faster
and more accurate way.

There is little published about clock jitter in an ADC. All blocks in the clock path, from the oscillator
to the ADC included, contribute to the clock jitter. A summary is given about the various aspects of
clock jitter and a realistic way to model the clock jitter is described.

The comparator is the most important part of the ADC. Three different models are studied and finally
the best model is selected. The final model consists out of an input stage filter and an ideal comparator.

To verify the validity of the model, a comparison is made with a 4 bit ADC, which is available in
HSPICE. The same input signal is applied to HSPICE and the C++ model and the output codes are
compared. The results show a good agreement between the simulated output codes of HSPICE and
the model. The model is at least 6000 times faster than HSPICE.

Finally a program is written, that determines the performance of the ADC after each simulation, by
calculating the SNR and the INL/DNL values.

It is important to be careful with applying conclusions, that are made in this report, on other ADCs,
because the conclusions are only valid on this circuit in HSPICE.

The used ADC circuit is only the base of many different ADC architectures. A real ADC contains more
additional circuits, such as interpolating, folding, SIH, differential reference ladder and integrating
resistor network. So, in a more realistic ADC with additional circuits, the needed model can be entirely
different.

Keep in mind that HSPICE gives no perfect reproduction of a real circuit, however it is the best
available way to have an impression of a real circuit. No layout of the ADC is available, so all the
effects of extra parasitics are not included. This can give rise to a complete different model.
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12 Further investigations

Subjects that can be studied as an extension of the current ADC model are listed in this chapter.

A possible way to decrease drastically the simulation time in C++, is to use larger simulation time
steps (Tsim)' However when T sim is increased, the number of errors increases also. A topic for further
investigation is the origin of the errors when Tsim is increased.

A possible explanation for the extra errors in a situation with larger simulation time steps is the inac­
curacy in the transformation of the filters. A solution for better results can be pre-warping or the use
of the Simpson integral for the s to z transformation.

The input feedthrough transfer functions are calculated with a mathematical model, however it is also
possible to calculate the transfer functions with an AC analysis in HSPICE. This should be more
accurate. It is interesting to test if these transfer functions from HSPICE AC simulations result in zero
errors caused by the input feedthrough model.

A topic for further investigation is a comparator model, that includes the gradual change of the resis­
tance of the clock transistor in the transition from reset to compare phase.

The effect of substrate noise in a comparator can be studied.
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ABSTRACT

A hierarchical high-level model of a high-speed flash
ADC is presented. The input parameter list is extracted
from a 400MHz, 4-bit, flash ADC designed in HSPICE
in a 0.35jlm CMOS technology. A speedup in simulation
time of 5000 is reported compared to the 3-bit flash ADC
HSPICE simulations. The accuracy of the model is ver­
ified with HSPICE simulations and shows a good agree­
ment.

I. INTRODUCTION

implementation in C++ the simulation time is drastically
reduced.

The paper is organized as follows. Section II gives
an introduction in the used high-level model for a flash
ADC architecture. The models for the different sub-blocks
are explained in section III, IV and V. The implemen­
tation of all these sub-blocks into the C++ model is ex­
plained in section VI. The experimental results comparing
the model with transistor level simulations in HSPICE are
given in section VII and finally conclusions are drawn in
section VIII.
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Figure 1: Hierarchical flash ADC model

II. A HIERARCHICAL HIGH-LEVEL ADC
MODEL

Evolution of deep-submicron CMOS technology has
made it possible to integrate more and more analog func­
tionality together with large digital processing systems
on a single transceiver chip. The exploration and design
of mixed-signal systems can be supported with accurate
high-level mixed-signal simulation tools. An important
building block in mixed-signal systems is an analog-to­
digital converter (ADC). However, high-speed ADC mod­
els that are supplied by commercial high-level simulation
tools [1] [2] often only take into account the nominal be­
havior (e.g. ideal sampling and quantization). As a re­
sult, the simulation results are often inaccurate, leading to
wrong conclusions/decisions at the system level.

There is a need for accurate high-level models of ana­
log blocks that can be used in a front-end architecture sim­
ulation tool [9]. For such simulation tool it is very impor­
tant that the models of the different front-end blocks can
be evaluated efficiently. The difficulty in modeling ana­
log blocks at the system level is that, while the first-order,
linear behavior is relatively easily modeled, the nonlinear
behavior requires a careful study and even advanced math­
ematical methods [6] [8]. In this paper a high-level ADC
model is presented that combines a high accuracy with
evaluation efficiency. The main advantage of this model is
that it still has a link with physical design parameters, such
as transconductances, capacitors, poles and zeros. This
makes the model also useful for top-down design. Fur­
ther, a high accuracy is obtained and due to its efficient

• MS degree student at the Eindhoven University of Technology, The
Netherlands

The modeling of important second-order effects in
ADCs is not straightforward since several of these effects
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with I = [~ ~] and B = [ _j~C j~~]
Formula (5) describes a second-order approximation

for Wk. This approximation is valid [4] if the absolute

Combining (3) with (2) according to Figure 2a results in:
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Wk = [I + B]k = I + k . B + k· (k - 1) . B . B (5)
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Figure 2: Input signal feed-through model

The formulas (3) and (4) form a system with four equa­
tions and four unknown (Vi, II, I;; , I;;). When Vi is solved
from this system, the order of the transfer-function is too
high for efficient implementation in C++. Therefore an
approximation is made:

with W = [ _j~C 1 +j~RC ]

[i:]=M'[i]
with M = [~ ~~].

Formulas (1) and (2) describe the transfer-matrix of
Figure 2b and 2c. The relation between Vi, II and Vo-'

I;; is given by formula (3):

model is subdivided in two types of blocks, see Figure 2b
and 2c. By placing k sections of Figure 2b to the left and l
sections to the right of the middle section, Figure 2c, it is
possible to calculate Vi for any tap and any length of the
ladder, according to the formula k = 2n - 1 - l.

highly depend on the architecture of the ADC. Therefore,
first the non-linearities of the simplest high-speed ADC (a
flash ADC) are studied and modeled. The high-speed flash
ADC model consists of building blocks like comparators,
a reference ladder and an encoding block, which are accu­
rately described in C++. With these basic building blocks
different high-speed ADC architectures can be hierarchi­
cally modeled on a higher abstraction level. All the sub­
blocks, as depicted in Figure 1 for a flash ADC model, are
accurately modeled with transistor and/or design parame­
ters. The ladder network model takes into account the in­
put signal feed-through and mismatches (see section III).
The most important block in the model of a flash ADC is
the modeling of a high-speed comparator and is explained
in more detail in section IV. The modeling of the encoder,
discussed in section V, can be adapted to the number of
bits, encoding method and takes into account the extra de­
lay. This model also includes error correction techniques.

As reference case to verify this model, a 3.3V 400­
MHz, 4-bit flash ADC has been designed in HSPICE in
a standard digital 0.35/-lm CMOS technology. The com­
parator architecture is based on [10] and the encoding is
described in [5]. The input model parameters for each sub­
block are derived from simple HSPICE operating point
and AC simulations.

A. Model implementation

The reference ladder model generates the 2n - 1 refer­
ence voltages for the n-bit ADC. Non-idealities of the ref­
erence ladder are subdivided into two parts: input signal
feed-through and mismatches of the resistors in the lad­
der network. First, the input signal feed-through is derived
as function of the resistor value R, the total coupling ca­
pacitance C between the input signal node and a reference
ladder tap. These parameters can be easily simulated in
HSPICE and transfered to the input parameters list of the
model. The input feed-through has a high-pass filter char­
acteristic on the reference ladder taps. The variation of
the reference levels as function of the input signal together
with the mismatch of the resistors in the reference ladder
distorts the INL and DNL performance of the ADC.

B. Input signal feed-through

The input feed-through is modeled by calculating the
transfer-function from the input signal to a node on the ref­
erence ladder. The variation of the voltage in the reference
ladder is afterwards subtracted from the input voltage of
the comparator. The model in Figure 2a is used.

The capacitor C is the total capacity between the two
inputs of a comparator. When the reference ladder is con­
nected between Vr~f and Vr-;:f' and the input voltage is

Yin' then V/ = Vr~f - Yin and Vo- = Vr-;:f - Yin. The

III. REFERENCE LADDER MODEL
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(9)
From Figure 4 it can be seen that for values of Vout(t)

in the neighborhood of ± VDD/2 the derivate c5Vout (t)/ c5t
is depending on the value of the input current. For
values Vout (t) in the neighborhood of the stable points,
c5Vout (t) / c5t is independent of the value of the input cur­
rent. If (9) is filled out in (7) and corrected for the differ­
ence in value of the input currents, the suggested differ­
ential equation for modeling the speed of the comparator
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Figure 4: Sine-wave dependency of c5Vout (t) /c5t as func­
tion of Vout (t) is feasible as modeling function

In HSPICE the transients are studied for different in­
put voltages at the comparator outputs. These functions
are differentiated with respect to time and plotted in Fig­
ure 4 as function of the output-voltage Vout(t). The sine­
wave like behavior as depicted in Figure 4 is modeled with
physical input parameters which defines the speed of the
comparator:

~8
-o.S

15 Vout
-15t- = !(Vout(t), t) (6)

with the comparator output Va(t) - Vb(t) as Vout(t) and
the differential input current gmin. (v;.ef(t) - Vin(t)) as
Ia(t) - h(t). In (6) j > 0 in the meta-stable point and
this first derivative describes the exponential growth in the
beginning of the comparison phase. The function! = 0
and the deriviate j < 0 in the stable points.
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Figure 3: General hierarchical macro model for a high­
speed comparator

A. Hierarchical comparator model

The high-speed comparator in the ADC model as
shown in Figure 1 is based on the architecture used in [10].
The proposed general comparator model consists of three
hierarchical blocks: a transconductor as input stage, a re­
generative differential comparator and output latches as
depicted in Figure 3.

B. Transconductor model

The input amplifier of the comparator amplifies the dif­
ferential input voltage and drives the regenerative part of
the comparator. The transconductor is modeled with a lin­
ear transfer function with poles and zeros. A first-order
transfer function was sufficient to model the behavior of
the transconductor accurately and is implemented in the
model as an IIR filter with coefficients that are automati­
cally derived from the user-specified poles and zeros.

C. Regenerative comparator model

The differential comparator implementation is the
main part of the model. This model takes into account
the comparator delay, its saturation behavior, as well as
mismatches. A clocked comparator has two stable posi­
tions (VSS and VDD = 3.3V) and one meta-stable posi­
tion (VDD/2) to which the comparator is reset every clock
period. The basic comparator operation is modeled with a
nonlinear differential equation:

IV. HIGH-LEVEL COMPARATOR MODEL

In the following subsections the different sub-blocks
will be discussed in more detail.

C. Mismatch

An ideal ADC has equally spaced reference-voltages.
But by variations in the resistor values of the ladder, due
to process variations, the reference voltages differ from the
ideal voltages, and cause quantization errors in the ADC.
This offset is modeled by generating 2n resistor values
having a Gaussian distribution.

values of the eigenvalues are much smaller than 1. The
approximation results in a fourth order transfer-function
for Vt/Vin, which is implemented in the model as an IIR­
filter.



is:

c5Vout (t) = faCt) - h(t) _gmr.VDD . sin (27r.Vout (t))
c5tee 27r V D D

(10)
It is seen that this equation takes into account the time
delay at the output of the comparator, which occurs due
to variations in the differential input voltage. The pa­
rameters gmin (transconductance of the input stage), gmr
(transconductance of the regenerative part of the differen­
tial comparator) and C (total capacity on the output nodes)
are extracted from HSPICE operating point simulations
only once.

delay with the same transient curve as the comparator. The
output latch has two stable positions and is clocked.

V. ENCODER MODEL

The thermometer code to binary encoding of the out­
puts of the latches is modeled with standard functions [5]
and are generalized to the n-bit case. The importance of
these functions is that they model what's happening inside
the encoder, taking into account the extra delay and error
correction methods. The implemented model can handle
different encoding schemes. Non-linearities are not taken
into account in this part of the model.
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Figure 6: Flow diagram of flash ADC C++ model is hier­
archical build-up

A. Hierarchical build-up high-level flash ADC model

Figure 6 details the hierarchical implementation of the
flash ADC in C++. The device and circuit parameters are
derived from simple HSPICE operation point and AC sim­
ulations and saved in the input parameters list.

VI. IMPLEMENTATION IN C++
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The differential equation (10) is efficiently solved at
runtime in the C++ program. The time domain results are
compared with HSPICE simulations in Figure 5 and show
a good agreement. The maximum differential input sig­
nal is set to 1Vpp (input range flash ADC). With this input
voltage the comparator reacts fast, as shown in Figure 5.
Further, it is seen in this figure that if the input signal is
almost equal to the reference voltage, then the comparator
reacts much slower and generates more errors in the output
code of the ADC.

When simulating flash ADCs for frequencies « 18/2,
the effect modeled in (10) is marginal and can be re­
placed by an ideal comparator function. The filtering taken
into account before the actual comparison is more impor­
tant and has more influence on the output-code than (10).
However, when applying fast varying analog input signals
(j ::::::: 18/2) to ADC resolutions of 4-bit and more, the
effect of (10) is noticeable and can be important. Possi­
ble errors occuring in the comparator are proportional to
the signal slope and the minimal differential input signal
value and are well covered with (10).

The output latch function is modeled only as an extra

o!------::~::a.;::_;;;;;;;;=
o 2 4 6

~ t (sec) x10-"

Figure 5: Transients of C++ model and HSPICE simula­
tions agree well for the positive and negative flanks
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Efficient clock-jitter implementation in C++

With an input frequency of 97 MHz, 38% of the the output
codes of the ideal quantizer model are wrong compared to
HSPICE. The C++ model tracks this HSPICE output code
with only 2% errors. For lower input frequencies, there is
no difference between HSPICE and our C++ model.

In Figure 8 a part of the generated HSPICE and C++
output codes are plotted for a 97MHz input signal with
a sample frequency of 400MHz. Figure 8 shows that
the ideal quantizer differs 17 of the 40 samples from the
HSPICE simulations. Also shown is that the C++ model
generates one error at the sample point of 90ns.

B. Simulation time

To compare the simulation CPU-time results of the
C++ model with full transistor-level HSPICE transient
simulations, the same time-step, sample frequency and
simulation length are taken as above. All the simulations

~ 9.7 ~ 4% 0%
~ 97 ~ 38% 2%

VII. EXPERIMENTAL RESULTS COMPARING
C++ FLASH ADC MODEL WITH HSPICE

SIMULATIONS

A. Accuracy

The accuracy of the 4-bit flash ADC model is com­
pared with the HSPICE transient simulations. To ver­
ify the accuracy, several transient simulations in HSPICE
are performed for different input frequencies. The C++
model should generate samples that accurately match the
HSPICE simulation, which is used as a reference here.
The C++ model uses exactly the same input signal array,
with the same timestep (5ps) and length (lOOOns) to make
a valid comparison. With a sampling time of 2.5ns, 400
samples are generated. In Table 1 the in differences be­
tween the output codes of HSPICE and C++ are shown.

Table 1: Percentage of wrong output codes of our
C++ model and an ideal quantizer

Input freg. HSPICE in comparison with:
[ MHz] Ideal quantizer our C++ model

and afterwards passed on to the next block. The clock­
jitter is implemented in the model just before the regener­
ative comparator. The input array has a high oversampling
rate to simulate accurately analog effects. From the in­
put array a new array is constructed, with only samples
on the sampling clock. This model works as follows: for
every sample the exact sampling time is calculated from
a random generator with a Gaussian distribution and ad­
justable variance, ~t, around the ideal clock instance (see
Figure 7). The regenerative comparator uses this new sam­
ple array as input vector. Mostly, ~t is not a multiple of
the simulation-timestep, so the input-array is interpolated
to get a value for the output-array.

Input
Voltage

'. ". array

....

J
k

Figure 7:
model

The simulation method [9] used in the C++ program is
block processing. An input array is loaded and processed

From the generated output-code, the ADC perfor­
mance parameters INLIDNL and SNR are derived accord­
ing [3]. The advantage of the hierarchical model is that it
can be easily extended to other high-speed architectures.

B. Comparator mismatch implementation

Mismatch is the variation in physical quantities of
identically designed transistors. This is caused by ran­
dom variations occurring during processing. It is impor­
tant to model mismatches in a comparator, because when
the number of bits of an ADC increases, it will become a
limiting factor.

In [7] two transistor model parameters (~Vi, ~(3) are
identified that describe the influence of mismatch in a tran­
sistor. The parameter ~f3 is the current factor and is mod­
eled by adding a current source between the drain and the
source in the HSPICE netlist, and the threshold voltage
~Vi is modeled by placing a voltage source before the
gate.

The main effect of mismatches in a comparator is that
it causes an offset voltage on the input. The method of
[8] is used to write a program that determines the vari­
ance of the offset voltage of a comparator. This program
runs several HSPICE simulations and calculates the effect
of one mismatch on the offset voltage at the time. These
mismatch simulations take several minutes, but have to be
done only once for each type of comparator used. The cal­
culated variance of the offset voltage is added to the input
parameter list of the C++ model. In the C++ model every
comparator in the ADC has a randomly generated offset
voltage, with a Gaussian distribution according to the cal­
culated variance. Also a worst case method is possible.

C. Clock-jitter implementation

A source of inaccuracy is jitter on the applied clock.
This is an external error and therefore it is discussed sepa­
rately.



VIII. CONCLUSIONS AND FUTURE WORK

Figure 8: Transient 4-bit flash ADC C++ model compared
with HSPICE

REFERENCES

[6] E. Liu and A. Sangiovanni-Vincentelli, "Verification
of Nyquist Data Converters using behavioral simula­
tion," IEEE Trans. C.A.D of integrated circuits and
systems, vol. 14, no. 4, Apr. 1995.

[7] M. J. M. Pelgrom, "Matching properties ofMOS tran­
sistors," IEEE Journal ofSolid-State Circuits, vol. 24,
no. 5, pp. 1433-1439, Oct. 1989.

[81 G. Van der Plas, J. Vandenbussche, W. Verhaegen,
G. Gielen, W. Sansen, "Statistical Behavioral model­
ing for AID-converters," Proc. IEEE Int. Conference
on Electronics, Circuits and Systems, pp. 1713-1716,
Sep. 1999.

[5] F. Kaes, R. Kanan, B. Hochet, M. Declerq,
"New encoding scheme for high speed flash
ADCs"Proceedings of the IEEE Int. Symposium
on Circuits and Systems, IEEE, NY, USA, vol. 1,
pp. 5-8, 1997.

[1] ADS, Hewlett-Packard,
http://www.tm.agilent.com/tmo/hpeesof/products/ads/

[2] Cierto NCSPW, Cadence,
http://www.cadence.com/technology/funct/products/

[3] J. Doernberg, H. Lee, D. Hodges, "Full-Speed testin
of AID converters," IEEE Journal of Solid-State Cir­
cuits, vol. 19, no. 6, pp. 820-827, Dec. 1984.

Acknowledgments
This research was sponsored by the ESPRIT SA­

LOMON project and the Flemish IWT FRONT-ENDS
project.

[41 G. H. Golub, C. F. Van Loan, "Matrix computations,"
2nd ed., Baltimore, 1990, The Johns Hopkins Univer­
sity Press.

"

11

13

12

10

,. 2

...•.... 1

•. f-c

I'

' ..,
.. '."

o - C++ model: ~ '" HSPICE; x '" Ideal uantizer

.; I;..

,
....

." .

,. . ...

. "

t' '.'
,j •

~ 40 W ~ ro M 00 100
-t t (10-9sec)

I; I

.,.

0.5 'f,

0.' 41

0.3

0.2 I , ...

0.1 ,
..

"

-0.\

-0.2
,.

-0.3

-0.' •'~
..

-0.5 V

'0 20

# bits ADC HSPICE sim. c++ model
time [h:m:s] sim. time [s]

3 5:53:50 3.66
4 52:40:18 13.15
5 n.a. 27.32

have been performed on a HP9000 design station with a
HP-UXIO operating system.

Table 2: CPU-time of C++ model compared with HSPICE

Table 2 gives an indication of the simulation speed im­
provement compared with HSPICE. Simulating the 5-bit
case in HSPICE resulted in memory problems. The re­
ported simulation times in c++ don't include the loading
and saving of the input signal and output data. The C++
4- and 5-bit ADC is simulated with the comparator model
included as discussed in section IV. In the 3-bit ADC, the
influence of this comparator model is negligible, and is re­
placed by an ideal comparator function.

In this work an efficient and accurate model for an
n-bit flash ADC is developed. The model is built up
hierarchically and can be easily extended to other high­
speed ADC architectures due to its physical, technology­
dependent model parameters. These parameters can be
extracted from simple HSPICE simulations or an experi­
enced designer can estimate them. This is the most time
consuming step; nevertheless it has to be done only once.
The total simulation time speedup factor is at least a factor
5000 compared to HSPICE. The model is in good agree­
ment with simulations in HSPICE.

Future work will incorporate extension of the hierar­
chical model to other high-speed ADC architectures like
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II. THE ADC MODEL

A. The ADC in HSPICE

In Figure I is the general architecture plotted of a flash
ADC. Three blocks can be recognized, a reference ladder,
a comparator block and a thermometer decoder. For an
n-bits ADC, the input signal is applied to 2n - 1 compara­
tors. The comparators compare the input signal with 2n -1
different reference voltages. These reference voltages are
made by a reference ladder, that consist out of 2n resistors.

The flash ADC can be extended easily for different
numbers of bits. However, a complete simulation in
HSPICE, including the encoding part, with more than 4
bits is very difficult, because of the long simulation time
which results in memory problems. The final C++ model
does not have this problem.

The comparators in a flash ADC produce an output
pattern that is known as a thermometer code. Every time
the input signal reaches a new reference level a ' l' is added
to the output code of the comparators. The thermometer

The fast growing market of telecommunications de­
mands faster and cheaper ways to design front-ends of
transceivers for digital telecommunications. This requires
a high level simulation environment, that can simulate
complete end-to-end systems, including the analog front­
end, mixed-signal and digital functionality. These tools
must be able to explore and trade-off different architec­
tures in a fast and accurate way. The Front-end Architec­
ture Simulation Tool (FAST), that is currently being devel­
oped at the MIRA group at IMEC, is such a mixed-signal
simulation tool.

The goal of this research is to make a high level model
of an n-bit flash ADC, that matches as good as possible
the transistor level circuit. The model has to include non­
idealities, such as mismatches, non-linearities, input feed­
through and clock-jitter. Only circuit and device parame­
ters can be used, in order to give a designer a suitable set
of design parameters. The model has to be efficiently im­
plemented in C++. It must be easy to change the building
blocks, number of bits and the architecture.

As reference case a 4 bit, 400MHz, flash ADC is avail­
able, which is designed in HSPICE in 0.35 p,m digital
CMOS technology. The simulation results of the C++
model must accurately match the HSPICE simulations.
First, the architecture of the ADC in HSPICE and the high­
level model in C++ are described in section II. In this sec­
tion the ADC is divided in four blocks: reference ladder,
comparator, clock-jitter and mismatches in the compara­
tor. Which are treated in sections III to VI. Simulation
results of the C++ model are compared with HSPICE sim­
ulations in section VII. Finally, conclusions are drawn in
section VIII.

I. INTRODUCTION

A high-level model of a high-speed flash ADC is
presented. The input parameter list is extracted from
a 400MHz, 4-bit, flash ADC designed in HSPICE in a
0.35p,m CMOS technology. A minimal speedup in simu­
lation time of 6000 is reported. The accuracy of the model
is verified with HSPICE simulations and shows a good
agreement.



decoder converts the 2n - 1 output codes of the compara­
tors into a normal binary code with n bits.
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B. High-level model of the ADC in C++

The simulation method used by FAST for the ADC is
called block-processing, see [1]. An input array is loaded
and processed and afterwards passed on to the next block.
In case of the ADC, an array with the analog input voltage
(Vin) is loaded and converted to an array with the digital
output code (Code_out). The number of elements of the
input array is clkperiods . clklength and the number of
output codes is clkperiods.

The proposed high-level model in C++ is depicted in
Figure 2.

A. Input signal feed-through

The input feed-through is caused by the capacitive cou­
pling of the two input nodes of the comparators, that cou­
ples the input of the ADC to the reference ladder, see Fig­
ure 1. The input feed-through is modeled by calculating
the transfer-function from the input signal to a node on the
reference ladder. The variation of the voltage in the refer­
ence ladder is afterwards subtracted from the input voltage
of the comparator. The model in Figure 3a is used.

The reference ladder network consist out of two parts
the input feed-through, see section A, and the reference
ladder with mismatches, section B.

the resistor ladder with mismatches, see section ITI.
The comparators are of the regenerative type and can

be split in the transconductor, the regenerative comparator
and the output latch. These functions are treated in section
IV

The total clock-jitter is partially generated in the clock­
generator and partially in the comparator itself. Therefore
the jitter is divided, one jitter-model in the clock-generator
and a jitter-model in every comparator. The clock-jitter is
discussed in chapter V.

The main effect of mismatches in a comparator is a
constant offset voltage at the input. The first block in the
comparator corrects the input voltage by adding the DC
offset voltage to the input voltages of the comparator. The
effects of mismatches are treated in section VI .

The decoder converts the thermometer code from the
comparators to a normal binary output code (Code.out).
The modeling of the decoder from [2] is digital and there­
fore straightforward, no further section is dedicated to the
decoder.

From the generated output-code, the ADC perfor­
mance parameters INUDNL and SNR are derived accord­
ing [3].

III. REFERENCE LADDER NETWORK

1
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Figure 2: The block-diagram of the ADC in C++.

The input of the ADC is the input array V in and a
list of device and circuit parameters. The parameters are
derived from simple HSPICE operation point and AC sim­
ulations. The device and circuit parameters are distributed
over all the blocks in the model.

The reference ladder constructs 2n - 1 different refer­
ence voltages with clklength . clkperiods elements, that
are passed on to the comparators. The reference ladder
is composed with resistors with mismatches, that make
2n - 1 DC voltages. An unwanted effect in the reference
ladder is the feed-trough from the input signal on the ref­
erence ladder. This is caused by the capacitive coupling of
the the two inputs of a comparator, that couples the input
of the ADC to the reference ladder. The variation of the
reference voltages caused by the feed-through is modeled
separately and added as extra with the DC voltages from

(a)

~l-;;-R I;"l ~l-rR kj
Y1 C~Y2 Yk YL

(b) (c)

Figure 3: Input signal feed-through calculation model.

The capacitor C is the total capacity between the two
inputs of a comparator. The value of C is the serial value of
the gate source capacitances of the differential input tran­
sistor pair. When the reference ladder is connected be­
tween Vr~f and Vr~f' and the input voltage is Vin, then



vt = Vr~/ - Vin and v;; = Vr~/ - Vin. The model is
subdivided in two types of blocks, see Figure 3b and 3c.
By placing k sections of Figure 3b to the left and l sections
to the right of the middle section, Figure 3c, it is possible
to calculate VI for any tap and any length of the ladder,
according to the formula k = 2n - 1 - l.

values are randomly generated on a Gaussian way with a
mean of the nominal value and the adjusted standard devi­
ation. Then the DC reference voltages are calculated with
these resistor values.

The total reference voltages are these DC voltages in
addition with the AC input feed-through signal.

(1)

with W = [ 1 -R ]
-jwC 1 +jwRC

[ Vk ]=M· [ VI ] (2)
ik i l

withM = [~ -R]-1 .

Formulas (I) and (2) describe the transfer-matrix of
Figure 3b and 3c. The relation between VI, il and v;;, i;;
is given by formula (3):

IV. THE COMPARATOR

The comparator is based on [5]. A regenerative com­
parator consists out of three parts, the input stage, the ac­
tual regenerative comparator and the output latch.

The input stage is a continuous time amplifier which
propagates the differential input voltage to the input of the
regenerative part of the comparator. At the clock instant
the regenerative comparator makes its outputs high or low
dependent on the sign of the applied voltage difference on
the input.

The output latch conditions the output of the regener­
ative comparator, in a way that it can be used by digital
circuits.

Combining (3) with (2) according to Figure 3a results in:

The formulas (3) and (4) form a system with four equa­
tions and four unknowns (VI, ii, it, i;;). When VI is solved
from this system, the order of the transfer-function is too
high for efficient implementation in C++. Therefore an
approximation is made:

out[k]

out[kl=high when: V..(kt»O

out[k]=low when: V..(kt)<O

V,,(t)·V..,(t) Inputstage filter V.(I).V.(t)
-----+I

H(s)

V. CLOCK-JITTER

There are two types of jitter in an ADC. One is the
instability in the phase (phase noise) of the clock genera­
tor, the other is the internal jitter of the comparator. The

Figure 4: The comparator model with the input stage filter
and an ideal comparator.

Figure 4 shows the model of the comparator. The input
stage of a comparator is modeled by a transfer function.
HSPICE calculated the transfer-function (H(s)) from the
input voltage difference (Vin(t) - vre/(t)) to the voltage
difference between the regenerative nodes (va (t) - Vb (t) =
Vab (t)) of the comparator. This resulted in a low pass filter
with the -3 dB point at approximately I GHz.

A third order filter is fitted on the HSPICE curve. This
third order filter is implemented in C++. The curve is al­
most flat for frequencies beneath 200 MHz. The phase
shift at 200 MHz is only 0.35 degrees. However simula­
tion showed, that this small phase shift is very important.
The poles and zeros are stored in the input parameter list
of the comparator

Simulations showed that it is sufficient to model the
difficult behavior of the regenerative comparator by an
ideal comparator. Simulations showed also that the mod­
eling of the input stage transfer function is much more im­
portant.

(3)

wI., = [I + B)k ~ 1+ k. B + k· (k - 1) . B· B (5)
2

with I = [~ ~] andB = [-j~C j~:C]
Formula (5) describes a second-order approximation

for Wk. This approximation is valid ([4]) if the absolute
values of the eigenvalues are much smaller than I, so at
high frequencies the approximation is not valid any more
(f > 1 GHz). The approximation results in a fourth or­
der transfer-function for vre/,;jvin, which is implemented
in the model as an IIR-filter. The values of Rand Care
stored in the input parameter list.

B. Reference ladder with mismatches

The reference ladder network in the ADC model, see
Figure 2, consists out of the input feed-through and the ref­
erence ladder with mismatches. The reference ladder with
mismatches calculates the DC voltages on the nodes in the
reference ladder. In the input parameter list is saved the
nominal value of a resistor and the standard deviation of
the resistors. At the beginning of a simulation 2n resistor



phase noise of the clock signal is caused by the oscilla­
tors and frequency dividers, The contribution of the clock
generator to the total jitter is the same for all comparators.
However the internal jitter of the comparators is different
in every comparator, see Figure 2.

of zero and a standard deviation of a. These variances de­
scribe the statistical behavior of the differences between
two identically designed transistors.

The main effect of mismatches in the transistors of a
comparator is that it causes an offset voltage at the input.
The following method calculates the variance of the input
referred offset voltage. The method is based on [7].

®_-'I
Vre,

o

s
Figure 7: Each transistor is replaced by this sub-circuit for
mismatch calculations.

Figure 6: Model of the comparator used for the offset cal­
culation.

The regenerative comparator is simplified to a model
as shown in Figure 6. The clock transistor is closed and
represented by a resistor Rclk. The nodes connected to
the clock transistor are the regenerative nodes (A and B).
Block TC represents all transistors, that are between the
input nodes, Vin, vref and the regenerative nodes. TC
is a linear amplifier, that amplifies the input voltage dif­
ference to a voltage difference between the regenerative
nodes (VA - VB = TC(vin - Vref))·

The offset is calculated in three steps. The first step is
to determine the function ofTC. Second the effect of each
mismatch on the voltage difference between the regenera­
tive nodes is calculated. Last, all these voltage differences
are calculated back to the input of the comparator with the
function TC and combined to the total offset of the com­
parator.

1. The function TC is determined by variating the in­
put voltage difference (Vin - vref), while looking at the
voltage difference VA - VB. This results in a linear rela­
tion between Vin - vreJ and VA - VB in a large enough
region around zero.

2. Both inputs are now connected to a voltage source
at the middle of the input range. Each transistor is re­
placed with the following sub-circuit in order to apply mis­
matches:

(6)

Input
Voltage

'"" array

'"

Output
array
with

clock-
! jitter

k k+1 k+2

Figure 5: Clock-jitter model in the comparator.

These formulas describe the relation between two
MOS-model parameters (VT, f3) and the variations in W
and L by defining technology constants (AI3' AVT)' The
variations in the width (W) and the length (L) have a mean

The clock-jitter model in a comparator constructs from
the input array with clklength . clkperiods elements an
output array with clkperiods elements. This output array
contains the samples at the sampling time with jitter (k .
clklength + tltk). The jitter (tltk) is a summation of the
clock generation jitter plus the internal jitter (tltint,i,k +
tltCG,k = tltk). The values for tltint,i,k and tltCG,k are
calculated separately by a random generator. The clock­
jitter model is located between the input stage filter and
the ideal comparator of Figure 4.

The ideal comparator uses the new sample array with
clkperiods elements to calculate an output array with
clkperiods output codes of zeros and ones. Mostly, tlt
is not a multiple of the simulation-time-step, so the input
array is interpolated to get a value for the output array.

It is difficult to give quantitative values to the jitter. A
Gaussian distribution with an arbitrary variance is chosen
to model the jitter. The variances of tltint and tltCG ares
saved in the input parameter list of the C++ model.

Mismatch is the variation in physical quantities of
identically designed elements. This is caused by random
variations occurring during processing. It is important
to model mismatches in a comparator, because when the
number of bits of an ADC increases, it will become a lim­
iting factor. The following formulas from [6] are used to
model the statistical effects of mismatch:

VI. MISMATCH IN THE COMPARATOR



The parameter !:i.{J is the current factor and is mod­
eled by adding a current source between the drain and the
source in the HSPICE netlist. The variations of the thresh­
old voltage !:i.VT is modeled by placing a voltage source
before the gate. Then the effect of every statistical vari­
able (lTVT ,IT,8) in every transistor on the offset is calculated
separately. One statistical variable, VT or {J, in one tran­
sistor is changed with the half of the mismatch, while all
other statistical variables are left at their mean value (0).
Equations (6) give a relation for the difference between
two transistors. Thus, by giving every transistor half of the
mismatch, it is not necessary to investigate which transis­
tors form a pair. Then the voltage difference between the
regenerative nodes is determined with an operation point
simulation. This differential voltage is determined for ev­
ery mismatch.

3. All the differential voltages on the regenerative
nodes are calculated back to the input using the function
Te. The formula (7) calculates the sensitivity of the input
voltage for every mismatch in the comparator.

(7)

When all the sensitivities are known, it is possible to
calculate the total variance of the input referred offset volt­
age, by applying the following formula:

n (( )2 (S: ) 2)2 <5Vo!! uVo!!
lTVo!! = ~ <5VT

i
lTVT,i + <5{Ji IT,8,i

(8)
Where n is the number of transistors. So there are 2 . n

separate offset voltage calculations necessary to determine
the offset voltage variance. Formula (8) assumes, that the
mismatches are uncorrelated. This assumption is probably
not correct. However there is no information about corre­
lation between mismatches whatsoever.

The variance of the offset voltage (0.0172 V) is saved
in the input parameter list of the C++ model. Offset volt­
ages for each comparator are generated randomly with this
variance at the beginning of a simulation. The mismatch
block in every comparator block of Figure 2 adds these DC
offset voltages to the input voltage of the comparator.

VII. EXPERIMENTAL RESULTS COMPARING
C++ FLASH ADC MODEL WITH HSPICE

SIMULATIONS

A. Accuracy

The accuracy of the C++ model is compared with the
HSPICE transient simulations for a 4-bit 400 MHz ADC.
To verify the accuracy, several transient simulations in
HSPICE are performed for different input frequencies.
The C++ model should generate samples that accurately
match the HSPICE simulation. The C++ model uses ex­
actly the same input signal array, with the same time step

(5 ps) and length (1000 ns) to make a valid comparison.
With a sampling time of 2.5 ns, 400 output codes are gen­
erated. All mismatches and the clock-jitter are adjusted to
zero. In Table 1 the differences between the output codes
of HSPICE and C++ are listed for various input frequen­
cies. The last row shows the results for the input signal
Vin(t) = A/2 ·cos(27f 147 .IQ6t) +A/2 ·cos(27l" 33 ·106t).

Table 1: Percentage of wrong output codes of the C++
model and an ideal quantizer compared with HSPICE.

Input freq. HSPICE in comparison with:
[MHz] Ideal quantizer our C++ model

9.7 17/400 0
97 153/400 6/400

147+33 132/400 3/400

With an input frequency of 97 MHz, 153 of the the 400
output codes of the ideal quantizer are wrong compared to
HSPICE. The C++ model tracks this HSPICE output code
with only 6 errors. For lower input frequencies, there is no
difference between HSPICE and the C++ model.

In Figure 8 a part of the generated HSPICE and C++
output codes are plotted for a 97MHz input signal with a
sample frequency of 400MHz. The left y-axis is the analog
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Figure 8: Transient 4-bit flash ADC C++ model compared
with HSPICE.

input voltage, the sine curve belongs to this axis. The hori­
zontal dotted lines are the quantization-levels of the ADC.
The right axis displays the 16 digital output levels. The
ADC samples the sine-wave every 2.5 ns, which results in
output values indicated by a 0, l:::. or x. Figure 8 shows
that the ideal quantizer (x) differs 17 of the 40 samples
from the HSPICE simulations (l:::.). Also shown is that the
C++ model (0) differs one time from HSPICE at the sam­
ple point of 90ns.

The differences between the HSPICE and C++ results
can be explained by the following error sources:

1. The transfer functions of the input feed-through
model of chapter III differ a few dB's from HSPICE.



2. The switching behavior of the regenerative com­
parator is not taken into account.

3. The third order approximation of the input stage
of the comparator transfer function is not accurate
enough.

The 6 errors in case a 97 MHZ input signal is used
are explained in the following way: 5 errors are caused by
error source 2, and 1 error is caused by error source 1. The
effect of error source 3 is marginal. No better results were
obtained, when a fourth order filter for the input stage of
the comparator transfer function is used.

B. Simulation time

To compare the simulation CPU-time results of the
C++ model with full transistor-level HSPICE transient
simulations, the same time-step. sample frequency and
simulation length are taken as above. All the simulations
have been performed on a HP9000 design station with a
HP-UXIO operating system.

Table 2: CPU-time ofC++ model compared with HSPICE.

# bits ADC HSPICE sim. C++ model
time [s] sim. time [s]

3 21,000 3.35
4 190,000 7.48
5 n.a. 15.17

Table 2 gives an indication of the simulation speed im­
provement compared with HSPICE. Simulating the 5-bit
case in HSPICE resulted in memory problems. The re­
ported simulation times in C++ don't include the load­
ing and saving of the input signal and output data. The
most time consuming step in the C++ model is the filter
function of the input feed-through and the transconduc­
tance. These functions take 0.49 seconds per compara­
tor. The total C++ simulation time can be approximated
by 0.49· (2n - 1) [sec]. When the simulation time step
is taken larger, the simulation time decreases however the
number of errors increases.

VIII. CONCLUSIONS

In this work an efficient and accurate model for an
n-bits ADC is developed The model meets with the as­
signment demands: it is flexible, efficiently implemented
in C++ and based only on circuit and device parameters.
These parameters can be extracted from simple HSPICE
simulations.

The feed-through of the input signal on the reference
ladder is caused by the capacitive coupling between the
input-nodes of the comparator, that couples the input to the
resistor-ladder. The input feed-through is dependent on the
number of bits, the comparator circuit and the value of the
resistor in the reference ladder. The presented model can
deal with aH different combinations of these parameters.

The main effect of mismatches between transistors in a
comparator is an offset voltage at the input. A new method
is described that can predict the variance of the offset volt­
age of a comparator in a faster and more accurate way.

AH blocks in the clock-path, from the oscillator to the
ADC included, contribute to the clock-jitter. A realistic
way to model the clock-jitter is described.

The comparator is modeled by an input stage filter and
an ideal comparator.

To verify the validity of the model, a comparison is
made with a 4 bit ADC, which is available in HSPICE.
The same input-signal is applied to HSPICE and the C++
model and the output codes are compared. The results
show a good agreement between the simulated output
codes of HSPICE and the model. The model is at least
6000 times faster than HSPICE.
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