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Summary

The filtered-X algorithm is a frequently used algorithm in the field of acoustic noise canceling. This
algorithm uses an estimate ofthe secondary path impulse response Hs to update the weights correctly.
To increase the robustness ofthe system online adaptation ofthis secondary path estimate is desirabie.
Furthermore it is known in literature that if the phase-error between Hs and its estimate is larger than
90 degrees, for any frequency-bin, the filtered-X algorithm becomes unstable.

If the secondary path or room acoustics change, online estimation of the secondary path becomes
necessary for stabie filtered-X algorithm. Before the research was aimed at this online modeling ofthe
secondary path, the properties of the acoustic noise canceller (ANC) are discussed first and used in
further research. Different techniques are described and a new online modeling technique is proposed.

In this report it is shown that the reverberation characteristics of the room and the secondary path
characteristics degrade the performance ofthe ANC. Ifthe frequency spectrum ofHs contains
frequency-bins where power is relatively low, at these frequency-bins the adaptation speed is slower
and lead to a larger computational error so that the final attenuation also decreases. However if the
number of loudspeakers is higher than the number of microphones, the extra secondary paths can
compensate for these frequency-bins and the performance is increases significantly. This is only
possible ifthe secondary paths don't have common frequency-bins where the power is low.

Current online adaptation techniques can be divided into two classes, namely techniques that estimate
Hs by using additive noise, and overall modeling techniques without the use of additive noise.
Disadvantage of the overall modeling techniques is the extra overhead that is necessary for the
estimation of the primary path impulse response. Furthermore this method has difficulties when
extending into a multipoint environment. The use of additive noise techniques is therefore preferred.
However this method contains additive noise in the reference signal which may be audible.

In the proposed new method the noise is added to the reference signal in each frequency bin separately
in such a way that its energy is low compared to the reference signallevel in that bin. In this way the
added noise will not significantly disturb the reference signal in an audible way. Thus only those
frequency bins ofHs are updated for which the reference signal contains relatively high energy.
Furthermore it is easy with this method to keep the phase error for each frequency-bin below 90
degrees. Simulation results show that with this method variations in both the primary and secondary
acoustic impulse responses can be modeled in a real environment.
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1.Introduction

This work was conducted in the Signal Processing group ofthe Eindhoven University of Technology.
An important part of research in this group concentrates on adaptive filters and fundamental work on
algorithms. Adaptive filters for acoustical and audio applications need the use ofreal-time
implementations and large adaptive systems. These are realized on Digital Signal Processors (DSP).

This thesis project was to design and build a demonstration setup ofvirtual sound sources. Recent
work [5, 9, 10] in the research group shows how virtual sound sources can be generated. The
demonstration setup, using digital signa1processors, was meant to demonstrate the possibilities of
high-speed processors, in combination with digital signal processing, and making the field of signal
processing more understandable to others. The virtual sound sources are developed as an application
ofthe acoustic noise canceller.

The theoretical approach of the virtual sound source is based on the acoustic noise canceller (ANC). In
section 1.2.1, the basic principle of generating a virtual sound source is described, while the relation
between a virtual sound source and ANC is discussed in section 1.2.2. In the next chapters the ACN is
described thoroughly. The generation ofvirtual sound sources is only used as an example application
and is not realized.

In chapter 2 the echo canceller is discussed and in chapter 3 this echo canceller is extended to the
single-input-single-output (1-1) ANC and the 1-2 input-output ANC. The filtered-X algorithm is used
as an algorithm for the ANC. The advantages ofthe 1-2 input-output ANC compared to the 1-1 input­
output ANC are discussed in this chapter. In chapter 4 the 2-2 input-output ANC is described. The
convergence properties ofthe echo-canceller are discussed in chapter 2 and for the ANC in chapter 3
and 4. The filtered-X algorithm requires an accurate estimate ofthe secondary path for stabie filtering,

, therefor online secondary path modeling techniques are desired ifthe secondary path can change.
These online modeling techniques are discussed in chapter 5.

1.1 Notations

In this report, upper-case characters are used for frequency domain and lower-case characters for time
domain signais. Furthermore, boldface characters are used for diagonal matrices and underlined
boldface characters for vectors, e.g. H = diag{H}. The transformation of a vector to a diagonal matrix
is used to provide the correct ca1culations.

.2Jr
-j-nm

The only exception is the Fourier matrix FN that has elements of the form eN, with N the

transformation length. For example: H =F· h, with H = (Ho, H\,..HN_1Y and h = (h[k], h[k-l], ..h[k­
N+ I]Y, where (.Y denotes the transpose.



1.2 Virtual sound sourees and acoustic noise cancelIer

1.2.1 Generation of virtual sound sourees

In a nonnal two-Ioudspeaker stereo-setup a listener willlocalize sounds that are produced by those
loudspeakers as coming from between those loudspeakers. Ifthose two loudspeakers are very close
(e.g. in a TV) all sounds are perceived as coming out ofthe TV. This is not desired because the stereo
effect decreases. In an ideal situation sounds are localized by a listener as coming from an arbitrary
point in a room without changing the positions ofthe loudspeakers. This is possible ifthe input signals
of the loudspeakers are altered such that the sounds are localized by a listener as coming from an
arbitrary point in the room. Such a point is called a virtual sound source because this sound source is
not physically available, but is created at that point using real sound sources at other points. The
virtual sound sources can be generated ifthe signals that drive the loudspeakers are filtered correctly,
this means that the two loudspeakers produce the same sound pressures on the ears of a listener as a
sound source on a virtual point produces. The sound pressures on the ears are measured with
microphones and converted to signaIs.

In a nonnal stereo-setup 2 loudspeakers are available. With these two loudspeakers a virtual sound
source is created for 1 listener while the listener has 2 ears to localize the sound source.

Mathematically the filters that drive the loudspeakers can be described easily, but the implementation
of the filters is more difficult as will be explained in the next chapters. Equations for the sound
pressures on the ears of a listener can be derived using figure 1.1. In this figure the input signal x[k] is
directly connected to the loudspeaker at the virtual point Lp, the signals that drive both loudspeakers LI
and Lr are respectively filtered with impulse responses ID and ~. The sound pressures at both
microphones (MI and M r at the position of a listener ears) are measured and converted to respectively
rl[k] and rr[k].

Furtheron the loudspeaker at the virtual point Lp is called the primary sound source and the
loudspeakers Lr and LIare called the secondary sound sources. By this the transfer functions ~I and
~r are the primary paths and hu, hrl, hlr and hrr are the secondary paths. ~I is the transfer function
from primary source Lp to the left microphone MI, ditto for ~r' J!ll is the transfer function from left
secondary sound source LIto the left microphone MI, ditto for hrl, hlr and hrr. These primary and
secondary paths not only describe the acoustical transfer functions from loudspeaker to microphone,
but also the non-idealities of DIA and AID-converters and non-linearity's of loudspeakers and
microphone (-amplifiers).
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x[k]

Figure 1.1. Virtual sound source setup

The measured signals r,[k] and rl[k] can be separated in two parts: one part is produced by the primary
source and one part is produced by the secondary sources. Both parts can be described in frequency
domain by:

Rls =X·Hll,WI +X·H'I· W,

as a function ofthe secondary sources (LI and L,), and

Rlp =X·Hpl

Rrp =X·H p,

( 1.1 )

( 1.2)

( 1.3 )

( IA)

as a function of the primary source (Lp). In the case of a virtual sound source generator this leads to:
RLp = RLs and Rrp = Rrs, because the sound pressures measured on both ears coming from the secondary
sources are equal to the sound pressures produced by the primary sound source. Combining equations
(1.1), (1.2), (1.3) and (IA) results in:

These formulas can easily be rewTitten as:

Hp =Hs' W YIRT ,

( 1.5 )

( 1.6)

( 1.7)

with Hp =[HPI), Hs =[Hll
Hp, Hl,

H,I) [WI)and W Y1RT = .
H rr W,

Solving equations (1.5), (1.6) and (1.7) leads to:

3
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or equivalently:

( 1.9)

( 1.10)

This means that all transfer functions ILI, IL" Hu, H", H'I and Hl, are necessary to calculate the filters
lli and 1Yr . Because small movements of the head of a listener will change all transfer functions and
thus introduce errors, adaptive filters are required to update the transfer functions and calculate new
values for lli and 1Yr.

Ifthe filters lli and 1Yr, as calculated in (1.10), are implemented in the filters that drive the secondary
sources, the same sound pressures on the ears are produced by the secondary sound sources as the
primary source that is driven by the same signal would produce. This means that with the secondary
sound sources a virtual sound source is created on the position of the primary source (see figure 1.1).

The filters!YJ and 1Yr are not calculated using equation (1.10), but are obtained using an acoustic
noise canceller. The acoustic noise canceller is used to cancel sounds, often noise, produced by a
primary source or loudspeaker at the position of the virtual sound source. The acoustic noise canceller
uses adaptive filters to obtain -lli and -1Yr, as will be discussed in section 1.2.2. Next step is to shut
off the primary loudspeaker. The secondary loudspeakers are now driven by the input signal filtered
by !YJ and 1Yr. A listener now interprets the sounds as coming from the primary sound source. This is
called virtual sound source, because the primary sound source does not generate any sounds, all
sounds are produced by the secondary sound sources.

1.2.2 The acoustic noise cancelIer

The principle ofthe virtual sound source is based on the Acoustic Noise Canceller (ANC). The ANC
is used to cancel undesired sounds, often noise, in the ears of a listener or in microphones by
generating anti sound. The noise is produced by the primary sound source and the secondary sound
sources are used to delete this disturbing noise on the ears of a listener. The main difference between
the virtual sound source and the ANC is that the ANC cancels the sounds from a primary source, and
the virtual sound source generates the same sounds as the primary source. In case of the ANC this
leads to: RIp = - RIs and Rrp = - Rrs, this means that equations (1.7) and (1.10) can be written as:

(1.11)

( 1.12 )

with W ANC = (:: ) . Thus, the transfer functions of the ANC filters are the exact opposite of the

transfer functions of the virtual sound source filters:

W V/RT = -W ANC ( 1.13 )

The main disadvantage of the system is that the filters, !YJ and 1Yr, only hold for one position in the
room. For every new point the new filters have to be calculated. Adaptive filters are therefore desired
[20]. An introduction to adaptive filters is given in chapter 2, and in chapter 3 the filtered-X method is

presented to obtain the filters lli and 1Yr using adaptive filters.
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2. The echo cancelIer

Chapter one described the main disadvantage of the ANC namely that the system is only valid for one
position of a listener. An adaptive ANC is desired so that acoustic noise cance1ing is also possible in
other or changing positions in the room, an adaptive ANC is able to track these variations [5]. This
chapter deals with the implementation of adaptive filters and an application of these adaptive filters,
the so-called echo canceller, is discussed. In the next chapter will be discussed how this acoustic echo­
canceller can be converted to an ANC.

An acoustic echo canceller is used when a sound signal is distorted with an echo, or noise, and a priori
knowledge of this echo is available. For example in an audio conferencing application, see figure 2.1.
Audio conferencing is a setup where people at different locations try to communicate with each other
using a system of microphones and loudspeakers. The main problem in audio conferencing is that if a
person in the left room talks, he will hear an undesirable echo. This is because the sound signal x[k],
received by microphone Mi from this person, is transmitted via the right loudspeaker Lr (in the right
room) back into the microphone Mr. The signal d[k] returns to that person trough the Ieft loudspeaker
Li . The signal d[k] contains an undesired acoustic echo d1[k] and a desired audio signal dz[k] from the
right person. The undesired echo is produced by the right loudspeaker Lr and picked up by the
microphone M r with an acoustical impulse response !!ref. This echo is unwanted and it is therefore
desired to cancel this echo using an adaptive filter, before it returns to the left room. Adaptive filters
are preferred because the acoustic path can change. Thus, in an ideal situation the echo is fully
cancelled and only the desired signal dz[k] is transmitted to the loudspeaker in the left room Li .

In section 2.1, the Least Mean Square algorithm (LMS) will be used as an adaptive filter. An efficient
LMS-algorithm, the Block Frequency Domain Adaptive Filter (BFDAF) is described in section 2.2.
The convergence speed and the final error ofthis adaptive echo-cancel1er will be examined with some
experiments in section 2.3.
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acouslic echo

~L{ . M
• r

Figure 2.1. The audio conferencing problem

2.1. The LMS algorithm

With the audio conferencing setup we have seen that the existing echo signal, d.[k], in d[k] is
undesired, and must be cancelled using a priori information. Because signal x[k] is lmown, a priori
information ofthe echo is available. The adaptive filter has to delete the echo d1[k] in d[k], and only
the desired signal dz[k] has to be transmitted to L{. By de1eting an estimate of dl[k] from the signal d[k]
this can be done. The Least Mean Squares (LMS) algorithm is an adaptive algorithm that obtains an
estimate of an unlmown transfer function or impulse response by minimizing the Mean Squared Error
(MSE) (see figure 2.2). We can also say that all corre1ation between d[k] andx[k] is minimized.

Lr
x[k]

r[k]

Figure 2.2. Adaptive filter diagram

An unlmown transfer function, with impulse response !!re!> and the adaptive filter w, are driven by the

same input signal x[k], see figure 2.2. The reference signal consists of 2 parts, d[k] = dl [kJ + dz[kJ,

with d][k] the output signal ofthe unlmown filter that is corre1ated with the input signal x[k]. Signal
dz[k] is uncorrelated with x[k] and is often a desired signa!. The error signal is defined by
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r[k] =d[k] -e[k]. To estimate !!refby wit is nessecary to minimize the mean squared error E{?[k]},

with E {..} the mathematical expectation operator. The MSE can be written as

The right side of equation (2.1) can be split because d2 [k] is not correlated with dJ[k] and e[k]. The

optimal solution is when the power ofthe error signal is minimal, in this case dJ[k] ~ e[k]. Then holds

also !!ref ~ wand r[k] ~ d2 [k].

Using a FIR-filter, like a tapped-delay-line, e[k] can be written as a convolution between the input
signal and the filter coefficients:

M-l

e[k] = I w;[k]· x[k -i] = X~ [k]· w M[kl
;=0

withMthe number of filter coefficients, xM[k] =(x[k-M + l], ...,x[k-ll.x[k])' and

w M[k] =(WM-1[kl. ...,wJ [kl. Wo [k])' . In general dJ[k] can be written as a convolution ofthe input

signal x[k] and the 'infinite' acoustical transfer function !!re!

'"
dJ[k] =IhrefAk].x[k -i] =x'[k]'href[k]

;=0

(2.2 )

(2.3 )

To minimize E {?[k]} it is necessary that the gradient with respect to llif[k] is zero:

minE{r 2 [k]}:::::> 8E{r
2

[k]} ="YM =2E{r[k]. 8r[k] }=-2E{r[k]'XM[k]}=Q (2.4)
8lYM[k] 8WM[k]

The optimal weight vector then becomes:

E{dJ[k]·XM[k]}=E{XM[k]·x~[k]}'WM[k]:::::>1!=Rx 'WM :::::>lYM =R~J'I!. (2.5)

With Rx the autocorrelation matrix ofthe input signal and l! the cross-correlation vector between input
signal x[k] and dJ[k].

The update equation is obtained using an instantaneous estimate ofthe gradient (equation (2.4»:

W M[k+ 1] =W M[k] -a· "YM ~ WM [k]+ 2·a ·r[k]· XM [kl

with a the adaptation constant. We use an instantaneous estimate ofthe expectation

E{r[k] .XM [k]} ~ r[k] .XM [k] in the update of the LMS algorithm.

x[k] ---.------r---------,

(2.6 )

r[k] .-----'----------l
d[k]

Figure 2.3. Adaptive filter diagram
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Because the power ofthe output signal r[k] is directly influenced by the power ofthe input signal x[k]

it follows that the quantity of E{r[k]· XM [k]} depends on E{x~,dk]·XM [k]} =0"; [kJ . The adaptation

process is thus directly dependent on the input signal variance. To make the adaptation less dependent

of the input signal, normalization of the adaptation constant a / ct; [k] is used, with ct; [k] an estimate

of 0"; .This leads to the Normalized-LMS (NLMS) algorithm:

a
wM[k+l]=wM[k]+2'-

2
-·r[k]·XM[k]

ctAk]

For the estimate ct;[k] we use:

(2.7 )

(2.8 )

2.2. Block Frequency Domain Adaptive Filtering

In the previous section we have seen that the update equation (2.6) and the calculation of e[k] (2.2)
requires a correlation respectively a convolution operation. For large filter lengths a convolution and a
correlation operation are more efficiently calculated in frequency domain than in time domain,
because both operations are converted into elements-wise multiplication's. So, in order to reduce
complexity ofthe adaptive filter, the filter is realized in frequency-domain resulting in the so-called
Block-Frequency Domain Adaptive Filter (BFDAF) [15]. Not only the convolution and the correlation
operation are calculated in frequency domain, all operations take place in frequency domain. This
means that blocks of time samples are transformed to frequency domain samples using a Discrete
Fourier Transform (DFT).

The main advantages ofthe BFDAF, with respect to the time domain implementation, are:
BFDAF uses a block-by block update algorithm to reduce complexity. Therefore the update ofthe
filter coefficients takes place after each block.
The correlation and convolution operations are more efficient in frequency than in time-domain.
In time-domain all input samples are correlated with each other, using a DFT leads to a much
more uncorrelated system. Different stepsizes can be used for different frequency-bins to increase
convergence speed.

The Fast Fourier Transform (FFT) is used as an efficient implementation ofthe DFT. Because the
calculation time ofthe FFTIIFFT's is much longer than the other calculations, the number of
FFTIIFFT's approximates the total calculation time ofthe BFDAF system.

2.2.1. Explanation of BFDAF

The explanation ofthe BFDAF is given in [15], a short and brief overview will be given below.

The input signal x[k] ofthe LMS algorithm is used in a convolution with the filter coefficients :!YM[k]
to calculate e[k]. The convolution operator in time-domain is replaced by an elements-wise
multiplication in the frequency domain, this reduces the number of calculation operations
significantly. A DFT is used to calculate the frequency samples of the input signal and the filter

8



coefficients. Problem is that an elements-wise multiplication in frequency domain performs a cyc1ic

operation in time domain where a linear operation is needed. A linear operation is possible if an

overlap-save method is used. This method uses a vector ofB input samples ~[kL] and a filter !!M[kL]
of length M. With B=L+M-l, this method produces L correct output samples ~[kL].

This means that in each block a set of L new input samples x[k] are used, with L ~ 1, because only L
correct output samples are ca1culated. Combining a block ofL new samples

xdkL] =(x[k -L + l], .. ,x[k -l],x[k]Y and M-1 previous time samples results in the necessary

blocklength B, xB[kL] = (x[k -B + l], .. ,x[k -1],x[k]Y . Via the DFT a vector offrequency samples is

ca1culated

(2.9 )

With FBthe (BxB) Fourier matrix, XB[kL] ={XO,XI, ..,XB_I }. ~[kL] is ca1culated using a DFT of

the filter !!M[kL], padded with L-1 zeros, this results in

(2.10)

Elements-wise multiplication ofXB[kL] with ~[kL] leads to

After an inverse DFT the correct L output samples ~[kL] are available:

~L[kL]=(OM_I,L ILJ·FB-I'EB[kL].

with OM-I,L the (M-1xL) zero matrix and Iu the (LxL) identity matrix.

( 2.11 )

(2.12 )

For the update ofthe adaptive filter !!M[k] a correlation operation ofthe input signal x[k] with the error

signal r[k] is necessary (equation (2.6». This correlation is described,just like the convolution

operation, in frequency domain because of efficiency reasons. The main difference between the

convolution and correlation operation in frequency domain is the conjugate of the input block. The

approximation ofthe gradient can be ca1culated as an elements-wise multiplication of X~ [kLJ and

RB [kL] :

The update equation of the filter ~[kL] can now be written as:

2a
W B[(k +1)L] =W B[kL] + _·G· :Y:B[kL]

L

( 2.13 )

( 2.14 )

for the LMS-algorithm. The factor liL is coming from the block of L input samples. The matrix

G =FB.[0L-l,L-1 °L-I'M). FBI is used because only the M correct gradient samples are used in the
0M,L-l IM,M

update of~[kL].This is called constrained filtering. The correct gradient samples in time domain are
calculated with an inverse DFT, and then padded with zeros to ca1culate the correct gradient in

frequency domain using the DFT. Furthermore OA,B is the (AxB) zero matrix and IM,M the (MxM)
identity matrix. Leaving out this operation is called unconstrained filtering and decreases the total

number ofFFT/IFFT's by 2, and thus decreases the ca1culating time. In [5] it was stated that the

9



leaving out this operation increases the maximal attenuation because it 'increases' the filter length. It
also leads to a wrap-around error and this is not desired.

Converting the input samples from serial to parallel has as consequence that there is a processing delay
ofL samples, dL, This all results in the BFDAF system offigure 2.4.

x[k] ------,---------,

la Px ., ~ 11. .

Figure 2.4. Block Frequency Domain Adaptive Filter

2.2.2. Decorrelated LMS algorithm

In section 2.1 was discussed that the statistics ofthe input signal influence the adaptation process. To
make the adaptation process independent on the input signal statistics decorrelation of the input signal
performs wen. This leads to the decorrelated LMS algorithm:

( 2.15 )

The diagonal matrix Px represents the power spectrum of the input signal. An estimate of this power
spectrum is calculated with

Px [leL] =,8' Px [ek -l)L] + (1-,8)' (X*[kL]' X[kL]) , with 0 <,8< 1. ( 2.16 )

10



2.3. Measurenlents

In this section some important properties that describe the quality of the echo-canceller are discussed.
First, the influence ofreverberation in a room on the adaptation will be described in section 2.3.2 and
second, the influence ofthe corre1ation ofthe input signal in section 2.3.3. We will see that the
correlation of the input signal determines the speed of convergence, while the reverberation, in
combination with the number of filter coefficients, determine the maximum possible echo­
cancellation.

In section 2.3.4 the effect of unconstrained filtering, as discussed in section 2.2.1, will be discussed
and in section 2.3.5 the adaptation of the echo-canceller to a change in the acoustic path is discussed.

2.3.1. Measurement conditions

This section describes the measurement conditions. All measurements are performed in an empty
office room with room dimensions LxWxH = 4.90 m x 4.80 m x 3.10 m.

The adaptation plot is measured using the following setup:
A white noise signal will be used as an input signa!.
The sampling frequency is 8 kHz.
The distance between loudspeaker and microphone is 100 cm.
The room is empty, no curtains on the walls, one side ofthe room has windows and the other sides
are walls.
The blocklength B=4096 samples, the number ofnew samples L=2048, the filter length is thus
M=2049 samples.

The maximal echo-cancellation can be calculated using the adaptation plot, figure 2.5. The adaptation
plot gives the Mean Squared Error (MSE) as a function of time. An estimate ofthe MSE is calculated
using L samples ofthe error signal r[k]:

L-I

Z>2[kL -i]
E~ 2 [kLJ} ~ -=-i=O"-------__

L

The attenuation can be calculated as follows:

Alt =E~2[kL]}/{ }IE d 2 [kL]

E {d2[kL]} is measured ifno adaptation is used, in this case E {r2[kL]} =E {d2[kL]}.
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Figure 2.5. Adaptation plot, B=4096, L=2048 and M=2049.

The duration of this measurement is 64 seconds. The first 8 seconds no adaptation is performed, this is
done to measure E{d2[kL]} , in this case MSE=70.8 dB. After 8 seconds the adaptation starts and the
final MSE is here reached after 40 seconds. The MSE with maximal echo canceling can now be
measured, 37.1 dB. The difference between the MSE without and the MSE with echo canceling is the
maximal attenuation, 33.7 dB. The background noise is measured 27.8 dB to determine the maximal
possible attenuation, the maximal possible attenuation is 70.8 dB - 27.8 dB = 43.0 dB.

2.3.2. Influence of the reverberation on the echo-canceling

The reverberation time is a measure for the duration of the impulse response in a room. If the
reverberation time is long the duration of the impulse response will be long. The reverberation time is
the time in which the sound pressure level decreases by 60 dB. In normal office rooms, a reverberation
time of 0.5 sec is normal. In very reverberant rooms, for example a church, the reverberation can be
much longer, about 1.4-1.6 sec.

The reverberation time depends on the dimensions of the room and the absorption coefficients of the
walls, the floor and the ceiling of the room. The larger the absorption coefficients of the room, the
smaller the reverberation time, because more sound power is absorbed. The reverberation time is
independent on the position of a loudspeaker or microphone.

For the determination ofthe reverberation time the reverberation curve T(P) is used. This reverberation
curve can be written as follows:

et)

Ih;ef,i
T(p) =_i:-,---P__

Ih;ef,i
i~O

(2.19)
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This curve plots the residual sound power, L h;ef.i ' in proportion to the total sound power L h;ef,i as
i=p i=O

a function of time.

In this section a couple of measurements will be performed to show the influence of the reverberation
time on the echo canceling. The following setup is used:

A white noise signal is used as an input signal.
The sampling frequency is 8 kHz.
The distance between loudspeaker and microphone is 100 cm.
The room is empty, no curtains on the walls, one side ofthe room has windows and the other sides
are walls.

First, the unknown impulse response href is estimated using the LMS-algorithm. The blocklength
B=4096 samples, the number of new samples L=1024, the filter length M=3073 samples. The LMS
algorithm is used to estimate the unknown impulse response href. The estimated impulse response is
given in figure 2.6. The related frequency response is in figure 2.7. Note that for low and high
frequencies the magnitude of Href is strongly attenuated. The attenuation of the high frequencies is due
to the AID and D/A-converter and the attenuation ofthe low frequencies is due to the microphone's
input amplifier. For the frequencies between 350 and 3300 Hz the acoustical path from loudspeaker to
microphone is responsible. The phase plot is almost linear, the DIA and AID converters degrade the
phase for the high frequencies. If the impulse response is a pure delay the phase plot is linear.
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Figure 2.6. Estimated impulse response href
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Figure 2.8. Reverberation curve

With this estimated impulse response href the reverberation time can be extracted using the
reverberation curve, equation (2.19). This reverberation curve is given in figure 2.8. From this curve
we can easily distinguish three different parts:

The flat de1ay part, this de1ay is given by t d =dim Ic + t ADDA , with dim the distance between

loudspeaker and microphone and c the velocity of sound and tADDA represents the delay ofthe DIA
and the AID converters.
The direct sound part, this is the steep descent part in the diagram. This is the direct part of the
sound power from the loudspeaker that is picked up by the microphone without any reflection.
This depends on the position of the loudspeaker and the microphone.
The diffuse sound part, this is the part with a constant slope. This sound part reaches the
microphone with one or more reflection. The slope of the diffuse part detennines the reverberation
time and depends on the absorption characteristics of the room. In this case the reverberation time
tR = 529 ms.

Measurements with different filter lengths are perfonned to show the influence of the length of the
adaptive filter on the echo-cancellation. For different filter lengths of the adaptive filter the maximal
attenuation is measured in dB.
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In figure 2.9 the maximal attenuation ofthe echo-canceller is plotted in the same figure as the
reverberation curve. The reverberation curve plots the residual reverberation, or sound power, as a
function of time. If the adaptive echo-canceller of aspecific duration is used, the residual
reverberation can not be cancelled, and thus this residual sound power corresponds to the maximal
echo canceling. This means that we can conclude that the maximaI attenuation can directly be
extracted from the reverberation curve, the longer the duration of the filter, the greater the maximal
attenuation. However, the maximum measured attenuation is limited by the background-noise,
measured at -43.0 dB.
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Figure 2.9. Reverberation curve and maximal attenuation as a function of adaptive filter duration

The measurements are repeated using the curtains in the room, the other measurement conditions are
equal. The new reverberation curve can be extracted from the identified impulse response.

In figure 2.10 the maximal attenuation ofthe echo-canceller is plotted in the same figure as the
reverberation curve. It is obvious that the slope of the diffuse sound part of the reverberation curve is
much steeper in figure 2.10 than in figure 2.9. This means that using these curtains, the reverberation
time decreases. It can be concluded that the curtains absorb more sound power than the walls. We can
also conclude that the maximal possible attenuation is greater if the reverberation time is shorter, in
our case with the curtains. The maximum possible attenuation is again limited by the background­
noise, again at -43.0 dB.
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Figure 2.10. Reverberation curve and maximal attenuation as a function of adaptive filter duration,
room with curtains

Note that this is on1y valid ifthe input signa1 is white. Ifthe input signa1 statistics change the maximal
attenuation can change [4] and the reverberation curve isn't correct, but can be used as an
approximation for the maximal echo-cancellation.

2.3.3. Decorrelation of input signal

In section 2.2 we have introduced the BFDAF. In that section was mentioned was that a corre1ated
input signa1 decreases the convergence speed of the LMS-a1gorithm, equation (2.14). Decorre1ation of
the input signa1 results in convergence properties independent ofthe input signa1 statistics, and
therefore enhances the convergence speed. Decorre1ation of the input signa1 is performed in frequency
domain using the decorre1ated Normalized LMS-a1gorithm, equation (2.15). In this section a simp1e
examp1e is given that shows the influence ofthis input signa1 and the NLMS-a1gorithm is used to
increase convergence speed. Equation (2.16) is used to calcu1ate P..JkL].

An auto regressive input signa1 is used:

x[k] =r .x[k -1] +R .n[k]

With n[k] white noise input signal and y=0.55.

(2.20 )

The power spectrum P..JkL] ofthis auto regressive input signa1 is not flat (figure 2.11), for 10w
frequencies it has more power and for high frequency it has 1ess power than the flat power spectrum of
the white noise signal. Due to this non-flat power spectrum the LMS-a1gorithm all frequencies will not
adapt with the same speed, the higher frequencies will adapt very slow compared to the 10w
frequencies. Ifwe use the Normalized LMS-a1gorithm the adaptation uses the inverse ofthe power
spectrum P./[kL] to make the adaptation process independent on the corre1ation ofthe input signal.
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The difference in convergence speed is significantly, figure 2.12. The LMS-algorithm is slowed down
because of the corre1ated input signa!. The decorrelated LMS-algorithm is used to make it independent
on the correlation of the input signa!.
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Figure 2.12. Influence of coloured input signa1

2.3.4. Influence of unconstrained filtering

In literature [5] unconstrained filtering was already discussed. Not only does it decrease the
ca1culation time by 2 FFTIIFFT's, leaving out operation G also increases the maximal attenuation of
the echo cancelIer because it increases the filter length. Negative aspect however is that it produces a
wrap-around error. This wrap-around error is not desired.

Only if the adaptive filters are longer than the impulse responses of the system the wrap-around error
, decreases and the maximal attenuation of the unconstrained filter is equal to the constrained filter. In

this case unconstrained filtering is very useful because it decreases the calculation time significantly.
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The last B = 2*L = 4096 samples of an unconstrained LMS algorithm are saved and plotted in figure
2.13. Notice the large wrap-around error. This is because the adaptive filter!YM is not longer than the
impulse response of the acoustical path !!ref. This wrap-around error is more disturbing than a higher
attenuation. Therefore all measurements in this report will be performed using constrained filtering.
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Figure 2.13. Influence ofunconstrained BFDAF

2.3.5. Changes of the acoustic path

The acoustic path changes due to movements ofmicrophone or loudspeaker. In this section the
position of the microphone is changed in order to observe the resulting effects. The microphone
position is changed after 32 seconds. It is moved 2 cm away from the loudspeaker.

Figure 2.14 shows the attenuation ofthe echo-canceller. Ifthe microphone is moved, the MSE
increases and the echo-canceller adapts to the new position. This shows the importance of adaptive
filters. If fixed filters are used, the echo-canceller can not adapt to the new position and the MSE
remains high.

_25L-_~_~_~_~_-,-_~_---J

o 10 20 30 40 5Q 60 70
time [sI

Figure 2.14. Change ofthe acoustical path
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2.4. Conclusions

In this chapter the LMS and the decorrelated LMS algorithm are introduced. An efficient method that
uses calculations in frequency domain, BFDAF, is introduced.

The correlation of the input signal decreases the convergence speed of the LMS-algorithm.
Decorrelation of the input signal results in an adaptation process independent on the input signal
statistics. By measurements it becomes clear that the decorrelated LMS algorithm is very useful ifthe
input signal is corre1ated.

Room acoustics influence the reverberation and the remaining reverberation limits the maximal
attenuation. If the adaptive filter is long, more reverberation can be cancelled, but if it is too short, not
all the reverberation can be cancelled and the echo-canceller behaves poor. The reverberation curve
can be extracted from the secondary path impulse response. The slope ofthe reverberation curve
determines the reverberation time. If the reverberation time is high, much reverberation remains, and
the maximal attenuation decreases. The room acoustics thus have a significance effect on the
attenuation.
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3.The Filtered-X LMS algorithm

In chapter 1 we have seen that the generation of virtual sound sourees requires an adaptive ANC to
obtain the filters.ID and~.

In chapter 2 the echo-canceller was discussed and the LMS and the decorrelated LMS algorithm were
introduced. The LMS algorithm is an adaptive algorithm and can be used for identification of an
unknown transfer function. Because the adaptation process is dependent on the input signal statistics
the decorre1ated LMS algorithm was used. This algorithm decorrelates the input signal to make the
adaptation process ofthe LMS algorithm independent on the input signal statistics.

The difference between the echo-canceller and the ANC is that the ANC cancels the noise through an
acoustical path. Because of this difference we need a modified LMS algorithm, the so-called Filtered­
X LMS algorithm, for the noise-canceller. Derivation ofthis algorithm is described in section 3.2. In
section 3.3 an efficient algorithm, based on the BFDAF in section 2.2, is discussed. The different
properties ofthe filtered-X LMS algorithm are discussed using simulations in section 3.4.

Because the described ANC, section 1.2, consists of two sound sources and two cancellation points,
this is called a 2-input 2-output (2-2) ANC. As a start we will use the single-input-single-output (1-1)
model as will be discussed in section 3.1. In section 3.4.4 it is extended to a 1-2 input-output noise
canceller increasing the robustness ofthe ANC significantly. The 2-2 input-output noise canceller is
described in chapter 4.

3.1. 1-1 Input-output acoustic noise canceling model

In this section the 1-1 input-output acoustic noise canceller will be discussed. This noise canceller is
given in figure 3.1. Signal x[k] drives the primary source loudspeaker Lp directly and the secondary
loudspeaker Ls is driven by y[k] which is obtained by filtering the input signal x[k] with the acoustic
noise canceling filter ~NC' The acoustic noise canceling filter ~NC can be derived as described below.

Two equations for the contributions in r[k] can be derived easily in frequency-domain from figure 3.1:

as a function of the primary souree Lp, and

Rls = X·H s · W ANC

as a function of the secondary souree Lso

20

( 3.1 )

( 3.2)



x[k]
L.

W ANC

\

----... D------+ r[k]
hs

Figure 3.1. Single point acoustic noise cancellation diagram

In the case of acoustic noise canceling, equations (3.2) and (3.1) can be written as:

R 1p =-Rls

Combining equations (3.1), (3.2) and (3.3) results in:

See a1so equation (1.12).

( 3.3 )

(3.4 )

This means that both transfer functions, .H,., and H., need to be identified to ca1culate ~NC' If the filter
~NC is ca1culated directly from the identified transfer functions this can cause problems:

Because both transfer functions will change in time due to changes ofthe position ofthe sound
sources or cancellation point, both transfer functions need to be identified for every new position.
In general the transfer function H s has a non-minimum-phase response, direct inverting williead
to an unstable filter ~NC'
Inverting a zero in H s results in a pole in ~NC' by this ~NC is an Infinite Impulse Response (IIR)
filter. Because the used filter ~NC is a Finite Impulse Response (FIR) filter, this will introduce an
error also.

Because of these problems a least squares approach is used to obtain a stabie ~NC' Adaptive filters
will be used to obtain the acoustic noise canceling filters.

3.2. Derivation of the Filtered-X LMS algorithm

In chapter 2 the LMS-algorithm was introduced, using this algorithm it is possible to identify unknown
filters. In the situation of an acoustic noise canceller we need to obtain a filter ~NC= -Hs-1 ..H,.,. The
main problem obtaining this unknown filter is that this filter is not a physical realizable transfer
function and therefore can't be obtained with the normal LMS-algorithm. This means that a modified
LMS algorithm has to be used, the so-called Filtered-X LMS algorithm [20].

The Filtered-X LMS algorithm can be derived schematically from the LMS algorithm as shown in
figures 3.2a, 3.2b and 3.2c. In figure 3.2a, the normal LMS-algorithm, ~NC has to model the
unknown filter -H/ ..H,.,. Problem is that there exists no physical path containing this transfer function,
and thus it is not possible to obtain this filter directly using LMS. Therefore, the input signal X is
multiplied by Hs, resulting in figure 3.2b. The unknown filter HS-

1
.g, is now converted to g" this
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transfer function is physically available. If we assume that the adaptation process takes place on a
relatively 10w time scale, the system is approximately time invariant and linear. This means that the
secondary path can be placed behind filter ~NC' resulting in figure 3.2c. This is a model ofthe 1-1
input-output ANC of figure 3.1 and is known as the Filtered-X algorithm. In the update path signal X

is filtered by Us before updating the filter ~NC in which Us is an estimate ofthe real transfer

function Hs and has to be available before adaptation is possible. The necessary accuracy of this
estimation will be discussed in section 3.2.1.

x

I -I

IHs' Hp

~
12

.I E
,

+
WANC +I +

1
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Figure 3.2a. LMS-algorithm to obtain ~NC
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Figure 3.2b. Modified LMS-algorithm
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Figure 3.2c. Filtered-X algorithm

The derivation ofthe Filtered-X LMS algorithm can also start from figure 3.1, the error-signal r[k] can

be written in frequency domain as:
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(3.5 )

It is desired to minimize the mean squared error E {RI. R}, in this minimum the gradient of E {RI. R}
with respect to ~NC is zero:

(3.6 )

The adaptation algorithm uses this gradient in the update equation to minimize E{RI
. R} according to:

aE{RI[k]. R[k]}
W ANC [k + 1] =W ANC [k ] - a . =W ANC [k ] - 2 .a .E {X[k ] .H s[k] . R[k ]} (3.7)

aw ANc[k]

Because the exact expectation E{X[k] . H s[k] .R[k]} is not available an instantaneous estimate of the

gradient is used. For the secondary path aAk] we will use an estimate As [k] that is identified before

filtered-x algorithm is started. This leads to:

W ANC [k + 1] = W ANC [k ] - 2 .a . X[k ] . As [k ] .R[k ] .

With a the adaptation constant. As already discussed in section 2.1 this adaptation is directly
dependent on the correlation ofthe input X. Correlation ofthe input leads to a decrease ofthe
convergence speed. Decorrelation leads to an adaptation independent ofthe input signal's power
spectrum P;c. The decorrelated filtered-X LMS-algorithm is

W ANC [k + 1] =W ANC [k ] - 2 .a . P;c -I [ k ] . X[k ] .As [k ] .R[k ]

(3.8 )

(3.9 )

In the case of filtered-X LMS the adaptation is not only degraded by the input signal but also by the

estimate As [k] , [11,21]. Normalizing this estimate leads to an all-pass section:

Using this all-pass section leads to:

W ANc[k + 1] = W ANc[k] - 2·a· X[k]· arg(As[kJ). R[k]

the use ofthis all-pass section is already discussed in [1,2]. It is also possible to combine the
normalization and the All-Pass section:

(3.10)

(3.11)

(3.12)

Simulations will show the effects ofthis decorrelation and the use ofthe All-Pass section in section
3.4.

3.2.1. Effect of estimation errors on the Filtered-X LMS algorithm

An estimate ofthe secondary path is necessary in the update-algorithm ofthe filtered-X LMS
algorithm. The accuracy ofthat estimation is discussed in literature [10, 12 and 16]. A short

description is given here. The estimate ofthe secondary path impulse response fis can be transformed

to frequency samples fL,B =(8s,o ,lis,2 , ..,8
S
,B-I) using the (BxB) Fourier matrix FB.

For every frequency-bin 8 s,i the real secondary path transfer function can be written as:

(3.13)
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Errors in the estimation of the secondary path transfer function can be divided in two components:
1. Magnitude errors
From literature it is weIl known that magnitude errors are not so important. Ifthe All-Pass filtered-X

LMS algorithm is used, equation (3.10) and (3.11), the magnitude IBs.il is not even used.

2. Phase errors
Phase errors are more important. From literature it is weIl known that the filtered-X LMS-algorithm is
stabie only ifthe phase-error ofthe estimation is within 90 degrees for every frequency-bin. The phase
error can be written as:

(3.14 )

The phase error increases the convergence speed for aspecific frequency-bin by an approximate factor

l/cos(tpeJ [16].

3.3. Efficient Filtered-X BFDAF

In section 2.2 we have introduced the Block Frequency Domain Adaptive Filter because correlation
and convolution operations are ca1culated in frequency domain more efficient than in time domain. It
is possible to extend the BFDAF to a Filtered-X BFDAF, used for the acoustic noise canceller. Two
differences are the filtered-X box in the update path and the secondary path!l" see figure 3.3. The
filtered-X box is in figure 3.4.

Note that the filtered-X block increases the total number ofFFT/IFFT's by 3 to a total of 8. However

ifthe secondary path is fixed, the estimate :As has to be ca1culated only once, and the tota1 number of

FFT/IFFT' s is then 7.

The filtered-X box ca1culates the correct frequency samples &B[kL]. The correct time samples are
ca1culated using the overlap-save method [15]. This method uses a vector ofB input samples XB[kL]

and a filter .L,M [kL] oflength M. With B=L+M-1, this method produces L correct samples !,t;L[kL].

The correct samples are used in the overlap method to ca1culated the B frequency samples &B[kL]
using the DFT.
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Figure 3.3. Filtered-X Block Frequency Domain Adaptive Filter

Figure 3.4. Filtered-X box

3.4. Measurements and simulations

In section 2.3 some important properties of the echo canceller were discussed, the corre1ation of the
input signa1 and the reverberation in the room. In this section will become c1ear that for the acoustic
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noise canceller the secondary path is also very important. Simulations are used to demonstrate the
different aspects ofthe filtered-X LMS algorithm. Before these simulations are possible the primary
and the secondary path, n., and !l" are identified once, using the LMS algorithm of chapter 2, and used
in all simulations in this section.

In section 3.2 (with equation (3.9» was shown that the convergence speed ofthe filtered-X LMS
algorithm not only depends on the correlation of the input-signal but also on the secondary path
characteristics. This can easily be described in frequency domain. From literature [11] it is known that
at a frequency where the power is relatively low, the convergence speed decreases and it leads to a
larger computation error and thus decreases the attenuation. The convergence speed can be improved

by using an all-pass section of :as ,equation (3.11) literature [1, 2]. Simulations ofthe All-Pass

filtered-X LMS algorithm will be discussed in section 3.4.1.

In section 3.4.2 will be discussed that the maximal possible noise cancellation is Iess dependent on the
reverberation in the room but more on the secondary path characteristics, section 3.4.3. The influence
of an additional secondary path is given in section 3.4.4. In section 3.4.5 the influence of an estimation
error is demonstrated.

In these subsections we will use simulations to show the different properties, but as a start the
agreement between measurements and simulations is shown. First, measurements are performed to
identify the primary and the secondary path in the room with and without curtains, using the following
setup:

The sampling frequency is 8 kHz.
The distance between secondary souree and microphone is 100 cm.
The distance between primary souree and microphone is 150 cm.
The blocklength B=4096, the number of new samples L=2048 and thus the filter length is
A=2049.
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Figure 3.5. Measurement and simulation in room without (a) and with (b) curtains

The estimate of the secondary path is used in the measurement of the noise canceller. The secondary
and the primary path are used in a simulation. Curtains are used to show the influence of the
reverberation on the acoustic noise canceller. The measurements and the simulations both attenuate the
noise equally, see figure 3.5 (a) and (b). Note that the noise canceller attenuates more ifthe
reverberation time is shorter.
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In the subsections the identified transfer functions, hs and ,hp, are used to demonstrate the different
properties ofthe ANC and the filtered-X LMS algorithm.

3.4.1. Normalization and decorrelation properties

In this section the importance ofthe normalization and decorrelation is discussed and showed with
simulations. There are two different algorithms, as seen in section 3.2:

1. Normalization of the estimate of the secondary path function :A: s ' resulting in the All-pass

Filtered-X LMS algorithm
2. Decorrelation ofthe input signal X, resulting in the decorrelated Filtered-X LMS algorithm

First both transfer functions, ,hp and hs, are identified using the LMS-algorithm. With these identified
transfer functions simulations are used to demonstrate all effects.

Two simulations are performed to demonstrate the influence of the secondary path. First the filtered-X
LMS algorithm, equation (3.8), and second the All-Pass filtered-X algorithm, equation (3.11). The
adaptation constant is constant in both simulations. A white noise input signal is used to make the
adaptation process independent on the input signal statistics.
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Figure 3.6.lnfluence ofthe All-Pass filtered-x LMS algorithm

From figure 3.6 it becomes clear that the secondary path directly influences the speed of convergence.
Further on in this report the All-Pass filtered-X LMS algorithm will be used because of its significant
advantage compared to the filtered-X LMS algorithm.

To demonstrate the influence ofthe correlation ofthe input signal, two different simulations are
performed. First the All-Pass filtered-X LMS algorithm and secondly the same algorithm with a
decorrelation ofthe input signal, the All-Pass decorrelated filtered-X LMS algorithm. A correlated
input signal is used to demonstrate the effects ofthis correlated input signaIon the convergence speed.
The All-Pass estimation ofHs is used to make the adaptation less dependent on the secondary path
transfer function. An auto regressive input signal is used:

x[k] = r .x[k -1] +R .n[kJ
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With n[k] white noise input signal and y=O.9. The adaptation constant is constant during the
simulations.
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Figure 3.7. Influence ofthe nonnalization ofthe input signal in the All-Pass filtered-x LMS algorithm

From figure 3.7 it becomes clear that the decorrelation ofthe input signal increases the convergence
speed as expected.

Note that the maximal attenuation is not dependent on the All-Pass or the decorrelation method.

3.4.2. Illf1uence of the reverberation on the noise-canceller

In chapter 2 we have discussed that the reverberation time in a room is very important because it
detennines the maximal echo-cancellation. In this section we will see that the maximal noise­
cancellation is not only limited by the reverberation curve but is more dependent on the secondary
path characteristics.

In an ideal situation the secondary path can be represented by a pure delay thlsecondary path
frequency response is flat and has a linear phase) coming from the distance from secondary source to
microphone and the delay in the AID and the DIA converters. Ifthis delay is zero the filtered-X LMS
algorithm converts to the LMS-algorithm and the maximal noise cancellation can be derived directly
from the reverberation curve. If this delay is not zero the delay can be seen as a modeling of the
acoustical delay ofthe identification (LMS-algorithm) ofthe primary path~. This modeling virtually
extends the adaptive filter by thsIJs samples, see also [5]. This means that using this delay the maximal
noise-cancellation increases. However, ifthe delay ofthe secondary path is greater than the delay of
the primary path, ths > thp, the noise canceling decreases significantly because the first samples can't be
identified. The reverberation curve, as derived in chapter 2, changes little: the td ofthe reverberation
curve decreases by the delay of the secondary path thSl resulting in a displacement of the reverberation
curve towards the y-axe by ths'

To show the influence ofthe reverberation ofthe room on the noise cancelIer, curtains are used to
decrease the reverberation time in the room, as seen in section 2.3. Bath transfer functions, hs and~
are identified using the LMS-algorithm for the room without and with the curtains.
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First we will use the identified transfer functions of the room without curtains, with a relatively long
reverberation time. Simulations with different filter lengths are perfonned to show the influence ofthe
filter length on the maximal attenuation ofthe ANC. To make the adaptation process independent on
the secondary path characteristics the All-Pass filtered-X LMS algorithm is used to detennine the
maximaI attenuation.

In figure 3.8 the maximal simulated attenuation ofthe ANC is plotted for different filter lengths in the
same figure as the reverberation curve. For short filters the maximal noise cancellation is
approximately limited by the reverberation curve, but for long filters the maximal attenuation is
degraded by the secondary path characteristics. Increasing the filter length has no effect on the
attenuation. From literature [11] and section 3.4.3 it becomes clear that at a frequency-bin where the
power is relatively low, this leads to a larger computation error and thus a decrease of attenuation. If
the secondary path is a pure delay the reverberation curve detennines the maximal attenuation in a
noise-cancellation setup.
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Figure 3.8. Reverberation curve and maximal simulated attenuation as a function ofthe adaptive filter
duration, in the room without curtains

New simulations with a shorter reverberation time are perfonned, curtains are used to decrease this
reverberation time. In figure 3.9, the maximal attenuation ofthe noise-canceller, for different filter
lengths, is plotted in the same figure as the reverberation curve. For short filters the maximal noise
cancellation is approximately limited by the reverberation curve again, and for long filters the
maximal attenuation is degraded by the secondary path characteristics so that increasing the filter
length has no effect on the attenuation.
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Figure 3.9. Reverberation curve and maximal simulated attenuation as a function ofthe adaptive filter
duration, in the room with curtains

The maximal attenuation with curtains is larger than without curtains, about 2 dB for large filter
lengths. The shorter the reverberation time the more the maximal possible attenuation is, but the
secondary path characteristics in the room are more important then the reverberation time.

For relatively long filters the maximal attenuation ofthe acoustic noise cancelIer is degraded by the
secondary path properties, for short filter length the reverberation limits the maximaI attenuation.

3.4.3. Influence of the position of the secondary souree

In this section the position of the secondary source loudspeaker is changed to alter the secondary path
characteristics. The loudspeaker is replaced [6J, in the room with curtains, such that the secondary path
frequency response contains less frequency-bins where the power is low, because these dips decrease
the maximal attenuation, see difference in figure 3.10. The All-pass filtered-X LMS algorithm is used
to derive the maximaI attenuation. At the new position an increase in attenuation is expected and
found with simulations, figure 3.11. Notice that at the frequencies where the power is low the
magnitude spectrum ofR is high in the steady state condition. The overall attenuation is significantly
better at the new position than at the old position.
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Figure 3.11. Magnitude spectrum ofR, old position (a) and new position (b)

It is now interesting to show the maximal attenuation for different filter lengths. In figure 3.12 the
maximal attenuation ofthe noise-canceller is plotted for the new position and the old position, the
reverberation curve is plotted also. Notice the significant difference in maximal attenuation, for all
filter lengths the maximal noise cancellation at the new position is much larger than at the old position.
This means that the secondary path characteristics degrade the maximal attenuation.

For large filter lengths the maximal attenuation is lower than the reverberation curve. The
reverberation curve can be used as an approximation ofthe maximal possible noise cancellation.
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filter duration, in the room with curtains

3.4.4. Adding loudspeakers

In this section the 1-1 input-output ANC it is extended to a 1-2 input-output ANC, figure 3.13.
Because the secondary path impulse response has non-minimum phases it is impossible to realize
exact inverse filtering using the 1-1 input-output ANC, no matter how high the order of the filter is.
The exact inverse [14, 18] can be realized using multiple secondary paths, this method is based on
MINT (Multiple-input/output INverse Theorem). The exact inverse is possible ifboth transfer
functions do not have common zeros. The results ofthis theorem will be used.

x[k]

~ 0------. r[k]

~

Figure 3.13. The 1-2 input-output noise canceller

This can be evaluated in frequency-domain:

(3.16)

It is desired that the power of E {RI. R} is minimized. Minimizing this function leads to the gradient
with respect to~ and m:
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The update equations lead to:

W ,[k + 1] =W ,[kl -a' ~,[k]=W ,[kl - 2·a· E{X[k]. H,[k]· R[k]}

(3.17)

(3.18)

(3.19)

( 3.20)

In section 3.4.1 was showed that the decorrelation of the input signal X and the normalization of the
secondary path leads to an increase in adaptation speed. This leads to:

W ,[k + 1] =W ,[kl -2·a· p;\ .X[k]· arg(iI,[kJ). R[k] ( 3.21 )

( 3.22 )

An instantaneous estimate of the expectations will be used and the secondary paths are estimated
before noise canceling.

Simulations are performed to show the influence ofthe two secondary paths. Figure 3.14 shows the
influence ofthe extra loudspeaker on the noise canceling in the room without curtains. The same
measurements are performed in the room with the curtains, figure 3.15. Again it is obvious that the
maximal attenuation is better in the room with curtains and thus a shorter reverberation time. Notice
that the maximal attenuation is approximately limited by the reverberation curve.

Because inverse filtering is much enhanced using the two secondary paths, the noise canceller
performs approximately equivalent to the echo-canceller. This means that only the remaining
reverberation limits the maximal attenuation and the secondary path characteristics can be neglected.
The reverberation curve can be used as an approximation ofthe maximal attenuation. Adding more
than one extra loudspeaker would have no significance effect on the performance of the ANC for short
filter lengths because the remaining reverberation limits the attenuation. However for long filters
adding more than one extra loudspeaker would increase the maximal attenuation only little.
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3.4.5. Effect of secondary path estimation errors

The effect of secondary path estimation errors is very important, in section 3.2.1 was already
mentioned that the filtered-X LMS-algorithm is stabie only if for all frequency samples the phase error
is within 90 degrees for all frequency samples.

An estimation error is introduced to demonstrate the influence ofthis error, investigations are done in
[10, 12 and 16]. In this example, for only one frequency sample a phase-error is introduced larger than
90 degrees, this error is 180 degrees. Figure 3.16(a) shows that the attenuation is correct for the first
20 seconds, but after that the error at that specific frequency sample increases and the system becomes
unstable. Notice the relatively high error at the specific frequency in figure 3.16(b).
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This means that the estimate of the secondary path has to be accurate so that the phase error for all
frequencies is smaller than 90 degrees.
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Figure 3.16. Effect of an secondary path estimation error (a) and error spectrum ofR (b)

3.5. Conclusions

In this chapter the filtered-X LMS algorithm was introduced. This filtered-X LMS algorithm is used in
the acoustic noise canceller. An efficient method, based on BFDAF, is given in section 3.3.

With simulations the different aspects ofthe filtered-X LMS algorithm become dear. It is discussed
that the secondary path influences the maximaI noise cancellation such that for frequencies where the
power is relatively low, the convergence speed decreases and it leads to a larger computation error and
thus a decrease of attenuation. Normalization of the secondary path increases the convergence speed
because the system makes the adaptation independent on the secondary path statistics. The correlation
ofthe input signal also degrades the convergence speed, normalization ofthe input signal increases the
adaptation speed because the adaptation is not influenced by the input signal statistics.

The secondary path frequencies where the power is relatively low the maximal attenuation is limited.
Changing the position of the secondary source changes the secondary path statistics and can change
the maximal attenuation significantly.

In chapter 2 we have seen that the echo canceling can be directly determined from the reverberation
curve. This is not true in case of noise canceling. The maximal noise canceling is significantly lower
than the maximal echo canceling with the same filter length, this is because the maximaI echo
canceling is degraded by the secondary path characteristics. For large filter lengths the maximal
attenuation is limited by the influence of the secondary path and for short filter length the maximal
attenuation can be approximated by the reverberation curve.

If more than one loudspeaker are used, the inverse filtering performs significantly better than if only
one loudspeaker is used. This is because the extra secondary paths compensate for those frequencies
where the power is low. The maximal attenuation is now approximately equivalent to the echo­
canceller and is thus determined by the reverberation curve.
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4.Multiple filtered-X LMS algorithm

In chapter 3 it was discussed that the performance of the 2-1 input output ANC behaves much better
than the 1-1 input-output ANC. This is because the other secondary acoustic path accounts for the
zeros in the secondary path.

In this chapter the 2-2 input-output ANC is discussed [8, 19]. In section 4.1 the derivation ofthe
system is given and in section 4.2 the performance of the 2-2 input-output ANC is discussed using
measurements and simulations.

4.1. Derivation of the system

This section will start with recalling figure 1.1 of chapter 1. This figure 4.1 is used to derive the
equations for the 2-2 input-output ANC.

x[k]

Figure 4.1. 2-2 input-output ANC

For the signal rr[k] and rl[k] can be derived in frequency domain:

( 4.1 )

(4.2 )

As an error-criterion we will use:

(4.3 )
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It is desired that this cost function is minimized. Calculating the gradient with respect to~ and~
does this. This leads to:

(4.4 )

(4.5 )

The update equations lead to:

W r [k + 1] =W r [k] - a . .Y:r [k] R: W r [k ] - 2 .a . {X[k] .H rr [k ] .R r [k] + X[k ] .H rl [k ] .RI [k ]}( 4.6 )

WI[k + I] =WI[k] -a· .Y:1[k] R: WI[k] - 2'a' {X[k]. Hlr[k]· Rr[k] + X[k]· Hu[k]· RI [k]}( 4.7)

In chapter 2 and 3 we discussed that the decorrelation of the input signal X and the normalization of
the secondary path leads to an increase in adaptation speed. This leads to:

W r[k + I] =W r[k] - 2· a· p;l . {X[k]. arg(lirr[k]). Rr[k] + X[k]· arg(lirl[k]). RI [kl} ( 4.8)

W I [k + I] =W I[k] - 2· a· p;1 . {X[k]. arg(li Ir [k]). R r [k] + X[k]· arg(liu[k]). RI [kJ} (4.9 )

Figure 4.2 gives the update algorithm for~, the update algorithm for~ is almost equivalent, see
equations 4.8 and 4.9.

X ----1,-+1

Figure 4.2. Update algorithm for~

4.2. Measurements and sinlulations

Measurements are performed to show the agreement between the measurements and the simulations.
Before the measurements are possible the secondary paths, hm fun &1 and ful, have to be identified
using the LMS algorithm of chapter 2. Not only the secondary, but also the primary paths,,hpr and ,hpl,
are identified because these are used in the simulations. The acoustical paths are identified in the room
with and without the curtains.
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Two simple measurements are performed to show the maximal attenuation. The measurement setup is
as follows:

The sampling frequency is 8 kHz.
The positions ofprimary and secondary sources and microphones are illustrated in figure 4.3.
The blocklength B=4096, the number of new samples L=2300 and thus the filter length is
A=1797.

2300 input samples are necessary because the calculation time of the 2-2 input-output ANC takes
about 2300*/s seconds to calculate complete filter.
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Figure 4.3. Measurement setup

Measurements are performed first in the room without curtains and later in the room with the curtains,
using the above-mentioned setup. Both for the left microphone and the right microphone the error

signal r,[k] and rr[k] are measured. The attenuation is measured as a function of E~r2[kL]}.

E{d/[kL]} is E~/[kL]} without noise canceling. This leads to:

Alt =E~/[kL]}/{ }
r 7E'd/[kL]

Alt =E~/[kL]}/{ }, 7E'd/[kL]
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The first 8 seconds no adaptation is performed to measure E{d/[kL]}. In figure 4.4 the error signals

are plotted during the measurements in both the room without and with the curtains. In figure 4.5 these
measurements are repeated using simulations.
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Figure 4.4. Measurements on the 2-2 input-output ANC in room without (a) and with (b) curtains
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Figure 4.5. Simulations on the 2-2 input-output ANC in room without (a) and with (b) curtains

The right microphone is placed at a shorter distance ofthe primary loudspeaker, therefore the power

E~/[kL]}<E{d/[kL]}. Note that the adaptation speed and the attenuation in the measurements are

similar to the simulations. Using this we can simulate the behavior of different filter lengths (figure 4.6
and 4.7). Not only the 2-2 but also the I-I and the 1-2 input-output ANC are plotted in these figure,
this is to compare the behavior ofthe 2-2 input-output ANC with the other ANC's. Simulations are
performed in the room without curtains, figure 4.6, and the room with curtains, figure 4.7. In both
figures the reverberation curve is also plotted to compare the ANC with the echo-canceller.

39



0

-5

-10 ~ /). /).
0

/).

~ -15 0 0

c C
0 Bï6 -20
:0 0C..
'äi -25
"E
l1l

0= -30
>='

Re\Erberation CUI"\e

-35 /). 2-2 input-output 0
0 1-1 input/output, Lr

-40 0 1-1 input/output, L1
0 1-2 input/output

-45
0 50 100 150 200 250 300 350 400

time [ms]

Figure 4.6. Reverberation curve and maximal attenuation as a function of the adaptive filter duration,
in the room without curtains

0r---r----.----,---.---.-----.----.c-----,

o

o

o

o

o
/).

o
o
o

-40

-45

,
5 \

-~o~

~ -15 ~.goD ~o
.§ -20
(ij
:0
1jj -25

1ij ""~ -30 ~

i? _35 1,------>1....:::...----,
Re-.erberation CUM

2-2 input-output
1-1 input/output, Lr
1-1 input/output, L,
1-2 input/output

-50~======~_---'-_---'- _ __'__ _.J
o 50 100 150 200 250 300 350 400

time [ms]

Figure 4.7. Reverberation curve and maximal attenuation as a function of the adaptive filter duration,
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It is very obvious that the performance ofthe 2-2 input-output ANC behaves worse compared to the 1­
1 and the 1-2 input-output ANC. The reverberation curve limits the attenuation for small filter lengths
and for large filter lengths the secondary path degrade the performance, this is also stated in chapter 3.
In chapter 3 we have also seen that increasing the number of loudspeakers has a significance positive
effect on the ANC. If an extra loudspeaker is used it is expected that the performance would increase.

In the room with curtains, the maximal attenuation of the right loudspeaker is much better than the left
loudspeaker. This is because the maximal attenuation is dependent on the secondary path
characteristics.

Note that the maximal attenuation ofthe ANC is enhanced ifthe reverberation time is shorter.
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4.3. Conclusions

The 2-2 input-output ANC is used to realize a virtual sound souree generator, the behavior ofthe ANC
is significantly worse compared to the I-lor the 1-2 input-output ANC. This is because the secondary
path characteristics degrade the maximal attenuation. For short filter lengths the attenuation is limited
by the remaining reverberation.
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5.0nline nlodeling ofthe secondary paths

In chapter 3 the filtered-X LMS algorithm was introduced and discussed that the filtered-X LMS
algorithm requires an accurate estimate ofthe secondary path to ensure convergence: the phase error
of this secondary path estimate has to be within 90 degrees for every frequency-bin. The secondary
path characteristics change due to movements of the secondary source or the microphone. If the
filtered-X LMS algorithm uses a fixed estimate ofthe secondary path, these movements will introduce
phase errors that can exceed the 90 degrees limitation and the filtered-X LMS algorithm becomes
unstable. Ifthese changes ofthe secondary path can be tracked using online modeling techniques this
increases the robustness of the algorithm.

In section 5.1 the effect of changes in the secondary path is illustrated. Current online modeling
techniques can be divided into two classes, namely techniques that use additive noise to estimate the
secondary path and techniques that don't use this additive noise. These techniques are discussed in
section 5.3 and section 5.2 respectively. A new modeling technique that uses an additive noise signal
is described in section 5.3.2. The results ofthis new technique are promising but need to be more
researched. In this chapter the 1-1 input-output ANC is discussed for simplicity.

5.1. Effect of changes in the secondary path

The main problem is that changing the position of microphone or secondary sources changes the
secondary path. If the estimate of H s is fixed, these changes in the secondary path can lead to phase
errors 1arger then 90 degrees and the filtered-X method becomes unstable. To illustrate the effect of
movements of the microphone the secondary path is identified at 5 different microphone positions, see
figure 5.1.

IHs

I
".

M y!\"~cm
Figure 5.1. Secondary path measured at 5 different positions
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First the microphone is replaced at a position 2 cm and 4 cm from the original position in the line of
secondary souree Ls to microphone, movement 'a' in figure 5.1. To demonstrate the effects of these
movements the phase errors are plotted in figure 5.2a respectively 5.2b. The phase error is
approximately linear with the frequency and with the displacement of the microphone.

Note that for low frequencies «200 Hz) and for high frequencies (>3800 Hz) the phase is disturbed by
the attenuation properties ofmicrophone amplifier and the NO and DIA converters respectively.
Therefore we are only interested in the phase error for frequencies between the 200 and 3800 Hz.
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Figure 5.2. Phase error as a function of a movements in the line of loudspeaker and microphone, 2 cm
(a) and 4 cm (b)

Figure 5.3 shows the error phase as a result of a displacement adjacent to the line from loudspeaker to
microphone, movement 'b' in figure 5.1. In this case the distances from secondary souree to
microphone are almost equal. Figure 5.3a shows a displacement of2 cm and figure 5.3b a
displacement of 4 cm. In both cases the phase error is not large, the phase error is higher than 90
degrees for only 1 frequency-bin.
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Figure 5.3. Phase error as a function of a movements adjacent to the line of loudspeaker to
microphone,2 cm (a) and 4 cm (b)
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This means that moving the microphone away or closer to the loudspeaker leads to a phase error linear
with this displacement and linear with frequency. Ifthe microphone is moved and the distance from
microphone to loudspeaker is equal, the phase error is significantly smaller. StabIe filtered-X is only
possible for small movements and if the distance between secondary source and the microphone is
approximately constant.

Changing the position of the microphone or the loudspeaker changes the secondary path and for these
errors the system has to account for, this is done with online modeling. In the next sections online
modeling techniques of the secondary path are described and the properties of these techniques are
discussed.

5.2. Online modeling of the secondary path

In the previous section is discussed that online modeling of the secondary path is necessary if the
secondary path changes. In this section 3 methods are discussed to model the secondary path online.
The advantage of these algorithms is that they use no extra training signal to model the secondary
path.

5.2.1. Online modeling of the delay of the secondary path

A relatively simple algorithm is the online estimation ofthe delay ofthe secondary path. Because only
a pure delay is used as estimate for the secondary path the filtered-X LMS algorithm is called the
delayed-X LMS algorithm [3]. The use ofthis algorithm is only possible ifthe phase error not exceeds
the 90 degrees limitation for stabIe filtered-X.

The phase error between the measured transfer function and the pure delay is ca1culated. The optimal
delay of the system is approximately 95-96 samples. Figure 5Aa and 5Ab show the phase error if the
secondary path is estimated by a pure delay of 95 respectively 96 samples. For many frequency-bins
the phase error exceeds the 90 degrees limitation. The delayed-X LMS algorithm will be unstable in
this situation and a method that tracks the delay of the system is not useful here.
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Figure 504. Phase error with a delay of95 (a) and 96 (b) samples
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5.2.2. Online modeling parallel to the secondary path

A simple method of online mode1ing is an identifieation algorithm direetly parallel on the seeondary
path, see figure 5.5. An extra LMS method is used to model this path.

X--+-------+I

Figure 5.5. Online mode1ing using LMS algorithm, parallel on the seeondary path.

The differenee signal F ean be written as:

E =R - ns . y =X' {Hp + Hs' W ANC - ns . W ANC} ( 5.1 )

The LMS-algorithm minimizes this differenee signal E {E" E}. Minimizing this leads to the steady
state solution:

(5.2 )

This means that the optimal steady state solution ns = H s is biased by the term Hp / W ANC. The

optimum steady state solution is not provided beeause Y and X are eorrelated. This is not desired and
ean lead to an unstable filtered-X LMS algorithm. The optimal estimate of the seeondary path is not
found and therefore this method ean't be used in a filtered-X LMS algorithm.

5.2.3. Online modeling of secondary path and primary

This method eompensates for the biased term in equation (5.2), it uses LMS algorithms to estimate
both H s and~ online, figure 5.6. This method is also ealled the overall mode1ing method [7].
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X--+------~

+
+

Figure 5.6. Overall modeling technique

This method uses two difference signals:

El = X· {fIp + As' W ANC}

Minimizing difference signalf2 leads to the steady state solution:

Hp + Hs' W ANC ~.9:p + As' W ANC

This means that this method will not always provides the proper modeling results. The proper
modeling results are only provided ifthe conditions are satisfied [7].

The advantage of this method is that there is no additional training signal necessary to obtain the
unknown transfer functions Hs and fi". However we are only interested in the modeling of the
secondary path H., the calculation of fi" is also necessary but requires extra ca1culation.

( 5.3 )

(5.4 )

( 5.5 )

A main disadvantage ofthis method is that ifmore than one secondary source is used in the ANC,
simultaneously estimation of more than 1 secondary path to one specific microphone is not possible
because the signals that are used for identification are correlated. This means that the use of this online
modeling technique in a multipoint ANC is not preferred.
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5.3. Online Dlodeling of secondary path using additive
noise

Another category of online modeling techniques is these techniques use additive signals to determine
the secondary path. Because the additive signals are independent on the input signal X these methods
can be extended to a multipoint ANC. The disadvantage compared to the overall modeling technique
is that these techniques use additive noise that degrades the performance ofthe ANC.

The first method in presented by [17] and uses additive noise N to identify the secondary path online.
For the online modeling the LMS algorithm is used, see figure 5.7.

X--+--------.I

Figure 5.7. Online modeling using additive noise

For the error signal R can be written:

R = X· {H p + Hs' W ANc} + Hs' ~

For the difference signal I can be written:

(5.6 )

(5.7 )

In the optimal steady state solution this difference signal can be approximated by

X .{H p + Hs' W ANC} , because H s ~ 11s . This means that the adaptation process is seriously

influenced by the component X· {H p + Hs' W ANC} . For stabie convergence the adaptation constant

for the online modeling of the secondary path has to be small and thus decreases the adaptation speed
ofthis online modeling. Slow online modeling ofthe secondary path means slow convergence speed
of the ANC and is not desired.
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5.3.1. Enhanced method for online modeling of the secondary path
using additive noise

An enhanced method that decreases the inf1uence of the component X· {H p + H •. W ANC} in the

adaptation ofthe secondary path is presented [13]. This method estimates the component

X . {H p + H •. W ANC} using an extra LMS a1gorithm and therefore increases the adaptation speed

significantly, see figure 5.8.

X --f-------+I

nOlse genf-------JL.--~UPDATE~----'

Figure 5.8. Enhanced online modeling using additive noise

For the difference signals can be written:

El = R-X·Hps =X· {Hp + Hs' W ANC }-X'Hps + Hs·N

E2 =F l -:fJ: .N =X· {H + H .W ANC }- X· H + H .N -:fJ: .N- s- p s- ps s- s-

Minimizing E {E2I
. E2} leads to the optimal steady state results:

(5.8 )

(5.9 )

(5.10 )

( 5.11 )

Ifequation 5.10 is satisfied the modeling ofHs is not disturbed by X· {Hp + H.· W ANC}' This means

that the adaptation ofH. can be much increased and is only possible ifthe LMS method that is used to
obtain ,Hps converges fast. The overall convergence of the modeling of the secondary path is increased
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using this method, compared to the other technique. A negative aspect however is that the maximal
attenuation of the ANC is limited by the additive noise required for the online modeling.

A simple simulation will show the properties ofthis method. For 2 different positions ofthe
microphone the acoustical transfer functions, ,Hp and H s are identified. Figure 5.9a shows a simulation

with the optimal ANC, this means 11s = Hs' After 64 seconds the microphone is replaced, resulting in

new acoustical transfer functions Hsand,Hp. For the optimal ANC still holds that lis =Hs' Second

the online modeling ofthe secondary path using adaptive noise is simulated, see figure 5.9b. Both
methods use the same adaptation constant for the update of the ANC.
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Figure 5.9. The optimal ANC (a) and the ANC with online modeling ofthe secondary path (b)

The additive noise limits the maximal attenuation ofthe ACN and this online modeling technique
decreases the adaptation speed of the ANC. It is possible to decrease the additive noise but this also
decreases the convergence speed of the online modeling.

5.3.2. New online modeling technique using additive noise
dependent on R

In this section a new method is proposed that is based on the algorithm presented in the previous
section but uses additional noise that is dependent on the error signal R . Only in those frequency-bins
where the error signal is high more additional noise is used to model the secondary path. A relatively
high error signaloften indicates a relatively high phase error for those frequency-bins. However if the
secondary path is described accurate and the ANC performs weB no additional noise signal is
necessary to estimate the secondary path.

Multiplying the additional noise NI elements-wise with R does this:

~2 =N 1 ®R ( 5.12 )

This leads to figure 5.10.
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x--+-------~

Figure 5.10. New online modeling technique using additive noise multiplied by error signal

A simpIe simulation will show the advantage of this method compared to the method mentioned in

section 5.3.1. The simulation conditions are equa1. Figure 5.11 a shows a simulation with the optimal

ANC, this means that ns = Hs' Secondly, the new online modeling technique of the secondary path is

used, see figure 5.11b. Both methods use the same adaptation constant for the update of the ANC.
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Figure 5.11. The optimal ANC (a) and the ANC with online modeling of the secondary path (b)

Because the additional noise is dependent on R more additional noise is added ifthe system is initiated

and less noise is added ifthe ANC converges. This leads to a faster adaptation speed ofthe secondary
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path modeling. The final attenuation of the ANC increases and the maximal attenuation are
comparahle to the maximal attenuation ofthe optimal ANC.

5.4. Conclusions

In this chapter several online modeling techniques are descrihed. The techniques can he divided into 2
classes. First the modeling techniques that use no additional training signal to model the secondary
path, these methods do not degrade the performance ofthe ANC hut can not he used in a multipoint
acoustic noise canceling system hecause the signals used for modeling are correlated. The other
methods use an additional noise signal to model the secondary path online. These methods can
degrade the performance ofthe ANC, hut can he used in a multipoint ANC and are therefor more
interesting.

Current additive noise techniques degrade the maximal attenuation of the ANC and decrease the
adaptation of the ANC. The new proposed method converges with increased speed compared to the
current techniques and the maximal attenuation is equal to the maximal attenuation with an optimal
ANC. This new method will he presented at the Prorisc '99 conference [22].
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6. Conclusions

The ANC uses the filtered-X algorithm because there exists an acoustic transfer function in the control
path. To ensure stabIe convergence the filtered-X LMS algorithm requires an accurate estimate ofthis
acoustical path: the estimate of the acoustical path has to be within 90 degrees for every frequency­
bin. In this report it is shown that the reverberation and the secondary path characteristics degrade the
performance of the ANC. The performance increases if the number of loudspeakers exceeds the
number of microphones.

The remaining reverberation limits the maximal attenuation ofthe ACN because this remaining
reverberation can not be cancelled. If more sound absorbing materials are used the room acoustics
change and the reverberation decreases while the maximal attenuation increases.

The frequency spectrum ofthe secondary path contains frequency-bins where power is relatively low.
At these frequency-bins the adaptation speed is slower and lead to a larger computational error so that
the final attenuation also decreases. However if the num1;>er of loudspeakers is higher than the number
of microphones, the extra secondary paths can compensate for these frequency-bins and the
performance increases significantly. This is only possible ifthe secondary paths don't have common
frequency-bins where the power is low.

Ifthe secondary path or room acoustics change, online estimation ofthe secondary path becomes
desirable for stable filtered-X LMS algorithm. In this report several techniques for online modeling are
discussed and a new method is proposed. This new method uses additive noise to estimate the
secondary path online. This noise is added in each frequency-bin separately such that the noise signal
does not distort the performance ofthe ANC. Simulations show that this new method increases the
speed of convergence and the maximal attenuation compared to other additive noise algorithms.

The adaptation process ofthe filtered-X LMS algorithm is influenced by the estimate ofthe secondary
path and the input signal statistics. Therefore two algorithms are discussed. First the decorrelated
filtered-X LMS algorithm decorrelates the input signal such that the adaptation process is not
influenced by the input signal statistics. Secondly the All-pass filtered-X LMS algorithm is introduced
to make the adaptation speed independent on the secondary path characteristics. Both methods
increase the adaptation speed significantly but do not lead to a higher attenuation.
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7.Future research

In the last chapters the 1-1 input-output ANC was extended to a multipoint ANC. The 1-2 input-output
noise canceller provides significantly more attenuation compared to the 1-1 input-output ANC. In
general it means that if the number of loudspeakers exceeds the number of cancellation points the
maximal attenuation increases significantly. Ifthe 2-2 input-output ANC is extended to a 2-3 input­
output ANC this will increase the maximal attenuation.

The 2-2 input-output ANC is build and will be extended to a virtual sound souree generator (chapter
1). Ifthe relation between the quality of a virtual sound souree and the ANC is investigated it will
become clear how much attenuation is necessary to create a virtual sound souree. If this attenuation is
not realizable using 2 loudspeakers the number of loudspeakers has to increase.

The new method to model the secondary path online is promising but has to be researched thoroughly,
especially the relation between the adaptation constants and the online modeling.
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