
 Eindhoven University of Technology

MASTER

Formulation of the piecewise linear control of an inverted pendulum as a linear
complementarity problem

Groen, M.J.

Award date:
1999

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/cac25614-915c-4819-b664-abdc6d848905

TUIe technische universiteit eindhoven

Formulation of the Piecewise Linear
Control of an Inverted Pendulum as
a Linear Complementarity Problem

Author: M.J. Groen

Master of Science Thesis
Gliwice, March 1999 until September 1999
Supervisors: Prof. Dr. Ir. P.PJ. van den Bosch

A. Polanski, M.Sc., Ph.D.

Institutions:
Control Theory Group
Institute of Automatic Control
Silesian Technical University
Gliwice, Poland

Measurement and Control Section
Measurement and Control Systems
Faculty of Electrical Engineering
Eindhoven University of Technology
Eindhoven, The Netherlands

The department ofElectrical Engineering ofthe Eindhoven University ofTechnology accepts no responsibility for the contents ofM.Sc.
Theses or reports on practical training periods.

Summary

A popular subject for research in Control Engineering is the inverted pendulum. Strategies to
swing-up and balance a pendulum in its inverted position have been described in literature many
times. In this report it is shown that the pendulum can be swung up by means of the energy
pumping method, a method widely used in research. Subsequently, the pendulum is balanced with
a linear controller.

The topic of this report is the analysis of the stability of the (controlled and uncontrolled) inverted
pendulum with the aid of piecewise linear Lyapunov functions. For this purpose the state space is
decomposed into disjunct triangular shaped cells, the triangulation. On this triangulation a
piecewise affme approximation of the inverted pendulum is calculated. It is shown how a
piecewise linear Lyapunov function can be defmed upon this triangulation. A method is described
to formulate the stability of a piecewise affme approximation of the pendulum as a linear
program (LP). This enables the system analyst to present the problem to an LP solver. This
solver will produce a piecewise linear Lyapunov function that can be used to examine the stability
of a region in the state space.

MatLab functions have been written to transform the differential equations of the pendulum to an
LP problem. Additionally, a function has been written to display a 3-dimensional representation
of the piecewise linear Lyapunov function found by the LP solver. Numerical examples of a few
simple control situations are presented to demonstrate that the LP solver does fmd results that
conform to knowledge about the actual stability of these simple situations. The generation times
are acceptable on a desktop computer for triangulations that were relatively fme
(0.0125 rad x 0.0125 rad S-l) and still covered a not too small area (0.375 rad x 0.375 rad S-l

decomposed into 1800 cells). The results are presented in the form oO-dimensional graphs of the
Lyapunov function.

Next the report extends the idea of having a solver look for piecewise linear Lyapunov functions.
It is shown that the problem of fmding a piecewise linear controller to turn a point into a stable
equilibrium point can be formulated as a linear complementarity problem (LCP). These problems
can then be presented to a solver for (linear) complementarity problems.

To automate the formulation of these LCP's MatLab functions have been developed to generate
the LCP in a form suitable to be submitted to a complementarity solver that is available through
the Internet. Simple LCP's generated by this function have been submitted to this solver, but
convergence has not yet been obtained within the maximum number of iterations allowed by the
solver. The reason for this should be studied further.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 11

Contents

Summary ii

1. Introduction 1

2. Inverted pendulum on a cart 3

2.1 The pendulum 3

2.2 The mathematical model 3

2.3 Cascaded structure 4

3. Swing-up by the energy method 5

3.1 The swing-up 5

3.2 Stability analysis 7
3.2.1 Linearisation around the inverted position 7
3.2.2 Linearisation around the pending position 10

3.3 Stabilising the pendulum 13

3.4 Numerical examples 13

4. Piecewise affine approximation ofthe non-linear system 16

4.1 Introduction to space state decomposition 16
4.1.1 Triangulation coarseness 17
4.1.2 Global triangulation 17
4.1.3 Partial triangulation 18

4.2 Piecewise affme approximation of the non-linear system 19

4.3 Finding the piecewise affme approximation 20

4.4 Quality of the piecewise affme approximation 21

4.5 Conclusions 22

5. Piecewise linear Lyapunov functions 24

5.1 Calculation of the value of the Lyapunov function 24

5.2 Derivative of the Lyapunov function along trajectories 25

5.3 Set of linear inequalities 26

5.4 Presenting the LP to the solver 27

5.5 Reading the results 28

5.6 Numerical examples 28
5.6.1 The uncontrolled upright position 28
5.6.2 The non-linearly controlled pending position 29

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP III

Contents

5.6.3 The non-linearly controlled upright position 30
5.6.4 The linearly controlled upright position 31

5.7 Generation times of the Lyapunov functions 32

5.8 Conclusions 33

6. Design of piecewise linear control 34

6.1 Piecewise linear control. 34

6.2 Conversion of the problem to an LCP 35
6.2.1 Formulation as a bilinear system ofinequalities 35
6.2.2 Transformation into a conjunction ofinequalities with additional
complementarity conditions 36
6.2.3 Transformation into a Linear Complementarity Problem 37
6.2.4 Rearranging the matrices 38

6.3 Solving the LCP's 40

6.4 Conclusions 41

7. Conclusions and recommendations 42

7.1 Piecewise linear Lyapunov functions .42

7.2 Piecewise linear control 43

Literature 44

Software 45

Appendix A: Simulink files 46

Appendix B: MatLab code 48

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP iv

1. Introduction

The inverted pendulum is a classical subject for research on control techniques. A wide range of
solutions has been found to swing-up the inverted pendulum and stabilise it in its inverted
position. A popular method to do the swing-up is by means of the energy pumping method. The
controller compares the energy of the pendulum with the energy of a pendulum balanced in the
inverted position. If the amount of energy is lower, the controller will feed energy to the system; if
it is higher, it will drain energy from the system.

Traditionally the problem of swinging up the inverted pendulum and keeping it in its upright
position has been subdivided into two subproblems. Firstly the swing-up of the pendulum, and
secondly the problem of stabilising the inverted pendulum in its upright position. Both problems
are usually solved independently, what results in a composite controller: one controller to do the
swing-up and another to do the stabilising in the inverted position.

An interesting question to ask is, whether it is feasible to use piecewise linear functions to analyse
the inverted pendulum and if so, if it is possible to design a swing-up strategy using piecewise
affme functions. For the analysis the focus will be on the process offmding piecewise linear
Lyapunov functions by numerical calculation. In case of the design process an attempt will be
made to fmd a piecewise linear control law that is able to do a swing-up and stabilise the
pendulum in its inverted position by making use of the techniques of fmding a piecewise linear
Lyapunov function.

The numerical calculation of piecewise linear Lyapunov functions has several advantages:

• This method might enable us to fmd a Lyapunov function that defmes a stability region for the
linearly controlled pendulum in its inverted position which is larger than a region obtained by
more traditional methods like quadratic Lyapunov functions.

• For swing-up strategies we can look for Lyapunov functions that prove the instability of the
pending position.

The interest of piecewise linear control is the following:

• All solutions to the swing-up problem of the inverted pendulum mentioned in literature consist
of an algorithm that fIrst swings up the pendulum and secondly switches to another method to
stabilise the pendulum in the inverted position. The question which rises is, whether it is
possible to fmd a single control law

u =u({),B)

that does a swing-up and has a stable upward position. It might be possible to fmd such a
control law with piecewise linear control.

• All the energy pumping methods need assumptions about the possibility to ignore friction.
Doing the computer design of the control law and the control Lyapunov function enables us to
study this problem from another point of view.

• If it turns out, that it is possible to do a swing-up for a relatively coarse triangulation - in
other words a simple piecewise linear controller exists - then the design may be considered a
new practical solution to the swing-up problem of the inverted pendulum.

From the above we arrive at the following goal of the project:

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP

Introduction

Firstly, develop a method to fmd a piecewise linear Lyapunov function for the (controlled or
uncontrolled) inverted pendulum by means of numerical calculation. Secondly, develop a way to
design a piecewise linear controller by making use of this method.

The fIrst part will be done by reformulating the conditions for a proper piecewise linear
Lyapunov function as a linear program. This LP can then be solved by an LP-solver. The second
part is to be done by restating the conditions for the swing-up and the stability of the inverted
position as a linear complementarity problem (LCP) in order to submit the problem to a solver
for LCP's.

The contents of this report is subdivided in the following way. As an introduction chapter 2
Inverted pendulum on a cart describes the object of our case study: the inverted pendulum. The
mathematical model of the inverted pendulum is presented. In chapter 3 Swing-up by the energy
method a simple method is presented to swing up the pendulum. It is shown that this can be done
by means of the energy pumping method. With linearisation it is shown that both the pending
position and the upright position are unstable. A simple linear controller can stabilise the
pendulum in its inverted position. With simulations in Simulink it is shown that this approach
should work. In chapter 4 Piecewise affine approximation ofthe non-linear system, a
triangulation is defIned that decomposes the state space into triangular shaped cells. The
mathematical model of the inverted pendulum as presented in chapter 2 is approximated by a
piecewise affIne function. Next it is shown in chapter 5 Piecewise linear Lyapunov functions,
that linear programming tools can be used to fmd piecewise linear Lyapunov functions to show
the stability or instability of regions of the state space. Chapter 6 Design ofpiecewise linear
control shows how linear complementarity problems can be used to try to fmd piecewise linear
controllers to swing-up the pendulum and stabilise it in the inverted position. In the last chapter of
the report conclusions and recommendations are presented.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 2

2. Inverted pendulum on a cart

The inverted pendulum is introduced in this chapter. It is outlined what assumptions have been
made. The first section tries to form a picture of the inverted pendulum. The next section presents
the mathematical model of the inverted pendulum. Finally, in section three it is mentioned on
which part this report will focus.

2.1 The pendulum

The inverted pendulum on a cart consists of a cart that is placed on a rail; this way it can only
move in one dimension. On the cart is an axle, that is oriented perpendicular to the direction in
which the cart can move, and the horizontal plane. To this axle a rod is attached with a mass at
its end (the pendulum), so that it can rotate freely in the vertical plane parallel to the direction of
movement of the cart. The natural position of the pendulum will be its pending position. Figure 1
shows the pendulum on a cart and defmes so~e of the variables and parameters.

Figure 1: The inverted pendulum on a cart

The objective of the inverted pendulum is to apply a varying force to the cart, so that the
horizontal movements of the cart will swing up the pendulum from its pending position to its
upright position. From the moment the pendulum has reached its upright position, the pendulum
should be balanced in this position by applying appropriate forces to the cart.

The following assumptions are made within the rest of this report, unless specified explicitly
different:

• All motion is considered to be frictionless.

• The mass of the pendulum is assumed to be concentrated at the end of the rod.

• The cart position can range from - 00 to + 00.

2.2 The mathematical model

The pendulum on a cart can be modelled by the following system of differential equations:

(M+m)x+mlcos(}·(j-mlsin(}.(j2 =f (1)

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 3

Inverted pendulum on a cart

xml cosB+ m/ 2 jj + dB- mgl sinB= 0

with variables:

f - external force applied to the cart

x - position of the cart

B - angle between the rod of the pendulum and the upright position

and parameters:

d - damping of the rod rotation

g - gravitational acceleration

I - length of the pendulum

m - mass of the pendulum

M - mass of the cart

(2)

[N]

[m]

[rad]

[kg m2 S-2]

[m S-2]

[m]

[kg]

[kg]

The friction of the pendulum will be neglected in this report, so the equations can be rewritten,

omitting the friction term dB:

(M + m)x + ml cos B . jj - ml sin B· B2 = f

xml cosB+ m/ 2 jj - mgl sinB= 0

2.3 Cascaded structure

(3)

(4)

Looking at the second differential equation (4), we see that we can consider this equation to
describe the relationship between the cart acceleration and the movement of the pendulum. The
fIrst differential equation (3) then expresses the relation between the external forcefand the
acceleration x of the cart. This approach enables us to regard the pendulum without the cart as

an isolated system, with the acceleration x being the control input, and Band B being the
outputs. This idea with additional controllers is depicted in fIgure 2.

Figure 2: Cascaded structure ofthe pendulum on a cart

In this report it is assumed that the dynamics of the inner loop from fIgure 2 is negligible, which
means x == x, .This means that as far as the mathematical model is concerned we will focus on

equation (4).

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 4

3. Swing-up by the energy method

A popular method to swing up the inverted pendulum is the energy approach. This approach can
be found in the papers [I], [2] and [7]. A controller 'measures' the kinetic and potential
energy of the pendulum and either decreases the energy of the pendulum if the total of kinetic and
potential energy is more than the energy of an in the inverted position balanced pendulum or
increases the pendulum's energy if this total is less. This same approach is followed in this
chapter to swing-up the inverted pendulum

The basic idea of this method is explained in the first section. Furthermore the equation for the
control law is derived. In the second section of this chapter, the stability of both the inverted and
pending position of the pendulum are analysed by means of linearisation around these two points.
These analyses show that both the inverted and pending position of the controlled pendulum are
not stable. The controller might be able to swing-up the pendulum. but is not able to stabilise it in
the inverted position.

Therefor in the third section a linear controller is introduced, that is able to stabilise the pendulum
in its inverted position. The pendulum will be swung up by the first (non-linear) controller and if
it comes close enough to the inverted position, control is switched to the linear controller to
stabilise the pendulum

In the fourth section of this chapter this is illustrated with some simulations. These simulations
show that the pendulum can be swung up by the energy method, but can not be stabilised in this
position. A second simulation shows that the addition of the linear controller enables us to do the
complete job of swinging up the pendulum and stabilising it in the inverted position.

3.1 The swing-up

All methods mentioned in literature that do a swing-up and stabilise the inverted pendulum in its
upright position, have one thing in common. All approaches subdivide the problem in at least two
subproblems: Firstly, the swing-up of the pendulum. and secondly the stabilisation of the
pendulum

At this moment we start with the same idea. We design a controller that does a swing-up and then
analyse if this controller is capable of keeping the pendulum in its inverted position. Probably it
will not be able to stabilise the pendulum in this position. In that case we will add a second
controller to keep the pendulum up.

As mentioned in the previous chapter, we restrict ourselves by only considering the second model
equation (4). The second derivative of the position x is considered to be the control variable of
our system:

u=x,

which yields the following equation after substitution in equation (4):

uml cos () + ml 2 jj - mgl sin () =0 (5)

The total energy of the pendulum equals the sum of the kinetic energy and the potential energy. If
we defme the potential energy to be 0 if the pendulum is in one of the horizontal positions

(() =±1-), the total energy of the pendulum equals:

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 5

Swing-up by the energy method

E =tm(liJ)2 + mgl cos 8

The derivative of the total energy is:

E=ml2iJjj - mglOsin8

Equation (5) can be rewritten as:

ml 2jj - mgl sin 8 =-uml cos 8

Substituting (8) into (7) leads to:

E=-umlOcos8

(6)

(7)

(8)

(9)

Since the change of energy is proportional to the control signal, it is easy to control the energy of

the pendulum. The system is however not controllable if either iJ = 0 or 8 = ±f, this means

when the pendulum is in one of its horizontal positions or when it reverses its velocity.

With equations (6) and (9) we can derive the control law for the swing-up. The energy of the in
the upward position balanced pendulum determines whether energy should be supplied to or
drawn from the pendulum. This energy equals:

Eup = mgl

It is quite natural to assume that the control input is bounded:

Umin ~ u(t) ~ Umax ,

where Umin and U max are fmite.

If Umjn = - Umax and U max > 0, the following control should do a swing-up:

(10)

(11)

{

u max sgn(Ocos8) if

u(t) = U min sgnO(8COS8) if

if

where sgn(.) denotes the signum function:

E(l) > mgl

E(t) < mgl ,

E(t) =mgl

(12)

{

I if x < 0

sgn(x) = -0

1

if x =0

if x> 0

In the papers [1] and [2] energy pumping strategies different from (12) were proposed. In
[1] energy pumping was realised by the following function:

u =sat ng (k(E - Eo))sgn(Ocos 8)

where k is a design parameter, the function satng denotes a function which saturates at n g, E is
the actual swing energy, and Eo is the desired swing energy.

The paper [2] employed the following strategy,

u =aOcos8· E

with E being the difference between the actual swing energy and the desired swing energy.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 6

Swing-up by the energy method

3.2 Stability analysis

In this section we will analyse the stability of the controlled system by means of linearisation in
the working point. The controlled pendulum will be examined in respectively the inverted position
and the pending position.

3.2.1 Linearisation around the inverted position

To analyse the system we linearise equation (5) around the upward position «(), B) = (0,0) :

.. g 1
() - -,1() =--u

I I

(13)

In the neighbourhood of the inverted position «(), B) = (0,0) the total energy of the pendulum (6)

can be approximated by

E(t) ~ tm(l,1B) 2+ mgl(1- t (,1()) 2)

Substituting this approximation (14) in equation (12) and writing ,1() for () and ,1B for B
leads to

(14)

or

lu rnax sgn(,1Bcos,1()) if

u(t) = U rnin Sgn(,10()COS,1()) if

if

tmI2(,1B)2 - tmg/(,1())2 > 0

tml\,1B)2 - tmg/(,1())2 < 0

+mI2(,1B)2 -tmg/(,1())2 =0

u rnax sgn(,1()) if (,1B)2 > g (,1()) 2

I

u(t) = U rnin sgn(,1()) if (,1B)2 < g (,1()) 2

I

0 if (,1 B) 2 = g (,1()) 2

I

(15)

If we take a careful look at this equation we can see, that the state space around the origin can be
divided into six regions like depicted in figure 3.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 7

Swing-up by the energy method

Figure 3: The state space around (8,8) =(0,0) can be

divided into six regions

The control signal in equation (15) can be substituted into the linearised second model equation
(13):

urnax sgn(Ll8) if (M~)2 > g (Ll8)2
I

.. g 1 urnin sgn(Ll8) if (M~)2 <~(Ll8)28--Ll8=--
I I I

0 if (LlB)2 =g (Ll8)2
I

or

~(Ll8- u;x Sgn(LlB») (LlB)2 > K(Ll8)2
(16)

if
I

jj= ~ (Ll8- U;n Sgn(LlB») if (LlB)2 < g (Ll8)2
I

g Ll8 if (LlB)2 = g (Ll8)2
I I

To derive the expression for the trajectories in region I we take from (16) the differential
equation for that region:

We write the second derivative with differentials:

rearranging the differentials:

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 8

Swing-up by the energy method

!3.B . d!3.B =~ (!3.() - U;ax)d!3.() ,

taking the integral of both sides:

f !3.B d!3.B =f ~ (!3.() - U;ax) d!3.()

which equals:

which can be rearranged:

!3.B2 = g (!3.() _ umax) 2 _ Umax 2 + 2c
I

'

I g Ig

2

and [mally absorbing the constant - umax in the integration constant:
Ig

(17)

The same derivation can be done for the other five regions, leading to the following expressions
for the trajectories:

Region I and III: (!3.B)2 =f(!3.() - U;nf + c/

Region II: (!3.B)2 =~(!3.()- u;xf +c lI

Region IV and VI: (!3.B) 2=~ (!3.() + U;n) 2+ CIV

Region V: (!3.B)2 =f(!3.()+ u;xf +Cv

These equations represent hyperbolae, so the trajectories have a hyperbolic shape. The
trajectories can be plotted with MatLab as is done in figure 4. For the parameters the following
values were used: g = 9.81 m S-2, 1=1 In, Umin = - 2 m S-2, and Umax = + 2 m S-2.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 9

Swing-up by the energy method

Phase portrait of the inverted pendulum (1=1 [mJ) around (0,0)

Figure 4: Trajectories around the inverted position

Looking at the trajectories in figure 4, it can be seen that switching between Umin and Umax leads to
sliding motions of the system. Sliding motions are solutions with infinitely fast switching of u(t)
between Umin and Umax• In practice the frequency of the switching is high, but finite. There are two
sliding lines in figure 4, intersecting in the equilibrium point in the origin. One extends in the
second and fourth quadrant. Sliding along this line is stable and leads to the origin. The other
sliding line is within the first and third quadrant. Sliding along this second line leads away form
the origin. The conclusion is that the origin is unstable, since arbitrarily close to the origin are
starting points of divergent trajectories. In other words: This non-linear controller can not balance
the pendulum in its inverted position.

3.2.2 Linearisation around the pending position

Linearising equation (5) around the pending position ((},B) =(n,O) we arrive at:

.. g 1
(}+-(~(}-n)=-u

I I

(18)

To get a suitable expression for the control signal u, we approximate the energy of the pendulum
(5) with the following expression:

E(l) .,. tm(l~B)2 - mgl(l- t(~(}_n)2)

which is equivalent to:

E(t) .,. tml2 (~B)2 + tmgl(~() _n)2 - mgl

Substituting the energy in equation (12) with this approximation and writing ~() for () and ~B

for B, we get the following expression

{
urnaxsgn(~(}cos~(}) if tmI2(~B)2 +tmgl(~(}-n)2-mgl>mgl

u(t) = Umin Sgn(~oBCOS~(}) if tmI2(~B)2 +tmgl(~(}-n)2-mgl < mgl,

if tml\~B)2 +tmgl(~(}-n)2-mgl =mgl

which can be simplified:

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 10

Swing-up by the energy method

umaxsgn(MhosM':1) if (118)2 >4
g

-g(I1B-1t)2
I I

u(t)= uminsgn(I1BcosI1B) if (118)2 <4~-g(I1B-1t)2
I I

o if (118)2 = 4 g - g (I1B-1t)2
I I

This control system can be substituted into the linearised second model equation (18)

umax sgn(I1BcosI1B) if

B+
g

(I1B-1t)=.!. uminsgn(I1BcosI1B) if
I I

o

(118)2 > 4 g - g (I1B-1t)2
I I

(118)2 <4 g - g (I1B-1t)2
I I

if (118)2 =4~ - ~(I1B _1t)2
I I

which is equal to

(19)
.!.i(118)2 +.!.(I1B-1t)2 > 1
4g 4

if L~(118)2 +.!.(I1B-1t)2 < 1
4g 4

if .!.i(118)2 + .!.(I1B-1t)2 =1
4g 4

umax sgn(118) + g(I1B-1t) if

I
B = _ U min sgn(I1B) + g(I1B-1t)

I

- g (I1B-1t)
I

The third condition in this equation defmes an ellipse in the state space and the fIrst and second
condition describe respectively the space around the ellipse and the space inside the ellipse. The
state space can be divided into four regions according to these conditions as is shown in fIgure 5.

Figure 5: The state space around (8,8) =(1t,O)

can be divided into four regions

The trajectories in the regions I till IV can be derived, in a similar manner as the trajectories for
the linearisation around the inverted position of the pendulum - see the derivation of (17) for an
example. These trajectories can be described by the following equations:

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 11

Swing-up by the energy method

Region I: (ilB)2 =-~(ilO+ U;n -rtf +c/

Region II: (ilB)2 =- ~ (ilO - U;n -rtf + CII

Region III: (ilB)2 =- ~ (ilO+ U;x -rtf + Cm

Region IV: (ilB)2 =-~(ilO- u;x -rtf +C/V

These equations represent ellipses, so the trajectories have an elliptic shape. Figure 6 shows the
plot of the trajectories. For the parameters the following values were used: g = 9.81 m S-2,

1= 1 m, Umin = - 2 m S-2, and u""'" = + 2 m S-2.

Phase portrait of the inverted pendulum (1= 11m» around (_,0)

Figure 6: Trajectories around the pending position

Looking at figure 6, we can see that the phase portrait is formed by spirally shaped trajectories
leading away from the origin. The part of the horizontal axis between (and including) the centres
of the semi-ellipses consists of singular points. From the equations of the trajectories we can
derive the position of the two centres of the semi-ellipses. The centre of the semi-ellipses in the
upper half of the state space is in the point:

(O,B)=(rt- U min ,0)
g

and the centre of the semi-ellipses in the lower half of the state space in the point:

• U .
(0,0) =(rt +---!!!!!!...,O)

g

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 12

Swing-up by the energy method

3.3 Stabilising the pendulum

Thus far, we have shown that we can do a swing-up. However, the inverted position is not stable.
To keep the pendulum in its inverted position after it has been swung up, we switch to a linear

controller if ((), B) is close enough to (0,0). The linear controller is modelled by the following

equation:

(20)

If we substitute this control input u into the linearised second model equation (13), we get the
following differential equation:

which can be simplified to:

(21)

According to the Hurwitz stability criterion, this system is stable if the following two conditions
are met:

a -g a
_1->0 and _2 >0

I I

which leads to the following two conditions if we assume that the pendulum length I is positive:

a, > g and a2> °
3.4 Numerical examples

(22)

Table 1: Parameters for examplesThe model of the pendulum has been defmed in
Simulink and some simulations have been done.
Appendix A shows the Simulink files that have been
used. Table 1 contains the settings of the parameters
used in the Simulink simulations.

In the first place the non-linearly controlled pendulum
has been simulated. In figure 7 the angle () of the
pendulum is shown as it changes in time.

Parameter Value
g 9.81
I 1
Umin -2
Umax 2
al 15
a2 3

Dimension
ms-2

m
ms-2

ms-2

ms-2

-Ims

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 13

Swing-up by the energy method

Non·linear1y controlled pendulum

6

5

o

"
f\ f

r J \ I
(\

/'.. /\ I \ f \
V V \ / \ I

V V \

\)
o

Figure 7: Non-linearly con/rolled pendulum

10
lime [sl

15 20 25

As can be seen the non-linear controller does swing up the pendulum. After approximately 15
seconds the pendulum reaches the inverted position. The non-linear controller is not able to
maintain the pendulum in the inverted position though. After a few seconds the pendulum falls
over and the non-linear controller directs it again to the inverted position.

To stabilise the pendulum in its inverted position, a linear controller was added. This results in a
composite controller consisting of the non-linear controller to do the swing-up and a linear
controller to stabilise the pendulum in its inverted position. The non-linear controller is in effect
when the following condition is valid:

(23)

with the radius r set to 1.

If the pendulum comes close enough to the inverted position in the state-space the above condition
(23) is no longer valid:

(;2 + iJ2 <r,

and the linear controller takes over from the non-linear controller.

Figure 8 displays the result of a Simulink simulation with the additional linear controller. It
shows that the linear controller is able to keep the pendulum in its inverted position.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 14

Swing-up by the energy method

Pendulum with hybrid controller

6

5

o

f\

f\ t I t

/"'\ (\/ \ I \
V V \) \ I

V \) \

~
o 5 10

time [5j
15 20 25

Figure 8: Pendulum with hybrid controller

After implementing the energy pumping method (12) in Simulink, it turned out that the
simulation program can not deal with the sliding solutions as shown in figure 4. In order to get
around this problem, the signum function sgn(.) was replaced by a saturation with high gain (gain
k = 50). The block diagrams of this Simulink simulation are given in Appendix A.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 15

4. Piecewise affine approximation of the
non-linear system

The majority of non-linear systems is hard to analyse, because of the non-linear behaviour. A
common way to be able to analyse such systems is by linearising the system in a working point.
The disadvantage of this approach is that the results from this analysis are only valid in a small
neighbourhood around this working point. An alternative to linearisation around a working point
is to calculate a piecewise affme approximation of the system, which lacks the disadvantage of
being valid in a small region.

This chapter explains how a piecewise affme approximation of the system is found. The fIrst
section of this chapter shows how the state space is decomposed into disjunct cells. The second
section shows how a linear function is defmed in each cell to form together the piecewise affme
approximation. Next it is shown how the MatLab code fmds the piecewise affme approximation.
The last section gives some statistics about the order of the errors made when using the piecewise
affme approximation instead of the non-linear model.

4.1 Introduction to space state decomposition

The state space is divided into separate regions, which will be called cells. The cells will be of
triangular shape, so this decomposition will be named the triangulation of the state space.

Since the state space is periodic in the direction ofpendulum angle (), the triangulation will be
periodic too, with the same period 21t [rad]. Formally put:

((), iJ) E C(m) <=> (() + 2:rr, iJ) E C(m),

where ((), iJ) E C(m) denotes that point ((), iJ) lies within cell m.

For practical reasons it is assumed, that the state space is limited in the direction of the angular

velocity iJ :

(24)

with ~im E R+ and fmite. Then the state space is fmite and the total number of cells·M will be
fmite too.

Each cell in the triangulation will have a unique identifying number m. The cells in the
triangulation are determined by their vertices. Since the cells have a triangular shape, the number
of vertices that determine a cell is three. The points in the state space that correspond with a
vertex of a cell from the triangulation, will be called nodes 1 and they will all have a unique
identifying number k. The total number of nodes in the triangulation will be K, which is fmite
under assumption (24).

The triangulation is completely defmed, if the co-ordinates of the nodes are known and when it is
known which nodes are vertices of which cells.

I In this report the tenn node will be used when referring to the triangulation and the tenn vertex will be used
when referring to the intersection of the edges of the cells. However both tenns can be used interchangeably.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 16

(25)

(26)

Piecewise affine approximation ofthe non-linear system

The co-ordinates of node k are denoted with the column vector Xk:

Xk=[Ok Bkf

The co-ordinates of the K nodes of the triangulation are arranged into a matrix X:

X= [XO Xl X2 ... XK]

Two functions are defmed to give the relationship between nodes and cells:

1. ~(k) returns a list containing the identifying numbers m of the cells of which k is a vertex.

2. K(m) returns a list containing the three identifying numbers k of the nodes that are vertices of
cellm.

In this report the following assumptions are made considering the triangulation: One node is
supposed to reside in the origin of the state space. To be able to conveniently examine the
neighbourhood around the pending position, another node is supposed to coincide with the

pending position (0, B) =(1t,O). Due to the periodicity of the state space, a copy of the fIrst node

(the one coinciding with the origin) is supposed to be in the position (O,B) =(21t,O). These two

nodes are considered to be equivalent. All the nodes in the triangulation are supposed to be evenly
spaced in both the horizontal and vertical direction. In that case the number of nodes in the
horizontal direction will be even. The number of nodes in the vertical direction will be odd. (One
node on the horizontal axis and the same number of nodes in both the upper and the lower plane.)

4.1.1 Triangulation coarseness

The coarseness of the triangulation is defmed by two parameters:

1. the horizontal diameter Dh , which is determined by the number of nodes in the horizontal
direction Nh :

21t
Dh =­

Nh

2. the vertical diameter D y , which is determined by the number of nodes in the vertical direction
Ny:

4.1.2 Global triangulation

There are several ways of dividing the state space into triangular shaped cells and there are
different ways of assigning identifying numbers to the cells and nodes. An arbitrary triangulation
is shown in fIgure 9 with a numbering of the cells and nodes. This particular numbering system
will be referred to as the global numbering system. The origin of the co-ordinate system coincides
with node number 0 in the middle of the leftmost column. Note that the state space is periodic in
the horizontal direction, so that the triangulation will be periodic too. This is depicted in fIgure 9
by a shaded copy of the fIrst column of nodes at the right hand side of the triangulation. Node
number 0 for example appears twice in the fIgure; namely at the left side of the triangulation
where the origin resides, and at the right side at co-ordinates (21t,O). In the vertical direction the
triangulation can extend towards (plus/ minus) infmity, but as stated before the triangulation is
supposed to be bounded in this direction.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 17

Piecewise affine approximation ofthe non-linear system

Figure 9: Layollt ofthe triangulation with global numbering system

4.1.3 Partial triangulation

During the research some disadvantages of the numbering system of the triangulation in the
previous paragraph became apparent. Two of these disadvantages are:

1. The previously introduced numbering system applies to the complete state space (which in
itself is of course an advantage). However, often just a part of the state space is examined. If
we want to let our MatLab code run through all nodes within the region to be examined, the
sequence of node numbers makes a jump periodically.

2. During examination of the neighbourhood of the origin, it is necessary to take into account the
behaviour of points with negative values for 0, which means that a number of columns on the
left side of the triangulated space are being examined and a number of columns on the right
side, which introduces extra jumps in the numbering.

To get around these problems a second numbering system was introduced to be used
concurrently. During calculations cell and node numbers are being mapped from one numbering
system to the other and vice versa.

The alternative numbering system is shown in figure 10. The equilibrium point - which can be
the origin of the state space, but might as well be the pending position - is in the centre and will
have the number o. From node number 0 we start numbering to the right. Then we continue on
the left ofnode 0 numbering from left to right. The same is done, alternating between the lower
and the upper plane, for the next row under this first row, and then the next row above the first
row, and so on. Cells are numbered according to the same pattern as the nodes.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 18

Piecewise affine approximation ofthe non-linear system

Figure 10: The partial numbering system

When node number 0 of the partial numbering system coincides with the origin, the nodes in the
columns to the left of node 0 correspond with nodes at the far right end of the global numbering
system. These cells and nodes are being mapped from the right side in the global numbering
system to the left side in the partial numbering system. Co-ordinates of nodes that are at the right
side in the global numbering system have a () co-ordinate being close to (but less than) 21t. These
co-ordinates are being mapped to the area to the left of the origin, by subtracting 21t from their ()
co-ordinate.

The only real advantage of this numbering system is that the jumps in the number sequence have
disappeared. The mapping between the two. numbering systems back and forth is quite awkward
though and especially the transformation of co-ordinates from the area close to 21t to negative
values is susceptible to coding errors.

4.2 Piecewise affine approximation of the non-linear
system

The idea of a piecewise affme approximation of a non-linear system is illustrated in figure 11,
figure 12, and figure 13. Figure 11 shows a non-linear surface, which might represent one model
equation of a second order system with states x and y. In figure 12 this same surface is shown,
but now with the piecewise affme approximation shown transparently together with it. In this
example this approximation consists of eight triangular shaped flat planes. The vertices of these
triangular planes coincide with the smooth surface. The other points of the planes usually do not
coincide with the smooth surface. Finally, figure 13 shows the piecewise affme approximation
again, now without the smooth surface and without being transparent. The eight planes can now
each be described by a of linear (differential) equation.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 19

Piecewise affine approximation ofthe non-linear system

Non-linear surlace

Figure 11: Non-linear surface

Non-linear surface "WIth plecewise affine approximation

Figure 12: Non-linear surface with
piecewise affine approximation

Piecewise affine approximation

Figure 13: Piecewise affine
approximation

The non-linear system is going to be described by a set of affme equations, each of them valid in
one cell of the triangulation. The equation of our inverted pendulum can be written in the
following form:

or

x = j(x) + g(x)u,

where Xl =(), Xl =0, and X =[() or. The functionsj(.) and g(.) follow from the model

equations. Writing the second model equation (4) in state space notation:

we can see that

(27)

(28)

f1(x)=x l

fl(x) =tsinx,

gl(X)=O

gl (x) = -+cosx 1

(29)

In each cell m we want to approximate the second model equation with a piecewise affme
approximation:

x=am + Amx + bmu (30)

The next section describes how the parameters of the approximation can be found.

4.3 Finding the piecewise affine approximation

For every cell m we have to fmd a piecewise affme approximation like equation (30). The
parameter bm will be estimated by taking the mean value of the values ofgl(X) from equation
(29) in the three vertices of cell m.

The parameters am and Am have respectively two and four elements, totalling six unknown
parameters. By setting the value of (30) in the three vertices of a cell m equal to the vector
[fi(x) fi(x)]T, wherefl(x) andfi(x) as in (29), a set of six linear equations with six unknowns is
formed:

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 20

Piecewise affine approximation ofthe non-linear system

a l + AI,. x.,J =f l (X.,I)

al + Al ,. X',I =fl (X.,I)

a l + AI,. X',l = fl (X.,l)

al + Al ,.X',l =fl(X.,l)

a l +A1,x' 3 =fl(X, 3)
" ,

al +Al .x. 3=fl(x, 3)
" ,

(31)

where x = [xk, Xk
2

Xk)] with x k. being the co1unm vector with the co-ordinates of the n-th

vertex of the cell under consideration.

Equation (31) can be rewritten in matrix notation:

1 0 XI,I Xl,1 0 0 a l fl (X.,I) (32)

0 1 0 0 XI,I Xl,1 al f l (X.,I)

1 0 XI,l Xl,l 0 0 AI,I fl (X.,l)

0 1 0 0 X1,1 Xl,l A1,2 fl (X.,l)

1 0 XI,3 Xl ,3 0 0 Al,1 f l(x.,3)

0 1 0 0 XI,3 Xl ,3 Al,l fl(X.,3)

This is implemented in the MatLab function fit ce 11, The code and a brief description of this
function can be found in appendix B. The function accepts the number of the cell as input and
calculates am, Am and bm,

4.4 Quality of the piecewise affine approximation

The function testfit was written to calculate the deflection of the piecewise affme
approximation of the system compared to the differential equations that describes our process.
This function was applied to the triangulation used for the numerical examples in chapter 5
Piecewise linear Lyapunovfunctions, this means a 15 x 15 and a 31 x 31 triangulation with a
horizontal and vertical node spacing of 0.0125 x 0,0125 [rad x rad S-I]. The function was only
applied to the inverted position of the pendulum, because it does not work properly yet in the
neighbourhood of other points. All three control situations (uncontrolled, non-linear, and linear)
were examined.

The errors of the first differential equation are not mentioned here, because they are all zero due
to the linearity of this differential equation. The deflections in the approximation of the second
differential equation are shown in table 2. It shows the mean value of the absolute values of the
relative errors 1, the variance of these values, the maximum value, and the number of situations
where the relative error is undefmed 3. For these figures a distinction is made between points that
are nodes and points that are randomly chosen within the cells, In every cell all three nodes are
examined and an additional 50 points, randomly chosen within the cell. Since the 15 x 15
triangulation has 392 cells, the number of samples for the nodes is 1 176 and for the random
points it is 19600. For the 31 x 31 triangulation these numbers are 5 400 and 90 000

2 The reference of the relative errors are the values of the non-linear differential equations.

J The relative error is undefined if the denominator of the division equals zero. This means the non-linear
differential equation is zero valued.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 21

Piecewise affine approximation ofthe non-linear system

respectively. Finally, the table mentions the number of points where the piecewise affme
approximation has a wrong sign.

Table 2: Relative errors ofthe piecewise affine approximation ofthe inverted pendulum
compared to the value ofthe second differential equation

Nodes Random points (50) All

Jl ;- max und Jl ;- max und sign

(%) (%) (%) (#) (%) (%) (%) (#) (#)

uncontrolled
15 x 15 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0
31 x 31 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0

non-linearly
15 x 15 0.03 0.00 0.12 0 0.01 0.00 2.99 0 0
31 x 31 0.12 0.00 2.25 0 0.04 0.00 16.95 0 0

linear
15 x 15 0.11 0.00 3.74 0 0.19 0.01 7.68 0 0
31 x 31 0.32 0.00 10.09 0 0.43 0.29 40.29 0 4

f.1 mean of the absolute value of the relative errors
i variance of the absolute value of the relative errors
max maximum of the absolute value of the relative errors
und number of cases where the relative error is undefmed
sign the number of values with a wrong sign

For the uncontrolled pendulum, the errors are all zero. In the nodes they should be zero, because
the fit is always exact in the nodes. In the random points errors might occur, but the table shows
that they are very small. For the non-linearly controlled pendulum the errors in the nodes are no
longer zero. This is caused by the fact that the parameter bm in the piecewise affme
approximation is the average of the value for the three nodes. Therefor the approximation can not
be exact anymore when the control function depends on the state of the system, (which is always
the case in practical situations). The mean value is very small, so is the variance. The maximum
error is not that small though. This means that it should be taken into account that in rare
occasions the error can be quite large. The results for the linearly controlled pendulum confirm
this. It is however strange that the errors for the linearly controlled pendulum are larger than for
the non-linearly controlled pendulum Intuition tells the opposite. This fact needs more study.

4.5 Conclusions

In this chapter it was demonstrated how a piecewise affme approximation of the pendulum can be
defmed and how the parameters of the approximation can be calculated. A MatLab function has
been written to calculate these piecewise affme approximations. Additionally, a MatLab function
has been written to test the quality of the approximation.

For a triangulation with a node spacing of 0.0125 rad in the horizontal direction and
0.0125 rad S-1 in the vertical direction, the deflections of the piecewise affme approximation
compared to the actual system are not large (tenths of a percent) when considering just the
average values and the spread of the errors. However, the maximum values of these errors are
sometimes not particularly small (several tens percent). Therefor one should take into account the
fact that occasionally the deflections can be large, but generally they are small. A second
remarkable fact is that the errors for a non-linearly controlled pendulum are smaller than the
errors for a linearly controlled pendulum. This contradicts with our intuition. The quality of the
fit has been discussed only briefly in this report and certainly needs more attention.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 22

Piecewise affine approximation of the non-linear system

The two different numbering systems for identifYing cells and nodes in the triangulation are quite
awkward and make the writing of new MatLab functions and the adaptation of existing MatLab
functions susceptible to errors. If the majority of the MatLab code is to be rewritten in future a
more practical alternative for these numbering systems will be a large improvement.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 23

5. Piecewise linear Lyapunov functions

In the previous chapter it was explained how the state space can be decomposed and how a
piecewise affme approximation can be defmed on this triangulated state space. The next thing to
do is to defme a Lyapunov function on the triangulation. In this chapter it will be shown that it is
possible to restate the conditions for a Lyapunov function as a linear program (LP). This method
enables us to easily fmd Lyapunov functions with the aid of an LP solver and proof either
stability or instability of an equilibrium point. Recently Julian et. al. [4] have published a similar
approach.

In the fIrst section of this chapter it is shown how a Lyapunov function is defmed on our
triangulated state space. To determine if a Lyapunov function is proper, it is necessary to be able
to calculate the derivative of the Lyapunov function along the solutions of the differential
equations. Section two is concerned with the calculation of this derivative. The conditions that
need to be satisfIed to ensure that a Lyapunov function is proper and proves the stability (or
instability) of an equilibrium point, are formulated as a set of linear inequalities in section three.
Next this set oflinear inequalities is transformed to suit the needs of an LP solver, in this case
PCx. This is done in section four. Section fIve describes, what MatLab functions were written to
read the results from PCx into MatLab and present them. The sixth section shows four examples
of Lyapunov functions found this way to show that an equilibrium point is either stable or
unstable. In section seven a table with times is presented to show how long it takes to generate the
LP problem, to solve the LP problem and to plot the Lyapunov function found. Section eight
gives some concluding remarks.

5.1 Calculation of the value of the Lyapunov function

The Lyapunov function in our triangulated system is defmed by specifying its values at the nodes
and (linearly) interpolating within the cells. In this section we will derive a formula for the value
of the Lyapunov function at any point in the state space that is within the triangulated area.

For a cell m the co-ordinates of its vertices can be found in the following way:

X(m) = [X]K(m) , (33)

where X is the vector holding the co-ordinates of the nodes of the triangulation as defmed in
(26), and [X]K(m) denotes that X(m) is constructed by picking from vector X the elements
specifIed by the index numbers returned by function K; this means picking the co-ordinates of the
vertices of cell m.

We can specify the position of a point x in a cell m by means of its triangular co-ordinates4
:

x=X(m)fJ

where fJ E R3
, and fJI. {3z, A E [0,1], and

IT fJ= 1,

(34)

(35)

with I being the vector [1 1 1]T.

Conditions (34) and (35) can be jointly written as follows, introducing the new matrix X(m) :

4 Sometimes triangular co-ordinates are referred to as Banycentric co-ordinates

Formulation of the Piecewise Linear Control ofan Inverted Pendulum as an LCP 24

Piecewise linear Lyapunovfunctions

[x] [x(m)] -
1 = IT 13= X(m)f3

(36)

The Lyapunov function V(B, B) =Vex) is defmed by specifying its values at the nodes. We defme

the value at node number k by Vk, so the Lyapunov function is completely defmed by the column
vector V:

vr = [vo VI V2 . • • VK]

The fIrst node is supposed to be the equilibrium point in the area under examination.

Now, we can fmd the value of the Lyapunov function in point x lying in cell m by using the
triangular co-ordinates 13 to linearly interpolate the values of the Lyapunov function at the
vertices of cell m:

Vex) = [VT].<\m) 13,
where the meaning of the notation [V T

]>;1'm) is the same as in equation (33).

Now 13 in (38) can be substituted with the result from (36):

Vex) =[v T] X-I (m)[x]
..(m) 1

(37)

(38)

(39)

This formula expresses the relationship between the value of the Lyapunov function of a point x
laying in cell m and the value of the Lyapunov function in the vertices ofm. Now, it is possible to
defme a (piecewise linear) Lyapunov function by assigning values in all the nodes of the
triangulation. In all other points (within the triangulated area) the value of the Lyapunov function
is obtained by formula (39).

5.2 Derivative of the Lyapunov function along
trajectories

To check whether a certain function is a proper Lyapunov function, it is necessary to know the
derivative of the Lyapunov function. Since our piecewise linear Lyapunov function is not
continuously differentiable, we need an appropriate extension of the Lyapunov theorem. Rouche
et. al. [8] describe such an extension, which is obtained by replacing the usual directional
derivative by the right upper Dini derivative along the solutions of the set ofdifferential
equations. The right upper Dini derivative is defmed as follows:

D + f() l' f(t + L'lt) - f(t)t = 1m sup .::........:__..:....-....::......:......:...
~J,o L'lt

(40)

According to Yoshizawa [9] the right upper Dini derivative of a function V(t, x(t)) along the

solutions of a differential equation f(t, x(t)) is:

+ . V(t + L'lt,x(t) + L'lt f(t,x(t))) - V(t,x(t))
D V (t) =hm sup ~--------'-----'--'-------'-----'-

~~ L'lt

In the case of the piecewise linear Lyapunov functions lim sup = lim (which means: the right

upper derivative equals the right derivative) and the Lyapunov function V(t,x(t)) does not

directly depend on the time, so V(t ,xCt)) =V(x(t)).

Formulation of the Piecewise Linear Control ofan Inverted Pendulum as an LCP

(41)

25

Piecewise linear Lyapunovfunctions

For the uncontrolled situation, the right derivative of V(x) along (30) inside cell m will be

denoted by D; (x) and equals:

+ . V(x+ill(am+Amx»)-V(x(t»)
Dm (x) = ltm----'-------'---"'-.....:....--'--....:..

lllJ.O tJ.t

[VI] X-I (m)[X + !J.t(am+ AmX)] _ [VI] X-I (m)[X]
K(m) 1 K(m) 1

= lim--------==---------=--------=---=-
~J.o tJ.t

[VI] X-I (m)[!J.t(am+ AmX)]
K(m) 0

= lim--------=------=-
lltJ.O !J.t

= [VI] X-I (m)[am+ AmX]
K(m) 0

(42)

It is also possible to derive the extension of formula (42) for the case where u = u(x) is a
piecewise linear control. This will be used in section 6.1 Piecewise linear control on page 34.

+ . V(x+!J.t(am+Amx+bmu(x»))-V(x(t)) (43)
Dm(x,u(x») = hm----'-----------'----

lltJ.o tJ.t

[VI] x-I (m)[x + tJ.t(am+AmX+bmU(X»)]_[V I] X-I (m)[x]
~~ 1 ~~ 1

= lim--------=---------=----------=c...=.
lltJ.o !J.t

[VI] X-I (m)[!J.t(am+ Amx +bmU(X»)]
K(m) 0

= lim--------=-----------=-
lltJ.o ill

= [VI] X-I (m)[am+ AmX+bmU(X)]
K(m) 0

5.3 Set of linear inequalities

If the controller is a linear controller or a piecewise linear controller, then the derivative

D; (x, u) is a linear form over the co-ordinates x, so the following statement is true:

So to ensure that the derivative along solutions is negative for all x in C(m), the Dini-derivative
should be less than zero in all three vertices. So for all vertices of each cell m the following
should be true:

(44)

where the equality only holds if the node is the equilibrium point.

All the inequalities (44) for all cells can be collected into one big matrix yielding the following
system of linear inequalities:

CV~O, (45)

with the additional constraint V2: 0 and again the equalities only holding if the actual node is the
equilibrium point. Each row in (45) corresponds to an inequality of the form (44). Since every

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 26

Piecewise linear Lyapunov functions

cell has three vertices and there is an inequality for every vertex in every call, matrix C will have
3M rows, where M is the total number of cells in the triangulation.

The linear inequality in (45) will be presented to a solver for linear programs (LP). The value of
the Lyapunov function in the equilibrium point Vo will be set to zero for convenience. This means
that the fIrst column of matrix C can be cancelled as can all the rows that correspond to the node

in the equilibrium point. This cancellation will produce the matrix C . The same applies to vector
V; if its fIrst element is set to zero it can be cancelled as far as the linear inequality is concerned,

resulting in vector V and the following set of inequalities:

CV <0

with V >0.

5.4 Presenting the LP to the solver

(46)

The set of linear inequalities (46) is not ready yet to be presented to the LP-solver. The solver
that is used, is PCx from the Optimization Technology Center. (See the section on Software on
page 45 for more information on PCx.) As all LP solvers, PCx needs an objective to minimise
(maximise). Since there is no objective to minimise, one will be introduced. The set of linear
inequalities (46) will be rewritten in the following way:

CV +z·l:S;O (47)

In the above 1 is a column vector oflength equal to the number of rows of matrix C. All
elements of vector 1 are equal to one. We also add and use scalar variable z. Now, we have an
objective to be minimised in the form of the variable - z, i.e.

mm-z (48)

When we can solve (47) with z > 0 then (46) follows. This problem will be presented to PCx
together with a constraint on the variable z:

(49)

It is necessary to limit the variable z, as in (49), because otherwise the solution may be
unbounded from below. Let us observe that constraints written in the form (47) are never

infeasible, since they are solved by substituting V=0 and z = O. If the solution to (47) (48) is
Zopt = 1 then the system (46) is feasible. Another possibility is Zopt = 0 which indicates that the
system of linear inequalities (46) is infeasible.

The upper bound on V is set as a constant in the MatLab code and can be set to a higher value if
necessary. Normally the MatLab functions try to fmd a Lyapunov function that proves stability.

For that situation V has a lower bound of zero. However, if we try to fmd a Lyapunov function
to prove that an equilibrium point is unstable, the lower bound has to be negative to allow for
negative values of the Lyapunov function. This can be done by supplying an extra argument to
the MatLab function to tell it to set the lower bound to the negative value of the upper bound.

The functions lyapunov and lyadown are written to generate the input fIle for the LP solver.
These two functions provide the same functionality, but the former one considers the pendulum in
its inverted position, while the latter considers the pending position. The functions write the LP
problem to an MPS fIle, that can be read by PCx. The code and a brief description for
lyapunov and lyadown can be found in appendix B.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 27

Piecewise linear Lyapunov functions

5.5 Reading the results

Three functions are available to process the results from the solver. The functions readmps
should be used to read the results ifPCx is used to solve the LP problem. Optionally, the function
readl ing can read the results, if the LP solver Lingo is used. The solution to the LP problem
will be stored in a vector. The function plotlya will plot the Lyapunov function in this vector
in a 3-dirnensional graph.

The function plotlya plots a 3-dirnensional graph of the piecewise linear Lyapunov function.
Because it is not always easy to see if a particular point of a 3-dirnensional graph is positive or
negative, this representation is not ideal for the purpose of displaying Lyapunov functions.
Besides that, often problems arise with the 2-dimensional representation of 3-dirnensional graphs,
which might lead to misinterpretations. This problem is even bigger when the graph is printed on
paper, since the reader is no longer able to rotate the graph in the 3-dimensional space.

Especially in the case of Lyapunov functions, contour plots provide a better picture of the shape
of the function. Since it is unknown how MatLab deals with piecewise linear functions, the
available functions for producing contour plots can not be used without being studied fIrst.

5.6 Numerical examples

5.6.1 The uncontrolled upright position

In chapter 3 Swing-up by the energy method it was shown that the uncontrolled upright position
is unstable. Of course this is not a surprise, but it is a good opportunity to show that the LP
solver is able to fmd a Lyapunov function that proves the instability of the uncontrolled upright
position of the pendulum. The instability is proven in a neighbourhood of the upright position that
is decomposed into a 31 x 31 triangulation with a node spacing of 0.0125 x 0.0125

[rad x rad S·l]. Based on this triangulation, entries of the matrix C were calculated and the
problem (47) (48) was submitted to the LP solver PCx. The size of the LP problem was 5392
rows (inequalities) and 961 columns (variables). The value of the objective z was 1, which
indicates that (46) is feasible.

The condition (46) is satisfIed which proves that the derivative of the Lyapunov function is
strictly negative. On the other hand as seen in fIgure 14 (and this can also be verifIed by
inspecting the output fIle of the LP solver) the Lyapunov function takes negative values
arbitrarily close to the origin. This proves the instability of the uncontrolled upright position.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 28

Piecewise linear Lyapunov functions

Lyapunov function of the uncontrolled, inverted pendulum

0.5

o

-0.5

-1
0.2

...........

9'

.. , .

.........
. ...

-0.2 -0.2

" .

'.

9

0.2

Figure 14: Lyapunov function of the uncontrolled upright pendulum

5.6.2 The non-linearly controlled pending position

In this paragraph it is shown that the pendulum controlled by the non-linear controller of equation
(12) from chapter 3 Swing-up by the energy method is unstable in its pending position, This
means that the pendulum will always leave this state what makes the pendulum swing up. The
pendulum is actually not controlled by the non-linear controller, but by the piecewise linear
approximation of this controller. The state space is decomposed into a 15 x 15 triangulation with
a node spacing of 0.0249 x 0.0250 [rad x rad S-I]. The size of the LP problem is 1172 rows
and 225 columns.

The condition (46) is satisfied which proves that the derivative of the Lyapunov function is
strictly negative. On the other hand as seen in figure 15 the Lyapunov function takes negative
values arbitrarily close to the origin. This proves the instability of the uncontrolled upright
position. Even stronger, we can see that the value of the Lyapunov function gets more and more
negative if we move away from the pending position, which means that if the pendulum is in a
state close to the pending position, it will be forced further away from this pending position. This
proves that a piecewise linear controller approximating the non-linear controller does indeed do a
swmg-up.

Formulation ofthe Piece"vise Linear Control ofan Inverted Pendulum as an LCP 29

Piecewise linear Lyapunov functions

Lyapunov function of the non-linearly controlled, pending pendulum

-4 . " , .

3.4

....

.,."

, .. ,
.. ' .

.....
.;, .. ,

.; .

~---;~":~",""~::I...~,,,... r......

. ,

: .
"

. , .

X 10'

-7

-5

-6

o
-1

-2

-3

...:.....
-8···· .

-9
0.2

8' -02 2.9

Figure 15: Lyapunov function ofnon-linearly con/rolled pendulum (pending position)

This calculation has also been done on a number of fmer triangulations among which the
triangulation of the previous paragraph on the uncontrolled, inverted pendulum, namely a 31 x 31
triangulation with a node spacing of 0.0 125 x 0,0125 [rad x rad S-I]. Remarkable is that the LP
solver comes with a solution where the objective z is a very small number close to zero (5'10-7

),

showing that the solver could not fmd another solution than the zero solution.

A possible explanation for this behaviour is that the singular points around the equilibrium point
in the downward position are causing problems. This problem might be evaded by splitting the
nodes that coincide with a singular point into two separate nodes with the same co-ordinates, one
being the vertex of the cells in the upper half of the state space and the other being the vertex of
the cells in the lower half of the state space. This aspect needs further studying.

5.6.3 The non-linearly controlled upright position

In the previous paragraph it was shown that by applying the non-linear control law to the
pendulum, it will do a swing-up. In this paragraph we examine the upright position, It will be
shown that the non-linearly controlled pendulum is in fact not stable in its upward position. This
means that the controller is not able to keep the pendulum in its upright position. The LP problem
has the following size: 5392 rows and 961 columns.

Condition (46) is satisfied again which proves that the derivative of the Lyapunov function is
strictly negative. It can be seen that the Lyapunov function takes negative values arbitrarily close
to the origin. This proves that the pendulum is unstable in its inverted position if controlled by a
piecewise linear approximation of the non-linear controller as defmed in (12) in chapter 3
Swing-up by the energy method.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 30

Piecewise linear Lyapunov functions

Lyapunov function of the non-linearly controlled, inverted pendulum

.......

X 10'
.................

0,5

°
-0,5

-1
0,2

-0,2 -0,2
e

0,2

Figure J6: Lyapunov fimction ofthe non-linearly controlled pendulum

5.6.4 The linearly controlled upright position

Since the non-linear controller is not able to keep the pendulum in its upright position, we switch
to another (linear) controller to balance the pendulum. Tills paragraph shows that the linear
controlled pendulum is stable in its upright position, so the controller is able to balance the
pendulum. The size of the LP problem is 5392 rows and 961 columns.

Since condition (46) is satisfied, the derivative of the Lyapunov function is strictly negative.
Figure 17 shows that the Lyapunov function is positive in all the points of the examined region. It
is difficult to see the shape of the Lyapunov function accurately though. By rotating the
3-dimensional graph on a computer it can be seen that the Lyapunov function does have a
minimum in the origin. Tills proves the stability of the linearly controlled inverted position.

Formulation of the Piecewise Linear Control ofan Inverted Pendulum as an LCP 31

Piecewise linear Lyapunovfunctions

Lyapunov function of the linearly controlled, inverted pendulum

.

10

2

o
0.2

X 10'

.........................

·········11.···; .
.

-0.2 -0.2
W e

....

.
....

.

. ...

0.2

Figure J7: Lyapunov function ofthe linearly controlled upright position

5.7 Generation times of the Lyapunov functions

The times needed to generate the LP problem, to solve the LP problem and to plot the Lyapunov
functions have been measured and are mentioned in the next table. The calculations were
performed on a Pentium 75 MHz with Windows 95 and 48 MB RAM. The state space
decomposition was set to respectively a 15 x 15 and a 31 x 31 triangulation with a node spacing
of 0.049 x 0.050 in both cases. Table 3 shows the times for the different situations and
subprocesses.

Table 3: Process time ofvarious subprocesses for finding a Lyapunov function

Process time in seconds Is1 LP aeneration LP solvina Plottin!l Total

15 x 15 triangulation

Uncontrolled upright position 896.2 27.7 423.2 1347.1

Non-linearly controlled pending position 853.0 33.6 129.8 1016.4

Non-linearly controlled upright position 893.9 37.9 539.6 1471.4

Linearlv controlled uoriaht position 894.7 33.5 155.9 1084.1

Averaae 884.5 33.2 312.1 1229.8

31 x 31 triangulation

Uncontrolled upright position 4988.5 403.5 823.7 6215.7

Non-linearly controlled pending position 4851.2 535.2 566.0 5952.4

Non-linearly controlled upright position 5099.6 558.5 1777.7 7435.8

Linearlv controlled uoriaht oosition 5028.8 572.77 696.9 6298.5

Average 4992.0 517.5 966.1 6475.6

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 32

Piecewise linear LyapunovJunctions

Clearly the generation of the LP problem takes the majority of the time - over 70%. The majority
of the remaining time is needed for the plotting of the Lyapunov function. Although the solving of
the LP problem is most probably the toughest job, it needs the smallest amount of time. This can
be easily explained. The LP solver has been written in the programming language C and a lot of
time has been put in the optimisation of the code by its programmers. The code that generates the
LP problem and the code that plots the Lyapunov function are written in the form of a MatLab
m-file. A limited amount of time was devoted to optimising the MatLab code, so probably the
code can be made more efficient.

5.8 Conclusions

A method to defme a piecewise linear Lyapunov function on our triangulation has been presented
in this chapter. It was shown how the derivative of the piecewise linear Lyapunov function along
solutions of the differential equations can be calculated. Then it was shown how the problem of
fmding a piecewise linear Lyapunov function can be formulated as an LP problem, to solve the
problem with an LP solver.

Four numerical examples have been presented, to show how the stability of a region can be
demonstrated with the piecewise linear Lyapunov functions found by the LP solver. The
3-dimensional representation of the piecewise linear Lyapunov functions is sensitive to
misinterpretation by the viewer/ reader, especially if these representations are printed on paper. A
function that plots the piecewise linear Lyapunov functions in a contour plot might aid the
viewer/ reader a lot in interpreting the represented data. An additional advantage of contour plots
is that it is much easier to fmd a proper Lyapunov contour.

Measurement have been performed on the time to generate the LP problems, to solve them, and to
present the results. The majority of the time is needed for the generation of the problems. Solving
the problems takes the least amount of time. On a Pentium 75 MHz with 48 MB RAM the
process of generating the problem till displaying the results takes roughly two hours for a 31 x 31
triangulation. This time can probably be decreased by optimising the MatLab code. The
complexity of the algorithm is linear with the number of nodes in the triangulation.

Formulation ojthe Piecewise Linear Control ojan Inverted Pendulum as an LCP 33

6. Design of piecewise linear control

In the previous chapter it was shown that we are able to transfonn the problem of fmding a
Lyapunov function to accommodate the evaluation of the stability of a piecewise affme
approximation of a system into a Linear Program, which can be solved by solvers for LP
problems. In this chapter this idea is extended. A mathematical solver will not only fmd a
Lyapunov function, but will also fmd a piecewise linear controller that will tum an arbitrary point
in state space into a stable equilibrium point. This is done by transforming the problem into a
linear complementarity problem (LCP). It can not be guaranteed that the resulting LCP is
feasible though.

In the fIrst section it is demonstrated how a piecewise linear controller can be defmed on our
triangulated state space in a similar way as was done with the defmition of the piecewise linear
Lyapunov function. The second section shows how the problem is fIrst fonnulated as a bilinear
system of inequalities. This fonnulation is then transfonned into a set oflinear inequalities with
additional complementarity conditions. Finally a transformation is made into an LCP. A MatLab
function was written to derive matrices that describe this LCP for the case of the inverted
pendulum. This MatLab function then transfonns the matrices into a fonn that can be send to an
LCP server on the Internet. The results obtained with this MatLab function are described in the
third section of this chapter. The fmal section gives some concluding remarks on this chapter.

6.1 Piecewise linear control

In the previous chapter an expression was derived for the calculation of the value of the
Lyapunov function for an arbitrary point x in the state space. We can derive a similar expression
for the value of the control action u(x) for an arbitrary point x in the piecewise linearly
approximated state space.

The control law is defmed as a function of state co-ordinates u«(), B) =u(x). Its values are

specifIed in each node. Within the cells, the value of the control law can be found by interpolating
the values at the three vertices of the cell. The value at a node k will be denoted by Uk. The values
Uk are collected in a vector V:

VI = [uo UI U2 UK]

As in the case of the Lyapunov function - for comparison, see equation (38) - the value of the
control law for an arbitrary point x within cell m can be found with the following fonnula:

u(x) = [VI
]1C(m) fJ

Combining equations (36) and (50) lead to:

u(x) =[VI] X-I (m)[X] ,
K(m) 1

where m is the cell in which the point x is situated.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP

(50)

(51)

34

Design ofpiecewise linear control

6.2 Conversion of the problem to an LCP

The problem of fmding the piecewise linear controller is frrst formulated as a bilinear system of
inequalities. This formulation will be transformed into a set of linear inequalities with additional
complementarity conditions. Finally, this form is transformed into an LCP.

6.2.1 Formulation as a bilinear system of inequalities

If we substitute the equation for the linear controller (51) into our expression for the derivative
(43) we obtain the following equation:

(52)

For stability the derivative should be negative, so in each cell C(m) the following inequality
should hold for all three vertices:

(53)

The problem of fmding a piecewise linear controller involves the calculation of the two vectors V
and U. In cell C(m) we can write for the point x == Xk:

Uk ==[U T
] X-1(m)[Xk

]
K(m) 1

Substituting equation (54) into equation (53) results in:

[] _ [a + A x +b u]D;(xk,uk)= VT X-1(m) m m k m k
K~) 0

(54)

(55)

Since every cell has three nodes, there are three equations like equation (55) connected with each
cell. Now we collect all equations (55) for all mE !1(k). The following notation is introduced:
m" ... , m/ denote the cell numbers returned by the function !1(k), withh E {I, 2, 4, 8}.5 Next,
we defme row vectors gjT (k) with i in the range 1,2, ... ,h:

(- [a + A x])gjT (k) = X-t(m
j

) m, 0 m, k ,

K(m,)

where OK(m,) denotes that the vector g; (k) is obtained by placing the three elements of the

vector

(56)

5 A node is connected to either one, two, four or eight cells. Nodes on the comer of the triangulated area are
connected to either one or two cells, the nodes on the borders of the triangulation (except for the comer nodes)
are connected to either two or four cells and all remaining nodes to either four or eight cells.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 35

Design ofpiecewise linear control

into the positions given by the elements of the list K(mi)' All the other elements of vector giT (k)

are zero.

The row vectors g; (k) are then collected into the matrix Gk :

gJ. (k)

Similar to the above approach, we can defme row vectors liT (k):

(57)

The term (.) (has a similar meaning as in equation (56).
" mil

The rows liT (k) are collected into the matrix L k :

I((k)

Ii (k)
L k =

I~ (k)

Now we can rewrite the derivatives in the following way:

D; (Xk,U k)
I

D;,(xk,ud
D+(k) = =GkV +ukLkV

The problem of fmding a piecewise linear controller can be restated as follows:

Find vectors Vand U such that:

(58)

'Vk~1,2, ... ,KD+ (k) < 0 (59)

Equations (58) and (59) form a bilinear system of inequalities. To solve for the vectors Vand
U this system is transformed into a linear complementarity problem. However, first this bilinear
system of inequalities is transformed into a conjunction of inequalities with additional
complementarity conditions.

6.2.2 Transformation into a conjunction of inequalities with additional
complementarity conditions

A solution to inequality (59) exists if one of the following conditions is true:

1. The first term in equation (58) is less than zero. By setting Uk to zero inequality (59) will
hold:

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 36

Design ofpiecewise linear control

GkV + UkLkV < 0,

which evaluates to the following inequality if Uk = 0:

GkV< O.

2. If Gk ~ 0, then inequality (59) can be satisfied by either setting Uk to Uma;r:

GkV + ullW<LkV < 0,

which will be denoted as:

3. or by setting Uk to Umin:

which will be denoted as:

(60)

(61)

(62)

(63)

(64)

(65)

By introducing the nonnegative scalar variables a:, a;, ii:, ii;, ii:, ii; ~ 0 we can write

this as a conjunction of inequalities:

GkV+(a: -a;)I~O

GkV + (ii: - ii;)1 ~ 0

GkV + (ii: - ii;)1 ~ 0

a: + ii: + ii: > 0

where 1 is a h x 1 vector; and additional complementarity conditions:

a:a; = 0

ii: ii; = O.

ii:ii; = 0

6.2.3 Transformation into a Linear Complementarity Problem

(66)

(67)

Formulae (66) and (67) can be transformed into a linear complementarity problem. Once stated
as a LCP the problem of swinging up the pendulum and stabilising it in its inverted (upright)
position can be solved by offering the LCP to a solver for LCP's.

We rewrite (66) for k = 1, 2, ... ,K respectively as:

-GV-La+-Ma-=z (68)

and

Na+-q=u

where

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP

(69)

37

Design ojpiecewise linear control

G=

L = diag(l, 1, ... ,1), and M= -L,

at a l-

at a~

at a~

a+ = ,and a- =

N== diag([1 1 1], [1 1 1], ... , [11 1])

z and u are additional vector variables satisfying z ~ 0 and u ~ o. q is a given vector q == c·1,
where c is small positive real-valued scalar.

6.2.4 Rearranging the matrices

The matrix L is of the following form:

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0
L=

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

We can rearrange the matrix by taking the fIrst row from each group of equal rows and placing
those in the upper part of the matrix and leaving the remaining rows in the lower part of the
matrix. The fIrst K rows will then form a submatrix with the form of an identity matrix:

Formulation oJthe Piecewise Linear Control ojan Inverted Pendulum as an LCP 38

Design ofpiecewise linear control

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

L= 1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

After rearranging L and rearranging G and M accordingly, equation (68) has the following form:

[G1
] [1]+ [-1]_ [ZI]- G

2
V - L

z
a - M

2
a = Z2

This equation is equivalent to the following system of equations:

- G1V-a + + a- = ZI

- G2V - L2a+ - M 2a- = Z2

Solving (70) for a + leads to:

a + = a - - G1V - ZI

(70)

(71)

(72)

This equation can now be put into a form that suits better for linear complementarity solvers:

[~:j=[~. -GI ~.I ~-[~-j
.... .. ZI

....

(73)

Matrix elements denoted by a double period (..) are to be filled in yet. The variables V and ZI both
need corresponding complementary variables. These complementary variables will simply be
introduced and called Cv and Cz respectively. Since we are not interested in the value of these

I

complementary variables, we will make them independent of the other variables by putting zeros
in the corresponding rows of the matrix.

a+

~[~
-G1 -I 0 a (74)

Cv 0 0 0 V

c- O 0 0 ZI
"'

Equation (71) has to be rearranged in a similar way. We start by substituting (72) into the
(71):

- G2V - Lz (a- - G1V - ZI) - Mza- = Zz

which can be rewritten as:

(- L2- M 2) a- + (G1 Lz - Gz) V + LzZI - Zz = 0

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 39

Design ofpiecewise linear control

Next a complementary variable for Zz is introduced and is named cz, :

(-Lz -Mz)a- +(GILz -GZ)V+LZz l -Zz =cz,

This equation can be added to the matrix (74) too:

a+ 1 -GI -I 0 0 a (75)

Cv 0 0 0 0 0 V

C
Z1

= 0 0 0 0 0 Zl

e
Z1

- Lz - M z GILz - Gz Lz -I 0 Zz

The first equation (70) of our system has been transformed into a linear complementarity
problem. The second equation (69) is to be rewritten too, so it can be fitted into the linear
complementarity problem. We do this by substituting the solution for a+ (equation (72)) into
the second equation (69) of our system:

N (a- - G1V - ZI) - q = u

Next, the complementary variable of u is introduced Cu:

N (a- - G1V - ZI) - q - u = Cu

Finally, we incorporate this equation in our matrix (75):

a+ 1 -GI -I 0 0 a 0

Cv 0 0 0 0 0 V 0

c- = 0 0 0 0 0 ZI + 0
"'

c- - Lz - M z GILz - Gz Lz -I 0 Zz 0
"'

Cu N -GIN -N 0 -I u -q

The corresponding complementarity conditions are:

a+ ·a- =0

cv·V =0

Cz ·ZI =0
1

cz, ·Zz =0

cu· u =0

(76)

(77)

Now the problem offmding a piecewise linear controller to swing up the pendulum and stabilise
it in its inverted (upright) position has been transformed into a Linear Complementarity Problem.
Since there are solvers available for LCP's, it is now possible to try to solve the problem of the
inverted pendulum with one such solver.

6.3 Solving the LCP's

To generate the LCP as stated in equations (76) and (77) the MatLab function genlcp was
written. To solve the LCP's, the PATH algorithm is used as it is available through the NEOS­
server. (The reader is referred to the section on Software on page 45 for more information on
PATH.) The NEOS server accepts LCP's via e-mail in the form of FORTRAN code, therefor
function genlcp outputs its results in FORTRAN and writes the code to a flle. The MatLab
code for genlcp can be found in appendix B. The MatLab function lcpsol is intended to

Fomlulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 40

Design ofpiecewise linear control

read the results that are send back by the NEOS-server. Because the NEOS-server has not been
found any solution yet, this function has not been tested though.

To test the method an LCP was generated to represent the swing-up problem in its simplest form
- meaning that the neighbourhood of the inverted position was decomposed into only eight cells.
This problem can actually not be considered as a representation of the swing-up problem. It is
more close to the problem of balancing the pendulum in its upright position. The MatLab
function produced an LCP with 117 variables. The LCP has been submitted to the solver, but
unfortunately the server did not fmd a solution within its predefmed maximum number of
iterations (being equal to 500) although a simple linear controller should do the job. Since the
NEOS-server did produce solutions for two simple test problems (that were produced without the
MatLab function genlcp), we know the server is actually functioning.

At this moment it is difficult to determine why no solution is returned. Possible explanations are:

• The derivation for the formulation of the problem as an LCP contains an error;

• The MatLab function genl cp is faulty and has produced an LCP which is infeasible or the
solution is too hard to fmd;

• The problem is too complex too be solved within the maximum number of iterations.

The last option does not sound very likely, since it is known that there exists a simple solution to
the problem of balancing the pendulum in its inverted position and much more complicated LCP's
(thousands of variables) have been solved by others (although it is not known if such problems
have been solved by the NEOS-server).

The solver requires an initial point for the fIrst iteration. This point was until now chosen quite
arbitrary. A more considered initial point might enable the solver to produce a solution.

In the fIrst place the derivation in this chapter needs more thorough checking and the code of
function genlcp needs checking.

6.4 Conclusions

The previous chapter showed that it is possible to use an LP solver to search for (piecewise
linear) Lyapunov functions to investigate the stability or instability of a neighbourhood of an
arbitrary point in the state space. In this chapter this concept was extended. It was shown that it
is possible to formulate the problem of fmding a piecewise linear controller that makes a point in
state space stable, as a linear complementarity problem. This LCP can be presented to a solver
for (linear) complementarity problems to fmd such a controller and at the same time fmd a
Lyapunov function to demonstrate the stability of the point.

A function was implemented in MatLab to transform the problem of swinging up the pendulum
and balancing it in its inverted position into an LCP that was suitable for submission to a solver
for LCP's. The solver did however not fmd a solution within its maximum number of iterations.
At least the derivation in this chapter for formulating the swing-up problem as an LCP needs to
be checked more thoroughly. Besides that, the MatLab code that generates the LCP needs
checking too.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 41

7. Conclusions and recommendations

This chapter concludes the report by presenting some conclusion and recommendations. The
chapter is subdivided in two sections. The first section focuses on the process of fmding
piecewise linear Lyapunov functions. The second one deals with the method to fmd a piecewise
linear controller for a piecewise affme approximation of a system.

7.1 Piecewise linear Lyapunov functions

In this report a system - the inverted pendulum - is approximated by a set of piecewise affme
expressions, defmed upon a state space that is decomposed in disjunct, triangular shaped cells. It
is shown how a piecewise linear Lyapunov function can be defmed upon this triangulated state
space. Next to that, the report describes how the conditions stating that the piecewise linear
Lyapunov function should have a strictly negative derivative (except for the equilibrium point
under consideration), can be formulated as a Linear Program. This LP problem can be presented
to a LP solver like PCx to fmd a piecewise linear Lyapunov function to study the stability of a
neighbourhood of an equilibrium point. Using this method (piecewise linear) Lyapunov functions
can be found that prove either the stability or instability of such a neighbourhood.

Some numerical examples are presented that prove either the stability or instability of the two
equilibriurn points - the pending and the inverted position - of the inverted pendulum when using
a few simple control strategies. The knowledge of the stability or instability of these control
strategies is not new, but the examples illustrate how the Lyapunov functions found by the LP
solver can be used to examine stability.

Next to the LP solver, MatLab code has been written to produce the LP problem, and a second
MatLab function to plot the Lyapunov function found by the LP solver. The MatLab code is not
considerably fast, but the speed is still practical. The generation of the LP problem for a state
space that is decomposed in nearly 1000 cells takes less than two hours on a Pentium 75 with
48 MB RAM. Solving is a matter of roughly a minute and the plotting process takes less than
10 minutes. The complexity of the MatLab functions is linear with the number of cells. The
generation time of the LP problems can probably be reduced slightly by optimising the code and
drastically by rewriting the code in a lower level computer language like C.

The visualisation of the Lyapunov functions is now by means of 3-dimensional plots. This has
two disadvantages:

• The 3-dimensional plots are subject to misinterpretations, especially when the plot is printed
on paper and can not be rotated anymore like on a computer monitor;

• With the analysis of the stability of the neighbourhood of an equilibrium point, one has special
interest in Lyapunov contours, for example to fmd stability regions.

Therefor the visualisation can be greatly improved by presenting the Lyapunov functions by
means of contour plots. The available MatLab functions for producing contour plots are not
directly applicable for this purpose though.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 42

Conclusions and recommendations

7.2 Piecewise linear control

The second part of this report describes how the process offmding a piecewise linear Lyapunov
function can be extended to search for a piecewise linear controller that will make the equilibrium
point stable. The problem can no longer be expressed in the form of an LP problem. However, it
is shown that the problem can be transformed into a Linear Complementarity Problem (LCP).
Solvers for Complementarity Problems are available, for example the PATH algorithm. To be
able to test this method of fmding a piecewise linear controller, a MatLab function has been
written to transform a control problem - in this case the swing-up and stabilisation of an inverted
pendulum - into an LCP. The LCP is formulated in FORTRAN code, which is the input format
of the PATH algorithm as implemented on the NEOS-server. This way the problem can be
presented to the solver.

The size of the LCP is fairly big. For the simplest decomposition consisting of only eight cells, an
LCP with 117 variables is being generated. Fortunately, this number expands only linear with the
number of cells.

The MatLab-function has been tested, but unfortunately the server did not fmd a solution within
its predefmed maximum number of iterations (being equal to 500). Neither did it fmd a solution
to (a part of) the swing-up problem, nor did it fmd a solution to the problem of balancing the
pendulum in its inverted position.

Without further research it is not possible to fmd out why no solution is found. Possible
explanations are:

• The MatLab code is faulty and produces either infeasible problems or problems that are just
too complex to solve in only 500 iterations;

• The MatLab code is working correct, but the problem is too complex to solve in only 500
iterations.

The last explanation sounds not very likely, since there exists a simple solution to the problem of
balancing the pendulum in its inverted position and according to literature quite complex LCP's
(several thousands of variables) have been solved already.

Additional research to fmd the cause of this problem should be done.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 43

Literature

[1] Astrom, KJ. and K Furuta
Swinging up a pendulum by energy control
IFAC 13th World Congress, San Francisco, California, USA, 1996

[2] Chung Choo Chung and John Hauser
Nonlinear control ofa swinging pendulum
Autornatica, Vol. 31 (1995), No.6, pp. 851-862
Oxford: Pergamon Press

[3] Cottle, R.W., Jong-Shi Pang, and R.E. Stone
The linear complementarity problem
San Diego: Academic Press: 1992

[4] Julian, P., 1. Guivant, and A. Desages
A parametrization ofpiecewise linear Lyapunovfunctions via linear programming
Int. J. Control, Vol. 72 (1999), No. 7/8, pp. 702-715
Taylor &Francis Ltd.

[5] Khalil, H.K
Nonlinear systems
New York: Macmillan Publishing Company: 1992

[6] Murty, KG.
Linear Complementarity, Linear and Nonlinear Programming, Internet edition
Internet Edition prepared by Feng-Tien Yu: 1997
http://www.personal.engin.umich.edu/-murty/
Original edition: Helderman-Verlag, 1988

[7] Qifeng Wei, W.P. Dayawansa and W.S. Levine
Nonlinear controllerfor an invertedpendulum having restricted travel
Autornatica, Vol. 31 (1995), No.6, pp. 841-850
Oxford: Pergamon Press

[8] Rouche, N., P. Habets and M. Laloy
Stability theory by Lyapunov's direct method
Heidelberg: Springer, 1977

[9] Yoshizawa, T.
Stability theory by Liapunov 's second method
Tokyo: The Math. Soc. of Japan, 1966

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 44

Software

Numerical mathematics:

MATLAB version 5.0.0.4069 on PCWIN, 22 November 1996
The MathWorks Inc., Natick, MA, USA

MATLAB toolboxes:

Control System Toolbox version 4.0, 15 November 1996

Optimization Toolbox version 1.5.0,31 October 1996

Simulink version 2.0, 15 November 1996
The MathWorks Inc., Natick, MA, USA

Solver for Linear Programming problems:

PCx for Windows 95/ NT version 1.1, November 1997
Optimization Technology Center at Argonna National Laboratory and Northwestern University
http://www-fp.mes.anl.gov/ote/Tools/PCx/

Solver for Linear Complementarity Problems:

NEOS-server, Path version 3.2, 16 February 1998
T.S. Munson, S.P. Dirkse, M.e. Ferris; University of Wisconsin
http://www . mes. anl.. gov/neos/Server/

Formulation ojthe Piecewise Linear Control ojan Inverted Pendulum as an LCP 45

Appendix A: Simulink files

The Simulink files used for the simulations in this report are listed in this appendix. There are
two models: The first describes a pendulum with only a swing-up controller. This controller does
do the swing-up, but is not capable of keeping the pendulum in its inverted position. The second
model has an additional linear controller. This linear controller will stabilise the pendulum in its
inverted position.

Module 1: Pendulum with non-linear controller

Pendulum Swing-up
controller

Pendulum:

Scope2

The gain Damping has a value of:

The initial condition of integrator Inti is:
The initial condition of integrator Int2 is:

Swing-up controller:

Select

Sign

d

ml2

0.1 rad S-I

Orad

Calc. energy:

Product Gain2

The gain Gain] has a value of: mgl
The gain Gain2 has a value of: IhmP

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 46

Appendix A: Simulinkfiles

Select:

Gain Saturation

The constant Constant has a value of: mgl
The saturation Saturation has a lower bound of: Umin

and an upper bound of: Urnax

Sign:

x2

The saturation has a lower bound of:
and an upper bound of:

- I
+ I

Model 2: Pendulum with swing-up controller and stabiliser

Linear
controller

Distance:

Square2

Linear controller:

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 47

The co-ordinates of point x

Appendix B: MatLab code

All MatLab functions written for the research described in this report are listed here along with a
short description of their purpose, a listing of the inputs, outputs and other functions the
described function depends on. The function setenv should be invoked before any of the other
functions is called to set the configuration to act on. If such configuration does not exist yet,
wr i tee f 9 should be invoked right after invoking se t env.

Function barrycnt

Description:
The function barrycnt returns for a point x in which cell m it is lying, the numbers k of the
nodes of cell m and the triangular or barrycentric co-ordinates a of point x in the cell.

Inputs:
x

Outputs:
m
k
a

Depends on:

Number of the cell in which point x is lying
Row vector with the numbers of the nodes of cell m
Triangular co-ordinates of point x in cell m

odd,even

Code:
function [m,k,a] =barrycnt (x)
%BARRYCNT Calculates cell number, number of the nodes of the cell
% and the Barrycentric coordinates of the point in the cell
%

5 % [m,k,a]=BARRYCNT(x)
% Calculates in what cell 'm' the point x lays, the numbers
% 'k' of the nodes of the cell and derives the Barrycentric
% coordinates 'a' in the cell.

10 global ENVIROMENT NAME
if length(ENVIROMENT_NAME)==O

error('Enviroment name not set. Use SETENV. ');
end
if -exist ([ENVIROMENT NAME' .mat'], 'file')

15 error('Configuration file does not exist. Use WRITECFG. ');
else

load (ENVIROMENT_NAME) ;
end

20 x(l)=mod(x(l) ,2*pi);

% Calculate horizontal spacing
Dh=2*pi/Nh;

25 RowNo=2*abs(fix(x(2)/Dv»;
if x(2)<0

RowNo=RowNo+l;
end

30 BotLeft=(RowNO*Nh)+fix(x(l)/Dh);

% Calculate the number of cells around node 'BotLeft'
sect = even(fix((BotLeft+Nh)/Nh/2»;
eight = (odd(BotLeft) & (-sect» I ((-odd(BotLeft» & sect);

35
%Determine cell number 'm'

if eight

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 48

The cell number

Appendix B: MatLab code

xn=coord(BotLeft);
40 if (x(2)-xn(2»>(x(l}-xn(1»*Dv!Dh

m=BotLeft*2;
else

m=BotLeft*2+1;
end

45 else
BotRight=BotLeft+l;
if -mod (BotRight,Nh)

BotRight=BotRight-Nh;
end

50 xn=coord(BotRight);
if (-mod(BotRight,Nh»&(xn(l)==O)

xn(l}=2*pi;
end
if (x(2)-xn(2»>(xn(1)-x(1»*Dv!Dh

55 m=BotLeft*2+1;
else

m=BotLeft*2;
end

end
60

k=c2n (m) ;
xn=coord (k) ;
% If point x is in the rightmost column, set the x(l)-coordinates
% of the nodes to the right to 2*pi instead of o.

65 if mod(BotLeft,Nh)==Nh-l
xn(l,xn (1, :)==0) =2*pi;

end
a=[xn(l,:); xn(2,:); ones(l,length(xn(l,:))\[x(l); x(2); i);

Function c2n

Description:
The function c2n returns a row vector with the numbers of the nodes that are the vertices of the
cell designated by input m.

Inputs:
m

Outputs:
k

Depends on:

Row vector with the node numbers

c2n,coord,even,odd

Code:
function k=c2n(m)
%C2N calculates the numbers of the nodes of a cell
%

5
%
%
%

k=C2N(m)
Returns a vector 'k' containing the numbers of the nodes
forming the cell with cell number 'm'.

10

global ENVIROMENT NAME
load (ENVIROMENT_NAME) ;

BotLeft=fix(m!2) ;
RowNo = fix (BotLeft!Nh) ;

BotRight=BotLeft+l;
15 if -mod(BotRight,Nh)

BotRight=BotRight-Nh;
end

if RowNo==l
20 TopLeft=BotLeft-Nh;

elseif odd (RowNo)
TopLeft=BotLeft-2*Nh;

else
TopLeft=BotLeft+2*Nh;

25 end

TopRight=TopLeft+l;

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 49

A row vector with node numbers for which the corresponding co-ordinates
must be calculated.

Appendix B: MatLab code

if -mod (TopRight,Nh)
TopRight=TopRight-Nh;

30 end

% Calculate the number of cells around node 'BotLeft'
sect = even(fix((BotLeft+Nh)/Nh/2»;
eight = (odd(BotLeft) & (-sect» I ((-odd(BotLeft» & sect);

35
if eight

k=[BotLeft TopRightJ;
if even(m)

k=[k TopLeftJ;
40 else

k=[k BotRightJ;
end

else
k=[TopLeft BotRightl;

45 if even(m)
k=[k BotLeft];

else
k=[k TopRight];

end
50 end

k=sort (k) ;

Function coord

Description:
The function coord returns a matrix with the cartesian co-ordinates of the nodes designated by
input k.

Inputs:
k

Outputs:
x

Depends on:

A matrix with the co-ordinates of the nodes.

odd

Code:
function x=coord(k)
%COORD Return the cartesian coordinates of the nodes
%
% x=COORD (k)

5 % Calculates the cartesian coordinates of the nodes defined by
% rowvector k.

global ENVIROMENT NAME
load (ENVIROMENT_NAME) ;

10
NmbOfNodes=length(k) ;
x=zeros(2,NmbOfNodes) ;

for i=l:NmbOfNodes
15 x(l,i)=mod(k(i) ,Nh)*2*pi/Nh;

RowNo=fix(k(i)/Nh) ;
x(2,i)=fix((RowNo+l)/2)*Dv;
if odd (RowNo)

x(2,i)=-x(2,i) ;
20 end

end

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 50

A row vector with (partial) cell numbers to be converted to global numbering.

Appendix B: MatLab code

Function cprt2g1b

Description:
The function cprt2g1b converts cell numbers according to the numbering system of a partial
triangulation to the numbering of the global triangulation.

Inputs:
mPrt

Outputs:
mGlb A row vector with (global) cell numbers.

Depends on:

Code:
function mGlb=cprt2glb(mPrt)
%NPRT2GLB Maps cell numbers from a partial to a global triangulation
%
% mGlb=CPRT2GLB(mPrt)

5 % The function accepts a cell number of a partial triangulation and
% calcutates the number of the cell in the global triangulation

global ENVIROMENT NAME
load (ENVIROMENT_NAME) ;

10
mGlb=zeros(l,length(mPrt)) ;
for index=l:length(mPrt)

RowNo=fix(mPrt(index)/(4*Nhp)) ;
ColNo=mod(mPrt(index) ,4*Nhp);

15 if ColNo<2*Nhp
mGlb (index) =RowNo*2*Nh+ColNo;

else
mGlb(index)=(RowNo+l)*2*Nh+(ColNo-4*Nhp) ;

end
20 end

Function ctrl

Description:
The function ctrl defmes the controller.

Inputs:
k

Outputs:
u

A row vector containing the numbers of the nodes for which the output of the
controller should be calculated.

A row vector with the values of the output of the controller.

Depends on:

Code:
function u=ctrl(k)

% CTRL Returns the output of the controller
%

5 % u=CTRL(k)
% Returns the output of the controller if the system is in the state
% corresponding to node 'k'. (Using global node numbers.)
%
% u=CTRL(x)

10 % Returns the output of the controller if the system is in the state
% determined by co-ordinates x.

global ENVIROMENT NAME
if length(ENVIROMENT NAME) ==0

15 error('Enviroment-name not set. Use SETENV. ,);

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 51

Appendix B: MatLab code

end
if -exist([ENVIROMENT NAME '.mat'l,'file')

error('Configuration file does not exist. Use WRITECFG. ');
else

20 load (ENVIROMENT_NAME) ;
end

[row,coll=size(k) ;

25 if row==l
% Warning: No wrapping to negative co-ordinates takes place so far.
echo('WARNING: No wrapping to negative co-ordinates takes place in module CTRL so

far. ') ;
x=coord (k) ;

30 else
if row-=2

error('Input vector should have 1 or 2 rows. ,)
end
x=k;

35 end

% Uncontrolled
if strcmp(controller, 'uncontrolled')

u=zeros(l,col) ;
40 end

% Linearly controlled
if strcmp(controller, 'linear')

u=a*Xi
45 end

% Non-linearly controlled
if strcmp(controller, 'non-linear')

for i=l:col
50 E=1/g*x(2,i)*x(2,i)/2+cos(x(l,i));

if E==l
u(l,i)=O;

else
u(l,i)=sign(x(2,i)*cos(x(l,i)));

55 if E>l
u(l,i)=umax*u(l,i);

else
u(l,i)=umin*u(l,i);

end
60 end

end
end

Function diffeq

Description:
The function di f feq returns the values of the four components of the differential equations for
the points designated by input x.

Inputs:
x A matrix with in each column the co-ordinates of the points.

The value of component.fi(x).
The value of component gl(X).
The value of component.l2(x).
The value of component g2(X).

5

Outputs:
fix
gix
j2x
g2x

Depends on:

Code:
function [flx,glx,f2x,g2x]=diffeq(x)
%DIFFEQ Returns the result of the differential equations of the system

[flx,glx,f2x,g2x]=DIFFEQ(x)
This function calculates the results of the differential equations of the

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 52

10

15

20

25

30

35

Appendix B: MatLab code

inverted pendulum. Its inputs are the two states of the system ('xl' and 'x2')
representing the angle of the pendulum and the angular velocity.
The output is split up in two parts namely the part that is independent of the
control input and the part that does depend on the control input like in the
following equation:

dx = f(x) + g(x)*u
where 'dx' is the (time-)derivative of the state vector, 'x' is the state vector
and 'u' is the control input.

The four outputs of the system are:
- 'fIx' being the result of fl(xI,x2)
- 'glx' being the result of gl(XI,x2)
- 'f2x' being the result of f2(xI,x2)
- 'g2x' being the result of g2(XI,x2)

The function assumes the existence of two global variables 'g' and '1', being
the model parameters for the gravitational acceleration and the length of the
pendulum.

global ENVIROMENT NAME
load (ENVIROMENT_NAME) ;

[NmbCoor,NmbOfPoints]=size(x) ;

flx=zeros(I,NmbOfPoints) ;
glx=f1x;
f2x=flx;
g2x=flx;

for i=I:NmbOfPoints
fIx (i) =X (2, i) ;
glx(i)=O;
f 2x (i) =g /1 *sin (x (I , i)) ;

40 g2x(i)=-1/1*cos(x(l,i));
end

Function even

Description:
The function even returns a non-zero value if the integer part of the input value is even,
otherwise it returns a zero.

Inputs:
number

Outputs:
out

The number to be tested.

A non-zero number if the integer part of the input is even, otherwise O.

The number of the cell for which the fit should be done

Depends on:

Code:
function out=even(number)
%EVEN Returns TRUE if the integer part of its argument is even
out=-mod(fix(number) ,2);

Function fi teell

Description:
The function fit ce11 fmds the parameters of the piecewise affme approximation for the cell
designated by input m.

Inputs:
m

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 53

Appendix B: MatLab code

plane Detennines if a cell is considered to be in either the left hand plane or the right
hand plane. If the string pos is provided, the cell is considered to be in the
right hand plane, if neg is provided the cell is supposed to be in the left hand
plane.
Default: pos
Optional

Parameter am of the piecewise affme approximation.
Parameter Am of the piecewise affme approximation.
Parameter bm of the piecewise affme approximation.

c2n,coord,diffeq

Outputs:
a

A
b

Depends on:

Code:
function [a,A,b]=fitcell(m,plane)
%FITCELL Estimates the parameters for the piecewise affine approximation
%
% [a,A,b]=FITCELL(m,plane)

5 % The parameters for the piecewise affine approximation of cell m
% in the triangulation will be estimated by fitting a plane through
% the three nodes that are vertices of the cell.

global ENVIROMENT_NAME
10 load (ENVIROMENT_NAME) ;

if (nargin<2) I ((plane-='pos')&(plane-='neg'))
negplane=O;

else
15 negplane=l;

end

a=zeros(2,I,length(m)) ;
A=zeros(2,2,length(m)) ;

20 b=zeros(2,I,length(m));
for index=l:length(m)

k=c2n (m (index)) ;
x=coord (k) ;
if negplane

25 select=x(l, :»=(Nh-Nhp)!Nh*2*pi;
wrapper=[I; 0]*[1 1 1];
x(:, select) = x(: ,select) - 2*pi*wrapper(:, select);

else
if mod(fix(m!2),Nh)==Nh-l

30 x(l, (abs(x(l, :))«pi!Nh)))= 2*pi;
end

end
[flx,glx,f2x,g2x]=diffeq(x) ;
Parasl =

35

40

1 x (1,1)
1 x (1,2)
1 x (1,3)

\ [flx(I);
fIx (2); ...
flx(3)];

x(2, 1);
x (2,2);
x (2, 3)]

Paras2
1 x(I,I) x(2,1);
1 x(I,2) x(2,2);
1 x(I,3) x(2,3)] ...

45 \ f2x(I); .
f2x (2); .
f2x(3)];

a (:,:, index) = [Parasl (1) ;Paras2 (1)];
A(:, :,index)=[Parasl(2) Paras 1 (3) ; Paras2(2) Paras2(3)];

50 b(2, :,index)=(g2x(I)+g2x(2)+g2x(3))!3;
end

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 54

An output file containing the LCP described in Fortran code.

c2n,coord,fitcell,n2c,nglb2prt,nprt2g1b

Appendix B: MatLab code

Function genlcp

Description:
The function genlcp generates the LCP to fmd a piecewise linear controller that makes the
inverted position stable. The LCP will be written to an output file.

Inputs:

Outputs:

Depends on:

Code:
function C=genlcp()
% GENLCP Transforms the swing up of an inverted pendulum into a LCP

5

%
%

%
%

C=GENLCP ()
The problem of swinging up the inverted pendulum is transformed into a
linear complementarity problem. Next the LCP is written to a fortran file
which is suitable to be sent to the NEOS server to solve the LCP.

10
tt=clock;
ct=cputime;

% timer for total elapsed time
% timer for used CPU time

global ENVIROMENT NAME
if length(ENVIROMENT NAME) ==0

error('Enviroment-name not set. Use SETENV. ,);
15 end

if -exist ([ENVIROMENT NAME' .mat'], 'file')
error('Configuration file does not exist. Use WRITECFG. ');

else
load(ENVIROMENT NAME);

20 end -

25

30

% Constants
ModName
Ext
RgtMar
ProgTimeSlice
leader
spaces
epsilon

'GENLCP' ;
I .pth';
72;
60;
'Module

0.0001;

, ;
, ..

% Module name (max. S characters)
% Extension for output file
% Right margin for output file
% Time slice for progression indicator
% Leader for output messages
% Empty leader
% Small number

35

if length(ModName»S
ModName=ModName(l:S) ;

end
leader(S:7+length(ModName»=ModName;

Len=zeros(2,NoNodes) ;
G=zeros(S,NoNodes,NoNodes) ;
L=zeros(S,NoNodes,NoNodes);

40 % GENERATION OF THE INEQUALITIES

disp([leader 'Generating inequalities ... 'J);
to=clock; % Initialize clock for progress indication
for kPrt=0:NoNodes-1

45 Len(1,kPrt+1)=kprt;
kGlb=nprt2glb(kPrt) ;
mGlb=n2c(kGlbl;
for i=l:length(mGlb)

k=c2n(mGlb(i» ;
50 if min(nglb2prt(k»=0)&(max(nglb2prt(k)) <NoNodes)

Len(2,kPrt+1)=Len(2,kPrt+1)+1;
X=coord(c2n(mGlb(i»);
if mod(mGlb(i) ,Nh*2) >=2* (Nh-Nhp)

[a,A,b]=fitcell(mGlb(i) , 'neg');
55 select=X(l, :»=(Nh-Nhp-0.5)!Nh*2*pi;

wrapper= [1; 0] * [1 1 1];
X (: ,select) = X (: ,select) - 2*pi *wrapper (: ,select) ;

else
[a,A,b]=fitcell(mGlb(i» ;

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 55

Appendix B: MatLab code

60 end
Xhat=[X; 1 1 1];
G(Len(2,kPrt+l) ,nglb2prt(c2n(mGlb(i)))+I,kPrt+l)

(inv (Xhat) * [a+A*coord (kGlb) ; 0]) , ;
L(Len(2,kPrt+l),nglb2prt(c2n(mGlb(i)))+I,kPrt+l) (inv(Xhat) * [b;O]) ';

65 end
end
% Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces num2str(kPrt!(NoNodes-l)*100, '%5.1f') '% of inequalities is
70 generated. '])

to=clock;
end

end
disp([spaces 'Inequalities generated. ']);

75 Gbar=G+umax*L;
Ghat=G+umin*L;

% TRANSFORMATION OF INEQUALITIES TO A LCP

80 sl=sum(Len,I);
Gl=zeros(3*NoNodes,NoNodes) ;
G2=zeros(sl(2)-3*NoNodes,NoNodes) ;
L2=zeros(sl(2)-3*NoNodes,3*NoNodes) ;
N=zeros(NoNodes,3*NoNodes) ;

85 row=l;
disp([leader 'Transforming inequalities to LCP ... ']);
to=clock; % Initialize clock for progress indication
for i=I:NoNodes

G1 (3 * (i -1) +1, :) =G (1, : , i) ;
90 Gl(3*(i-l)+2,:)=Gbar(I,:,i);

Gl (3 * (i -1) +3, :) =Ghat (1, : ,i) ;
L2(row:row+3*(Len(2,i) -1)-I,3*(i-l)+I)=I;
L2(row:row+3*(Len(2,i) -1)-1,3*(i-l)+2)=I;
L2(row:row+3*(Len(2,i)-I)-I,3*(i-l)+3)=I;

95 for j=2:Len(2,i)
G2 (row+j - 2, :) =G (j , : , i) ;
G2 (row+ (Len (2, i) -1) +j-2,:) =Gbar(j,:, i);
G2(row+2*(Len(2,i)-I)+j-2, :)=Ghat(j, :,i);
row=row+li

100 end
row=row+2*(Len(2,i) -1); % Skip over the rows filled with entries from Gbar and Ghat
N(i,3*(i-l)+I)=I;
N(i,3*(i-l)+2)=I;
N(i,3*(i-l)+3)=I;

105 % Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces num2str(kPrt!(NoNodes-l)*100,'%5.1f') '% of inequalities is
transformed. '])

to=clock;
110 end

end
disp([spaces 'Inequalities transformed. ']);
M2=-L2;
q=-epsilon*ones (NoNodes, 1) ;

115
% OUTPUT RESULTS TO FORTRAN FILE

[rgl,cgl]=size(Gl) ;
[rg2,cg2]=size(G2) ;

120 [r12, c12] =size (L2) ;
[rlm,clm]=size(L2-M2) ;
[rglg,cglg]=size(-G2+L2*Gl) ;
[rn, cn] =size (N);
[rng,cng]=size(-N*Gl) ;

125
C=[eye(rgl,3*NoNodes) -Gl -eye(rgl,c12) zeros(rgl,r12)
zeros (rgl,NoNodes) ; ...

zeros (NoNodes, 3*NoNodes + NoNodes + c12 + r12 + NoNodes)

130 zeros(c12, 3*NoNodes + NoNodes + c12 + r12 + NoNodes)

135

140

-L2-M2 -G2+L2*Gl
zeros(r12,NoNodes);

N -N*Gl
eye(NoNodes,NoNodes)] ;

[rC,cC]=size(C) ;

1= [zeros(rgl+NoNodes+c12+r12,1) ;-q];

L2

-N

-eye(r12,r12)

zeros (NoNodes,r12)

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 56

Appendix B: MatLab code

%Write output to file

fid=fopen([ENVIROMENT NAME Ext], 'w');
if fid==-l -

145 error(['Unable to open file' ENVIROMENT_NAME Ext])
end

disp([leader 'Writing problem to file' ENVIROMENT NAME Ext]);

150 fprintf(fid, 'TYPE CP\n');
fprintf(fid, 'SOLVER PATH\n\n');

%Write Initial Point
fprintf(fid, 'BEGIN.INITPT\n');

155 fprintf(fid,' subroutine initpt(n,x)\n');
fprintf(fid,' integer n\n');
fprintf(fid,' double precision x(n)\n');
%All variables are initially set to 1.0
fprintf (fid, ' do i=l, n\n') ;

160 fprintf(fid,' x(i) = 1.0dO\n');
fprintf(fid,' enddo\n');
fprintf(fid,' return\n');
fprintf (fid, ' end\n') ;
fprintf(fid, 'END.INITPT\n\n');

165
to=clock;
%Write function
fprintf(fid, 'BEGIN.FCN\n');
fprintf(fid,' subroutine fcn(n,x,f)\n');

170 fprintf(fid,' integer n\n');
fprintf(fid,' double precision x(n)\n');
fprintf(fid,' double precision f(*)\n');
CLmax=O;
for i=l:rC

175 fprintf(fid,' f(%ld) =',i);
column=13+floor(log10(i); % Tracks the column number of the cursor in the output
CL=O; % Tracks the number of continuation lines
found=O;
for j=l:cC

180 if C(i,j)
exponent=floor(log10(abs(C(i,j)))) ;
mantisse=C(i,j)/(10 A exponent) ;
if found

if C(i,j) ~=O

185 AppStr=' +';
else

AppStr=' -';
end

190 AppStr=strcat (AppStr,num2str(abs (mantisse) ,'%1.7f'), 'd' ,int2str(exponent));
AppStr=strcat (AppStr,' * x (, ,int2str (j) , ') ') ;

else
AppStr=strcat ([, , num2str (mantisse, ' %1. 7f') 1 , 'd' ,int2str (exponent)) ;
AppStr=strcat (AppStr,' * x (, , int2str (j) , ') ,) ;

195 found= 1;
end
if (column+length(AppStr)~RgtMar

fprintf (fid, '\n +') ;
column=6;

200 CL=CL+1;
CLmax=max(CLmax,CL) ;

end
fprintf(fid,AppStr) ;
column=column+length(AppStr);

205 end
end
if 1 (i)

if l(i)<O
AppStr=' -';

210 else
if found

AppStr=' +';
else

AppStr=' ';
215 end

end
exponent=floor(log10(abs(1(i)))) ;
mantisse=1(i)/(10 A exponent) ;
AppStr=strcat (AppStr,num2str(abs (mantisse) ,'%1.7f'), 'd' ,int2str(exponent));

220 if (column+length(AppStr))~RgtMar

fprintf (tid, ' \n +') ;

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 57

Appendix B: MatLab code

column=6;
CL=CL+1;
CLmax=max(CLmax,CL);

225 end
fprintf(fid, '%s\n',AppStr);

else
if found

fprintflfid, '\n');
230 else

if Icolumn+11»RgtMar
fprintf(fid, '\n +');
column=6;
CL=CL+1;

235 CLmax=max (CLmax, CL) ;
end
fprintf (fid, '%1. 7fdO\n', 0) ;
column=O;

end
240 end

% Display progress indication
if etime(clock,tO»progTimeSlice

disp([spaces num2strli/(rg1+rg2+5*NoNodes)*100,'%5.1f') '% written.'])
to=clock;

245 end
end
fprintflfid,' end\n');
fprintflfid, 'END.FCN\n\n');

250 %Wri te bounds
fprintflfid, 'BEGIN.XBOUND\n');
fprintflfid,' subroutine xbound(n,xl,xu)\n');
fprintflfid,' integer n\n');
fprintf(fid,' double precision xl(n), xu(n)\n');

255 fprintf (fid, ' integer i \n') ;
%Lower bound is set to o. Higher limit is set to infinity.
fprintf(fid,' do i=l,n\n');
fprintf(fid,' xlIi) = O.OdO\n');
fprintflfid,' enddo\n');

260 fprintf lfid, ' return\n') ;
fprintf(fid,' end\n');
fprintf(fid, 'END.XBOUND\n\n');

%Write trailer
265 fprintf(fid, 'N = %ld\n\n' ,rg1+rg2+S*NoNodes);

fprintf(fid, 'BEGIN.PATHOPT\n');
fprintf(fid, 'END.PATHOPT\n\n');
fprintf(fid, 'BEGIN.COMMENT\n');
fprintf(fid, 'Generation time: %s\n',datestrlnow,O));

270 fprintf(fid, 'Case name: %s\n' ,ENVIROMENT NAME);
fprintf(fid, 'END.COMMENT\n\n'); -
fprintf(fid, 'END-SERVER-INPUT\n');

fclose (fid) ;
275

disp([spaces 'Output written to file' ENVIROMENT NAME Ext]);
disp([spaces num2str(rC) , values written. ,]); -
if CLmax>19

disp([leader 'WARNING! The output file contains lines with more than 19 continuation
280 lines!']);

end
disp([leader 'Done']);
disp([leader 'CPU time ' num2str(cputime-ct, '%3.1f') , seconds']);
disp([leader 'Elapsed time: 'num2strletime(clock,tt),'%3.1f')' seconds']);

285 fprintf (l, '\n') ;

Function lyadown

Description:
The function lyadown generates an LP problem to fmd a Lyapunov function to prove either
stability or instability of the pending position of the pendulum The LP problem will be written to
an output file.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 58

Appendix B: MatLab code

Inputs:
filetype

soltype

Outputs:

Depends on:

Defmes the file format of the output file. The string mps will instruct lyadown
to produce an MPS file. The string lingo will make the code generate a file
compatible with Lingo.
Type of Lyapunov function to be found. If a string starting with an s is
supplied an LP is generated to fmd a Lyapunov function that proves stability.
A string starting with an i will make the LP-solver to try to prove instability.
Default: s
Optional

An output file containing an LP problem. The format of the output file can be
set by means of the inputfiletype.

c2n,coord,cprt2g1b,ctrl,fitcell,mat21ing,mat2mps,
nglb2prt,nprt2g1b

Code:
function lyadown(filetype,soltype)
%LYADOWN Tries to find a Lyapunov function
%
% LYADOWN(filetype,soltype)

5 % This function transforms the problem of finding a Lyapunov function
% to a linear programming problem by defining a triangulation on the
% state space. The linear programming problem can then be solved by
% an appropriate solver.
%

10

15

20

%
%
%
%
%
%
%
%
%
%
%
%
%

FILETYPE
The variable 'filetype' is a string, which determines the type of
file the linear programming problem should be written to. If
filetype equals 'mps', the output is written in MPS format, so it
can be read by several solvers, among which PCx. If the filetype
string equals 'lingo', then a Lingo input file is generated.

SOLTYPE
The parameter 'soltype' determines the type of solution that is
being looked for. It can be either a solution to determine
stability of the region, denoted by the a string starting with an
's' or a solution to determine instability, denoted by a string
starting with an 'i'.

25
tt=clock; % timer for total elapsed time

global ENVIROMENT NAME
if length(ENVIROMENT NAME) ==0

error('Enviroment-name not set. Use SETENV. ');
end

30 if -exist([ENVIROMENT NAME '.mat'],'file')
error('Configuration file does not exist. Use WRITECFG. ');

else
10ad(ENVIROMENT NAME);

end -
35

40

% Constants
ModName
ProgTimeSlice
leader
spaces

I LyaDownl;
60;
'Module , ;

, .,

% Module name (max. 8 characters)
% Number of seconds between progress feedback
% Leader for output messages
% Empty leader

if length(ModName»8
ModName=ModName(1:8) ;

end
45 leader(8:7+1ength(ModName))=ModName;

disp([leader 'Calculating LMI matrix ... 'J)

NodeORows=zeros(3*NoCells,1) ;
50 NodeList=zeros(l,NoNodes);

C=sparse(3*NoCells,NoNodes) ;
to=clock;
for mPrt=O:NoCells-l

m=cprt2g1b(mPrt) ;
55 % Correct global cell number for the fact that not the neighbourhood

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 59

Appendix B: MatLab code

% of (0,0) is examined, but the neighbourhood of (pi,O).
if mod(m,Nh»=Nh/2

m=m-Nh;
else

60 m=m+Nh;
end
k=c2n (m) ;
NodeORows(mPrt*3+1:mPrt*3+3,1)=(k==Nh/2*ones(I,3»' ;
X=coord (k) ;

65 [a,A,b]=fitcell(m);
Xhat=[X; 1 1 1];
invXhat=(eye(size(Xhat»/Xhat) ';
u=ctrl (X) ;
% Calculate node number for the partial numbering system

70 kPrt=zeros(I,3);
for i=I:3

RowNo=fix(k(i)/Nh) ;
CoINo=mod(k(i) ,Nh);
if CoINo>=Nh/2

75 kprt(i)=RowNo*(2*Nhp+l)+CoINo-Nh/2;
else

kPrt(i)=RowNo*(2*Nhp+l)+(Nhp+l)+CoINO- (Nh/2-Nhp);
end

end
80

NodeList(l, [kPrt+l])=k;

C(mPrt*3+1 :mPrt*3+3 ,kPrt+l) = [ones (3, 1) *a '+X' *A'+u' *b' [0;0;0]] * invXhat;

85 % Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces num2str(mPrt/(NoCells-l)*100, '%5.1f') '% of LMI matrix is
calculated. ,])

to=clock;
90 end

end

disp([leader 'LMI matrix calculated. 'J)
disp([leader 'Preparing to export matrix ... 'J)

95
% Delete rows which contain node number °
C=C(-NodeORows,:) ;

% Delete leftmost column, to force VO to be zero.
100 C(:,[I])=[];

% Delete centre node from NodeList
NodeList=NodeList(I,2:NoNodes);

105 if length(filetype)==3
if ((filetype=='mps') I (filetype=='MPS'))

% Write to MPS file to solve with linear programming problem solver
disp([leader 'Invoking module Mat2MPS to write data to MPS file'])
mat2mps([ENVIROMENT NAME' .mps'] ,C,NodeList,soltype)

110 else -
error([filetype ': unknown file format. ,])

end

else if length(filetype)==5
115 if ((filetype=='lingo') (filetype=='LINGO'»

% Write to Lingo file to solve with external solver
disp([leader 'Invoking module Mat2Ling to write data to LINGO file'])
mat2ling([ENVIROMENT_NAME '.lng'] ,C,NodeList,soltype)

else
120 error ([filetype ': unknown file format.'])

end
else

error([filetype ': unknown file format. ,])
end

125
disp([leader 'Done.
fprintf(l, '\n');

(, num2str (etime (clock, tt), '%3 .If') , seconds elapsed)']);

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 60

Appendix B: MatLab code

Function lyapunov

Defmes the file format of the output file. The string mps will instruct lyadown
to produce an MPS file. The string lingo will make the code generate a file
compatible with Lingo.
Type of Lyapunov function to be found. If a string starting with an s is
supplied an LP is generated to fmd a Lyapunov function that proves stability.
A string starting with an i will make the LP-solver to try to prove instability.
Default: s
Optional

soltype

Description:
The function lyapunov generates an LP problem to fmd a Lyapunov function to prove either
stability or instability of the inverted position of the pendulum. The LP problem will be written to
an output file.

Inputs:
jiletype

Outputs:

Depends on:

An output file containing an LP problem. The format of the output file can be
set by means of the input jiletype.

c2n,coord,cprt2g1b,ctrl,fitcell,mat21ing,mat2mps,
nglb2prt,nprt2g1b

Code:
function lyapunov(filetype,soltype)
%LYAPUNOV Tries to find a Lyapunov function

5

10

15

%
%
%
%
%

%
%
%
%

LYAPUNOV(filetype)
This function transfers the problem of finding a Lyapunov function
to a linear programming problem by defining a triangulation on the
state space. The linear programming problem can then be solved by
an appropriate solver.

FILETYPE
The variable 'filetype' is a string, which determines the type of
file the linear programming problem should be written to. If
filetype equals 'mps', the output is written in MPS format, so it
can be read by several solvers, among which PCx. If the filetype
string equals 'lingo', then a Lingo input file is generated.

tt=clock; % timer for total elapsed time

global ENVIROMENT NAME
20 if length(ENVIROMENT NAME) ==0

error('Enviroment-name not set. Use SETENV. ');
end
if -exist([ENVIROMENT NAME' .mat'], 'file')

error('Configuration file does not exist. Use WRITECFG. ');
25 else

10ad(ENVIROMENT NAME);
end -

30
% Constants
ModName
ProgTimeSlice
leader
spaces

I Lyapunov I ;

60;
'Module

% Module name (max. 8 characters)
% Number of seconds between progress feedback

'; % Leader for output messages
'; % Empty leader

35 if length(ModName»8
ModName=ModName(1:8) ;

end
leader(8:7+length(ModName»=ModName;

40 disp([leader 'Calculating LMI matrix ... 'J)

NodeORows=zeros(3*NoCells,1) ;
NodeList=nprt2glb(1:NoNodes-l) ;
C=sparse(3*NoCells,NoNodes) ;

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 61

Appendix B: MatLab code

45 to=clock;
for mPrt=O:NoCells-I

m=cprt2glb(mPrt) ;
k=c2n(m) ;
NodeORows(mPrt*3+I:mPrt*3+3,I)=-k';

50 X=coord(k);
if mod(m,Nh*2) >=2* (Nh-Nhp)

[a,A,bJ=fitcell(m, 'neg'};
select=X(I, :»=(Nh-Nhp-0.5)/Nh*2*pi;
wrapper= [1; OJ * [1 1 IJ;

55 X(:,select)= X(:,select) - 2*pi*wrapper(:,select);
else

[a,A,bJ=fitcell(m) ;
end
Xhat=[X; 1 1 IJ;

60 invXhat=(eye(size(Xhat))/Xhat) ';
u=ctrl (X) ;
C(mPrt*3+I:mprt*3+3,nglb2prt(k)+I)= [ones(3,I)*a'+X'*A'+u'*b' [O;O;OJl * invXhat;
% Display progress indication
if etime(clock,tO»ProgTimeSlice

65 disp([spaces num2str(mprt/(NoCells-I)*IOO,'%5.If') '% of LMI matrix is
calculated. 'J)

to=clock;
end

end
70

disp([leader 'LMI matrix calculated. 'J)
disp([leader 'preparing to export matrix ... 'J)

% Delete rows which contain node number 0
75 C=C(-NodeORows,:);

% Delete leftmost column, to force Vo to be zero.
C(:, [I])=[];

80 if length(filetype)==3
if ((filetype=='mps') I (filetype=='MPS'))

% Write to MPS file to solve with linear programming problem solver
disp([leader 'Invoking module Mat2MPS to write data to MPS file'l)
mat2mps([ENVIROMENT NAME' .mps'J ,C,NodeList,soltype)

85 else -
error ([filetype ': unknown file format. 'J)

end

elseif length(filetype)==5
90 if ((filetype==' lingo') I (filetype=='LINGO'))

% Write to Lingo file to solve with external solver
disp([leader 'Invoking module Mat2Ling to write data to LINGO file'l)
mat2ling([ENVIROMENT NAME' .lng'J ,C,NodeList,soltype)

else -
95 error([filetype ': unknown file format. 'J)

end
else

error([filetype ': unknown file format.'l)
end

100
disp([leader 'Done.
fprintf (1,' \n');

(, num2str (etime (clock, ttl , '%3 .If') , seconds elapsed)' 1) ;

Function lcpsol

Description:
The function lcpsol reads the results returned by the NEOS server.

Inputs:
The file containing the results returned by the NEOS-server. The extension of
the file is supposed to be .sol.

Outputs:
aplhap
alphan
V

The vector a +.

The vector a-.
The vector with values of the piecewise linear Lyapunov function.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 62

Appendix B: MatLab code

x

f

The vector with the values of the solution of the unknown variable from the
LCP.
The vector with the function values of the solution of the LCP.

Depends on:

Code:
function [alphap,alphan,V,x,f]=lcpsol()
% LCPSOL Reads the solution returned by the NEOS server
%
% LCPSOL

5 % Reads the solution to the problem of the swing up of the inverted pendulum as
% returned by the NEOS server.

global ENVIROMENT NAME
if length(ENVIROMENT NAME) ==0

10 error('Enviroment-name not set. Use SETENV. ');
end
if -exist ([ENVIROMENT NAME' .mat'), 'file')

error('Configuration file does not exist. Use WRITECFG. ');
else

15 load (ENVIROMENT_NAME) ;
end

20

% Constants
ModName
Ext
ProgTimeSlice
leader
spaces

'LCPSOL' ;
I. soli;
60;
'Module

, .,

% Module name (max. 8 characters)
% Extension for output file
% Time slice for progression indicator
% Leader for output messages
% Empty leader

25 if length (ModName)>8
ModName=ModName(I:8) ;

end
leader (8:7+length(ModName))=ModName;

30 fid=fopen([ENVIROMENT NAME Ext], 'r');
if fid<O -

error(['Can not open file' ENVIROMENT_NAME Ext])
end

35 line='dummy';
while -strcmp(line, ""PATH Output"")&-feof(fid)

line=fgetl(fid) ;
end

40 if -strcmp(line, ""PATH Output"")&feof(fid)
error('Premature end-of-file detected. ');

end

while -strcmp(line, 'SOLUTION FOUND. ')&-feof(fid)
45 line=fgetl(fid);

end

if -strcmp(line, 'SOLUTION FOUND. ')&feof(fid)
error('The server did not find any solution. ');

50 end

while -strcmp(line, 'COMPLEMENTARY SOLUTION: ')&-feof(fid)
line=fgetl(fid) ;

end
55

if -strcmp(line, 'COMPLEMENTARY SOLUTION: ')&feof(fid)
error('Premature end-of-file detected. ');

end

60 disp([leader 'Reading solution from file' ENVIROMENT NAME Ext])
to=clock; % Initialize clock for progress indication
junk=fscanf(fid. '%c' ,2);
while (-feof(fid))&strcmp(junk, 'x(,)

SeqNr=fscanf (fid, '%d' ,1) ;
65 junk=fscanf(fid.'%C',I);

while -strcmp(junk,':')
junk=fscanf (fid, '%c', 1) ;

end
junk=fscanf (fid, '%c' ,1) ;

70 x(SeqNr)=fscanf(fid.'%e'.I);
junk=fscanf (fid, '%c' .1) ;
while -strcmp (junk, ' : ')

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 63

Appendix B: MatLab code

junk=fscanf (fid, '%c', 1) ;
end

75 junk=fscanf(fid,'%c',l);
f(SeqNr)=fscanf(fid, '%e',l);
line=fgetl(fid) ;
junk=fscanf (fid, '%c', 2);
% Display progress indication

80 if etime(clock,tO»ProgTimeSlice
disp([spaces SeqNr ' values have been read. 'J)
to=clock;

end
end

85
alphap
alphan
V

f(1:3*NoNodes) ;
x(1:3*NoNodes) ;
x(3*NoNodes+1:4*NoNodes) ;

The file name of the output file.
The matrix containing the LP problem.
A list with the (global) numbers of the nodes.
Defmes if the solver has to fmd a Lyapunov function to prove either stability
or instability. A string beginning with s makes the solver look for stability; a
string starting with i forces the solver to attempt to prove instability.

90 fclose(fid);
disp ([leader 'Done.' J)

Function mat21ing

Description:
The function mat21ing is used by the functions lyadown and lyapunov to do the actual
writing to a Lingo file.

Inputs:
LINGOname
C
NodeList
Soltype

Outputs:
A Lingo file containing the LP problem representing the problem of fmding an
appropriate Lyapunov function.

Depends on:

Code:
function mat2ling(LINGOname,C,NodeList,soltype)
% MAT2LING Write matrix to LINGO file to solve with linear programming tool

5

10

% Constants
ModName
ProgTimeSlice
upbound
leader
spaces

'Mat2Ling' ;
60;
250;
'Module , ;

, .,

% Module name (max. 8 characters)
% Number of seconds between progress feedback
% Boundary for values of Lyapunov function
% Leader for output messages
% Empty leader

15

if length(ModName»8
ModName=ModName(1:8) ;

end
leader(8:7+length(ModName))=ModName;

if soltype(l)=='S'
% Find Lyapunov function to proof stability
1owbound= 0 ;

else
20 % Find Lyapunov function to proof instability

lowbound=-upbound;
end

[rows,nodesJ=size(C) ;
25

% Open file
fid=fopen(LINGOname, 'w');
if fid==-l

error(['Unable to open file' LINGOname])

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 64

Appendix B: MatLab code

30 end

disp([leader 'Writing to LINGO file' LINGOname ' ... 'J)

% Write header
35 fprintf(fid, ['MODEL:\r\n']);

% Write cost equation
fprintf(fid,' [COST] max = z;\r\n');

40 disp ([leader ' Writing variable bounds'])

% Write bounds
to=clock;
fprintf(fid,' @BND(O,z,l);\r\n');

45 for k=l:nodes
fprintf(fid,[' @BND(' num2str(lowbound) ',V' num2str(NodeList(k}) ','

num2str (upbound) '); \r\n' J) ;
% Display progress indication
if etime(clock,tO»ProgTimeSlice

50 disp([spaces" num2str(k/nodes*lOO,'%5.lf') '% of bounds is written.'])
to=clock;

end
end

55 disp ([leader Writing inequalities'])

The file name of the output file.

% Write inequalities
to=clock;
for mm=l:rows

60 found=O;
for k=l :nodes

if C (mm, k)
if found

if C (mm, k) <0
65 fprintf (fid,' - ');

else
fprintf(fid,' + ');

end
else

70 fprintf(fid,[' [R' num2str(mm) 'J ,]);
if C(mm,k)<O

fprintf (fid, '-') ;
end
found=l;

75 end
fprintf (fid, [num2str (abs (C (mm, k) » '*V' num2str (NodeList (k)) J) ;

end
end
if found

80 fprintf (fid,' + z < O;\r\n');
end
% Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces' 'num2str(mm/rows*lOO,'%5.lf') '% of inequalities is written.'])
85 to=clock;

end
end
fprintf(fid, 'END');

90 % Close data file !!
fclose (fid) ;

disp([leader 'Data written to LINGO file' LINGOname '. '])

Function mat2mps

Description:
The function mat2mps is used by the functions lyadown and lyapunov to do the actual
writing to a MPS file.

Inputs:
MPSname

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 65

Appendix B: MatLab code

C
NodeList
Soltype

Outputs:

The matrix containing the LP problem.
A list with the (global) numbers of the nodes.
Defmes if the solver has to fmd a Lyapunov function to prove either stability
or instability. A string beginning with s makes the solver look for stability; a
string starting with i forces the solver to attempt to prove instability.

A MPS file containing the LP problem representing the problem of fmding an
appropriate Lyapunov function.

Depends on:

Code:
function mat2mps (MPSname,C,NodeList, soltype)
% MAT2MPS Write matrix to MPS file to solve with linear programming tool

5

10

% Constants
ModName
ProgTimeSlice
upbound
leader
spaces

'Mat2MPS' ;
60;
100000;
'Module

, ;

% Module name (max. 8 characters)
% Number of seconds between progress feedback
% Boundary for values of Lyapunov function
% Leader for output messages
% Empty leader

15

if length(ModName»8
ModName=ModName(1:8) ;

end
leader(8:7+length(ModName»=ModName;

if soltype(l)=='s'
% Find Lyapunov function to proof stability
1owbound= 0 ;

else
20 % Find Lyapunov function to proof instability

lowbound=-upbound;
end

[rows,nodesJ=size(C) ;
25

% Open file
fid=fopen(MPSname, 'w');
if fid==-l

error('Unable to open file')
30 end

disp([leader 'WritingtoMPS file' MPSname' ... ,])

% Write NAME section
35 s=blanks(14);

s(1:4)='NAME' ;
fprintf(fid, [s 'Find Lyapunov function\n'J);

disp([leader 'Writing ROWS section'])
40

% Write ROWS section
to=clock;
fprintf(fid, 'ROWS\n');
for mm=l:rows

45 fprintf(fid,[' L RN' num2str(mm,6) '\n']);
% Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces num2str(mm/rows*100,'%5.lf') '% of rows written.'])
to=clock;

50 end
end
fprintf (fid, [, N COST\n']);

disp([leader 'Writing COLUMNS section'])
55

% Write COLUMNS section
to=clock;
fprintf(fid, 'COLUMNS\n');
for k=l:nodes

60 for mm=l:rows
if C(mm,k)

clab=['V' num2str(NodeList(k) ,7)];
rlab=['RN' num2str(mm,6)];

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 66

Appendix B: MatLab code

s=blanks(24) ;
65 s(5:4+length(clab))=clab;

S(15:14+length(rlab))=rlab;
fprintf (fid, [s '%1. 8f\n'] ,C (mm, k)) ;

end
end

70 % Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces num2str(k/nodes*100,'%5.1f') '% of columns written.'])
to=clock;

end
75 end

for mm=l:rows
clab= [' Z'] ;
rlab=['RN' num2str(mm,6)];
s=blanks(24) ;

80 S(5:4+length(clab))=clab;
S(15:14+length(rlab))=rlab;
fprintf (fid, [s '%-1. 8f\n'] ,1);

end
clab=['Z'l;

85 s=blanks(24);
S(5:4+length(clab))=clab;
s(15:18)='COST' ;
fprintf(fid, [s '%1.8f\n'l, -1);

90 disp([leader 'Writing RHS section'])

% Write RHS section
to=clock;
fprintf(fid, 'RHS\n');

95 for mm=l:rows
s=blanks(24) ;
s (5) =' B' ;
rlab=['RN' num2str(mm,6)];
S(15:14+length(rlab))=rlab;

100 fprintf(fid,[s num2str(0.O,'%1.8f') '\n'l);
% Display progress indication
if etime(clock,tO»ProgTimeSlice

disp ([spaces num2str (mm/rows*lOO, '%5 .1f') '% of RHS section is written.'])
to=clock;

105 end
end

disp([leader 'Writing BOUNDS section'l)

110 % Write BOUNDS section
to=clock;
fprintf(fid, 'BOUNDS\n');
for k=l:nodes

clab=['V' num2str(NodeList(k) ,7)] ;
115 s=blanks(24);

s (2 : 3) = ' LO' ;
s (5 : 9) = ' BOUND' ;
s(15:14+length(clab))=clab;
fprintf(fid, [s '%1.8f\n'l ,lowbound);

120 s(2:3)='UP';
fprintf (fid, [s '%1.8f\n'l ,upbound);
% Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces num2str(k/nodes*100, '%5.1f') '% of bounds is written.'l)
125 to=clock;

end
end

s=blanks(24);
s (2 : 3) = ' LO' ;

130 s(5:9)='BOUND';
S(15)='Z';
fprintf{fid, [s '%1.8f\n'],O);
s (2: 3) = 'UP' ;
fprintf(fid, [s '%1.8f\n'],l);

135
% Write ENDATA
fprintf(fid, 'ENDATA\n');

% Close data file !!
140 fclose (fid) ;

disp([leader 'Data written to MPS file' MPSname '. 'l)

Formulation ojthe Piecewise Linear Control ojan Inverted Pendulum as an LCP 67

Row vector with the cell numbers

odd,even

Appendix B: MatLab code

Function n2 c

Description:
The function n2 c returns a row vector with the numbers of the cell that are bordering the node
designated by input k.

Inputs:
k The node number

Outputs:
m

Depends on:

Code:
function m=n2c(kj
%NODE2CELLS Calculates the numbers of the cells encompassing a node
%
% m=N2C(k)

5 % Returns a row vector m containing all the cells that
% encompass node k.

global ENVIROMENT_NAME
load(ENVIROMENT_NAME);

10
RowNo = fix(k!Nh);

% calculate node number of the node below the current one
if RowNo==O

15 NodeBelow=k+Nh;
elseif odd (RowNo)

NodeBelow=k+2*Nh;
else

NodeBelow=k-2*Nh;
20 end

% Calculate the numbers of the nodes directly to the left of the
% current node and the node below this one

25 NodeLeft=k-l;
if mod(NodeLeft,Nh)==Nh-l

NodeLeft=NodeLeft+Nh;
end

30 NodeBelowLeft=NodeBelow-l;
if mod(NodeBelowLeft,Nh)==Nh-l

NodeBelowLeft=NodeBelowLeft+Nh;
end

35 % Calculate the number of cells around node 'k'
sect = even(fix((k+Nh)!Nh!2));
eight = (odd(k) & (-sect)) I ((-odd(k)) & sect);

% from this information we can calculate the number of the
40 % adjacent cells

m=[k*2 NodeLeft*2+1 NodeBelow*2 NodeBelowLeft*2+1];

if eight
45 m=[m k*2+1 NodeLeft*2 NodeBelow*2+1 NodeBelowLeft*2J;

end
m=sort (m) ;

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 68

A row vector with (global) node numbers to be converted to partial
numbering.

A row vector with (partial) cell numbers.

A row vector with (partial) node numbers to be converted to global
numbering.

Appendix B: MatLab code

Function nglb2prt

Description:
The function nglb2prt converts node numbers according to the numbering system of the
global triangulation to the numbering of a partial triangulation.

Inputs:
kGlb

Outputs:
kPrt

Depends on:

Code:
function kPrt=nglb2prt(kGlb)
%NGLB2PRT Maps node numbers from a global to a partial triangulation
%
% kPrt=NGLB2PRT(kGlb)

5 % The function accepts a node number of a global triangulation and
% calcutates the number of the node in the partial triangulation. If
% the node number is not a part of the partial triangulation, a value
% of -1 will be returned.

10 global ENVIROMENT NAME
load (ENVIROMENT_NAME) ;

kPrt=zeros(l,length(kGlb)) ;
for index=l:length(kGlb)

15 RowNo=fix(kGlb(index)/Nh);
ColNo=mod (kGlb (index) ,Nh);
if ColNo<=Nhp

kPrt (index)=RowNo* (2*Nhp+1)+ColNo;
elseif ColNo>=(Nh-Nhp)

20 kPrt(index) = (RowNo+1) * (2*Nhp+1)+(ColNo-Nh) ;
else

kPrt(index)=-l;
end

end

Function nprt2g1b

Description:
The function nprt2g1b converts node numbers according to the numbering system of a partial
triangulation to the numbering of the global triangulation.

Inputs:
kPrt

Outputs:
kGlb A row vector with (global) node numbers.

Depends on:

Code:
function kGlb=nprt2glb(kPrt)
%NPRT2GLB Maps node numbers from a partial to a global triangulation
%
% kGlb=NPRT2GLB(kPrt)

5 % The function accepts a node number of a partial triangulation and
% calcutates the number of the node in the global triangulation

global ENVIROMENT_NAME

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 69

Appendix B: MatLab code

load (ENVIROMENT_NAME) ;
10

kGlb=zeros(l.length(kPrt» ;
for index=l:length(kPrt)

RowNo=fix(kPrt(index)/(2*Nhp+l» ;
ColNo=mod(kPrt(index) .2*Nhp+l);

15 if ColNo<=Nhp
kGlb (index) =RowNo*Nh+ColNo;

else
kGlb(index)=(RowNo+l)*Nh+(ColNo-(2*Nhp+l» ;

end
20 end

Function pIc

Description:
The function plc calculates the response of the piecewise linear controller in a point.

Inputs:
x

Outputs:
u

Depends on:

Co-ordinates of the point for which the output of the piecewise linear
controller should be calculated

Output of the piecewise linear controller for input x

barrycnt,coord,ctrl

A column vector with the values of the Lyapunov function in the nodes.
A column vector with the numbers of the nodes.
A string with an optional title for the graph
Default: Lyapunov function
Optional

Code:
function u=plc(x)
%PLC Calculate the response of the piecewise linear controller in a point
%
% u=PLC(x)

5 % The response of the piecewise linear controller for the input defined
% by the co-ordinates 'x'.

global ENVIROMENT NAME
if length(ENVIROMENT NAME) ==0

10 error('Enviroment-name not set. Use SETENV. ');
end
if -exist([ENVIROMENT NAME' .mat']. 'file')

error('Configuration file does not exist. Use WRITECFG. ,);
else

15 load (ENVIROMENT_NAME) ;
end

if length (x) -=2
error('Input must have exactly 2 rows');

20 end

[m,k.a] =barrycnt (x) ;
xk=coord (k) ;
uk=ctrl (xk) ;

25 u=uk*a;

Function pIotlya

Description:
The function plotlya plots the piecewise linear Lyapunov function.

Inputs:
V
NodeList
TitleStr

Formulation of the Piecewise Linear Control ofan Inverted Pendulum as an LCP 70

A 3-dimensional graph showing the Lyapunov function.

c2n,coord,cprt2g1b,nglb2prt

Appendix B: MatLab code

Outputs:

Depends on:

Code:
function plotlya(V,NodeList,TitleStr)
%PLOTLYA plots a piecewise linear Lyapunov function
%
% PLOTLYA(V,NodeList,TitleStr)

5 % Plots the piecewise linear Lyapunov function defined in vector V.
% NodeList contains a list with the global numbers of the nodes and
% the optional string TitleStr can be used to give the plot a title.

10
tt=clock; % timer for total elapsed time

global ENVIROMENT NAME
if length(ENVIROMENT_NAME)==O

error('Enviroment name not set. Use SETENV. ');
end

15 if -exist ([ENVIROMENT NAME' .mat'l, 'file')
error('Configuration file does not exist. Use WRITECFG.');

else
10ad(ENVIROMENT NAME);

end -
20

25

% Constants
ModName
ProgTimeSlice
leader
spaces

'PlotLya' ;
60;
'Module

, .,

% Module name (max. 8 characters)
% Number of seconds between progress feedback
% Leader for output messages
% Empty leader

if length(ModName»8
ModName=ModName(I:8) ;

end
30 leader(8:7+length(ModName))=ModName;

if NodeList(I)==O
% Examining around the inverted position
EquiPnt=O;

35 else
% Examining around the pending position
Equipnt=pi;

end

40 disp([leader 'Initialising data ... 'J);
tri=zeros(NoCells,3) ;
x=zeros(NoNodes,l) ;
y=zeros(NoNodes, 1) ;
z=zeros(NoNodes, 1) ;

45
disp([leader 'Calculating x- and y-coordinates ... 'l);
to=clock;
for kPrt=O:NoNodes-l

kGlb=NodeList(kPrt+l) ;
50 X=coord(kGlb);

if EquiPnt==O
% Examining around the inverted position so apply wrapping
select=X (1, :) >= (Nh-Nhp- 0.5) /Nh*2 *pi;
wrapper= [1; 0] * [1 1 1];

55 X(:,select)= X(:,select) - 2*pi*wrapper(:,select);
end
x (kPrt+l) =X (1);
y(kPrt+l)=X(2) ;
% Display progress indication

60 if etime(clock,tO»ProgTimeSlice
disp([spaces' 'num2str(kprt/NoNodes*100,'%5.1f') '% of x- and y-coordinates

calculated. 'J)
to=clock;

end
65 end

disp([leader 'Calculating surface ... 'J)
to=clock;
for mPrt=O:NoCells-l

70 m=cprt2glb(mPrt) ;
if EquiPnt-=O

% Correct global cell number for the fact that not the neighbourhood
% of (0,0) is examined, but the neighbourhood of (pi,O).

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 71

Appendix B: MatLab code

if mod(m,Nh»=Nh/2
75 m=m-Nh;

else
m=m+Nh;

end
k=c2n(m) ;

80 % Calculate node number for the partial numbering system
kPrt=zeros(I,3) ;
for i=I:3

RowNo=fix(k(i)/Nh) ;
ColNo=mod(k(i) ,Nh);

85 if ColNo>=Nh/2
kprt(i)=RowNo*(2*Nhp+I)+ColNo-Nh/2;

else
kprt(i)=RowNo*(2*Nhp+I)+(Nhp+I)+ColNo- (Nh/2-Nhp);

end
90 end

tri (mPrt+l, :) =kPrt+l;
else

k=c2n(m) ;
tri(mPrt+l, :)=nglb2prt(k)+I;

95 end
% Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces' 'num2str(mPrt/NoCells*IOO,'%5.lf') '% calculated.'])
to=clock;

100 end
end

disp([leader 'Displaying surface ... ,])
colormap([linspace(O.3,1,32)'*[III]]);

105 trisurf(tri,x,y,V');
xlabel('\theta') ;
ylabel (' \theta' , ,) ;
if nargin<3

title('Lyapunov function');
110 else

title(TitleStr) ;
end
rotate3d;

115 disp([leader 'Done.
fprintf(I,'\n');

Function odd

(, num2str (etime (clock, ttl , '%3 .If') , seconds elapsed) ,]) ;

Description:
The function odd returns a non-zero value if the integer part of the input value is odd, otherwise
it returns a zero.

Inputs:
number

Outputs:
out

The number to be tested.

A non-zero number if the integer part of the input is odd, otherwise O.

Depends on:

Code:
function out=odd(number)
%ODD Returns TRUE if the integer part of its argument is odd
out=mod(fix(number) ,2);

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 72

A column vector with the values of the Lyapunov function in the nodes.
A column vector with the numbers of the nodes.

Appendix B: MatLab code

Function readling

Description:
The function readl ing reads the results from Lingo and puts the values of the Lyapunov
function in a vector.

Inputs:
The output file of Lingo containing the solution to the LP problem. The
extension of the file is supposed to be .lou .

Outputs:
V
NodeList

Depends on:

Code:
function [V,NodeList]=readling()
% READLING Reads the output generated by LINGO

global ENVIROMENT NAME
5 if length(ENVIROMENT NAME) ==0

error('Enviroment-name not set. Use SETENV. ');
end
if -exist([ENVIROMENT NAME' .mat'], 'file')

error('Configuration file does not exist. Use WRITECFG. ');
10 else

load(ENVIROMENT NAME);
end -

15

20

% Constants
Ext
ModName
ProgTimeSlice
leader
spaces

, .lou I;

'ReadLing' ;
60;
'Module

, ;

% Module name (max. 8 characters)
% Number of seconds between progress feedback
% Leader for output messages
% Empty leader

25

fid=fopen([ENVIROMENT NAME Ext], 'r');
if fid<O -

error(['Can not open file' ENVIROMENT NAME Ext])
end

% Skip header lines
while (-strcmp(fscanf(fid,'%C',2),' '))&(-feof(fid))

fgetl (fid);
end

30 fgetl (fid) ;

index=2;
NodeList=[O] ;
V= [0] ;

35 Nneg=O;
Nzero=Oi
Npos=O;
MinV=O;
MaxV=O;

40 disp([leader 'Reading LINGO output file' ENVIROMENT NAME Ext])
to=clock;
while (-feof (fid)) &(fscanf (fid, , %c', 1) ==' ')

charact=fscanf(fid, '%c',I);
while strcmp(charact, , ,)

45 charact=fscanf (fid, '%c', 1);
end
if charact-='Z'

NodeList(index)=fscanf(fid, '%d',I);
V(index) =fscanf (fid, '''e', 1);

50 if V(index)<O
Nneg=Nneg+I;

elseif V(index)==O
Nzero=Nzero+I;

else
55 Npos=Npos+I;

end

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 73

Appendix B: MatLab code

MinV=min(MinV,V(index)) ;
MaxV=max(MaxV,V(index)) ;

end
60 line=fgetl(fid);

% Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces num2str(index/(NoNodes-1)*100,'%5.1f') '% read.'])
to=clock;

65 end
index=index+1;

end

% Correcting global number of first node if examining neighbourhood of pi.
70 if length(NodeList»l

if NodeList(2)-=1
NodeList(1)=Nh/2;

end
end

75
fclose (fid) ;

disp([leader 'Statistics: ,]);
disp([spaces num2str(length(V)) , values read from file' ENVIROMENT NAME Ext]);

80 disp ([spaces num2str (Nneg) , negative values with minimum' num2str (MinV)]);
disp ([spaces num2str (Nzero) , zeros']);
disp([spaces num2str(Npos) , positive values with maximum' num2str(MaxV)]);
disp([leader'Done.']);
fprint f (1, ' \n ') ;

Function readmps

Description:
The function readmps reads the results from PCx and puts the values of the Lyapunov function
in a vector.

Inputs:
The output file of PCx containing the solution to the LP problem.

Outputs:
V
NodeList

A column vector with the values of the Lyapunov function in the nodes.
A column vector with the numbers of the nodes.

Depends on:

Code:
function [V,NodeList] =readmps ()
% READMPS Reads the output generated by PCx
%
% [V,NodeList] =READMPS ()

5 % Reads the solution provided by the LP solver PCx

global ENVIROMENT NAME
if length(ENVIROMENT NAME) ==0

error('Enviroment-name not set. Use SETENV. ');
10 end

if -exist([ENVIROMENT_NAME '.mat'], 'file')
error('Configuration file does not exist. Use WRITECFG. ');

else
load(ENVIROMENT NAME);

15 end -

20

% Constants
Ext
ModName
ProgTimeSlice
leader
spaces

I .out I;

'ReadMPS' ;
60;
'Module , .,

, ;

% Module name (max. 8 characters)
% Number of seconds between progress feedback
% Leader for output messages
% Empty leader

if length(ModName»8
25 ModName=ModName(1:8);

end
leader(8:7+length(ModName))=ModName;

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 74

Appendix B: MatLab code

fid=fopen([ENVIROMENT NAME Ext], 'r');
30 if fideO -

error(['Can not open file' ENVIROMENT NAME Ext)
end

% Skip first three lines
35 line=fgetl(fid);

line=fgetl(fid) ;
line=fgetl(fid) ;

index=2;
40 NodeList=[O);

V= [0) ;
Nneg=O;
Nzero=O;
Npos=O;

45 MinV=O;
MaxV=O;
disp([leader 'Reading PCx output file' ENVIROMENT NAME Ext)
done=O;
to=clock;

50 while (-feof(fid))&-done
SeqNr=fscanf (fid, '%d' , I) ;
spaces=fscanf(fid, '%c',2);
if fscanf(fid, '%c',I)-='Z'

NodeList (index)=fscanf (fid, '%d',I);
55 V(index)=fscanf(fid,'%e',I);

if V(index) cO
Nneg=Nneg+l;

elseif V(index)==O
Nzero=Nzero+lj

60 else
Npos=Npos+l;

end
Minv=min(MinV,V(index) ;
MaxV=max(MaxV,V(index) ;

65 index=index+l;
else

done=l;
end
line=fgetl(fid) ;

70 % Display progress indication
if etime(clock,tO»ProgTimeSlice

disp ([spaces num2str(index! (NoNodes-l) *100, '%S.lf') '% read.')
to=clock;

end
75 end

% Correcting global number of first node if examining neighbourhood of pi.
if length(NodeList»l

if NodeList(2)-=1
NodeList(1)=Nh!2;

80 end
end

fclose (fid) ;

85 disp ([leader 'Statistics: ,)) ;
disp([spaces num2str(length(V» , values read from file' ENVIROMENT NAME Ext);
disp([spaces num2str(Nneg) , negative values with minimum num2str(MinV)]);
disp ([spaces num2str (Nzero) , zeros');
disp([spaces num2str(Npos) , positive values with maximum' num2str(MaxV»));

90 disp([leader 'Done. ,));
fprint f (1, '\n') ;

Function setenv

Description:
The function setenv sets the global variable ENVIROMENT_NAME to the name of the
configuration that should be used by all MatLab functions. It should be invoked before any of the
other functions is invoked. The name of the configuration is used to store a file with global
variables that determine the configuration and most names of files used by the MatLab functions
will be derived from the configuration name.

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 75

Appendix B: MatLab code

Inputs:
envname

Outputs:
out

A string with the name of the configuration that should be used.

A non-zero number if the integer part of the input is odd, otherwise O.

Depends on:

Code:
function setenv(envname)
%SETENV Sets the name of the enviroment to use for the calculations
%
% SETENV(envname)

5 % Stores the name of the enviroment in the global variable
% ENVIROMENT NAME. This name is used to retrieve a set of
% global variables from a configuration file, which names
% is constructed from the enviroment name.

10 % Constants
DefaultPath='c:\Home\Groen\triang\'; % Set default path
PathDefined=O;

envlength=length(envname) ;
15 if envlength>=2

% Enviroment name starts with drive specification
PathDefined=PathDefinedl (envname(2)==': ');

end

20 i=l;
while (i<=envlength)&(-PathDefined)

PathDef ined=PathDef ined I (envname (i) ==' / ') I (envname (i) ==' \ ') ;
i=i+l;

end
25

%Strip extension if necessary
Stripped=O;
i=max(l,envlength-3) ;
while (i<=envlength)&-Stripped

30 if envname(i)=='.'
if i==envlength

envname=envname(1:envlength-1) ;
stripped=l;

else
35 if (envname(min(i+1,envlength»=='/') I (envname(min(i+1,envlength))=='\')

I (envname(min(i+2,envlength»=='/') I (envname(min(i+2,envlength»=='\')
envname=envname(1:max(1,i-1» ;
Stripped=l;

end
40 end

end
i=i+l;

end

45 if -PathDefined
envname=fullfile(DefaultPath,envname) ;

end

if exist('ENVIROMENT_NAME', 'var')
50 clear global ENVIROMENT NAME;

end -

global ENVIROMENT_NAME;
ENVIROMENT_NAME=envname;

55
if exist ([ENVIROMENT NAME '. mat' 1 , 'file')

disp(['Configuration file present. 'J);
else

disp(['Configuration file does not exist. 'J);
60 end

fprintf (1, '\n');

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 76

Appendix B: MatLab code

Function testfit

The number of random samples to examine in each cell.
Default: 3
Optional
The minimum relative deviation between the value of the differential
equations and the approximation before the approximation is considered to be
erroneous.
Default: 2 (%)
Optional
Numbers smaller than this parameter are considered to be zero. This
parameter prevents a relative error to become infmitely large if the
approximation is not exactly zero and the differential equations are.
Default: 10-14

Optional

SmallNmbr

PermRelErr

Description:
The function testf it calculates the differences between the output of the differential equations
and the piecewise affme approximation to give an idea of the accurateness of the approximation.
Either the total triangulation is examined or the neighbourhood of the inverted position. The last
case is true if in wr i te c f 9 a non-zero number is entered for the number of horizontal nodes to
examine. If a zero was entered, testf i t examines the total triangulation.

Inputs:
NoRndPoints

Outputs:

Depends on:

An output file with the results for each cell and a summary on the terminal.

c2n,coord,cprt2g1b,ctrl,diffeq,fitcell,nglb2prt

Code:
function testfit(NoRndPoints,PermRelErr,SmallNmbr)
%TESTFIT Tests if the fit of the triangulation is adequate
%

5

10

%
%
%
%
%
%
%
%
%

TESTFIT(n,PermRelErr,SmallNmbr)
This module compares the values the fitted process with the values
produced by the differential equations and outputs the differences
to a file (extension .tst). The parameter 'n' is optional and
represents the number of random samples to be calculated in each
cell. The parameters 'PermRelErr' and 'SmallNmbr' are also optional
and define the relative error that is permitted to occur and a
limit that defines when a small number is considered to be equal to
zero. The module will produce a summary of the test on the terminal.

15
tt=clock; % timer for total elapsed time

global ENVIROMENT NAME
if length(ENVIROMENT NAME) ==0

error('Enviroment-name not set. Use SETENV. ');
end

20 if -exist([ENVIROMENT NAME' .mat'], 'file')
error('Configuration file does not exist. Use WRITECFG. ');

else
load(ENVIROMENT NAME) ;

end -
25

% Constants
ModName ITestFit'i % Module name (max. 8 characters)
ProgTimeSlice 60; % Number of seconds between progress feedback
leader 'Module ' ; % Leader for output messages

30 spaces ' ; % Empty leader
ext , .tst '; % Extension for the output file

if length(ModName»8
ModName=ModName(1:8) ;

35 end
leader(8:7+length(ModName))=ModName;

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 77

Appendix B: MatLab code

40

45

50

if nargin<l
NoRndPoints

else
NoRndPoints

end
if nargin<2

PermRelErr
else

PermRelErr
end
if nargin<3

SmallNmbr
else

SmallNmbr
end

3; % Number of random points to be examined

max(O,fix(NoRndPoints») ;

2; % Permitted relative error (used for summary)

abs(PermRelErr} ;

1e-14; % Smaller numbers are considered 0 for summary

abs (SmallNmbr) ;

% fid=l; % Send output to Standard Output
55 fid=fopen([ENVIROMENT_NAME ext], 'w');

if fid ==-1
error('Could not open output file')

end

60 disp([leader 'Testing quality of fit ... ,]);

% Initialize values for summary report
% All errors regardless of the occurence of near-zero errors
NoErr=O; % Initialize maximum error

65 OutOfRng=O; % Number of errors out of permitted range
SgnErr=O; % Number of wrong signs
% Errors corrected for the occurence of near-zero errors
NoErrCor=O; % Initialize maximum error
OutOfRngCor=O; % Number of errors out of permitted range

70 SgnErrCor=O; % Number of wrong signs

%Initialise the counters for the errors
% The matrix ErrUn contains the counters for all errors regardless
% the presence of near-zero errors. The matrix ErrCr contains the

75 % same counters, but is corrected for the occurrence of near-zero
% errors. The first row contains the counters applying to the
% results of the vaue of the first DE, the second row the counters
% for the second DE. There are separate counters for points that
% are nodes and for random points.

80 % The columns contain the next values:
% 1 nodes: # samples
% 2 comm. of abs. value of error
% 3 comm. of square of error
% 4 max. of error

85 % 5 # errors exceeding threshold
% 6 # relative errors = undefined
% 7 non-nodes: # samples
% 8 comm. of abs. value of error
% 9 comm. of square of error

90 % 10 max. of error
% 11 # errors exceeding threshold
% 12 # relative errors = undefined
% 13 # wrong signs
ErrUn=zeros(2,13) ;

95 ErrCr=zeros(2,13);

to=clock; % Initialize clock for progress indication
for mPrt=0:NoCells-1

if Nhp==O
100 mGlb=mPrt;

else
mGlb=cprt2glb(mPrt) ;

end
fprintf(fid, '\nCell number: %d (global: %d)\n',mprt,mGlb);

105 [a,A,b]=fitcell(mGlb);
fprintf(fid,' Fit parameters:\n'};
fprintf(fid,' a[l] =%l4d, a[2] =%l4d\n',a(l),a(2»;
fprintf (fid,' A[l,l]=%14d, A[1,2]=%14d\n' ,A(l,l) ,A(l,2);
fprintf (fid, ' A [2 ,I] =%l4d, A [2, 2] =%14d\n' ,A(2 ,I) ,A(2, 2» ;

110 fprintf(fid,' b[l] =%14d, b[2] =%l4d\n',b(1),b(2)};
kGlb=c2n (mGlb) ;
kPrt=nglb2prt(kGlb) ;
fprintf(fid,' Node numbers:\n');
fprintf(fid,' %6d, %6d, %6d ',kPrt(l) ,kPrt(2),kPrt(3));

115 fprintf(fid,'(global: %d, %d, %d\n',kGlb(l},kGlb(2},kGlb(3)};
x=coord (kGlb) ;
% Adjust coordinates if cell is in the last column

Formulation ojthe Piecewise Linear Control ojan Inverted Pendulum as an LCP 78

Appendix B: MatLah code

if mod(fix(mGlb/2) ,Nh)==Nh-l
x(l, (abs (x(l,:)) < (pi/Nh))) = 2*pi;

120 end
fprintf(fid,' Node coordinates:\n');
fprintf(fid,' %14d, %14d, %14d\n' ,x(l,l) ,x(1,2) ,x(1,3));
fprintf(fid,, %14d, %14d, %14d\n',x{2,1l,x{2,2),x(2,3));
rndbarry=rand(3,NoRndPoints) ;

125 rndbarry=rndbarry./(ones(3,3)*rndbarry);
randpoints=x*rndbarry;
fprintf(fid,' Coordinates of random points:\n');
if NoRndPoints>O

fprintf(fid,' %14d',randpoints(1,1));
130 for i=2:NoRndPoints

fprintf (fid,', %l4d' ,randpoints(l, i));
end
fprintf (fid, '\n');
fprintf (fid, ' %14d' ,randpoints (2,1)) ;

135 for i=2:NoRndPoints
fprintf (fid,', %l4d' ,randpoints(2,i));

end
fprintf(fid, '\n');

end
140 fprintf(fid,' Values of the fitted model and the differential equations in the

above points:\n');
fprintf (fid,' Fitted model I Differential equation

Absolute error (Fit-Dif) I Rel.error (H) \n');
fprintf (fid, ' value 1 I value 2 I value 1 value 2

145 value 1 I value 2 I value 1 I value 2 \n');
fprintf(fid.' -------------+--------------+--------------+--------------+-------

-------+--------------+---------+---------\n') ;
x=[x randpointsl;
for i=1:3+NoRndPoints

150 if i<=3
% The piecewise linear approximation of the controller will be exact
% in the nodes, so call the controller directly instead of the
% approximation to prevent for errors introduced by MatLab
u=ctrl (x (: ,i)) ;

155 else
% Calculate value of piecewise linear controller
u=plc (x (: ,i)) ;

end
y=a+A*x(:,i)+b*u;

160 [flx,glx,f2x,g2x]=diffeq(x(:,i));
z{l)=flx+glx*u;
z(2)=f2x+g2x*u;
fprintf(fid,' %l2.4e I %l2.4e I %l2.4e I %12.4e I '.y(1),y(2),z(1),z(2));
fprintf (fid, '%12 .4e I %12.4e I '.y(l) -z (1) ,y(2) -z (2));

165 if i<=3 % Is point a node ?
os 0; % set offset for uncorrected values
os2 0; % ditto for corrected vaues

else
os 6; % ditto

170 os2 3; % ditto
end
for j =1: 2

if z (j)

% Value of DE is non-zero
175 RelErr=y(j)/z(j)-l;

ErrUn(j.l+os)=ErrUn(j,l+os)+l; % # samples
ErrUn(j.2+os)=ErrUn(j.2+os)+abs(RelErr); % comm. abs. value of error
ErrUn(j,3+os)=ErrUn(j.3+os)+RelErr*RelErr; % comm. of squares
ErrUn(j,4+os)=max(ErrUn(j,4+os),RelErr); % maximum value

180 if (y (j) >SmallNrnbr) I (z (j l>SmallNrnbr)
ErrCr(j,l+os)=ErrCr(j.l+os)+l;
ErrCr(j,2+os)=ErrCr(j.2+os)+abs(RelErr) ;
ErrCr(j,3+os)=ErrCr(j,3+os)+RelErr*RelErr;
ErrCr(j.4+os)=max(ErrCr(j,4+os).RelErr);

185 end
if abs(RelErr)*lOO>PermRelErr

ErrUn(j,5+os)=ErrUn(j.5+os)+1; % # errors exceeding limit
if (y (j l>SmallNrnbr) I (z (j l>SmallNrnbr)

ErrCr(j.5+os)=ErrCr(j,5+os)+1;
190 end

end
if j ==1

fprintf(fid,'%7.2f I ',RelErr*lOO);
else

195 fprintf(fid, '%7.2f\n',RelErr*100);
end

else
% Value of DE is zero

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 79

Appendix B: MatLab code

if y(j)
200 % Value of fit is non-zero ->

% Relative error is undefined
ErrUn(j,6+os)=ErrUn(j,6+os)+1;
if y(j»SmallNmbr

ErrCr(j,6+os)=ErrCr(j,6+os)+1;
205 end

if j == 1
fprintf (tid, ' I ');

else
fprintf (tid, '\n') ;

210 end
else

% Value of fit is zero ->
% Relative error is zero
ErrUn(j,l+os)=ErrUn(j,l+os)+l;

215 ErrCr (j , l+os) =ErrCr (j , l+os) +1;
if j ==1

fprintf(fid,' 0.00 I');
else

fprintf(fid,' O.OO\n');
220 end

end
end
if y(j)*z(j)<O

% Wrong sign
225 ErrUn (j , 13) =ErrUn (j , 13) +1;

if (y (j) >SmallNmbr) I (z (j) >SmallNmbr)
ErrCr(j,13)=ErrCr(j,13)+1;

end
end

230 end
end
% Display progress indication
if etime(clock,tO»ProgTimeSlice

disp([spaces num2str(mPrt/(NoCells-1)*100,'%S.1f') '% is done.'J)
235 to=clock;

end
end

disp([leader 'Summary of the results: 'J);
240 fprintf(fid,'\nSummaryof the results:\n');

for fd=1:fid-1:fid
fprintf (fd, '\n') ;
fprintf(fd, 'Excessive error: >%6.2f%%' ,PermRelErr);

245 fprintf (fd, 'II value 1 I value 2 \n');
fprintf(fd, 'Small number : %9.2e',SmallNmbr);
fprintf(fd,' I I uncorrected I after cor I uncorrected I after cor \n');
fprintf(fd, '-----------------------------+-------------+-----------+-------------+---

--------\n') ;
250 fprintf (fd, 'nodes

I\n');
fprintf (fd, ' mean of Irel.error I (n) I') ;
fprintf (fd, '%11. 2f I %9. 2f I ',ErrUn (1,2) /ErrUn (l,ll *100, ErrCr (1,2) /ErrCr (1,1) *100) ;
fprintf(fd, '%11.2f I %9.2f\n' ,ErrUn(2,2)/ErrUn(2,1)*100,ErrCr(2,2)/ErrCr(2,l)*100);

255 fprintf (fd, ' variance (n) I');
fprintf(fd,'%11.2f I %9.2f I ',(ErrUn(1,3)-

ErrUn (1, 2) *ErrUn (1,2) /ErrUn (1,1)) / (ErrUn (1,1) -1) *10, ...
(ErrCr(l,3) -ErrCr(l,2)*ErrCr(l,2)/ErrCr(l,l))/(ErrCr(l,l)-1)*10);

fprintf(fd,'%11.2f I %9.2f\n',(ErrUn(2,3)-
260 ErrUn (2,2) *ErrUn (2,2) /ErrUn (2,1)) / (ErrUn (2,1) -1) *10, ...

(ErrCr(2,3) -ErrCr(2,2)*ErrCr(2,2)/ErrCr(2,1»/(ErrCr(2,l)-1)*10);
fprintf (fd, ' maximum (n) I') ;
fprintf(fd,'%l1.2f I %9.2f I ',ErrUn(l,4)*100,ErrCr(l,4)*100);
fprintf(fd, '%11.2f I %9.2f\n' ,ErrUn(2,4)*100,ErrCr(2,4)*100);

265 fprintf (fd, , excessive (#) I');
fprintf(fd,'%l1d I %9d I ',ErrUn(l,S),ErrCr(l,S»;
fprintf(fd,'%l1d I %9d\n',ErrUn(2,S),ErrCr(2,S);
fprintf (fd, ' rel. error undefined (#) I');
fprintf(fd,'%l1d I %9d I ',ErrUn(l,6),ErrCr(l,6»;

270 fprintf(fd,'%l1d I %9d\n',ErrUn(2,6),ErrCr(2,6);
if NoRndPoints>O

fprintf(fd, 'non-nodes %lSd',NoRndPoints);
fprintf(fd,' I I I !\n');
fprintf(fd,' mean of Irel.errorl (n) ');

275 fprintf(fd, '%l1.2f I %9.2f I
',ErrUn(l,8)/ErrUn(l,7)*100,ErrCr(l,8)/ErrCr(l,7)*100) ;

fprintf(fd, '%11.2f I
%9.2f\n',ErrUn(2,8)/ErrUn(2,7)*100,ErrCr(2,8)/ErrCr(2,7)*100);

fprintf(fd,' variance (n) I');

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 80

A string with the name of the configuration that should be used for the default
values.
Optional

Appendix B: MatLab code

280 fprintf(fd,'%l1.2f I %9.2f I ',(ErrUn(I,9)-
ErrUn (l, 8) *ErrUn (1,8) /ErrUn (1,7)) / (ErrUn(l, 7) -1) *10, ...

(ErrCr(I,9) -ErrCr(I,8)*ErrCr(I,8)/ErrCr(I,7))/(ErrCr(I,7)-I)*10);
fprintf(fd,'%1l.2f I %9.2f\n',(ErrUn(2,9)­

ErrUn(2,8)*ErrUn(2,8)/ErrUn(2,7))/(ErrUn(2,7)-I)*10, ...
285 (ErrCr(2,9)-ErrCr(2,8)*Errcr(2,8)/ErrCr(2,7))/(ErrCr(2,7)-1)*10);

fprintf(fd,' maximum (%%) I');
fprintf(fd,'%1l.2f I %9.2f I ',ErrUn(I,10)*100,ErrCr(I,10)*100);
fprintf(fd, '%1l.2f I %9.2f\n',ErrUn(2,10)*100,ErrCr(2,10)*100);
fprintf (fd, ' excessive (#) I');

290 fprintf(fd,'%lld I %9d I ',ErrUn(l,ll),ErrCr(l,ll));
fprintf(fd,'%lld I %9d\n',ErrUn(2,1l),ErrCr(2,1l»);
fprintf (fd, ' rel. error undefined (#) I') ;
fprintf(fd,'%lld I %9d I ',ErrUn(I,12),ErrCr(I,12»);
fprintf(fd,'%lld I %9d\n',ErrUn(2,12),ErrCr(2,12));

295 end
fprintf (fd, 'wrong signs (#) I');
fprintf(fd,'%lld I %9d I ',ErrUn(I,13),ErrCr(I,13));
fprintf(fd,'%lld I %9d\n',ErrUn(2,13),ErrCr(2,13));
fprintf(fd, '\n');

300 end

fclose (fid) ;

disp([leader 'Results written to file' ENVIROMENT_NAME ext])
305 disp ([leader 'Done. (' num2str (etime (clock, ttl , '%3 .If') , seconds elapsed)']);

fprintf(I,'\n');

Function wri tecfg

Description:
The function writecfg creates or edits the configuration file that contains all global variables.
If this function is invoked when no configuration file exists yet, the function will present the user
with its internal defaults for all values. If the configuration file does exist, the user is asked to
either leave existing values unchanged or supply new values. Optionally the function can be
invoked with a configuration name as argument. The defaults will then be taken from that
configuration and the user can change the values that do not suit him! her.

Inputs:
dJtfile

Outputs:
A configuration file if it is not already present.

Depends on:

Code:
function writecfg(dftfile)
%WRITECFG Writes parameters to configuration file
%
% WRITECFG(defaultfile)

5 % Writes parameters to the configuration file defined by the file name in
% variable 'configfile'. Optionally the file 'defaultfile' can be specified.
% If this file is specified, not the internal defaults will be suggested, but
% the parameters from this configuration file will be used as defaults.

10 global ENVIROMENT NAME
DefaultPath='d:\swingup\triang\'; % Set default path

if nargin<1
if exist ([ENVIROMENT NAME' .mat'], 'file')

15 % CURRENT CONFIGURATION
disp('Reading defaults from current external configuration file');
load(ENVIROMENT NAME);

else -
% INTERNAL DEFAULTS

20 disp('Reading internal defaults for configuration');

Formulation ojthe Piecewise Linear Control ojan Inverted Pendulum as an LCP 81

Appendix B: MatLab code

% physical parameters
g=9.81; % gravitational acceleration
1=1; % pendulum length
% Triangulation parameters

25 Dv=O. 025; % vertical spacing of triangulation
Nh=252; % total number of nodes in horizontal direction from 0 to 2pi
Nv=3; % number of nodes in vertical direction
Nhp=l; % horizontal bound of partial triangulation
% Controller

30 controller='uncontrolled';
% Controller parameters
a=[15 3]; % parameters of linear controller
umin=-0.25; % lower bound of non-linear controller output
umax=0.25; % upper bound of non-linear controller output

35 end
else

PathDefined=O;
%Check if filename contains path description
filenamelength=length(dftfile) ;

40 if filenamelength>=2
% File name starts with drive specification
PathDefined=PathDefined! (dftfile(2)==': ,);

end
i=l;

45 while (i<=filenamelength) &(-PathDefined)
PathDefined=PathDefined I (dftfile (i) ==' I') I (dftfile (i) ==' \');
i=i+l;

end
%Strip extension if necessary

50 Stripped=O;
i=max(1,filenamelength-3) ;
while (i<=filenamelength)&-Stripped

if dftfile(i)=='.'
if i==filenamelength

55 dftfile=dftfile(l:filenamelength-l);
stripped=l;

else
if

(dftfile(min(i+l,filenamelength))=='I') I (dftfile(min(i+l,filenamelength))=='\')
60

I (dftfile (min (i+2, filenamelength)) == 'I') I (dftfile (min (i+2, filenamelength)) ==' \')
dftfile=dftfile(l:max(l,i-l)) ;
Stripped=l;

end
65 end

end
i=i+l;

end
if -PathDefined

70 % Set path to default path if it is not defined
dftfile=fullfile(DefaultPath,dftfile) ;

end
disp('Reading defaults from external configuration file');
% Load defaults from external configuration file

75 load(dftfile) ;
end

% Ask to adjust physical parameters
fprintf (1, '\n') ;

80 disp('Physical parameters');
disp('-------------------');
disp ([, gravitational acceleration, 9 [m s-2]: ' num2str (g, '%5. 2f') 1) ;
disp([' pendulum length, 1 [m] :' num2str(1,'%5.2f')]);
feedback=input('\nAccept these physical parameters (Yin)? ','s');

85
if length (feedback) >0

if (feedback(l)=='n') I (feedback(l)=='N')
fprintf (1, '\n') ;
disp('Enter new values for physical parameters. ');

90 disp('Note: Minus sign will be ignored. ');
disp('Just hitting <ENTER> accepts the original value. ,);
feedback=input (' gravitational acceleration, 9 [m s-2]: ');
if abs(feedbackl>O

g=abs(feedback) ;
95 else

disp(' Default value retained');
end
feedback=input(' pendulum length, 1 [m] ');
if abs(feedback) >0

100 l=abs (feedback);
else

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 82

Appendix B: MatLab code

105

disp (,
end

end
end

Default value retained');

% Ask to adjust triangulation parameters
fprintf(l,'\n');
disp('Triangulation parameters');

110 disp('------------------------');
disp([' horizontal spacing, Dh [rad]
num2str(2*pi/Nh, '%6.4f')]);
disp([, number of nodes in horizontal direction Nh
num2str(2*Nhp+1, '%6d')]);

115 disp ([, vertical spacing, Dv [rad s -1]
num2str(Dv, '%6.4f')]);
disp([' number of nodes in vertical direction Nv ' num2str(Nv, '%6d')]);
feedback=input('\nAccept these triangulation parameters (yin)? ','s');

120 if length (feedback) >0
if (feedback(l)=='n') I (feedback(l)=='N')

fprintf (I, '\n');
disp('Enter new values for triangulation parameters. ');
disp('Some parameters can only take certain values. ,);

125 disp('Improper entries will be adjusted to the nearest proper value. ');
disp('Just hitting <ENTER> accepts the original value. ');
feedback=input('\n horizontal spacing, Dh [rad] ');
newvalue=abs(feedback) ;
if newvalue>O

130 if newvalue>pi
Nh=2;

else
Nh=fix(pi/newvalue) *2;

end
135 else

disp(' Default value retained');
end
fprintf(l, '\n');
disp (, number of nodes in horizontal direction (odd)');

140 feedback=input (' , 'all" will include all nodes from 0 to 2pi ');
if isstr(feedback)

if cmpstr(feedback, 'all')
Nhp=O;

else
145

end
disp (' Default value retained');

else
if abs(feedback) >2

Nhp=abs(feedback) ;
150 if even (Nhp)

Nhp=Nhp-1;
end
Nhp=fix(Nhp/2) ;

else
155 disp (, Default value retained');

end
end
feedback=input('\n vertical spacing, Dv [rad s-l] ');
newvalue=abs(feedback) ;

160 if newvalue>O
Dv=newvaluei

else
disp(' Default value retained');

end
165 feedback=input('\n number of nodes in vertical direction (odd): ');

if abs(feedback) >2
Nv=abs(feedback) ;
if even (Nv)

Nv=Nv+1;
170 end

else
disp(' Default value retained');

end
end

175 end

180

% Ask to chance controller
fprintf(l, '\n');
disp('Controller') ;
disp('-------------------,) ;
disp([' controller
feedback=input('\nAccept this

, controller]);
controller (yin)? ','s');

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 83

185

190

195

Appendix B: MatLab code

if length(feedback»O
if (feedback(l)=='n') I (feedback(l)=='N')

fprintf (1, '\n');
disp('Choose new controller, e.g. ');
disp('uncontrolled, linear, non-linear');
disp('Just hitting <ENTER> accepts the original value.');
feedback=input(' controller
if length(feedback»O

controller=feedback;
else

disp(' Default value retained');
end

end
end

, , I S I) ;

if strcmp(controller, 'linear')
200 % Ask to adjust controller parameters

fprintf (1,' \n');
disp('Controller parameters');
disp('-------------------');
disp([' gain of first state ' num2str(a(1}, '%5.2f'»));

205 disp([' gain of second state ' num2str(a(2),'%5.2f')]);
feedback=input('\nAccept these controller parameters (yIn)? " 's');

if length(feedback»O
if (feedback(l)=='n') I (feedback(l)=='N')

210 fprintf (1, '\n');
disp('Enter new values for parameters of the linear controller. ');
disp('Just hitting <ENTER> accepts the original value. ');
feedback=input(' gain of first state ');
if abs(feedback) >0

215 a(l)=feedback;
else

disp(' Default value retained');
end
feedback=input(' gain of second state ');

220 if abs (feedback) >0
a(2)=feedback;

else
disp(' Default value retained');

end
225 end

end
end

if strcmp(controller, 'non-linear')
230 % Ask to adjust controller parameters

fprintf(l, '\n');
disp('Controller parameters');
disp('-------------------') ;
disp([' lower bound controller, umin ' num2str(umin,'%5.2f')]);

235 disp ([, upper bound controller, umax ' num2str (umax, ' %5. 2f ')]) ;
feedback=input('\nAccept these controller parameters (yIn)? " 's');

if length(feedback»O
if (feedback(l)=='n') I (feedback(l)=='N')

240 fprintf(l, '\n');
disp('Enter new values for parameters of the non-linear controller. ');
disp('Just hitting <ENTER> accepts the original value. ');
feedback=input(' lower bound controller umin ,);
if abs (feedback) >0

245 umin=-abs (feedback);
else

disp(' Default value retained');
end
feedback=input(' upper bound controller umax ');

250 if abs (feedback) >0
umax=abs(feedback) ;

else
disp(' Default value retained');

end
255 end

end
end

% Calculate extra parameters
260 K=Nv*Nh; % Total number of nodes

M=2*(Nv-1)*Nh; % Total number of cells

% Parameters for partial triangulation

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 84

Appendix B: MatLab code

if Nhp==D
265 NoNodes=K;

NoCells=M;
else

NoNodes=(Nhp*2+l)*Nv;
NoCells=4*(Nv-l)*Nhp;

270 end

save (ENVIROMENT NAME, 'gi, 'II, IDv l
, 'Nh', 'Nv', 'Nhp', 1M' 11K' I 'NoNodes', ...

- 'NoCells', 'controller', la', 'umin', 'umax');
fprintf(l, '\n');

Formulation ofthe Piecewise Linear Control ofan Inverted Pendulum as an LCP 85

	Voorblad
	Summary
	Contents
	1. Introduction
	2. Inverted pendulum on a cart
	3. Swing-up by the energy method
	4. Piecewise affine approximation of the non-linear system
	5. Piecewise linear Lyapunov functions
	6. Design of piecewise linear control
	7. Conclusions and recommendations
	Literature
	software
	Appendix A: Simulink files
	Appendix B: MatLab code

