
 Eindhoven University of Technology

MASTER

Knowledge-based systems : tools or toys?
a feasibility study of knowledge-based planning

van den Berg, R.J.G.

Award date:
1987

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4a58a24f-a228-4c46-94eb-3459ae1eb452

Knowledge-based
systems:
toolsortoys?
A feasibility study of knowledge-based planning

Master's thesis

Rob J.G. van den Berg

Philips Corporate ISA
Corporate CAD Centre
Centre for Quantitative Methods

Eindhoven University of Technology
Department of Mechanical Engineering

WPA-0484

Acknowledgements

Writing a Master's thesis is virtually impossible without the co­
operation of others. For this co-operation I am very grateful. there­
fore I would like to thank all the people who supported me during
the last eleven months.

Especially I would like to mention the people who made it pos­
sible to carry out the research for this thesis: Prof. Dr. G.R. Joubert
and Frank de Bruyn from the CAD Centre. who made it possible for
me to work in their group, Leo Fortuin of the Centre for Quantitative
Methods, whose claimed ignorance of Artificial Intelligence proved
to be most inspiring. as well as Piet Mikkers of the Eindhoven
University of Technology. who gave me the opportunity to explore
this unusual subject for a student Mechanical Engineering.

Furthermore lowe many thanks to the following people:
Andre Boogaard. Annemie Damen. Corry van den Berg-Irikx,

Frans Peters, Gerard van den Berg. Gilles Ampt, K. Moody, Unda
Rickelman, Mynt Zijlstra. Prof. Ir. J.G. Balkestein, Toon Korsten,
Wim Boot.

- i -

Abstract

Knowledge-based systems. or expert systems as they more com­
monly are called, have acquired much interest over the last few
years. Especially production planning is considered to be a field
where knowledge-based systems could be an improvement to cur­
rent methods. In this report the feasibility of knowledge-based plan­
ning systems is discussed. Regarding knowledge-based planning a
number of researchers state that the complexity of the planning
domain requires a structured knowledge representation. Suggested
methods use a frame·based approach or an object·oriented ap­
proach.

An important part of the study that led to this report was the
development of a prototype planning system for a stylized job shop
planning problem. The prototype is based upon a general
framework for a knowledge-based planner. The framework states
that such a system should employ a hybrid knowledge repre­
sentation to be able to represent the two different knowledge types:
the environmental knowledge represented by frames, the heuristic
knowledge, i.e. the planning techniques, represented by rules.
Moreover, a knowledge model is defined for the environmental
knowledge.

Based on the literature study and the development of the
prototype it was concluded that knowledge-based systems provide
a feasible enhancement for job shop planning.

• ii •

Preface

The last few years a new development has emerged in the field
of computer science. Following the success of data bases and
4th generation languages, interest is now moving towards a

new phenomenon, called expert systems.
Such systems are the result of research done in the field of Artifi­

cial Intelligence (AI). They try to solve problems by using expertise,
coming from humans. This human knowledge is contained in a
knowledge base. Therefore, a more accurate name for expert sys­
tems is knowledge-based systems. The most successful expert sys­
tems are those developed for diagnosis: systems that diagnose
human diseases or identify faults in processes. In these situations
the structure of the knowledge is very clear and well documented.

It would now be interesting to examine the performance of
knowledge-based systems in situations where the structure of the
knowledge is cloudy and not precisely defined. An example of such
a domain is production planning: planning in a factory environment.
Traditionally a field where problems are solved using Operational
Research (OR) methods. Operational Research is the application of
scientific methods for dealing with complex problems arising in the
management of large systems in industry, business etc.. The ap­
proach OR uses consists of the development of a scientific model
of such a system. The model incorporates measures of factors as
chance and risk, with which to predict and compare the outcomes
of alternative decisions and strategies. OR uses scientific methods
to advise on management's actions.

It is noted that OR methods generally are limited in their perfor­
mance. In the field of production planning knowledge-based sys­
tems might prove to be an improvement.

Examining the benefits of knowledge-based systems in production
planning therefore seems a worthwhile subject. It would give some
answers to the application of knowledge-based systems in problem
areas where knowledge is relatively unstructured. Knowledge­
based technology could also improve the performance of produc­
tion planning systems and enhance OR methods for advising
management.

Being a student at the Eindhoven University of Technology (TUE).
Department of Mechanical Engineering, I chose this subject for my
Master's thesis. The research for this thesis was done at the

- iii -

Preface

'Nedertandse Philips Bedrijven'. in the Advanced Developments
group of the Corporate CAD Centre. In this group Prof Dr. G. R.
Joubert was my supervisor, assisted by Mr. F. de Bruyn and Prof.

Dr. F.J. Peters. As the CAD Centre is inexperienced in the field of
production planning, another department of Philips was involved in
the project: the 'Centre for Quantitative Methods' (COM). where I
was supervised by Dr. Ir. L. Fortuin. During this project contact
with the rUE was maintained by the supervision of Ir. P. Mikkers.

- iv-

Rob J.G. van den Berg
Eindhoven, September 1987

Table of Contents

1 Introduction 1
Possible advantages of knowledge-based systems 1
Thetask 2
The goals 3
The COM problem 3
The report 4

PART I: LITERATURE STUDY

2 Production control 5
Introduction 5
Production environment 7

Job shop 7
Flow shop 8
Intermittent flow shop 9

Job shop planning 9
Scheduling 10
Loading 11
Sequencing 11
Planning revisited 11

Conclusion 12

3 Knowledge-based systems 13
Artificial intelligence 13
Knowledge-based systems 14

Why knowledge-based systems? 15
Basic concepts 17

Knowledge base 18
Inference engine 21

Uncertainty 22
Tasks for knowledge-based systems 23

Limitations 24
Conclusion 25

- v-

4 Job shop planning using knowledge-based
technology 26

Specific AI problems 27
Existing systems 27
Knowledge representation 28

How 28
What 29
Constraints 31

Time 32
Conclusion 33

PART II: THE CQM PROBLEM

5 The CQM problem 36
Problem I 36
Problem II 37
Some remarks on the planning environment 38

6 Framework for the prototype 39
Knowledge representation 39

Identification and categorization 39
Representation mechanisms 40

A model for the environmental knowledge 41
Basic ideas 41
Systems-design theory 42
Workshop model 42

Control strategy 43
Conclusion 45

7 ScheduleTalk: an implementation 46
Choice of a software tool 46
SMALL TALK-80 48

Objects 48
Messages 48
Classes and instances 49

FrameTalk 49
ScheduleTalk 51

Results 54
Conclusion 54

- vi -

PART III: Knowledge-based systems: tool or
toy?

8 Conclusions 56
Summary of results 56

The literature study 56
The COM problem 57

Answers to questions 58
Feasibility 58
Structure and demands 59

Future research 60
Framework 60
Time, constraints, etc. 60
Conventional techniques 61

References 62

Appendix
The COM problem A-1
Framework frames A-4
FrameTalk A-6
ScheduleTalk frames and demons A-15

- vii-

1

Introduction

One of the reasons that justify the development of a
knowledge-based system for a problem is the possible high
pay*off. In most production situations the use of an effective

planning system will increase profits substantially. Current planning
systems show a limited performance in this area. Hence, improved
planning systems can lead to high pay·offs. Production planning
has therefore attracted great interest among AI researchers. For
Philips planning is an important matter. Hence, Philips too became
engaged in knowledge*based planning systems: at the Corporate
CAD Centre of Philips a project was instigated. It was carried out
as a Master's study in co.aperation with the Centre for Quantitative
Methods (CQM), also a department of Philips.

In this chapter the following subjects will be discussed:

• The possible advantages of knowledge-based systems in
production control.

• The definition of the Master's degree project.

• The goals of the project.

• The approach with which these goals will be pursued.

Possible advantages of knowledge-based
systems

Current software packages employed for production planning
show a number of weaknesses:

- 1 •

Introduction

The task

• The plans are sub-optimal. The difference between the
generated plan and the optimal case has been observed to
be considerable.

• The computational effort required to obtain these plans
seems fairly large.

• The planning heuristics and the underlying knowledge are
often partially, or completely undocumented and cannot be
explored by the user in an interactive manner.

• The user cannot influence the planning heuristics applied by
the software.

The last two points are mainly due to current programming techni­
ques. Programs consist of instructions necessary to solve the

problem and instructions to control the computer. These two pack­
ed together make it difficult to understand the planning specific
knowledge (i.e. instructions), and make the program inflexible.

One of the main features of knowledge-based systems is the
separation of knowledge and control in modules.

An advantage of this modularity is the incorporation of heuristics
(rules of thumb) as used by human planners. In knowledge-based
systems they are easy to represent as well as to keep up-to-date.
Furthermore it might prove. resulting from the combination of OR

and heuristics. that knowledge-based systems will show an in­
crease in performance.

Viewing these advantages it seems worthwhile to instigate a
project with the following task:

examine the benefits of knowledge-based systems for use in
production planning.

This task was assigned to me as a subject for my Masters thesis.
As already mentioned this project was carried out at the Corporate
CAD Centre of Philips, in co-operation with the Centre for Quantita­
tive Methods.

As the time scheduled for the project was only nine months and
production planning being so vast a field. the assignment was

restricted to job shop planning: a frequently used form of short-term
planning in manufacturing environments.

-2-

Introduction

The goals

The main goal for my study was to give answers to the following

questions:

• What are the specific demands for a knowledge--based
system that is to be used in job shop planning?

• What should be the structure of the knowledge base?

• Is it feasible to implement a job shop planning system by
means of knowledge--based technology?

I hope to answer these questions by building. i.e. developing and
testing, a prototype knowledge·based planner. This prototype will
be a knowledge--based planning system for a problem supplied by
COM. Prior to the development of the prototype, literature will be
consulted regarding knowledge· based planning systems.

The development of a prototype has a number of subordinate
goals:

• Identification and documentation of the knowledge categories
involved in the planning process.

• Devising and demonstrating representation mechanisms that
will accommodate the previously identified categories of
knowledge. This is to help structure the knowledge which is
the basis of the planning system.

• The construction of a knowledge·based system that
generates production plans and resource schedules for a
limited class of problems. Within its limited scope the
prototype should show improvements with regard to the four
weaknesses mentioned on page 2.

The CQM problem

This section will give a short description of an important subject
for this report: the COM problem.

The COM problem is concerned with planning in a workshop con·
sisting of two machines (fig. 1). On these two machines a number
of products are being manufactured. Each product has to flow
through both machines. Every week a number of orders. i.e. re·
quests for a number of products, have to be processed. Planning
this workshop consist of arranging these orders so as to achieve
an efficient schedule: a sequence of orders that can be processed

·3-

Introduction

I
01 Mw:hine A I

Figure 1: The worttshop lay-out.

The report

in the shortest possible time. A detailed description of the COM
problem is presented in Chapter 5.

This report gives an account of the research carried out for this
study. It is divided into three parts:

• PART I : prior to the construction of a prototype a literature
study was carried out. In this part a summary is given of the

findings of other researohers in the fields of knowledge-based
systems and production planning.

• PART II: in this part the COM problem is presented in detail.
Also the prototype for that COM problem will be described.

• PART III: In this part as a result of parts I and II some
remarks are made regarding the feasibility of
knowledge-based systems for production planning. Also
subjects for future research will be given.

PART I
Literature Study

2

Production control

Introduction

To increase productivity in production organizations production

control is indispensable. In this chapter some general aspects

of production control are discussed. Also a more detailed

description of manufacturing environments and control within these

environments is presented.

The main source of literature on this subject has been the book

'Production planning and Inventory Control', by D.W. MacLeavey

and S.L. Narasimhan [1]. The information gathered from this book

will be discussed on pages 7 - 11.

There are few production situations with unlimited resources. In

most situations it is, therefore, the goal to achieve the maximum
result, using the resources as efficiently as possible. This process

is known as production control. Note that this does not imply that

production control is always optimal: generally it is not.

Sy production is not meant just the manufacturing of products, but

in general, the transformation from an initial state to a goal state

with a finished product. Familiar examples are the production of

consumer products (cars, furniture, computers), but also for the

supply of services, e.g. in national defence or commercial airlines,

production control is vital. Production control is of great interest for
most organizations that have an urge to produce.

The following subjects are considered to be part of production con­
trol:

- 5 -

Production Control

• Supply of materials: which materials should be ordered when
and in what quantity?

• Determining of activity-precedence: In what sequence should
the order flow through the work stations?

• Order scheduling: When and on which work stations should
an order be processed?

• Dispatching: Which order should be released next?

• Status control: Is production on the level we want?

The questions in these subjects are taken from a manufacturing
environment. Examples from other domains are of course also con­
ceivable [2].

Production control. in general. deals with the planning, execution
and control of transformation processes. The central issue in
production control is trade-off, to make compromises between con­
flicting entities. For instance, a hairdresser is faced with the trade­

off between the quality of his work versus the number of clients he
has a day. In a factory there is, for instance, a trade-off between
the service degree and a low inventory.

According to MacLeavey et at [1] every production organization
has seven conflicting measures of performance.

• Volume: how much is produced in a time-period, how many
customers are served in a time-period?

• Variety: how many different types of products(services) are
produced by the company?

• Quality: is the quality of the product acceptable?

• Timeliness: can a product be delivered on time?

• Place: can a product be delivered in the right place?

• Satisfaction: are participants in the transformation process
satisfied or fulfilled in their work?

• Cost: have the products, or the services, been created at
minimum or acceptable cost?

The first six of these measures can be expressed in cost. To use
only cost as a measure is highly impractical for it is not possible to
quantify the cost of some of these measures, e.g. customer satis­
faction.

- 6 -

Production Control

Production environment

The nature of the COM problem means that this chapter is mainly
focused on manufacturing environments. A classification and a
characterization of manufacturing systems is presented in this sec­
tion.

Each manufacturing organization has its own character. Pro­
duction of large quantities of one product is different from pro­

ducing a wide variety of product in small quantities. A suggestion
for a classification of these organizations is given in table 1:

Low sales volume High sales volume

Uncertain product Job shop or flow shop pro-
speclffcatlons duct ion to order(e.g. moulded

rubberparts).

Hybrid shop production to
stock and assemb/y'to order
(e.g. machine tools)

Certain product
specifications

Batch or intermittent eroduc­
lion to stock (e.g. textiles)

Repetitive ormass product­
lion (e.g. automobJles)

Table 1: ManUfacturing Classification Scheme (from [1]).

As stated in the Introduction. we our consideration of production
control somewhat further: the flow shop and the job shop are in this
report the environments that are of interest.

Job shop

In a job shop the work flows in batches Gobs) through a set of
facilities. These jobs follow different routings. each batch having its
own flow pattern.

The facilities generally consist of general-purpose machines able
to use a large variety of tools. Hence, different types of jobs can be
performed at the same facility. A result of the large variety is that
job shops require skilled workers: they have to adapt the machine
for every different job. Moreover. the large variety in job routing
and machines results in a large variation in:

• sequences of jobs at different machines;

• processing time;

• number of operations per jobs.

Production Control

Also jobs compete with each other for resources. Competition for
resources together with the variation mentioned above, causes job

shops to have a large lead time, and they thus tend to have a large
work-in-process level. Large lead times and work-in-process make

job shops not a very efficient production system.
Planning a job shop is universally regarded as the most complex

and difficult industrial planning problem. The complexity is the

result of the large variation in, for example, job sequence, process­

ing requirements [3]. Examples of job shop environments are:

hospitals, service stations and diffusion plants for chips (the electro­
nictype).

Flow shop

Unlike a job shop, in which each job has its own routing, a flow

shop is a production system in which the flow through the facilities

is the same for every job. Jobs do not flow in batches through the
shop, but as single products. These shops are also known as as­
sembly lines.

Flow shops have a job routing in which operations on products

are performed repeatedly in every work station. The machines in

these work stations can perform only one type of operation. They
require less-skilled workers than in a job shop. because the task for

which the work station is used is embedded in the design.

Due to the uniform flow through the shop, flow shops are more

efficient than job shops. However a number of problems have been

noticed in flow shops [1]:

• Inventory level: in a flow shop products are generally made to
stock. Forecasting is an important task. However, due to the

erratic demand, a difficult one. Errors in forecasting can lead

to high inventories of raw material and finished goods (Note:
while keeping a low work-in-process level).

• Machines: in flow shops special purpose machines tend to

have a special purpose design. The initial investments are
therefore high. This makes them only suited when dealing
with large production volumes.

• Repetitive nature: As a consequence of the high
specialization of flow shops, the work is monotonous and
affects worker morale.

- 8-

Production Control

Intermittent flow shop

An intermittent flow shop is a mixture of a job shop and a flow
shop. It processes batches of products. but has the layout of a flow
shop. Intermittent flow shops are useful when high production
levels are needed on a periodic basis [1].

Job shop planning

For planning in a manufacturing environment there are a large
number of methods available. One of them is most frequently used:
job shop planning. The reason for this is twofold. First. job shops
are the most widely used production organization. Second. it is pos­
sible to abstract above mentioned environments to one: a general
job shop. An intermittent flow shop is a job shop with no alternative
routings, while the assembly line type of flow shop (page 8) can be
viewed as having batches equal to one product. Although there are
other methods for planning flow shops, it is possible to approximate
these methods by means of job shop planning.

The control of a job shop. the job shop production activity plan­
ning (fig. 2), consists of three phases:

• planning: determining an efficient workload by means of
arranging jobs in a certain order;

• execution: dispatching of orders to the shop floor;

• monitoring: reporting of the progress of the jobs, monitoring of
the workshop.

In this report our interest is focused on the planning phase. The
planning phase can be divided into three stages:

• scheduling;

• loading;

• sequencing.

These will be discussed in detail in the following subsections.

-9-

Production Control

Verlljv(

f01iow liP
~v:'It::!J\!)

z

Z

.,

Completed
Jobs

Work Cefl!t::f

t----l~ Oal3,
ReSO-<Jfce Plan

CapdCJly

Rt:!QU!ftfrn~nLS
Pl.jf1

Short h:tm

CapdC'ly
ContlCi

Plant
Mon\torln~

Figure 2: Job shop production activity system(from [1]),

Scheduling

In most situations there is a trade-off between availability of
resources and production objectives, e.g. due dates, cost. The goal
of scheduling is to optimize this trade-off. Scheduling is the selec­
tion of orders to release that are most suitable for production. The
suitability depends on the trade-off mentioned above.

Scheduling means assigning dates (i.e. start times) to specific
jobs or activities (part of jobs). A crucial problem is that job shops
show stochastic behaviour. Factors like: uncertainties in the
process, machine breakdown, absenteeism, etc. cause that
planned start and finish times may not be met. Stochastic be­
haviour makes scheduling a complicated task: it may be possible
that the best schedule cannot be performed. On the other hand it is
important to have reliable schedules: customers expect their
products on time, management has set goals for the production

- 10-

Production Control

based on schedules. A reliable schedule is very important because
it improves the efficiency of the plant and thus reduces cost.
The techniques used for scheduling depend on their objective.

Scheduling in order to obtain a minimal lead time can have dif­
ferent requirements than scheduling for minimal cost.

Loading

When orders are scheduled they have to be assigned to resour­
ces. The process of assigning operations to resources is called
loading. There are two methods for loading: infinite and finite load­
ing.

Infinite loading assigns work to resources without regard to the
capacity. Finite loading compares the required resources with the
available capacity. The last method has the advantage that a more
realistic workload can be determined. It is, however, very hard to
accomplish.

Sequencing

Sequencing is: specifying the order in which jobs have to be
processed. A number of sequencing methods are known. Often ap­
plied methods use static or dynamic priority rules, that select orders
according to one of their properties, e.g. processing time, time of ar­
rival. Other methods use OR techniques like mathematical program­
ming, heuristics or simulation.

Planning revisited

Having presented the phases into which planning a job shop can
be divided, a few problems of job shop planning will be discussed
in this subsection.
The first problem deals with. the relation between the three plan­

ning phases: in the above subsections it is suggested that the
phases are independent of each other. In reality they are strongly
related to one another. While scheduling orders, one has to take
into account the effect the schedule has on the loading of the work
stations on the floor.

Furthermore, a plan is not isolated: usually planning is a hierar­
chic process, i.e. plans having a high level of aggregation are input
for planning on a lower level of aggregation. For instance: plans
concerning different plants are input to a planning for one plant.

- 11 -

Production Control

Conclusion

Together with the stochastic behaviour in a job shop, this makes
planning a complex task.

This complexity poses another problem. Planning a job shop is a
search in a large state-space. Furthermore, it is a NP-complete
problem: there is no known algorithm with polynomial time-behavi­
our to solve it, only ones with exponential time-behaviour have
been found.

The exponential behaviour results in an impossibility to find an op­
timal solution. Given 85 orders passing through 10 operations
without altematives. with a single substitutable machine for each
operation and no machine idle time, there are 10880 possible
schedules [4}. Generally in an extensive situation the only methods
for analysis are simulation and the analysis of highly abstracted
models. Results from abstracted models have a limited validity.
Simulation, however. is very time consuming. Moreover, results are
only applicable to that one situation [5].

As can be seen in this chapter. the problem of production control
specific to the job shop type of factory is very complex. There is a
high interaction between the different planning phases, competition
between orders, as well as stochastic behaviour in the shop. In
general. optimal solutions cannot be found as a result of the NP­
completeness of job shop planning. Planning a job shop strongly
relies on heuristic methods based on experience. The aid of com­
puter techniques is restricted to analysis of abstracted models or
simulation.

Another problem is the quality of a schedule. What performance
measures can be used to judge a schedule? Cost seem a good
measure. but not all measures can be expressed in cost. How
much does it cost to get better worker morale, and how much is
the benefit? The use of costs as a single measure is here imprac­
tical.

The use of multiple measures introduces another problem: how
does the satisfaction of one measure affect the satisfaction of
another? The use of multiple measures in this case seems the best
solution. It is better to have problems in dealing with different perfor­
mance measures. than have a inadequate performance measure.

- 12-

3

Knowledge-based systems

KnOWledga.based systems. or expert systems as they are
more frequently called. are the result of research done in the

seventies in the field of Artificial Intelligence (AI). In this chap­
ter a description of knowledga.based systems is given. Also their
relation to AI, their history. and examples of existing systems are
discussed. 'A Guide to Expert Systems' by D.Waterman [6] was the
main source of information for this chapter. On control strategy,
P.H. Winston's book 'Artificial Intelligence' [7] was an important
source.

Artificial intelligence

In the early days of electronic computing the rapid development of
computers suggested that it could be possible for a computer to
simulate human behaviour. In 1956, at a conference at Dartmouth
College, USA, the term Artificial Intelligence (AI) was launched. The
scientist participating in that conference forecast that within 25

years computers would be able to run intelligent programs. Unfor­
tunately1, after thirty years of research this goal still seems a dis­
tant one [5].

Some would say -luckily·,

- 13 -

KnowIedge-based systems

In those early days the aim was to devise general~purpose

problem solvers that could deal with a range of problems. As these
showed no progress. the research became more practical. with the
aim to create programs which show intelligent behaviour in narrow
fields.

The following list contains the fields in which AI research is cur­
rently being done [8]:

• Problem solving: techniques used for solving puzzles or
playing games evolved into fundamental AI techniques of
search and problem reduction.

• Logical reasoning: work concerned with logical deduction.
most notably theorem provers.

• Natural language processing: Because natural language is
the manner to display intelligent behaviour, language
understanding and synthesis have attracted many AI
researchers.

• Programming: The search for systems that can write
computer programs given the its specification.

• Learning: Machine learning is the most interesting subject for
AI, however it is generally not present in AI systems.

• Expertise: Also known as knowledge engineering, this area
is involved in the development of knowledge-based systems.
These systems are problem solvers using knowledge of a
domain to achieve a solution. This field has aroused most
interest outside AI.

• Robotics and pattern analysis: creating programs that
manipulate robot devices. Understanding visual images is a
very important issue in the control of robots.

• Systems and languages: The development of software tools
is an important part of AI. With the aid of these tools
intelligent systems may be more easily bulH.

Knowledge-based systems

The aim of early AI researchers was to simulate thought pro­
cesses in man by applying general problem solving methods to
broad classes of problems. They tried to find a general problem sol­
ver applicable in a large domain of problems.

-14 -

Knowledge-based systems

These general problem solvers, however, are difficult to build.
Moreover, they presented no significant breakthrough in the sim­
ulation of human intelligence. Furthermore, it appeared that the
more general purpose a program was, the less purpose it had for
individual problems.

The failure of general problem solvers led to a changing approach
in the late seventies. Instead of using a general problem solver, AI
scientists realized that adding domain knowledge to that problem
solver could help find a solution to a problem [6].

From the more general methods there was a shift to special pur­
pose programs: experts in their domain. These systems are known
as knowledge-based systems or expert systems.
The two most famous examples of existing knowledge-based sys­

tems are:

• XCON: a knowledge-based system for configuring VAX
computers used by DEC. Reports say that it saved vendors
around $200,000 a month. Developed at Carnegie Mellon
University [9] .

• MYCIN: A tool for physicians that selects the appropriate
anti-microbial therapy for patients with bacterial, meningitis
and cystitis infection. Developed at Stanford University [10].

A more complete catalogue of existing knowledge-based systems
can be found in [6].

Why knowledge-based systems?

One might think after this introduction: So whatl Why should
human experts be replaced? Table 2 gives some possible ad·
vantages of artificial expertise. i.e. knowledge-based systems. over
human expertise.

The Good News

HUn/aIl Expertise Artificial ExpertIse

Perishable Permanent

Difficult to transfer Easy to transfer

Difficult to document Easy to document

Unpredictable Consistent

Expensive Affordable

Tabla 2: Comparing human and artificial expertlaa: the good news (from [6]).

- 15-

Knowledge-based systems

• Human experts have a restricted period in which they work.

Secondly. they have to practise and rehearse constantly to

avoid forgetting knowledge. Artificial experts can preserve
their expertise much more easily.

• Transferring knowledge is a tiresome learning process for
humans. involving years of hard work. Transferring

knowledge of a program can be done by simply copying a

program or data file.

• As a consequence of the formal notation of artificial

knowledge, documenting this knowledge is simple.

• A human expert may take different decisions in comparable

situations because of emotional factors. Knowledge-based

systems have no emotions. Lack of emotions makes them

more consistent in their decisions than humans.

• The price of human experts is high: experts are scarce.

Knowledge-based systems are relatively cheap and easy to

duplicate.

But, as may be suspected, knowledge-based systems also have

their weaknesses (Table 3).

The Bad News

Human Expertise

Creative

Adaptive

Sensory experience

Broad focus

Commonsense knowledge

Artificial Expertise

Uninspired

Needs to be told

Symbolic input

Narrow focus

Technical knowledge

Table 3: Comparing human and artHiclal expertise: the bad news (from [6]).

• Humans are much more creative than the smartest programs.

Furthermore, they have an ability to react to unexpected

events.

• Humans can adapt to changing circumstances through

learning. Learning in knowledge-based systems is still an

almost unexplored field.

• Humans can sense things through their sensory perception.
Computers can only handle symbols that represent these

things.

KnowIedge-based systems

• Restrictions on the force of knowledge·based systems restrict
their focus of the problem. Humans look at problems from a
wide angle; computers do not have that capability. Some say
that it is a resuH of the limited computer performance, others
say that computers never will be able to achieve this. This
problem lies somewhat out of the scope of this report. I refer
in this case to Hofstadter, who has some interesting remarks
on this subject [11].

• In every act we do, we use common sense knowledge. The
enormous amount of this acquired knowledge is, by present
standards, impossible to implement in knowledga.based
systems.

In view of these aspects it is possible to draw the following con­
clusion: in situations where human expertise is scarce or where ex­
pertise may disappear (e.g. retirement of experts) knowledge­
based systems can be a powerful supplement or substitution of
human expertise. However, knowledge-based systems have a
limited capacity for solving problems requiring knowledge that lacks
a clear structure or contains much common sense.

This limitation also has an effect on the effort needed to create a
knowledga.based system. Given a problem domain where the
knowledge is structured, the acquisition of knowledge and the im­
plementation in the knowledga.based system is a relatively easy
task. If the knowledge is vast and seems unstructured, the construc­
tion of a knowledge-based system is a complex and time-consum­
ing task.

Basic concepts

Now that we have seen what the possible advantages of know­
ledga.based systems are, we will describe the essential concepts
and parts of a knowledge-based system. In general, three con­
stituent parts can be distinguished: (fig. 3):

• Knowledge base: contains the knowledge of the domain,
possibly gathered by a knowledge acquisition module.

• Inference engine: supplies the methods for manipulating the
knowledge, in order to arrive at conclusions.

• User"interface: a tool aiding the interaction between the user
and the system, e.g. a sentence parsing program to
understand natural language queries from the user.

- 17-

Knowledge-based systems

1---1

I I
I I

I ----r-----

1 I
I I
I I I I

1 I
t I
I I

I I L __ J

Figure 3: Knowledge-based system

In the following subsection two of the basic elements, the
knowledge base and the inference engine, will be presented in
detail.

Knowledge base

The knowledge base is the heart of a knowledge-based system: it

contains the knowledge with which problems can be solved. The
key problem for the design of a knowledge base is representation,
how should the knowledge be encoded in it, how should the en­

coded knowledge be structured?
Of the many representation methods used, those most widely

used will be discussed here: the production systems and the object­

based systems.

Production systems 1 are based on the idea that knowledge can
be represented in the form: IF condition THEN action. These are
called production rules: each rule produces an action, like in the fol­
lowing rule [7]:

IF guest is sophisticated

THEN wine is indicated

Note that 'production' is used here in an entirely different sense from that in Chapter 2.

- 18 -

Knowledge-based systems

When in the current state the condition in the IF-part is satisfied,
the action specified in the rule will be executed. This action may
be: to draw a conclusion, to direct the program or to react to the
outside world. The actions can have a different effect. Rules can
also be used to guide the reasoning process i.e. rules that select
which rule should be fired next [6].

Rules are a natural way to describe experts' knowledge. Human
experts often depict their expertise as rules. An example of such
rules can be found in legislation or regulations. Also processes
driven by complex and rapidly changing data can easily be descri­
bed by rules. These rules can specify how the program should
react to the changing data without requiring prescience about the
flow of control. [6]

One of the greatest advantages <?f production systems is their
modularity. Rules and facts can be added (or deleted) independent
of the rest of the knowledge base. The modularity of rules is also a
main problem: the increasing knowledge (Le. rules) makes the
knowledge base difficult to survey and to support; moreover, the
reasoning process also becomes unclear and slower, as a result of
the time-consuming search through the extensive knowledge base.
To limit the search, more control rules to guide the reasoning
process have to be added [6].

Under the collective term object-based systems two types of
knowledge representation can be described: semantic nets and
frames. Semantic nets, consist of nodes connected by relations and
organized into a hierarchy. Each node represents an object/situa­
tion, that can be described by attributes and values associated with
that node. Nodes at low positions in the hierarchy automatically in·
herit properties of higher level nodes. The higher the node is
situated in the network, the more general the knowledge it repre­
sents[6]. Viewing the network in figure 4 the node 'ocean liner' in­
herits the property 'floats' from the node 'ship'.

FIgure 4: A simple semantic net for the concept of a ship (from [S).

- 19-

Knowledge-based systems

More than in a production system these nets provide a structured
representation. Instead of a mass of rules, the nodes of the net
have a clear relation to one another. However, contrary to rule­
based systems, the problem solving method (control strategy) is
not totally dictated by the inference engine. In a semantic net the
control strategy is partially determined by the objects and the rela­
tion between the objects as well as the inheritance in the network.

A frame is a node in a net, that is related with other frames
(nodes) through an 'IS-A' relation, e.g. as in figure 4 'oil-tanker' IS­
A 'ship'. It represents information using a record-like structure that
contains values of common attributes. called slots, of the ob­
ject/situation that is represented by that frame. The information con­
tained in the slots of the frames can have different facets: it can be
a value inherited from more. general frames. it can be a value in­
serted during creation of that frame' or it can contain procedures
that are executed (called demons) when information is needed or
changed. Among the object-based systems the frame-based sys­
tems are the most commonly used.

Although object-based and rule-based systems may appear to ex­
clude one another, current research is aimed at combining these
representations. Coupling the modularity of rules with the structured
knowledge in object-based systems. These hybrid systems make it
possible to use the representation tationthat best fits the problem;
e.g. represent that part of the problem that is best represented in
rules, while the other part is represented in frames.

In table 4 an overview of knowledge representations and their
specific qualities is given.

Rl:PRESE~l"'TlO!'. ON
SCHE~E FORM ADI A!'.'''GES DISADVANT"GES

PRODlCT10" SY'STEVIS P: xiu':hM Rulo ·Htghl) mooalat ·Control no .. bud to 10110. MYCIN
.E..a5) to U1'oe:"!.und ·HI~rarcbla twd to capturt XCON {R»
-W) to add to 0: mOd.!) .lndfiClt1l1 for WIt S}MCTDS DRILLING ADVISOR

SE\.t.A. '''IC "'-ET\\ OR KS ~~ode\ rerrc.rntm, ob'«t~ or ·f1c:ubte- .E.J.ceptfOft ha.tul1tn,lS dJfficuJ1 PROSP£CTOR
,j~r'\rtloM j(ltned b~ link!. 'W) 10 c.&ptW'(hl(n(, .. h~ ·Mca."Ufll atu<:bed 10 node!. rna} be 1y....'TERfIolST

·w~ t(l traa' &SSOCtatlons ambtguous SCHOLAR
--------~- -.~~--------~----~---~----~~~~~~----~---------
fRAMES Xl Df \IOH and l\;'I'\Cu:!od \aJ· ·Eas~ to mciuae driauh mfonna- -Mucb of tbe v.ork Ii 1o'IU .t tlpen# PIP

ue. rrpr~l .. n fJb,lt("t non mmt&l '§.lair CE!'t-'T ACR
.Ca,.n detect mls.£aol v&iun
-Carl "-« d trame maI('"ho .~ .. I·

abk data

Table 4: Schemes for representing knowledge (from [35]).

- 20-

Inference engine

The inference engine supplies the control strategy to guide the

process of knowledge utilization: which part of the knowledge base
should be consulted next. For instance, a popular form of problem

solving is search in a statErspace, an abstract space containing all
possible states that can occur within a situation. In knowledge­

based systems the aim is to decrease the search space by apply­
ing domain knowledge to that search. The task of searching for and
selecting of knowledge is done by the inference engine.

It is Important to avoid combinatorial explosion of the search
process and to limit the required computer resources by avoiding
blind search. In other words: to use an efficient search~method
(e.g. by using early pruning, pruning of partial solutions).

Choosing a control strategy is related to the representation
method: inferring in a rule-based system is done by rules triggering

rules, whereas in frarnErbased systems inferring is done by examin­

ing slots of frames related to one another. Winston [71 distinguishes
three different control strategies:

• Action-centred control is used when the knowledge about
what action should be performed is embedded in previous
actions. Action-centred control is often used in rule based

systems.

• Object-centred control: knowledge specifying how to deal
with objects in a class, is given by a class description. Object

centred control is used in frame-based systems where
through inheritance information slots are altered.

• In reque8t-centred control actions/objects know their own
purpose and can respond to requests, either by sending
messages directly to one another or by using a so-called

blackboard: actions read and write messages on this
blackboard.

A remark on blackboard systems: their architecture makes them

very suitable for problems in which different types of knowledge are
needed or where reasoning on different levels is important. Further­
more, they are very suitable for problems requiring different
knowledge bases that use different control strategies [6].

Another aspect of the inference engine is the problem of how a

goal will be achieved. The two most frequently used methods are
called backward chaining and forward chaining.

- 21 -

KnowIedge-based systems

Uncertainty

Backward chaining tries to prove a hypothesis by searching the
knowledge base for a rule whose conclusion makes the hypothesis
true. The condition of the selected rule will then function as a hypo­
thesis for another rule. The search continues until a rule is found
with a condition that is true in the initial state. Backward chaining is
also known as a goal-driven strategy.

Forward chaining starts with an initial state and tries to find a
rule that applies to this state. The action causes a state-transition.
That new state might be the condition for a new rule and so on,
until, hopefully, the goal state is reached. Forward chaining is also
called a data-driven strategy.

These strategies can, of course, also be used with frame-based
systems: In this case the information is embedded in the slots of
the frames.

The choice between backward chaining and forward chaining
depends on the domain. In a situation where a large number of
rules is applicable and where the goal is to achieve a conclusion,
forward chaining could well prove inefficient for it evaluates pos­
sible paths that are fruitless. Backward chaining only fires the
necessary rules to make a hypothesis true.

In a situation where a system has to react to changing cir­
cumstances (process control) a forward chain seems useful.

Human experts take a decision when they are almost certain of
their conclusion. In general, a decision is reached by eliminating
possibilities with a larger uncertainty. Hence, the final conclusion
one has drawn is also uncertain.

For this reason knowledge-based systems also should be able to
deal with uncertainty e.g. uncertain facts, uncertain conditions.
Among the methods used for uncertainty are:

• Bayesian theory [12].

• The use of "certainty factors", a derivation of bayesian theory
[13].

• Fuzzy logic [14].

- 22-

Knowledge-based systems

Tasks for knowledge-based systems

In this section a list is given of the categories of knowledge-based
systems. Also the areas in which they are used are presented.
Waterman [6] gives a list of possible categories of, in his terminol­
ogy, expert systems (table 5).

Category

Interpretation

Prediction

DiagnosIs

Design

Planning

:-'Innitoring

DebuggIng

RepaIr

Instruction

Control

Problem Addressed

Inferring sItuation descriptions from
sensor data

Inferring likel\' consequences of given
situations

Infernng svstem malfunctions from
observables

Configuring objects under constraints

Designing actions

Companng observations to expected
outcomes

Prescribing remedIes for malfunctions

Executing plans to administer prescribed
remedies

DIagnOSIng, debugging, dnd repainng
student behavior

Governing overall svstem behavior.

Table 5: Generic categories of expert system applications (from [6]).

Another, more popular, categorization is by their application area.
Waterman also gives the following list of areas. The lion's share of
knowledge-based systems is used for diagnosing faults in industrial
processes, human disease, etc. (table 6).

Agriculture
Chemlstrv
Computer S\'stems
Electronics
Engineering
Geology
Information ~1anagement
Law

Manufacturing
Mathematics
~1edicine

Meteorology
Military Science
Phvsics'
Process Control
Space Technology

Table 6: Application areas for knowledge-based systems (from [6])

- 23-

Knowledge-based systems

Limitations

Present day knowledge-based systems do have a number of
limitations. The following are considered to be the most important:

• Representing spatial or temporal knowledge can require huge
amounts of memory if the state of things have to be recorded

at various points in time, or if spatial relations between

objects have to be represented.

• Common sense reasoning: because of the large quantity of
this type of knowledge and the difficulty to acquire this
knowledge from others , implementation has not yet been
possible.

• Knowledge-based systems also have difficulty dealing with
erroneous or inconsistent knowledge, because
knowledge-based systems only contain abstracted knowledge
of the domain. They do not have the ability to look outside
their domain to recognize this, hence, do not have the

possibility to recognize erroneous knowledge or reason about
inconsistencies.

• Human knowledge, especially expert knowledge, is often
implicit: a human does not really know how she/he reached a
conclusion. It is therefore very hard to extract knowledge that
is implicit from an expert. This makes knowledge acquisition a

time-consuming task.

These limitations mean that in many real world problems.

knowledge-based systems still act as 'idiots savants'. They are un­
able to learn, to reason on different levels, to look at a problem
from a different perspective, to know when to break their own rules
and to understand the reasoning behind their own rules. It is clear

that most human tasks are still not suitable for a knowledge-based
system. It is expected that the improvement of hardware and
software will give knowledge-based systems more possibilities.

- 24-

Knowledge-based systems

Conclusion
Now that we have seen what knowledge-based systems are, let

us see what the differences are between these and conventional
programs (Le. programs which process data in one way or the
other). Teknowledge' characterizes these as shown in table 10.

Data Processing

Representations and use
of data

Algorithmic

Repetitive process

Effective 'manipulation
of large data bases

Knowledge Engineering

Representation and use of
knowledge

Heuristic

Inferential process

Effective, mam pula tion of large
knowledge bases

Table 7: Comparison of data processing and knowledge engineering (from [6]).

,

The largest difference however is embedded in the philosophy
with which these systems are designed. Usually models of
problems are built using a systems design method in which one is
forced to forget a priori experience, and to build a model from
scratch. On this simplified model standard solutions can be applied.
The systems design method is used in the field of operational re­
search (5]. Model building in AI tries as 'much as possible to use
the problem-solving methods used by humans. ,Reduction of a
problem in order to apply standard solution methods is not the goal
in AI model-building

The implementation of a knowledge-based system is also dif­
ferent. Traditional software systems are implemented as complete
systems: when the model describing the problem is created it is
implemented as a whole. Knowledge-based systems, due to their
model-building philosophy are designed incrementally: knowledge
is acquired gradually.

A prominent firm involved in AI research.

- 25-

4

Job shop planning using
knowledge-based technology

In this chapter an attempt is made to illustrate the possible ad­

vantages knowledge-based systems can have for job shop plan­
ning. Also an overview will be given of current research in this

field. The findings discussed in this chapter are mainly based on
the publications by M. Fox et al. ([4]. [15]. [16]) of Carnegie-Mellon

University, USA and T. Grant and P. Elleby from Brunei University.
UK ([5]. [17]).

As mentioned in Chapter 1 current software packages show a
number of weaknesses. Besides the argument formulated in this

chapter that knowledge-based systems have advantages because
of their modular design. the following aspects give further indication
of the benefits of knowledge-based systems for job shop planning:

• Scheduling orders in a job shop is a complex task: when in a
job shop there are dynamic arrivals or there is stochastic
information. the problem can be classified as NP-complete.
[18]. Given that AI research is involved in this type of
problems, it seems interesting to use the findings of this
research.

• As a result of the NP-completeness of planning problems.
they are often solved using heuristic techniques. As we
have seen in Chapter 3. heuristic techniques are the basis for
problem solving in AI.

• Heuristics developed by OR are often only applicable in
abstracted situations. Hence, OR tries to abstract the 'real

- 26-

Job shop planning using knowledge-based technology

world' into models in order to be able to use these heuristics.
AI tries to model the 'real world' to a larger extent, employing
heuristic techniques that are being used in that 'world' for
problem solving.

• Through the modularity of the knowledge base it is relatively
easy to make heuristics applicable in different environments.

In short: In planning problems knowledge-based systems can use
an efficient search strategy for an NP-complete problem. The ef­
ficiency is achieved by applying domain knowledge to that search.
The modularity of the knowledge base make that they are easily
adaptable to other situations.

Specific AI problems

The use of knowledge-based systems for job shop planning
presents a number of specific problems [19]:

• Representing and reasoning about time, causality and
objectives.

• Uncertainty in the execution of plans and dealing with the real
world.

• Sensation and perception of the real world and interpretation
of these: planning in a job shop depends on the current state
of the job shop.

• Multiple agents who may cooperate or interfere: each order
(agent) has its own goal. The satisfaction of a goal has
effects on other orders.

• Physical or other constraints on suitable situations: planning
is often considered to be the satisfaction of constraints.

Some of these problems were already mentioned in Chapter 4 as
being limitations of current knowledge-based systems. These
problems make the planning domain also very interesting for AI re­
search.

Existing systems

Recently the interest in AI techniques for production planning has
assumed large proportions. The research, resulting from this inter­
est, evolved in the development of a number of knowledge-based
planners. From the, already long, list of these planners a selection
will be given in this section. The selection is made a bit haphazard,

- 27-

Job shop planning using knowledge-based technology

for those systems are selected which are mentioned in a number of
articles.

Much work in knowledge-based planning is done at the Intelligent
Systems Lab of the Institute for Robotics at Carnegie Mellon Univer­
sity (CMU). At this university ISIS-II [15], and Callisto [16] were
developed. ISI&II is a job shop scheduler of gas turbine parts
production. The approach used in ISIS is to generate schedules by
heuristic search using evaluation functions. These evaluation func­
tions are based on constraints associated with, for example, cost,
process availability. Limitations of ISIS are that the domain is deter­
ministic (i.e. no uncertainty in the shop) and ISIS has no ability for
process planning.

The goal for the Callisto project is to develop a project planning
system, in which an integrated theory of activity modelling is the
core of the knowledge contained in the knowledge base.

NONLIN is a development of the Department of AI, Edinburgh
University. It was designed for the construction of project networks.
These were represented as a partially ordered network of action.

Another scheduling system in a completely different field is that
developed by Slagle et al. at the Naval Centre for applied AI. It is
designed for scheduling military resources (e.g. weapons) in bat­
tlefields [20].

Knowledge representation

How

In planning situations there are many categories of knowledge:
goals, resources, heuristics, etc. The environmental knowledge con­
sists of elements which are strongly related. The nature of the en­
vironmental knowledge suggests the use of an object-based sys­
tem. The use of a object-based system, i.e. a frame-based system,
is supported by, among others, Fox at aI., [4], Kunz, [21] and
Goldstein et al. [22].

A variant to the frame-based method is suggested by Grant [23].
He uses an object-oriented approach for the production planning
domain. The objects, in his context, are entities that have proper­
ties describing their state, and 'actions' describing how these en­
tities react to certain conditions. Objects influence each other by
passing messages [6]. Grant states that the essence of object­
oriented planning is to model resources as objects.

These two methods, however different in detail, have a strong
resemblance for they both are based on objects and relations be­
tween objects.

- 28-

Job shop planning using knowledge-based technology

An enhancement to a objectlframe-based system could well be
the use of a mixed representation: frames and rules. Rules provide
a natural way for expressing the heuristic knowledge often used in
planning. In such a system entities that describe the environment
could be represented in frames, whereas heuristic knowledge
about scheduling can be represented as rules. Jackson et al. give
an example of a project planning system using such a hybrid sys­
tem [24].

For representation of the knowledge it is further suggested to use
a subdivision into three levels, in order to separate the different
types of knowledge from each other. A type represents a level of
abstraction of the knowledge. The use of three levels was first intro­
duced by Brachman [25].

The use of these levels makes the knowledge base more struc­
tured and presents a logical structure to the user. The complexity
of the job shop planning domain as can be derived from Chapter 2
supports the structured representation. Furthermore, it is stated that
different knowledge types should be represented at different levels.
The methods as presented here could be of use for that.

What

An example of a structured knowledge base is the frame-based
system used by Fox [4]. He uses a knowledge base with a strati­
fication in three levels:

• A level containing general knowledge of how to deal with
frames: the epistemological level.

• General knowledge about planning and decision making is
represented at the conceptual level.

• A level representing domain specific knowledge: the domain
level.

Using such a structured, hierarchic representation, it is clear that
the knowledge of interest to us is to be represented at the concep­
tual level and the domain level. At the conceptual level more
general aspects will be represented. The domain level is filled with
the domain specific knowledge.

The following concepts are likely to be represented at the concep­
tuallevel:

• state;

• act;

Job shop planning using knowledge-baaed technology

• time;

• causality; acts/states have temporal relations but are also
causally related, e.g. grinding after milling jf milling is
completed;

• possession of resources;

• composition, aggregation and abstraction of acts and states.

As for the domain level, Fox [4] and Sathi [16] consider the fol­
lowing types of knowledge necessary for planning/scheduling in a
production environment.

• Activities,

c required activities;

c duration of each activity, its range of duration including a
probability density function;

c activity precedence;

c descriptions of how activities are performed;

c authorizations regarding persons performing activities

c conditions under which activities may be performed;

c logical connections between activities.

• Resources:

c required resources;

c when are these resources required;

c transformations applied to resources;

c substitutability of resources;

• Representation of changes in the product;

• Aggregation and abstraction of activities;

• Interaction with the user.

The concept considered vital to the knowledge-based planner,
constraints, will be represented in both levels. In both levels there
are concepts to be constrained, e.g. time at the conceptual level,
resources at the domain level.

- 30-

Job shop planning using knowledge-based technology

1

Constraints

Fox [15] and Grant [5] found that planners in a manufacturing
environment spend 8(}'90% of their time determining which con­
straints affect their schedule. Viewing planning as the satisfaction
of constraints imposed by the environment, makes representation
and use of constraints a vital issue for knowledge-based planning.
Constraint representation is recognized by many authors as being
crucial to the knowledge-based planner. A detailed method is
described by M. Fox for using constraint-directed reasoning. He dis­
tinguishes five categories of constraints [15]:

• Organizational goals, set by the organization function as
constraints for the planning.

• Physical constraints limit the functionality of a resource,
activity. e.g. different machine set-ups, maximum length that
can be machined.

• Causal constraints define what conditions should be met
before an activity can start. Precedence and resource
requirements are examples of these.

• Availability1 of resources.

• Preference constraints can be viewed as abstraction of the
other types of constraints. Preference for a machine may be
the result of costs or quality, but sufficient information does
not exist to devise actual costs.

These constraint categories are represented, using a frame-based
system. According to MacCallum, Fox employs three different types
[26]:

• Range constraints: constrain the values of a attribute,
attached to a frame.

• Relation constraints: define a relation between a domain
and a frame.

• Frame constraints: define which constraints apply to a frame
e.g. combinations of range-constraints.

Comment: in my view availability is a limit in functionality of a

resource. Availability can therefore be seen as a fonn of a physical

constraint. Hence, to me this category is superfluous.

- 31 -

Job shop planning using knowledge-based technology

Time

Essential to constraint-representation, however, is that constraints
come in two groups: hard and 80ft constraints. Hard constraints
cannot be relaxed, soft constraints can. Examples of hard con­
straints are physical constraints. due dates. Preference for a
resource is a soft constraint.

The reason for introducing this distinction is the different way in
which a planner has to deal with them. Hard constraints are a part
of the 'world' model and have to be satisfied. Soft constraints have
a guiding task The problem solving is guided by these, and when
a path leads to a constraint conflict, the guide can be made to
choose another path, i.e. the soft constraint will be relaxed [18].

Constraint management is one of the reasons that AI may prove
to be more successful than OR, for there is little evidence of con­
straint management in OR methods [18].

A method tor dealing with soft constraints is also suggested by
Fox [15]. Fox's method is based on the concept that each con­
straint is assigned a weight. The weight is based on the absolute
importance of a constraint as well as on its importance relative to
other constraints. Relaxation of constraints is done by means of
comparison of its weight to other constraints.
The general idea behind constraint representation in a know­

ledge-based planner is that constraints limiting the search space
should be considered flexible. unless they are hard. In OR con­
straints are considered hard, where solutions are examined using,
for example. sensitivity analysis (flexing the constraints).

Another important issue in a knowledge-based planner is the rep­
resentation of time. Although this subject is not relevant to this
study, a brief overview will be given in this section of representation
methods of time. Two methods of time representation are used in
knowledge-based planners: the point-based temporal logic based
on the work of Bruce [27], and the interval-based temporal logic as
stated by Allen [28].

The basic concepts in the point-based theory are those of an
event and an activity. collectively called occurrences. An event is
an instantaneous change while an activity is a change over time in
the set of world states. Underlying this theory is the assumption
about the existence of a time line. Events and activities, described
by two events, are related to points on that time line [29].

- 32-

Job shop planning using knowledge-based technology

Conclusions

Interval-based representation argues that no event is in­
stantaneous as suggested in point-based logic. H consists of inter­
vals, during which the activity takes place. Actions are related, with
relations of the sort: A before B, C meets D, F overlaps G. Allen
defines 13 basic relations [30].

In [29] these two methods are compared. Elleby suggests a point
based representation that incorporates a solution to limitations as
given by the interval-based logic advocates.

In this chapter an overview has been given of the development in
knowledge-based technology for job shop planning. From this over­
view a characterization of the problems and specific properties of
knowledge-based approach will be presented. Finally a preliminary
answer will be given to the question wether knowledge-based sys­
tems show improvements over current techniques.

A key issue for knowledge representation in job shop planning is
the use of object-based systems: the high interaction and the de­
pendency between entities are strong advocates for the use of ob­
ject-based systems. Many authors claim object-based systems to
be the best method for representing knowledge for planning ([4].
[15], 16]).

Another key issue is the use of constraints in problem solving.
The difference with the use of constraints in OR is that constraints
in knowledge-based planners are considered flexible. Researchers
that support this are. among others: Mark Fox (eMU). Tim Grant
(Brunei University) and Navin Chandra (MIT).
The representation of time is also a problem specific to planning.

In most knowledge-based systems, facts and conclusions are either
true or false (with an uncertainty). whereas in planning situations
facts have a limited validity, dependent on time.

Two aspects of which. to date, no evidence is found, are:

• The use of blackboards: the blackboard mechanism seems
interesting for it incorporates a method for interaction
between different knowledge sources .

• The use of planning heuristics: contrary to the often
mentioned main advantage of knowledge-based systems: the
use of human (heuristic) knowledge, there is no evidence to
conclude that these are used in existing systems.

Job shop planning using knowledge-based technology

We are now able to give a provisional conclusion regarding the im­
provement knowledge-based systems can provide for planning. A
major advantage of knowledge-based systems would be if they
generated better schedules than conventional programs. It seems,
based on the literature consulted, that knowledge-based planning
systems can generate better plans. The following illustrates this.

A plan is considered better if it:

• is more accurate;

• can be generated much faster;

• is more easily interpretable.

A vital factor is the quality: can a knowledge-based system
generate more accurate schedules than conventional systems?
Ergo, does a knowledge-based system provide more powerful
scheduling techniques? Knowledge-based systems are problem sol­
vers employing methods used by humans. Conventional planning
systems generally use abstract methods, e.g. mathematical
programming, priority rules. Conventional techniques are rigid and
have problems reacting to changes often occurring in job shops,
moreover they have problems dealing with the uncertainty that is
common in job shops. In view of this it is to be expected that
knowledge-based systems can generate better schedules: they are
more suitable for the stochasticity and changes in job shops than
conventional programs. This is supported by a number of authors
([34], [5]).
A factor which also improves the schedules is the simplicity with

which they can be interpreted, how user-friendly is a knowledge­
based system. One can imagine that results coming from a
program cannot be used if it is impossible to interpret them. On this
point knowledge-based systems definitely have an advantage over
conventional systems. Three reasons support this:

• Knowledge-based systems consist of a general problem
solver, the inference engine, that is able to draw conclusions
on information from the user as well from knowledge
contained in a knowledge base. The knowledge base and
inference engine are separate modules. It is therefore much
easier to understand the knowledge governing the problem.
compared to systems where control and knowledge are
mingled. If users can grasp the knowledge it is easier to
comprehend how the schedule is created.

• Knowledge in knowledge-based ~stems is represented using
methods which link up with the way humans think. These

-34-

Job shop planning using knowledge-based technology

representation methods make it relatively simple to
comprehend the represented knowledge .

• Most knowledge-based systems have an explanation facility
which gives a report on the search process for a solution.

Another factor of influence is the performance of knowledge­
based systems compared with conventional systems. A great ad­
vantage would be if knowledge-based systems generated
schedules faster that at present. It then would be able to react alert­
ly to changes in the environment. resulting in more accurate
schedules. On this point there is no evidence that knowledge­
based systems are able to generate schedules more speedily. On
the contrary. present knowledge-based systems use software tools
that are slow relative to current imperative languages e.g. 'C' or
'FORTRAN',

Besides the performance. the effort needed to create a knowledge­
based systems is a drawback. Knowledge-based systems try to
emulate human behaviour in problem solving. A compelling
demand is the requirement to understand how humans solve, in
this case. planning problems. A problem is that generally humans
are not aware of the methods they use to solve problems: they
know how to solve a problem but do not know what they do when
they are solving a problem. Extracting this implicit knowledge is a
task which is considered to be the bottleneck in the development of
knowledge-based systems.

- 35-

PART II
The COM Problem

Problem I

5

THE CQM Problem

The main task of this study was to develop a prototype planning
system based on knowledge-based technology. This prototype
should be designed to solve a planning problem supplied by

COM. In this chapter the COM problem will be presented in detail.

The COM problem consists of two related planning problems in a
workshop. These two problems will be discussed in the two follow­
ing sections. A complete description of the COM problem can be
found in the appendix.

In a workshop there are two machines ordered in a line lay-out
(fig. 4). On these machines products are being manufactured. The
following premises apply to this shop:

• Products are first processed on machine A and then on
machine B.

I Machine B ____ -'-1 ___ -'

Figure 4: The workshop lay-out.

- 36-

The CQM-problem

Problem II

• There are 10 different products. each with its own processing
times (see appendix).

• The orders to be processed in a week will be known at the
end of the previous week.

• An order has to be ready on machine A. before it can go to
machine B.

• There is no set-up time between different product types.

• Both machines have a capacity of 3000 minutes a week.

• The objective is to complete the orders in the shortest time
(minimum timespan/makespan).

• Orders may wait between A and B.

The planner uses the following method to sequence these orders:
he uses a 'left to right' and 'right to left' plan. He selects the order
with the shortest processing time on A, as the first to be processed.
He then selects the order with the shortest processing time on B,
as the last to be processed. He repeats this selection procedure
until there are no orders left.

This problem is basically the same, but has the following differenc­
es:

• The change from one product to another takes 10 minutes
set-up time on A, as well as on B

• Orders may be split in partial orders.

In this problem there are two planners. Planner A uses the same
method as the planner in Problem I. Planner B uses the following
method:

- 37-

The COM-problem

• He first examines which machine is the bottleneck, i.e. which
machine has the largest amount of processing time.

• For that machine he groups the orders with the same
products.

• He then makes a plan for the other machine so that there is
no (or very little) idle time on the bottleneck.

Some remarks on this planning environment

The shop is an intermittent flow shop (see page 9): the routing is
uniform. Orders flow through the shop as a whole. In this case the
planning problem is reduced to a sequencing problem. The se­
quence of orders determines the start times on machine A and on
maohine B. Mere sequencing reduces the complexity of the
problem: there is no need to consider problems like substitutability
of machines, finite loading, alternative routing, etc ..

The problem is deterministic: there is no uncertainty in, for ex­
ample. processing time or machine performance. Determinism
reduces the problem for there is no need for representation of un­
certain information or methods dealing with such. Generally though.
there is stochastic behaviour in shops.

- 38-

6

A framework for a
knowledge-based planner

In this chapter a framework for a knowledge-based planner will
be presented. The goal of this framework is to provide a basis on
which the prototype planning system for the COM problem can

be built. The framework is more general: it is also intended to be
used for other job shop planning problems. The subjects presented
in this section are grouped around two aspects of knowledge·
based systems: knowledge representation and control strategy.

Knowledge representation

To make a choice for a representation method it is essential to
identify and categorize the knowledge important to the problem
domain. Hence, the presentation of this subjects flows along the fol­
lowing lines:

• Identification and categorization of knowledge.

• Representation mechanism: the choice for a representation
method given the categorization of knowledge.

• Knowledge: what will be represented?

Identification and categorization

Viewing the COM problem, one thing is very obvious: we have
two major categories of knowledge.

- 39·

A framework for a knowledge-based planner

The first category consists of items like 'orders', 'machines', etc ..
This category could well be described as the environmental
knowledge. The strong relation between the entities that form this
categoryis striking: an order consist of products, products are
produced on machines, etc ..
The second category could best be described as the heuristiC

knowledge. An example of this knowledge is the method with
which orders are planned: knowledge describing how to deal with
the environmental entities.

When the first category is examined closely, it can be divided into
two types, which show different behaviour during the planning
process. On one side there is the environmental knowledge that is
static and does not change during planning. This type describes
with which restrictions the different entities should comply. On the
other hand, there are the entities that change during planning:
these are dynamic. The item 'order' is a static entity describing
what properties a real order has. A real order inherits properties
from 'order'. However, contrary to 'order', it alters during the plan­
ning process (Le. start times change etc.). The division into two
categories can therefore be refined by subdividing the environmen­
tal knowledge in a static part and a dynamic part.

Representation mechanisms

In Chapter 3 two major methods for knowledge representation are
presented: rule-based and object-based systems. There it is stated
that object-based systems provide a method for representing
knowledge in a structured way, whereas rule-based systems are
very suitable for representing heuristic knowledge. The nature of
the environmental knowledge suggests the use of an object-based
system: environmental knowledge being knowledge with strong
mutual relations. Especially frame-based systems seem promising:
frames are related through IS-A relations. e.g. the frame 'ORDER
X' IS-A 'ORDER' frame. Frames can inherit information from clas­
ses higher up the hierarchy. Hence, in the COM problem elements
of the dynamic knowledge can inherit the description that they must
comply with from the frames, representing the class they belong to:
the static knowledge as defined in the previous subsection. A
frama.based system is therefore the best choice for representing
the environmental knowledge.

Looking at the heuristic knowledge the choice for a rule-based
system would be obvious. Three reasons support this:

- 40-

A framework for a knowledge-based planner

• Rule bases can easily be incremented. Hence, it is easy to
implement improved methods of sequencing.

• Rule-based systems can react to changing data without
requiring detailed prescience about the flow of control. There
is no need for exact knowledge of how the sequencing will be
performed, only rules that react to situations.

• The methods used here can easily be transformed into
condition-action rules.

Instead of making a compromise between these two methods:
rules or frames. the two representations will be integrated. Having
two major categories. it seems sensible to do so. Moreover. struc­
turing the knowledge base this way is more understandable to the
user.

A model for the environmental knowledge

Beside a representation method, a vital part of the framework is a
model of the knowledge embedded in the knowledge base. In this
section a model of the environmental knowledge will be presented.

Due to the limited time for this study a model for the heuristic part
of the knowledge base has not yet been developed.

Basic Ideas

A vital idea for the environmental knowledge model is its inde­
pendency of scheduling methods: it should not contain elements
that result from, or depend on a scheduling method. Otherwise the

model is brittle, i.e. it can only be applied to a small set of problems.
Originally the model was created for an environment as stated in

the COM problem. However, the model as defined here is more
general in view of the application of the model for future problems.
The environment described here is that of a production workshop.

For the construction of this model the following two concepts are
used:

• System-design theory: using this theory a general structure
for the model will be defined.

• Workshop model: constructing the model by using the
structure of the workshop.

- 41 -

A framework for a knowledge-based planner

Systems-desig n theory

A result of the interviews conducted with OR scientists at the
Centre for Quantitative Methods was the use of systems-design
models for solving scheduling problems. A scheduling problem is
visualized by them as follows (fig 5):

~_I_n.L-u_t_---toI Scheduling
process

Process parameters

Figure 5: A systems design model of a scheduling problem.

Out ut

A process is viewed as a black box, connected with the outside
world through an information source: the input, and one information
recipient: the output. Furthermore, the information goveming the
process comes from a second Information source: the process·~
parameters.

Analogously, three classes of frames representing the classes of
data are defined: input, output and process-parameters. The frame­
classes form part of a meta model In which the model of the
workshop has to fit.

Workshop model

The construction of a model for the workshop follows from the
properties of the workshop: what entities form the workshop and
what is the relation between them? In this subsection the properties
of the workshop under consideration will be discussed. Also the en­
tities to be represented in frames will be distinguished.

The general idea is that of a workshop in which a number of
products are being manufactured on customer order. The model for
such a workshop is based on the following assumptions:

• The workshop consists of a number of resources .

• The goal of the workshop is to manufacture products on
customer orders. An order consists of the request for the

A framework for a knowledge-based planner

delivery of a number of products 1 belonging to one product
type.

• Every product belongs to a product type.

• To obtain a product a sequence of operations has to be
performed. Every product type has its own sequence of
operations.

• An operation is the performance of a type of operation on a
specific type of resources for a specific period of time (not

necessarily the same duration for each resource).

• On each resource a number of operation types can be
performed. An operation type describes operations possible
on those resources: operation types are resource dependent.

whereas operations describe a specific operation to be
performed on a specific resource and are also product type
dependent.

• To complete an order a sequence of operations has to be
performed on a number of products. These are called

activities. Activities are the 'jobs' to be scheduled.

• The result of the scheduling process is a plan. The plan
consist of a GANTT chart of the resources and the planned
activities.

In short. the process that is executed in the workshop can be
defined by the following entities: product type, resource, opera­
tion type, operation.

The orders form the input of the workshop. whereas the plan re­

presents the output. From the orders that have to be completed. ac­
tivities are derived. Activities form the basic input of the workshop:
they will be scheduled. A network representing this model is given
in fig. 6.

Control strategy

In Chapter 3 it is noted that the choice for a control strategy
depends on the knowledge representation. The prototype for the
COM problem employs two different representation methods: it

could be regarded as having two knowledge bases: a frame base
and a rule base. Control strategy in the knowledge-based system

Note that in this report by product a finished product is meant.

A framework for a knowledge-based planner

G Process
Parameter B

! ,
J
!
!
i

!
!

Producttype

-operations
-route

Resource

-operation
type

-capacity

i

\ ,
\
\
\
\

\
i
I

;
\

\ ,
I
i
I

i
i
!

\
\
'.

\
\

\
\ ,

Order

-resource
(list)

Plan

- product

-~~tity
-resource
-activity

-order
-resource
-operation
-dUration
-succlprede

1. (resource, duration) ... : A list of resources on which operations can be
performed, togetherwithmatchingdurations.

2.succJprede. :successorand/orpredecessoractivity.

Figure 6: The network representing the environmental knowledge.

acts on two levels: within the knowledge base and between the
knowledge bases.

Within the knowledge base the choice for the separate knowledge
bases is clear: an action-centred control in the rule base, and an
object-centred control in the frame base (see page 23).

More difficult, however, is the interaction between the different
bases. Should an action-centred control be used; rules accessing
the frames and guiding the reasoning process, or an object-centred
control; frames triggering rules, which alter frames. Or should a re­
quest-centred control be used e.g. a blackboard mechanism, with
which the two knowledge sources communicate. There is not
evidence yet to take a final decision on this matter.

A blackboard system seems most attractive for it is suitable for
handling different knowledge sources, which could be useful in this
case [6].

- 44-

A framework for a knowledge-based planner

Conclusion

In this section the framework is presented of a knowledge-based
planner for a job shop were products are being manufactured. The
most important feature of this framework is that it consists of a
knowledge base containing two major categories of knowledge: en­
vironmental knowledge and heuristic knowledge. The environmen­
tal knowledge represents the eleme.nts that define the workshop.
These elements are represented as frames in a frame-based sys­
tem. The heuristic knowledge represents methods used for schedul­
ing. The methods are represented as rules.

A subject for which there is still no decision is the choice for a con­
trol strategy. Among the three methods a form of request-centred
control, the blackboard mechanism, seems most promising.

7

ScheduleTalk: an implementation

Based on the framework defined in the previous chapter, a
prototype planning system is developed for the COM
problem. In this chapter this prototype will be presented. The

prototype is called ScheduleTalk: a Scheduler developed in
SMALL TALK-BO. The following subjects regarding the development
of ScheduleTalk will be discussed in this chapter:

• The choice of a software tool and description of this tool.

• The functional description of the shell, on which ScheduleTalk
will be built.

• The description of ScheduleTalk: ScheduleTalk is based on
the framework presented in Chapter 6. In this section
extensions and differences compared to the framework are
discussed.

Choice of a software tool

In the previous chapter it is stated that a knowledge-based sys­
tem used for job shop planning should use a hybrid representation
mechanism: a frame-based mechanism complemented with rules.
The tool to be chosen should, therefore, support a hybrid repre­
sentation. In view of the limited time in which the prototype should
be implemented, a special purpose tool is preferred to a general
programming language: knowledge-based systems can be built in a
much shorter time using a knowledge-based system shell than in a
programming language. A knowledge-based system shell is a

- 46-

ScheduleTalk: an implementation

knowledge-based system with an empty knowledge base. When a
tool had to be chosen, there was no shell available that supported
a hybrid knowledge base. The only possibility left was to use a
more general programming language.
The following languages were considered as possible tools:

• PROLOG: a logic-based language that tries to prove
(PROLOG) relations, using backward chaining, unification and
backtracking as needed. PROLOG has strong similarities to
rule-based languages.

• LISP: Among the programming languages used for
development of knowledge-based systems, LISP is the most
popular, because it provides an easy and flexible method for
manipulating symbols.

• SMALL TALK-80: in this object-oriented programming
language, all elements are objects. The objects communicate
by sending messages to each other.

These three are the most interesting among the programming lan­
guages available at the CAD Centre. SMALL T ALK-80 was chosen
for four reasons:

• Although SMALL TALK-80 is presented as a programming
language, it is more. In SMALLTALK-80 an extensive user
interface is defined in the language itself. However, it is not
specially designed for knowledge base development:
functions and data structures still need to be defined within
SMALL TALK-80.

• SMALL T ALK-80 is a language in which frames are easy to
represent: frames can be represented as a class of object.
Inheritance can be implemented by using message-passing.

• There is evidence of the use of object-oriented languages in
other research centres, regarding the development of
knowledge-based systems [5].

• It is likely that a knowledge-based system will also use
conventional techniques as an aid for scheduling. Among
conventional methods, event-driven simulation is a powerful
aid. SMALL TALK-80 is also very suitable for the
implementation of event-driven simulation [31].

- 47-

ScheduleTalk: an implementation

SMALL TALK-SO

SMALLTALK-80 is a programming environment based on objects.
SMALL T ALK-80 is the result of research at the XEROX Palo Alto

Research Centre (XEROX PARC) to create a powerful information

system in which the user can store, access and manipulate informa­

tion so that the system can grow as the user's ideas grow.
The research for this system is mainly based on the following two

areas [31]:

• A language of description (the programming language) which

serves as an interface between the models in the human
mind and those in the computer hardware .

• A language of interaction (the user-interface) which matches

the human communication system.

As a result, of these research areas, SMALL TALK-80 consists of,

beside a programming language, an extensive user interface.

Furthermore, it is based on just a few concepts: it consists of ob­

jects. Every object belongs to a class. Objects interact by sending

messages to one another. The following subsections will present
SMALLTALK-80 using the key words: object, class and message.

Objects

An object is the basic element of SMALL T ALK-80 : every com­
ponent in the system is an object. Numbers and characters are ob­

jects, as well as e.g. text-editors and files. An object consists of a

private memory and a set of operations. Information belonging to

an object can not be accessed by another object. The nature of an
object's operations depends on the type of component it repre­

sents. Objects that represent numbers compute arithmetic func­
tions, objects representing data structures store and retrieve infor­
mation.

Messages

An important aspect of computer programs is that they consist of

parts that exchange information. In SMALL TALK-80 information is

transferred between objects, using messages. However, objects
cannot access each other's private memory. A message in

SMALL TALK-80 does not retrieve information but is only a request

- 48-

ScheduleTalk: an implementation

FrameTalk

for information. The message specifies which operation should be
carried out. The receiver of the message, however, determines how
the operation will be performed. The set of messages to which an
object can respond is called its interface with the rest of the sys­
tem. Interaction with the rest of the system is only possible through
the interface.

These two properties of SMALL T ALK-80 mean that the implemen­
tation of one object is independent from other objects. It only
depends on the messages to which it responds.

Classes and instances

Another important concept behind SMALLTALK-80 is the clas­
sification of objects: every object in SMALL TALK-80 is an instance
of a class. A class describes a set of objects that all represent the
same kind of system component, e.g. each number is an instance
of the class 'Number'.

Instances are the individual objects described by a class. Instan­
ces of a class have the same message interface, but have their
own private memory: instances are similar in both their public and
private properties. The private properties of an object are the set of
so-called instance variables and the set of so-called methods. In­
stance variables contain the local information whereas the methods
describe how to carry out the object's operations.

ScheduleTalk is a knowledge-based system to be used for a
scheduling problem. It comprises the knowledge goveming the
COM problem embedded in an knowledge-based system. Prior to
the implementation of Schedule Talk an empty knowledge-based
system, a shell, has to be created within SMALLTALK-80. This
shell, called FrameTalk, will be presented in this section. A com­
plete description of FrameTalk, together with the listing can be
found in the appendix.

Frame Talk is an implementation of a frame-based system created
in SMALLTALK-80. The concepts behind FrameTaik are derived
from literature regarding frames ([7]. [32]). However, these con­
cepts are elaborated to form FrameTalk on the basis of my own
ideas.

The detailed description of FrameTalk will be given by using the
four key words: Class, Instance, Inheritance, Demons.

In Frame Talk two different types of frames can be distinguished:
frame-classes and frame-instances.

ScheduleTalk: an implementation

A frame-class represents a specific type of object. The following
properties of such a type are defined by the frame-class description:

• The attributes the type has {i.e. which slots}.

• The common values for these attributes, if present.

• The way that the type of object reacts to changing values of
its attributes.

• The wayan object of that type acquires value for its slots.

Note that a frame-class can be a subclass of another frame-class.
Therefore, it need not contain this information as it may be in­
herited from the superclass. A frame-class is a static object: during
a consultation of the knowledge base, information stored in a frame­
class does not alter.

Frame-instances are real object belonging to an object type.
They form a set belonging to a frame-class. Frame-instances in­
herit the slots as well as the default values of these slots from the
frame-class descriptions. Inheritance from a frame-class is not the
only method for a frame-instance to acquire values for its slots:
there are three other methods: first, a value for a slot can be in­
serted by the user. If a default value for that slot exists it will be
replaced. If no default value exists and no value is inserted by the
user, the chain of frame-classes is searched for a demon. The
demon will be fired, resulting in a value for that slot.

The last method uses a network of related frames. Beside an in­
heritance network of classes there is also an inheritance network of
related trame-instances. For Instance: a 'bicycle', inherits the value
'wheels' from its class 'vehicle', whereas it also can inherit values
tram the related frame-instance 'cycling', an instance of the class
·sports'. A frame-instance can have more than one frame-instance
to which it is related. Searching for a value in the related frame-in­
stances is the same as going through a search tree of frame-instan­
ces. Where the root of the tree is the frame's slot for which a value
is required. When searching through the chain of frame-classes is
not successful the tree of frame-instances is searched for a value.
H none is found, the chain of frame-classes is searched for that
frame.

A special role in FrameTalk is performed by demons. Beside sup­
pliers of values for slots {if Needed-demons) , there are also demons
that will be fired when values of slots are changed (if Changed­
demons). An important concept behind FrameTalk is the nature of
the demons. The shell on which ScheduleTalk should be built
should have a hybrid character. So far FrameTalk only accom­
modates a frame-based system. The rule-based part consists of

- 50-

ScheduleTalk: an Implementation

the demons: the demons in Frame Talk are rules that are fired. This
creates the basis for a hybrid knowledge base.

In short Frame T alk can be depicted as follows:

ScheduleTalk

• Frame Talk is a hybrid knowledge-based system shell
containing frames whose slots can contain rules.

• Frames come in two types: frame-classes1 and
frame-instances ..

• Frame-classes represent a type of object. They are static in
their behaviour: they do not change during a consultation of
the knowledge base. A frame-class can contain rules needed
to perform part of the reasoning process.

• Frame-instances represent an object. Every frame-instance
belongs to a frame-class. Frame-instances are dynamic;
information in frame-instances changes during the reasoning
process.

• A frame-instance inherits information from its frame-class and
the frame-class' superclasses. A frame-instance can also
inherit information from related frame-instances. FrameTalk
allows multiple inheritance.

In Chapter 6 a framework is presented for a knowledge-based
planner in a job shop situation. This framework is designed in con­
nection with the building of a prototype planning system for the
COM problem. This prototype is called Schedule Talk. Schedule Talk
is based on the framework stated in Chapter 6. But as
ScheduleTalk is devised for a specific planning problem, it differs
slightly from the framework. In this section the essentjal differences
between Schedule Talk and the framework will be discussed. A
detailed description of ScheduleTalk will be given in the appendix.
Schedule Talk is still under construction and so far only the first
problem of the COM problem has been solved. The results are also
presented in this section.

There are two fundamental differences between ScheduleTalk
and the framework:

Note: The classes and instances used in FrameTaik are not

SMALLTALK-BO classes and instances.

- 51 -

Sc:heduIeTalk: an Implementation

• Knowledge representation: the representation is adapted to
the capabilities of Frame Talk. It has not yet been possible to
implement the demons in FrameTalk as rules, therefore
Frame T alk only supports frames whereas an important aspect
of the framework is the use of a hybrid knowledge base. This
allows demons to be represented as rules. In Frame Talk
demons are SMALL TALK-methods and do not resemble
rules. Using SMALL TALK-methods instead means that the
construction of a schedule is identical to methods used in any
other conventional planning system. Therefore the lack of
rules diminishes the value of ScheduleTalk: based on
ScheduleTalk it is difficult to make conclusions about the
feasibility of knowledge-based systems for planning.

• The knowledge model resembles closely the knowledge
model of the framework. A few differences are, however,
obvious. These differences are best illustrated by the
comparison in the following figure (fig. 7).

The following specific differences are introduced in the knowledge
model resulting from the properties of the COM problem.

• The framework network contains only the real elements that
define the environment. The ScheduleTalk network contains
beside these elements also a class description of the
elements. This class deScription makes it possible to describe
the behaviour of the elements. Although different to the
network it is in agreement with the categorization of
knowledge as discussed on page 42.

• Resources in the COM problem can carry out only one type
of operation. Hence, there is no need for representation of
'Operation type'.

• The frame 'Plan' in ScheduleTalk is expanded by adding a
subclass: the 'Resource plan'. 'Plan' contains a plan for the
total shop, whereas 'Resource plan' only contains a plan for
one resource. 'Resource plan' is also more detailed than
'Plan', 'Plan' in ScheduleTalk contains the sequence in which
the orders are processed. The 'Resource plan' contains the
sequence of orders, together with the matching start and
finish times.

- 52-

ScheduIeTalc an implementation

The network used in ScheduleTalk

Product

types

Orders
Operations

Operations ___ --+ types

Activitie

The network defined in the framework
Figure 7: A comparison of two knowledge models.

- 53-

Plans

SchaduleTalk: an /mpIel1'lllntatlon

Results

It has not yet been possible to solve both COM problems using
ScheduleTaik. Only for the first is a solution given. In this subsec­
tion this solution will be given by means of a GANTT chart created
by ScheduleTaik. Both the input values and the complete solution
are given in the appendix. Rgure 8 represents a GANTT chart of
six orders to be processed on two machines, A and B.

A

o

B

Figure 8: A GANTT chart, created by ScheduleTalk.

Conclusion

In this chapter a description of a planning system using
knowledge-based technology is presented. This description con­
tained the following subjects.

• The choice of a software tool;

• A description SMALLTALK-80, the chosen tool;

• The frame-based shell FrameTalk;

• The knowledge model ScheduleTalk.

The choice of a software tool is a vilal aspect of knowledge-based
system development. This project made this point very clear. To
create a knowledge-based system it is important to choose a tool
that accommodates the representation used for that system. Due to

- 54-

ScheduieTalk: an Implementation

the lack of a custom hybrid shell, given the limited time for this
project, too much time had to be spent on the construction of a
shell. If a suitable tool had been available, far less time would have
been spent on the creation of a frame-based shell. It then would
have been possible to create a better knowledge model for the
prototype, as well as test different models.

Nevertheless. SMALL TALK-80 is a suitable tool to develop a
knowledge-based system for planning. SMALLTALK-80 is not
designed for the development of knowledge-based systems but is
designed for more general purposes. The general design makes it
interesting for knowledge-based planning: it is also suitable for con­
ventional techniques, e.g. simulation.

The implementation of SMALLTALK-80 used in this project, a ver­
sion for IBM-PC, proved to be an excellent choice. The perfor­
mance was sufficiently fast, moreover, it proved to be a system not
sensitive to failures. However it is expected that for real problems
SMALL T ALKIV will be inadequate. The main reason for this is the
limited amount of memory: an MS-DOS PC can only address 640
kilobytes. The limited memory space restricts the available number
of objects and thus limits the number of frames.

For the prototype three subordinate goals were set.

• The construction of a knowledge-based system that
generates production plans and resource schedules for a
limited class of problems. Within its limited scope the
prototype should show improvements.

• Identification and documentation of the knowledge categories
involved in the planning process.

• Devising and demonstrating representation mechanisms that
will accommodate the previously identified categories of
knowledge. This to help structure the knowledge which is the
basis of the planning system.

It proved to be possible to create a knowledge-based planner.
However, due to the restrictions mentioned above, it was not pos­
sible to test if knowledge-based systems show improvements
regarding the problems stated on page 2. Nevertheless, the
development of the prototype made it possible to define a
framework for a knowledge-based planner. The answers to the last
two questions are given by means of this framework (see Chapter
6).

The development of ScheduleTalk confirmed the importance of
knowledge acquisition: it proved to be the most difficult task of this
study.

- 55·

PART III
Knowledge­
based systems:
tool or toy?

8

Conclusions

The main goal of this study is to examine the benefits
knowledge-based systems can have for job shop planning. In
particular, the goal was to obtain answers to the following

questions:

• Is it feasible to implement a job shop planning system by
means of knowledge-based technology?

• What are the specific demands for a knowledge-based
system that is to be used in job shop planning?

• What should be the structure of the knowledge base?

Summary of results

To answer these questions two tasks were performed. First, litera­
ture was consulted regarding knowledge-based planning. Secondly,
a prototype was constructed for a stylized planning problem. Before
answering the questions an overview of the results of these tasks
will be given.

The literature study

Planning is a subject that has attracted great interest among re­
searchers in the field of AI the last few years. The reason that it
has acquired such interest is a result'of the weaknesses of current

- 56-

Conclusions

planning systems to represent empirical knowledge. At present. OR
techniques use abstract. mathematical techniques but are not able
to use expert knowledge of human planners. This inability makes
them rigid. Knowledge-based systems are designed to represent
human expert knowledge ([33]. [5]).

From the large amount of literature available, a number of aspects
were significant. The essence of most of the systems is that they
consist of a knowledge base founded on a model of the knowledge
governing the problem domain. This knowledge consists of highly
related entities. It is considered important to use a representation
that allows such a model to be represented. The representation
used is that of an object-based system.

Another vital aspect is the specific role of constraints. Constraints
used by OR are rigid bounds of the solution space. Knowledge­
based systems use flexible constraints that function as guides of
the reasoning process.

The CQM problem

The COM problem deals with planning in a job shop. For such an
environment a framework for a knowledge-based planner is
defined. Based on this framework a prototype planning system is
developed. The framework is determined by the following concepts.

The knowledge that describes the environment is divided in two
categories: an environmental and a heuristic category. The environ­
mental category consists of entities like 'resource', 'operation', that
define the job shop. The heuristic part contains the methods and
rules used to create a schedule in this job shop.
The environmental knowledge consists of entities that are strongly

related. This type of knowledge is best represented using an object­
based system. The heuristic knowledge consist mainly of elements
like rules of thumb, heuristic methods or mathematical techniques.
For such knowledge a rule-based system presents the most
suitable representation method. In view of this separation of
knowledge categories it was decided to use a hybrid system which
allows both rules and frames to be represented.
The second important concept is the model of the environmental

knowledge. The model consists of a network of nodes, representing
the entities that define the job shop. A knowledge-based planning
system for job shops should use a knowledge base containing
knowledge founded on that model.

Based on this framework the construction of a prototype has
started. The prototype was called ScheduleTalk: a Scheduler
developed in SMALLTALK-80. ScheduleTalk is still under construc­
tion, it is therefore not yet possible to compare the results of such a

- 57-

Conclusions

knowledge-based system with conventional systems. A significant
problem that arose from the development process was the difficulty
to acquire the knowledge in ScheduleTalk. A significant advantage
was the ease to represent the knowledge in ScheduleTalk.

Answers to questions

Based on the results of the literature study and Schedule Talk
answers to the questions posed above will be formulated.

Feasibility

The most important questions in this stage is to give an answer to
the following question:

• Is it feasible to implement a job shop planning system by
means of knowledge-based technology.

It is now possible to give a provisional answer to this question: it
seems feasible to use knowledge-based planning systems. The ar­
guments will be discussed in the remainder of this subsection.

There are a number of factors that decide whether it is feasible to
use knowledge-based planning systems. In general, feasibility can
be determined by the following two measures:

• Does a knowledge-based planning system produce better
schedules?

• How much effort does it cost to create a knowledge-based
planning system?

Knowledge-based systems are likely to produce better schedules
as they can enhance conventional techniques with methods
developed by human planners through experience. Furthermore
knowledge-based systems can deal with inexact information, allow­
ing them to take inexact information from the shop floor into ac­
count, as well as give a measure of reliability to their plans. A sig­
nificant advantage is also the representation of knowledge.
Knowledge-based systems use programming languages that
enable human knowledge to be represented similarly to the way
humans think. Together with the explanation facility, users of the
knowledge-based planning system (i.e. planners) can easily com­
prehend the planning process and can, if needed, easily alter it. A
disadvantage could be that, for the moment, the computational ef-

- 58-

Conclusions

fort might be greater than the effort needed by conventional sys­
tems.

The effort needed to create a knowledge-based system is not to
be underestimated. Knowledge-based systems try to emulate
human behaviour in problem solving. A compelling demand is the
requirement to understand how humans solve, in this case, plan­

ning problems. A problem is that generally humans are not aware
of the methods they use to solve problems: they know how to solve

a problem but do not know what they do when they are solving a
problem. Extracting this implic~ knowledge is a task which is con­
sidered to be the bottleneck in the development of knowledge­

based systems. A solution for the knowledge acquisition could well
be the development of a knowledge model of job shop planning.
Using such a model it might be found that knowledge-based sys­
tems can be built faster.

The experience gathered during the development of ScheduleTalk
confirmed this: creating a model for the knowledge proved to be
most difficult task. Regarding the universality of the proposed

framework, it is to early to give an answer.
H ample time is spent on the acquisition of domain knowledge and

the creation of a knowledge model, knowledge-based systems are
an improvement on conventional techniques: they are enhanced by
knowledge-based technology. This makes it feasible to implement

planning systems using knowledge-based technology.

Structure and demands

In this subsection the two other questions will be discussed .

• What are the specific demands for a knowledge-based
system that is to be used in job shop planning?

• What should be the structure of the knowledge base?

These questions will be considered together because they are re­
lated to one another. In the previous subsection it is mentioned that
knowledge governing the planning domain contains many related

items. This conclusion is supported by the experience with
ScheduleTalk. Representing this knowledge requires a method that
allows such relations to be encoded. A powerful method that is
suitable is the frame-based approach ([4], [2'1], [22]), Furthermore,
the planning techniques used can easily be mapped onto a rule­
based system. The conclusion that can be drawn is that knowledge­
based systems used for job shop planning should use a hybrid

- 59-

Conclusions

knowledge base, containing frames as well as rules. The structure
to be used could well be similar to the one proposed in Chapter 6.

Future research

It is obvious that this project was too limited to give a decisive
answer regarding the use of knowledge-based systems. To give a
decisive answer it is therefore required to further research the
capabilities and limitations of knowledge-based systems. In this sec­
tion some subjects will be presented on which future research will
give more clear conclusions regarding feasibility and architecture of
knowledge-based systems.

Framework

In Chapter 6 a framework is presented for knowledge-based sys­
tems to be used for job shop planning. This framework is created in
connection with a stylized planning problem. A possible subject of
future research would be to test the validity of this framework in
other more real environments. This research could improve this
framework or suggest another framework. Furthermore, the applica­
tion of knowledge-based systems in more real environments will
give more decisive answers to the questions mentioned in Chapter
1.

Time, constraints, etc.

A number of important aspects have not been investigated.
Among these elements are: Time representation, constraint repre­
sentation. Generally in knowledge-based systems facts are either
true or false (to a certain extent). In planning, facts have a limited
validity. Representation of time is an essential element. Constraint
representation is considered important while planners spend most
of their time managing (i.e. adjusting) constraints.

Another subject worth researching is that of the control strategy.
In Chapter 3 it is mentioned that three types of control strategy are
used. An improvement to the framework would be the choice for a
suitable strategy.

Conclusions

Conventional techniques

Finally, it would be interesting to learn how and which convention­
al techniques can be used within knowledge-based systems, or
vice versa, how knowledge-based technology can improve conven­
tional techniques.

- 61 -

References

[1] D.W. MacLeavey, S.L. Narasimhan [8] A. Barr, E. Feigenbaum

Production planning and Inventory
Control

Handbook of Artificial Intelligence

Allyn and Bacon, 1985

[9] E.Horwitt

[2] W.M.J. Geraerds, J.W.M.
Exploring Expert Systems

Bertrand, J.C. Wortman Business Computer Systems,3(4)

Syllabus Inleiding
pp. 48--57, 1985

Productiebeheersing
Eindhoven University of
Technology, 1984 [10] E.H. Shortliffe

Computer based medical
consultation: MYCIN

[3] E.S. Buffa, W.H. Taubert Elsevier, 1976

Production-inventory systems:
planning and control
Richard D. Irwin INC., 1972 [11] D. Hofstadter

GOdel, Escher, Bach: An eternal
golden braid

[4] M. Fox Vintage, 1979

Knowledge representation for
decision support
in L.B. Methelie: Knowledge [12] S.M. Weiss, C. Kulikowski
representation for decision
support systems. A practical guide to designing
Elseviers, 1984 Expert Systems

Rowman and Allanheld, 1984

[5] T.J. Grant.

Lessons for O.R. from A.I.: A
[13] E.H. Shortliffe. B.G. Buchanan

scheduling case study. A model for inexact reasoning in
Joumal of the Operations medicine
Research Society Vol 37 no 1, Mathematical Bioscience,vol. 23,
41-57. 1975

[6] D. Waterman [14] C.V. Negotia

A guide to expert systems Expert Systems and Fuzzy
Addison-Wesley,1986 Systems

BenjaminICummings, 1985

[7] P .H. Winston

Artificial Intelligence
[15] M. Fox

Addison-Wesley, 1984 Observations on the role of
constraints in problem solving
Proc. 6th Canadian Conference
on Artificial Intelligence, 19n,
172-187

- 62-

(16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Sathi, M. Fox, M. Greenberg

Representation of activity
knowledge for project
management
IEEE, transactions on Pattern
Anal~sis and Machine
Intellgence,7(5), 53 - 552

T.J. Grant

Planning resource usage
Proc. 5th Alvey ~Ianning SIG
workshop. Marc 1986

P. Elleby, T.J. Grant

Knowledge based scheduling
in G. Mitra: Computer assisted
decision making
Elseviers,1986

A. Tate

A review of knowledge-based
planning techniques

The Knowledge Entneering
Review, vol 1, no. ,1985

J.R. Slagle, H. Hamburger

An expert system for a resource
allocation problem
Communications of the ACM, vol.
28, no: 9,pp. 994-1004

J.C. Kunz, T. Bohura, H.J.
Stelzner,R.E. Levitt
Contingent analysis for project
management using multiple worlds
Proe. 1 st National Conference on
Applications of Artificial
Intelligence in Engineering
Problems

I. Goldstein, B. Roberts

NUDGE. a knowledge based
scheduling system
Proc. International Joint
Conference on Artificial
Intelligence, 1977,pp. 257-263

[23]

[24]

[25]

[26]

[27]

[28]

- 63·

T.J. Grant

An object-oriented approach to
AI-planning and scheduling
to be published in G. Mitra: Expert
Systems. Optimization and
Process Control.

P.C. Jackson, M.C. Maletz

Critical Path resource allocation
using ART-viewpoints
Proc. 6th International Workshop
on Expert systems and their
Applications

A8ence de l'lnformatique, 1986.pp
4 5-415

R.J. Brachman

On the epistemol02ical status for
representing know edge
in N.V. Findler: Networks:
representation and use of
knowledge by computers
Academic press, 1979, pp. 3-50.

K.J. MacCallum

Description of ISIS - a system for
job shop scheduling
University of Strathclhd9, Dept. of
Ship and Marine Tee nology

B.C. Bruce

A model for temporal references
and its applications in a question
answering program
Artificial Intelligence, 3. 1 ,pp. 1-25.

J.F. Allen, Koomens

Planning using a temporal world
model
Proc. International Joint
Conference on Artificial
Intelligence. 1983. pp741-747

[29] P. Elleby

In defence of point-based
temporal reasoning

Proc. 5th Alvey SIG workshop,
&-7 March 1986

(30] E.P.K. Tsang

Plan generation in a Temporal
field

Proc. 7th European Conference
on Artificial Intelligence, 1986

(31] A. Goldberg. D. Robson

SMALLTALK-80: the language
and its implementation

Addison-Wesley, 1983

[32] P.H. Winston, B.K.P. Hom

LISP

Addison-Wesley, 1981

(33] Isenberg, Randolf

Comparison of BB1 and KEE for
building a production planning
expert system

Philips report

(34] A. Sen. G. Biswas

Decision support systems: an
expert systems approach

Decision Support Systems, vol. 1
197-204,1985,

[35] A.A. Assad, B. Golden

Expert systems, microcomputers
and operation research

Computer and operations
research, vol. 13.no.2/3

- 64-

Appendix

Twee voorbeelden van een schedulingsproblee.

In het volgende worden enkele aan de praktijk ontleende, maar sterk
gestileerde schedulingsproblemen geschetst.
Het is niet de bedoeling ze in detail "op te lossen", maar meer om aan
te geven hoe Al in de geschetste situaties van nut kan zijn en vooral
hoe men vanuit Al het probleem denkt aan te pakken.

In een afdeling staan twee machines A en B, waarop produkten gemaakt
worden. Het volgende is aan de hand:

1. Produkten worden eerst op machine A bewerkt en vervolgens op machi­
ne B.

2. Voor de 10 verschillende typen die gemaakt kunnen worden gelden de
volgende bewerkingstijden voor 1 produkt (in minuten):

Type bewerkingsUjd op A bewerkingstijd op B

1 2 1
2 4 5

3 3 2

4 5 3
5 3 5

6 2 2

7 1 2

8 6 3

9 4 2

10 2 3

A-1

The CaM-probIem

3. Aan het eind van eike week krijgt men te horen hoeveel produkten er
van elk type gemaakt moe ten worden.
8ijvoorbeeld:

Week 1: Type 2: 1 order van 25 stuks en 1 order van 75.
Type 4: 1 order van 100 stuks.
Type 10: 2 orders van elk IOU stuks en 1 order van 150

~tuks.

Overige types: O.

Week 2: Type 5: 1 order van 50 en 2 van 25 stuks.
Type 7: 3 orders van 100 stuks en 1 van 200 stuks.
Type 8: 1 order van 20 stuks en 1 van 80 stuks.
Overige types: o.

4. Pas als een order in zijn geheel is afgewerkt op machine A gaat hij
naar machine B.

5. Omsteltijden van het ene naar het andere type zijn gelijk aan 0 mi­
nuten.

6. Max. capaciteit (incl. overwerk) mach. A: 3000 min./wk.
Max. capaciteit (incl. overwerk) mach. 8: 3000 min./wk.

7. Het is de bedoeling dat er zo wordt gepland dat het hele werkpakket
voor een week zo snel mogelijk wordt afgewerkt (minimum time-span/
make-span).

8. Tussen machine A en B mogen orders liggen te wachten.

De planner gaat als voIgt te werk:
Hij plant van "links naar rechts en van rechts naar links", d.w.z. hij
plant de order die als eerste wo1'dt uitgevoerd en neemt daarvoor de
order die het sneist klaar is op machine A (zodat machine B snel aan
de slag kan). Daarna plant hij de order die als laatste wordt uitge­
voe1'd en neemt daarvoor de order aie de kortste tijd vergt op machine
~. Vervolgens plant hij de order die als tweede aan de beurt is op A,
dan de order die voorlaatste zal zijn ap B enzovoorts; steeds werkend
van twee kanten en weI zo kiezend uit de nag niet geplande orders dat
de machines geen of weinig stiistand hebben. Voo1'ts worden eerst
zoveel mogelijk X de Iangdurende orders gepland, zodat aan het eind
e1' kortdu1'ende orders resulteren waarmee het makkelijker is "gaten" te
dieh ten. Als e1' tenslot te een plan ligt wordt gekeken of er door
eenvouoige verwisselingen nag winst geboekt kan worden.

A-2

The CQM-problem

Ais geval A met als verschil dat:

overgang van het ene produkt naar het sneer een omsteltijd vergt
van 10 minuten, zowel bij machine A als bij machine B;
orders gesplitst magen worden in deelorders. Een (deel-)oraer gaat
in zijn geheel van A naar B. Er zijn nu 2 planners die elk hun
eigen aanpak hebben;
planner I handelt in grote lijnen als beschreven onder geval A;
planner 2 kijkt eerst welke machine gegeven het werkpakket van een
week de bottleneck is, d.w.z. de meeste minuten werk voor de kiezen
krijgt. V~~r die machine maakt hij een plan waarin orders voor een­
zelfde type achter elkaar worden gepland.
Vervolgens plant hij de andere machine en weI zo dat de bottleneck­
machine "op zijn wenken wordt bediend" , dat houdt in dat hij zorgt
dat het plan voor de bottleneck-machine zo veel als mogelijk kan
worden uitgevoerd, oak al moet de niet-bottleneck-machine daartoe
wat vaker worden omgesteld (aeelorders).

Afhankelijk van het pakket orders blijkt nu eens planner 1 en dan weer
planner 2 als beste uit de bus te komen.

A·3

Framework frames

In this part of the appendix the frames that form the model described in chapter 6 will be
presented. This description will contain the following information:

• The meaning of the frame.

• The attributes (properties) of the frame.

• The relations of the frame.

frame: ORDER

meaning: represents an amount of products ordered by a customer.

attributes: - product type.
- quantity.

relations: ACTIVITY, PRODUCT TYPE

frame: PRODUCT-TYPE

meaning: represents a type of object manufactured by the workshop.

attributes: - name of the product type.
- operations.
• route.

relations: ORDER, OPERATION

frame: RESOURCE

meaning: represents the work centers on which the operation are performed.

attributes: - capacity.

• operator.
• operation types.

relations: PLAN, OPERA nON TYPE

A-4

Framework frames

frame: OPERATION TYPE

meaning: represents generic types of operations: Le. describes what possible operations
can be performed by this workshop

attributes: • resource (list)

relations: OPERATION, RESOURCE

frame: OPERATION

meaning: represents a single transformation process that is part of the process to
manufacture one product.

attributes: • product type.

• (resource, duration) ...

relations: PRODUCT TYPE, OPERATION TYPE

frame: ACTIVITY

meaning: represents a single transformation process that is part of the process to
manufacture the products belonging to an order

attributes: • order

• resource
• operation
• duration
• successor I predecessor.

relations: OPERATION, PLAN, ORDER

frame: PLAN

meaning: represents the GANTT-chart of the resources with the planned activities.

attributes: • GANTT chart.

relations: RESOURCE, ACT1V1TY

A-5

FrameTalk

implementation details and listing

FrameTalk is a frame-based shell. created in SMALLTALKIV. a SMALLTALK-SO implemen­
tation for IBM PC's and compatibles. In this case it is developed on a Genlsys 'the Chal­
lenger': an IBM PC/AT clone.
An important reason for the choice of SMALL TALKIV was its the PROLOG extension. A

PROLOG interpreter, defined within SMALL TALK/V, aids in the creation of a hybrid shell:
Demons represented as PROLOG clauses resemble rules.
The implementation of Frame Talk proved to be a more time-consuming task than was to

be expected. For this reason two simplifications had to be introduced to be able to com­
plete the construction of FrameTalk in time:

• The user-interface of FrameTalk is rudimentary: only basic elements are implemented.
In this form it is difficult for others to use it.

• Until now it has not been able to implement the demons using PROLOG. Although
SMALL TALKIV is delivered with a PROLOG extension, due to the limited time the
demons are carried out as SMALL TALK methods. These methods do not resemble
rules. As the rules, needed for the COM problem are practically algorithmic it was
easy to implement these as SMALL TALK methods.

Prior to the presentation of Frame Talk, first an explanation of the terminology will be
given. Both FrameTalk as well as SMALLTALK-80 have classes, however, these classes
are identical. For the sake of clearness class names of SMALL TALK-80 will begin with a
capital and are enclosed in quotes.

Programming in SMALL TALK-SO generally consist of the definition of classes and cor­
responding methods. In FrameTaik two types of frames are distinguished. Hence, two clas­
ses are defined within SMALL TALKIV defining the two types of frames: 'FrameClass' and
'Frame', subclass of 'FrameClass'. Based of the class definition the details of FrameTalk
will be discussed. The definitions are as follows:

Object subclass: ##FrameClass
instance Variable Names:

'name class slots'
classVariableNarnes: ..
pool Dictionaries:

A-6

'Frames •

FrameClass subclass: IIFrame
InstanceVariabteNames:

'frame'
classVariabteNames: ..
poolDictionaries:

'Frames '

The instance variables form the private memory of each Instance of the classes:
'FrameClass'(i.e. the frame classes) and 'Frame' (I.e. the frame instances). As 'Frame' is a
subclass of 'FrameClass' it also inherits the instance variables. The instance variables rep·
resent the following:

• 'name' contains a string representing the name of the frame.

• 'class' contains a pointer to the frameclass the frame is related to: its superclass. A
frame can have only one superclass.

• The variable 'slots' is the container of a" slots. It is a dictionary where the keys are
the names of the slots. The matching values are also dictionaries: the keys are the
facets and the values are the values of that slot.

• the Instance variable 'frame' contains a set of pointers to other frames a frame
instance is related to. This variable is takes care of the inheritance of values of slots
from other frame instances.

Each value belonging to a frame has a facet. This facet Indicate what type of value the
value is. FrameTalk can distinguish the following facets:

• 'default': a value inherited from a superclass.

• 'value': values added in another way. The 'value' facet of a frameclass is always
empty. Frame classes contain only 'default' values or 'demon' values.

• 'If Needed': a demon value that points to a methods that is carried out when a value
for a slot is needed.

• 'If Changed': a demon value that points to a method that is carried out when a value
of a slot is changed.

The methods belonging to 'FrameClass' are the basic dynamic elements of FrameTalk:
they are the procedures that access and manipulate the values of slots. The basis of these
procedures are the ideas of Winston and Hom [32] as formulated in their book on LISP.
The essence of these methods is how to way they find and/or react to values in slots.

Finally a description will be given of the procedure to obtain a value for a slot and what the
result of such a value is:

A·7

FrameTaIk

• If no value is present in the slot first the frameclass is consulted in a 'default' value
exists. If no such 'default' exist the frameclass is searched for an 'HNeeded demon', if
found the matching method is executed and the resulting value is stored in the target
frame.

• If the previous is not successful it will be repeated with the superclass of the frame
class, until either a value is found or the top node is reached.

• Finally the related frame instances are searched for a value. The search is a
breadth-first search through a fictitious tree of related frames. For each related frame,
H no value is found, beside itseH also its frame classes are examined.

• If a value is found and stored, the previous procedure is repeated in search for a
'If Changed demon'.

When a value is found two possible facets may be assigned to it. H a value is inherited
from its superclass the facet 'default' is assigned to it. In all other situations it is assigned
the facet ·value'. A complete listing can be found in the following pages.

Object subclass: IFrameClass
instanceVariableNames:

'name class slots '
classVariableNames:
poolDictionaries:

'Frames

!FrameClass class methods

create: aString class: aFrame slots: aSetofSlots
"creates a frameclass with slots.
adds it to the set FrameClasses"

(aString exists) isNil
if True: [FRAMECLASSES add:((self new) name: aString

"aString!

frames
"answer the set of frameclasses"

"FRAMECLASSES collect: [:frame frame name]!

ppFrames
"pretty prints all frames to the file frames.pp"
loutputl
output := Disk newFile: 'frames.pp'.

output nextPutAll: 'FRAMECLASSES';cr.

class: (aFrame frame)
slots: aSetofSlots)].

FrameClass frames do: [:framel(frame frame) printFrame: output].
output cr;nextPutAll: 'FRAMES';cr.
Frame frames do: [:framel(frame frame) printFrame: output].
output close.
"output!

!FrameClass methods

actCreateDemon: aSymbol for: anObject
"if Added demon that creates the activities which form part of the
production process"
Ilist obname predecessor actnamel

list := (anObject find: 'operationSequence') asArrayOfSubstrings.
obname := anobject name.
predecessor := 'store'.

list do:
[:operationl actname := (obname,operation) asString.

Frame create: actname
class: ('Activity')
frame: obname.self halt.

actname frame slot: 'operation'
value: operation;
slot: 'order'
value: obname;
slot: 'predecessor'
value: predecessor.

predecessor := actnamel.
"'(created activities)'!

addSlot: aString
"add an empty slot to a Frame "

slots at: aString
put: Dictionary new.

"aString!

askDemon: aString for: anObject
"prompt the user for a value of aslot(aString) for self
the result is ALLWAYS a string"

"Prompter prompt: ('what is the value of slot ft' ,astring,'· for Frame ·',(anObject name),'"')
default:"!

compile
"find all information for a frame"

self slots keys do: [:slotlself find: slot].
self printFrame.!

find: aString
"searches beside the class tree also the frame tree"
laValue I

aValue := self slot: aString for: self.
(Inherits := FrameCollection new) addAllLast: self frame.

"aValue notNil
if True: [aValue]
if False: [self slot: astring

value: «self inheritsFrom) find: aString
for: self)}.!

find: aString for: anObject
"answers the value of astring. searcbes tbe class tree"
laValue I

aValue :- self slot: aString for: anObject.

"aValue notHil

frame

if True : (aValue I
if False: [(self inberitsFrom) find: aString

for: anObjectl.!

·stops inheritance"
"nil!

frameClass
"answers tbe frame that is the
supercla5s of self"

if Changed: astring for: anObject
"follow the inheritance chain in search for if Added demons
to execute"

Islotdict selector I

slotdict :- (Iself slots) at: aString
if Absent : []).

slotdict isNil
if False: [selector :- slotdict at: 'lfChanqed'

if Absent: []I
if True: [selector := nil).

selecto!:' notNil
if True: [self pe!:'form: selector with: aString

with: anobject]
if False: ((self inheritsFrom) if Changed: astring

for: anObject].
~selfl

inherits From
" follows the inheritance: first follow the chain
through classes, then the chain through frames, and so on"
Itemp I
temp := self frameClass.

~temp isNil
if True: [Inherits frame)
if False: [temp]. I

multiplyOemon:aSymbol for: anObject

name

"computes the duration of an activity by multiplying the number of products
with the duration of the operation"
Itl t21

tl := «(anObject find:
t2 := «(anobject find:

~(tl * t2) printString. I

'operation')frame) find: 'duration') aslnteger.
'order') frame) find: 'quantity') aslnteger.

"answer the name of the object"

'namel

name: aString class: aFrame slots: aset
"bind the lnstancevariables name, class and slots"

name := aString.
class := aFrame .
slots := (Dictionary new).

aSet do: [:slot I slots at: slot
put: (Dictionary new)].!

opSequenceDelllon: aSymbol for: anObject
"asks for the sequence of operation for a certain productType
if Needed demon for productType"
laString tempI

astring := Prompter prompt: ('What is the operation sequence for ·',(anObject name»)
default:".

AaString asArrayOfSubstrings
. !

perform: aString with: aValue
n Implementation of perform that tests if aString is not nil
else returns nil"

"aStrinq isNil
if False: [self perform: (aString asSymbol) withArquments: (Array with: aValue)}
if True : [}!

perform: aString with: aValue! with: avalue2
" Implementation of perform that tests if aString is not nil
else returns nil"

"astring isNil
if False: [self perform: (astring assymbol) withArguments: (Array with: aValue!

with: aValue2)}
if True: I}!

printFrame
"pretty prints a frame"
Idict slotlist facetsl

Transcript nextPutAll: '-------------------------------------';cr;
nextPutAll: 'name =>';tab;
nextPutAII: (self name);cr;cr;
nextPutAII: 'superclass =>';tab.

self frameClass notNil
if True: {Transcript nextPutAII: (self frameClass name);cr;cr]
if False: II.

Transcript nextPutAll: 'slot facet value';cr;cr.

slotlist := self slots keys.
slotlist do: {:keYITranscript nextPutAII: key.

dict := (self slots) at: key.
facets := dict keys.
facets do: [:facetITranscript tab;tab;nextputAll: facet;

tab;nextPutAII: (dict at: facet);crJ.
Transcript cr;cr1.

Transcript nextPutAll: '-------------------------------------';cr.!

printl"rame: astream
"pretty prints a frame"
Idict slotlist facetsl

astream nextputAll: ,-------------------------------------';cr;
nextPutAIl: 'name =>';tab;
nextputAIl: (self name);cr;cr;
nextPutAII: 'superclass =>';tab.

self frameClass notNil
if True: [aStream nextputAII: (self frameClass name);cr;cr]
if False: II.

astream nextPutAIl: 'slot facet

slotlist := self slots keys.
slotlist do: [:keylastream nextPutAIl: key.

dict := (self slots) at: key.
facets := diet keys.

value';cr;cr.

facets do: l:facetlaStream tab;tab;nextPutAII: facet;

tab;nextPutA11: (dict at: facet);cr).
aStream cr;cr).

aStrealll nextPutA11: '-------------------------------------';cr.1

reasonDemon: aString for: anObject
"heuristic that constructs a sequence"
11 acta actb ord sa sb resa resb(
1 := «Prame al1lnstances) collect: {:framel «frame frameC1ass) - ('Activity' fram.)

and: {(frame find: 'week') - (anObject find: 'week')])
if True: [framell) asSet.

sa := (1 collect: [:frallle I (frame find: 'resource') = 'A' if True: [framEd])
assortedeol1ection: [:a :b ((a find: 'duration') aslnteqer) <= «(b find: 'duration') aslnteqer)].

sb := (1 collect: [:frallle I (frame find: 'resource') - 'B' if True: [frame)))
asSortedeollection: [:a :b I (a find: 'duration') aSlnteqer) <- «b find: 'duration') aslnteqer) I.

resa := orderedeollection new.
resb := Orderedeollection new.

[sa size >=11
whi1eTrue:

[acta := sa removeFirst.
ord := acta find: 'order'.
actb := sb detect: [:act I(act find: 'order') ... ord).
resa add: (Orderedeolleetion with: acta with: aetb).
sb remove: actb.
sb size >=0

if True:
[aetb := sb removeFirst.
ord := actb find: 'order'.
acta := sa detect: ! :act I (act find: 'order') = ord).
resb add: (OrderedCollection with: acta with: actb).
sa remove: acta 11.

[resb size >0]
whileTrue: [resa addLast: (resb removeLast)).

"resa!

rlUloveFrallle
~ removes a frame of class aClass from the list of frames 'Prames"

"PRAMECLASSES remove: self.!

removeSlot: aString
• remove the slot aString from frame self"

(self slots) re.oveKey: aString.
'self slots.!

resPlanDemon: aString for: anObject
"defines the plans for the different resources·
11 W alist blist actl act2 tastae tbs tbe starttillleA starttillleB aNa me bNamel

1 := (anObject find: 'sequence').
w := anObject find: 'week'.
alist := Set new.
blist := Set new.
aName :- ('Aplan',w).
bRaille := ('Bplan',w).
Frame create: aHame

class: 'ResourcePlan';
create: bNallle
class: 'ResourcePlan'.

starttilleA :=0.
starttimeB :=0.

1 do:
[:actlistl actl := actlist at: 1.

act2 := actlist at: 2.
tas := starttimeA.
tae := tas + «actl find: 'duration') asInteger).
starttimeA := tae.
tbs := starttimeB max: tae.
tbe := tbs + «act2 find: 'duration') asInteger).
starttimeB := the.
actl := (OrderedCollection with: (actl name»

add: tas,
add: tae.

alist add: actl.
act2 := (OrderedCollection with: (act2 name»

add: tbs,
add: tbe.

hlist add: act2!.

aName frame slot: 'actlist'
value: alist.

bName frame slot: 'actlist'
value: blist.!

slot: aString
"answer the value of a slot. Does not add values calculated by if Needed
to the slot. Only for Frameclasses·
laSlot anObjectl

anObject := self.
aSlot := (self slots) at: astring

if Absent : [!.

~aSlot at: ' value'
if Absent:
I aSlot at: ' default'

if Absent:
[self perform: (aSlot at: 'If Needed'

if Absent : 11)
with: aString
with: anobjectll!

slot: aString1 facet: aString2 value: aValue
" adds a value."
Idictl
diet := (self slots) at: astringl.
~dict at: aString2

put: aValue.!

slot: astring for: anObject
"answer the value of a slot. Does not add values calculated by if Needed
to the slot. only for Frameclasses·
laSlotl

aslot := (self slots) at: aString
if Absent: II.

AaSlot notNil
if True: [aSlot at: 'value'

if Absent:
[aSlot at: 'default'

if Absent:
[self perforll: (aSlot at: ' If Needed'

if Absent: [I)
with: aString
with: anObject)))

if False : I)!

slot: astring value: aValue
"adds aValue to slot aString. executes if Changed demons"
laSlot t21

aSlot := «self slots) at: aString

aSlot notNil
if True: [aSlot

if Absent : [I).

at: 'value'
put: aValue.

(Inherits := FralleCollection new) addAIILast: self frame.
t2 := Inherits.
self if Changed: aString for: selfl.
AaValue!

slots
"answer the name of the slots·

FrameClass subclass: 'Frame
instanceVariableNames:

'frame'
classVariableNames: "
poolDictionaries:

'Frames '

IFrame class methods

create: aString class: aFrame
"create a frame called aString of class aFrame.
Add slots to the frame given by the class description"

(astring exists) isNil
if True: [FRAMES add:((self new) name: astring

A(astring,' of class: " aFrame)1

create: aString class: aFrame frame: aStringFrame
"create a frame called aString of class aFrame.

class: (aFrame frame)l].

Add slots to the frame given by the class description"

(astring exists) isNil
if True: [FRAMES add:((self new) name: aString

class: (aFrame frame)
frame: (aStringFrame frameill.

A(aString,' of class: aFrame)1

frames
"answer the set of frameclasses'

AFRAMES collect: {:frame frame name]1

framesOfClass: aString
"answer the set of frameelasses"

AFRAMES collect: [:framelframe frameClass name = aString
if True: (frame name)j!

IFrame methods

frame
"answers the set of related frames'

Aframe!

frame: aString
"bind the related frame to the variable 'frame' "

frame addLast: (aString frame).
AaStringl

name: aString class: aFrame
"instantiate the vars name, class and slots"

frame := FrameCollection new.

self name: aString

class: aFra.e
slots: (aFra.e slots) keys!

name: astrin9 class: aFrame frame: aStrinq2
"instantiate the vars name, class, frame and slots·

frame := Framecollection with: (aStrinq2 frame).

self name: aStrinq
class: aFralie
slots: (aFrame slots) keys!

printFrame
"pretty prints a frame"
Idict slotlist facetsl

Transcript nextPutAll: '-------------------------------------';cr;
nextPutAll: 'name =>';tab;
nextPutAll: (self name);cr;cr;
nextPutAll: 'superclass a>';tab;
nextPutAII: «self frameClass) name);cr;cr;
nextPutAII: 'frames =>',tab.
self frame notNil

if True: [self frame do: [:frameITranscript nextPutAIl: «frame name),', ')IJ
if False: [J.

Transcript cr;cr;
nextPutAll: 'slot

slotlist := self slots keys.

facet value';cr;er.

slotlist do: [:keytTranseript nextPutAll: key.
diet := (self slots) at: key.
facets := diet keys.
facets do: [:facetITranscript tab;tab;

nextPutAIl: facet;tab;
nextPutAll:«dict at: facet) printStrinq); crl.

Transcript cr;cr).
Transcript nextPutAII: ,-------------------------------------';cr.!

printFrame: aStreali
"pretty prints a frame"
Idiet slot list facetsl

aStream nextPutAll: ,-------------------------------------';cr;
nextPutAll: 'name a>';tab;
nextPutAll: (self name);er;er;
nextPutAII: 'superclass =>';tab;
nextPutAIl: ((self frameClass) na.e);cr;cr;
nextPutAIl: 'frames =>';tab.
self frame notHil

if True: [self frame do: [:fra.elaStream nextPutAll: «frame nalle),', ')11
if False: [I.

astream crIer;
nextPutAIl: 'slot

slotlist := self slots keys.

facet

slotlist do: [:key I astrea.m nextPutAll: key.

value'lcr;er.

diet := (self slots) at: key.
facets := diet keys.

facets do: [:facetlastreaa tab,tab;
nextPutAll: facet;tab;
nextPutAll: «diet at: facet) printstringl; crl.

astream cr;cr].
aStream nextPutAll: '-------------------------------------';cr.!

re.ovel"rall.e
" removes a frame of class aClass from the list of frames 'Frames'"

FRAMES remove: self.!

removeSlot: aString
" remove the slot aString from frame self"

(self slots) removeKey: astring_
'self slots.!

slot: aString for: anObject
"answer the value of a slot.Adds values calculated by ifNeede
to the slot."
jaSlot aValuej

aSlot := (self slots) at: aString
if Absent: [I.

"aSlot notNil
ifTl:ue: [Aaslot at: 'value'

if Absent:
[aSlot at: 'default'

if Absent:
[aValue := self perform: (aSlot at: 'If Needed'

if Absent: [I)

if False: [I!

with:aStl:ing
with: anObject.

AaValue notNil
if True: [aSlot at: aString

put: aValue)
if False: [J J I)

OrderedCollection variableSubclass: IFrameCollection
instanceVariableNa.es: II

classVariableNames:
poolDictionaries:

IFra •• Collection class .ethods

!FrameCollection methods !

find: astrinq for: anobject
"searches a set of frames for values of the slot: aString"
laFrame aNewSet aValuel

self size) 0
if True: (aFrame := self removeFirst.

aNewSet := self.
'aFrame notNil

if True: [aValue := aFrame find: aString]
if False: [aNewSet find: aString for: anObjectl]

if False : (aValue := nil].

'aValue notNil
if True : [aValue]
if False: [aNewset find: aString for: anobject]!

frame
"answers the first element of a FrameCollection: a Frame"
I temp t21
self size = 0

if False: [temp := self removeFirst.
(temp frame) notNil
if True: [Inherits addAllLast: (temp frame copy)]]

if True : ["nil].

'temp!

if Changed: aString for: anObject
"searches a set of frames for values of the slot: aString"
laFrame aNewSet aValuel

self size > 0
if True: [aFrame := self removeFirst.

aNewSet := self .
'aFrame notNil

if True: [aValue := aFrame find: aString)
if False: {aNewSet if Changed: astring for: anObject]]

if False : [aValue := nil I.

'aValue DotNil
if True: [aValue]
if False: [aNewSet ifChanqed: astring for: anObject)!

FRAMECLASSES

name => ProductType

superclass => Workshop

slot facet value

operationSequence If Needed askDemon:for:

name => Activity

superclass => Workshop

slot facet value

predecessor

week

operation

order

duration If Needed multiplyDemon:for:

name => ResourcePlan

superclass => WeekPlan

slot facet value

actlist

resource

name => WeekPlan

superclass => Plan

slot facet value

sequence If Changed resPlanDemon:for:
If Needed reasonDemon:for:

week If Needed askDemon:for:

name => Operation

A-16

superclass => Yorkshop

slot facet value

duration If Needed askDemon:for:

resource If Needed askDemon:for:

name => Order

superclass => Yorkshop

slot facet value

productType If Changed actCreateDemon:for:
If Needed askDemon:for:

quantity If Needed askDemon:for:

week If Needed askDemon:for:

name => Plan

superclass => Yorks hop

slot facet value

activity

resource

name => Resource

superclass => Yorkshop

slot facet value

capac! ty If Needed askDemon:for:

name => Vorkshop

superclass => slot facet value

A-17

FRAMES

name => Order3

superclass => Order

frames => P4 t

slot facet value

productType value 'P4'

quantity value '100'

week value , l'

name => Order2

superclass => Order

frames => P2 t

slot facet value

productType value 'P2'

quantity value '75'

week value '1'

name => P8

superclass => ProductType

frames =>

slot facet value

operationSequence value 'Opa6 Opb4'

name => Order60pb4

superclass => Activity

frames => Order6, Opb4t

slot facet value

A-18

predecessor value 'Order60pa1'

week value ' l'

operation value 'Opb4'

order value 'Order6'

duration value '450'

name => Order30pa4

superclass => Activity

frames => Order3, Opa4,

slot facet value

predecessor value 'store'

week value ' l'

operation value 'Opa4'

order value 'Order3'

duration value '500'

name => Bplan1

superclass => ResourcePlan

frames =>

slot facet value

resource

actlist value Set(OrderedCollection('Order50pb4' 1725

A-19

2025) OrderedCollection('Order20pb2' 600 9]5)
OrderedCollection('Order40pb4' 300 600)
OrderedCollection('Order60pb4' 975 1425)
OrderedCollection('Order10pb2' 100 225)
OrderedCollection('Order30pb4' 1425 1725))

name => Opa6

superclass => Operation

frames =>

slot facet value

duration value '6 '

resource value , A'

name => P3

superclass => ProductType

frames =>

slot facet value

operationSequence value 'Opa3 Opb3'

name => Order20pa2

superclass => Activity

frames => Order2, Opa2,

slot facet value

predecessor value 'store'

week value '1'

operation value 'Opa2'

A-20

order value 'Order2'

duration value '300'

name => OrderlOpa2

superclass => Activity

frames => Order!, OpaZ,

slot facet value

predecessor value 'store'

week value '1'

operation value 'Opa2'

order value 'Order1'

duration value '100'

name => Opa2

superclass => Operation

frames =>

slot facet value

duration value , 4'

resource value I A'

name ""> Opa5

superclass => Operation

A-21

frames =>

slot facet value

duration value , l'

resource value , A'

name => Order4

superclass => Order

frames => PIO,

slot facet value

productType value ' P10'

quantity value '100'

week value , If

name => P7

superclass => ProductType

frames =>

slot facet value

operationSequence value 'OpaS Opb3'

name => Order6

superclass => Order

frames => Opal, Order6,

slot facet value

productType value 'P10'

quantity value '150'

week value '1'

name => Opal

superclass => Operation

frames =>

slot facet value

duration value '2'

resource value , A'

name => Opa4

superclass => Operation

frames =>

slot facet value

duration value , 5'

resource value , A'

name => Order5

superclass => Order

frames =>

slot facet value

productType value ' P10'

quantity value '100'

A-23

week value , l'

name => P2

superclass => ProductType

frames =>

slot facet value

operationSequence value 'Opa2 Opb2'

name => Opa3

superclass => Operation

frames =>

slot facet value

duration value , 3'

resource value , A'

name => Aplan1

superclass => ResourcePlan

frames =>

slot facet value

resource

actlist value Set(OrderedCollection('Order20pa2' 300
600) OrderedCollection('Order40pa1' 100 300)
OrderedCollection('Order60pa1' 600 900)
OrderedCollection('Order10pa2' 0 100)
OrderedCollection('Order30pa4' 900 1400)
OrderedCollection('Order50pa1' 1400 1600))

A-24

name => Orderl

superclass => Order

frames => P2,

slot facet value

productType value ' P2'

quantity value '25'

week value , l'

name => Opb4

superclass => Operation

frames =>

slot facet value

duration value , 3'

resource value 'B'

name => WeekPlanl

superclass => WeekPlan

frames =>

slot facet value

sequence value OrderedCollection(OrderedCollection(a
Frame a Frame) OrderedCollection(a Frame a Frame)
OrderedCollection(a Frame a Frame) OrderedCollection(a Frame a
Frame) OrderedCollection(a Frame a Frame) OrderedCollection(a
Frame a Frame))

week value , l'

A-25

name => P6

superclass => ProductType

frames =>

slot facet value

operationSequence value 'Opal Opb3'

name => Order30pb4

superclass => Activity

frames => Order3, Opb4,

slot facet value

predecessor value 'Order30pa4'

week value '1'

operation value 'Opb4'

order value' Order3'

duration value '300'

name => OrderSOpb4

superclass => Activity

frames => OrderS, Opb4,

slot facet value

predecessor value 'OrderSOpal'

week value , l'

A-26

operation value 'Opb4'

order value 'OrderS'

duration value , 300'

name => Order40pb4

superclass => Activity

frames => Order4, Opb4,

slot facet value

predecessor value 'Order40pa1'

week value '1'

operation value 'Opb4'

order value 'Order4'

duration value '300'

name => Pl

superclass => ProductType

frames =>

slot facet value

operationSequence value 'Opal Opb1'

name => Order20pb2

superclass => Activity

frames => Order2, Opb2,

A-27

slot facet value

predecessor value 'Order20pa2'

week value '1'

operation value 'Opb2'

order value 'Order2'

duration value '375'

name => OrderlOpb2

superclass => Activity

frames => Order1, Opb2,

slot facet value

predecessor value 'OrderlOpa2'

week value '1'

operation value 'Opb2'

order value 'Order1'

duration value '125'

name => Opb3

superclass => Operation

frames =>

slot facet value

duration value '2'

A-28

resource value , B'

name => P5

superclass => ProductType

frames =>

slot facet value

operationSequence value 'Opa3 Opb2'

name => Order40pa1

superclass => Activity

frames => Order4, Opal,

slot facet value

predecessor value 'store'

week value '1'

operation value 'Opal'

order value 'Order4'

duration value '200'

name => Order60pal

superclass => Activity

frames => Opal, Order6,

slot facet value

predecessor value 'store'

A-29

week value '1'

operation value 'Opal'

order value 'Order6'

duration value '300'

name => OrdersOpa1

superclass => Activity

frames => OrderS, Opal,

slot facet value

predecessor value 'store'

week value '1'

operation value 'Opal'

order value 'OrderS'

duration value '200'

name => Opb2

superclass => Operation

frames =>

slot facet value

duration value , 5'

resource value , B'

A-30

name => P9

superclass => ProductType

frames =>

slot facet value

operationSequence value 'OpaZ Opb3'

name => Opbl

superclass => Operation

frames =>

slot facet value

duration value , 1 '

resource value , Bf

name => PlO

superclass => ProductType

frames =>

slot facet value

operationSequence value 'Opal Opb4'

name => P4

superclass => ProductType

frames =>

slot facet value

operationSequence value 'Opa4 Opb4'

A-31

	Voorblad

	Acknowledgements

	Abstract

	Preface

	Table of contents

	Introduction

	Part 1

	Part 2

	Part 3

	References

	Appendix

