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Agents in Operating Systems

‘Since the beginning of this century, people have dreamed about the new
companions that they might create with new technology. Some of those dreams
are nightmares about malevolent computers enslaving mankind as techno-
evolution catapults them far beyond our puny carbon-based brains. Most are
wistful longings for new helpers, advisors, teachers, playmates, pets or friend. But
all of the computer-based personae that weave through popular culture have one
thing in common: they mediate a relationship befween the labyrinthine precision of
computers and the fuzzy complexity of man.’

Brenda Laurel,
excerpt from ‘Metaphors with Character

(P) December 2, 1994 - June 6, 1995
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Summary

At the University of Technology in Eindhoven, The Netherlands, the last six months in
the curriculum of the Electrical Engineering study are reserved for a project
supervised by members of the scientific staff. Upon completion of the project, a thesis has
to be written reflecting the work the student has done during this time interval. Upon
approval of the curriculum, the project and the thesis, the author will obtain the Dutch title
Ir. (Ingenieur) (comparable to a Master Degree).

This is the thesis of such a project. The project bears the title “Agents in Operating
Systems”, the main goal of the project being the determination of what agents exactly are,
how they are to be used (particularly in Operating Systems) and designed. The thesis is
presented as a tutorial. The reader who is not completely familiar with terms such as
artificial intelligence, learning processes and operating systems beforehand, will be
supported with short overviews of these subjects. Because the subject of agents is so multi-
faceted, that is, the subject is related to not only computer science, but also sociology,
psychology and other disciplines, the author has chosen to include these overviews in the
thesis.

Agents are smart pieces of software who can reflect and execute (successfully or
unsuccessfully) the wishes of its creator, the creator being a robot, an operating system or
even a computer user. The agent may be given a task, such as the automatic retrieval of
documents, which, for example, are relevant to a project, that a computer user is currently
working on, from any FTP site in the world. The agent tries to accomplish its given task
completely independent of anything but its own internals.

The thesis starts off with a short introduction to artificial intelligence, explaining the
position of agents in this field of science. Some examples are given in which agents may
take a key role. Some properties of agents, such as their pro-activeness and their
successfulness are discussed. Also, a definition of an agent is presented, hopefully
satisfying all disciplines involved in the study of agents.

The actual construction of agents has also been studied: the specification and the
implementation of agents and also the languages with which the agents can communicate
with its creator or even other peers (a multi-agent system). We shall also take a look at the
environment in which the agents may reside, in particular the operating system
environment. Subjects such as how the requirements and the architecture should be like for
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an environment in which agents are supported, are also discussed. The design of an agent
operating system is clarified by introducing agents into an existing conventional operating
system (UNIX, in this case).

So far, it is has been assumed that the agents possess knowledge, that was introduced upon
their creation, with which to complete their (initial) task. The most important issue of an
agent is however the ability to learn. An agent may even gain so much knowledge that it
outgrows the knowledge beyond that possessed by its creator. We shall be examining
some possibilities on how an agent can gain its knowledge. The main subject of this study
will be reinforcement learning, in which the environment gives feedback to the agent by
sending rewards or punishments according to the task the agent is currently executing.
With an experiment of robots, which possess the ability to learn, the reinforcement
learning process is clarified.

Lastly, some conclusions are drawn. By looking at the scarce material that is currently
available on agents, the conclusion can be drawn that the main software houses keep their
knowledge on agents to themselves. However, if we look at the agents that are supposedly
implemented in programs like Microsoft’s Excel 5.0 or Hewlett Packard’s NewWave, it
may be possible that they do not even possess such knowledge, because the ‘agents’ are
mostly nothing more than hidden macro’s and do not possess intelligence as such. One
thing that is for sure is that there is a lot of profit involved with agents, so it is not that
surprising that the software houses keep their knowledge secret, if they do possess it at all,
that is.

From the material that was available, mainly other papers of colleagues throughout the
world, it was clear that, although difficult to design, especially the learning processes,
agents may revolutionize the way in which we use the computer. By introducing agents
into an operating system the computer user does not need to have the knowledge of that
operating system to operate his/her computer as is the case with conventional operating
systems. If a user wants to free additional harddisk space, he simple creates an agent with
this task, and the agent may then move files, the user probably does not want anymore, to
another destination, or delete those files, after making a backup of them; the agent is
supposedly reflecting the user’s brain after all, so it will know whether the files are of
interest or not. Also the management of a network system can benefit greatly from agents,
such as agents who can automatically configure a network system or reduce overhead
traffic between a source and destination node by handling this kind of information in the
destination node itself.

Eindhoven,
June 6, 1995
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INTRODUCTION

1. Introduction

1.1 Attificial Intelligence in short

he brain. Humankind has been intrigued by its most complex organ, which

distinguishes humans from other beings, for centuries. The brain has been and still is
the most researched part of the human body, yet the least understood. Now in this day and
age we are trying to clone ourselves by electronic means via computers, also known as
Attificial Intelligence.

Artificial Intelligence (Al) is currently almost three and a half decades in research. It's only
now that we are beginning to grasp the full potential of Al and its effect on society as a
whole. Al can be seen as part of the Information Revolution, which is currently well
underway in its first stage. In retrospect, the Industrial Revolution would be considered a
petty event indeed, when compared to the Information Revolution.

The object of Al as it was introduced in 1961, was to enable a computer to perform the
remarkable functions that are carried out by human intelligence. It was thought feasible
that at the end of the 1960's computers would be available with the intelligence of the
human species by the development of systems capable of playing games such as chess,
proving of mathematical theorems, solving problems written in plain English, etc.

However, it was eventually realized that such objectives were not at all to be attained that
soon, because of the rapid increase in data and procedures needed for such a level of
intelligence. The computers were at that time simply not able to cope with such massive
quantities of information, let alone the speed that was necessary to handle the information.

The introduction of the micro-processor computer resulted in an enormous boost of the
possibilities in creating AI. However, computers nowadays still do not posses enough
processor-speed and memory capacity to be able to emulate the human brain.
Unfortunately this is not the only problem to tackle: we still do not understand how the
human brain really works; how the different parts of the brain interact with each other. It
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was only recently discovered where in the brain the different processes, such as
imagination and movement, take place and information, such as a person’s character, is
stored. But how these functions are established is still not understood. We do know
however that neurons, certain chemicals and electricity are involved. Yet another problem
arises to simulate the human brain, being that the brain usurps such a massive amount of
energy for transformation into electricity (20% of the food we eat) that a laptop-computer
would in comparison need half the output of a standard power-plant, if the computer were
able to emulate the human brain with the current computer technology [BBC].

Artificial Intelligence itself is literally still in its infancy, but with the tools available and
the many researches that are currently being executed, it’s probably not that far away from
its adolescence stage. We must however first have to understand the human brain, how the
different regions interact with each other, before we can develop even a remote
resemblance of our brain with electronic means.

1.2 Distributed Artificial Intelligence

Most of the computer systems we use now do not operate as a stand-alone system. Most of
them are connected to some kind of computer network such as a LAN or a WAN. We call
these computer systems distributed systems; the resources of the network are distributed
among its connected computers. Those systems require an operating system that can
support the distribution of said resources.

Popular operating systems, which support this kind of sharing of resources, are UNIX,
0S/2, Windows NT and Windows (for Workgroups). For any environment to be future-
proof, one thing it must definitely have is support for multiple users distributed over
multiple machines.

The arrival of distributed systems also meant a new discipline in the field of Artificial
Intelligence: Distributed Artificial Intelligence (DAI). This kind of artificial intelligence is
especially designed for cooperation with distribution supported environments. The world
of DAI can be divided into three primary arenas:

1. Distributed Problem Solving (DPS): considers how the work of solving a particular
problem can be divided among a number of modules, or ‘nodes’, that cooperate at the
level of dividing and sharing knowledge about the problem and about the developing
solution.

2. Parallel AI (PAI): is concerned with developing parallel computer architectures,
languages and algorithms for Al.

3. Multi-agent systems (MAS): research is concerned with coordinating intelligent
behaviour among a collection of (possibly pre-existing) autonomous intelligent
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‘agents’1 how they can coordinate knowledge, goals, skills and plans jointly to take
action or to solve problems. The type of the agents’ environments DAI deals with are
relatively simple and have low complexity in that they feature no ‘noise’ (i.e. distorted
information received by the agent from the environment or corrupted information sent
by the agent to the environment due to external influences) or uncertainty and can be
accurately characterized. As we shall see in section 3.2, this is not at all true. The more
agents we create in a certain environment, the noisier and more uncertain the
environment will become.

This thesis is clearly not a review of DAI, although the material discussed in herein
unarguably falls under the banner of DAI. The domain of classical DAI (mostly DPS and
PAI) is avoided. For reviews of these areas, see [Bond]. In this report we shall study a part
of the latter arena: agents.

The idea of agents is simple: create an electronic resemblance of the user, and let it make
decisions (for the user) just as the user would do. An agent is in fact an electronic clone of
the user’s brain. It’s thus an agent for the user, the reason why this term was chosen.
Another often-used term, and probably the best, is Personal Digital Assistant (PDA). We
can carry the train of thought even further by replacing the user in the above-mentioned
sentence by an application, an operating system or even a robot, thus creating operating
system agents.

Artificial Intelligence

Figure 1-1: Placement of agents in the field of Artificial Intelligence

1 . . . . . .
For now consider an agent to be a computational process with a single locus of control and/or ‘“intention’.
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In Figure 1-1 the placement of agents in the field of Al is shown. The presence of
distributed intelligence does NOT imply that there must be a distributed system present.
There may be multiple agents in some local, i.e., not distributed, system. Those agents
however, can be considered distributed in that system, and have distributed intelligence, as
such. This is the reason why agents are placed within the field of distributed intelligence in
this figure.

Because of the restrictions mentioned earlier it should be obvious that agents as they are
described above - clones of the human brain - will not be realized in the near future.
However, if we let agents be ‘clones’ of some application or operating system instead of a
computer user, it suddenly becomes feasible. Indeed, there are already applications and
operating systems that do support some kind of agent-like software, for example Microsoft
Excel 5.0’s Wizard function and Hewlett Packard’s NewWave [Vizard]. They are not
intelligent as such - they often consist of nothing more than a couple of macro descriptions
- but they are certainly the first step towards the ultimate goal of agents: to clone one’s self
(i.e. the computer user) or even go beyond the intelligence of the user by introducing
learning processes to the agents.

1.3 Structure of this report

In chapter 2 agents will be discussed in general. Because agents have only recently
emerged, several different definitions and interpretations can be found in the few articles
that are now available. I have tried to combine, expand and polish several definitions in
what I believe to be the best approach in defining agents and how they are to be
interpreted. In the first section several implementation examples of agents are given
followed by a discussion of the notion, different types and definition of agents. This seems
a rather odd sequence, but it will become more obvious soon enough why this strategy was
chosen.

We shall see that there are essentially two types: agents used in operating systems, i.e.,
agents working on a local environment (including robotics operation systems) and the
agents used in a network, i.e., agents working in a distributed environment.

Agents that are essentially used in distributed environments will not be covered in this
thesis, because our primary concern is the study of agents in a local environment.

In chapter 3 we embark on a more detailed look at the properties of agents, and how we
might go about constructing them. We shall see that the construction of agents can be
divided into three key issues: agent theories, agent architectures and agent languages.
These issues will be explained separately in the first three sections of this chapter. This
chapter is by no means a full account of a construction scheme for agents. Especially the
first stage (agent theories) contains an enormous amount of behavioural science
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(psychology and sociology). As this is a technical thesis, the issue of the behavioural
properties has been reduced to the bare minimum, but just enough to further embark on the
subject of agents without much difficulty.

In chapter 4 the main subject will be discussed: Agents in Operating Systems. In the first
section we shall take a short look at operating systems in general. Some terms, which are
used throughout this chapter, are also presented. The introduction is followed by a
description of an OS agent, including the advantages and drawbacks of script files versus
OS agents and communication with OS agents. Also, an example of a framework for OS
agents will be discussed. The framework described in this section is an already existing
conventional operating system (UNIX), to which agent support has been added. The
purpose as to why an existing operating system is chosen and not a newly designed agent
system is also discussed.

In chapter 5 we shall be venturing on the path of learning capabilities of operating system
agents. In the introduction we shall ask (and answer) ourselves the question whether it is
possible to create a fully operable operating system (and agents) from a ‘dumb’ operating
system (i.e., without any ‘implemented’ knowledge at the time of the operating system
agent’s creation). Some examples will be given as to why learning is so important to
agents. An in-depth review of the most commonly used learning process, reinforcement
learning, shall also be presented here. The learning process will be clarified by an
experiment with robots, which possess some learning capabilities. Furthermore we shall
look at the modeling of multi-agent domains, the Markovian Decision Process, and also its
shortcomings in such environments.

Finally some conclusions will be presented in chapter 6.
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2. Agents in general

2.1 Whatis an agent anyway?

Before actually describing what an agent exactly is and does, we shall first look at some
examples of what agents might do in the environment they are residing in. So,
consider these four events occurring in some near future:

1. In the country of Mithgar, the key air-traffic control systems fail to operate, due to
some bad weather conditions. Luckily, the neighbouring countries Xian and Kelewan
have computerized air-traffic control systems between themselves to track and deal
with all affected flights, and the potentially disastrous situation passes without major
incidents.

2. Upon logging in to your computer, you are presented with a list of e-mail messages,
sorted in order of importance by your personal digital assistant (PDA). You are then
presented with a similar list of news articles; the assistant draws your attention to one
particular article, which describes a new viewpoint on work which is very close to your
own. After an electronic discussion with a number of other PDA’s, your PDA will
have obtained that relevant technical report for you from an FTP-site, an HTTP-site
etc., in the anticipation that it will be of your interest.

3. You are editing a file. Suddenly your PDA requests your attention: an e-mail message
has arrived. It is from an important conference you recently sent a paper to. It contains
a notification of that particular paper. Your PDA predicts that it will be of your
interest, and you should be notified immediately. The message states that the paper has
been accepted. Without any prompting, your PDA will start to arrange travel
arrangements for that conference by consulting a number of databases and other
network information resources. It will look for a flight from the nearest airport to the
airport nearest the conference, taking a flight approximately twelve hours before the
start of the conference, checking the availability of a room in a hotel near the World
Trade Center, where the conference will be held. Upon completion of its quest the
PDA will present you with a list with the available travel options. When one
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arrangement is selected by the user, the PDA will arrange all the necessary bookings
and give you an acknowledgement when everything is booked according to plan.

4. You are trying to format a group of spreadsheet cells or locations in a particular
manner. If you are not adept at using the spreadsheet package, you might try to format
each cell individually. The spreadsheet package detects your unproductive manner of
formatting and notifies you that there is a faster way of formatting a group or it might
even take the next steps automatically.

Although the present computer systems are not able to execute the processes (yet) as the
given events, research is underway to let computer systems execute exactly as described
above. The keyword here is agents (also called PDA’s, Wizards, Coaches, automated
assistants or Cyberbutler). For those anticipating a definition of an agent right away will
have to exert some patience. It is very difficult to give a general definition of an agent
because there are so many fields of science involved in the research of agents such as
computer science, sociology and biology. Therefore only a description will be given now
and towards the end of this section an attempt will be made to give a generally satisfying
definition of an agent, when the reader will be more familiar with the subject matter.

An agent acts on behalf of his ‘Master’, the ‘Master’ being a human being, a computer
process, an operating system or even other agents. The systems in which the latter agents
reside are known as multi-agent systems. An agent is a piece of software which runs
autonomous. It takes action which appropriately represents the interest of others; it must
be robust and capable of securely handling private information (a heavy point of
discussion, which we shall look at more closely in section 3.3.1); it tends to be highly
active (most of the time it communicates with its environment, other agents or even human
beings) and is an active part in the computational space, i.e. it reacts to and changes the
overall system state.

The reader may wonder why a definition is so badly needed: after all, if many people are
developing interesting and useful applications, it hardly matters that they do not agree on
potentially trivial terminological details. This practice is however dangerous because
unless this issue is not addressed, the term agent might become a so-called ‘noise’ term,
subject to both abuse and misuse. This will in turn produce much confusion in the research
community. I feel therefore the need to discuss this issue.

2.2 Notions of agents

There are globally two different approaches to be distinguished if we consider the term
agent: one used by the non-Al scientists, such as computer scientists, which shall be called
the weak notion of an agent (section 2.2.1), and the stronger, more contentious viewpoint
of the Al scientists, which shall be called the strong notion of an agent (section 2.2.2). If
we look at the subject matter studied in this thesis, we can conclude that the weak notion
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of an agent on itself is sufficient, but to give a complete picture of the notion of an agent,
the strong notion will also be discussed.

2.2.1 Weak notion of Agents

The weak notion of an agent is perhaps the most general way in which the term agent is
used to denote a hardware or, more usually, a software-based computer system enjoying
some of the properties as described in section 2.1. The properties are:

e autonomy: agents can operate without direct intervention of humans, applications,
operating systems and other such ‘masters’, and have some kind of persistent control
over their actions and internal state.

o social ability: agents are most of the time communicating with its environment, human
beings, other agents etc. The interaction between these entities is carried out via a
communication language, called an agent communication language [Genesereth].

e reactivity: agents can perceive their environment, such as the physical world, a user via
a graphical user interface, a collection of other agents, INTERNET or possibly a
combination of these. They respond timely to changes that occur in these
environments.

e pro-activeness: agents do not simply act on changes in said environments, they exhibit
goal-directed behaviour by taking the initiative.

The reader who is familiar with the UNIX environment may conceptualize the properties
listed above as a UNIX-like software process. It is therefore not surprising that the weak
notion of an agent is held high by the mainstream computer scientists. The agent is viewed
as a self-contained, concurrently executing software process, that encapsulates some state
and is able to communicate with other agents via message passing. People familiar with
object-oriented programming (OOP) will immediately recognize this agent software
process to be an object in an event-driven operating system. Indeed object-oriented
programming seems to be an almost inevitable subject in the agent matter, as we shall see
later on.

In the emerging discipline of agent-based software an agent is generally described as:

‘Agents communicate with their peers by exchanging messages in an
expressive agent communicating language. While agents can be as simple
as subroutines, typically they are larger entities with some sort of persistent
control.” [Genesereth]
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Although this quotation states that agents do not have to be objects, but can also be
implemented by conventional subroutines (procedures and functions), it is considered bad
practice. Moreover, an object-oriented environment already has the necessary event-
message control implemented, which is not the case for the conventional approach.

2 . . . L. . .
For softbots” a similar description is given:

‘A softbot is an agent that interacts with a software environment by issuing
commands and interpreting the environment’s feedback. A softbot’s
effectors are commands (e.g. UNIX shell commands such as mv or
compress) meant to change the external environment’s state. A softbot’s
sensors are commands (e.g. pwd or 1ls in UNIX) meant to provide .
information’ [Etzioni]

OOP seems to play a very important role in agent-programming, indeed. Agents seen in
this way are very much like OOP-objects which can communicate via so-called event-
messages with their peers. The only difference is that agents are pro-active, and OOP-
objects are not: an OOP-object cannot make decisions for itself. It then seems almost
unavoidable that agents have to be run in event-driven object-oriented operating systems
(such as Windows). As we shall see later in section 3.3, there do exist operating systems
with agents that do not support object-oriented programming but work with the
conventional procedural structures, but the implementation of such a system will be much
more costly than the object-oriented one, because an event-message system has to be
implemented whereas in OOP environments, this message system already exists.

2.2.2 Strong notion of Agents

For scientists working with Al, the term ‘agent’ has a stronger and more specific notion
than the one discussed in the previous section. This group of researchers believe an agent
to be a computer system that, in addition to having the properties identified above, is either
conceptualized or implemented using concepts that are more usually applied to human
beings, such as mentalistic and emotional notions. The general properties in the strong
notion of agents are:

o Successful: An agent is successful if it accomplishes the specified task in the given
environment.

e Capable: An agent is capable if it possesses the effectors needed to accomplish the
task.

2 A softbot is a software agent used in a robot operating system.
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o Perceptive: An agent is perceptive if it can distinguish salient characteristics of the
world that would allow it to use its effectors to accomplish the task.

e Reactive: An agent is reactive if it is able to respond sufficiently quickly to events in
the world to allow it to be successful.

¢ Reflexive: An agent is reflexive if it behaves in a stimulus-response fashion.

Other possible properties might be mobility (the ability of an agent to move around an
electronic network), veracity (the assumption than an agent will not knowingly
communicate false information) and rationality (the assumption that an agent will act in
order to achieve goals, and will not act in such a way as to prevent its goal being achieved)
and many others, depending on how the framework will be defined. As we shall see in
chapter 3, any formal definition of agent properties must include a framework for
describing an agent, a task and an environment.

2.3 Different types of Agents

The class of agents can be divided into three different kinds, corresponding to their area of
operation. These are:

1. Agents used on networks
2a. Agents used in Operating Systems
2b. Agents used in Robotics.

However, if the distinction is made on the operation area of the agent’s master, it becomes
very confusing in which group an agent belongs. Take for example an agent that filters e-
mail: it immediately discards messages which (supposedly) aren't of any interest to the
computer-user, and passes important messages through to the user. Is this a network agent
(it is a recipient of network information) or is it an operating system agent (it helps
preserve resources, in this case memory for buffering the e-mail information)? It is
therefore more obvious to distinguish agents by the area in which they operate. Although
this distinction is more obvious, oftentimes the agents are still separated by their master’s
operation area in the currently available literature. In this report we choose for the first
approach. Note that the groups still remain the same in this latter case. Instead agents are
now distinguished by the operation area of the agents themselves, not by the operation area
of their master.

Also note that the agents do not differ in any way concerning the properties as mentioned
in section 2.2. The only difference is that the agents in the first group act on a distributed
system and that the agents in the second group act on a local system. We can therefore
divide agents in another way: agents used in distributed systems and agents used in local
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systems. The (already vague) boundary between operating system agents and robot agents
has then disappeared completely.

Other divisions, such as a division on properties of an agent, or a division on tasks of an
agent, are also possible. These divisions are actually rarely used, so we stick to the
division of agents into network agents and operating system/robot agents.

The agents in the first group are referred to in the literature as intelligent (network) agents.
These kind of agents will not be discussed in this thesis. Because of time constraints the
choice has been made to study agents in a local environment only. The reason the latter
two are combined into one group is that the agents used in Robotics are essentially the
same as the agents used in Operating Systems because the software on which the ‘robots’
operate are basically Operating Systems. The agents in the second group are often referred
to as software assistants or software agents. In case of a robot existing as a piece of
software only, the agents are referred to as softbots. These kind of agents, being the main
subject of this thesis, will be discussed more elaborately in chapter 4.

2.4 Definition of an Agent

We are now finally in a position to give a generally satisfying definition of an agent.
Neither is nor should this definition be the formal definition for the simple reason that
there isn’t one yet and there probably will never be one, because there are too many
different sciences involved, each having their own interpretation of an agent.

Definition 2-1: An agent

An agent is an autonomous software component with some sort of persistent control, and
behavioural properties, enabling it to accomplish a certain specified task (or set of tasks)
on behalf of a master - being a computer-user, an operating system, a robot or an
application - usually done by communicating with its environment, Master or other agent
peers via the exchange of messages in an expressive agent communication language .
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3. Constructing agents

Now that we have at least a preliminary understanding of what an agent is, we can
embark on a more detailed look at their properties, and how we might go about
constructing them. We can identify three key issues in the construction of agents:

1. Agent theories are essentially specifications: It addresses questions as: How are we
to conceptualize agents? What properties should agents have? How are we going to
formally represent and reason about these properties?

2. Agent architectures represent the move from specification to implementation. It
addresses questions as: How are we to construct computer systems that satisfy the
specified properties for agents? What software and/or hardware structures need to
be used? What is an appropriate separation of concerns?

3. Agent languages are programming languages that may embody the various
principles of agents. It addresses questions as: How are we to program agents?
What are the right primitives for this task? How are we to effectively compile or
execute agent programs?

These three issues will be looked at more closely in the next three sections. This chapter
does not have the intention that the reader can create his/her own agents after reading these
sections; it is intended as a global overview of which steps have to be taken in the
construction of agents. We will also look at some currently available agent systems on the
market examine them with the three stages of agent construction.

3.1 Agent Theories

In the agent theories stage, the agents are specified. When explaining human activity, we
often make use of the so-called folk psychology. We often make statements like:
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e Bob worked very hard because he wanted to possess a Master Degree.
e Mr. Smith recalculated his taxes, because he believed a miscalculation had been
made.

By folk psychology human behaviour is predicted and explained through the attribution of
attitudes. The most common attitudes are believing, wanting, hoping and fearing. These
attitudes are often called intentional notions. If we were to attach these attitudes to
software agents, we call the resulting agent system an intentional system.

3.1.1 Intentional systems

Intentional systems may have different ‘grades’. A first-order intentional systems has
beliefs and desires, but has no beliefs or desires about those beliefs and desires. A second-
order intentional system does have beliefs and desires about beliefs and desires, both those
of others and of its own. First-order intentional systems do not have this ability.

The question arises whether an agent does require the attribution of intentional notions.
When we look at the ultimate role agents should fulfill in the near future, being an exact
replica of the master, it must be obvious that this attribution is necessary and unavoidable.
So, being an intentional system is a necessary condition for agenthood.

The intentional notions may be separated into two main classes of attitudes: information
attitudes and pro-attitudes:

(desire
intention
i . . belief . obligation
information attitudes pro - attitudes < i
knowledge commitment
choice

In this light, information attitudes are related to the information that an agent has about the
surroundings which it occupies (usually simply referred to as ‘the world’). Pro-attitudes on
the other hand guide the agent’s action in its world. It seems reasonable that an agent must
be represented by at least one information attitude and one pro-attitude. A possible
combination of attitudes in these two classes is solely defined by the task(s) the agent must
fulfill. Note that the two different classes are closely linked as a rational agent makes
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choices and forms intentions (pro-attitudes) based on the perception of the information of
its world (information attitude).

3.1.2 Representing intentional notions

Intentional notions need some kind of representation in order to be understandable for both
humans and machines. The best way to accomplish this is the use of first order logic.
However, we need to make some small additional restrictions, because intention cannot be
completely substituted by first order logic.

In the following classical example, we shall see what those restrictions imply. In ancient
Greek and Roman pagan religion there was an almighty deity, Father of Time, Chronos.
Chronos had one son named Zeus by the Greeks and Jupiter by the Romans. If we want to
express that some ancient Greek named Plato believes that Zeus is the son of Chronos, we
may represent this notion in first order logic as:

o believe(Plato, Father(Zeus, Chronos))

We also know that the ‘constants’ Zeus and Jupiter represent the same deity, only with
different names, so we can state that:

e (Zeus = Jupiter)

If we substitute this statement in the believe-statement, which is allowed in first order
logic, we get:

o believe(Plato, Father(Jupiter,Chronos))

Intuition however rejects this derivation as invalid, because believing that the father of
Zeus is Chronos is not the same as believing that the father of Jupiter is Chronos. The
problem that occurs here is known by the term referentially opaqueness. Intentions such
as beliefs and desires are referentially opaque, i.e. they set up a context in which the
standard substitution rules of first order logic do not apply anymore.

If we take the opaqueness of intentions into consideration, we can represent intentions
completely with first order logic. We can extend the first order logic with certain operators
to overcome the problem of opaqueness. How these operators are to be used is beyond the
scope of this thesis. See [Wooldridge, Chapter 2] for more information.
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3.2 Agent Architecture

We have already seen that an agent is an entity created to perform some task or set of
tasks. Any property of an agent must therefore be defined in terms of the task and the
environment in which the task is to be performed. The most basic question that can be
asked is whether an agent achieves the task or not. Since success is the fundamental
property for characterizing agents, some appropriate scale is needed for determining
success.

The most simple implementation of that scale would be the binary scale: if the agent
remains unsuccessful, this will be represented by the digit zero (0). Otherwise, in case of
success, the digit one (1) will be used. The agent is now successful or not. A binary scale
for success also leads to binary scales for the other properties such as capability. However,
this will rule out all relative comparisons of the property capability among other agents
because there are only two states defined: capable or not.

The scale is more useful when it is refined by choosing a numeric value to the quality of
task achievement, a method common to artificial intelligence. Consequently, possible
initial conditions and external influences can be taken into account to give a measure of
the expected success of the agent.

To say that an agent is successful at a particular task in a particular environment, a
framework is needed for specifying the agent, the task and the environment. The
framework must contain sufficiently detailed descriptions to allow the distinction between
successful and unsuccessful agents to be made. On the other hand, a framework must be
general enough to allow a wide range of agents, tasks and environments to be specified.
Therefore, in designing the framework, the range of tasks and environments needs to be
considered. We can for example include tasks of achievement, maintenance and deadline,
and no other tasks. We can choose between a static or a dynamic environment, or the
allowance of other agents in the environment. The environment must certainly be agent-
friendly, meaning that agents must be able to react and also proact to events. That is to
say, they should be able to intervene before an action takes place, to help the user.
Furthermore, how the interaction between the agents and the environment is to be
represented has to be considered.

One goal of this specification is the ability to compare different agents performing the
same task in the same environment. Clearly a distinction between the agent and the
environment has to be made, if we are to compare agents. In general the boundary of those
two are very clear: The environment is everything present before the agent was introduced,
the agent is everything that was added, without changing the environment.

The most general representation of an agent framework is shown in Figure 3-1. The agent
and environment in which it is situated, is clearly distinguished. It is already shown in the
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definition of an agent (see 2.4) that an agent must have some kind of persistent control.
This part of persistent control of the agent is included in Figure 3-1.

The controller acts as the actual ‘brain’ of the agent. It perceives information from the
environment and acts on this information by sending information back to the environment.
The actual behaviour of the agent is therefore controlled by this part. The state of the agent
is also maintained by the controller. Usually this state is some kind of memory.

The mechanism with which the agent communicates between the environment and the
control part of itself has been separated here, but it remains part of the controller. Through
this mechanism agents receive information from the environment via sensors, and reflect
their wishes to the environment via effectors. Any details of the nature of the environment,
structure and implementation of the agent and the agent’s control have been abstracted
away. The agent, for example, also contains some sort of storage of its basic behaviour set,
in which the initial behaviour of the agent is defined.

Environment

Agent

Controller

tMechanism

—» Sensors — )

—| Effectors«———

Figure 3-1: An agent system framework

The model as given in Figure 3-1 can be used for almost every agent system in existence,
such as autonomous robots, knowbots’and operating system agents. The agent may have a
physical presence (a robot) or just exist within the memory of a computer (a software
agent). Oftentimes this boundary of environment and agent is very vague. Suppose an arm
would fall from a robot, is this arm still part of an agent or is it now a part of the

*A knowbot is an agent that exists as a program running on a computer or computer network. It can perform
tasks such as the retrieval of information from databases. An example is the World Wide Web worm, which
uses this kind of bots.
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environment? The control component could be implemented in software or hardware. By
refining this abstract model, particular classes of agents can be specified.

Some examples of the classes that can be differentiated are:

e Advisors - agents who offer help and training

¢ Guides - agents who help in navigating databases

e Servants - agents who carry out tasks immediately

e Representatives - agents who work in a user’s absence

e Communicators - agents who work with other users and agents

Traditionally, AI has concerned itself with complex agents in relatively simple
environments, simple in the sense that they could be simply modeled and involved little or
no ‘noise’ and uncertainty from the environment. However, the reactive and behaviour-
based agent systems have become increasingly popular, placing the agents in a more
complex, noisy and uncertain environment. Especially the multi-agent systems are to
blame for introducing these environmental changes.

traditional Al

Cognitive
complexity

behaviour-based
systems

|reactive systems |

v

Environment complexity

Figure 3-2: Relationship between cognitive and environmental complexity

The relationship between cognitive and environmental complexity is depicted in Figure 3-
2. The position an agent system occupies is largely dictated by two factors:
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1. The number of agents present in the system, and
2. the learning capabilities of an agent.

If we introduce more agents into a system, the environmental complexity increases. If we
on the other hand introduce learning capabilities to the agents, which will be studied more
closely in chapter 5, the cognitive complexity increases. By adjusting these two parameters
we can create precisely the complexity of the agent system we want it to have. Under
normal circumstances one couldn't care less whether the environment should be complex,
or that the cognitive complexity should be as simple as possible. For research purposes
however, the relationship between the number of agents and the environmental
complexity, and the relationship between the learning capabilities and the cognitive
complexity is very useful when experimenting with the behavioural characteristics of
agents.

3.3 Agent communication languages

Any agent requires a way to interact with its environment by both observing (the sensors)
and manipulating (the effectors) it. It requires some method of communication with the
user or other agents. Since communication is the only means for an agent to complete its
task, it is necessary that some kind of standardization is maintained when developing a
language an agent can use for its communication purposes.

Communication language standards will help to create interoperable software by
decoupling implementation from interface. Today, standards exist for a wide variety of
domains. Electronic mail programs from different vendors can, for example, communicate
with each other by means of a standard mail messaging system, called SMTP. Disparate
graphics programs interoperate using standard formats like GIF and JPEG. Text formatting
programs and printers use Postscript as a standard communication language.

However, if we would like to interoperate programs using different languages, problems
may arise. Firstly, there can be inconsistencies in the use of syntax or vocabulary. One
program may use a word or expression to mean one thing, while another program uses that
same word or expression to mean something completely different. Secondly, there can be
incompatibilities, meaning that programs may use different words or expressions to say the
same thing.

Agent-based software engineering tries to eliminate these problems by mandating a
universal communication language, in which inconsistencies and incompatibilities cannot
exist. There are two popular approaches to the design of such a language: a procedural
approach and a declarative approach.
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It is not clear which of this two approaches will eventually succeed as the standard agent
communication language. The declarative approach seems inevitable in the long run but
because of the simplicity and familiarity, the procedural approach is likely to be more
popular in the short term. The ultimate agent communication language may therefore end
up more as a scripting language than ACL, a declarative communication language
designed by ARPA which will be discussed in section 3.3.2.

3.3.1 Procedural communication language

A procedural approach is based on the fact that communication can be best modeled as the
exchange of procedural directives. This approach is both simple and very powerful. They
allow not only the transmission of individual commands but also entire programs and thus
the ability to implement delayed or persistent goals of various sorts. Generally a
procedural written language is directly and efficiently executable. However, the procedural
method has some very annoying drawbacks. Firstly, devising procedures sometimes
requires information about the recipient that may not be available to the sender. Secondly,
procedures are unidirectional, but the agents’ communications oftentimes should be bi-
directional. Thirdly and most significantly, script languages are very hard to merge. This is
not a problem when there is only communication on a one-to-one basis, but becomes more
difficult when an agent receives multiple scripts from multiple agents that must run
simultaneously and may interfere with each other.

Figure 3-3: Reduction of network traffic with agents
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The best known and used script language is General Magic’s Telescript. The exact
implementation of this language is, understandably, held secret by this company.
Telescript is mostly used as an intelligent network agent communication language.

When information is to be transferred from a computer system A to another computer
system B on a conventional network, the information usually has to be preceded by a
request package from system A to system B, followed by the information. Oftentimes an
acknowledgement has to be returned from system B to system A to tell that system that the
information has arrived correctly or that the information has not been received correctly
and that it has to be re-transmitted. Sometimes system B may need some preferences from
system A, which is also sent over the network. As we can see, the overhead traffic is large.

Instead of packages of requests, permissions and data sent from A to B and vice versa, an
agent, containing the messages, requests and preferences from system A, is sent on behalf
of system A on the network to system B. Intermediate requests and answers do not have to
travel over the network anymore, but can be dealt with in system B itself. After the agent
has gained the answers to its queries, the agent returns to system A, thus saving a large
amount of traffic, resulting in a saving of time, available bandwidth and cost. In Figure 3-
3 we can see the reduction of network traffic when an agent, written in the Telescript
language, takes the responsibility of the intermediate requests and responds.

Telescript can be compared to the Postscript language for printers [Wayner]. The
Postscript language is much more flexible and efficient than sending simple bitmaps in
terms of both size and speed. Most importantly Postscript is machine-independent.
Telescript promises to bring the same interoperability to the networked world. General
Magic already have a user interface on the market, called Magic Cap. When Magic Cap
wants to communicate with the world it sends out Telescript agents. Another advantage of
Telescript is that it can be implemented on every possible operating system.

Telescript consists of two large entities:

1. High Telescript
2. Low Telescript

High telescript is a modem, high-level object-oriented language. Its code is dynamically
bound at run time and the Telescript engine handles garbage collection and memory
management. When generated, High Telescript is sent to the locally residing Telescript
engine which consists of a converter and the Telescript interpreter. The converter translates
High Telescript into the low variety.

The fact that dynamic binding is necessary, is because Telescript must access both local
and remote systems, having the engine handle the garbage and memory management for
plugging security gaps. Agents resemble computer viruses very closely. Both are little
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programs that get to seize control of a foreign machine. The only real difference is that
Telescript agents have to send invitations to a host system and can only execute on that
system after presenting the correct credentials. The local Telescript engine decides how
visiting agents can use local features like memory.

Low Telescript is a simple stack-based language, similar to Postscript, that runs on the
Telescript interpreter. Its simplicity keeps the size of the interpreter down, minimizes the
memory usage of agents and also makes the interpreter easy to port from one platform to
another.

3.3.2 Declarative communication language

The declarative approach is based on the idea that communication can be best modeled as
the exchange of declarative statements (definitions, assumptions etcetera). The declarative
approach does not have the drawbacks, which are found in the procedural approach. This
approach allows the language to be sufficiently expressive to communicate information of
widely varying sorts; even procedures are included. It is very compact. A well-known
declarative language, and rapidly becoming the standard for most agent-based systems, is
the agent communication language designed by ARPA.

Researchers in the ARPA Knowledge Sharing Effort have defined the components of an
Agent Communication Language (ACL) to consist of three clearly distinguishable parts:

1. Vocabulary
2. Knowledge Interchange Format (KIF)
3. Knowledge Query and Manipulation Language (KQML)

An ACL message can be constructed by using a KQML expression in which the
‘arguments’ are terms or sentences in the KIF format, formed with words from the ACL
vocabulary.

The vocabulary of ACL is a large open-ended dictionary of words appropriate to common
application areas. Each word has an English description for the use by humans in
understanding the meaning of the word plus each word has formal annotations written in
KIF for use by programs. The dictionary is open-ended allowing new words within
existing areas and new applications to be added. ACL also allows the use of ontologies -
different descriptions for describing the same thing - for any given area. An example is the
ability to use polar coordinates, rectangular coordinates and cylindrical coordinates when
describing 3D objects.

KIF is a prefix version of first order predicate calculus. An example of prefix calculus is
for instance: *ab (meaning a times b). KIF contains various extensions to enhance its
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expressiveness. It provides for the encoding of simple data, constraints, disjunctions,
negations, rules and so forth.

Suppose that, as an example of simple data structures in KIF format, a certain employer
has to pay salary to his/her employees. Suppose these three sentences (more formal:
tuples) are in the database:

o (salary 366473 Woodridge 32000)
o (salary 325532 Aldridge 20000)
o (salary 547483 Widgets 45000)

The first argument after the salary statement may be some internal identification code, the
second the surname of the employee and the third the payment of that particular person.

A more complex expression is the following example:
o (> (* (width chipl) (length chipl)) (* (width chip2) (length chip2)))

to state that chipl is larger than chip 2. KIF also supports logical operations. The complex
sentence

o (=> (and (real-number ?x) (even-number ?n)) (> (expt ?x ?n) 0))4

asserts that the number obtained by raising any real-number ?x to an even power ?n is
positive. One of the enhancements of KIF to increase its expressiveness is the use of the
operators high-comma () and low-comma (,) and a related vocabulary. Take for instance
the following sentence

o (interested Peter ‘(salary,?x,?y, ?z))

which asserts that agent Peter is interested in receiving triples in the salary relation. The
use of commas signals that the variables should not be taken literally, but that the variables
are parameters to the agent Peter. Without the commas, this sentence would say that agent
Peter is interested in the sentence (salary ?x 7y ?z) instead of its instances. KIF may also
be used as a script language via the progn statement. Take for example the sentence

e (progn (fresh-line t) (print “Hello World!”) (fresh-line t))

This line ensures that there is a fresh line on the standard output stream, that “Hello
World!” is printed on the same stream and that there will be a new fresh line. As can be
seen, the semantics of the KIF core is similar to first-order logic calculation, despite the

* Names of variables begin with a question mark (“?’) as in ?x and ?y
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extensions (like the operators " and ,) and restrictions to models that satisfy various axiom
schematics (to give meaning to the basic vocabulary).

It is possible to design a complete communication framework with messages which
conform to the KIF format only. This approach however would be very inefficient,
because in this way each message must contain implicit information about the sender, the
receiver, the time of message etc. The reason for this is the contextual independence of the
KIF semantics. The efficiency can be enhanced by providing a linguistic layer in which
this context is taken into account. This is the function of the KQML layer.

As used in ACL, KQML messages are similar to KIF expressions. Each message consists
of a list of components in matching parentheses. The first word in the list represents the
type of communication (e.g. reply, talk, ask, perform), the subsequent entries are KIF
expressions appropriate to that communication, thus in effect the ‘arguments’.

Intuitively, each message in KQML is one piece of dialog between the sender and the
receiver, and KQML provides support for a wide variety of such dialog types. The
simplest possible KQML dialog is for example

o fromAtoB: (tell (> 32))

to let agent B know that agent A thinks that 3 is greater than 2. In this case there is just one
message; a simple notification. The sender simply conveys the enclosed sentence to the
receiver. Generally, there is no expectation on the sender’s part about what use the receiver
will make of the information.

A more interesting dialog between two communicating agents is the sender requesting the
receiver to execute an operation, which the receiver on its turn will reply with a
‘satisfying’ argument.

e from A to B: (perform (print “Hello!” 1))
from B to A: (reply done)

e from A to B: (ask-if (> (size chip 1) (size chip2)))
from B to A: (reply true) (supposing that chipl is indeed larger than chip2)

In the next example the sender asks the receiver to send a notification whenever the
position of three chips are located with the subscribe command. The receiver sends three
such sentences during some time interval, after which the sender will cancel its operation
on the receiver with the unsubscribe command to let agent B know that further
notifications are no longer needed.
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e from A to B: (subscribe (position ?c ?x ?y))
from B to A: (tell (position chipl 8 10))
from B to A: (tell (position chip2 8 46))
from B to A: (tell (position chip3 10 34))
from A to B: (unsubscribe (position ?c ?x ?y))

KQML contains support for simple notifications, commands, questions and subscriptions.
In addition 1t also provides support for delayed and conditional operations, request for
bids, offers, promises etcetera.

Another fact which is worth mentioning is that KQML supports another layer besides the
already discussed linguistic communication layer. It also contains a linguistic package
layer to support the transmission of messages among agents operating in different
processes. This layer inserts additional information that must be conveyed in
communication protocols between distributed systems. Because of irrelevancy the details
of this package layer will be left out of this thesis.

3.3.3 A comparison of procedural and declarative communication languages

Now that we have seen the differences between procedural and declarative communication
languages, we can compare them to try to find the best approach, considering there is one,
in which to implement an agent communication language.

It seems likely that the procedural approach will be the most popular implementation of an
agent communication language in the short run as most development software and
operating systems are still based on the procedural structure. The purchase of object-
oriented software and the training courses for object-oriented programming, the
programmers, who are used to procedural programming, have to undergo, will mean a
large investment for most companies.

The probable initial success of procedural language can also be explained psychologically.
If one has been in the habit of programming in procedural structures, it is very hard to
suddenly drop this habit and become an object-oriented programmer. So the expectation is
that procedural languages are likely to be more popular in the short run than the
declarative languages.

However, if we look at the implementation of a procedural communication language we
can expect a much larger cost than the implementation of a declarative one. In the
procedural approach every agent must have the ability to create and understand messages.
This messaging system however is initially not available and has to be developed
separately whereas in the declarative systems the messaging system is already present,
because of the object-oriented environment. Thus, the agents will not only be much larger
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in memory size, because of the implementation of a message ‘interpreter’ in every agent,
the messaging system itself has to be developed.

Another drawback is that future revisions and enhancements of a procedural language will
consume much more time and money because the actual source code probably has to be
completely changed because of the changes which have to be made in not only the to be
enhanced procedure and/or data-structure, but also other procedures making use of that
particular procedure and/or data-structure.

In object-oriented programming however, the actual implementation of such data-
structures is quite well bounded to only a small piece of source code, namely the data-
structure’s object code itself. Changes to a declarative language will therefore be much
cheaper both time-wise and money-wise.

Another great advantage of a declarative communication language is the ability to
implement procedural structures via the statement progn. On the other hand, declarative
statements in a procedural language are not possible. The declarative approach is also
written in a much more humanly understandable language, because it looks very similar to
the representation of intentional notions by the use of first order logic, thus approximating
our natural language very closely.

Also, the declarative communication language does not only closely resemble our natural
language with its vocabulary but also with its grammar, which makes it easier for the user
to use and understand. The procedural approach demands far more insight in the computer
language itself. Indeed, we shall see in chapter 5 that the declarative communication
language is much more suited for applying learning processes to agents than the
procedural one.

While the procedural language seems more worthwhile on a short term, we eventually
have to adopt the declarative approach because of its many advantages over the procedural
approach, especially the ability to implement learning processes more easily. We may also
expect some kind of blend (i.e. compromise) between the two approaches, which is already
evident in the ability of running procedural statements in the declarative languages. We
can therefore conclude that the declarative approach is the best approach in implementing
an agent’s communication language.

3.3.4 Multi-agent communication

Once we have the ability to use agents and the language to communicate with agents, there
remains the question of how these agents should be organized to enhance collaboration.
Two very different approaches have been explored:
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1. Direct communication,
2. Assisted coordination.

With direct communication agents handle their own coordination, whereas with assisted
coordination agents rely on special system programs to achieve coordination.

Direct communication has a big advantage in that it does not rely on the existence,
capabilities, or biases of any other program. There are two main architectures to be
distinguished in direct communication:

1. Contract-net,
2. Specification sharing.

In the contract-net approach agents in need of service distribute requests for proposals to
other agents. The recipients of these messages evaluate those requests and submit bids to
the originating agents. The originators decide on the bids which agents to task and then
award ‘contracts’ to those agents.

In the specification sharing approach agents supply other agents with information about
their capabilities and needs and these agents can use this information to coordinate their
activities. Because specification mode decreases the amount of communication as opposed
to the contract-net approach, it is often more efficient.

The disadvantages of direct communication are obvious: Direct communication’s cost and
the implementational complexity. If we take for example the Internet with millions of
programs, the cost of broadcasting bids or specifications and the consequential processing
of those messages will be phenomenal. Also each agent is responsible for negotiating with
other agents and must contain all the code necessary to support this negotiation, resulting
in a massive complex implementation.

To eliminate the above mentioned disadvantages, a new architecture has been developed
based on the idea of assisted coordination. The system is often referred to as a federated
system. A federated system with three machines, one with three agents and two with two
agents apiece, is shown in Figure 3-4.

As can be seen from the diagram, agents do not communicate with each other directly, but
with a system program, called a facilitator. The facilitators do communicate with each
other. In a federated system, agents use ACL (oftentimes a restricted subset of ACL) to
make their needs and abilities known to the local facilitator. In addition to this so-called
meta-level information, they also send application-level information and requests to their
facilitator and accept application-level information and requests from the facilitator in
return.
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Figure 3-4: A federated agent system

A facilitator uses the information provided by the agents to transform the application-level
information and route them to the appropriate facilitator of another agent. In effect, the
agents form a ‘federation’ in which they give their autonomy up to their facilitator and the
facilitators take the responsibilities for fulfilling their needs.

3.4 Requirements for an agent system

It is generally believed that agents will become the most profitable enterprise of the main
software houses at the turn of the century. If a software house wants to act upon this
assumption and develop an agent system, it has to have some requirements to fulfill: The
basic requirements for a successful agent system implementation are:

1. The implementation of an environment which an agent can observe and affect.
The implementation of a flexible database system which can be effectively used by
both the agent and the environment.

3. The implementation of some sort of support for a dialogue between user and
agents, taking advantage of direct manipulation, natural language and all of the
more conventional user interface components such as menus and buttons.
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If we look at the current success of distributed systems, we can also include the
recommendation that an agent system must support these distributed systems, resulting in
multi-agent systems. This is however not a basic requirement, and thus not needed, but
still recommended if it must contest with other vendor’s agents systems.
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4. Agents in operating systems and robotics

4.1 Introduction to Operating Systems

or the reader who is not thoroughly familiar with the concept of Operating Systems

(OS), a very short overview will be presented in this section. In this chapter an OS
agent system will be implemented in an existing operating system, requiring the user to
have some familiarity with conventional operating systems.

If a computer user is working with an application, a ‘ready-to-use’ computer program, he
or she usually does not have to have any knowledge of the computer hardware the
application is running on. The application program contains the necessary code with which
it can interact with the computer and its peripherals (see Figure 4-1).

Computer User

\ Computer Hardware

Figure 4-1: An application layer
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Suppose we were to run several applications concurrently. In this case the system of
Figure 4-1 would be very inefficient and on top of that also leading to dangerous
situations:

1. The processor can only execute one instruction from one application at a time. To
run more applications concurrently, a scheduling of processor time needs to take
place.

2. Executing applications need memory space. The available memory space needs to
be divided among the running applications in a fair way.

3. A peripheral may not be used by an application without claiming that peripheral for
its use only in order to prevent a possible occurrence of deadlock.

Looking at the aforementioned three remarks we can conclude that some kind of control
over the computer hardware is not a luxury, indeed. Furthermore, applications may contain
code that is repeated in other applications, thus wasting valuable memory space. By
implementing these common accessed parts of code in the sought-after control with
appropriate rules on the usage, we may eliminate these problems. This control part, the
control layer, is also known as an operating system.

Computer User

Application

Operating System

~

Computer Hardware

Figure 4-2: An operating system layer
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An operating system may roughly be seen as an interface between a computer user’s
application and the computer hardware (see Figure 4-2). The operating system has
essentially two main goals:

1. Coordination of the distribution of processor time, memory space and
peripherals, and
2. administration regarding the common use of applications.

T. Hoare states the task of an operating system to be as follows:

“The basic purpose of a computer operating system is to share the hardware
which it controls among a number of users making unpredictable demands
upon its resources; and its objectives are to do so efficiently, reliably and
unobtrusively.”

Before we proceed with the most important part of the operating system, we need to define
some terms (see Definition 4-1).

Definition 4-1: Application, Program and Process

e Application : - a(computer)program for the end-user.
e Program : -the source code listing of an application

- a description of the functions to be executed
e Process : - arunning program.

The innermost part of the operating system layer is called the nucleus. Its main goal is to
create an environment in which concurrent processes can exist. This goal needs to be met
regardless of the number of processes the system possesses. Thus, its main task will be the
administration of processes, the insertion or deletion of processes and to assign these
processes to the processor in some way. The nucleus has many more tasks but these are
beyond the scope of our study.

All but the most primitive operating systems protect the operating system from being
damaged by applications, by placing the operating system functions in a separate address
space (or several address spaces) from the applications and by letting the applications run
in an unprivileged mode of the processor, in which I/O and certain other instructions are
NOT allowed. A processor can also run in a privileged mode, in which all instructions are
allowed.

By letting each application run in a separate domain, with the memory-management unit
set up in such a way that one application cannot access another application's data under
any circumstance. Applications are run in an unprivileged mode of the processor, which is
usually referred to as the user mode.
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The part of the operating system that has access to the memory-management hardware and
switches between the application's protection domains is referred to as the kernel. The
kernel's code runs in a special, privileged mode called supervisor mode or kernel mode.

Until quite recently, the operating system was equivalent to the kernel, because all of the
operating system ran in supervisor mode. This has changed with modern operating systems
because of two reasons:

1. Operating systems are becoming very large which makes them increasingly hard
to maintain as a single entity running in supervisor mode where bugs can create
so much damage.

2. Distributed systems place different functions on different machines, so not all
operating system functions are needed in every copy of the operating system.

The subject matter on operating systems presented in this section is sufficient enough to
continue with the subject of OS agents. The reader who wants to know more about
operating systems may find a large collection of well-written literature covering this
subject. The most renown work in this area is undoubtedly Tannenbaum’s book on
operating systems, see [Tannenbaum].

4.2 What does an OS agent do?

Since the birth of operating systems, its essential power has not changed that much: The
form of the operating system interface may have changed considerably, the operating
system’s commands have remained nearly the same. To carry out a specific task a specific
command has to be given, e.g. the command ‘copy A4 B’ to copy a file A to destination B.

If we would like to carry out complex tasks, such as reducing disk utilization, the
command set falls short. Since there is no command to reduce the disk utilization, some
other way of executing this instruction is necessary.

The solution is usually to create a file consisting of a set of commands from the available
command set that when executed sequentially carry out the specified task. This file is
called a script file (UNIX) or batch file (DOS). Another solution may be the composition
of commands directly from the command prompt by using ‘pipes’. This approach however
is very inefficient with frequent use because of its volatile form.
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4.2.1 Script files vs. OS agents

The usage of script files is in itself a powerful and satisfying approach to solve the
problem of accomplishing the more complex tasks. But there is one major drawback when
working with script files: When the system layout changes, such as the addition of a
printer, the relevant script files have to be rewritten to reflect the presence of the additional
printer. Obviously, this is a very inefficient approach, indeed. Another (less severe)
drawback of script files is that the user has to write and debug the ‘programs’ which
should be considered as a real challenge to the average layman computer user.

Let us look at an example of a script file. At the department of Digital Information
Systems we use an Apollo Domain UNIX operating system. A script file, called SHPQ,
has been created to show the jobs queued on a laser-jet printer. The script file’s contents is:

o [s e:/ebq/sys/print/spooler.

Clearly, this sentence just lists the jobs present in the printer spooler. Let us look at the
knowledge of the operating system the user must have in creating this simple command.
Firstly, one has to know that the printer ‘spools’ its jobs and that the print jobs are put in
the e:/ebq/sys/print/spooler directory. A layman certainly could not have known this to be
the case. Secondly, suppose that drive e has to be removed and the spooler is moved to
drive d. This script file, and all other script files related to the printer spooler, have to be
changed to reflect this removal. This simple example alone clearly illustrates the major
drawbacks attached to script file.

Luckily there is one solution which does away with all the above mentioned drawbacks of
script files and promises to finally revolutionize the power of an operating systems:
operating system agents (OS agents). The user simply specifies a goal to accomplish, such
as the reduction of disk utilization, to an agent and the agent itself decides how to
accomplish that goal using its knowledge base of the system state and its commands. The
agent dynamically synthesizes the appropriate command sequences, issues the required
commands and system calls, handles errors and retries commands if necessary.

There are four main advantages when considering OS agent over script files:

1. The system chooses the most effective means of accomplishing a particular task,
relying on commands or information that even the user may not be aware of.

2. If one method of accomplishing a task fails unexpectedly, the system can recover
and try another, different method.

3. The language for specifying goals to the OS agents is system independent, as we
have seen in chapter 3, making evolution or radical changes of the system
transparent to the user.
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4. Whenever the OS agent ‘knows’ about a new facility, that facility becomes
instantaneously available to its planning process and is automatically invoked to
satisfy relevant user requests.

There are however more advantages to OS agents. In section 4.3 we shall look at what
these advantages are, when we have discussed the general framework for OS agents.

4.2.2 Communicating with an OS agent

Just as with general agents, we can divide OS agents into different classes. The chosen
differentiation is however not unique as we may differentiate on different criteria and still
come up with a plausible list of classes. The most obvious differentiation is that of the
kind of request the user wants from an agent. With this differentiation we can, for
example, construct the following classes:

e Monitoring agents: agents used to monitor certain events in a system. Examples:
alerting the user that his disk utilization exceeds its pre-determined boundary;
alerting the user that a colleague has logged on to the network or alerting the user
that a document of his interest has been posted on some bulletin board.

o Enforcement agents: agents forcing the system to act according to some pre-
determined constraints given to the agent by the user. Example: Keep all files in the
DOC directory read-only.

e Locating and Manipulating agents: agents used to take actions on certain times
or at certain sites. Examples: At midnight, compress files which have not been
accessed for over a week, until 10Mb of free space is available; Print my paper on
any available printer on floor 10, and, when successful, report back on which
printer the paper was printed on.

These task classes combined do not represent the complete set of all agents, there are
certainly more classes to be defined, such as scheduling agents. The point of the given
classes here is to illustrate that we tell the agents what to accomplish and that we are not
concerned with Aow the agents accomplish their tasks. The operating system interface
should therefore be able to handle this kind of expressiveness. The language with which to
‘communicate’ with the operating system interface may be a natural language or another
communication language such as ACL.

Let us look at the declarative communication language as discussed in section 3.3.2. To
instruct an agent that it should maintain the disk utilization® of disk_1 below 75%, we
could tell this to the agent as:

* Disk utilisation in this context means the part of the disk utilised by data
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e (maintain (disk.util.below disk_1 75%)).

The agent may then use all techniques to his availability to keep the disk utilization below
75% by deleting files, moving files to another disk etcetera. Maintain is mainly used for
constraints that must be fulfilled all the time. The maintain keyword is accompanied by
one component:

e (maintain <action>).

Request on the other hand is used for actions that are usually applied only once. The
request keyword has generally two accompanying components:

e (request <action> :when <logical expression>).

To tell an agent that the disk utilization of disk 1 must be brought down to 75%, when the
current disk utilization is 85%, we may tell this to the agent as:

o (request (disk.util.below disk_1 75%) :when ( not( disk.util.below disk_1 85%)).

We can also use variables. Suppose a user wants to be notified when another user, Peter, is
logged onto machine B, we may tell this to the agent as:

e (request (notify ?self) :when (active.on Peter ?machine_B)).

The examples given here are all high-level commands, i.e. commands to protect the user
from needing to understand the commands the computer’s operating system itself uses (i.e.
the command set from the operating system). So, the high-level commands have to be
translated to commands which are understandable to the operating system (the low-level
command set) .

4.2.3 Requirements for an OS agents

We are now able to define some requirements an OS agent should possess in order to
accomplish the tasks as described earlier on.

1. The agent must be able to execute OS commands, recover from any unexpected
failures and , when necessary, automatically attempt alternative ways to complete
its task. For example, if a user was trying to send a file to some other user
connected to the same network, and the network goes down, the agent must be able
to restart the transmission when the network goes up again, or even attempt to
retrieve the file from another source altogether.
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2. The synthesis of a sequence of OS commands, system calls etc. should be dynamic.
The synthesis must be dynamically established so that an agent can perform its
task based on the current system configuration. Also the set of tasks the user may
express is very large (potentially infinite), and would therefore be almost
impossible to implement with static (i.e. hard-coding) synthesis.

3. The agent must have to ability to adapt to differing conditions, resources and user
tastes. When an agent is busy with reducing disk utilization, one user may want all
his Postscript dump-files to be deleted, while yet another user may want old files,
i.e., not recently accessed, to be deleted instead of deleting his Postscript dump-
files.

4.3 OS Agent’s Framework

In order to develop agents in a certain environment, we need to define its framework first,
as was discussed in section 3.2. The general framework for OS agents consists of two main
modules [Levy]:

1. The planner, which synthesizes the from the user received requests of OS
commands. Commands to be executed are sent to the clerk. This module is
effectively the aforementioned (section 4.2.2) high-level to low-level translator.
This module will be discussed in section 4.3.1.

2. The clerk, which handles all interactions between the OS agent and the
environment. Actions include internode communication, command execution,
status checking and so forth. This module will be discussed in section 4.3.2.

Operating System  Requests
OS Agent

—¥ Sensors

+——| Effectors

Figure 4-3: A general OS agent framework
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If we look at the general agent framework from Figure 3-1, we can clearly see that the
communication mechanism must be a part of the clerk. Because the clerk can also execute
commands and does some status checking, it also covers another part of the controller
besides the communication mechanism.

The planner consists of the rest of the controller not already contained by the clerk. Both
clerk and planner use the state module. If we translate this description into a pictogram
like the general agent system of Figure 3-1, we get the following figure of an OS agent
(Figure 4-3):

We shall now take a more in-depth look at the planner and clerk of an OS agent system as
described by [Levy].

4.3.1 The Planner

The planner’s main task is the translation of high-level commands (the user’s requests) to
low-level commands (the operating system’s command set). This translation is carried out
by mapping the high-level commands into a sequence of low-level commands. The models
with which this mapping takes place may be provided by the system manager or may be
automatically learned by the machine itself through the incorporation of machine learning
algorithms, another study field in Artificial Intelligence which will be treated in section 5.

The planner’s goal is thus trying to satisfy the user’s request. The planner’s goal is
effectively a conjunction of atomic propositions, called the subgoals. In order to satisfy the
user’s request all the subgoals have to be satisfied, in this case only can the main goal be
satisfied.

Given a goal, the planner dynamically synthesizes a sequence, called a plan, of OS
commands from its goal and invokes the clerk to execute the plan. To dynamically
generate a plan, the planner has to represent the available OS commands. This
representation ought to answer to (at least) two fundamental questions about each
command:

1. Under what conditions will the command execute successfully? The command
will execute successfully if a set of necessary conditions for including the
command in the plan, which are referred to as preconditions, is met.

2. What is the effect of executing the command? After executing (most)
commands, the system state will almost certainly be changed. These effects are
referred to as postconditions.
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The planner creates a data structure representing its plan, containing all unsatisfied
subgoals, which initially are all subgoals corresponding to the original plan. The planner
then chooses one subgoal to satisfy and searches for an action with such a postcondition
that it is equal to the condition after the subgoal is satisfied. If such an action can be found,
its preconditions are added to the list of subgoals to be satisfied and the action is inserted
into the plan. The planner then chooses another subgoal and repeats the process all over
until all subgoals have been satisfied.

There are however some points that the planner should take into account when carrying
out the iteration:

1. Keep a model of the system's state. Some subgoals may already be satisfied by
the current system state or by actions already inserted into the plan.

2. Necessity of backtracking. Some subgoals cannot be executed because the
environment has changed. For example, if the plan is currently in an FTP shell, the
system cannot carry out normal OS commands, but only commands belonging to
the set of commands of FTP itself and vice versa.

The planner is finished when each action's preconditions are satisfied, which brings the
system to a state where the input goal is satisfied. The planner contacts the clerk to execute
the plan it has created.

4.3.2 The Clerk

When the planner decides to execute a command, it sends a message to the clerk detailing
the command and its arguments. After execution, the clerk notifies the planner whether the
execution of the command was successful or not, and, when necessary, accompanied by
what information was obtained (e.g., a list of file names in case of an 18 command). If an
execution fails it is up to the planner to correct the problem by choosing an alternative
command or by entering a debugging mode in which the planner tries to determine the
source of the error and to prevent it from happening again in the future.

The system-dependent information is stored in the clerk, thus keeping the rest of the OS
agent invariant across different operating systems6. An OS agent may be forced to wait for
an external event (i.e., an event occurring outside of the agent's control). In this case it is
up to the clerk to detect this event and notify the planner about it.

If we were to implement the clerk just as we have studied so far, we would inevitably get
into trouble the portability between different operating systems is considered because the

® This is of course not completely true, because the planner's command models varies from one system to
another.
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clerk contains machine specific information for its operation (e.g., how to delete a file).
We would therefore like the clerk to operate machine independent. To solve this problem
we can let the clerk send Remote Procedure Calls (RPC) to an operating system server. In
turn, the OS agent servers interact with the operating system through standard system calls
and commands where possible, and through extended mechanisms and abstractions where
necessary.

By defining a clerk/server interface based on RPC, and locating in the server all of the
operating system interface functions, we support both distribution and heterogeneity:
distribution because a clerk can communicate with both local and remote servers in the
same way; heterogeneity because the RPC interface is standardized and machine
independent. In the next section we shall be looking at an example of such an OS agent
system.

4.4 An example of an OS agent system

After having discussed a general OS agent's framework in the previous sections, it is now
time to consider an example of such an OS agent system. The most obvious
implementation would be to rely solely on an existing operating system command
interpreter such as UNIX. Unfortunately, this approach has two major drawbacks:

1. Not all information concerning the operating system's state is available through
the command interface, and

2. certain kinds of constraint and monitoring requests will require repeated polling at
the command level, resulting in a dramatic (and oftentimes unnecessary) message
overhead when such polling processes are being carried out on a network,
especially when several OS agents are requesting the same information from one
site.

The reason why a conventional operating system is chosen over an OS agent system,
which is designed from scratch, is threefold:

1. The reader is probably more familiar with a conventional operating system, thus
achieving a better understanding of the concept of OS agent systems.

2. OS agent can be reproduced more cheaply on existing operating systems; for the
time being that is. A user does not have to buy and adapt to a new operating
system supporting OS agents.

3. Agents can be studied more closely by using a conventional operating system
instead of using an OS agent system, which are intuitively more complex,
resulting in a larger research 'arena’.
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Before proceeding, lets recapitulate the previous sections: the planner creates a plan on
how to fulfill the request given by a user. The plan is transferred to the clerk which issues
appropriate RPC calls to an OS agent server. In turn, the server issues machine specific
commands to the operating system itself. By choosing a conventional operating system we
can readily construct a diagram of the complete OS agent system (see Figure 4-4).

In Figure 4-4 we can see a dividing line between the standard interface (i.e., the
conventional operating system) and the extended interface (i.e., the additions necessary to
support OS agents in the conventional operating system). Let us now look at how the
system parts interact with each other.

Extended Interface Standard Interface

Operating System with

Command léhelﬁl
OS agent support .

Set Trigger Notification! Command

v ASCII re:presentation

; o \B a
RPC calls 0s 3 ! System calls
l A_gent Results : Il
Sgrver » ' OS System Call
' : Interface

Figure 4-4: Structure of the OS agent

The system completely relies on events. An event, in an operating system's context,
signifies a change of state within the system, such as a user entering a character from a
keyboard, a modification of a file, the invocation of a kernel procedure etcetera. In the
design the fypes of events, useful for the purpose of an OS agent, are determined a priori
(e.g., 'file modification' is an event type). These set of event types are expected to change
slowly over time. On the other hand, event instances of interest, such as the modification
of a particular file, are subjected to change constantly.
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The interaction between planner, clerk and OS agent server has already been explained
above. But how does the OS server interact with the standard operating system interface?
The OS agent server translates the clerk requests into a set of event notification demands
that the kernel is expected to fulfill. The server may then indicate its interest in a specific
event instance by 'setting a trigger' (see the arrow labeled Set Trigger in Figure 4-4). By
setting the trigger, the operating system and the OS agent enter into a contract, whereby
the system guarantees to notify the server each time that particular event instance occurs.

Because the kernel has to signal these occurrences of events as fast as possible, and
communication between the clerk and the server might cause an undesirable waiting
period, the utilization of network and processor resources are consequently kept to a
modest level.

We can also limit the number of notifications of OS agent servers by additional constraints
that have to be satisfied before notification occurs. We can, for example, confine the
interest of the server to be notified only if a file size grows (or decreases) beyond a
specified threshold, instead of requesting to be notified every time a file is modified. These
additional constraints are known as 'predicates’, which are Boolean expressions that
evaluate to true or false.

To recapitulate, the event specification by OS agents is facilitated by three mechanism:

1. Defining a relatively static set of event types.
OS agents servers can dynamically express an interest in specific instances of these
events, depending on the requests that the OS agent servers receive from their
clerks.

3. Inclusion of a mechanism for patching small server-supplied code sequences into
the kernel to signal specific event occurrences.
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5. An agent’s learning process

5.1 Introduction to learning processes

he agents and operating systems we have discussed so far have all had some kind of

basic knowledge. When we want, for example, the disk utilization to be reduced
below a certain threshold, the agent 'knows' that files may be deleted or moved to another
disk in order to reduce the disk utilization. In some way the agent has gained that
knowledge. The knowledge may have been given in a - for the agent - passive way, by the
operating system or by the computer user, or in an active way, in which the agent learned
that deletion and moving of files equals reduction of disk utilization during its lifetime,
which is of course the most interesting case for our study.

There are many things an agent can learn, but not many ways in which it can learn it. The
following categories can be classified when considering what an agent can learn:

learning declarative knowledge

learning control

learning behaviours

learning to select behaviours and actions

Learning declarative knowledge contains only a small field to cover. The only declarative
knowledge the agents have to learn to date are maps of the environment. Maps and
environments are closely tied to action in the ‘world’, which is why they are the primary
type of declarative knowledge so far used in agents. Note that not all maps and
environments are explicit and declarative per se: when they are tied to acting and
interacting in the ‘world’, agents can learn procedural knowledge. So, the difference
between declarative knowledge and procedural knowledge, being the actions themselves
versus the acting , is fairly obvious.

Learning control deals with learning the forward or inverse model of the system. A
forward model provides predictions about the output expected after performing an action
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in a given state. The inverse model provides an action, given the current state and desired
output. The control of an agent has already been dealt with in section 3.2.

Learning new behaviours deals with the problem of acquiring strategies for achieving
particular goals. Learning new behaviours is learning Aow to do something, while on the
other hand selecting behaviours is learning when to do something. In section 5.1.2 we shall
study behaviour learning in more detail. Before this, however, we shall look at some
possibilities that learning processes could introduce in (agent supporting) operating
systems.

5.1.1 The quest for knowledge

A most interesting question arises when we look at the active way of obtaining knowledge:
Does the agent really need the intelligence at its time of creation in order to operate
correctly, i.e., undergo a learning process with a minimal baggage of basic knowledge, and
be able to accomplish its task which was set out for it, or can it learn the necessary basic
knowledge to accomplish the task by a trial and error method?

Taking the train of thought on this concept even beyond the subject of agents: Do we
really need an operating system with its 'intelligence' already implemented or, to put it in
another way: Will it be possible to have a ‘dumb’ operating system, without any
knowledge whatsoever, to be able to operate like an ordinary operating system, just by
gaining all its knowledge using the process of trial and error?

Obviously, the latter question must be answered negatively. There should always be some
knowledge implemented in order to start to learn from some, for the agent or operating
system unknown, knowledge and thus to gain new knowledge. The system must certainly
know beforehand how to interpret, store and administer new, unknown knowledge. We
shall see shortly the reason why the answer to the latter question has to be negative.

Is it really relevant or even necessary to consider the question whether an operating system
can learn some new knowledge? We could create a practical case, in which machine
learning may be worthwhile and show that the question asked is relevant and necessary.

Suppose some manufacturer of Interactive Compact Disc (CD-I) players has players in
several price ranges, each with different specifications, the more expensive, the more
features the player will have. A cheap player won’t play CD-I movie discs while a more
expensive player does play them. Internally the ‘operating system’ of the player with the
most features must be specified, verified and implemented. The cheaper players’ operating
system can then be obtained by stripping the fully specified operating system of the
appropriate functions, according to their specifications, leading to a relatively impractical
design method, especially when upgrading of the operating system is considered.
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However, we could design an ‘operating system’ that could ‘learn’ whether some features
- such as the ability to process moving pictures, to display the playing time etc. - are
available or not and operates according to the features found. If this were indeed the case,
it would suffice to design only one ‘operating system’ for the entire range of players,
making the designing stage much more practical and faster to complete than designing
separate operating systems for differently specified CD-I players.

Most importantly however, is that the agent operating system is dynamically configurable.
For example, a consumer might want to upgrade his cheap CD-I player model by buying a
movie module. He only has to insert it into the player in order to be able to play the CD-I
movie discs, without the need to replace or re-configure the operating system; the agent
will detect the presence of the new module and alerts the operating system of the fact that
a movie module is now present. With the conventional design method, this is not possible.
However, the manufacturer may, for instance, implement dip-switches into the cheaper
models, making not only the designing stage more complex, but the user himself has to
alert the player of the new addition of a module with the dip-switches.

Another field of work where such ‘adaptable’ operating systems would be very much
wanted and needed is the field of robotics. One could create a universal operating system
that may operate on all, similarly tasked, robots. Suppose we have two robots, one
immobile and one mobile robot. Each robot has to examine some previously manufactured
metal ring, for the connection of water pipes in housings, for structural faults. It has to take
the rings from some storage box, examine the ring, and store it after examination in a box
labeled unusable or useable.

If the first storage box is empty, or one of the latter storage boxes becomes full, the
immobile robot must alert someone or something mobile to either get a new box of rings
or replace the full box with an empty one. The process of examination must therefore be
halted until this action has occurred. The mobile robot however may retrieve a new box or
replace the full boxes itself. It does not need to wait for a person or other robot to take the
appropriate action with the boxes.

The operating systems of the two robots aren’t that much different, the only difference
being the alerting of someone and the placement/removal of the storage boxes. We could
choose one operating systems for both robots and let the operating system itself adapt to
the (im)mobility of the robot. Later on, the robot can always be replaced by its counterpart,
without the need to replace the operating system altogether.

Here we have presented two examples which clearly shows the advantages of
implementing the ability of gaining knowledge by learning processes. The learning
process has two main purposes:
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1. It simplifies the built-in knowledge (the CD-I example).
2. It simplifies the adaptation to external and internal changes, if adaptation was
available in the first place (the Robotics example).

We will term the ability to cope with changes in the environment as adaptability. With the
help of adaptability, agents can deal with ‘noise’ in their internal and external sensors and
with inconsistencies in the behaviour of the environment and other agents. All creatures,
whether natural or artificial (e.g,. the agents themselves), fail at their tasks under certain
conditions. The purpose of learning then, is to reduce this set of conditions, and thus
reducing the chance of failure. The definition for learning in general is presented in
Definition 5-1.

Definition 5-1: Learning

The successful attempt to reduce a certain set of conditions, under which tasks may fail,
thus reducing the chance of failure.

Adaptability, however, does not necessitate learning. Many species are genetically
equipped with elaborate ‘knowledge’ and abilities, from very specific (the ability to record
and utilize celestial maps), to the very general (language, motor control). Birds, for
example, do have the capability to adapt, without learning. They simply adapt by
travelling to warmer regions when the seasons are getting colder and return when the cold
periods are over, without ever having learned this. This capability however is not a feature
of inanimate objects, such as an operating system.

This also confirms the answer to our previous question - whether it is possible to create a
fully operable operating system from a ‘dumb’ operating system by using learning
processes - to be unfeasible because operating systems do not posses ‘genes’ as such. The
basic knowledge needed by the operating system to operate appropriately can therefore be
seen as the ‘genes’ of the operating system. We must bear in mind, however, that genetic
code is finite. The adaptability, without learning processes, is then also limited.

Having shown the need for some basic knowledge in order to start an (artificial) learning
process, we now focus our attention back on agents. The learning process by the trail and
error method mentioned earlier, is also known as Reinforcement Learning. It is based on
the interactions of agents and its environment.

In reinforcement learning approaches the agent gains its knowledge from externally
created ‘rewards’ and ‘punishments’, according to the task the agent is currently executing.
Thus reinforcement learning is a class of the learning methodologies in which agents learn
from feedback of the environment. The feedback is interpreted as positive or negative
scalar reinforcement. The goal of learning is to maximize positive reinforcement (the
‘rewards’) and/or minimize negative reinforcement (the ‘punishments’) over time.
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5.1.2 A robotics learning experiment

The above-mentioned reward and punishment system may be clarified by an experiment
that Maja Mataric has carried out at MIT Artificial Intelligence LAB [Mataricl & 2]. The
reason why this experiment is mentioned in this thesis is because:

1. Mataric introduced learning capabilities to the robots, and
2. the techniques used by the robots to learn certain things via a reward and
punishment system, could be used for agents with learning capabilities.

So, when the word ‘robot’ is mentioned in this section the reader is encouraged to interpret
it as the word ‘agent’, during any interaction with the environment or other robots.

Mataric created 20 identical mobile little robots with the ability to locate and move ice
pucks. The robots are able to locate other robots via infra-red sensors and radio
communication by broadcasting their position relative to two stationary beacons. She
created a small field of 12.5 by 5 meters in which the center was marked as Home (see
Figure 5-1). The robots’ task was to deliver the pucks, which were spread out over the
field, to the area marked home. By placing a camera above the field the movement of the
robots could be precisely analyzed. Note that the robots were not programmed to deliver
the pucks to home, but were told to do so. They had to solve the problem on how to
deliver the pucks to home themselves.

Y beacon

= 1 meter x 1 meter

Figure 5-1: The experiment field

This model relies wholly on the principles of basic behaviour, a means to combine the
constraints from the robot (read: the agent), such as the mechanical and sensory
characteristics, and the constraints from the experiment field (read: the agent’s
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environment), such as the information the robot can obtain from the experiment field.
Mataric postulated that, for each domain, a set of behaviours can be found that are basic in
that they are required for generating other behaviours, as well as being the set the robot
needs to reach its goal. The basic behaviours cannot be reduced any further to each other.

The basic behaviour set Mataric used continued the following behaviours:

o safe-wandering: minimize the collision between robots,
following: minimize interference from other robots by structuring movement of
any two robots,

e homing: enable the robot to proceed to a particular location, in this case the home
field,

e aggregation: gathers the robots, and
dissipation: scatters the robots

Other behaviours like grasping and dropping could be included, but they are not relevant
to the interaction between environment and other robots, they are only relevant on the
individual robot level, so these behaviours will not be included in the minimized behaviour
set used in this experiment.

The basic behaviours are intended as building blocks for achieving higher-level goals. The
behaviours are embedded into an architecture that allows two types of combination:

1. direct, by summation of different basic behaviours into a new behaviour (see
Figure 5-2), or

2. temporal, by switching between different basic behaviours, thus creating a new
behaviour (see Figure 5-3)

Input behaviours j, Composite behaviours

Figure 5-2: Direct behaviour combination
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Flocking behaviour can be simulated by summation of safe-wandering, aggregation and
homing behaviours, while foraging (collecting pucks and moving them to home) may be
simulated by switching between safe-wandering, dispersion, following and homing

behaviours.

iy R
Input Iy :O\ ~Composite
behaviours " behaviours

v

v

Figure 5-3: Temporal behaviour combination

Once the basic behaviour set is established, it can be implemented using a variety of
algorithms. The algorithms are all verified on their correctness by carrying out 50
experiments per basic behaviour. Although proving that one robot acts formally correct is
difficult, group behaviour of the ensemble of robots can be evaluated more easily.

The experiment proved that behaviours can be successfully implemented by using the
appropriate algorithms, and that higher-level behaviours can be created by combining
behaviours, be it direct- or temporal-wise, from the basic behaviour set. The results leading
to this conclusion are too extensive to reproduce in this thesis, so the interested reader is
referred to [Mataric2] for a full account on her experiment.

In this experiment the higher-level behaviours are determined before the experiment itself,
i.e., the robot ‘knows’ how to behave to accomplish his given task because the higher-level
behaviours are already implemented by direct or temporal combination of the appropriate
basic behaviour algorithms. However, we want the basic behaviours to be automatically
combined into higher-level behaviours, via the learning process already mentioned earlier:
unsupervised reinforcement learning based on the robots’ (or agents’) interaction with the
environment. In this situation only can we truly speak of a learning robot.

To summarize the experiment in so far, we can conclude that in order to create intelligent
agents that use learning processes, we have to specify, implement and verify a basic
behaviour set, from which the agents should create new higher-level behaviours. Because
we want the agents to combine the different basic behaviours on their own, we have to
create the ability for the agent to do so. A useful approach is the reinforcement learning
process.
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5.2 Reinforcement learning

Knowing the unavoidable need for automatic combination of basic behaviours rather than
manually feeding the already ‘computed’ combinational behaviours to the robots, Mataric
enhanced her experiment by applying external rewards and punishments on the robots,
thus implementing a learning process.

In the framework she reformulated the terms state and action as respectively behaviour
and condition, the reason being that state as a monolithic descriptor of the robot and its
environment did not scale up to the multi-robot domain used in the experiment, given the
continuous and discrete aspect describing the robot (velocity, infra-red sensors, radio data)
and the existence of many other robots in the environment.

Even for the simplest of agents, a monolithic descriptor of all state properties is
prohibitively large. Furthermore, atomic actions are too low level and have effect too
unpredictable and noisy that they are not useful to be applied to any learning algorithm.
She defined behaviour and condition as:

Definition 5-2: Behaviour and condition

e Behaviour: A control law that achieves goals but hides low-level control details.

e Condition: The necessary and sufficient subsets of state required for triggering the
behaviour set. Conditions are many fewer than states, thus greatly reducing the
robot’s learning space and speeding up any reinforcement learning algorithm.

Reinforcement learning in situated domains can now be defined as:

Definition 5-3: Reinforcement learning (in situated domains)

Reinforcement Learning in situated domains can be defined as learning the conditions
necessary and sufficient for activating each of the behaviours in the repertoire such that the
agent’s behaviour over time maximizes received reward.

5.2.1 Accelerated learning

The amount and quality of the reinforcement determines how quickly the agent will learn
the correct policy to complete its given task. In general, reinforcement learning can be
accelerated in two ways:
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1. by building more information, and
2. by providing more reinforcement to the agent.

In nondeterministic, uncertain worlds, learning in a limited time interval requires shaping
of the reinforcement in order to take advantage of as much information as possible. To aid
a learner in a dynamic, noisy and nondeterministic environment, the reinforcement
learning process can be enhanced with the introduction of:

1. heterogeneous reward functions that partitions the task into subgoals, thus
providing more immediate reinforcement, and

2. progress estimators that are functions associated with particular conditions which
provide some metric of the leamner’s performance. Progress estimators are also
know as the internal critics.

Figure 5-4 shows the results of a foraging task implemented with three different
algorithms over twenty different trials. The first algorithm, called Q-learning, is a standard
reinforcement learning algorithm. The robot receives a reward whenever a puck is
delivered at the home region. The graph shows that about 27% of trials the robot learned
the correct policy.

The second algorithm implemented the heterogeneous reward functions, in which also
subgoals, like grasping a puck, dropping a puck and reaching home, are rewarded. We can
see clearly that robot learns to accomplish its task much faster. In about 50% of twenty
trails the robot was able to learn the policy correctly.

100

@ Q-learning

RL/heterogeneous functions

@ RL/heterogeneous and
progress functions

Correct policy learned by the robots (in %)

Figure 5-4: Performance of three reinforcement learning strategies
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The third algorithm included not only the heterogeneous function but also the progress
estimator functions. One estimator monitoring the progress in getting away from an
intruder and a second estimator monitoring progress toward home.

The two progress estimators were found to be sufficient for making the given learning task
possible and for consistent and almost complete learning performance. Disabling either
one of the estimators disabled the robots from learning the complete policy.

5.2.1.1 Heterogeneous reward functions

Reward functions with a single high-level goal intuitively require a large amount of
intermediate reinforcement in order to aid the agent in learning. The more subgoals created
from the high-level goal, the more (intermediate) reinforcement can be applied, and thus
the faster the learner converges to its correct policy.

It was already mentioned that agents in situated domains usually maintain multiple
concurrent goals, which can be achieved and maintained by using behaviours as the basic
unit of control. A task in such a situated domain can then be represented with a collection
of these concurrent goal-achieving behaviours. Reaching a goal generates an event that
provides primary reinforcement to the learner.

The general form of such an event-driven reinforcement function can be represented with:

r if the event E occurs

0 otherwise

R, (c,t)=JL

Event-driven reinforcement for any event F is a function of the set of conditions ¢ and time
t. The received reinforcement r may be positive or negative.

A general heterogeneous reward function has the following form:

re; if event Eloccurs

re, if event E2 occurs
R, (c,t)=x+.

rg, if event En occurs

0 otherwise
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The complete reward function is a sum of inputs from the individual event-driven
functions. In case multiple events occur simultaneously, appropriate reinforcement for all
of them is received from multiple sources.

Lets illustrate a heterogeneous function with an example for the robotics experiment from
section 5.1.2:

e A robot receives reward R, whenever it avoids an obstacle, and reward R;
whenever it reaches home.
e The corresponding reward function appears as follows:

r  if an obstacle is avoided

R(c,t)=<r, if home isreached
0 otherwise

e If the robot happens to be avoiding an obstacle and reaches home at the same
time, it receives reinforcement from both sources concurrently:

R(c,t)=r, +r,

As can be seen from the example above, each of the heterogeneous reward functions
provides a part of the structure of the learning task, thus speeding up the learning process.

5.2.1.2 Progress estimator functions

The progression of most goals can be measured immediately as few tasks need to be
defined as long sequences of behaviours without any feedback. Progress estimators use
domain knowledge to measure progress during a behaviour and, if necessary, to trigger
behaviour termination. Intermittent reinforcement can be provided by estimating the
agent’s progress relative to its current goal and weighting the reward accordingly. The
following are two general forms of progress estimator functions:

R (0 m if ¢ eC' A progress is made (m>0,C'c ()
c’ = .

p n if ¢ € C' A no progress n<0,C'cC)

i if c e C' A progress is made i>0,C'cO)

R (c,t) =4j if c €' A regressis made (j<0,C'cO)

0 otherwise
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C is the set of conditions, and C’ is the set of conditions associated with the given progress
estimator, i.e. those conditions for which the given progress estimator is active. R, is a
two-valued function that monitors only the presence and absence of progress, while R is a
three-valued function that monitors the presence and absence of progress, as well as
negative progress or regress.

Lets consider the following example of a progress estimator function using feedback as a
learning signal:

e The robot’s task is to learn to take pucks home.
Having found a puck, the robot can wait until it accidentally finds home and
then receives a reward.

e Alternatively, it can use a related subgoal, such as getting away from the
‘food’/puck pile, for feedback.

e In such a scheme, the longer the robot with a puck stays near the ‘food’, the
more negative reinforcement it receives.

e This strategy will encourage the behaviours that take the robot away from the
food, one of which is homing.

The reward functions to accomplish this task can be readily made with the above-
mentioned formulas.

5.2.2 The Markovian Decision Process

The most commonly, but not exclusively, used model of reinforcement learning is the so-
called Markovian Decision Process (MDP) model. The model contains conditions as
stated in Definition 5-4.

Definition 5-4: Markovian Decision Process conditions

1. The agent and the environment can be modeled as synchronized finite state
automata.

The agent and the environment interact in discrete time intervals.

The agent can sense the state of the environment and use it to make actions.

After the agent acts, the environment makes a transition to a new state.

The agent receives a reward after performing an action.

Nk

While many interesting learning domains can be modeled using MDP, situated agents
learning in a nondeterministic, uncertain environment, which an operating system certainly
is, do not fit this model. Most RL models are based on the assumption that the agent and
its environment are always in a clearly-defined state that the agent can sense. In situated
domains however, the world is continuous and only partially observable instead of the in
MDP assumed readily prelabeled states and a readily and consistently accessible world.
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The reason why states are not clearly-defined is because the agent’s collection of
properties may contain discrete states, while other properties are continuous. The
descriptor of all state properties will then be quickly too extensive to work with, even for
small and simple agents. As was mentioned earlier, the notions of state and actions can be
replaced by the notions of behaviour and conditions, resulting in a substantially smaller set
of properties.

The observability is only partial because sensors, however complex they are, have limited
abilities and cannot provide descriptions of the world as we perceive it to be. Also, the
sensor’s world of perception is quite smaller than ours and oftentimes fixed on a certain
subspace of the world. So, the sensors return a simplified property such as presence of and
distance to objects within its fixed sensing region. This collapse of multiple states into one
results in partial observability, i.e. there is a many-to-one mapping of the world and the
internal states. This inability to distinguish different states makes it difficult or even
impossible for a learning algorithm to assign the appropriate utility to actions associated
with such states.

From the previous paragraph we can conclude that modeling of dynamic, nondeterministic
worlds, which most multi-agent systems are, to be very difficult, indeed. Oftentimes such a
world is still modeled using the MDP model, be it slightly adjusted. We see this practice
often in other disciplines as well, such as queuing problems, and contains mostly
allowable differences with the real-world model. We have to bear in mind however that
the agents’ sensors will probably introduce an even lesser accurate representation of reality
than the model itself does. The sensors are the most difficult part of the agent to model to
reflect the agent’s world.

From this viewpoint, reinforcement learning algorithms have a general form. In

Figure 5-5 this general form is represented in a block graph. Note that the state and action
have re-appeared in the ideal MDP model. The letters in this graph have the following
meaning:

: the internal state

: the current action

: the current world state

: an evaluation function mapping / and s into a
: reward for executing action a in world state s
: an update function mapping , s, a, r into /

S Y o~

We can see that the internal state / encodes the information the learning algorithm saves
about the world, most commonly in the form of a table maintaining state and action data.
The update function U adjusts the current state based on the received reinforcement, and
maps the current internal state, input, action and reinforcement into a new internal state.
The evaluation function F maps an internal state and an input into an action based on the
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information stored in the internal state. Different RL algorithms vary in their definition of
Uand F.

— | Initialise the learner's state Ito/,

—» | Observe the current world state s

- Choose an action a=F(l,s) = |

Execute action a

Compute reward r on action a

ad infinitum

Update internal state /=U(l,s,a,r)

Figure 5-5: General form of a reinforcement learning algorithm

The mainstream RL algorithms are based on the temporal differencing (TD) class,
meaning that TD methods deal with assigning credit or blame to past actions by attempting
to predict long-term consequences of each action in each state. Assigning delayed reward
or punishment is considered to be the most important and difficult problem in
reinforcement learning. Temporal credit is assigned by propagating the reward back to the
appropriate previous state-action pair. So, temporal differencing methods are based on
predicting the expected value of future rewards for a given state-action pair, while
assigning credit is locally based on the difference between successive predictions. The
aforementioned reward functions determine how credit is assigned.

Provable convergence of RL algorithms based on temporal differencing and other related
learning strategies based on dynamic programming is asymptotic and requires infinite
trials. Generating a complete policy, however incorrect, requires time exponential in the
size of state space, and the optimality of that policy converges in the limit as the number of
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trials approaches infinity. Even with only ten-bit states, this translates into hundreds of
thousands of trials, so even in ideal Markovian worlds the number of trails required for
learning is prohibitive, even for the smallest state spaces. In situated learning problems
still another problem arises, because with insufficient reinforcement the learner may fail to
converge (i.e., complete its policy), as we saw earlier in Figure 5-4, in which case with
only standard reinforcement (Q-learning) the robots failed to grasp their correct policy 3
out of 4 times.

Returning to the subject of temporal credit assigning, we can expect that the more delayed
the reward is, the more trials the learning algorithm requires and consequently the longer it
takes to converge. Algorithms using immediate reinforcement naturally learn the fastest.

Rewards are commonly used in only two extreme ways: immediate or very delayed. It is
not common practice to use rewards ‘almost’ immediate or only slightly delayed. In
situated domains, however, rewards do tend to fall in between the two popular extremes,
providing some immediate rewards, plenty of intermittent ones, and very few very delayed
ones. Delayed rewards, and even more so impulse reinforcement, delivered only at the
single goal, are prohibitively difficult and slow in use, although they do eliminate the
possibility for biasing the learning.

The overcome these problems progress estimators were introduced. Instead of giving a
reward at a goal’s ‘end’, intermittent estimates of progress are sent as an intermediate
reward. Of course the danger of incorrect, inconsistent or internally biased estimations
does exist, but with careful application of progress estimators it can speed up the learning
algorithm considerably, as was already shown in Figure 5-4.

Luckily impulse reinforcements are very rare in situated domains, thus reducing the danger
of prohibitively slowing the learning process down. They are rare because agents in
situated domains usually have more than one single goal. Some of those multiple goals are
maintained concurrently, while others are achieved sequentially. A robot participating in
the foraging task, for example, maintains a continues low-level goal of collision
avoidance, while at the same time keeping a minimal distance from other robots in order to
minimize interference, may attempt to flock and may be heading home with a puck.

Most RL models require that the learning problem be presented as a search for a single
goal optimal policy, so that it can be specified with only one global reward function. To
overcome this problem we could keep track of the multiple goals in a situated domain
framework by using separate state spaces and reinforcement functions for each goal and
merge them later on into one state space and reward function.

We have seen in this section that there are two main problems when standard MDP models
are applied to multi-agent domains (thus also operating systems) are considered:
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1. The state space is prohibitively large, and
delayed reinforcement is insufficient for learning certain tasks, such as the foraging
task in our robotics example of section 5.1.2. Unless appropriate progress
estimators are used, such learning tasks will never converge.

For the modeling of such domains, MDP models can be obtained empirically for each
system, but it remains difficult to prove the correctness of the model.
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6. Conclusions

In the last section of this thesis, some conclusions will be drawn on the subjects
presented in the previous sections and on the project as a whole. In the preliminary stage
of the project itself - searching for useable material, such as books and reports, concerning
agents - it became almost immediately clear that either the main software houses withhold
their knowledge on agents from the public or the development of agents is still in its
infancy.

If we look at some articles, such as [Vizard], in which Microsoft, currently the largest
software house worldwide, claims to have build agents into programs like Excel 5.0 and
Word 6.0, it seems that the development of (intelligent) agents is indeed still far off. The
so-called agents Microsoft claims to have implemented are not intelligent at all: They are
nothing more than macro-ish written pieces of software. Excel, for example, can direct the
user what to do next when creating a sheet. If the user has an empty sheet in front of him,
the ‘agent’ states that formulas or text may be entered in column x and row y. Obviously
this is hardly an intelligent task for an intelligent agent, let alone the notion that an ‘agent’
is completely obsolete in this case: a macro could have done the same thing with less fuss
for the programmers.

The material that was found were merely some reports from colleagues throughout the
world, mainly from other universities. The articles found in computer magazines were
hardly worthwhile, because they kept the reader largely in the dark on how agents actually
work. Most of these authors did not tell their stories beyond some vague stories what
agents could do for the computer society as a whole. So, the main information had to come
from the reports from other universities, all retrieved from internet. The trouble with this
kind of information found on the Internet is that the information should be treated with the
utmost care, because the information contained therein does not necessarily have to be
correct.

It was immediately noticed that the subject of agents is very much multi-faceted. Not only
the discipline of computer science is involved, but also disciplines like sociology,
psychology (to study the behavioural patterns of agents) and biology. This has the
disadvantage that there is not a general definition available for an agent because every
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discipline sees an agent differently. Hopefully the definition presented in this thesis
(Definition 2-1) is satisfying to everyone in the different disciplines involved by
combining the different interpretations into this single definition.

When agents will become available to the masses, it would certainly revolutionize the way
in which we are going to use our computers. Computer systems, including network
systems, may be configured by agents without the intervention from a human system
operator. Tedious and repetitive tasks may be executed by agents rather than the computer
user him/herself, alleviating the stress upon him/her.

The most important properties of an agent were found to be its autonomy, its reactiveness,
its pro-activeness and its successfulness. For any formal definition of agent properties to
have validity, a framework has to be defined, describing the environment in which the
agent is going to reside and the task it has to accomplish in this environment.

The construction of agents must be executed according to a three phase plan:

1. creating the specifications,
creating an implementation from the specifications, and

3. creating a communication language with which the agent can communicate with its
surroundings, including other peer agents.

Currently the communication languages are available in two kinds: conventional
procedural languages and declarative languages, of which the declarative language clearly
has the preference, because of its power to cooperate with learning processes
unconditionally. Due to the ‘habits die hard’ syndrome we can expect, however, that the
communication language to be used in the future contains a mixture of both procedural
and declarative properties.

In order for the implementation of an agent system to be successful it has to comply to the
following requirements:

1. The implementation of an environment which an agent can observe and affect.

2. The implementation of a flexible database system which can be effectively used by
both the agent and the environment.

3. The implementation of some sort of support for a dialogue between user and
agents, taking advantage of direct manipulation, natural language and all of the
more conventional user interface components such as menus and buttons.

For OS agents the following requirements should be met:
1. The agent must be able to execute OS commands, recover from any unexpected

failures and, when necessary, automatically attempt alternative ways to complete
its task.
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2. The synthesis of a sequence of OS commands, system calls etc. should be dynamic.
3. The agent must have the ability to adapt to differing conditions, resources and user
tastes.

Furthermore, it is possible to create an agent system within an existing conventional
operating system, like UNIX or Windows, by defining and implementing an extended
interface with OS agent servers. A new agent operating system is naturally preferred, but
not necessary. The disadvantages of agent operating systems created on top of a
conventional operating system are that

1. not all information of the operating system's state is available, and that
2. repeated polling at the command level is sometimes necessary, resulting in a
dramatic message overhead.

Agents will never be powerful if they do not have the capability to learn. Learning is a key
feature to the success of agents. The learning process of an agent is classified into four
different categories, differentiated by the kind of information learned:

learning declarative knowledge

learning control

learning behaviours

learning to select behaviours and actions

el

The most useful approach to learning was found to be Reinforcement Learning.
Punishments and rewards are sent by the environment to an agent according to the
correctness of the action the agent previously had executed. The goal of the learning
system is to maximize positive reinforcement (‘rewards’) and minimize negative
reinforcement (‘punishments’).

By appropriately applying heterogeneous functions and progress estimators, the learning
process can be enhanced in such a way that the true policy the agent needs to learn
converges. If these additions are not used, there is a chance that the agent will never learmn
the correct policy to accomplish its task, because of the dynamic, noisy and
nondeterministic environment, which a multi-agent environment is.

The Markovian Decision Process (MDP) was shown to be the most used model for
reinforcement learning. Because of a large state space in multi-agent domains the terms
state and action have to be reformulated into behaviour and conditions respectively, thus
reducing the ‘state space’ (i.e., ‘behaviour space’) considerably. The MDP model may be
adjusted to conform to these changes, but this process is very difficult, because it has to be
determined empirically.

Agents need some kind of basic behaviour set from which other behaviours can be created
in order to start a learning process. These new behaviours may be created by either directly
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combining or switching between basic behaviours. Selecting the right basic behaviour set
is the key to a successful policy learning. With a wrongly selected behaviour set, the
correct policy may never be learned, or another irrelevant policy may be learned.

Looking back on the project as a whole, it can be concluded that agents do have the
potential to create a new revolution in computer science, if used appropriately. However,
we must never forget the danger agents may bring about. A serious attempt to prevent the
misuse of agents has to be made in order for agents to become fully accepted. Agents do
have the power to invade one’s privacy, mainly because it acts almost in the same way a
virus does. Because of the early stages in which the development of agents currently
resides, this problem may be dealt with appropriately, soon enough.

A first step to a solution may be in the way Telescript is designed, in which an agent has to
ask permission before it may act on a computer system or other peer agents that do not
belong to its original creator’s. However, a great disadvantage of Telescript is that every
(computer) system that wants to participate in the agent capabilities must have a system-
dependent interpreter built into it.

Protecting one’s data from abusive agents should therefore have the highest priority in
agent research, otherwise agents will never become accepted in the world called
information technology.

Although the attempt has been made to give a complete-as-possible overview of the
current standings in agent development in the available period of time, there is always
something that has been overlooked, intentionally left out, or newly developed. This is,
obviously, inherent to a project like this. There are a lot of reports floating about on the
Internet on the subject of agents. Most reports, however, do require the user to have some
basic knowledge on agents already. With this report as a general reference, all documents
should be understandable to most of the interested people.

I part with some very eloquently spoken four short, but wise, words from the coach upon
my asking him whether my project was now really finished: “Nothing is finished, ever”,
he replied. How true, indeed...
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