
 Eindhoven University of Technology

MASTER

Computer telephony integration

Pannekoek, D.R.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5befa1bc-360f-4317-a699-5b9a56fb2c2e


Technische Universiteit tU) Eindhoven

Faculty of Electrical Engineering

Digital Systems Group

Master Thesis Report:

Computer Telephony
Integration

D.R. Pannekoek

Coach : ir. M.J.M. van Weert

Supervisor: Prof. ir. M.P.J. Stevens

Period : Sept. 1994 - June 1995

The Faculty of Electrical Engineering of Eindhoven University of Technology does not
accept any responSibility regarding the contents of student projects and graduation reports.



Abstract

One of the developments in telecommunication systems is the integration of computers and telephony.
This results in new possibilities that can be used to improve existing telephony services or to create
entirely new services. A number of possible applications of this so-called Computer Telephony
Integration (CTI) in the fields of call centres, office productivity and multi-media communication is
discussed.

CTI implies that the computer is able to control calls and obtain information from the telephony
network. This requires a communication path between the computer and a switch within the telephony
network. This communication can be based on either a first-party or a third-party call control model.
First party call control is typical in systems where the only interface between computer and switch is a
telephone line (i.e. the call control communication consists in signalling). Third-party call control is
more versatile, but requires a separate CTI link between the computer and the PBX. Configurations,
interfaces and protocols for both kinds of call control are discussed.

CTI software systems can provide applications with unifonn access to the call control functionality by
means of a standard Application Programming Interface (API). Two such systems are discussed:
MicrosoftJIntel's Windows Telephony system (also known as TAPI) and Novell/AT&T's NetWare
Telephony Services (also known as TSAPI). The Windows Telephony system is an open standard for
first-party call control purposes. NetWare Telephony Services provides third-party call control in a
NetWare LAN environment.

A CTI demo system has been developed that combines the Windows Telephony system with a third
party call control configuration like the NetWare Telephony Services configuration. Unlike the NetWare
Telephony Services configuration, no LAN is required. This implies that the configuration could also be
used in Centrex situations. Furthennore, remote access is possible, opening the door for teleworking.

The developed demo software consists of a demo telephony application, which implements the concepts
of screen based telephony and multi-media call control, and a Telephony Service Provider that
implements X.25 protocols, the ECMA CSTA call control protocol (specified in ASN.l) and a
mapping between TAPI and the ECMA CSTA protocol. The entire demo system has been built and
successfully demonstrated in the demo room of Ericsson Telecommunicatie b.v. in Rijen.

iii



Contents

1. Introduction 1

2. cn applications 3

2.1 Call centres 3
2.1.1 Inbound call centres 3
2.1.2 Outbound call centres 4

2.2 Office productivity 5
2.2.1 Screen based telephony 5
2.2.2 Voice mail and automated attendant 5
2.2.3 Fax server 6

2.3 Multi-media communication 6
2.3 .1 Multi-media transmission 7
2.3.2 Multi-media call control 8

3. CTI configurations 11

3.1 First-party call control 12
3.1.1 Windows Telephony system 14

3.2 Third-party call control 16
3.2.1 The cn link 16
3.2.2 ECMA CSTA 17
3.2.3 NetWare Telephony Services 20
3.2.4 Computer Integrated Communication Network. 21

3.3 Conclusions 26

4. cn demo system design 27

4.1 Configuration 27

4.2 Software design 29
4.2.1 ECMA CSTA implementation 29
4.2.2 Windows Telephony programming 31
4.2.3 Mapping TAPI to ECMA CSTA 35
4.2.4 Data communication 37
4.2.5 Demo telephony application 39

5. Results 41

5.1 Configuration 41

5.2 Software 41
5.2.1 ECMA CSTA implementation 41
5.2.2 Mapping 42
5.2.3 Data communication 44
5.2.4 Demo telephony application 44

6. Conclusions

References

47

49

v



Appendix A. cn link survey 51

Appendix B. CSTA Switching Function Services 53

Appendix C. CSTA / TAPI functionality comparison 59

Appendix D. ASN.I / BER implementation module 61

Appendix E. TAPI / TSPI interface specification 71
Functions 72
Messages 135
Constants 145

VI



1. Introduction

Computer Telephony Integration (CTI) has become a popular topic in the telecommunication business.
The term cn stands for integration of the computer and telephony environments. This implies that the
computer is offered a certain amount of control over the telephone network. In this manner, simple
telephony-related activities can be automated. The computer can also offer entirely new telephony
services.

Interest in cn has only recently really started, with the introduction of cn extensions for the two
popular operating environments Microsoft Windows and Novell NetWare. However, the concept of cn
is not new; it is already being employed for some years in so-called call centres. An example of a call
centre is a helpdesk where a group ofagents provide telephonic support.

cn can offer great benefits to companies that rely heavily on telecommunication. Dutch market
research agency Ovum estimates the revenues currently earned by companies in Europe and the United
States from employing cn to be around 400 million US dollars per year. This is mainly as a result of
applications in call centres. Ovum predicts that the revenues from cn in Europe and the US will
eventually rise to 6 billion US dollars per year in the year 2000, where only half of this amount will be
from applications in call centres. The other half will be from office productivity and personal
productivity applications.

The most useful applications of cn are business-oriented, therefore the focus of this report will be on
business applications. Besides the already mentioned call centre applications, a number of other useful
applications will be discussed (chapter 2). Based on knowledge of existing cn configurations, a new
configuration is conceived in chapter 3. In order to get insight in the issues involved in implementing
this new configuration, a demo cn system (with limited functionality) has been developed. The compo
nents of this demo system are described in chapter 4. The results of this development are discussed in
chapter 5.

1



2. CTI applications

In this chapter, a number ofCTI applications is discussed. For the purpose ofthis discussion, three cn
application-fields are identified: call centres, office productivity and multi-media communication. The
discussed applications are merely intended as examples; all kinds of variations may be possible. Also,
the intention has not been to present an exhaustive list of applications; numerous other applications are
possible.

2.1 Call centres

Call centres consist of groups of people called agents. Simply put, all agents within a group are
assigned the same job: either answering incoming calls (inbound call centres) or making calls (outbound
call centres). Inbound call centres are used for helpdesks, customer support, info services, etcetera.
Outbound call centres are mainly used for telemarketing and less frequently for debt collection
purposes.

2.1.1 Inbound call centres

The technique used in inbound call centres is called Automatic Call Distribution (ACD). A group of
agents is assigned a single phone number: the ACD group number. Incoming calls to this ACD group
number are automatically distributed to any ACD agent that is available at that moment.

A standard feature found in almost any PBX is the hunt-group, where a group of extension lines is
assigned a single phone number. When an incoming call arrives for the hunt-group, the PBX searches
(''hunts'') the first extension line in the group that is free. Although it may seem at first that this
standard feature is sufficient to create an ACD group, this is not the case. Whether an agent is available
is not simply a matter of his phone being free. There are actually three occasions when the agent must
be considered unavailable: when the agent is involved in a call, when the agent is involved with (paper-)
work that resuhs from a call and when the agent is absent. Only in the first case will the agent's
extension line be busy.

In order to be able to locate an available agent, additional functionality is required to keep track of the
state of each agent. Some kind ofqueuing mechanism is also required: ifthere is no agent available, the
caller should be placed in a queue, usually resulting in an announcement that all agents are currently
busy and a request to the caller to wait a while. There are a number of systems that can offer the
required ACD functionality:

• A stand-alone ACD switch. This is basically a dedicated PBX, specialised for ACD. In general,
stand-alone ACD switches are used in large call centres.

• A Centrex! switch. Many Centrex switches have buih-in ACD functionality.

• A PBX with buih-in ACD functionality. Some PBXs can be enhanced with ACD packages.

• A computer system that is connected to a PBX through a so-called CTI link. In this case, the
computer provides the ACD functionality; the PBX needn't have additional ACD functionality.

In the latter case, the PBX sends a routing request to the computer system (over the cn link) as soon as
a call for the ACD group number arrives. The computer selects an available agent and returns the
appropriate extension number to the PBX. Figure 1 depicts such a configuration.

1 Centrex is a service offered by Public Telecom Operators. Simply put, companies can rent a part of
a public switch and use it as PBX Centrex switches offer all the functionality ofnormal PBXs.

3



Computer Telephony Integration

~=~,D-

PBX

~~
~~

~~

Host computer
/CTllink

PSTN

Caller

Figure 1. Call centre configuration using cn

Each agent has a computer terminal that is connected to the host computer. The agent uses the terminal
to report his current state to the host computer, which keeps track ofthe state of all agents.

With this configuration more sophisticated features can be implemented than with the other systems2

mentioned earlier. For example, the host computer can automatically retrieve information concerning the
calle~ from a database and display this information on the agent's terminal. In multi-lingual call centres
where agents are specialised in specific languages, the host computer can select an appropriate agent
based on the caller's origin. More sophisticated queuing mechanisms can also be implemented in the
host computer. For example, the host computer can already collect some information from the caller
using Interactive Voice Response techniques, while all agents are occupied. As soon as an agent
becomes available, this information is passed to that agent's terminal, thus shortening the time the agent
needs to spend on the caller.

Over the past five years, several large computer manufacturers (DEC, IBM, HP, Tandem) have co
operated with switch manufacturers to develop cn systems as shown in Figure 1. Recently, Novell and
AT&T have jointly developed a system, called NetWare Telephony Services, that allows this kind of
cn applications to be run over a NetWare LAN. In this case, the agents use a NetWare client PC
"connected" to a NetWare telephony server, instead of a terminal connected to a host computer.

2.1.2 Outbound call centres

In outbound call centres, all agents share a list ofpersons who need to be called. Agents usually spend a
lot oftime in trying to reach those persons in the first place. A lot of administration is necessary to keep
track of which persons couldn't be reached immediately and when to call them back at what phone

2 Stand-alone ACDs and PBXs with built-in ACD fUnctionality may also have a CTIlink to enhance
their features.
3 Of course, the host computer first has to determine the identity of the caller. If no Calling Line
Identification is available, the computer will have to use Interactive Voice Response techniques.

4



Chapter 2. CTI applications

number. Efficiency of the agent's work in an outbound call centre can be improved by automating the
initial phase ofthe agent's task.

Using a cn configuration like in Figure 1, the host computer can maintain the list of person to be
called and instruct the PBX to call the phone-number at the top of the list. As soon as the phone is
answered, a connection is established with any agent that is available at that moment (this process is
also known as predictive dialling). Information concerning the called person is then sent to the agent's
terminal. Ifthe phone is not answered, the call will automatically be rescheduled to a later time. Even a
larger part of the agent's task can be automated if the host computer employs Interactive Voice
Response techniques to make sure the person on the other side ofthe line is the required person.

2.2 Office productivity

According to the Dutch economic institute NEI, 15 percent of all persons that call a Dutch company
don't get to speak the person they wanted (4 percent can't reach the company at all). NEI has calculated
a nation-wide production loss of 500 million Dutch guilders per year from calls that don't get answered
within a reasonable time [20]. In other words: a lot of money can be saved by increasing the telephonic
availability ofemployees.

2.2.1 Screen based telephony

Most PBXs contain a large number of call control functions that can increase telephonic availability:
call forwarding, call back when free, transfer call, conference call, pickup call, etcetera. The problem is
that the number of features is usually so large and the way they are activated is so complex that nobody
can remember how to activate them. cn can be of help, since computers with Graphical User
Interfaces can offer a much easier user interface that standard phone devices.

Telephony operations can also be integrated in the computer's operating environment. A database
application can offer a dial function to automatically dial the phone number of a person in a phone
directory database. When an incoming call arrives, the name ofthe caller can be looked up in the phone
directory database and presented to the user. Setting up a conference call may be realised by dragging
icons (representing persons) into a conference area on the screen.

2.2.2 Voice mail and automated attendant

Traditionally, when somebody calls an employee that is absent, he will be connected to a secretary or
attendant or alternatively to an answering machine. Most of the callers will simply leave a message
containing the caller's name, his phone-number and a request to call him back. Since answering these
calls is a simple, yet time-eonsuming business, it is desirable to automate this process. This can be done
by means ofcn.
If a computer answers the phone during the absence of an employee, Interactive Voice Response
techniques can be employed to allow the caller to choose whether he wants to be called back (if Calling
Line Identification can be used, the caller doesn't even have to give his phone-number), leave a message
in a voice mail box (the computer based equivalent of a conventional answering machine) or speak to a
secretary. When the employee returns, the computer can present a list of persons that called during his
absence. The computer can then assist in calling back the persons that requested that. This kind of
application is called automated attendant.

5



Computer Telephony Integration

2.2.3 Fax server

Although fax has become a heavily used medium for telecommunication in companies, distribution of
incoming fax messages is usually still very primitive. Most organisations have one or more centralised
fax machines that are used for both sending and receiving fax messages. Received fax messages are
usually distributed manually (as internal mail), using the name ofthe addressee on the fax cover page.

This process is expensive and relatively slow; the introduction of fax-on-demancl services has even
made it less adequate, since fax-on-demand systems usually don't generate a cover page with a name of
the addressee. The entire process can be automated by means of cn, as shown in Figure 2.

1f=;;;~It--CTllink-
mll~

Fax server

Figure 2. Fax server configuration

PBX Caller
(fax)

Incoming fax calls are routed to a computer, called fax server, equipped with one or more fax cards.
This fax server receives and stores all fax messages. Employees can retrieve their fax messages on their
PC via the data network. For optimal integration, a so-called unified messaging application can offer
integrated access to stored fax, e-mail and voice mail messages. The employee can read the message on
his PC or print it on either a local printer or the nearest network printer.

To enable the fax server to determine the identity ofthe addressee, each employee need to be assigned a
personal fax number. The PBX must route calls for all personal fax numbers to the fax server and
inform the fax server of the called number. For this information exchange between PBX and computer,
a so-called cn link can be used.

2.3 Multi-media communication

Multi-media communication means that a call involves more than one medium (e.g. sound, video, com
puter data). With multi-media communication, two topics are involved: muhi-media transmission [18]
and multi-media call control [3]. cn can be applied to implement muhi-media call control in current
network configurations. The issues in multi-media call control are related to the issues in multi-media
transmission, therefore the latter will be discussed first.

4 Fax-on-demand systems are Interactive Voice Response (lVR) systems that allow callers to retrieve
information on their fax machine. During the IVR dialogue, the caller is asked to enter the phone
number ofhis fax machine. Afterwards, the IVR system calls back on the fax number and sends the
requested information.

6



Chapter 2. CTI applications

2.3.1 Multi-media transmission

Each medium has its own characteristics and imposes its own demands on transmission capabilities of
the network. The characteristics of three common media are discussed: voice, video and (computer)
data.

• Using Pulse Code Modulation~ (PCM), human voice can be transmitted digitally. A bandwidth of
64 kbps is required for toll quality voice reproduction. PCM voice is said to be isochronous,
meaning that the network delay needs to be constant (within certain limits) in order to be able to re
produce the signal undistorted.

• Motion pictures (video) can also be transmitted digitally using PCM. This requires much more band
width, however. Depending on the quality, the frame rate (the number ofpictures per second) and the
compression methods used, the bandwidth may vary from hundreds of kilobits per second to tens of
megabits per second. PCM video is isochronous, like PCM voice.

• Digital data generated by computers is typically bursty, meaning that the required bandwidth varies
drastically. Depending on what is being transmitted (nothing, text, binary files, graphic pictures) the
required bandwidth may vary from zero to several megabits per second. Transmission of a full
screen picture (SVGA 800x600, 256 colour) within one second, for example, requires a bandwidth
of 4 Mbps. Transmission ofa full screen oftext in the same time only requires 32 kbps. Unlike PCM
voice or video, a constant network delay is not required; computer data is said to be asynchronous.

Over the past years, two types of digital communication networks have evolved:

1. Telephony/voice networks. Designed to carry PCM voice, these networks are based on circuit
switching techniques, resulting in a fairly constant network delay. Circuits (channels) generally offer
a bandwidth of 64 kbps. Transmitting PCM video therefore requires muhiple channels in parallel.
Although transmission of computer data is possible, this leads to waste of network resources,
because of its "bursty" nature.

2. Computer/data networks. Designed to carry computer data, these networks typically use packet
switching techniques. Packet-switching yields optimal use of network resources in case of "bursty"
traffic. However, these networks can't guarantee the constant network delay necessary to carry PCM
voice or video traffic.

A network configuration for multi-media transmission can be created by employing two networks: a
telephony/voice network for isochronous traffic and a computer/data network for asynchronous traffic.
In order to allow for multi-media transmission over a single network, several new network techniques
have emerged:

• ISDN can be considered a hybrid network technique: both circuit-switched channels (Circuit Mode
Bearer Services on the B-ehannels) and packet-switched channels (Packet Mode Bearer Services on
the B- or D-channel) are available. An ISDN Basic Rate Interface (BRI) offers two 64 kbps B
channels and one 16 kbps D-ehannel. If both B-ehannels are used in parallel in circuit-mode, this
yields an aggregate bandwidth of 128 kbps for isochronous traffic and 16 kbps for asynchronous
traffic. If one B-ehannel is used in circuit-mode and the other in packet-mode, 64 kbps is available
for both types of traffic. This is hardly sufficient for multi-media communication involving video
and/or computer image transfer; more appropriate would be an ISDN Primary Rate Inteiface (FRI),
offering 30 B-ehannels (an aggregate bandwidth of approximately 2 Mbps) for isochronous or asyn
chronous traffic and one 64 kbps D-ehannel for asynchronous traffic.

5 A number ofvariations on the basic PCM method are possible (e.g. delta-modulation and ADPCM).
For clarity, only the term PCM will be used in the discussion.

7



Data Asynchronous Data
entity network entity

VoiceVoice Connection
entity 1\ control entity "

entity

"';~no;(Video Video
entity network entity

Computer Telephony Integration

• isoEthernet (described in the IEEE 802.9 standard) is also a hybrid network technique. An
isoEthemet LAN combines a IEEE 802.3 LAN (with a bandwidth of 10 Mbps) for asynchronous
traffic with 96 circuit-switched channels of 64 kbps (aggregate bandwidth of 6 Mbps) for iso
chronous traffic.

• FDDI-II LAN and FDDI-Follow-On-LAN (FFOL) are also hybrid networks. As with isoEthemet.
the total bandwidth is divided in two logical parts. One is used for multiple 64 kbps circuit-switched
channels. the other for asynchronous traffic. The total bandwidth is 100 Mbps for FDDI-TI and
150 Mbps to 2.4 Gbps for FFOL.

• AIM is a true multi-media networks technique that will be employed in both LANs and public
networks (WANs). ATM networks use packet-switching6 techniques. but can guarantee sufficiently
constant network delay to allow for transmission of isochronous traffic as well as asynchronous
traffic. An ATM User Network Interface (UN!) offers a bandwidth of 155 Mbps. enough for high
quality video.

2.3.2 Multi-media call control

The concept of multi-media call control is also known as separation ofcall and connection. In a multi
media call each medium will require a separate connection. but these connections should be handled as a
unity (a single multi-media call). For example: when a multi-media call consisting of a speech connec
tion. a video connection and a data connection is dropped. all three connections should be dropped
automatically. Future broadband networks shall incorporate this concept in their signalling system.
However. also current network configurations can be enhanced with this concept by means of CTI.

Figure 3 shows an abstract view
on a multi-media communication
network configuration. Two sta-
tions that want to communicate Station A Station B
both consist of three entities: a
data entity that transmits and
receives asynchronous data. a
voice entity that transmits and
receives (isochronous) PCM
voice. and a video entity that
transmits and receives
(isochronous) PCM video.
Transport of asynchronous and
isochronous traffic takes place
over two functionally separate
networks. Examples of such a
network configuration are a
combination of a LAN (for
asynchronous traffic) and an
ISDN (for isochronous traffic). Figure 3. Multi-media transmission (abstract view)

a single ISDN where both
packet-mode and circuit-mode connections are used and an isoEthemet network.

6 The packet switching technique used in AIM is called cell-relay and is optimised for high speed,
low-delay switching. This is achieved by using relatively short, fixed length packets (cells) and limited
error-checking within the network.

8



Chapter 2. CTI applications

The isochronous network contains a connection control entity that is responsible for the routing of the
data through the network. To initiate communication with another party, the calling party uses
signalling7 to request the connection control entity to establish a connection between the calling party
itself and the called party. During connection establishment, the connection control entity infonns the
called party ofan incoming call (by means of signalling).

Voice
entity

Data
entity

Video
entity

Station B

Call control
entity

Connection
control entity

Data
entity

Voice
entity

Video
entity

Station A

Call control
entity

Figure 4. Muhi-media call control (abstract view)

In relation to multi-media call control, it should be noted that the connection control entity controls
connections, not calls. In order to initiate a multi-media call consisting of multiple connections, multiple
connection set-up requests need to be send to the connection control entity. The connection control entity
does not regard these connections to be related in any way, leaving the responsibility of handling the
connections as a unity to the user. By means of cn, the handling of the connections that are a part of a
multi-media call can be perfonned by a computer.

Figure 4 depicts an en-
hanced version of the
configuration shown in
Figure 3. The cn link in
Figure 4 is the part that
enables the multi-media
call control concept to be
implemented. This link
allows the call control
entities located in the sta
tions not only to control
the (logical) connections
in the asynchronous net
work, but also the connec
tions in the isochronous
network. If one of the sta
tions from Figure 4 wants
to initiate a multi-media
call involving all three
media, its call control en
tity (in a computer) can
establish a connection between its data entity an the data entity of the called party. It can also requests
the connection control entity of the isochronous data network to establish a connection between the two
voice entities and one or more connections between the video entities. Since this entire process is
perfonned automatically, the user only needs to be involved in the control of the multi-media call as a
whole; he may be ignorant to the fact that the call actually consists of muhiple connections, possibly
over multiple networks.

7 The signalling path is not shown in Figure 3.

9



3. CTI configurations

A very important aspect in cn configurations is call control. Call control is a process that takes place
in the switches in the telephony network. The call control entity inside a switch controls the connections
inside the switch and takes care of signalling towards stations and other switches in the network. Basic
call control operations are originating, answering and dropping calls at a station. More advanced call
control features typically offered by PBXs are call forwarding, call transfer, conferencing, etcetera.
Infonnation collected by the switch concerning calls (e.g. Calling Line Identification) and stations is
also regarded as call control infonnation.

In order to provide a computer with call control capabilities, a communication path between the
computer and the call control entity inside a switch is required for the exchange of call control infonna
tion. This call control communication can be based on either a first-party or a third-party call control
model.

• First-party call control is the conventional call control model, implemented in the signalling systems
used for user-network interfaces. Call control operations performed by a first party always have
respect to that party itself. For example, a first party may initiate a call (from its own station) to
another station, a first party may answer an incoming call (at his own station), a first party may
activate a switch feature (at his own station), etc.

• Third-party call control is a more versatile model, where a third party can manipulate calls between
two (or more) arbitrary parties without being involved in those calls. A computer can be offered
third-party call control capabilities by means of a special interface to the switch's call control entity.

11



Computer Telephony Integration

3.1 First-party call control

Phone

Modem
1--~__ll..,:;;.O.,:;;.O.,:;;.O.,:;;.0.lL-__--l POTS Network

Phone

PC

~'---~_-==-I~~Digital telephony
~. - network

PC

o ~Ph~l
L~---r:~~~~r-----l Digital telephony

L-----,=,,---,I network
Adapter

(c)

(b)

(a)

Figure 5. First-party call control configurations

Figure 5 depicts three alter
native configurations for
computer supported first
party call control, where the
computer is able to control
voice calls at a telephone
device. Configuration (a) is
the most basic configuration,
with a modem (with auto
dialling capabilities) and a
phone-set connected in
parallel to a single analogue
phone-line. By sending
commands8 to the modem,
the computer can perform
limited call control: answer
ing inbound calls and initiat
ing outbound calls. When a
connection is established, it
may be used for voice com
munication (using the phone
set) and for data communi
cation (using the modem).
Simultaneous voice and data
communication is not possi
ble with conventional mo
dems. However, new modem
technology does allow simul-
taneous voice and data communication over a single connection; with these modems, the data transfer
rate will typically drop (e.g. from 14400 baud to 4800 baud) when a voice signal is present.

Many modem PBX systems use digital extension lines. These systems often allow simultaneous trans
mission of PCM voice and computer data over a single line. As shown in Figure 5b, an adapter unit is
used for protocol conversion9 and (de-) multiplexing of PCM voice and computer data. The adapter unit
may allow the computer to control both voice and data calls. Some adapter units (e.g. Ericsson's
Terminal Adapter Units) accept standard Hayes AT and/or V.25bis commands, others (e.g. AT&T's
General Purpose Communication Interface) require that the computer knows the proprietary signalling
protocols used by the PBX.

In configuration (c), the computer is connected directly to the telephony network by means of a
telephony board inside the computer. The phone-set is not connected to the telephony network, but to
this telephony board instead. The phone-set is actually not much more that a speech input/output device
of the computer. The computer may allow a user to treat the phone-set as if it were a regular phone
device: as soon as the hand-set is taken off-hook, the computer detects that the hook-switch is released
and generates a dial-tone. The digits dialled on the phone-set are collected by the computer and as soon
as the entire number has been dialled, the computer makes a call to that number. When a connection has

8 The Hayes AT command set has become a de facto standardfor modem control. The ITU-T also has
defined a standard command set, described in recommendation V. 25bis.
9 The interface towards the computer is generally a standard RS-232 interface; the interface towards
the PBX is usually a proprietary interface, optimisedfor high-speed transmission over long distances.

12



Chapter 3. CTI configurations

been established, the computer will send speech input from the phone-set to the telephony network and
VIce versa.

Because the computer is connected directly to the telephony system and communicates directly with the
switch, configuration (c) can offer more complex call control than the other configurations. The
computer can actually perform all the operations that can be performed from a sophisticated digital
phone-set; this is why this configuration is called digital phone emulation. The problem is that most
PBX systems use proprietary line interfaces and signalling protocols, therefore each system needs its
own specific hard- and/or software inside the computer to enable communication between the computer
and the PBX. Figure 6 depicts the architecture of a digital phone emulation board where this problem
has been minimised by locating all system-specific logic in one custom IC (ASIC) that can easily be
replaced.

Phone-set

ASIC

roo- ---+ Audio out

Line interface

Phone interface _

r-- ~Di9.te~
network

'-----------' il!.!I

~ Codec +--
PCMbus~

DSP I \

14.4 kbps fax I
modem module

C~MIJ
PC bus interface

Figure 6. VTG's Scorpion digital phone emulation board architecture [23]

Introduction of standard ISDN extension lines in PBX systems can solve the problem. Interfaces and
signalling protocols for public ISDN systems have been defined in international standards:

• ISDN physical layer: ITU-T recommendation 1.430 (BRI) and 1.431 (pRI)

• ISDN Digital Subscriber Signalling system #1: ITU-T ree. Q.921 (LAPD) and Q.931 to Q.933

For Euro-ISDN, slightly different signalling protocols (called EDSSl) have been standardised by ETSI.
Interfaces and signalling protocols in private ISDN systems will be largely the same as in public ISDN
systems. Signalling systems for private ISDNs have been defined by ECMA: SSIG for subscriber
signalling and QSIG for inter-PBX signalling [22].

The use of standard ISDN interfaces and signalling protocols does not only eliminate the need for PBX
specific hard- and/or software, it also enables sophisticated computer supported call control in Centrex
systems and public ISDN systems.

13



Telephony Telephony Telephony
application 1 application 2 application 3

I I
TAPI

TAPI.DLL ITSPI

I I
I

Telephony Telephony
Service Provider Service Provider

1 2

I
Jo 0 ISDN card ~ I- I........., I
5c::::Jc::::J D 0 8 Modem

Computer Telephony Integration

3.1.1 Windows Telephony system

Although all three configurations discussed in the previous section offer the same basic call control
functionality, they all work with different hardware (let alone the differences between manufacturers)
and therefore with different software to interface with the hardware (drivers). Unless some standardisa
tion takes place, this means that each telephony application must include its own drivers and configura
tion procedures for all sorts of hardware devices, usually resulting in only the most popular devices
being supported. This has been a motivation for Intel to conceive a standard telephony interface for
applications running under Microsoft Windows. The idea was adopted by Microsoft and jointly they
developed the Windows Telephony system, also known as Telephony API or TAPI.

Although the term Telephony API
(TAPI) is often used instead of Win
dows Telephony system, the use of this
term as such may cause some
confusion. As is shown in Figure 7, the
Windows Telephony system is more
than the specification of an Application
Programming Interface (API) alone.
The Windows Telephony system is
designed according to the Windows
Open Services Architecture (WOSA)
concept, and as such consists of an API
used by applications and an Service
Provider Interface (SPI) that is
implemented by Service Provider pro
grammers. These Service Providers are
a sort of high-level device drivers and
may use regular (low-level) device
drivers to perform their tasks.

An important advantage of the double

interface (APIISPI) concept is the (de-) Figure 7. Windows Telephony architecture
multiplexing performed by a Dynamic
Link Library (TAPI.DLL in Figure 7)
that is part ofthe system and is located between these two interfaces. There may be a number of appli
cations on one side that communicate with a number of Service Providers on the other side through the
APIISPI interface pair. Since all communication goes through the system DLL that performs the (de-)
multiplexing of the information streams, applications and Service Providers don't have to be aware of
the fact that there are multiple Service Providers or applications, respectively. As far as they are
concerned, they are communicating with only one other party, namely the system DLL.

Another duty of the system DLL is mapping the API to the SPI and vice versa. Since these two inter
faces are usually largely the same, this isn't such a difficult task. Part ofthis mapping is a basic validity
check of parameters passed by the applications, taking this load off the Service Providers. Another
mapping activity that is specific to TAPI.DLL is address translation. The Windows Telephony system
recognises two address formats:

1. The canonical address format. This format is ideal for use in electronic address books. Country
code, area-code, subscriber-number, optionally (ISDN) sub-address and name are separately speci
fied. By comparing these separate parts with configured current location info, the system can deter
mine whether a call is local, long-distance or international. Parts ofthe number may be left out in the
dialling process (e.g. the country-eode and area-eode if the call is local) and specific prefixes can be
used for the different types ofcalls.

14



Chapter 3. CTI configurations

2. The dialable address format. This fonnat can be used directly to dial a number on a device that
supports the Hayes AT dialling command. The fonnat contains all the digits to be dialled and
additional fonnatting characters according to the Hayes standard (e.g. P for pulse dialling, T for tone
dialling, W to wait for dial-tone).

Obviously, the canonical address fonnat is most suited for the interface towards the applications
(TAPI), while the dialable address is most suited for the interface towards the Service Providers (TSPI).
As a matter of fact, the TAPI supports both fonnats, while the TSPI only uses the dialable address
format. In case an application wants to use the canonical address fonnat, TAPI.DLL can perform the
translation to the dialable address fonnat.

The Windows Telephony system is intended for call control10 purposes only, it does not give access to
infonnation exchanged over a call. To manage this media stream, developers need to integrate functions
from other APls into telephony applications. In this manner, TAPI works in conjunctions with other
Windows-based services such as Windows multi-media wave audio, Media Control Interface (MCI) or
data-eommunication APls. Although the Windows Telephony system is not involved in the media
stream itself, it does support media detection. This implies that telephony applications can state the kind
of media stream (voice, fax, data, etc.), called media mode, they are "interested in". When an inbound
call arrives, the concerned Service Provider will try to determine the media mode of the call and then
inform TAPI.DLL. Only the telephony applications that have stated interest in the concerned media
mode will be informed ofthe call.

The number of products with Windows Telephony support (i.e. with a Telephony Service Provider) is
negligible at the moment. However, a large number of companies have indicated that they are develop
ing, or intend to develop, Telephony Service Providers for their products. Typical products concerned
are:

• Terminal adapters (refer to section 3. I).

• Modems that allow simultaneous voice/data communication.

• Voice processing boards.

• Multi-purpose DSP boards (fax / modem / voice processing).

• ISDN boards.

• Digital phone emulation boards (refer to section 3.1)

• Client/server voice processing systems. A voice server on the LAN is equipped one or more voice
processing boards. The clients on the LAN can use voice processing facilities on the voice server.

It should be noted that the Windows Telephony specification is an open standard: it does not impose the
use of specific configurations or protocols to perform the call control operations specified. As such, it
does not necessarily have to be restricted to first-party call control configurations, although it is based
on a first-party call control model.

10 The call control capabilities ofthe Windows Telephony system are very extensive and are designed
to take full advantage ofPOTS, ISDN and PBX systems.

15



Computer Telephony Integration

3.2 Third-party call control

With conventional signalling techniques, a computer can communicate with the call control entity inside
a switch. This communication is based on a first-party call control for historical reasons (without CTI,
third-party call control is oflittle use). To provide a computer with third-party call control capabilities,
the signalling protocols could be enhanced, but this is not what most PBX manufacturers did. A so
called CTI link was preferred. This is a dedicated link that interfaces directly to the PBX's system
control unit.

It should be noted that applications running on a computer that interfaces directly with the PBX's
system control could also be implemented as software in the PBX itself In fact, this is what PBX manu
facturers have been doing all the time. Over the years, PBX software has become so complex that
manageability is becoming a problem. Separation of core PBX fimctionality (in the PBX) and additional
fimctionality (in a computer) is a solution to this software management problem:

• Thoroughly tested PBX core software doesn't have to be updated (with the risk of introducing new
bugs) each time fimctionality is added to the system.

• PBX software needs to be upgraded less frequently.

• Common fimctionality can be made available as standard applications that can be used across
different PBX systems.

This concept is similar to the Intelligent Network (IN) concept found in public networks [10]. Unlike
the IN concept, third-party call control CTI configurations can also offer an alternative (computer
based) communication path between the user and the network, enabling the exchange of complex
information (text or graphics) in an easy manner.

3.2.1 The CTI link

T bl 1 ECMA CSTA standa di tia e r sa on group
Computer Bull
manufacturers DEC

HP
IBM
Siemens-Nixdorf

Switch Alcatel
manufacturers AT&T

BT
Ericsson
OPT
Mitel
Northern Telecom
Siemens
Telenorma

Others Dutch PIT
Swedish PIT

Early CTI links were used for connection to a host
computer and are based on proprietary call control
protocols. Because of this non-standard nature of
the CTI links, third-party call control systems like
DEC's CIT, IBM's CallPath, HP's ACT and
Tandem's CAM are typically tied to a small number
of supported PBXs. Only recently, standardisation
ofthird-party call control protocols has taken place.

The most prominent standard at the moment is the
Computer Supported Telecommunications Applica
tions (CSTA) standard from the European Com
puter Manufacturers Association (BCMA). Parallel
standardisation work of ANSI, called SCAl, has got
little attention. The broad support for the ECMA
CSTA standard is visible from the number of com
panies involved in the development of the standard
(see Table 1) [8]. A large number of PBX manufac
turers have already implemented the standard or
have committed themselves to implement it in the
near future. Some PBX manufacturers that already
had a CTI link based on proprietary call control protocols before the ECMA CSTA standard was intro-

16



Chapter 3. CTI configurations

duced, decided not to update their PBX software to implement the standard, but use an external pro
tocol converter to convert their proprietary protocol into the standard ECMA CSTA protocol and vice
versa [21].

A large number of different interfaces and transport protocols is being used at the moment. Examples
are: RS-232 with X.25 protocols, Ethernet with TCP/IP or LU6.2 protocols, Token Ring with TCP/IP
or LU6.2 protocols, ISDN BRI with DSS 1 protocols. Refer to appendix A for an overview of current
cn links [4].

3.2.2 ECMA CSTA

The ECMA CSTA standard consists of third-party call
control service definitions [1] and an OSI conformant appli
cation layer protocol [2] that uses common OSI application
layer elements: Remote Operation Service Element (ROSE)
for the client/server interaction between switch and computer
and Association Control Service Element (ACSE) for the
establishment of an association between the application layer
entities in the switch and the computer. The protocol is
independent of the lower-layer protocols used to carry the
CSTA Application-layer Protocol Data Units (APDUs). A
possible CSTA protocol suite is shown in Figure 8.
Communication between the computer and the switch may
take place via intervening networks which range from a
simple point-to-point connection to a Local or Wide Area
communications Network.

OSI Reference

Application
layer

Presentation
layer

Session layer

Transport
layer

Network. layer

Datalink layer

Physical layer

x.25/eSTA

CSTA
--------

ACSE1ROSE

X.25 PLP

X.25 LAPB

RS-232

Device
B

Connection

Greyed layers needn't be fully implemented.

Figure 8. CSTA protocol suite

ConnectionDevice
A 1-------1

Device Connection Device
A B(a)

(b)

Figure 9. Traditional (a) versus CSTA (b) call model

CSTA Call model

In the traditional call model, when
two devices are connected, they
are modelled as two device objects
and one connection object that
connects the two device objects,
as shown in Figure 9a. On the
contrary, CSTA uses a call model
as shown in Figure 9b. The
connection of two devices is
modelled with no less than five
objects: two device objects, a call
object and two connection objects
that connect the device objects
with the call object. An important
advantage ofthis model is that a multi-party (conference) calls can easily be modelled. When a party is
added to a conference call, only a new device object (for that party) and a new connection object
(between the new device object and the original call object) need to be created.

The CSTA device objects have three properties: device class, type and state. The device class indicates
the type of information generated by the device and can be one or more of the following: data, image,
voice or other. The device type would normally be station for a traditional telephone device, but may be
anything of the following: ACD, ACD group, button, button group, line, line group, operator,

17



Computer Telephony Integration

operator group, station, station group, trunk, trunk group. The device state is a collection ofthe states
of all related connection objects. Device objects can be identified in two ways: using a static device
identifier or a dynamic device identifier. A static identifier would typically be a phone-number; a
dynamic identifier is a shorthand identifier that may be created and reported by the switch after the
device has been included in a call.

The CSTA connection objects have only one property: the connection state. Possible connection states
are: Null (no relation between device and call), Initiated (the "dialling" state), Alerting, Connected,
Held, Queued or Failed. Identification of connection objects is done by CSTA connection identifiers,
being a combination of a device identifier and a call identifier.

The CSTA call objects also have one property: the call state. The state of a call object is a collection of
all related connection object states. For common combinations of connection states in a two-party call,
so-called Simple Call States are defined. For example, the Simple Call State of a call with two connec
tions, both in Connected state, is defined as Established. Call objects are identified by call identifiers
generated by the switch at the moment the object is created.

CSTA Services

ECMA CSTA uses a mutual client/server relationship between the switch (Switching Function) and the
computer (Computing Function). Several types of services are defined, the most relevant being:

• Switching Function Services, where the switch is the server and the computer is the client. The
computer sends requests to the switch, the switch performs the requested actions and sends results to
the computer. Supported services are listed in Table 2. For a more detailed description, refer to
appendix B.

• Computing Function Services, where the computer is the server and the switch is the client. The
switch sends requests to the computer, the computer performs the requested actions and sends results
to the switch.

• Status Reporting Services. Used by the computer to inform itself of the current status of calls,
devices or ACD agents.

Table 2. CSTA Switching Function Services
Make Call Establish a connection between two specified stations
Answer Call Answer a call that is alerting on a specific station
Clear Call Clear a specific call and release all stations involved
Clear Connection Remove a specific station from a call
Hold Call Put a call on a specific station on hold
Retrieve Call Retrieves a held call
Consultation Call Put the active call on hold an establish a connection with another station
Reconnect Call Reconnect the held call and drop the consultation call
Alternate Call Alternate between the two calls
Transfer Call Transfer the held call to the station the consultation call was to
Conference Call Start a conference call between the stations involved in both calls
Divert Call Activate switch features to divert incoming calls from one station to another
Call Completion Activate switch features to complete a call to a busy station
Make Predictive Call Establish a connection between two specified stations by first connecting the

called station and then (if succeeded) connecting the calling station.
Set Feature Set device user features (Message Waiting lamp, Forwarding) or ACD agent

state.
Query Device Query the type, class and state of a specific device or the ACD agent state.

18



Chapter 3. CTI configurations

Note that the ECMA CSTA standard doesn't state that any of these services must be implemented for
full compliance with the standard. It states that the services that are implemented must follow certain
rules.

Computing Function Services

Supported Computing Function Services are requests for routing information. A typical application of
these services is an ACD configuration as shown in Figure 1 (section 2.1.1). Note that the ECMA
CSTA standard has facilities to set and query the state of ACD agents, therefore also configurations
where the ACD functionality is located in the PBX are supported.

In general, these services bear a similarity to the interactions that take place between a switch (Service
Switching Point) and a computer (Service Control Point) in an Intelligent Network: upon detection of a
certain condition, the switch interrupts its call process and notifies the computer. Based on information
provided by the switch (calling number, called number) and/or other information (e.g. time of day), the
computer decides how the call process should continue and returns control to the switch.

Status Reporting Services

The computer has two methods to inform itselfofthe state ofcalls, devices and ACD agents:

1. With the Snapshot Call and Snapshot Device services, the computer can actively determine the
current state ofcalls and devices, respectively.

2. With the Monitor Start service, the computer can initiate a so-called monitor on a call or a device
(with associated ACD agent), after which the switch will keep the computer informed of changes in
the state of that call, device or ACD agent by means of Event Reports. The switch keeps sending
these Event Reports until the computer uses the Monitor Stop service to cancel the monitor. The
most relevant Event Reports are listed in Table 3.

Table 3. CSTA Event Reports
Service initiated The monitored device is taken off-hook or has invoked a switch feature
Originated The monitored device has initiated a call
Delivered The monitored device is ringing (inbound call) or a specific device is ringing

because the monitored device has initiated a call
Established
Connection Cleared
Call Cleared

Held
Retrieved
Transferred
Conferenced
Queued
Network reached

Failed

Agent state

The monitored device has been connected to a specific device
The monitored device has been disconnected
A specific call has been cleared, resulting in all involved devices being
disconnected
A specific device has put a call on the monitored device on hold
An specific held call has been reconnected
A specific call has been transferred to another device
Two specified calls are merged into one conference call
A specific call is being queued (for example in an ACD)
A specific call has reached a boundary (typically an outbound trunk) after
which only limited event reporting is possible
A specific call cannot be completed for some reason, for example because
the called number is invalid or because the remote station is busy.
The state of a specific ACD agent has changed. Supported states are:
Logged On, Logged Off, Not Ready, Ready, Work Not Ready and
Work Ready.

19



Computer Telephony Integration

3.2.3 NetWare Telephony Services

As the number of host computer systems decreased (were replaced by PC-LAN systems), a need for a
more distributed third-party call control configuration arose. Novell and AT&T recognised this fact and
co-operated to develop an extension for the NetWare LAN operating environment that provides every
NetWare client on the LAN with third-party call control capabilities. This extension is called NetWare
Telephony Services. The third-party call control capabilities are provided by a NetWare Telephony
server (which may be a NetWare file server at the same time) that is connected to the PBX through a
cn linle Figure 10 depicts the architecture ofthis system.

NetWare Client
NetWare

Telephony Server
PBX

Telephony Telephony
TDM switch

application application

_TSAPI ~TSAPI If
Telephony

Telephony Services
Call control I

Services client CTI server
module server module entity

NetWare NetWare CTI CTI
LAN LAN protocols protocols

protocols protocols

-

)- CTllink
LAN

~

~ PBX extension line

Figure 10. NetWare Telephony Services architecture

The NetWare Telephony server contains the necessary, PBX specific hardware and software (in a PBX
driver module) to communicate with the PBX. Telephony applications running on the server use a well
defined, PBX independent API for call control operations at a relatively high level. This API is based on
the ECMA CSTA function definitions and is called Telephony Services API (TSAPI) [17]. Besides the
Telephony server, there can be a number of NetWare clients that run telephony applications. The
telephony applications on the clients use the same API and are provided the same capabilities as the
ones on the Telephony server. For this purpose, the Telephony server acts as a CTI gateway on the
LAN.

To enable telephony applications written for Microsoft's TAPI on the NetWare clients, mapping soft
ware between TAPI and TSAPI (called Tmap) has been developed by Northern Telecom, Microsoft,
Intel and Novell Inc.

The NetWare Telephony Services configuration is one that is based on existing technology. All that is
needed is a PBX with a CTI link (most PBXs already have one or can easily be equipped with one), a
NetWare LAN (70% of the installed base of LANs are operating under NetWare) and, of course, the

20



Chapter 3. CTI configurations

NetWare Telephony Services extension software and PBX driver. The configuration offers three impor
tant advantages over first-party call control configurations:

1. The clients don't need additional telephony hardware; all call control infonnation is carried over the
LAN. Only the Telephony server needs to be equipped with additional hardware.

2. The clients send and receive call control infonnation through an interface that is independent of the
type of PBX used. Only the Telephony server needs PBX specific hard- and software.

3. All clients have full third-party call control capabilities, just like the Telephony server. More specifi
cally, a client can monitor and control any station that is connected to the PBX.

3.2.4 Computer Integrated Communication Network

A disadvantage ofthe NetWare Telephony Services configuration, is the lack of voice/data integration.
In a typical computer supported call control situation, a computer needs to control a telephone that may
not be physically connected to the computer, but is located in its vicinity (e.g. on the same desktop). The
telephone is connected to a PBX through an extension line. In the NetWare Telephony Services configu
ration, the computer is connected to the same PBX, but not through the same extension line. As a matter
of fact, the call control infonnation from the computer has to take a rather complex detour through a
LAN, a telephony server and possibly a CSTA protocol converter (refer to section 3.2.1).

The lack of voice/data integration in the NetWare Telephony Services configuration has been a motiva
tion to design an alternative configuration. The concept ofthis new configuration is shown in Figure 11.
Since the computer is really integrated in the network (the computer controls and uses the network), the
concept has been named Computer Integrated Communication Network (CICNet).

PSTN

PSPDNPacket
switch

CTI server

digital extension
line (2B+O)

o
Office environment

Figure 11. CICNet concept (abstract view)

In the CICNet concept configuration, both telephone and computer are connected to the digital extension
line. Many modem digital PBXs allow for this kind of voice/data integration by means of ISDN(-like)
interfaces (2B+D fonnat). Since the only connection between the workplace (consisting ofcomputer and
telephone) and the switch is a digital extension line, this configuration is also feasible in an ISDN
Centrex situation.

While the telephone is connected to a circuit switch in the usual way, the computer is connected to a
packet switch. This packet switch allows the computer to communicate with the cn server and also to
other computers in the network. When both cn server and computer implement a standard call control

21



Computer Telephony Integration

protocol like ECMA CSTA, a cn gateway like the Telephony server in the NetWare Telephony
Services configuration can be disposed11 of.

Another aspect is remote access through a public network, desirable for teleworking (e.g. ACD agents
working at home). As shown in Figure 11, remote access can be achieved by connecting the packet
switch to a Packet Switched Public Data Network (PSPDN). For a teleworking arrangement, a connec
tion to both the Public Switched Telephony Network (PSTN) and the PSPDN is required. Alternatively,
a public ISDN may offer integrated access.

Note that signalling capabilities across a PSTN or ISDN are typically very limited. For example, it is
not possible for the PBX to initiate a call from the teleworker's phone. Therefore, it is desirable to have
a PBX feature where both parties in a call are being called by the PBX After both parties have
answered, they are connected (internally in the PBX) and become involved in a normal call. In this
manner, charging issues are also solved: call charges are automatically on the company's phone-bill,
instead of on the teleworker's personal phone-bill. Current PBXs do not support such a feature, neither
does the ECMA CSTA standard. This is a very relevant enhancement of current systems, though.

Dial-in access to CTI server

LCTIlink

0 -
1- t~r:

PBX
"-

\

I

I I
~

I
Packet I

Switch \

CTI server I" entity

Figure 12. Dial-in access to cn server

An easy way to implement the CICNet concept using an existing PBX is shown in Figure 12.

A packet switch is connected to the cn
link of the PBX A number of PBX
extension lines is connected to dial-in ports
in the packet switch. To access the cn
server, a computer first has to establish a
circuit-switched connection to the packet
switch by dialling the phone-number
associated with a dial-in port in the packet
switch. All extension lines connected to the
packet switch can be assigned a single
phone number on the PBX (a hunt-group).
The PBX will then automatically search an
available extension (dial-in port) within
that group.

After the connection to the packet switch
has been established, packet switching
techniques should be used to gain access to the cn server. In case ofan X25 packet switch, this means
that the computer has to establish a Virtual Circuit with the CTI server by sending an X25 Call
Request packet with the a remote address field equal to the X25 address associated with the cn server.

An important prerequisite for this configuration to work is that the cn server entity allows multiple
sessions, Le. it must know how to deal with incoming data calls and allow simultaneous communication
with multiple computers over muhiple Virtual Circuits. Because most CTI links were designed with a
simple point-to-point connection to a single host computer in mind, this requirement may not be fulfilled
by some of current cn servers.

The number ofconnections that can simultaneously be made to the cn server in this manner are limited
by the amount of dial-in ports in the packet switch, the number of Virtual Circuits that the cn link can
carry and the bandwidth of the CTI link. In case of an X25 link, the maximum number of Virtual
Circuits is theoretically 4096 and is therefore not a real limitation. To accurately determine the required

11 Besides acting as a simple cn gateway, the Telephony Server also takes care of security.
Disposing the Telephony Server implies that this security jUnction should be implemented either in the
packet switch or in the cn server.

22



Chapter 3o CTI configurations

of bandwidth requirements, a simple calculation concerning a computer initiated call is considered here.
For a computer initiated call, approximately 300 bytes have to be exchanged in total. With a 19.2 kbps
cn link, this means approximately 8 calls can be established per second (30,000 callsth), which is a
very respectable performance for a PBX.

With dial-in access to the packet switch, a remote access configurations can be realised without the need
for a PSPDN. An ISDN BRI offers two B-ehannels, one of which can be used for a dial-in data
connection to the packet switch, while the other remains available for voice communication. A problem
with this approach lies in the charging aspects involved in public networks. Circuit switched
connections are generally charged according to the duration ofthe call. Packed switched connections, on
the contrary, are charged according to the amount ofdata exchanged. Access to the cn server requires
a semi-permanent connection, i.e. the connection will typically be established as soon as the workstation
is turned on and it will not be released before the workstation is turned off again. However, the actual
amount of data exchanged over the connection is very low. Therefore, using a PSPDN for this
connection will be much more cost-effective than using a (circuit-switched) dial-in connection.

Packet mode access to CTI server

Although the dial-in configuration is easy to implement in current systems, it imposes a problem in
systems with a large number of workstations. In order to communicate to the cn server simultane
ously, each workstation requires an additional extension line between the PBX and the packet switch
and a dial-in port in the packet switch. Unless digital trunk lines (and matching dial-in ports) can be
used to connect the PBX to the packet switch, this means a very high additional cost per workstation.
Another way to solve the problem is integrating the packet switching functionality in the PBX.
However, this requires an enhancement of the PBX design. The typical architecture of current digital
PBXs is depicted in Figure 13.

S
B

T/UB B
~ DLI DTI ~

D (0) D

"il
.~

B TDM switchS QB B
~ DLI DTI ~

D (0) D

CTllink
~iL---+-+-1

Figure 13. Typical digital PBX architecture

System
control

unit

(0) connected the
same way as the
D-channels of the

DLls.

All extension lines (S reference points) are terminated in Digital Line Intelji:zce (OLI) modules. Trunks
to a public ISDN (T/U reference points) and trunks between PBXs (Q reference points) are terminated
in Digital Trnnk Inteiface (OTI) modules. These interface modules separate the signalling channel (0-

23



Computer Telephony Integration

channel) from the voice/data channels (B-ehannels). The B-ehannels are fed into a Time Division Multi
plexing (TDM) switch. A system control unit controls the connections within the TDM switch. This
system control unit can also address each interface module individually to exchange signalling info. The
system control unit generally polls each interface module to see if signalling info has arrived on a
particular interface module. If so, the corresponding D-ehannel data is read by a signalling entity inside
the system control unit. A cn server entity inside the system control unit allows external third-party
call control through a cn linle

This architecture is not appropriate for user packet data transport over the D-channel:

• All D-ehannel data must be processed by the system control unit. For user packet data, the system
control unit must first read the data from a line interface and then write it to another (depending on
the destination address). With some 250 DUs, this means the system control unit may have to
process an aggregate data stream of 4 Mbps, only for transport ofuser packet data.

• Interconnection to another PBX or to a public ISDN is done by 2 Mbps trunk lines. These lines
carry 30 B-ehannels, so 30 stations (each using only one B-channel) can be interconnected using one
trunk line. When all stations also exchange user packet data on their D-ehannels, a bandwidth of
384 kbps would be required for packet data on the trunk line. However, a trunk line only has one
64 kbps D-channel. The reason for this is that the trunk lines are not intended to carry user packet
data on their D-channel. The D-channel on a trunk line is used for signalling purposes only.

To accommodate for user packet data in a public ISDN, the ISDN local exchanges are supposed to
route all packet data over a separate Packet Switched Public Data Network (pSPDN). Two cases for
ISDN access to a PSPDN are defined in the X31 recommendation [II]:

A) Dial-in access to a PSPDN via an ISDN. Only B-ehannel access is possible. This is the kind of
access described in the previous section.

B) ISDN virtual circuit service, also known as Packet Mode Bearer Services. Access to the PSPDN is
integrated in the ISDN local exchanges. This configuration is depicted in Figure 14. Both B-channel
and D-ehannel access is possible. Advantages of D-channel access are that both B-ehannels remain
available for isochronous data and that multiple devices on the same S-bus can simultaneously use
the D-ehannel for user packet data transfer.

Figure 14. X31 case B

u

ISDNX ISDNX

u
I--~,,""-l NT

For X31 case B access to a X25 PSPDN, a Packet Handler (PH) function needs to be integrated in the
ISDN local exchanges (ISDNX). The Packet Handler actually a node of the PSPDN and interfaces to it
using network-internal (X.75) protocols.

To initiate an outbound X25 call, an ISDN terminal (TEI) or a ISDN Terminal Adapter (TA) first has
to establish a connection (B-ehannel access) or logical link (D-ehannel access) to the Packet Handler in
the ISDNX.

• For B-channel access, the TEl or the TA sends an ISDN (Q.93I) call set-up message to the ISDNX,
requesting packet mode bearer services. The ISDNXs will then route the associated B-ehannel to the
Packet Handler instead ofto the Circuit Switched Data Network (CSDN).

24



Chapter 3. CTI configurations

• For D-channel access, the TEl or the TA initiates a LAPD (Q.921) logical link with a Service
Access Point Identifier (SAPQ value of 16. The ISDNX automatically routes D-ehannel data on this
logical link to the Packet Handler. For signalling purposes, a logical link with SAPI = 0 is used.

After the connection to the Packet Handler has been established, nonnal X25 call set-up procedures can
be initiated by the TE1 or the X25 DTE. When an incoming X25 call arrives at the Packet Handler
and there is no connection to the terminal yet, the ISDNX sends an ISDN (Q.931) call indication
message (specifying packet mode bearer services) to the TEl or TA. If the message is acknowledged,
either a B-ehannel connection or a logical link on the D-ehannel with SAPI = 16 is established with the
TEl or the TA and nonnal X25 call set-up procedures with the TEl or the X25 DTE follow.

A PBX architecture that incorporates the X31 case B access concept (and therefore a Packet Handler
function) is shown in Figure 15.

u
~

B
'~B

DLI g TI
DTI f------..>;f--

016- (*) - 0

B TDM switch
I~B Q

B
DLI 00i---J '-- DTI f-- ~

016f-- (*) - 0

51 FII -PH/FH I

•
(*) connected the

iol..- same way as the
DO-channels of the

• I OUs.

I System

I CTI ISignalling I control
server unit

X.7
~

Figure 15. ISDN PBX incorporating X31 case B access

Each DLI separates the signalling info on the D-channel (DO: SAPI = 0) from the user packet data on
the D-channel (016: SAPI = 16). Signalling info is fed into the signalling entity in the system control
unit in the same way as described earlier. User packet data is fed into the Packet Handler12

, thus
enabling D-ehannel access to the Packet Handler. To allow for B-ehannel access, a number of B
channels from the TOM switch must also be connected to the Packet Handler.

The cn server entity inside the system control unit is connected internally to the Packet Handler,
instead of to an external cn link. In this manner, the cn server can be accessed from any extension
line, either on the B-channel or on the D-channel, using X31 case B procedures. Using X31 case A
(dial-in) procedures, the cn server can also be accessed over a trunk line (on a B-ehannel) and there
fore through a public ISDN or another PBX

12 Alternatively, this may be a Frame Handler (FH). A Frame Handler uses Frame-relay techniques
instead of(X. 25) packet switching.

25



Computer Telephony Integration

If the Packet Handler is externally connected to a X.25 PSPDN, the CTI server can also be accessed
through that PSPDN. This, in tum, allows B-ehannel and D-channel access through a public ISDN that
supports X.31 case B access (and uses the same PSPDN).

3.3 Conclusions

First-party call control configurations present an easy way to control telephony devices with a
computer. However, in most configurations the call control possibilities are very limited. Configurations
that allow more extensive call control require PBX specific hard- and software, unless standard ISDN
extension lines are available. Another typical aspect of first-party call control configurations is the need
for a physical connection between the computer and the device to be controlled. This imposes a problem
in situations where, for example, this device is a cordless (e.g. DECT) telephone.

Third-party call control configurations are based on a concept similar to the IN concept in public
networks: additional network functionality is implemented on a computer that interfaces directly with
the switch, instead of in the switch itself. With the introduction of the NetWare Telephony Services
configuration, third-party call control also becomes available at the desktop, making this configuration
compete head-on with first-party call control configurations.

A disadvantage of the NetWare Telephony Services configuration is the lack of voice/data integration:
although most PBX systems allow simultaneous voice and data communication over a single extension
line, the call control data exchanged between PBX and computer is forced to take a detour through a
LAN. The conceived CICNet configuration does implement the voice/data integration concept, resulting
in a third-party call control configuration that does not need a LAN, allows teleworking and may also be
used in a Centrex situation.

26



4. CTI demo system design

In order to get insight in the issues involved in programming a cn system, i.e. both driver software and
telephony application software that uses a telephony API, a demo system has been developed. Design
objectives for this demo system have been:

• Implementation ofthe CICNet concept. Refer to section 3.2.4.

• Implementation ofthe ECMA CSTA protocol. Use of a standard call control protocol is part of the
CICNet concept. The PBX used supports the ECMA CSTA protocol and the protocol specification
is available free of charge from ECMA.

• Use of the Windows Telephony specification [16]. The Windows Telephony system is an open
standard and as such can be used for all kinds of configurations. A developers kit for Windows 3.1 is
available free of charge from Microsoft. The Windows Telephony system will be a standard compo
nent ofthe new Windows 95 version.

• Demonstration of two cn applications: screen based telephony and multi-media call control.
Refer to section 2.2.1 and section 2.3.2, respectively.

• Use ofobject-orientedprogramming methods in C++.

4.1 Configuration

The demo configuration is based on Ericsson equipment: MD 110 PBX, ApplicationLink cn link,
ERlPAX packet/frame switch and Terminal Adapter Units. This is pre-ISDN13 equipment: besides
analogue line interfaces, the MD 110 uses a proprietary digital line interface that is similar to an ISDN
BRl (2B+D format). For voice communication on a digital extension line, proprietary digital phone-sets
are used. For data communication, the PC is connected to a Terminal Adapter Unit (TAU) through a
standard RS-232 interface. Voice and data channels (both B-ehannels) are multiplexed inside the TAU
onto the proprietary extension line format. Although the TAU accepts standard modem commands for
first-party call control applications (refer to section 3.1), these features are not used in the demo
configuration. The TAU is merely used for a bit-transparent, semi-permanent connection across the
MDIIO PBX to the packet switch, as shown in Figure 16.

13 Standard ISDN PRJ trunk interfaces are readily available. Standard ISDN BRJ (S-bus) extension
lines have been introduced very recently.

27



Computer Telephony Integration

=
CTllink ~(RS-232/X.25)

~
~~~~~ 0ApplicationLink -

1-
~o'lI

. """""" 1
\ CTI server TAU
\

\ entity
\ I RS-232IX.25

\

0"-
/'

. =- ----- - - -
/ (2B+0 format)I TAUERIPAX "- .

• lI:In:DI!Il..r- - - -- - - - -

TAU / ~- ~rl. """"""'"
MD110 PBX TAU

\ RS-232/ X.25

PBX extension line

~

Figure 16. Demo configuration

The ERIPAX packet/frame switch can be configured with both X25 and Frame Relay ports. For X25
ports, several physical interfaces are supported: V.24N.28 (RS-232) for transmission rates up to
19.2 kbps and X2l, V.24N.35, V.36 or G.703 for transmission rates up to 2 Mbps.

The MOllO's cn link is called ApplicationLink and uses a PC as external protocol converter (refer to
section 3.2.1) to support the standard ECMA CSTA protocol. Since the cn link is based on a
RS-232 /X.25 interface, direct connection to the X25 packet switch is possible. In the demo configura
tion's cn link only one X25 Virtual Circuit is supported, being a Permanent Virtual Circuit (PVC).
The ERIPAX has been configured to maintain a PVC between the ApplicationLink and one of the two
computers. As a result, only one of the two computers can communicate with the ApplicationLink. The
other computer is used for mutual data communication purposes only: the two computers can establish a
Switched Virtual Circuit between each other.

The computers are equipped with EICON X25 communication boards. These boards offer a physical
RS-232 or X2l interface and implement link layer (HDLC/UPB), network layer (X.25 PLP) and
optionally transport layer (OSI) protocols in an on-board microprocessor system. For programming
purposes, an X25 network-level developers toolkit is required, which offers an API at the network layer
level.

28



Chapter 4. CTI demo system

4.2 Software design

'E~
t'll Q)
o >..c.t:
1.0"0

"'+X

...
Q)

~~ene
o a..
--Q)
1.0(,)
C\l .-
.~

XQ)
en

RS-232·····

Datacom
SPI -----..,.

The software that has to be implemented in the computers
is illustrated in Figure 17. The stack of boxes represents
the OSI 7 layers model (see also section 3.2.2). ECMA
CSTA is an application layer (layer 7) protocol and relies
on the services provided by the underlying layers. The
ApplicationLink has been designed to work with a single,
reliable connection to a host computer, which has been a
reason to use a reduced OSI stack, namely the ITU-T
X25 recommendation (1980). The ApplicationLink maps
the CSTA APDUs directly to X25 packets (NPDUs) and
vice versa, thus skipping layers 4 to 6. Also, the Associa
tion Control Service Element (ACSE) is not used by the
ApplicationLink. An association is implicitly established
upon receipt ofan X25 Restart Request.

Layers 1 to 3 are implemented in the EICON X25
communication board. The OSI Remote Operations
Service Element (ROSE), the ECMA CSTA protocol and
a mapping between the TAPI (or actually TSPI) and
ECMA CSTA need to be implemented in the form of a
Service Provider that complies with the TSPI specifica
tion. The same Service Provider is also used for data
communication with other computers, but a different
progranmling interface should be used for this purpose.
This interface will be discussed in section 4.2.4.

The cn concepts to be demonstrated (Screen based Figure 17. Software architecture
telephony and Multi-media call control) will be imple-
mented in a single telephony application which interfaces
with the Windows Telephony system through the Telephony API (TAPI).

4.2.1 ECMA CSTA implementation

The ECMA CSTA protocol is (like all OSI application layer protocols) defined in Abstract Syntax
Notation #1 (ASN.I) [12]. This notation is used to define complex data structures in an abstract,
machine-independent manner. Using certain encoding rules, the abstract syntax can be converted into a
so-called transfer syntax, which contains the actual data to be transferred and some formatting
information that allows the receiving side to reconstruct the original data structure. The conversion
between abstract syntax and transfer syntax is typically a duty ofthe presentation layer. Currently, only
one set ofencoding rules has been standardised: the Basic Encoding Rules (BER) [13].

Implementation of protocols defined in ASN.I is usually done by means of an ASN.I compiler. This
compiler typically translates the ASN.I specification into a C or C++ module, which can then be
integrated with the rest ofthe software. Poor availability of such ASN.I compilers, however, has been a
motive to use a different approach.

Object-oriented programming techniques and many other powerful features ofC++ have been applied to
create a module that extents the C++ language with a new class of data types, namely the data types
available in ASN.l. These new data types (which are implemented as object classes) contain, among
others, methods to encode and decode themselves using the Basic Encoding Rules. By employing this
module, an ASN.I-like notation can be entered directly in a C++ module, without the help of an ASN.I

29



Computer Telephony Integration

Figure 18. OSI Remote Operations model

REQUEST

Invoke 10- x

invoke 10 = x

REQUEST'
RESULT' ERROR

invoke 10 =x....
~.....

REJECTION

invoke 10 = x
.....

Client ~ Server
~

RESULT' ERROR
-

(b)

(a)

compiler. For a comprehensive discussion of this ASN.l/BER implementation module, refer to
appendix D. Using the ASN.l/BER module, both the ROSE protocol [15] and the ECMA CSTA
protocol [2] can easily be implemented.

Figure 18 depicts the model upon
which the ROSE protocol is based
[14]. In a client/server interaction,
the client requests services from the
server by means of a RO-Request14

APDU. When the server has
successfully completed the re
quested service, it may report a
result back to the client by means
of a RO-Result APDU. If an error
occurred during the processing of
the request, the server will report
the error to the client by means of a
RO-Error APDU. If either client or
server receives a faulty APDU (e.g.
not a ROSE APDU), it will notify
the other party by means of a
RO-Rejection APDU.

In order to be able to relate a result
or error to the associated request, so-called invoke identifiers are used: a RO-Result or RO-Error APDU
will always contain the same invoke ID as the RO-Request APDU it is related to. Likewise, a RO
Rejection APDU contains the same invoke ID as the APDU that caused the rejection. Besides an identi
fication of the type of APDU (request, result, error or rejection) and the invoke ID, the RO-Request,
RO-Result and RO-Error APDUs can contain any ASN.l data-structure as specified by the user of the
Remote Operation Service Element, in this case the ECMA CSTA protocol.

14 Officially, the standard calls this RO-Invoke.

30



Figure 19. Windows Telephony programming model

Telephony
Telephony Telephony

application
application I enabled
call manager application

,\ ,\

I i
"

.,
"TAPt

\ \ / / I I

\ \ / / I I
------------

\ \ / /

\ /\ /

\ / \ /

TSPI \ / \ / TAPI.DLL
,\

"Telephony
Service
Provider

Chapter 4. CTI demo system

4.2.2 Windows Telephony programming

Programming model

Figure 19 depicts the Windows Telephony
programming model [16]. Both
TAPI.DLL and the Telephony Service
Providers are Dynamic Link Libraries
(DLLs). As such, they export a number of
functions that can be called from outside
the DLL. An application (or other DLL)
can access the functions in a DLL in two
ways:

1. Using static linking. This is based on
the same kind of linking process as oc
curs with "ordinary" library files: dur
ing the development process of the
application, a file is required that iden
tifies the entry points of each exported
function defined in the library. The
final application "knows" these entry
points. The difference between ordinary
libraries and Dynamic Link Libraries is
that ordinary libraries become part of
the application, while Dynamic Link
Libraries are shared among applications and are loaded by Windows (if necessary) at the moment
the application is started.

2. Using dynamic linking. With dynamic linking, the application does not have fonner knowledge ofthe
entry points ofthe functions in the DLL. These entry points are determined by the application at run
time. In this manner, the DLL is less tied to the application: changes in the DLL can be made
without the need of recompilation ofthe application(s) that use the DLL. The determination of entry
points implies a small programming overhead, however.

Typically, telephony applications would link to TAPI.DLL staticallly (this requires the file TAPI.Lm
during the development process), while TAPI.DLL links to the Telephony Service Providers dynami
cally. This results in the advantages of both methods being combined: no programming overhead for the
applications and flexibility in the link towards the Telephony Service Providers.

Using conventional C-style library function calls (shown as solid arrows in Figure 19), telephony appli
cations can request services from TAPI.DLL. TAPI.DLL will simply translate many ofthese request in
corresponding C-style library function calls in one of the Telephony Service Providers. Some of the
services, called synchronous services, can be completed entirely within the function call. These
functions return a value of zero if the service was completed successfully, or a negative error code
otherwise. Many telecommunication services, however, require a relatively long time to complete and
should therefore not be completed within one function call, since this will interrupt the system for too
long a period. These services, called asynchronous services, will only be initiated during the function
call. If this initiation was successful, the function returns a positive request identifier. At the time of
asynchronous completion of the service (either successful or unsuccessful), the application will be
infonned by means ofa message containing the request ID ofthe concerned service request.

The process of informing the application is not as trivial as it may sound, since this requires that
TAPI.DLL (a library) calls the application, which is certainly not a standard feature of a library. In

31



Computer Telephony Integration

order to make this possible, the application should at initialisation time pass the entry point ofa fimction
inside the application, called callbackfunction, to the library by means of a fimction call to an initiali
sation fimction inside the library. To keep initialisation simple, usually only one callback fimction is
used for all different kinds ofnotifications. This is achieved by means of so-called messages. The call
back fimction defines a couple of parameters: one to identify the message and some more to carry the
contents ofthe message. An API (or SP!) that uses a callback fimction typically defines the meaning of
each message, its contents and the way the contents are mapped to the parameters of the callback
fimction. The use of messaging mechanisms based on callback fimctions (shown as open arrows in
Figure 19) is a very common practice in the Windows operating systeml~.

As is shown in Figure 19, most messages being send by TAPI.DLL to a telephony application's call
back fimction are a direct result of messages being send to TAPI.DLL's callback fimction by a
Telephony Service Provider. Examples of such messages are the already mentioned asynchronous
completion messages, but also unsolicited messages that inform the application of certain telephony
events (e.g. an incoming call). If a telephony application has registered itself as a call manager, it may
also receive messages from TAPI.DLL that are a result of so-called Assisted Telephony requests from
other applications.

The Assisted Telephony concept is intended for applications (called telephony enabled applications)
that could use some simple telephony call control capabilities (making and dropping calls) but don't
want to be concerned with the complex procedures involved in the telephony process. For this purpose,
another telephony application is used that acts as a call manager and processes the requests from
telephony enabled applications. The telephony enabled application submits an Assisted Telephony
request by invoking a simple fimction within TAPI.DLL. TAPI.DLL stores the request and tries to
locate an active telephony application that has registered itself as a call manager (also known as request
recipient). If no such application is active, TAPI.DLL will load a known request recipient application
from disk and launch it. The request recipient is then informed of a waiting request by means of a
message (through its callback fimction). The request recipient retrieves the request and performs the
required telephony actions. Upon completion, the request recipient notifies the application that submit
ted the request by sending a message to its window procedure.

15 Probably the most common callbackfunction is the so-called window procedure that is associated
with a Window on the screen and receives all the messages intended for that particular window. All
user actions (keyboard and mouse input) are reported to the application as messages through the
window procedure. Also direct communication between applications, e.g. Dynamic Data Exchange
(DDE), is done through the window procedures. For this purpose, the Windows system API contains
functions to send messages to an application's (or actually a window's) window procedure.

32



Telephony Service Provider

i 10 =~ Line device

~I Address I
(10=0)

//

I
Address r:(10=1)

------~BI
Address

I(10=2)

i 10=Xd> Line device --8I
Address

~
- -

(10=0)

Chapter 4. CTI demo system

Call model

In the call model used by the
Windows Telephony system, three
kinds (classes in object-oriented
speak) of objects are defined, as
shown in Figure 20: line devices,
addresses and calls. TIus call model
is typically implemented in both
TAPI.DLL and the Telephony
Service Providers.

The line device object is an abstract
representation ofany kind of physical
device (modem, fax board, digital
phone emulation board, ISDN card)
connected to a telephone line. In
order to control a phone-set that is
connected to the computer in a way
described in section 3.1 (Figure 5c),
another object is used: the phone
device, but this object is not of inter- Figure 20. Windows Telephony call model
est here. Device identifiers are used
to uniquely identify each line device
in all Telephony Service Providers. At initialisation, TAPLDLL informs each Telephony Service
Provider ofthe device ID value that will be used to refer to the Service Provider's first line device. Since
TAPI.DLL knows the number of line devices within each Service Provider, it can thus create a continu
ous, non-overlapping range of device identifiers.

In general, one line device has exactly one address (phone number) assigned to it. There are cases,
however, where one line device can have multiple addresses. If a line supports multiple channels, each
channel may have its own address. Multiple addresses on a single channel is also possible: in case of an
incoming call, the network informs the user of the address concerned by means of distinctive ringing
(different ringing patterns for each address) or Direct-Dial-In (the actual digits dialled are passed to the
line device). Because each address may have different capabilities, addresses are modelled as separate
objects within a line device object. Properties of address objects and the associated line object comple
ment each other: the address objects contain the properties/capabilities that can be different for each
address, the line device object contains the rest of the properties/capabilities that all addresses on that
device have in common. In order to uniquely identify each addresses within a line device, address
identifiers are used.

A call object represents a connection between two (or more) addresses. Zero, one or more calls can exist
on a single address at any given time. An example of multiple calls on a single address is a consultation
call: a call is put "on hold", while a consultation call is being made to another party. Unlike line device
and address objects, call objects are dynamic. Call objects are created as a result of a service requested
by a telephony application or as a result of external events such as an incoming call. As soon as a call
object is created inside the Telephony Service Provider, TAPLDLL is informed and a call handle is
exchanged. This call handle is used for subsequent references to the call object and will usually be a
pointer to the call object in memory (although it should not be used as such by anything but the Service
Provider). Dropping a call does not automatically deallocate the associated call object since an applica
tion may still find it useful to extract information from the call object (such as for logging purposes).
Applications must explicitly deallocate the call objects they own handles to. The most important aspect
of a call object is its state. Possible call states are listed in Table 4. Additionally, the call object stores

33



Computer Telephony Integration

infonnation like the bearer mode (voice or data), the current media mode and party identification
(calling party, called party, connected party, redirecting party).

Table 4. Windows Telephony call states
Idle The call is inactive. This state typically occurs after the call has been

dropped by the application.
Offering

Accepted

Dial-tone
Dialling
Proceeding

TIle switch infonns the computer of an incoming call. This does not
necessarily mean the user is being alerted, e.g. in ISDN, the user not
alerted before the offering call has been accepted by the phone device.
An application has accepted the call. In ISDN, this has the side effect
of alerting the users at both sides of the call. An incoming call can
always be immediately answered, i.e. without being accepted first.
The switch indicates it is ready to receive a number. (outbound calls)
Digits are being dialled and collected by the switch.
Dialling is complete and the call is proceeding through the network.

Special info

Busy

Ringback
Connected

A special info announcement is being received. This will happen if the
dialled number is incorrect or another irregularity occurs.
A busy signal is received, indicating that either the network is
congested or the remote station is busy.
The destination has been reached and is being alerted.
A connection has been established.

On hold
Conferenced

The call is being held by the switch.
The call is member of a conference call and is logically in the
connected state.

On hold pending conference
On hold pending transfer

The call is on hold in preparation of being added to a conference call.
The call is on hold in preparation ofbeing transferred.

Disconnected
Unknown

The call has been disconnected by the remote party.
The call exists, but is state is currently unknown.

The Telephony Service Provider Interface

Config

,'nit ~hutdown II ,'nit ~hutdOwn I
( Session 1 Session 2

a) ,LibMain WEP I

Shutdown I
Lineclosel

closecalll

Time

\ MakeCall

ILineOpen

I'nit

(b)

Figure 21. TSPI Sessions

As mentioned earlier, Telephony Service Providers
are Dynamic Link Libraries (as a minor variation,
the filename extension is ".TSP" instead of
".DLL''). As such, they contain two basic functions
that are called by Windows when the DLL is loaded
(LibMain) and unloaded (Windows Exit Procedure:
WEP). Within a LibMainlWEP pair, multiple
telephony sessions can be performed, as shown in
Figure 21a. In particular, when the telephony
configuration is to be changed, the current session
will be terminated. After the changes have been
made, a new session will be started, resulting in the
new configuration info being read. In addition two
the LibMainlWEP pair, two functions are defined in
the TSPI specification that are called by TAPI.DLL
at the start (TSPI""providerInit) and the end
(TSPI...,providerShutdown) of a telephony session. All Telephony Service Provider interactions will
occur within such a session. When the Service Provider needs to be reconfigured, the function
TSPtproviderConfig will be called (this will always be outside a telephony session).

34



Chapter 4. CTI demo system

While the telephony sessions just described enclose all Telephony Service Provider interactions, similar
sessions enclose all interactions on a particular line device within the Telephony Service Provider, as
shown in Figure 2lb. A session on a particular line device is started with a call to the function
TSPI_lineOpen (with the device ID as a parameter) and is ended with a call to the function
TSPI_lineClose. Within such a session, the actual telephony activity on the line takes place. For
example, a call may come into existence as a result of a call to the function TSPI_lineMakeCail. The
call will always be removed (with function TSPI_lineCloseCall) before the session on the line is ended.

All asynchronous services, as described in section 4.2.2, expect the associated function to return a
request identifier. These request identifiers are generated by TAPI.DLL and are passed to the Service
Provider as a function parameter. In this manner, the Service Provider can store the request ID for
subsequent use in an asynchronous completion message. The functions returns with either the request
ID or a negative error code. In the latter case, the function failed and no asynchronous completion
message will follow.

Besides functions for session begin and end and for activation of telephony services, the TSPI defines
functions to retrieve information about line devices (status and capabilities), addresses (status and capa
bilities) and calls (status and additional call-related info). For a more detailed description of TAPI and
TSPI functions, refer to appendix E.

4.2.3 Mapping TAPI to ECMA CSTA

An important precondition for a mapping to be meaningful is that the functionality of both parties match
sufficiently. The result of a call control functionality comparison between ECMA CSTA and TAPI is
shown in tabular form in appendix C. Briefly put, TAPI offers all the call control functionality defined
in ECMA CSTA, except for typical third-party call control features like the CSTA Computing Function
Services (refer to section 3.2.2) and ACD agent support.

The table in appendix C provides for each Switching Function Service defined in ECMA CSTA the
name of a matching TAPI function. As such, it constitutes part of a mapping between TAPI and ECMA
CSTA for call control communication in one direction: from the telephony application to the switch.
This communication consists in CSTA service requests being sent from the computer (client) to the
switch (server). At the TAPI level, this communication consists in the telephony application invoking
asynchronous telephony services (refer to section 4.2.2) by means of C-style function calls to
TAPI.DLL. The duty of the X.25/CSTA Service Provider is to assemble the proper CSTA service
request, based on the function called and the parameters passed, and transmit it to the switch.

Both the ECMA CSTA protocol (based on ROSE, see section 4.2.1) and TAPI use a model where the
outcome of an operation is reported asynchronously, i.e. the computer (client) doesn't have to suspend
processing until the outcome is known. In order to be able to relate the outcome with the associated
request, both use unique identifiers for all outstanding requests. The request identifiers used by TAPI
satisfy all conditions to be used as ROSE invoke ID (used by the ECMA CSTA protocol) without the
need for further mapping.

The communication from the switch to the telephony application consists in CSTA service results and
errors and, if monitoring has been enabled, event reports being sent from the switch to the computer.
The X.25/CSTA Service Provider maps the received CSTA service results (successful outcome) and
service errors (unsuccessful outcome) to corresponding asynchronous completion messages, which are
sent to the telephony application through TAPI.DLL. In order to be able to notify the telephony appli
cations of incoming calls and, more generally, the changes in a call's state, a monitor must be enabled
for each device managed. A mapping of CSTA event reports to Windows Telephony call states is shown
in Table 5.

35



Computer Telephony Integration

Table 5. CSTA event report mapping

CSTA call event report received:
Service initiated
Originated
Delivered
Established
Connection Cleared
Call Cleared
Held
Retrieved
Transferred
Conferenced
Queued
Network reached
Failed

New Windows Telephony call state:
dial-tone
proceeding
offering / ringback
connected
idle / disconnected
idle / disconnected
on hold / on hold pending ....
connected
connected / idle
conferenced
proceeding
proceeding
busy / special info

Notes:
1

2

3
3
4

5
6
7
7
8

Notes:

1. The Service initiated event report is sent as soon as the monitored phone-set is taken off-hook. At
this time, the Service Provider could report a new (outbound) call to TAPI.DLL with a dial-tone
call state. The problem with this approach lies in the fact that the Service initiated event report
may also be sent as a result of a CSTA originated call. For example, a valid scenario is (C =

computer, S = switch):

C => S: Make Call request
C <= S: Service initiated event report (connection ID = x)
C <= S: Make Call result (connection ID = x)

In this example, the Service initiated event is sent as a result of the Make Call request and
contains the connection ID ofthe new connection. The event report is followed by the result ofthe
Make Call service, which also contains the connection ID of the same connection. To avoid
creation oftwo call objects for the same call, one ofthe two should be ignored.

Since the Service initiated event report needn't be sent as a result of a CSTA originated call,
ignoring the Make Call result is out of the question. The problem with ignoring the Service
initiated event report lies in the fact that at the moment the event is received, the computer has no
way of knowing whether the event is a result of the Make Call request or not. Two alternative
solutions to this problem are:

• Ignore all Service initiated event reports, no matter if they were caused by the Make Call
request or not.

• Store the received Service initiated event report, but do not notify TAPI.DLL of a new call
yet. After the Make Call result has been received, the connection ID can be compared to the
connection ID ofthe stored Service initiated event report. If they match, the Service initiated
event report was a result of the Make Call request and can be ignored. Otherwise, TAPI.DLL
is notified ofa new call in the dial-tone state.

2. The Delivered event report is sent when the monitored device is ringing or when another device is
ringing as a result of a call originated by the monitored device. In the fonner case, the delivery of
an incoming call is signalled and the Service Provider should report a new call to TAPI.DLL with
an offering call state. In the latter case, the delivery of an outbound call to a remote station is
signalled and the Service Provider should report a new call state (ringback) for the call concerned.

36



Chapter 4. CTI demo system

3. The Connection Cleared and Call Cleared event reports are sent whenever a connection or call
related to the monitored device is cleared. Depending on the device that caused this event, two
different call state transitions should be reported. The Service Provider should report a transition
to idle state if the event was caused by the local (monitored) device, or to disconnected state
otherwise. The events may be sent as a result of a CSTA operation (Clear Connection or Clear
Call). In this case, the Service Provider has already reported a transition to idle state and the event
report can be ignored.

4. In the Windows Telephony specification, multiple call states are defined for calls that are on hold.
Depending on the reason for the call to be on hold, its state can be on hold, on hold pending
transfer or on hold pending conference. ECMA CSTA does not distinguish between the three.
However, the Service Provider can keep track ofwhich calls are involved in a transfer or a confer
ence set-up. When a Held event report is received, the Service Provider can check whether the
concerned call is involved in any previous set-up. Depending on the outcome of this check, the
Service Provider can then report a call state transition to on hold, on hold pending transfer or on
holdpending conference.

5. Transferred event reports are sent to both the device performing the transfer and the device being
transferred. If a transfer has been performed, both calls involved in the transfer should transition
to idle state as soon as the Transferred event report is received. Otherwise, the event report
signals that a call that was previously being held (during a consultation call at the other station)
has been transferred to another station. The call should transition to connected state.

6. In the Windows Telephony call model, a separate conference call object is used besides the call
object(s) that represent the members of the conference call. With this model, that the conference
call can be handled as a whole or as separate member calls. When a Conferenced event report is
received, the member calls should transition to conferenced state, while the conference call transi
tions to connected state.

7. These event reports provide additional information about the progress of a call that the Windows
Telephony system does not support. Therefore, they are mapped to the more general proceeding
call state.

8. The Failed event report may be sent for all kinds of reasons. One ofthe reasons is a busy station
or trunk, in which case the concerned call should transition to busy state. Other reasons are
covered in the special info call state.

4.2.4 Data communication

The X251CSTA Service Provider is essentially an X25 board driver with additional functionality. The
X25 board is not only intended for call control communication, but also for data communication with
other computers (via the packet switch). The X251CSTA Service Provider should therefore also
provide data communication facilities to the applications. Although TAPI can be used for the call
control of data connections (i.e. X25 Virtual Circuits), it does not support the data communication
(media stream, refer to section 3.1.1) itself. Another API, preferably also part of a Windows Open
System Architecture (WOSA) component, is required for data communication functions.

An interface that meets the demands has been developed very recently by Intel Architecture Labs and is
called Protocol Independent Interface (PH) [9]. It defines a network programming interface for
Microsoft Windows, based on the WOSA concept. PH is a superset of the Windows Sockets16 (version

/6 Windows Sockets is an API for (FCPIIP) network access. It is based on the Berkeley Sockets
programming model, which is the de facto standardfor TCP/IP networking.

37



Computer Telephony Integration

1.1) specification and has been submitted to the Windows Sockets Forum for possible inclusion in a
future Windows Sockets version 2. Extensions to the current Windows Sockets interface include:

• Protocol independence. PH provides a standardised interface at the transport layer (level 4) of the
OSI reference model. It can be used in conjunction with any number of transport protocols (e.g.
TCP/IP, NetWare IPx/SPX, X2510SI, ISDN, ATM) by means of one or more Service Providers.
Applications can specify the type of socket (communication endpoint) desired.

• Expanded socket types. Sockets contain communication properties such as connectedness, reliability,
directionality and isochronicity.

Telephony
application

Telephony
Service
Provider

X.25/CSTA
Service
Provider

Telephony I
datacom

application

Datacom
Service
Provider

Datacom
application

Figure 22. TAPI I PH co-operation

Datacom applications use PH to
access the data communication
facilities of any Datacom Service
Provider, including the X25/CSTA
Service Provider, which is a com
bined DatacomlTelephony Service
Provider. Since the PH is designed
as a transport layer interface, the
X25/CSTA Service Provider should
contain a (OSI) transport layer
protocol on top of the X25
protocols.

Telephony applications use TAPI to access the telephony facilities of any Telephony Service Provider,
including the X25/CSTA Service Provider.

• Quality ofService. PH introduces a number of features related to the negotiation of the Quality of
Service. Changes in Quality of Service as a resuh of network condition changes will be reported to
the application(s).

• TAP! integration. PH is designed to work hand-in-glove with the Windows Telephony API in
providing uniform and consistent access to the transport capabilities of telephony connections.
Applications can establish and utilise telephony data connections without making any explicit calls to
the TAPI interface (combined TAPIIPH Service Providers will silently establish telephony
connections on behalf of the application). Conversely, an application may use TAPI directly to
control calls and then use PH to transport data over established calls.

These features, especially the latter,
make the PH a very suitable data
communication interface for use in
combination with TAPI. Figure 22
depicts how applications can access
the X25/CSTA Service Provider
(and other Service Providers)
through TAPI.DLL and PH.DLL.

Mixed telephony and datacom application that want to access the X25/CSTA Service Providers can
either use PH for all data communication operations (including control of the data calls) and TAPI
exclusively for telephony call control, or they can use TAPI for all call control (including control of data
calls) and PH exclusively for the transport ofdata over data calls established with TAPI.

38



Chapter 4. CTI demo system

4.2.5 Demo telephony application

The screen based telephony concept is demonstrated by implementing the following features:

• Buttons on the screen allow basic call control operations: originating outbound calls, answering
incoming calls and dropping calls.

• Information concerning inbound and outbound call are presented in the form of a pop-up windows.
Call information includes the state ofthe call and party identification.

• Party identification as reported by the switch consists of phone numbers. The telephony application
offers directory services, i.e. it looks up the phone numbers in a phone directory and presents the
phone numbers with associated names found in the phone directory.

The telephony application is responsible for the call control communication with the Windows
Telephony system and for the call control user interface, i.e. presentation of call information and call
control buttons. The phone directory will be implemented as a database in MS Access.

The telephony application performs the directory services by means of Dynamic Data Exchange
(DDE). This is a standard Windows protocol for direct communication between applications. The DDE
protocol is based on a client/server model. A DDE server application reports itself as such to the
system. DDE client applications can inform themselves ofthe DDE server applications currently active.
If the desired DDE server is active, the DDE client can establish a conversation with the DDE server.
Note that an application may be both a DDE server and a DDE client. For the purpose of directory
services, MS Access acts as a (SQL) DDE server and the telephony application as a DDE client.

The phone directory is also useful for originating calls. A "Dial" button on the screen can be used to
dial the phone number in the currently selected record. In this case, MS Access has to send a Make call
request (including the phone number) to the telephony application. This can be achieved by means of
DDE (in this case the telephony application acts as a DDE server) or by means of the Assisted
Telephony mechanism ofthe Windows Telephony system (refer to section 4.2.2).

For the demonstration of the multi-media call control concept, the application should take care of the
creation and manipulation ofvoice/data calls:

• Upon establishment of an outbound voice call, the application should attempt to establish a data call
to an associated data terminal.

• Upon receipt of an incoming data call, the application should attempt to associate the data call with
an already received voice call.

• A voice connection and associated data connection should be handled as a unity (a single multi
media call).

• To demonstrate the use of the established multi-media (voice/data) call, information exchange
between the parties should be possible via the clipboard. As soon as a party updates its clipboard as
a result of a cut or copy operation, the contents will also be transmitted to the other party. The other
party's clipboard is then automatically updated, as if the party had issued the cut or copy command
itself. This party can use the paste command to view the information. At the same time, both parties
can discuss things over the phone.

39



5. Results

5.1 Configuration

The demo configuration as shown in Figure 16 has been built in the demo room of Ericsson Telecom
municatie b.v. in Rijen. This configuration has been used to test and finally demonstrate the developed
software. For this purpose, the demo configuration suffices.

For an operational configuration, the ApplicationLink protocol converter will have to be upgraded to
support multiple Switched Virtual Circuits, instead of a single Permanent Virtual Circuit, in order to
allow simultaneous call control communication with multiple computers.

The interconnection of PBX and packet switch in the present form is rather expensive, requiring a
digital extension line interface in the PBX, a X25 port in the packet switch and a TAU between the
two. An alternative configuration is possible, where the PBX is equipped with X21 interface boards.
One such an interface board contains six X21 interfaces for direct connections (i.e. without TAU) to
the packet switch. A trunk interface (e.g. an ISDN PRJ) between the two would be even a better
solution.

If then PBX's extension lines are executed as standard ISDN Basic Rate Interfaces (which will
eventually happen), the TAUs are no longer needed. In this case, the computers will have to be equipped
with ISDN boards instead of X25 boards. Both telephone and computer can then be connected to the
ISDN S-bus in parallel.

5.2 Software

Implementation of the X25/CSTA Service Provider has resulted in a total of approximately 3900 lines
of C++ source code consisting of an X25 interface modulel7 (570 lines), an ASN.l I BER
implementation module (950 lines), an ECMA CSTA protocol implementation module (750 lines), a
mapping module (840 lines) and a Telephony Service Provider Interface module (750 lines).

Implementation ofthe demo telephony application has resulted in 730 lines of C++ source code.

5.2.1 ECMA CSTA implementation

Using the ASN.I/BER module, the ROSE protocol and a large part of the ECMA CSTA protocol has
been implemented:

• Common elements such as:
- device identifiers
- connection identifiers
- call identifiers
- error codes

17 Direct interfacing to the X25 driver software from within the Service Provider DLL appeared
impossible. Therefore, a separate background application that takes care of the X25 interface is
automatically started by the Service Provider DLL. The Service Provider communicates with this
application by means ofthe Windows messaging mechanism (windows procedure).

41



Computer Telephony Integration

• The following CSTA Switching Function Services:
- Monitor Start
- Monitor Stop
- Make Call
- Answer Call
- Consultation Call
- Transfer Call
- Retrieve Call
- Clear Connection

• All call event reports defined in ECMA CSTA

Implementation of the entire ECMA CSTA protocol is possible with little extra effort, but the current
implementation is sufficient to support the basic call control operations required for the demo system.
All call event reports have been implemented in order to avoid errors caused by reception of unknown
event reports, since these call event reports occur unsolicited. Not all event reports are processed by the
rest ofthe software, though.

Implementation of the ROSE and ECMA CSTA protocol (both specified in ASN.I) by means of the
ASN.l/BER module is very straight-forward and allows for easy integration of the protocols and the
rest of the software. Since the ASN.I/BER module performs actions that are part of the duty of the
presentation layer (encoding/decoding), difficulties may arise if a full OSI stack (i.e. including layers 4
to 6) is implemented, however.

5.2.2 Mapping

In order to allow for uniform call control of voice calls (CSTA) and data calls (X25), the Service
Provider supports voice line devices and data line devices. A voice line device represents a phone device
connected to the PBX; the data line device represents the computer connected to the packet switch. The
user can configure zero, one or more voice line devices and one data line device. Configuration info for
each line device consists of the name and the address of the line device. In case of a voice line device,
the address is the phone number of the associated phone device; in case of the data line device, the
address is the X25 address ofthe computer.

As soon as a session is started on a voice line device (the function TSPI_lineOpen is called), a monitor
is requested on the associated phone device by sending a Monitor Start request to the ApplicationLink.
Likewise, when the session is closed (function TSPI_lineClose), the monitor is cancelled by sending a
Monitor Stop request to the ApplicationLink. The functions TSPI_lineOpen and TSPI_lineCiose are
specified as synchronous functions in the Windows Telephony specification. Therefore, the result of the
Monitor Start and Monitor Stop requests must be awaited within these functions, resulting in the
calling process being suspended during this period.

Other call control functions implemented in the Service Provider are: TSPI_lineMakeCall,
TSPI_IineAnswerCall and TSPI_lineCioseCail. The way these functions are processed depends on
whether they are invoked on a voice or data line device:

• If invoked on a voice line device, these functions send an appropriate CSTA APDU (which is
transmitted inside an X25 data packet) to the ApplicationLink, resulting in the associated phone
device being controlled.

• If invoked on the data line device, these functions send X25 call control packets to the packet
switch, resulting in X25 Virtual Circuits being controlled.

42



Chapter 5. Results

t d II tr I funcfT bl 6 1m Ia e Iplemen e ca con 0 lonmappmg

TSPI function: Voice I Data: CSTAAPDU: X.25 packet type:

TSPIJineOpen V Monitor Start DATA
D

TSPI lineClose V Monitor Stop DATA
D

TSPI lineMakeCall V Make Call DATA
D CALL REQUEST

TSPI lineAnswer V Answer Call DATA
D CALL ACCEPTED

TSPI lineCloseCall V Clear Connection DATA
D CLEAR REQUEST

This limited call control function implementation is sufficient to demonstrate the concepts of screen
based telephony and multi-media call control. Implementation of many other functions for additional
call control functionality will be possible with little effort. Implementation of functions to manipulate
consultation calls and conference calls, however, may present some difficulties in the mapping, due to
the different approaches for modelling these calls in ECMA CSTA and the Windows Telephony system.
Typical third-party call control features like call routing and ACD agent support cannot be imple
mented, since these are not supported in the current version ofthe Windows Telephony system.

The implemented mapping between received CSTA call event reports and call state transitions reported
to TAPI.DLL (and eventually to the application) is listed in Table 7 (see also section 4.2.3). Upon
reception of a Delivered event, the state of the local CSTA connection object is inspected to determine
whether the event indicates an incoming call (in which case a new call with an offering call state will be
reported), or the delivery of an outbound call to the remote station. In the latter case, a new call is
reported, unless the event is a result ofan earlier Make Call operation (this is verified by comparing the
connection identifiers).

Table 7. Implemented CSTA event report mapping

CSTA call event report received: New Windows Telephony call state:
Delivered offering / ringback
Established connected
Connection Cleared idle / disconnected
Held on hold
Retrieved connected
Failed busy

For data calls, an incoming CALL REQUEST packet results is a new (data) call with an offering call
state being reported. An application that wants to accept the call must call the function IineAnswer,
resulting in a CALL ACCEPTED packet being sent. An incoming CLEAR REQUEST packet is
immediately replied to with an CLEAR CONFIRMAnON packet and results in a call state transition
to disconnected.

43



Computer Telephony Integration

5.2.3 Data communication

The proposed use of Intel's Protocol Independent Interface for data communication purposes is not
realised in the demo software, because a PH developers kits was not available yet at the moment of
demo system development. Instead, some of the extension mechanisms defined in the Windows
Telephony system have been used for data communication purposes. This should be considered as a
temporary solution, since it does not correspond to the philosophy behind the Windows Telephony
system.

5.2.4 Demo telephony application

For demonstration of the screen based telephony and multi-media call control concepts, the following
functionality is implemented in the demo telephony application:

• As soon as the application is infonned ofa new call (either inbound or outbound), a pop-up windows
is displayed that presents infonnation concerning the call. Call information includes the state of the
call (ringing, connected, on hold, busy) and party identification (calling party 10, called party 10,
connected party 10).

• The application offers directory services. For this purpose, a phone directory database in MS
Access is consulted by means of Dynamic Data Exchange (DOE).

• The call-related pop-up windows contain buttons for call control (answering and dropping the call)

• The application can originate a call on behalf of other applications by means of DOE. In this
manner, MS Access is provided with a "Dial" button that can be used to automatically dial the
phonenumber in the selected record.

• Upon establishment of an outbound voice call (as a result of either a CSTA action of a user action at
the phone-set), the application attempts to establish a data call to an associated data terminal (the
X25 address is found in the phone directory).

• Upon receipt of an incoming data call, the application attempts to associate the data call with an
already received voice call by comparing the caller's X25 addresses of the data call and the voice
call (for the voice call, the caller's X25 address is found in the phone directory).

• A voice connection and associated data connection are handled as a single multi-media call. More
specifically, as soon as either ofthe two is dropped, the multi-media as a whole is dropped. Pressing
a "Drop" button on the screen results in the multi-media call (both connections) being dropped.

• If a data connection is established, information can be exchanged via the clipboard. As soon as a
party updates its clipboard, the contents will also be transmitted to the clipboard ofthe other party.

The way the demo telephony application presents itself to the user is illustrated in Figure 23. Two
examples are depicted of pop-up windows that the demo telephony application displays as soon as it is
notified of a new outbound or inbound voice call, respectively.

44



Outbound call a

Chapter 5. Results

== Inbound call a

Data link: OK

line:

Status:

Your phone (1612)

Connected

Line:

Status:

Data link:

Your phone (1612)

Ringing

Called----------,

Jack Davies

at 1970

Connected to --------,

Jack Davies (home)

at 0016121970

Called ------------,

Jack Davies

at 1970

Caller----------,

Unknown

at 0348032291

Figure 23. Pop-up window examples

Both windows display the name of the voice line device the call is related to, the status of the voice
connection and the status of the associated data connection. The information in the boxes is the party
identification and consists of the phonenumber (reported by the switch) and the associated name found
in the phone directory. If a phonenumber is not found in the phone directory, "Unknown" is displayed
instead of the name. Besides information about the call, the windows also contain buttons for call
control.

In case of the outbound call in Figure 23, the switch reported that the number 1970 was called from
your phone (number 1612). The demo telephony application looked up the number 1970 in the phone
directory and found the name "Jack Davies". However, Jack Davies has apparently activated call
forwarding to another number, since the switch reported that the call was connected to number
0016121970, instead of 1970. The telephony application also looked up this number, and found the
name "Jack Davies (home)". Jack has apparently answered the phone: the status of the call is
connected. The demo telephony application has also succeeded in establishing a data connection to
Jack's computer at home: the data link is OK. At this time, the contents of your clipboard will auto
matically be transmitted to Jack's computer and vice versa.

In case of the inbound call in Figure 23, the switch reported that a call arrived at your phone. The
phonenumber of the caller was reported by the switch, but the name of the caller couldn't be found in
the phone directory. The caller actually tried to reach Jack Davies (the switch reported that the number
1970 was called), but Jack Davies has again activated call forwarding, this time to your phone, which is
the reason your phone is ringing at the moment.

45



6. Conclusions

Two de-facto standards for computer supported call control have emerged: Microsoft/Intel's Windows
Telephony system (better known as Telephony API or TAPI), which is an open standard for first-party
call control purposes, and Novell/AT&T's NetWare Telephony Services (also known as TSAPI) that
provides third-party call control functionality in a PC-LAN environment.

Although the number products that support the Windows Telephony standard is negligible at the
moment, a large number of manufacturers have announced Windows Telephony support for their
products. For a manufacturer of PC-based telephony hardware, supporting the Windows Telephony
standard implies instant access to a group of 40 million Windows users world-wide.

To provide third-party call control functionality, the NetWare Telephony Services configuration
employs a direct link to the PBX, called cn link. The Telephony Services API (TSAPI) is based on the
ECMA CSTA standard, a prominent standard protocol for third-party call control communication
between computers and switches. Although the fixed costs (for the NetWare Telephony Services soft
ware licence, the PBX driver software and the cn link hardware) are rather high, the configuration is
profitable if a large number of workstations is involved, since the workstations don't need additional
telephony hardware.

A cn demo system has been developed that combines the Windows Telephony system with a third
party call control configuration like the NetWare Telephony Services configuration. Unlike the NetWare
Telephony Services configuration, no LAN is required. This implies that the configuration could also be
used in (ISDN) Centrex situations. Furthermore, remote access is possible, opening the door for tele
working.

Although the Windows Telephony system is intended for first-party call control purposes, it offers
enough functionality to allow a mapping between TAPI and the ECMA CSTA protocol, except for the
typical third-party call control features found in ECMA CSTA. A mapping between TAPI and ECMA
CSTA for basic call control operations has been developed without problems. Many other functions for
call control may be implemented with little effort.

The cn demo system development also showed that programming telephony applications using the
Windows Telephony API (TAPI) is very easy. The demo telephony application was developed within
one week time (approximately 50 man-hours).

47



References

[1] ECMA Standard 179
Services for Computer-Supported Telecommunications Applications (CSTA)
Geneva: ECMA, june 1992

[2] ECMA Standard 180
Protocol for Computer-Supported Telecommunications Application (CSTA)
Geneva: ECMA, june 1992

[3] Gabriel, C.M.W. et al
Heading towards an advanced signalling system for multimedia, multiparty services in B-ISDN
in: PIT Research review, vol. 4, no. 3, august 1994, pp.4l-58

[4] Gray, M.
Voice+ cn Survey
in: Voice+, voLl, no. 4, sept./oct. 1994, pp. 58-76

[5] Greatz, 1. and Muller, H.
IN and CSTA - two sides ofthe same coin ?
in: Telcom report international, no. 15, 1992, pp. 42-46

[6] Grinberg, A.
Computerrrelecom Integration - The SCAl solution
New York: McGraw-Hill, 1995, ISBN 0-07-024842-7

[7] Harman, W.M. and Newman, C.F.
ISDN protocols for connection control
in: IEEEjourn. on sel. areas in communications, vol. 7, no. 7, september 1989, pp. 1034-1042

[8] Thlow, O.
Computergestiitzte Telekommunikation: Technologie, Einfuhrung und Anwendungen
in: Nachrichten Elektronik & Telematik (NEn, vol. 45, september 1991, pp. 349-353

[9] Intel
Protocol Independent Interface
revision 1.5, september 1994

[10] ITV-T Recommendation Q.120l
Principles of Intelligent Network architecture
lTV, october 1992

[11] ITV-T Recommendation X.31
Support ofpacket mode terminal equipment by an ISDN
lTV, march 1993

[12] ITV-T Recommendation X.208
Specification of Abstract Syntax Notation 1
lTV, Blue book, 1988

49



Computer Telephony Integration

[13] ITV-T Recommendation X209
Specification of Basic Encoding Rules for the abstract syntax notation
lTV, Blue book, 1988

[14] ITV-T Recommendation X219
Remote operations - model notation and service definition
lTV, Blue book, 1988

[15] ITV-T Recommendation X229
Remote operations - protocol specification
lTV, Blue book, 1988

[16] Microsoft / Intel
Microsoft Windows Telephony programmers guide
version 1.0, 1993

[17] Novell / AT&T
Telephony Services Application Programming Interface (TSAPI)
issue 1.9, 1994

[18] Peeters, M.C.M.
How to exchange multimedia information in its natural form
in: PIT Research review, vol. 4, no. 3, august 1994, pp. 27-40

[19] Rehin, A.
Integrated voice applications: implications for users
in: Telecommunications (international), vol. 26, february 1992, pp. 21-28

[20] Slechte telefonische bereikbaarheid berokkent veel schade
in: Bedrijfscommunicatie, vol. 3, no. 4, 1994, pp. 11-13

[21] Stagg, L.J.
Integrating the computer and telecommunications
in: Proc. ofIEE conference on private switching, publication #357, 1992, pp. 191-198

[22] Trought, M.
Private networking: a roadmap to the future
in: Telecommunications (international), vol. 25, september 1991, pp. 39-46

[23] Vdell, J.
Computer telephony
in: Byte, vol. 19, no. 7,july 1994, pp. 80-96

[24] Wilson, N.
PC players set the cn standard
in: Telecommunications (international), vol. 28, no. 10, october 1994, pp. 87-91

50



Appendix A. CTI link survey

Table 6. en link overview

Manufacturer and Interfaces Transport protocols Call
product name control

RS-232 RS-422 Ethema Token ISDN X25 TCPI LU6.2 ISDN ECMA
Ring BRI IP DSSI CSTA

Aspect CallCenter X X X X X X
Co-Cam SoftCall X X X +
D.T.S. Harris 20-20 X X X +
Ericsson ACPlOOO X X X
Ericsson MD110 X X X
GPTiSDX X X X
Melita Phoneframe X X X X
Mitel SX-2000, X X X X X X
Supervisor ACD
Philips SOPHO, X X X
iS3000 series
SDX60N, SDX X X
420N
Siemens Hicom 300 X X
STS Supercall 2000 X X X
Northern Telecom X X X X +
Meridian 1
Unisys Summa X
Four, SDSI000,
Unaswitch
Rockwell Spectrum X X X X X

Legenda:
X = supported
+ = support planned

51



Appendix B. CSTA Switching Function Services

This appendix describes each CSTA Switching Function Service that affects the connection state at one
or more devices involved in a call. Changes in connection states are depicted in a figure, which shows
the connection states before and after the operation. These figures are based on the CSTA call model.
Boxes represent CSTA device objects (greyed boxes represent devices that are unaffected by the
service), circles represent CSTA call objects and lines represent CSTA connection objects. The state of
each connection is indicated as a single letter, as shown in Table 9.

T bl 9 Le daa e ~gen

Symbol Connection state
a Alerting
c Connected
f Failed
h Held
1 Initiated
q Queued

* Undefined

Alternate Call

The Alternate Call Service places
the user's active call to device D2
on hold and, in a combined action,
establishes or retrieves the call
between device D1 and device D3
as the active call. Device D2 can
be considered as being
automatically placed on hold
immediately prior to the
retrieval/establishment of the
held/active call to device D3.

Before

Figure 1 - Alternate Call

~l~.~\.~l'~~\~
-\5-r~

After

Answer Call

The Answer Call Service works for
an incoming call that is alerting a
device. In the figure the call C1 is
delivered to device D1. The service
is typically used with telephones
that have attached speakerphone
units to establish the call in a
hands-free operation.

Before

Figure 2 - Answer Call

After

53



Computer Telephony Integration

Clear Call

The Clear Call Service will cause
each device associated with a call to
be released and the CSTA
Connection Identifiers (and their
components) are freed. The figure
illustrates the results of a Clear Call
(CSTA Connection ID = Cl,Dl),
where call C1 connects devices D1,
D2 andD3.

Clear Connection

Before

Figure 3 - Clear Call

After

After

[-~~J--:l~-r~-r~

Before

The Clear Connection Service
releases the specified Connection
and CSTA Connection Identifier
instance from the designated call.
The result is as if the device had
hung up on the call. It is interesting
to note that the phone may not be
physically returned to the switch
hook, which may result in silence,
dial tone, or some other condition.

Generally, if only two Connections Figure 4 _Clear Connection
are in the call, the effect of this
service is the same as the Clear
Call service. The figure depicts an example ofthe results of a Clear Connection (CSTA Connection Id =
C I,D3), where call C1 connects devices D1, D2 and D3. Note that it is likely that the call is not cleared
by this Service if it is some type ofconference.

Conference Call

The figure is an example of the
starting conditions for the
Conference Call Service, which
are: the call C1 from D1 to D2 is
in the held state. A call C2 from
Dl to D3 is in progress or active.
Dl, D2 and D3 are conferenced or
joined together into a single call,
C3. The value of the Connection
identifier (Dl,C3) may be that of
one of the CSTA Connection
Identifiers provided in the request
(01,Cl or Dl,C2).

~
', \

i CI \ D2.

Before

Figure 5 - Conference Call

After

54



Appendix B. CSTA Switching Function Services

Consultation Call

This compound service allows the
application to place an existing call
on hold and at the same time
establish a new call to another
device. In this case an active call
C1 exists at D1 and a consultative
call is desired to D3. After this
function is called, the original
active call (C1) is placed on hold
and a new call, C2, is placed to
device D3.

Before

Figure 6 - Consultation Call

After

AfterBefore

Figure 7 - Divert Call

1. Deflection. Takes a ringing call
at a device and sends it to a new
destination.

2. Pickup. Takes a ringing call at
another device and brings it to
the device concerned.

3. Group pickup. Takes a ringing call at one or more predetermined device(s) and brings it to the device
concerned.

Divert Call

The Divert Call Service replaces
the original called device with a
different called device. The Divert
Call Service supports at least three
common call diversion services:

Hold Call

AfterBefore

The Hold Call Service will
interrupt communications for an
existing call at a device. The call is
usually, but not always, in the
active state. A call may be placed
on hold by the user some time after
completion of dialing. The Figure 8 - Hold Call
associated connection for the held
call is made available for other
uses, depending on the reservation option (ISDN-case). As shown in Figure 5.11, if the Hold Call
service is invoked for device D1 on call C1, then call C1 is placed on hold at device D1. The hold
relationship is affected at the holding device.

55



Computer Telephony Integration

Make Call

After

~~~\
~

Before

The Make Call Service originates a
call between two application
designated devices. When the
service is initiated, the calling
device is prompted (if necessary),
and, when that device
acknowledges, a call to the called Figure 9 - Make Call
device is originated. The figure
illustrates the results of a Make
Call service request (Calling device = 01, Called device = 02). A call is established as if01 had called
02, and the client is returned the Connection id: (C 1,0I).

Make Predictive Call

AfterBefore

The Make Predictive Call Service
first initiates a call to the called
device (destination). Oepending on
the call's progress, the call may be
connected with the calling device
(originator) during the progress of Figure 10 - Make Predictive Call
the call. The point at which the
switch will attempt to connect the
call to the originating device is detennined by the allocation parameter. If the allocation parameter is set
to Call Oelivered, then the call is allocated upon detection of an Alerting (or Connected) Connection
state at the destination. If the allocation parameter is set to Call Established, then the call is allocated
upon detection of a Connected Connection state at the recipient. The figure illustrates the results of a
Make Predictive Call (Calling device =group device 01, Called device =02.

Reconnect Call

A successful request of this service
will causes an existing active call to
be dropped. Once the active call
has been dropped, the specified held
call at the device is retrieved and
becomes active. This service is
typically used to drop an active call
and return to a held call; however,
it can also be used to cancel of a
consultation call (because of no
answer, called device busy, etc.)
followed by returning to a held call.

B~-4rB
Before

Figure 11 - Reconnect Call

Er&G
0rG
After

56



Appendix B. CSTA Switching Function Services

Retrieve Call

Before

The indicated held Connection is
restored to the Connected state
(active). The call state can change
depending on the actions of far end
endpoints. If the Hold Call service
reserved the Held Connection and Figure 12 - Retrieve Call
the Retrieve Call service is
requested for the same call, then
the Retrieve Call service uses the reserved Connection.

~
After

Transfer Call

AfterBefore

Referring to the figure, the starting
conditions for the Transfer Call
service are: the call CI from DI to
D2 is in held state. A call C2 from
DI to D3 is in progress or active.
This service transfers the existing
(held) call between devices DI and
D2 into a new call with a new call
identifier from device D2 to a Figure 13 - Transfer Call
device D3. The service is used in
the situation where the call from
DI to D3 is established (active) or ifthe call is in any state other than Failed or Null state. The Transfer
Call service successfully completes, and DI is released from the call.

57



Appendix C. CSTA I TAPI functionality comparison

T bl 10 ECMA CSTA & TAPI 11 t 1fun' ra e ca conro ctlona rty

Cate20ry: Function: ECMACSTA TAPI
Basic telephony Originate call Make Call lineMakeCall

Answer call Answer Call lineAnswer
lineAccept (ISDN)

Drop call Clear Connection lineDrop
Clear Call lineDrop

Call hold Hold call Hold Call lineHold

Retrieve held call Retrieve Call lineUnhold

Swap held & active Alternate Call lineSwapHold

Call park Park call linePark

Unpark call lineUnPark

Consultation call Make consultation call Consultation Call lineSetupTransfer

Reconnect old call Reconnect Call lineDrop

Transfer call Transfer Call lineCompleteTransfer

Conference call Conference Call lineCompleteTransfer
lineAddToConference

Call divertion Deflect call Divert Call lineRedirect

Pickup call Divert Call linePickup

Pickup group call Divert Call linePickup

Call completion Camp on Call Completion lineCompleteCall

Call back when free Call Completion lineCompleteCall

Intrude Call Completion lineCompleteCall

Leave a message lineCompleteCall

Call forwarding ... always Set Features lineForward

... on busy Set Features lineForward

... on no answer Set Features lineForward

Do-not-disturb Set Features lineForward

User-to-user signalling Out-of-band lineSendUserUserInfo

Inband (DTMF) lineGenerateDigits
lineMonitorDigits
lineGenerateTone
lineMonitorTones

Typical third-party Make predictive call Make Predictive Call

call control features Call routing Re-Route
Route End

Route Request
Route Select
Route Used

ACD agent support Set Features
Query Device

59



Appendix D. ASN.1 / BER implementation module

The c++ source module "ASNlBER.CPP" and its header file "ASNlBER.H" contain class definitions
for direct implementation of ASN.l data types and associated Basic Encoding Rules (BER) in an C++
module, i.e. no ASN.l compiler is required. These ASN.1 / BER Class Definitions are shortly referred
to as ABCD. This appendix briefly describes important ASN.l features and the way they are
implemented in ABCD.

Extended BNF used in this text:

<>
II "

[ ]

'"

Text inside brackets is a place-holder for the name of an identifier
Text inside double quotes is literal
Items inside brackets are optional
Ellipses after an item indicate that the item may be repeated
Commas indicate that the item may be in a list, where the items are separated by commas.
A bar indicates a choice between items
Assignment

1 1 ta)( .T bIll ASN 1 B ·1 . ta e Ul t-m types umversa c ass 19S

Ta2 value: ASN.l type: ABCD class name:
1 Boolean BOOLEAN
2 Integer INTEGER
3 Bit string BlTSTRING
4 Octet string OCTETSTRING
5 Null Null
6 Object identifier
7 Object descriptor
8 External
9 Real
10 Enumerated ENUMERATED
16 Sequence (of) SEQUENCELOF)
17 Set (of)
18 NumericString
19 PrintableString
20 TeletexString (T6l String)
21 VideotexString
22 IA5String IA5String
23 GeneralizedTime
24 UTCTime
25 GraphicString
26 VisibleString (IS0646String)
27 GeneralString
-- Choice CHOICE
-- Any ANY

61



Computer Telephony Integration

ENUMERATED

I--~ OCTETSTRING 1-----1

Figure 24. ABCD class hierarchy

Tags:

IA5String

An ASN.l variable is characterised by its data type and its value. In order to allow the receiving side to
reconstruct a transmitted variable, both data type and value should be transmitted. The data type is
encoded as a so-called tag field. Every ASN.l type18 has an associated tag value and tag class, shortly
referred to as tag. There are four tag classes:

1. Universal. Only assigned within the ASN.l recommendation.

2. Application. Only assigned within other recommendations and standards.

3. Private. Enterprise specific assignments.

4. Context-specific. Context specific assignments.

All built-in ASN.l types (defined in ITU-T recommendation X.208) have universal class tags. Table 11
lists these built-in types, their tag values and the corresponding ABCD class names. ASN.l offers the
possibility to create a new type that is similar to another type, but with a different tag. The new type is
said to be a tagged version ofthe other type. Two ahemative ways of tagging are defined:

1. Implicit. This way the original tag is replaced with a new tag. The original data type can only be
determined with knowledge ofthe new tag.

2. Explicit. This way the original tag is kept and the new tag is added. The original data type can be
determined without knowledge ofthe new tag.

The keywords IMPLICIT and EXPLICIT are used to indicate which ofthe ahematives should be used.
If neither IMPLICIT nor EXPLICIT is specified, tagging defauhs to explicit. The keywords
UNIVERSAL, APPLICATION and PRIVATE are used to indicate which tag class is to be used.
Absence of any of these keywords implies the context-specific tag class. The complete syntax of an
ASN.l definition ofa tagged type is (in BNF):

<TaggedType> ::= "[" [<Class>] <TagValue> "]" I "IMPLICIT" I "EXPLICIT" ] <Type>
<Class> ::= "UNIVERSAL" I "APPLICATION" I"PRIVATE"

18 exceptions are "choice" and "any" types

62



Appendix D. ASN.l / HER implementation module

ABCD allows both implicit and explicit tagging by means of class constructors. A constructor function
is a special class member function that is automatically called at the moment the class is instantiated,
i.e. an object ofthat class is created. Likewise, the destructor function is called at the moment an object
is disposed. Each ABCD class has a constructor function that can take zero, one or two arguments:

• Without arguments, no tagging is performed (i.e. the original tag is kept).

• If one argument is specified, the argument is expected to be a byte that contains both the tag value
and the tag class. Tag values should be smaller than 32 and default to context-specific tag class.
For other tag classes, the value can be "or"-ed with one of the constants UNIVERSAL,
APPLICAnON or PRIVATE. Explicit tagging is performed.

• If two arguments are specified, the first is expected to be a byte that contains both the tag value and
the tag class. The second argument is expected to be one of the keywords EXPLICIT or IMPLICIT
and indicates the way oftagging.

Examples:

ASN.l ABeD
IntVar .. = INTEGER INTEGER IntVar;
ExpTagIntO : := [OJ INTEGER INTEGER ExpTagIntO(O);
ImpTagInt1 : := [lJ IMPLICIT INTEGER INTEGER ImpTagInt1(1,IMPLICIT);
ExpTagInt2 : := [PRIVATE 2J INTEGER INTEGER ExpTagInt2(PRIVATEI2);

INTEGER* ExpTagInt1Ptr = new
INTEGER(l);

ABeD classes and objects:

ABCD is a C++ based class hierarchy that contains classes for the most frequently used ASN.I built-in
types (see Table 11 and Figure 24). The base class is called ASNltype and contains virtual member
functions for value assignment, value retrieval, BER encoding and decoding, etc. This means that a
pointer to the ASNltype class can be used as a reference to any ABCD class. The compiler
automatically uses the member functions ofthe ABCD class the pointer really points to.

An ABCD object is an instance of an ABCD class and is similar to an ASN.I variable. Note that an
ABCD object has three characteristics: class, tag and value. When an ABCD object is tagged, its tag
field is changed, but its class isn't.

An ABCD class must be instantiated in order to be able to change its tag (the tag is actually a data
member of the class; it is initialised with a default value). More complex ABCD classes like
SEQUENCE and CHOICE must be instantiated before any items can be specified. ABCD classes
therefore aren't really similar to ASN.l types, since they don't contain all the information ASN.I types
can contain. ABCD objects, however, do contain all the ASN.I type information (plus a value).

Since ABCD objects are more similar to ASN.l types that ABCD classes, it should be possible to
handle ABCD objects like ASN.I types (ignoring their value). More specifically, it should be possible
to use an ABCD object in the specification of another ABCD object. This is implemented by the
function call operator (). When using this operator on an ABCD object, it returns a pointer to a
duplicate ofthat object, i.e. an object with the same class and tag (the object's value is not copied).

Example:

INTEGER Int1(10,IMPLICIT); II New INTEGER type with context-specific tag
INTEGER* Int2Ptr Int1(); II Int2Ptr points to a [10J IMPLICIT INTEGER
INTEGER* Int3Ptr = new INTEGER(10,IMPLICIT) ; II dito

63



Computer Telephony Integration

Value assignment and retrieval:

Once an ABCD object has been created, it can be used as an ASN.l variable. Therefore, it should be
possible to assign a value to it and to retrieve its value. This is implemented by the operator = and the
member function get, respectively.

Example:

int C int var;
- -

INTEGER Intl(PRIVATEll);
IntI = 123;
Intl.get(C_int_var);

II In ASN.l: IntI ::= [PRIVATE 1] INTEGER
II In ASN.l: IntI ::= 123
II Retrieves the value of IntI in C int var

Which C data type should be used for value assignment and retrieval depends upon the class of the
ABCD object. The C data types that can be used are called compatible types and are specified for each
ABCD class.

Comparing and copying ABCD objects:

Any two ABCD objects ofthe same class can be compared by means of the operator = =. The resuh of
this operation is TRUE if the tags and the values of both objects correspond. With more complex
ABCD objects, consisting of a collection of other ABCD objects, this also means that each sub-object's
tag and value should correspond.

The value of an ABCD object can be copied to another ABCD object of the same class and tag, by
means ofthe operator =.

Examples:

INTEGER Intl(O);
INTEGER Int2(O);
INTEGER Int3(O);
INTEGER Int4(1);
Intl 123
Int2 123
Int3 = 234 ;
Int4 = 123 ;
if (IntI == Int2) II Yes.
if (IntI == Int3) II No, the values are not the same
if (IntI == Int4) II No, the tags differ
Int3 IntI; II Now the values are the same!
Int4 = IntI; II This is illegal, since the tags differ

BER encoding and decoding:

Each ABCD object can encode itself (using the Basic Encoding Rules defined in ITU-T
recommendation X.209) by means of its member function BER_encode. This member function takes a
pointer to a buffer location as an argument. After encoding, it updates this pointer to point to the first
byte after the encoded value. The function returns the size ofthe encoded value.

Each ABCD object can be requested to decode an encoded byte-stream by means of its member function
BER_decode. This member function takes a pointer to the encoded byte-stream as an argument. The
object first determines if it is able to decode the byte-stream by comparing its tag with the encoded tag
field in the byte-stream. If the tags differ, the function returns 0 (int). If the tags match, the ABCD
object's value is decoded from the byte-stream and the pointer is updated to point to the first byte after
the decoded value; the function returns the number of bytes decoded.

64



Appendix D. ASN.l/ BER implementation module

Output stream insertion:

Each ABeD object can be inserted in an output stream by means ofthe standard output stream operator
«. The result of this operation is a human-readable output of the object's value. The notation used is
similar to the standard notation for ASN.l values, described in ITU-T recommendation X.208. This
feature is very useful for debugging purposes.

ASN.1 built-in types and ABeD classes:

Legenda:

<cstring> is a character string enclosed in double quotes. E.g. "Test"
<bstring> is a character string enclosed in quotes and with a "B" suffix, that represents a string of

binary digits (bits). E.g. 'OlOlOlOl'B
<hstring> is a character string enclosed in quotes and with a "H" suffix, that represents a string of

hexadecimal digits (nibbles). E.g. 'lOAF'H
<identifier> is a character string that represents a name. The first character should be lowercase.

<NamedNumber> ::= <identifier> "(" <number> ")"
<NamedBit> ::= <identifier> "(" <number> ")"
<NamedValue> ::= [<identifier>] <value>
<NamedType> ::= [<identifier>] <type>

1. Boolean

ASN.l Boolean variables can assume two logic states: true or false.

<BooleanType> ::= "BOOLEAN"
<BooleanValue> ::= "TRUE" I"FALSE"

ABCD class name: BOOLEAN
Compatible types: BOOL (int)

Since BOOL is defined as int (in windows.h), there is really no difference between assigning a Boolean
or an integer value, as long as the interpretation ofthe values is respected: a value of zero is interpreted
as FALSE, any non-zero value as TRUE. In order to avoid confusion, it's better to use the constants
TRUE and FALSE, defined in windows.h.

2. Integer

ASN.l Integer variables can hold all cardinal values, unlimited in magnitude. The exact range can be
specified using subtypes. Optionally, some values can be assigned an identifier. This identifier may be
used in value assignments.

<IntegerType> ::= "INTEGER" [ "{" <NamedNumber>", "}"]
<IntegerValue> ::= <number> I<identifier>

ABCD class name: INTEGER
Compatible types: int, long

Assigning identifiers to values is not implemented in the class INTEGER. However, this can easily be
done by means ofenum or #define.

65



Computer Telephony Integration

3. Bit string

ASN.l Bit string variables carry strings of bits of arbitrary length. The individual bits (least significant
bit is bit 0) may be referenced by associated names.

<BitStringType> ::= "BIT STRING" [ "{" <NamedBit>", "}" ]
<BitStringValue> ::= <bstring> I<hstring> J "{" [ <identifier> ", ] "}"

ABCD class name: BITSTRING
Compatible types: BYTE, UINT, DWORD (char, int, long)

Assigning identifiers to bits is not implemented in the class BITSTRING. However, this can be done by
means of enum or #define, where the defined constants may be "or"-ed to create the desired value. Bit
strings represent unsigned values. Although signed types like char, int and long are compatible, they
shouldn't be used. Performing value retrieval with a DWORD argument, while the actual length of the
bit string value is more that 32 bits, results in an exception being thrown.

4. Octet string

ASN.l Octet string variables carry strings of octets (bytes) ofarbitrary length.

<OctetStringType> ::= "OCTET STRING"
<OctetStringValue> ::= <bstring> I<hstring>

ABCD class name: OCTETSTRING
Compatible types: BYTE, UINT, DWORD (char, int, long)

Octet strings represent unsigned values. Although signed types like char, int and long are compatible,
they shouldn't be used. The octet string itself can contain up to 64 bytes. Performing value retrieval with
a DWORD argument, however, will throw an exception if the actual length of the octet string is more
that four bytes.

5. Null

The ASN.l null type is used to indicate the absence of a parameter (see Sequence, Choice and Any
types).

<NuIlType> ::= "NULL"
<NuIlValue> ::= "NULL"

ABCD class name: Null
Compatible types: none

Note the lowercase notation for the ABCD class name, which is used in order to avoid redefinition of
the null-pointer constant NULL. ABCD class Null contains no member functions for value assignment
or retrieval, since a Null type has no value (other than "NULL'').

10. Enumerated

An ASN.l variable with an enumerated type can assume a limited number of values, which are
referenced by associated identifiers.

<EnumeratedType> ::= "ENUMERATED {" <NamedNumber>", "}"

66



Appendix D. ASN.1/ BER implementation module

<EnumeratedValue> ::= <identifier>

ABCD class name: ENUMERATED
Compatible types: int, long

Assigning identifiers is not implemented in the class ENUMERATED. This can easily be done by
means of enum or #define, though. Since an enum type is essentially an integer, there is really no
difference between assigning an enumerated or an integer value. However, it's better to use enum types
only. Note that a typecast to int is required when using enum types with the get member function.

16. Sequence

The ASN.l sequence type is used to build a structured data type, consisting of items of arbitrary types.
The items may be assigned identifiers, which can be used to reference the item in a value assignment.
The items may be marked as optional or may be assigned a defauh value, in which case they may be
omitted in assignments.

<SequenceType> ::= "SEQUENCE {" [ <ItemType>", ] "}"
<ItemType> ::= <NamedType> ["OPTIONAL" I "DEFAULT" <value>]

"COMPONENTS OF" <SequenceType>
<SequenceValue> ::= "{" [<NamedValue>",] "}"

ABCD class name: SEQUENCE
Compatible types: none

Instantiating the class SEQUENCE yields an empty sequence object. The items should be specified later
by means ofthe member function "item". This member function is defined as:

SEQUENCE::itern(string NarneID, ASNltype* itern_ptr, BOOL optional = FALSE);
NarneID is the name ofthe item (note that it isn't optional, like in ASN.l)
i tern_pt r is a pointer to an arbitrary ABCD object
the item is marked optional if optional is TRUE (defauh is FALSE)
the constant OPTIONAL (defined as TRUE) can be used as third argument

All identifiers within a sequence should be unique, otherwise an exception is thrown.

Example:

ASN.l ABCD
IntI : := [0 ] IMPLICIT INTEGER INTEGER Intl(O,IMPLICIT);
SeqType : := [PRIVATE 131] SEQUENCE { SEQUENCE SeqType(PRIVATEI31);

first INTEGER , SeqType.itern("first",new INTEGER);
next IntI OPTIONAL } SeqType. i tern ("next" , IntI () , OPTIONAL) ;

Note that it makes no sense to use value assignment or retrieval on the SEQUENCE object itself9
,

instead the object's items should be used. Once the entire sequence has been specified, its items can be
referenced by means ofthe operator [ ].

19 Attempts to do this result in an exception being thrown

67



Computer Telephony Integration

Example:

SEQUENCE seq ;
seq. item ("hello", SeqType () ) ;
seq . item ("bye" , new INTEGER (PRIVATE 11)

seq = 1; II This is illegal
seq["bye"] = 123 ;
seq["hello"] ["second"] = 234

Optional items are not included in the encoding unless they have been referenced (in the example, the
optional item seq["hello"]["second"] is referenced and therefore will be included in the encoding). To
determine if an optional item is included, the member function contains can be used on the SEQUENCE
object:

if ( seq["hello"] . contains ("second") ) II optional item second is included

16. Sequence of

The sequence-of type is used to build arrays consisting of an arbitrary number of elements of the same
type.

<SequenceOIType> ::= "SEQUENCE OF" <Type>
<SequenceOfValue> ::= "{" [ <Value>",] "}"

ABCD class name: SEQUENCE OF
Compatible types: none

The constructor of class SEQUENCE_OF takes one extra argument: a pointer to an ABCD object that
serves as an ASN.1 type.

Example:

ASN.1 ABCD
IntType = [PRIVATE 4] INTEGER INTEGER IntType(PRIVATEI4)
SeqOfType : : = [1 ] SEQUENCE OF IntType SEQUENCE OF SeqOfType(IntType(), 1)

Instantiating the class SEQUENCE_OF yields an empty array. Referencing of elements in the array is
done the usual way (indexes start with number one). The array has so-called "self-expanding"
behaviour: when an element is referenced with an index equal to the number of elements in the array
pIus one, a new element is appended.

The number of elements in the array can be retrieved using the member function get. When the
SEQUENCE_OF object has been encoded, the array returns to empty state.

INTEGER); II Empty array of INTEGER is created
II Append element (array now has one element)
II This is OK; element value is overwritten
II Append (array now has two elements)

II elements = 2
II Encode object and return empty array.

SeqOfVar (new
123;
234;
345;

Example:

SEQUENCE OF
SeqOfVar[1]
SeqOfVar [1]
SeqOfVar[2]
int elements;
SeqOfVar.get(elements);
SeqOfVar.BER_encode(buf-ptr);

68



Appendix D. ASN.l/ HER implementation module

22. IA5String

ASN.l variables oftype lA5String carry ASCII character strings ofarbitrary length.

<IA5StringType> ::= "IA5String"
<IA5StringValue> ::= <cstring>

ABCD class name: IA5String
Compatible types: LPCSTR, LPSTR, const char*, char*

Value assignments should be of type LPCSTR (defined as canst far char*), LPSTR (defined as far
char*) can be used with member function get. The IA5String can contain up to 64 characters.

Choice

The ASN.l choice type allows a choice between the specified types. All types should have different tags
(implicit tagging may be necessary). Identifiers may be assigned to the different options, to use as a
reference in the value assignments.

<ChoiceType> ::= "CHOICE {" <NamedType>", "}"
<ChoiceValue> ::= <NamedValue>

ABCD class name: CHOICE
Compatible types: none

Instantiating class CHOICE yields an empty choice object (i.e. no options defined). The options should
be specified later using the member function option. This member function is very similar to member
function item of a sequence type, the only difference being the absence of the third argument (which
makes no sense with a choice type).

Since implicit tagging is illegal with a choice type, the constructor function for class CHOICE doesn't
accept a second argument.

Like with class SEQUENCE, value assignment or retrieval on the choice object itself is illegal and
results in an exception being thrown. The options are referenced with operator 0, this automatically
selects the referenced option.

Example:

INTEGER Int1(O,IMPLICIT);
CHOICE SelType (PRIVATEI31);

SelType.option ("first" , new INTEGER);
SelType.option("second", Int1() );

SelType["first"l = 123; II option first is selected

To determine which option is selected, the operator ==can be used on the choice object:
if ( SelType == "second") II option second is selected

Any

The ASN.l any type is a reference to any ASN.l type. Unless the DEFINED BY keywords are used,
this will resuh in an incomplete specification. The identifier should reference an item ofthe structure the
any type is part of.

<AnyType> ::= "ANY" [ "DEFINED BY" <identifier> ]
<AnyValue> ::= <Type> <Value>

69



Computer Telephony Integration

ABCD class name: ANY
Compatible types: none

The constructor for class ANY is a little different that the other constructors. It is defined as:

ANY::ANY(DefFuncPtr defined_by, BYTE tag = NONE);

defined_by is a pointer to a so-called definition function
tag is an optional explicit tag value (implicit tagging is illegal with an any type)

The definition function should take no arguments and should return an ASNltype*. This function
should determine which ABCD object the ANY object has to reference and return a pointer to it. When
a BER encoding or decoding member function of an ANY object is invoked, the object calls the
definition function to find the object to reference. It then passes control to that object, unless the
definition function returns a null-pointer.

Note that the ANY object only contains member functions for BER encoding / decoding and output
stream insertion. Any other operations on this object result in an exception being thrown.

70



Appendix E. TAPII TSPI interface specification

This appendix presents an abridged version ofthe information found in both API and SPI programmer's
reference manuals ofthe Windows Telephony system. In order to keep the size manageable (the original
size of the information presented in this appendix is about 390 pages), only the most relevant
information in relation to the subjects covered in this report is reproduced. More specifically, only
functions, messages and constants concerning line devices (i.e. not phone devices) are specified. Data
structures are not specified, but the constants specified give an impression ofthe information in the most
relevant data structures.

Functions and messages defined in the Windows Telephony API (TAPI) specification generally have
corresponding functions and messages in the Telephony SPI (TSPI) specification. Therefore, TAPI and
corresponding TSPI functions and messages are described together in this appendix, as opposed to the
original specification. Besides a comprehensive description of each function, TAPI and TSPI function
prototypes are presented. A function prototype shows how the function is invoked and reveals the name
ofthe function, its parameters and its return value. The meaning of each parameter is also described.

Parameters are named according to a naming convention known as the Hungarian notation, which is
very common in Windows programming. This convention implies that the name of a variable or
parameter begins with one or more lowercase letters that denote its data type. Frequently used letters are
listed in Table 12. With pointers, prefixes are often combined to denote the type of pointer. For
example, Ipfn is a (far) pointer to a function.

Table 12. Hungarian notation
PrefIX Data type
b .Il00L
c ~har

dw DWORD
fh function
h handle
I long
Ip far (long) Rointer
1 int
n int (number)
p Rointer
s ~ring

sz ~ring terminated by ~ero byte
w WORD

Copyright notice:

The Telephony Specification is jointly developed by Intel Corporation and Microsoft Corporation.
You are granted a worldwide, non-exclusive, royalty-free licence to copy and use the specification
in any manner, contingent upon your reproducing this paragraph and any Intel/Microsoft
copyright statement in all full or partial copies of the Specification.

Windows Telephony Application Programmer's Guide Copyright © Microsoft 1993. Portions
Copyright IntellMicrosoft 1992, 1993. All rights reserved.

Windows Telephony Service Provider Programmer's Guide Copyright © 1993 by Microsoft. Portions
Copyright IntellMicrosoft 1992, 1993. All Rights Reserved.

71



Computer Telephony Integration

Functions

IineAccept

This function accepts the specified offered call. It may optionally send the specified user-to-user
information to the calling party.
The lineAccept function is used in telephony environments like Integrated Services Digital Network
(ISDN) that allow alerting associated with incoming calls to be separate from the initial offering of the
call. When a call comes in, it is first offered. For some small amount oftime, the application may have
the option to reject the call using lineDrop, redirect the call to another station using lineRedirect,
answer the call using lineAnswer, or accept the call using lineAccept. After a call has been
successfully accepted, alerting at both the called and calling device begins. After a call has been
accepted by an application, the call state typically transitions to accepted.
Alerting is reported to the application by the LINE_LINEDEVSTATE message with the ringing
indication.
The lineAccept function may also be supported by non-ISDN service providers. The call state transition
to accepted can be used by other applications as an indication that another application has claimed
responsibility for the call and has presented the call to the user.
The application has the option to send user-to-user information at the time of the accept. Even if user
to-user information is sent, there is no guarantee that the network will deliver this information to the
calling party. An application should consuh a line's device capabilities to determine whether call accept
is available.

TAPI function:

LONG lineAccept(hCall, lpsUserUserlnfo, dwSize)

hCall Specifies a handle to the call to be accepted. The application must be an owner of the call.

lpsUserUserlnfo Specifies a far pointer to a string containing user-to-user information to be sent to the
remote party as part of the call accept. This pointer can be left NULL if no user-to-user information
is to be sent. User-to-user information is only sent if supported by the underlying network (see
LINEDEVCAPS). The protocol discriminator field for the user-user information, if required, should
appear as the first b)1e of the buffer pointed to by /psUserUserlnfo, and must be accounted for in
dwSize.

dwSi ze Specifies the size in b}tes of the user-to-user information in /psUserUserlnfo. If /psUserUserlnfo
is NULL, no user-to-user information is sent to the calling party and dwSize is ignored.

TSPI function:

LONG TSPI_lineAccept(dwRequestID, hdCall, lpsUserUserlnfo, dwSize)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the call to be accepted.

lpsUserUserlnfo Specifies a far pointer to a string containing user-to-user information to be sent to the
remote party as part of the call accept. This pointer is NULL if no user-to-user information is to be
sent. User-to-user information is only sent if supported by the underlying network (see
LINEDEVCAPS).

dwSi ze Specifies the size in b}tes of the user-to-user information in /psUserUserlnfo. If /psUserUserlnfo
is NULL, dwSize should be ignored.

72



Appendix E. TAPI I TSPI interface specification

lineAddToConference

This function adds the call specified by hConsultCall to the conference call specified by hConjCall.
Note that the call handle of the added party remains valid after adding the call to a conference. Its state
typically changes to conferenced while the state of the conference call typically becomes connected
Using lineGetConfRelatedCalls, you can obtain a list of call handles that are part of the same
conference call as the specified call. The specified call is either a conference call or a participant call in
a conference call. New handles are generated for those calls for which the application does not already
have handles, and the application is granted monitor privilege to those calls. The handle to an individual
participating call can be used later to remove that party from the conference call using
lineRemoveFromConference.
The call states of the calls participating in a conference are not independent. For example, when
dropping a conference call, all participating calls may automatically become idle. An application should
consult the line's device capabilities to determine what fono of conference removal is available. The
application should track the LINE_CALLSTATE messages to determine what happened to the calls
involved.
The conference call is established either by lineSetupConference or lineCompleteTransfer. The call
added to a conference is typically established using lineSetupConference or linePrepareAddTo
Conference. Some switches may allow adding arbitrary calls to the conference, and such a call may
have been set up using lineMakeCall and be on (hard) hold. The application may examine the
dwAddrCapFlags field ofthe LINEADDRESSCAPS structure to determine the permitted operations.

TAPI function:

LONG lineAddToConference(hConfCall, hConsultCall)

hConfCall Specifies a handle to the conference call. The application must be an owner of this call. Any
monitoring (media, tones, digits) on a conference call applies only to the hConjCall, not to the
individual participating calls.

hConsul tCall Specifies a handle to the call to be added to the conference call. The application must be
an owner of this call. This call cannot be a parent of another conference or a participant in any
conference. Depending on the device capabilities indicated in LINEADDRESSCAPS, the
hConsultCall may not necessarily have been established using lineSetupConference or
IinePrepareAddToConference.

TSPI function:

LONG TSPI_lineAddToConference(dwRequestID, hdConfCall, hdConsultCall)

dwRequestID Specifies the identifier of the asynchronous request.

hdConfCall Specifies the handle to the conference call.

hdConsul tCall Specifies the handle to the call to be added to the conference call. This call cannot be
either a parent of another conference or a participant in any conference. Depending on the device
capabilities indicated in LINEADDRESSCAPS, the hdConsultCall may not necessarily have been
established using TSPI_lineSetupConference or TSPI_linePrepare-AddToConference.

73



Computer Telephony Integration

IineAnswer

This function answers the specified offering call. When a new call arrives, applications with an interest
in the call are sent a LINE_CALLSTATE message to provide the new call handle and to inform the
application about the call's state and the privileges to the new call (such as monitor or owner). The
application with owner privilege for the call can answer this call using lineAnswer. After the call has
been successfully answered, the call typically transitions to the connected state. Initially, only one
application is given owner privilege to the inbound call.
In some telephony environments (like ISDN), where user alerting is separate from call offering, the
application may have the option to accept a call prior to answering or to reject or redirect the offiring
call.
If a call comes in (is offered) at the time another call is already active, the new call is connected to by
invoking lineAnswer. The effect this has on the existing active call depends on the line's device
capabilities. The first call may be unaffected, it may automatically be dropped, or it may automatically
be placed on hold. The appropriate LINE_CALLSTATE messages report state transitions to the
application about both calls.
The application has the option to send user-to-user information at the time of the answer. Even if user
to-user information can be sent, there is no guarantee that the network will deliver this information to
the calling party. An application should consult a line's device capabilities to determine whether sending
user-to-user information upon answering the call is available.

TAPI function:

LONG lineAnswer(hCall, lpsUserUserlnfo, dwSize)

hCall Specifies a handle to the call to be answered. The application must be an owner of this call.

lpsUserUserlnfo Specifies a far pointer to a string containing user-to-user information to be sent to the
remote party at the time of answering the call. This pointer can be left NULL if no user-to-user
information is to be sent. User-to-user information is only sent if supported by the underlying
network (see LINEDEVCAPS). The protocol discriminator field for the user-user information, if
required, should appear as the first byte of the buffer pointed to by /psUserUserlnfo, and must be
accounted for in dwSize.

dwSi ze Specifies the size in bytes of the user-to-user information in /psUserUserlnfo. If /psUserUserlnfo
is NULL, no user-to-user information is sent to the calling party and dwSize is ignored.

TSPI function:

LONG TSPI lineAnswer(dwRequestID, hdCall, lpsUserUserlnfo, dwSize)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the service provider's handle to the call to be answered

lpsUserUserlnfo Specifies a far pointer to a string containing user-to-user information to be sent to the
remote party at the time of answering the call. If this pointer is NULL, it indicates that no user-to
user information is to be sent. User-to-user information is only sent if supported by the underlying
network (as indicated in LINEDEVCAPS).

dwSi ze Specifies the size in bytes of the user-to-user information in /psUserUserlnfo. If /psUserUserlnfo
is NULL dwSize is ignored.

74



Appendix E. TAPI/ TSPI interface specification

IineBlindTransfer

This function performs a blind or single-step transfer of the specified call to the specified destination
address.
Blind transfer differs from a consultation transfer in that no consultation call is made visible to the
application. After the blind transfer successfully completes, the specified call is typically cleared from
the application's line, and it transitions to the idle state. Note that the application's call handle remains
valid after the transfer has completed. The application must deallocate its handle when it is no longer
interested in the transferred call. It uses lineHandotT for this purpose.

TAPI function:

LONG lineBlindTransfer(hCall, lpszDestAddress, dwCountryCode)

hCall Specifies a handle to the call to be transferred. The application must be an owner of this call.

lpszDestAddress Specifies a far pointer to a NULL-terminated string identifying where the call is to be
transferred to. The destination address uses the standard dialable number format.

dWCountryCode Specifies the country code of the destination. This is used by the implementation to
select the call progress protocols for the destination address. If a value of zero is specified, a default
call-progress protocol defined by the service provider is used..

TSPI function:

LONG TSPI_lineBlindTransfer(dwRequestID, hdCall, lpszDestAddress,
dWCountryCodel

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the service provider's handle to the call to be transferred

lps zDestAddress Specifies a far pointer to a NULL-terminated string identifying where the call is to be
transferred to. The destination address uses the standard dialable number format.

dWCountryCode Specifies the country code of the destination. This should be used by the implementation
to select the call progress protocols for the destination address. If a value of zero is specified, the
service provider should use a default. Note that dwCountryCode is not validated by TAPI.DLL when
this function is called.

75



Computer Telephony Integration

IineClose

This function closes the specified open line device.
If an application calls IineCiose while it still has active calls on the opened line, the application's
ownership of these calls is revoked. If the application was the sole owner of these calls, the calls are
dropped as well. It is good programming practice for an application to dispose ofthe calls it owns on an
opened line by explicity relinquishing ownership and/or by dropping these calls prior to closing the line.
If the close was successful, a LINE_LINEDEVSTATE message is sent to all applications that are
monitoring the line status ofopen/close changes. Outstanding asynchronous replies are suppressed.
Certain environments may find it useful or necessary to forcibly reclaim line devices from an application
that has the line open. This may be useful to prevent a misbehaved application from monopolizing the
line device for too long. Ifthis happens, a LINE_CLOSE message is sent to the application, specifying
the line handle ofthe line device that was closed.
The IineOpen function allocates resources to the invoking application, and applications may be
prevented from opening a line if resources are unavailable. Therefore, an application that only
occasionally uses a line device (such as for making outbound calls) should close the line to free
resources and allow other applications to open the line.

TAPI function:

LONG lineClose(hLine)

hLine Specifies a handle to the open line device to be closed. After the line has been successfully closed,
this handle is no longer valid.

TSPI function:

LONG TSPI_lineClose(hdLine)

hdLine Specifies the service provider's handle to the line to be closed. After the line has been successfully
closed, this handle is no longer valid.

76



Appendix E. TAPI/ TSPI interface specification

IineCompleteCall

This function is used to specify how a call that could not be connected nonnally should be completed
instead. The network or switch may not be able to complete a call because network resources are busy
or the remote station is busy or doesn't answer. The application can request that the call be completed in
one ofa number ofways.
This function is considered complete when the request has been accepted by the network or switch; not
when the request is fully completed in the way specified. After this function completes, the call typically
transitions to idle. When the called station or network enters a state where the call can be completed as
requested, the application will be notified by a LINE_CALLSTATE message with the call state equal
to offering. The call's LINECALLINFO record lists the reason for the call as CALLCOMPLETION
and provide the completion ID as well. It is possible to have multiple call completion requests
outstanding at any given time; the maximum number is device dependent. The completion ID is also
used to refer to each individual request so requests can be canceled by calling IineUncompleteCall.

TAPI function:
LONG lineCompleteCall(hCall, lpdwCompletionID, dwCompletionMode,

dwMessageID)

hCall Specifies a handle to the call whose completion is requested. The application must be an owner of
the call.

lpdwCompletionID Specifies a far pointer to a DWORD-sized memory location. The completion ID is
used to identifY individual completion requests in progress. A completion ID becomes invalid and
may be reused after the request completes or after an outstanding request is canceled.

dWCompletionMode Specifies the way in which the call is to be completed. Note that
dwCompletionMode is allowed to have only a single flag set. This parameter uses the following
LINECALLCOMPLMODE_ constants: CAMPON queues the call until the call can be completed.
The call remains in the busy state while queued; CALLBACK requests the called station to return
the call when it returns to idle; INTRUDE adds the application to the existing physical call at the
called station (barge in); MESSAGE leave a short predefined message for the called station ("Leave
Word Calling"). The message to be sent is specified by dwMessageID.

dwMessageID Specifies the message that is to be sent when completing the call using
LlNECALLCOMPLMODE_MESSAGE. This ID selects the message from a small number of
predefined messages.

TSPI function:

LONG TSPI lineCompleteCall(dwRequestID, hdCall, lpdwCompletionID,
dWCompletionMode, dwMessageID)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the service provider's handle to the call whose completion is requested.

lpdwCompletionID Specifies a far pointer to a DWORD-sized memory location where the service
provider writes a completion ID.

dWCompletionMode Specifies the way in which the call is to be completed. This parameter uses the
following LINECALLCOMPLMODE_ constants. Only one of the indicated flags may be set at a
time.

dwMessageID Specifies the message that is to be sent when completing the call using
LlNECALLCOMPLMODE_MESSAGE. This ID selects the message from a small number of
predefined messages. Note that this parameter is not validated by TAPI.DLL when this function is
called.

77



Computer Telephony Integration

lineCompleteTransfer

This function completes the transfer ofthe specified call to the party connected in the consuhation call.
This operation completes the transfer of the original call, hCall, to the party currently connected by
hConsultCall. The consultation call will typically have been dialed on the consuhation call allocated as
part of lineSetupTransfer, but it may be any call to which the switch is capable oftransferring hCall.
The transfer request can be resolved either as a transfer or as a three-way conference call. When
resolved as a transfer, the parties connected by hCall and hConsultCall are connected to each other, and
both hCall and hConsultCall are typically cleared from the application's line and transition to the idle
state. Note that the application's call handle remains valid after the transfer has completed. The
application must deallocate its handle with lineHandoff when it is no longer interested in the transferred
call.
When resolved as a conference, all three parties enter into a conference call. Both existing call handles
remain valid but will transition to the conferenced state. A conference call handle will be created and
returned, and it will transition to the connected state.

TAPI function:

LONG 1ineComp1eteTransfer(hCall, hConsultCall, lphConfCall, dwTransferMode)

hCall Specifies a handle to the call to be transferred. The application must be an o",ner of this call.

hConsul tCall Specifies a handle to the call that represents a connection with the destination of the
transfer. The application must be an o",ner of this call.

lphConfCall Specifies a far pointer to a memory location where an HCALL handle can be returned. If
dwTransftrMode is CONFERENCE, the newly created conference call is returned in /phConjCa//
and the application becomes the sole o",ner of the conference call. Otherwise, this parameter is
ignored by TAPLDLL.

dwTransferMode Specifies how the initiated transfer request is to be resolved. This parameter uses the
following LlNETRANSFERMODE_ constants: TRANSFER resolve the initiated transfer by
transferring the initial call to the consultation call; CONFERENCE resolve the initiated transfer by
conferencing all three parties into a three-way conference call. A conference call is created and
returned to the application.

TSPI function:

LONG TSPI_1ineCompleteTransfer(dwRequestID, hdCall, hdConsultCall,
htConfCall, lphdConfCall, dwTransferMode)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the service provider's handle to the call to be transferred.

hdConsul tCall Specifies a handle to the call that represents a connection to the destination of the
transfer.

htConfCall This parameter is only valid ifdwTransferMode is specified as CONFERENCE. It should be
used to replace the htCall associated with the original hdCall. The service provider must save this
parameter value and use it in all subsequent calls to the LINEEVENT procedure reporting events on
the call. Otherwise this parameter is ignored..

lphdConfCall Specifies a far pointer to an HDRVCALL representing the service provider's identifier for
the call. This parameter is only valid ifdwTransferMode is specified as CONFERENCE. The service
provider must fill this location with its handle for the new conference call.

dwTransferMode Specifies how the initiated transfer request is to be resolved..

78



Appendix E. TAPI I TSPI interface specification

IineConfigDialog

This function causes the provider of the specified line device to display a dialog (attached to
hwndOwner ofthe application) to allow the user to configure parameters related to the line device.
The lineConfigDialog function causes the service provider to display a modal dialog (attached to
hwndOwner ofthe application) to allow the user to configure parameters related to the line specified by
dwDeviceID. The lpszDeviceClass parameter allows the application to select a specific subscreen of
configuration information applicable to the device class in which the user is interested; the permitted
strings are the same as for lineGetID. For example, if the line supports the Comm API, passing
"COMM" as lpszDeviceClass causes the provider to display the parameters related specifically to
Comm (or, at least, start at the corresponding point in a multilevel configuration dialog chain, so the
user doesn't have to "dig" to find the parameters of interest).
The lpszDeviceClass parameter would be ''t:apilline'' , "", or NULL to cause the provider to display the
highest level configuration for the line.

TAPI function:

LONG lineConfiqDialoq(dwDeviceID, hwndOwner, IpszDeviceClass)

dWDeviceID Specifies the line device to be configured

hwndOwner Specifies a handle to a window to which the dialog is to be attached.

IpszDeviceClass Specifies a far pointer to a NULL-terminated string that identifies a device class
name. This device class allows the application to select a specific subscreen of configuration
information applicable to that device class. This parameter is optional and can be left NULL or
empty, in which case the highest level configuration is selected.

TSPI function:

LONG TSPI_lineConfiqDialoq(dwDeviceID, hwndOwner, IpszDeviceClass)

dwDeviceID Specifies the line device to be configured.

hwndOwner Specifies a handle to a parent window in which the dialog window is to be placed

IpszDeviceClass Specifies a far pointer to a NULL-terminated string that identifies a device class
name. This device class allows the caller to select a specific subscreen of configuration information
applicable to that device class. If this parameter is NULL or an empty string, the highest level
configuration dialog should be selected. The permitted strings are the same as for TSPI_lineGetID.
For example, if the line supports the Comm API, passing "COMM" as IpszDeviceClass causes the
provider to display the parameters related specifically to Comm (or, at least, to start at the
corresponding point in a multilevel configuration dialog chain. so that the user doesn't have to
search to find the desired parameters.)

79



Computer Telephony Integration

IineDealiocateCall

This function deallocates the specified call handle.
The deallocation does not affect the call state of the physical call. It does, however, release internal
resources related to the call. If the application is the sole owner of a call and the call is not in the idle
state, LINEERR_INVALCALLSTATE is returned. In this case, the application can first drop the call
using lineDrop and deallocate its call handle afterwards. An application that has monitor privilege for a
call can always deallocate its handle for the call.

TAPI function:

LONG lineDeallocateCall(hCall)

hCall Specifies the call handle to be deallocated. An application with monitoring privileges for a call can
always deallocate its handle for that call. An application with owner privilege for a call can
deallocate its handle except when the application is the sole owner of the call and the call is not in
the idle state. The call handle is no longer valid after it has been deallocated.

TSPI function:

LONG TSPI_lineCloseCall(hdCall)

hdCall Specifies the service provider's handle to the call to be closed. After the call has been successfully
closed, this handle is no longer valid.

80



Appendix E. TAPI / TSPI interface specification

lineDevSpecific

This function is used as a general extension mechanism that enables service providers to provide access
to features not offered by other TAPI functions. The meaning of the extensions are device specific, and
taking advantage ofthese extensions requires the application to be fully aware ofthem.
This operation is part ofthe Extended Telephony services. It provides access to a device-specific feature
without defining its meaning. This operation is only available if the application has successfully
negotiated a device-specific extension version.
This function provides a generic parameter profile. The interpretation of the parameter structure is
device specific. Whether dwAddressID and/or hCall are expected to be valid is device-specific. If
specified, they must belong to hLine. Indications and replies sent back the application that are device
specific should use the LINE_DEVSPECIFIC message.
A service provider can provide access to device-specific functions by defining parameters for use with
this function. Applications that want to make use of these device-specific extensions should consuh the
device-specific (in this case meaning vendor specific) documentation that describes what extensions are
defined. An application that relies on these device-specific extensions will typically not be able to work
with other service provider environments.

TAPI function:

LONG lineDevSpecific(hLine, dwAddressID, hCall, lpParams, dwSize)

hLine Specifies a handle to a line device. This parameter is required.

dwAddressID Specifies an address ill on the given line device.

hCall Specifies a handle to a call. This parameter is optional, but if it is specified, the call it represents
must belong to the hLine line device.

lpParams Specifies a far pointer to a memory area used to hold a parameter block. The format of this
parameter block is device specific and its contents are passed by TAPLDLL to or from the service
provider.

dwSize The size in bytes of the parameter block area.

TSPI function:

LONG TSPI_lineDevSpecific(dwRequestID, hdLine, dwAddressID, hdCall,
lpParams, dwSize)

dwRequestID Specifies the identifier ofthe asynchronous request.

hdLine Specifies the service provider's handle to the line to be operated on.

dwAddressID Specifies the address on the specified line to be operated on.

hdCall Specifies the service provider's handle to the call to be operated on. This field may have the value
NULL.

1p Params Specifies a far pointer to a memory area used to hold a parameter block. The format of this
parameter block is device specific.

dwSi ze The size in bytes of the parameter block area.

81



Computer Telephony Integration

lineDevSpecificFealure

This function is used as an extension mechanism that enables service providers to provide access to
features not offered by other TAPI functions. The meaning of these extensions are device specific, and
taking advantage ofthese extensions requires the application to be fully aware ofthem.
This operation is part ofthe Extended Telephony services. It provides access to a device-specific feature
without defining its meaning. This operation is only available if the application has successfully
negotiated a device-specific extension version.
This function provides the application with phone feature-button emulation capabilities. When an
application invokes this operation, it specifies the equivalent of a button-press event. This method of
invoking features is device dependent, as TAPI does not define their meaning. Note that an application
that relies on these device-specific extensions will typically not work with other service provider
environments.
Note also that the structure pointed to by lpParams should not contain any pointers since they would
not be properly translated (thunked) when running a 16-bit application in a 32-bit version of TAPI.DLL
and vice versa.

TAPI function:

LONG lineDevSpecificFeature(hLine, dwFeature, lpParams, dwSize)

hLine Specifies a handle to the line device.

dwFeature Specifies the feature to invoke on the line device.

lpParams Specifies a far pointer to a memory area used to hold a feature-dependent parameter block. The
format of this parameter block is device specific and its contents are passed through by TAPI.DLL to
or from the service provider.

dwSize Specifies the size of the buffer in bytes.

TSPI function:

LONG TSPI_lineDevSpecificFeature(dwRequestID, hdLine, dwFeature, lpParams,
dwSize)

dwRequestID Specifies the identifier of the asynchronous request.

hdLine Specifies the service provider's handle to the line device.

dwFeature Specifies the feature to invoke on the line device.

lpParams Specifies a far pointer to a memory area used to hold a feature-dependent parameter block. The
format of this parameter block is device specific.

dwSize Specifies the size of the buffer in bytes.

82



Appendix E. TAPI/ TSPI interface specification

IineDial

This function dials the specified dialable number on the specified call.
The lineDial function is used for dialing on an existing call appearance. For example, after a call has
been set up for transfer or conference, a consultation call is automatically allocated, and the lineDial
function would be used to perfonn the dialing of this consultation call. Note that lineDial may be
invoked multiple times in the course of multi-stage dialing, if the line's device capabilities allows it.
Also, multiple addresses may be provided in a single dial string separated by CRLF. Service providers
that provide inverse multiplexing can establish individual physical calls with each of the addresses and
can return a single call handle to the aggregate of all calls to the application. All addresses would use
the same country code.
Dialing is considered complete after the address has been passed to the service provider; not after the
call is finally connected. Service providers that provide inverse muhiplexing may allow multiple
addresses to be provided at once. The service provider sends LINE_CALLSTATE messages to the
application to infonn it about the progress of the call. To abort a call attempt while a call is being
established, the invoking application should use lineDrop.

TAPI function:

LONG lineDial(hCall, lpszDestAddress, dWCountryCode)

hCall Specifies a handle to the call on which a number is to be dialed. The application must be an owner
of the call.

1 p s z De s tAddre s s Specifies the destination to be dialed using the standard dialable number format.

dWCountryCode Specifies the country code of the destination. This is used by the implementation to
select the call progress protocols for the destination address. If a value of zero is specified, a service
provider-defined default call progress protocol is used.

TSPI function:

LONG TSPI_lineDial(dwRequestID, hdCall, lpszDestAddress, dWCountryCode)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the service provider's handle to the call to be dialed.

lpszDestAddress Specifies the destination to be dialed using the standard dialable number format.

dWCountryCode Specifies the country code of the destination. This is used by the implementation to
select the call progress protocols for the destination address. If a value of zero is specified, a default
call-progress protocol defined by the service provider is used. Note that this parameter is not
validated by TAPLDLL when this function is called.

83



Computer Telephony Integration

IineDrop

This function drops or disconnects the specified call. The application has the option to specify user-to
user information to be transmitted as part ofthe call disconnect.
When invoking lineDrop, related calls may sometimes be affected as well. For example, dropping a
conference call may drop all individual participating calls. LINE_CALLSTATE messages are sent to
the application for all calls whose call state is affected. A dropped call typically transitions to the idle
state. Invoking lineDrop on a call in the offering state rejects the call. Not all telephone networks
provide this capability.
A call in the onholdpending state will typically revert to the connected state. When dropping the
consultation call to the third party for a conference call or when removing the third party in a previously
established conference call, the provider (and switch) may release the conference bridge and revert the
call back to a normal two-party call. If this is the case, hConjCall transitions to the idle state, and the
only remaining participating call will transition to the connected state. Some switches automatically
"unhold" the other call.
The application has the option to send user-to-user information at the time of the drop. Even ifuser-to
user information can be sent, there is no guarantee that the network will deliver this information to the
remote party.
Note that in various bridged or party-line configurations when multiple parties are on the call, IineDrop
may not actually clear the call.

TAPI function:

LONG lineDrop(hCall, IpsUserUserlnfo, dwSize)

hCall Specifies a handle to the call to be dropped. The application must be an owner of the call.

IpsUserUserlnfo Specifies a far pointer to a string containing user-to-user infonnation to be sent to the
remote party as part of the call disconnect. This pointer can be left NULL if no user-to-user
information is to be sent. User-to-user infonnation is only sent if supported by the underlying
network (see LINEDEVCAPS). The protocol discriminator field for the user-user infonnation, if
required, should appear as the first byte of the buffer pointed to by lpsUserUserlnfo, and must be
accounted for in dwSize.

dwSi ze Specifies the size in bytes of the user-to-user information in lpsUserUserlnfo. If lpsUserUserlnfo
is NULL, no user-to-user information is sent to the calling party and dwSize is ignored.

TSPI function:

LONG TSPI_lineDrop(dwRequestID, hdCall, IpsUserUserlnfo, dwSize)

dwRequestID Specifies the identifier ofthe asynchronous request.

hdCall Specifies the service provider's handle to the call to be dropped.

IpsUserUserlnfo This pointer is only valid if dwUserUserInfoSize is non-zero. It specifies a far
pointer to a string containing user-to-user infonnation to be sent to the remote party as part of the
call disconnect. This pointer is NULL if no user-to-user infonnation is to be sent. User-to-user
information is only sent if supported by the underlying network (see LINEDEVCAPS).

dwSi ze Specifies the size in bytes of the user-to-user infonnation in lpsUserUserlnfo. If lpsUserUserlnfo
is Null dwSize should be ignored.

84



Appendix E. TAPI/ TSPI interface specification

IineForward

This function forwards calls destined for the specified address on the specified line, according to the
specified forwarding instructions. When an originating address (dwAddressID) is forwarded, the
specified incoming calls for that address are deflected to the other number by the switch. This function
provides a combination of forward and do-not-disturb features. This function can also cancel
forwarding currently in effect.
A successful forwarding indicates only that the request has been accepted by the service provider, not
that forwarding is set up at the switch. A LINE_ADDRESSSTATE (forwarding) message provides
confirmation for forwarding having been set up at the switch.
Forwarding of the addressees) remains in effect until this function is called again. The most recent
forwarding list replaces the old one. Forwarding can be canceled by specifying a NULL pointer as
lpForwardList. If a NULL destination address is specified for an entry in the forwarding list, the
operation acts as a do-not-disturb.
Forwarding status of an address may also be affected externally; for example, by administrative actions
at the switch or by a user from another station. It may not be possible for the service provider to be
aware of this state change, and it may not be able to keep in synchronization with the forwarding state
known to the switch.
Since a service provider may not know the forwarding state of the address "for sure" (that is, it may
have been forwarded or unforwarded in an unknown way), lineForward will succeed unless it fails to
set the new forwarding instructions. In other words, a request that all forwarding be canceled at a time
that there is no forwarding in effect will be successful. This is because there is no "unforwarding"-you
can only change the previous set of forwarding instructions.
The success or failure of this operation does not depend on the previous set of forwarding instructions,
and the same is true when setting different forwarding instructions. The provider should "unforward
everything" prior to setting the new forwarding instructions. Since this may take time in analog
telephony environments, a provider may also want to compare the current forwarding with the new one,
and only issue instructions to the switch to get to the final state (leaving unchanged forwarding
unaffected).
Invoking lineForward when LINEFORWARDLIST has dwNumEntries set to zero has the same
effect as providing a NULL lpForwardList parameter. It cancels all forwarding currently in effect.

TAPI function:

LONG lineForward(hLine, bAllAddresses, dwAddressID, lpForwardList,
dwNumRingsNoAnswer, lphConsultCall, lpCallParams)

hLine Specifies a handle to the line device.

bAllAddresses Specifies whether all originating addresses on the line or just the one specified is to be
forwarded. IflRUE, all addresses on the line are forwarded and dwAddressID is ignored; if FALSE,
only the address specified as dwAddressID is forwarded.

dwAddressID Specifies the address on the specified line whose incoming calls are to be forwarded. This
parameter is ignored ifhAl/Addresses is lRUE.

lpForwardList Specifies a far pointer to a variably sized data structure that describes the specific
forwarding instructions, of type LINEFORWARDLIST.

dwNumRingsNoAnswer Specifies the number of rings before a call is considered a "no answer." If
dwNumRingsNoAnswer is out of range, the actual value is set to the nearest value in the allowable
range.

/phConsu/tCal/ Specifies a far pointer to an HCALL location. In some telephony environments, this location
is loaded with a handle to a consultation call that is used to consult the party that is being forwarded
to, and the application becomes the initial sole owner of this call. This pointer must be valid even in
environments where call forwarding does not require a consultation call. This handle will be set to
NULL ifno consultation call is created.

85



Computer Telephony Integration

lpCallParams Specifies a far pointer to a structure of type LINECALLPARAMS. This pointer is
ignored unless IineFonvard requires the establishment of a call to the forwarding destination (and
/phConsu/tCa// is returned, in which case /pCa//Params is optional). If NULL, default call
parameters are used. Otherwise, the specified call parameters are used for establishing hConsu/tCa//.

TSPI function:

LONG TSPI lineForward(dwRequestID, hdLine, bAllAddresses, dwAddressID,
lpForwardList, dwNumRingsNoAnswer, htConsultCall, lphdConsultCall,
lpCallParams)

dwRequestID Specifies the identifier of the asynchronous request.

hdLine Specifies the service provider's handle to the line to be forwarded

bAllAddresses Specifies whether all originating addresses on the line or just the one specified is to be
forwarded. IfTRUE, all addresses on the line are forwarded and dwAddressID is ignored; ifFALSE,
only the address specified as dwAddressID is forwarded. Note that this parameter is not validated by
TAPI.DLL when this function is called.

dwAddressID Specifies the address on the specified line whose incoming calls are to be forwarded. This
parameter is ignored if bA/lAddresses is TRUE. Note that this parameter is not validated by
TAPI.DLL when this function is called.

lpForwardList Specifies a far pointer to a variably sized data structure of type LINEFORWARDLIST
that describes the specific forwarding instructions.

dwNumRingsNoAnswer Specifies the number of rings before an incoming call is considered a "no
answer." If dwNumRingsNoAnswer is out of range, the actual value is set to the nearest value in the
allowable range. Note that this parameter is not validated by TAPI.DLL when this function is called.

htConsul tCall Specifies TAPI.DLL's handle to a new call, if such a call must be created by the service
provider. In some telephony environments, forwarding a call has the side effect of creating a
consultation call used to consult the party that is being forwarded to. In such an environment, the
service provider creates the new consutation call and must save this value and use it in all subsequent
calls to the LINEEVENT procedure reporting events on the call. If no consultation call is created,
this value can be ignored by the service provider.

lphdConsul tCall Specifies a far pointer to an HDRVCALL representing the service provider's
identifier for the call. In telephony environments where forwarding a call has the side effect of
creating a consultation call used to consult the party that is being forwarded to, the service provider
must fill this location with its handle for the call before this procedure returns. The service provider
is permitted to do callbacks regarding the new call before it returns from this procedure. If no
consultation call is created, the HDRVCALL must be left NULL.

lpCallParams Specifies a far pointer to a structure of type LINECALLPARAMS. This pointer is
ignored by the service provider unless IineFonvard requires the establishment of a call to the
forwarding destination (and /phdConsu/tCa// is returned, in which case /pCa//Params is optional). If
NULL, default call parameters are used. Otherwise, the specified call parameters are used for
establishing htConsu/tCa//.

86



Appendix E. TAPI/ TSPI interface specification

IineGatherDigits

This function initiates the buffered gathering of digits on the specified call. The application specifies a
buffer in which to place the digits and the maximum number of digits to be collected.
Digit collection is terminated when the requested number of digits has been collected. It is also
terminated when one of the digits detected matches a digit in szTerminationDigits before the specified
number of digits has been collected. The detected termination digit is also placed in the buffer and the
partial buffer is returned.
Another way of cancelling digit collection is when one of the timeouts expires. The
dwFirstDigitTimeout expires if the first digit is not received in this time period. The
dwlnterDigitTimout expires if the second, third, (and so forth) digit is not received within that time
period from the previously detected digit, and a partial buffer is returned. A fourth method for
tenninating digit detection is by calling this function again while collection is in progress. The old
collection session is terminated and the contents of the old buffer is undefined. The mechanism for
terminating digit gathering without initiating another function is by invoking this function with IpsDigits
equal to NULL.
This function is considered successful if digit collection has been correctly initiated, not when digit
collection has terminated. In all cases where a partial buffer is returned, valid digits (if any) are
followed by an ASCII NULL character.
The message LINE_GATHERDIGITS is sent only to the application that initiated the request. It is
also sent when partial buffers are returned because oftimeouts or matching termination digits, or when
the request is canceled by another lineGatherDigits request on the call. Only one gather-digits request
can be active on a call at any given time across all applications that are owners ofthe call.
An application can use lineMonitorDigits to enable or disable unbuffered digit detection. Each time a
digit is detected in this fashion, a LINE_MONITORDIGITS message is sent to the application. Both
buffered and unbuffered digit detection can be enabled for the same call simultaneously.

TAPI function:

LONG lineGatherDiqits(hCall, dwDigitModes, IpsDigits, dwNumDigits,
IpszTerminationDigits, dwFirstDigitTimeollt, dwlnterDigitTimeolltl

hCall Specifies a handle to the calIon which digits are to be gathered. The application must be an owner
of the call.

dwDigi tModes Specifies the digit mode(s) to be monitored. Note that dwDigitModes is allowed to have
one or more flags set. This parameter uses the following LINEDIGITMODE_ constants: PULSE
detect digits as audible clicks that are the result of the use of rotary pulse sequences. Valid digits for
pulse mode are '0' through '9'; DTMF detect digits as DTMF tones. Valid digits for DTMF mode
are '0' through '9', 'A', 'B', 'C', 'D', '*', '#'.

IpsDigits Specifies a far pointer to the buffer where detected digits are to be stored as ASCII characters.
Digits may not show up in the buffer one at a time as they are collected. Only after a
LINE_GATHERDIGITS message is received should the content of the buffer be assumed to be
valid. If /psDigits is NULL, the digit gathering currently in progress on the call is terminated and
dwNumDigits is ignored. Otherwise, /psDigits is assumed to have room for dwNumDigits digits.

dwNumDigits Specifies the number of digits to be collected before a LINE_GATHERDIGITS message
is sent to the application. The dwNumDigits parameter is ignored when /psDigits is NULL. This
function fails ifdwNumDigits is zero.

IpszTerminationDigits Specifies a NULL-terminated string of termination digits as ASCII
characters. If one of the digits in the string is detected, that termination digit is appended to the
buffer, digit collection is terminated, and the LINE_GATHERDIGITS message is sent to the
application. Valid characters for pulse mode are '0' through '9'. Valid characters for DTMF mode
are '0' through '9', 'A', 'B', 'C', 'D', '*', '#'. If this pointer is NULL, or if it points to an empty
string, the function behaves as though no termination digits were supplied

87



Computer Telephony Integration

dwFirstDigi tTimeout Specifies the time duration in milliseconds in which the first digit is expected.
If the first digit is not received in this timeframe, digit collection is aborted and a
LINE_GATHERDIGITS message is sent to the application. The buffer only contains the NULL
character, indicating that no digits were received and the first digit timeout tenninated digit
gathering. The call's line-device capabilities specifies the valid range for this parameter or indicates
that timeouts are not supported.

dwlnterDigi tTimeout Specifies the maximum time duration in milliseconds between consecutive
digits. If no digit is received in this timeframe, digit collection is aborted and a
LINE_GATHERDIGITS message is sent to the application. The buffer only contains the digits
collected up to this point followed by a NULL character, indicating that an interdigit timeout
tenninated digit gathering. The call's line-device capabilities specifies the valid range for this
parameter or indicates that timeouts are not supported.

TSPI function:

LONG TSPI lineGatherDiqits(hdCall, dwEndToEndID, dwDigitModes, lpsDigits,
dwNuIDDigits, lpszTerminationDigits, dwFirstDigitTimeout,
dwlnterDigitTimeout)

hdCall Specifies the service provider's handle to the calion which digit gathering is to be performed.

dWEndToEndID Specifies a unique, uninterpreted identifier of the request for its entire lifetime, that is,
until the matching LINE_GATHERDIGITS message is sent. The service provider includes this
identifier as one of the parameters in the message.

dwDigi tModes Specifies the digit mode(s) that are to be monitored.

lpsDigits Specifies a far pointer to the buffer where detected digits are to be stored as ASCII characters.
The service provider may, but is not required to, place digits in the buffer one at a time as they are
collected. When the LINE_GAmERDIGITS message is sent, the content of the buffer must be
complete. If IpsDigits is specified as NULL the digit gathering currently in progress on the call is
canceled and the dwNumDigits parameter is ignored. Otherwise, IpsDigits is assumed to have room
for dwNumDigits digits.

dwNumDigi ts Specifies the number of digits to be collected before a LINE_GATHERDIGITS message
is sent to TAPI.DLL. dwNumDigits is ignored when IpsDigits is NULL. This function must return a
LINEERR_INVALPARAM if dwNumDigits is zero.

lps zTerminationDigi ts Specifies a NULL-tenninated string of tennination digits as ASCII
characters. If one of the digits in the string is detected, that tennination digit is appended to the
buffer, digit collection is tenninated and the LINE_GATHERDIGITS message is sent to
TAPI.DLL.

dwFirstDigi tTimeout Specifies the time duration in milliseconds in which the first digit is expected
If the first digit is not received in this timeframe, digit collection is tenninated and a
LINE_GAmERDIGITS message is sent to TAPI.DLL. A single NULL character is written to the
buffer, indicating no digits were received and the first digit timeout tenninated digit gathering. The
call's line device capabilities specifies the valid range for this parameter or indicates that timeouts
are not supported. Note that this parameter is not validated by TAPI.DLL when this function is
called.

dwlnterDigi tTimeout Specifies the maximum time duration in milliseconds between consecutive
digits. If no digit is received in this timeframe, digit collection is tenninated and a
LINE_GATHERDIGITS message is sent to TAPI.DLL. A single NULL character is written to the
buffer, indicating that an interdigit timeout tenninated digit gathering. The LINEDEVCAPS
structure must specify the the valid range for this parameter or indicate that timeouts are not
supported. Note that this parameter is not validated by TAPI.DLL when this function is called.

88



Appendix E. TAPI I TSPI interface specification

IineGenerateDigits

This function initiates the generation of the specified digits on the specified call as inband tones using
the specified signaling mode. Invoking this function with a NULL value for lpszDigits aborts any digit
generation currently in progress. Invoking lineGenerateDigits or lineGenerateTone while digit
generation is in progress aborts the current digit generation or tone generation and initiates the
generation ofthe most recently specified digits or tone.
The lineGenerateDigits function is considered to have completed successfully when the digit generation
has been successfully initiated, not when all digits have been generated. In contrast to lineDial, which
dials digits in a network-dependent fashion, lineGenerateDigits guarantees to produce the digits as
inband tones over the voice channel using DTMF or hookswitch dial pulses when using pulse. The
lineGenerateDigits function is generally not suitable for making calls or dialing. It is intended for end
to-end signaling over an established call.
After all digits in lpszDigits have been generated, or after digit generation has been aborted or canceled,
a LINE_GENERATE message is sent to the application.
To cancel the current digit generation, the application can invoke lineGenerateDigits and specify
NULL for the lpszDigits parameter.

TAPI function:

LONG lineGenerateDiqits(hCall, dwDigitMode, lpszDigits, dwDuration)

hCall Specifies a handle to the call. The application must be an owner of the call.

dwDigi tMode Indicates the format to be used for signaling these digits. Note that dwDigitMode is
allowed to have only a single flag set. This parameter uses the following LINEDIGITMODE_
constants: PULSE uses pulse/rotary for digit signaling; DTMF uses DTMF tone signaling.

lpszDigits Specifies a far pointer to a NULL-terminated character buffer that contains the digits to be
generated. Valid characters for pulse mode are '0' through '9' and ',' (comma). Valid characters for
DTMF mode are '0' through '9', 'A', 'B', 'C', 'D', '*', '#', and ',' (comma). A comma injects an
extra delay between the signaling of the previous and next digits it separates. The duration of this
pause is configuration defined, and the line's device capabilities indicates what this duration is.
Multiple commas may be used to inject longer pauses.

dwDuration Specifies both the duration in milliseconds ofDTMF digits and pulse and DTMF inter-digit
spacing. A value of zero will use a default value. The dwDuration parameter must be within the
range specified by MinDiaIParams and MaxDiaIParams in LINEDEVCAPS. If out of range, the
actual value is set to the nearest value in the range.

TSPI function:

LONG TSPI_lineGenerateDiqits(hdCall, dwEndToEndID, dwDigitMode, lpszDigits,
dwDuration)

hdCall Specifies the handle to the call on which digit generation is to be done.

dwEndToEndID This unique request ill should be stored by the service provider and passed back as
dwParam2 to the LINEEVENT procedure when the digit generation is completed.

dwDigi tMode Indicates the format to be used for signaling these digits.

lpszDigits Specifies a far pointer to a NULL terminated character buffer that contains the digits to be
generated..

dwDura tion Specifies both the duration in milliseconds of DTMF digits and pulse and DTMF inter-digit
spacing. A value of zero will use a default value. dwDuration must be within the range specified by
MinDialParams to MaxDialParams in LINEDEVCAPS. If out of range, the actual value is set by
the service provider to the nearest value in the range. Note that this parameter is not validated by
TAPLDLL when this function is called.

89



Computer Telephony Integration

IineGenerateTone

This function generates the specified inband tone over the specified call. Invoking this function with a
zero for dwToneMode aborts the tone generation currently in progress on the specified call. Invoking
lineGenerateTone or lineGenerateDigits while tone generation is in progress aborts the current tone
generation or digit generation and initiates the generation ofthe newly specified tone or digits.
lineGenerateTone is considered to have completed successfully when the tone generation has been
successfully initiated, not when the generation of the tone is done. The function allows the inband
generation of several predefined tones, such as ring back, busy tones, and beep. It also allows for the
fabrication of custom tones by specifying their component frequencies, cadence and volume. Since these
tones are generated as inband tones, the call would typically have to be in the connected state for tone
generation to be effective. When the generation of the tone is complete, or when tone generation is
canceled, aLINE_GENERATE message is sent to the application.

TAPI function:

LONG lineGenerateTone(hCall, dwToneMode, dwDuration, dwNumTones, lpTones)

hCall Specifies a handle to the calion which a tone is to be generated. The application must be an owner
of the call.

dwToneMode Defines the tone to be generated Tones can be either standard or custom. A custom tone is
composed of a set of arbitrary frequencies. A small number of standard tones are predefined. The
duration of the tone is specified with dwDuration for both standard and custom tones. Note that
dwToneMode can only have one bit set. If no bits are set (the value 0 is passed), tone generation is
cancelled. This parameter uses the following LINETONEMODE_ constants: CUSTOM, defined by
the specified frequencies; RINGBACK; BUSY; BEEP; BILLING. A value of zero for dwToneMode
cancels tone generation.

dwDura tion Specifies duration in milliseconds during which the tone should be sustained. A value of
zero for dwDuration uses a default duration for the specified tone.

dwNumTones Specifies the number of entries in the IpTones array. This field is ignored if dwToneMode is
not equal to CUSTOM.

lpTones Specifies a far pointer to a LINEGENERATETONE array that specifies the tone's components.
This parameter is ignored for non-custom tones. If IpTones is a multi-frequency tone, the various
tones are played simultaneously.

TSPI function:

LONG TSPI_lineGenerateTone(hdCall, dwEndToEndID, dwToneMode, dwDuration, dwNumTones,
IpTones)

hdCall Specifies the service provider's handle to the call on which tone generation is to be performed.

dwEndToEndI D Specifies a unique, uninterpreted identifier of the request for its entire lifetime, that is,
until the matching LINE_GENERATE message is sent. The service provider includes this identifier
as one of the parameters in the message.

dwToneMode Defines the tone to be generated. If dwToneMode is set to zero, any digit or tone generation
then in progress is cancelled.

dwDura tion Specifies the duration in milliseconds during which the tone should be sustained. A value of
zero for dwDuration uses a default duration for the specified tone. Note that this parameter is not
validated by TAPLDLL when this function is called.

dwNumTones Specifies the number of entries in the IpTones array. This field is ignored if dwToneMode is
not equal to LINETONEMODE_CUSTOM.

lpTones Specifies a far pointer to a LINEGENERATETONE array that specifies the tone's components.
This parameter is ignored for non-eustom tones. If IpTones is a multi-frequency tone, the various
tones are played simultaneously.

90



Appendix E. TAPI I TSPI interface specification

lineGetAddressCaps

This function queries the specified address on the specified line device to detennine its telephony
capabilities.
Valid address IDs range from zero to one less than the number of addresses returned by
IineGetDevCaps. The version number to be supplied is the version number that was returned as part of
the line's device capabilities by lineGetDevCaps.

TAPI function:

LONG lineGetAddressCaps(hLineApp, dwDeviceID, dwAddressID, dwAPIVersion,
dwExtVersion, lpAddressCapsl

hLineApp Specifies the handle to the application's registration with TAPI.

dwDeviceID Specifies the line device containing the address to be queried.

dwAddressID Specifies the address on the given line device whose capabilities are to be queried.

dwAPIVersion Specifies the version number of the Telephony API to be used. The high-order word
contains the major version number; the low-order word contains the minor version number.

dwExtVersion Specifies the version number of the service provider-specific extensions to be used This
number can be left zero if no device-specific extensions are to be used. Otherwise, the high-order
word contains the major version number; the low-order word contain the minor version number.

lpAddressCaps Specifies a far pointer to a variably sized structure of type LINEADDRESSCAPS.
Upon successful completion of the request, this structure is ftlled with address capabilities
information. Prior to calling IineGetAddressCaps, the application should set the dwTotalSize field
of this structure to indicate the amount of memory available to TAPI.DLL for returning information.

TSPI function:

LONG TSPI_lineGetAddressCaps(dwDeviceID, dwAddressID, dwTSPIVersion,
dwExtVersion, lpAddressCapsl

dwDeviceID Specifies the line device containing the address to be queried.

dwAddressID Specifies the address on the given line device whose capabilities are to be queried. Note
that this parameter is not validated by TAPI.DLL when this function is called

dwTSPIVersion Specifies the version number of the Telephony SPI to be used The high-order word
contains the major version number; the low-order word contains the minor version number.

dwExtVersion Specifies the version number of the service provider-specific extensions to be used. This
number will be zero if no device-specific extensions are to be used. Otherwise, the high-order word
contains the major version number; the low-order word contain the minor version number. Note that
this parameter is not validated by TAPI.DLL when this function is called

lpAddressCaps Specifies a far pointer to a variably sized structure of type LINEADDRESSCAPS.
Upon successful completion of the request, this structure is filled with address capabilities
information.

91



Computer Telephony Integration

IineGetAddresslD

This operation returns the address ID associated with an address in a different format on the specified
line.
This function is used to map a phone number (address) assigned to a line device back to its
dwAddressID in the range 0 to the number of addresses minus one returned in the line's device
capabilities. The lineMakeCall function allows the application to make a call by specifying a line
handle and an address on the line. The address can be specified as a dwAddressID, as a phone number,
or as a device-specific name or identifier. Using a phone number may be practical in environments
where a single line is assigned muhiple addresses. Note that LINEADDRESSMODE_ADDRESSID
may not be used with lineGetAddressID.

TAPI function:
LONG lineGetAddressID(hLine, IpdwAddressID, dwAddressMode, IpsAddress,

dwSize)

hLine Specifies a handle to the open line device.
IpdwAddressID Specifies a far pointer to a DWORD-sized memory location where the address ID is
returned.
dwAddressMode Specifies the address mode of the address contained in IpsAddress. The
dwAddressMode parameter is allowed to have only a single flag set. This parameter uses the following
LINEADDRESSMODE_ constants: DIALABLEADDR the address is specified by its dialable address.
The IpsAddress parameter is the dialable address or canonical address format.
IpsAddress Specifies a far pointer to a data structure holding the address assigned to the specified
line device. The format of the address is determined by dwAddressMode. Since the only valid value is
DIALABLEADDR, IpsAddress uses the common dialable number format and is NULL-terminated.
dwSize Specifies the size ofthe address contained in IpsAddress.

TSPI function:

LONG TSPI_lineGetAddressID(hdLine, IpdwAddressID, dwAddressMode,
IpsAddress, dwSize)

hdLine Specifies the service provider's handle to the line whose address is to be retrieved.

IpdwAddressID Specifies a far pointer to a DWORD-sized memory location where the address ill is
returned.

dwAddressMode Specifies the address mode of the address contained in IpsAddress.

IpsAddress Specifies a far pointer to a data structure holding the address assigned to the specified line
device. The format of the address is determined by dwAddressMode parameter.

dwSize Specifies the size of the address contained in IpsAddress. The parameter dwSize must be set to the
length of the string (plus one for the NULL) if DIALABLEADDR is used. If an extended
LINEADDRESSMODE is used, the length should match the size of whatever is actually passed in
(the DLL checks to be sure it can read the number of bytes specified from the pointer given).

92



Appendix E. TAPI I TSPI interface specification

lineGetAddressStatus

This operation allows an application to query the specified address for its current status.

TAPI function:

LONG lineGetAddressStatus(hLine, dwAddressID, IpAddressStatus)

hLine Specifies a handle to the open line device.

dwAddressID S~ifiesan address on the given open line device. This is the address to be queried.

IpAddressStatus Specifies a far pointer to a variably sized data structure of type

LINEADDRESSSTATUS. Prior to calling IineGetAddressStatus, the application should set the
dwTotalSize field of this structure to indicate the amount of memory available to TAPLDLL for
returning information.

TSPI function:

LONG TSPI_lineGetAddressStatus(hdLine, dwAddressID, IpAddressStatus)

hdLine Specifies the service provider's handle to the line containing the address to be queried.

dwAddressID Specifies an address on the given open line device. This is the address to be queried. Note
that this parameter is not validated by TAPLDLL when this function is called

IpAddressStatus Specifies a far pointer to a variably sized data structure of type LINEADDRESS
STATUS.

IineGetCallinfo

This operation enables an application to obtain fixed infonnation about the specified call.
A separate LINECALLINFO structure exists for every inbound or outbound call. The structure
contains primarily fixed infonnation about the call. An application would typically be interested in
checking this infonnation when it receives its handle for a call by the LINE_CALLSTATE message,
or each time it receives notification by a LINE_CALLINFO message that parts of the call infonnation
structure have changed. These messages supply the handle for the call as a parameter.

TAPI function:

LONG lineGetCallInfo(hCall, IpCalllnfo)

hCall Specifies a handle to the call to be queried.

IpCallInfo Specifies a far pointer to a variably sized data structure of type LINECALLINFO. Upon
successful completion of the request, this structure is filled with call-related information. Prior to
calling IineGetCallInfo, the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPLDLL for returning information.

TSPI function:

LONG TSPI_lineGetCallInfo(hdCall, IpCalllnfo)

hdCall Specifies the service provider's handle to the call whose call information is to be retrieved.

IpCalllnfo Specifies a far pointer to a variably sized data structure of type LINECALLINFO. Upon
successful completion of the request, this structure is filled with call-related information.

93



Computer Telephony Integration

IineGetCaliStatus

This operation returns the current status of the specified call. The lineGetCailStatus function returns
the dynamic status of a call, whereas lineGetCailInfo returns primarily static information about a call.
Call status information includes the current call state, detailed mode information related to the call while
in this state (if any), as well as a list of the available API functions the application can invoke on the
call while the call is in this state. An application would typically be interested in requesting this
information when it receives notification about a call state change by the LINE_CALLSTATE
message.

TAPI function:

LONG lineGetCallStatus(hCall, lpCallStatus)

hCall Specifies a handle to the call to be queried.

lpCallStatus Specifies a far pointer to a variably sized data structure of type LINECALLSTATUS.
Upon successful completion of the request, this structure is filled with call status information. Prior
to calling lineGetCailStatus, the application should set the dwTotaiSize field of this structure to
indicate the amount of memory available to TAPI.DLL for returning information.

TSPI function:

LONG TSPI_lineGetCallStatus(hdCall, lpCallStatus)

hdCall Specifies the service provider's handle to the call to be queried for its status.

lpCallStatus Specifies a far pointer to a variably sized data structure of type LINECALLSTATUS.
This structure is filled with call status information.

lineGetConfRelatedCalls

This operation returns a list ofcall handles that are part ofthe same conference call as the specified call.
The specified call is either a conference call or a participant call in a conference call. New handles are
generated for those calls for which the application does not already have handles, and the application is
granted monitor privilege to those calls.
The specified call can either be a conference call handle or a handle to a participant call. The first entry
in the list that is returned is the conference call handle, the other handles are all the participant calls.
The specified call is always one ofthe calls returned in the list. Calls in the list to which the application
does not already have a call handle are assigned monitor privilege; privileges to calls for which the
application already has handles are unchanged. The application can use lineSetCailPrivilege to change
the privilege of the call. The application can invoke lineGetCailInfo and lineGetCailStatus for each
call in the list to determine the call's information and status, respectively.

TAPI function:
LONG lineGetConfRelatedCalls(hCall, lpCallList)

hCall Specifies a handle to a call. This is either a conference call or a participant call in a conference call.

lpCallList Specifies a far pointer to a variably sized data structure of type LINECALLLIST. Upon
successful completion of the request, call handles to all calls in the conference call are returned in
this structure. The first call in the list is the conference call, the other calls are the participant calls.

TSPI function:

None. The function is handled entirely within TAPI.DLL.

94



Appendix E. TAPI I TSPI interface specification

IineGetDevCaps

This function queries a specified line device to detennine its telephony capabilities. The returned
information is valid for all addresses on the line device.
Before using lineGetDevCaps, the application must negotiate the API version number to use, and, if
desired, the extension version to use.
The API and extension version numbers are those under which TAPI.DLL and the service provider
must operate. If version ranges do not overlap, the application, API, or service-provider versions are
incompatible and an error is returned.
One of the fields in the LINEDEVCAPS structure returned by this function contains the number of
addresses assigned to the specified line device. The actual address IDs used to reference individual
addresses vary from zero to one less than the returned number. The capabilities of each address may be
different. Use lineGetAddressCaps for each available <dwDeviceID, dwAddressID> combination to
detennine the exact capabilities of each address.

TAPI function:

LONG lineGetDevCaps(hLineApp, dwDeviceID, dwAPIVersion, dwExtVersion,
IpLineDevCaps)

hLineApp Specifies the handle to the application's registration with TAPI.

dwDeviceID Specifies the line device to be queried.

dwAPIVersion Specifies the version number of the Telephony API to be used The high-order word
contains the major version number; the low-order word contains the minor version number. This
number is obtained by lineNegotiateAPIVersion.

dwExtVersion Specifies the version number of the service provider-specific extensions to be used. This
number is obtained by lineNegotiateExtVersion. It can be left zero if no device-specific extensions
are to be used Otherwise, the high-order word contains the major version number; the low-order
word contains the minor version number.

IpLineDevCaps Specifies a far pointer to a variably sized structure of type LINEDEVCAPS. Upon
successful completion of the request, this structure is filled with line device capabilities information.
Prior to calling lineGetDevCaps, the application should set the dwTotalSize field of this structure to
indicate the amount of memory available to TAPI.DLL for returning information.

TSPI function:

LONG TSPI_lineGetDevCaps(dwDeviceID, dwTSPIVersion, dwExtVersion,
IpLineDevCaps)

dwDeviceID Specifies the line device to be queried

dwTSPIVersion Specifies the negotiated TSPI version number. This value has already been negotiated
for this device through the TSPI_lineNegotiateTSPIVersion function.

dwExtVersion Specifies the negotiated extension version number. This value has already been
negotiated for this device through the TSPI_lineNegotiateExtVersion function. Note that this
parameter is not validated by TAPI.DLL when this function is called

IpLineDevCaps Specifies a far pointer to a variably sized structure of type LINEDEVCAPS. Upon
successful completion of the request, this structure is filled with line device capabilities information.

95



Computer Telephony Integration

lineGetDevConfig

This function returns an "opaque" data structure object the contents of which are specific to the line
(service provider) and device class. The data structure object stores the current configuration of a
media-stream device associated with the line device.
This function can be used to retrieve a data structure from TAPI that specifies the configuration of a
media stream device associated with a particular line device. For example, the contents of this structure
could specify data rate, character format, modulation schemes, and error control protocol settings for a
"datamodem" media device associated with the line.
Typically, an application will call1ineGetlD to identify the media stream device associated with a line,
and then call lineConfigDialog to allow the user to set up the device configuration. It could then call
lineGetDevConfig, and save the configuration information in a phone book (or other database)
associated with a particular call destination. When the user later wishes to call the same destination
again, lineSetDevConfig can be used to restore the configuration settings selected by the user. The
functions lineSetDevConfig, lineConfigDialog, and lineGetDevConfig can be used, in that order, to
allow the user to view and update the settings.
The exact format ofthe data contained within the structure is specific to the line and media stream API
(device class), is undocumented, and is undefined. The structure returned by this function cannot be
directly accessed or manipulated by the application, but can only be stored intact and later used in
lineSetDevConfig to restore the settings. The structure also cannot necessarily be passed to other
devices, even ofthe same device class (although this may work in some instances, it is not guaranteed).

TAPI function:

LONG lineGetDevConfiq (dwDeviceID, lpDeviceConfig, lpszDeviceClass)

dwDeviceID Specifies the line device to be configured.

1pDevi ceConfig Specifies a far pointer to the memory location of type VARSTRING where the device
configuration structure is returned. Upon successful completion of the request, this location is filled
with the device configuration. The dwStringFormat field in the VARSTRING structure will be set
to STRINGFORMAT_BINARY. Prior to calling IineGetDevConfig, the application should set the
dwTotaiSize field of this structure to indicate the amount of memory available to TAPLDLL for
returning information.

lpszDeviceClass Specifies a far pointer to a NULL-terminated ASCII string that specifies the device
class of the device whose configuration is requested. Valid device class lineGetID strings are the
same as those specified for the function.

TSPI function:

LONG TSPI_lineGetDevConfiq (dwDeviceID, lpDeviceConfig, lpszDeviceClass)

dwDeviceID Specifies the line device to be configured.

lpDeviceConfig Specifies a far pointer to a data structure of type VARSTRING where the device
configuration structure of the associated device is returned. Upon successful completion of the
request, the service provider fills this data structure with the device configuration. The
dwStringFormat field in the VARSTRING structure must be set to STRINGFORMAT_BINARY.

lpszDeviceClass Specifies a far pointer to a NULL-terminated ASCII string that specifies the device
class of the device whose configuration is requested. Valid device class strings are the same as those
specified for the TSPI_lineGetID function when it is applied to a "line" device (dwSelect has the
value LINE).

96



Appendix E. TAPI I TSPI interface specification

lineGetlcon

This function allows an application to retrieve a service line device-specific (or provider-specific) icon
for display to the user.
The lineGetIcon function causes the provider to return a handle (in lphIcon) to an icon resource
(obtained from Loadlcon) that is associated with the specified line. The icon handle is for a resource
associated with the provider. The application must use Copylcon if it wishes to reference the icon after
the provider is unloaded, which is unlikely to happen as long as the application has the line open.
IpszDeviceClass allows the provider to return different icons based on the type of service being
referenced by the caller. The permitted strings are the same as for lineGetID. For example, if the line
supports the Comm API, passing "COMM" as lpszDeviceClass causes the provider to return an icon
related specifically to the Comm device functions ofthe service provider.
The parameters 'lapilline", "a", or NULL may be used to request the icon for the line service. If the
provider does not return an icon, TAPI.DLL substitutes a generic Windows Telephony line device icon.

TAPI function:
LONG lineGetlcon(dwDeviceID, lpszDeviceClass, lphIcon)

dWDevi ce I D Specifies the line device whose icon is requested.

lpszDeviceClass Specifies a far pointer to a NULL-terminated string that identifies a device class
name. This device class allows the application to select a specific su~icon applicable to that device
class. This parameter is optional and can be left NULL or empty, in which case the highest-level icon
associated with the line device rather than a specified media stream device would be selected.

lphIcon Specifies a far pointer to a memory location in which the handle to the icon is returned.

TSPI function:

LONG TSPI_lineGetlcon(dwDeviceID, lpszDeviceClass, lphIcon)

dwDeviceID Specifies the line device whose icon is requested.

lpszDeviceClass Specifies a far pointer to a NULL-terminated string that identifies a device class
name. This device class allows the caller to select an icon specific to that device class. This
parameter is optional and can be left NULL, in which case the highest level icon associated with the
line device rather than a specified media stream device would be selected Permitted strings are the
same as for TSPI_lineGetID. For example, if the line supports the Comm API, passing "COMM" as
/pszDeviceClass causes the provider to return an icon related specifically to the Comm device
functions of the service provider.

lphI con Specifies a far pointer to a memory location in which the handle to the icon is returned.

97



Computer Telephony Integration

IineGetlD

This function returns a device ID for the specified device class associated with the selected line, address,
or call.
This function can be used to retrieve a line-device ID when given a line handle. This is useful after a line
device has been opened using LINEMAPPER as a device ID in order to detennine the real line-device
ID ofthe opened line. This function can also be used to obtain the device ID of a phone device or media
device (for device classes such as COM, wave, MIDI, phone, line, mciwave, or NDIS) associated with a
call, address or line. This ID can then be used with the appropriate API (such as phone, mci, midi,
wave) to select the corresponding media device associated with the specified call.
Note that the notion ofa Windows device class is different from that of a media mode. For example, the
interactive voice or stored voice media modes may be accessed using either the mci waveaudio or the
low level wave device classes. A media mode describes a format of information on a call, and a device
class defines a Windows API that is used to manage that stream. Often, a single media stream may be
accessed using multiple device classes, or a single device class (such as the one corresponding to the
Windows Comm API) may provide access to multiple media modes.
Some common device class names that are currently used are listed below. The first portion of a name
identifies the "API" used to manage the device class, and the second portion is typically used to identify
a specific device type extension or subset ofthe overall API. Names are not case sensitive:

Device Description

COmm generic serial-device API; comm port
commldatamodem reserved for use in a future version of Microsoft Windows
wave low-level waveaudio
mci/midi high-level midi sequencer
mci/wave high-level wave device control
tapilline TAPI line device
tapi/phone TAPI phone device
ndis network driver interface

In the future, there may be additional extensions to the Comm API, possibly to handle fax, ADSI, TDD,
and other special data modes. These will be added once they are defined.
A vendor that defines a device-specific media mode also needs to define the corresponding device
specific (proprietary) API to manage devices of the media mode. To avoid collisions on device class
names assigned independently by different vendors, a vendor should select a name that uniquely
identifies both the vendor and, following it, the media type. For example: "inteVvideo".

TAPI function:

LONG lineGetID(hLine, dwAddressID, hCall, dWSelect, lpDeviceID,
lpszDeviceClass)

hLine Specifies a handle to an open line device.

dwAddressID Specifies an address on the given open line device.

hCall Specifies a handle to a call.

dwSelect Specifies whether the requested device ill is associated with the line, address or a single call.
The dwSe/ect parameter can only have a single flag set. This parameter uses the following
LINECALLSELECT_ constants: LINE selects the specified line device. The hLine parameter must
be a valid line handle; hCa// and dwAddresslD are ignored; ADDRESS selects the specified address
on the line. Both hLine and dwAddresslD must be valid; hCa// is ignored; CALL selects the specified
call. hCa// must be valid; hLine and dwAddresslD are both ignored.

98



Appendix E. TAPI I TSPI interface specification

IpDeviceID Specifies a far pointer to a memory location of type VARSTRING, where the device ill is
returned Upon successful completion of the request, this location is filled with the device ill. The
format of the returned information depends on the method used by the device class API for naming
devices. Prior to calling lineGetlD, the application should set the dwTotaISize field of this structure
to indicate the amount of memory available to TAPLDLL for returning information.

IpszDeviceClass Specifies a far pointer to a NULL-terminated ASCII string that specifies the device
class of the device whose ill is requested. Valid device class strings are those used in the
SYSTEM.INI section to identify device classes.

TSPI function:

LONG TSPI lineGetID(hdLine, dwAddressID, hdCall, dwSelect, IpDeviceID,
IpszDeviceClass)

hdLine Specifies the service provider's handle to the line to be queried.

dwAddressID Specifies an address on the given open line device. Note that this parameter is not
validated by TAPLDLL when this function is called

hdCall Specifies the service provider's handle to the call to be queried.

dwSelect Specifies the whether the device ill requested is associated with the line, address or a single
call.

IpDeviceID Specifies a far pointer to the memory location of type VARSTRING where the device ill is
returned Upon successful completion of the request, this location is filled with the device ill. The
format of the returned information depends on the method used by the device class (API) for naming
devices.

IpszDeviceClass Specifies a far pointer to a NULL-terminated ASCII string that specifies the device
class of the device whose ill is requested. Valid device class strings are those used in the
SYSTEM.INI section to identify device classes (such as COM, Wave, and MCL)

lineGetLineDevStatus

This operation enables an application to query the specified open line device for its current status.
An application uses lineGetLineDevStatus to query the line device for its current line status. This
status infonnation applies globally to all addresses on the line device. Use lineGetAddressStatus to
detennine status infonnation about a specific address on a line.

TAPI function:

LONG lineGetLineDevStatus(hLine, IpLineDevStatus)

hLine Specifies a handle to the open line device to be queried

IpLineDevStatus Specifies a far pointer to a variably sized data structure of type LINEDEVSTATUS.
Upon successful completion of the request, this structure is filled with the line's device status. Prior
to calling lineGetLineDevStatus, the application should set the dwTotaiSize field of this structure
to indicate the amount of memory available to TAPI.DLL for returning information.

TSPI function:

LONG TSPI_lineGetLineDevStatus(hdLine, IpLineDevStatus)

hdLine Specifies the service provider's handle to the line to be queried.

IpLineDevStatus Specifies a far pointer to a variably sized data structure of type LINEDEVSTATUS.
This structure is filled with the line's device status.

99



Computer Telephony Integration

IineGetNewCalis

This operation returns call handles to calls on a specified line or address for which the application
currently does not have handles. The application is granted monitor privilege to these calls.
An application can use lineGetNewCalls to obtain handles to calls for which it currently has no
handles. The application can select the calls for which handles are to be returned by basing this selection
on scope (calls on a specified line, or calls on a specified address.

TAPI function:

LONG lineGetNewCalls(hLine, dwAddressID, dWSelect, lpCallList)

hLine Specifies a handle to an open line device.

dwAddressID Specifies an address on the given open line device.

dwSelect Specifies the selection of calls that are requested. Note that dwSelect can only have one bit set.
This parameter uses the following LINECALLSELECT_ constants: LINE selects calls on the
specified line device. The hLine parameter must be a valid line handle; dwAddressID is ignored;
ADDRESS selects calls on the specified address on the specified line device. Both hLine and
dwAddressID must be valid.

lpCallList Specifies a far pointer to a variably sized data structure of type LINECALLLIST. Upon
successful completion of the request, call handles to all selected calls are returned in this structure

TSPI function:

None. The function is handled entirely within TAPI.DLL.

IineGetNumRings

This function can be used by an application to determine the number of rings an inbound call on the
given address should ring prior to answering the call. The lineGetNumRings and lineSetNumRings
functions, when used in combination, provide a mechanism to support the implementation of toll-saver
features across multiple independent applications.
An application that receives a handle for a call in the offering state and a LINE_LINEDEVSTATE
ringing message should wait a number of rings equal to the number returned by lineGetNumRings
before answering the call in order to honor the toll-saver settings across all applications. The
lineGetNumRings function returns the minimum of all application's number of rings specified by
lineSetNumRings. Since this number may vary dynamically, an application should invoke
lineGetNumRings each time it has the option to answer a call. A separate LINE_LINEDEVSTATE
ringing message is sent to the application for each ring cycle.

TAPI function:

LONG lineGetNumRinqs(hLine, dwAddressID, lpdwNumRings)

hLine Specifies a handle to the open line device.

dwAddressID Specifies an address on the line device.

lpdwNumRings Specifies the number of rings that is the minimum of all current lineSetNumRings
requests.

TSPI function:

None. The function is handled entirely within TAPI.DLL.

100



Appendix E. TAPI/ TSPI interface specification

IineGetRequest

This function retrieves the next by-proxy request for the specified request mode.
A telephony-enabled application can request that a call be placed on its behalf by invoking
tapiRequestMakeCali or tapiRequestMediaCail. These requests are queued by TAPI.DLL and the
highest priority application that has registered to handle the request is sent a LINE_REQUEST
message with indication of the mode of the request that is pending. Typically, this application is the
user's call-eontrol application. The LINE_REQUEST message indicates that zero or more requests
may be pending for the registered application to process; after receiving LINE_REQUEST, it is the
responsibility of the recipient application to call lineGetRequest until LINEERR_NOREQUEST is
returned, indicating that no more requests are pending.
Next, the call-eontrol application that receives this message invokes lineGetRequest, specifying the
request mode and a buffer that is large enough to hold the request. The call-eontrol application then
interprets and executes the request. For media mode handling, the serving application may need to send
Windows messages back to the original application that made the request. The TAPI_REPLY message
is used for this purpose.
After execution of lineGetRequest, TAPI.DLL purges the request from its internal queue, making room
available for a subsequent request. It is therefore possible for a new LINE_REQUEST message to be
received immediately upon execution of lineGetRequest, should the same or another application issue
another request. It is the responsibility of the request recipient application to handle this scenario by
some mechanism (for example, by making note of the additional LINE_REQUEST and deferring a
subsequent lineGetRequest until processing of the preceeding request completes, by getting the
subsequent request and buffer as necessary, or by another appropriate means).
Note that the subsequent LINE_REQUEST should not be ignored because it will not be repeated by
TAPI.DLL.
Also note that tapiRequestDrop requests are passed directly to the recipient application by the
LINE_REQUEST message; they are not queued, and are not retrieved using lineGetRequest.

TAPI function:

LONG lineGetRequest(hLineApp, dwRequestMode, lpRequestBuffer)

hLineApp Specifies the application's usage handle for the line portion ofTAPI.

dwRequestMode Specifies the type of request that is to be obtained. Note that dwRequestMode can only
have one bit set. This parameter uses the following LINEREQUESTMODE_ constants:
MAKECALL a tapiRequestMakeCail request; MEDIACALL a tapiRequestMediaCail request.

lpRequestBuffer Specifies a far pointer to a memory buffer where the parameters of the request are to
be placed. The size of the buffer and the interpretation of the information placed in the buffer
depends on the request mode. The application-allocated buffer is assumed to be of sufficient size to
hold the request. IfdwRequestMode is MAKECALL, interpret the content of the request buffer using
the LINEREQMAKECALL structure. IfdwRequestMode is MEDIACALL, interpret the content of
the request buffer using the LINEREQMEDIACALL structure.

TSPI function:

None. The function is handled entirely within TAPI.DLL.

101



Computer Telephony Integration

lineGetStatusMessages

This operation enables an application to query which notification messages the application is set up to
receive for events related to status changes for the specified line or any of its addresses.
TAPI defines a number of messages that notify applications about events occurring on lines and
addresses. An application may not be interested in receiving all address and line status change
messages. The lineSetStatusMessages function can be used to select which messages the application
wants to receive. By default, address status and line status reporting is disabled.

TAPI function:

LONG lineGetstatuSMessaqes(hLine, lpdwLineStates, lpdwAddressStates)

hLine Specifies a handle to the line device.

lpdwLineStates Specifies a bit array that identifies for which line device status changes a message is to
be sent to the application. If a flag is TRUE, that message is enabled; ifFALSE, it is disabled. Note
that multiple flags can be set.

lpdwAddressStates Specifies a bit array that identifies for which address status changes a message is
to be sent to the application. Ifa flag is TRUE, that message is enabled; ifFALSE, disabled. Multiple
flags can be set.

TSPI function:

None. The function is handled entirely within TAPI.DLL.

lineGetTranslateCaps

This function returns address translation capabilities.

TAPI function:

LONG lineGetTranslateCaps(hLineApp, dwAPIVersion, lpTranslateCaps)

hLineApp Specifies the application handle returned by IineInitiaIize.

dwAPIVe r s i on Indicates the version of TAPI negotiated by IineNegotiateAPIVersion.

lpTranslateCaps Specifies a far pointer to a location to which a LINETRANSLATECAPS structure
will be loaded. Prior to calling IineGetTranslateCaps, the application should set the dwTotaISize
field of this structure to indicate the amount of memory available to TAPI.DLL for returning
information.

TSPI function:

None. The function is handled entirely within TAPI.DLL.

102



Appendix E. TAPI I TSPI interface specification

IineHandoff

This function is used to give ownership ofthe specified call to another application. The application can
be either specified directly by its file name or indirectly as the highest priority application that handles
calls ofthe specified media mode.
Call handoff allows ownership of a call to be passed among applications. There are two types of
handoff. In the first type, if the application knows the file name of the target application, it can simply
specify the file name of that application. If an instance of the target application has opened the line
device, ownership ofthe call will be passed to the other application; otherwise, the handoff will fail and
an error is returned. This form of handoff will succeed if the call handle is handed off to the same file
name as the application requesting the handoff
The second type ofhandoff is based on media mode. In this case, the application indirectly specifies the
target application by means of a media mode. The highest priority application that has currently opened
the line device for that media mode is the target for the handoff. If there is no such application, the
handoff fails and an error is returned.
If handoff is successful, the receiving application will receive aLINE_CALLSTATE message for the
call. This message indicates that the receiving application has owner privilege to the call (dwParam3).
In addition, the number of owners and/or monitors for the call may have changed. This is reported by
the LINE_CALLINFO message, and the receiving application can then invoke lineGetCallStatus and
IineGetCallInfo to retrieve more information about the received call.
The receiving application should first check the media mode in LINECALLINFO. If only a single
media mode flag is set, the call is officially ofthat media mode, and the application can act accordingly.
If UNKNOWN and other media mode flags are set, then the media mode of the call is officially
UNKNOWN but is assumed to be of one of the media modes for which a flag is set in
LINECALLINFO. The application should assume that it ought to probe for the highest priority media
mode.
If the probe succeeds (either for that media mode or for another one), the application should set the
media mode field in LINECALLINFO to just the single media mode that was recognized. If the media
mode is for that media mode, the application can act accordingly; otherwise, if it makes a determination
for another media mode, it must first hand offthe call to that media mode.
Ifthe probe fails, the application should clear the corresponding media mode flag in LINECALLINFO
and hand off the callback, specifying dwMediaMode as LINEMEDIAMODE_UNKNOWN. It should
also deallocate its call handle (or revert back to monitoring).
Ifnone ofthe media modes succeeded in making a determination, only the UNKNOWN flag will remain
set in the media mode field of LINECALLINFO at the time the media application attempts to hand off
the call back to UNKNOWN. The finallineHandoff will fail if the application is the only remaining
owner ofthe call. This informs the application that it should drop the call and deallocate its handle, in
which case the call is abandoned.

TAPI function:

LONG lineHandoff(hCall, IpszFileName, dwMediaModel

hCall Specifies a handle to the call to be handed off. The application must be an owner of the call.

IpszFileName Specifies a far pointer to a NULL-terminated ASCII string. If this pointer parameter is
non-NULL, it contains the file name of the application that is the target of the handoff. IfNULL, the
handoff target is the highest priority application that has opened the line for owner privilege for the
specified media mode. A valid file name does not include the path of the file.

dwMediaMode Specifies the media mode used to identify the target for the indirect handoff. The
dwMediaMode parameter indirectly identifies the target application that is to receive ownership of
the call. This parameter is ignored if lpszFileName is not NULL. Only a single flag may be set in the
dwMediaMode parameter at anyone time.

103



Computer Telephony Integration

IineHold

This function places the specified call on hold.
The call on hold is temporarily disconnected allowing the application to use the line device for making
or answering other calls. The lineHold function performs a so-called ''hard hold" of the specified call
(as opposed to a "consultation call"). A call on hard hold typically cannot be transferred or included in a
conference call, but a consultation call can. Consultation calls are initiated using lineSetupTransfer,
lineSetupConference, or linePrepareAddToConference.
After a call has been successfully placed on hold, the call state typically transitions to onHold. A held
call is retrieved by lineUnhold. While a call is on hold, the application may receive
LINE_CALLSTATE messages about state changes of the held call. For example, if the held party
hangs up, the call state may transition to disconnected.

TAPI function:

LONG lineHold(hCall)

hCall Specifies a handle to the call to be placed on hold. The application must be an owner of the call.

TSPI function:

LONG TSPI_lineHold(dwRequestID, hdCall)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the service provider's handle to the call to be placed on hold.

104



Appendix E. TAPI/ TSPI interface specification

linelnitialize

This function initializes the application's use of TAPI.DLL for subsequent use ofthe line abstraction. It
registers the application's specified notification mechanism and returns the number of line devices
available to the application. A line device is any device that provides an implementation for the line
prefixed functions in the Telephony API.
The application can refer to individual line devices by using line device IDs that range from zero to
dwNumDevs minus one. An application should not assume that these line devices are capable of
anything beyond what is specified by the Basic Telephony subset without first querying their device
capabilities by lineGetDevCaps and lineGetAddressCaps.
Applications should not invoke linelnitialize without subsequently opening a line (at least for
monitoring). If the application is not monitoring and not using any devices, it should call1ineShutdown
so that memory resources allocated by TAPI.DLL can be released if unneeded, and TAPI.DLL itself
can be unloaded from memory while not needed.
Another reason for performing a lineShutdown is that if a user changes the device configuration (adds
or removes a line or phone), there is no way for TAPI to notify an application that has a line or phone
handle open at the time. Once a reconfiguration has taken place, causing a LINEDEVSTATE_REINIT
message to be sent, no applications can open a device until all applications have performed a
lineShutdown.
If any service provider fails to initialize properly, this function fails and returns the error indicated by
the service provider.

TAPI function:

LONG linelnitialize(lphLineApp, hlnstance, IpfnCallback, IpszAppNarne,
IpdwNumDevs)

IphLineApp Specifies a far pointer to a location that is filled with the application's usage handle for
TAP!.

hlnstance Specifies the instance handle of the client application or DLL.

IpfnCallback Specifies the address of a callback function that is invoked to determine status and events
on the line device, addresses, or calls.

1p s zAppNarne Specifies a far pointer to a NULL-terminated ASCII string that contains only displayable
ASCII characters. If this parameter is not NULL, it contains an application-supplied name of the
application. This name is provided in the LINECALLINFO structure to indicate, in a user-friendly
way, which application originated, or originally accepted or answered the call. This information can
be useful for call logging purposes. If IpszAppName is NULL, the application's file name is used
instead

IpdwNurnDevs Specifies a far pointer to a DWORD-sized location. Upon successful completion of this
request, this location is filled with the number of line devices available to the application.

TSPI function:

The first application that calls linelnitialize causes all service providers to be loaded. This in tum results
in the function TSPI.-PTOviderInit to be called in each service provider.

105



Computer Telephony Integration

IineMakeCall

This function places a call on the specified line to the specified destination address. Optionally, call
parameters can be specified if anything but default call setup parameters are requested.
After dialing has completed, several LINE_CALLSTATE messages are usually sent to the application
to notify it about the progress of the call. A typical sequence may cause a call to transition from
dialtone, dialing, proceeding, ringback, to connected. With non-dialed lines, the call may typically
transition directly to connected state.
An application has the option to specify an originating address on the specified line device. A service
provider that models all stations on a switch as addresses on a single line device allows the application
to originate calls from any ofthese stations using lineMakeCall.
The call parameters allow the application to make non-voice calls or request special call setup options
that are not available by default. An application can partially dial using lineMakeCail and continue
dialing using lineDiai. To abandon a call attempt, use lineDrop.

TAPI function:

LONG lineMakeCall(hLine, IphCall, IpszDestAddress, dWCountryCode,
IpCallParams)

hLine Specifies a handle to the open line device on which a call is to be originated.

IphCall Specifies a far pointer to a call handle. This location is filled with a handle identifYing the new
call as soon as this function call returns. Use this handle to identify the call when invoking other
telephony operations on the call. The application will initially be the sole owner of this call. This
handle is void if the function returns an error (synchronously or asynchronously by the reply
message).

IpszDestAddress Specifies a far pointer to the destination address. This follows the standard dialable
number format. This pointer can be NULL for non-dialed addresses (as with a hot phone) or when all
dialing will be performed using IineDial. In the latter case, IineMakeCall allocates an available call
appearance that would typically remain in the dia/tone state until dialing begins. Service providers
that have inverse multiplexing capabilities may allow an application to specify multiple addresses at
once.

dwCountryCode Specifies the country code of the called party. If a value of zero is specified, a default is
used by the implementation.

IpCallParams Specifies a far pointer to a LINECALLPARAMS structure. This structure allows the
application to specify how it wants the call to be set up. IfNULL is specified, a default 3. 1kHz voice
call is established and an arbitrary origination address on the line is selected. This structure allows
the application to select elements such as the call's bearer mode, data rate, expected media mode,
origination address, blocking ofcaller ill information, and dialing parameters.

TSPI function:

LONG TSPI lineMakeCall(dwRequestID, hdLine, htCall, IphdCall,
IpszDestAddress, dWCountryCode, IpCallParams)

dwRequestID Specifies the identifier of the asynchronous request.

hdLi ne Specifies the handle to the line on which the new call is to be originated.

htCall Specifies TAPLDLL's handle to the new call. The service provider must save this and use it in all
subsequent calls to the line event callback procedure reporting events on the call.

IphdCall Specifies a far pointer to a call handle. The service provider must fill this location with its
handle for the call before this procedure returns. This handle is ignored by TAPLDLL if the function
results in an error.

IpszDestAddress Specifies a far pointer to the destination address. This follows the standard dialable
number format. This pointer may be specified as NULL for non-dialed addresses (as with a hot
phone, which always automatically connects to a predefined number) or when all dialing will be
performed using TSPI_lineDial.

106



Appendix E. TAPI/ TSPI interface specification

dwCountryCode Specifies the country code of the called party. If a value of zero is specified, a default
will be used by the implementation.

IpCallPararns Specifies a far pointer to a LINECALLPARAMS structure. This structure allows
TAPI.DLL to specify how it wants the call to be set up. IfNULL is specified, a default 3. 1kHz voice
call is established, and an arbitrary origination address on the line is selected.

IineMonitorDigits

This function enables and disables the unbuffered detection of digits received on the call. Each time a
digit ofthe specified digit mode(s) is detected, a message is sent to the application indicating which digit
has been detected.
This function is considered successful if digit monitoring has been correctly initiated; not when digit
monitoring has terminated. Digit monitoring remains in effect until it is explicitly disabled by calling
lineMonitorDigits with dwDigitModes set to zero, until the call transitions to idle, or when the
application deallocates its call handle for the call. Although this function can be invoked in any call
state, digits are usually detected only while the call is in the connected state.
Each time a digit is detected, a LINE_MONITORDIGITS message is sent to the application passing
the detected digit as a parameter.
An application can use lineMonitorDigits to enable or disable unbuffered digit detection. It can use
lineGatherDigits for buffered digit detection. After buffered digit gathering is complete, a
LINE_GATHERDIGITS message is sent to the application. Both buffered and unbuffered digit
detection can be enabled on the same call simultaneously.
Monitoring of digits on a conference call applies only to the hConjCall, not to the individual
participating calls.

TAPI function:

LONG lineMonitorDiqits(hCall, dwDigitModesl

hCall Specifies a handle to the call on which digits are to be detected.

dwDigi tModes Specifies the digit mode(s) that are to be monitored. If dwDigitModes is zero, digit
monitoring is cancelled. This parameter can have multiple flags set, and uses the following
LINEDIGITMODE_ constants: PULSE detect digits as audible clicks that are the result of rotary
pulse sequences. Valid digits for pulse are '0' through '9'; DTMF detect digits as DTMF tones.
Valid digits for DTMF are '0' through '9', 'A', 'B', 'C', 'D', '.', and '#'; DTMFEND detect and
provide application notification of DTMF down edges. Valid digits for DTMF are '0' through '9',
'A', 'B', 'C', 'D', '.', and '#'.

TSPI function:

LONG TSPI_lineMonitorDiqits(hdCall, dwDigitModesl

hdCall Specifies the handle to the call on which digits are to be detected.

dwDigi tModes Specifies the digit mode(s) that are to be monitored. A dwDigitModes with a value of zero
cancels digit monitoring.

107



Computer Telephony Integration

IineMonitorMedia

This function enables and disables the detection of media modes on the specified call. When a media
mode is detected, a message is sent to the application.
The media modes specified with lineOpen relate only to enabling the detection ofthese media modes by
the service provider for the purpose of handing off new incoming calls to the proper application. They
do not impact any of the media-mode notification messages that are expected because of a previous
invocation of lineMonitorMedia.
This function is considered successful if media-mode monitoring has been correctly initiated, not when
media mode monitoring has terminated. Media monitoring for a given media mode remains in effect
until it is explicitly disabled by calling lineMonitorMedia with a dwMediaModes parameter set to zero,
until the call transitions to idle, or when the application deallocates its call handle for the call. The
lineMonitorMedia function is primarily an event reporting mechanism. The media mode of call, as
indicated in LINECALLINFO, is not affected by the service provider's detection of the media mode.
Only the controlling application can change a call's media mode.
Default media monitoring performed by the service provider corresponds to the union of all media
modes specified on lineOpen.
Although this function can be invoked in any call state, a call's media mode can typically only be
detected while the call is certain call states. These states may be device specific. For example, in ISDN,
a message may indicate the media mode of the media stream before the media stream exists. Similarly,
distinctive ringing or the called ID information about the call can be used to identify the media mode of
a call. Otherwise, the call may have to be answered (call in the connected state) to allow a service
provider to determine the call's media mode by filtering the media stream. Since filtering a call's media
stream implies a computational overhead, applications should disable media monitoring when not
required. By default, media monitoring is enabled for newly inbound calls, since a call's media mode
selects the application that should handle the call.
An outbound application that deals with voice media modes may want to monitor the call for silence (a
tone) to distinguish who or what is at the called end of a call. For example, a person at home may
answer calls with just a short ''hello.'' A person in the office may provide a longer greeting, indicating
name and company name. An answering machine may typically have an even longer greeting.
Because media-mode detection enabled by lineMonitorMedia is implemented as a read-only operation
ofthe call's media stream, it is not disruptive.
Monitoring of media on a conference call applies only to the hConjCall, not to the individual
participating calls

TAPI function:

LONG lineMonito%Media(hCall, dwMediaModes)

hCall Specifies a handle to the call.

dwMediaModes Specifies the media modes to be monitored. A value of zero for the dwMediaAfodes
parameter cancels all media mode detection. This parameter can have multiple flags set.

TSPI function:

LONG TSPI_lineMonito%Media(hdCall, dwMediaModes)

hdCall Specifies the handle to the call for which media monitoring is to be set.

dwMediaModes Specifies the media modes to be monitored. A value of zero for the dwMediaAfodes
parameter cancels all media mode monitoring.

108



Appendix E. TAPI/ TSPI interface specification

IineMonitorTones

This function enables and disables the detection ofinband tones on the call. Each time a specified tone is
detected, a message is sent to the application.
This function is successful if tone monitoring has been correctly initiated, not when tone monitoring has
tennmated. Tone monitoring will remain in effect until it is explicitly disabled by calling
lineMonitorTones with another tone list (or NULL), until the call transitions to idle, or when the
application deallocates its call handle for the call.
Although this function can be invoked in any call state, tones can typically only be detected while the
call is in the connected state. Tone detection typically requires computational resources. Depending on
the service provider and other activities that compete for such resources, the number oftones that can be
detected may vary over time. Also, an equivalent amount of resources may be consumed for monitoring
a single triple frequency tone versus three single frequency tones. If resources are overcommitted, the
LINEERR RESOURCEUNAVAIL error is returned.
Note that lineMonitorTones is also used to detect silence. Silence is specified as a tone with all zero
frequencies.
Monitoring of tones on a conference call applies only to the hConjCall, not to the individual
participating calls

TAPI function:

LONG lineMonitorTones(hCall, lpToneList, dwNumEntries)

hCall Specifies a handle to the calIon whose voice channel tones are to be monitored.

lpToneList Specifies a list of tones to be monitored, of type LINEMONITORTONE. Each tone in this
list has an application-defined tag field that is used to identify individual tones in the list report a
tone detection. Tone monitoring in progress is canceled or changed by calling this operation with
either NULL for IpToneList or with another tone list.

dwNumEntries Specifies the number of entries in lpToneList. This parameter is ignored if IpToneList is
NULL.

TSPI function:

LONG TSPI_lineMonitorTones(hdCall, dwToneListID, lpToneList, dwNumEntries)

hdCall Specifies the handle to the call for which tone detection is to be done.

dwToneListID Specifies the unique ill for this tone list. Several tone lists can be outstanding at once.
The service provider must replace any old list having the same dwToneListlD with the new tone list.
If IpToneList is NULL, the tone list with dwToneListlD is simply dropped. In any case, other tone
lists with different dwToneListlDs are kept unchanged.

lpToneList Specifies a list of tones to be monitored, of type LINEMONITORTONE. Each tone in this
list has an application-defined tag field that is used to identify individual tones in the list for the
purpose of reporting a tone detection. Tone monitoring in progress is canceled or changed by calling
this operation with either NULL for IpToneList or with another tone list. The service provider must
copy the tone list into its own memory for later reference, rather than simply retaining the pointer
into application memory.

dwNumEntries Specifies the number of entries in IpToneList. The dwNumEntries parameter is ignored if
IpToneList is NULL. Note that this parameter is not validated by TAPI.DLL when this function is
called.

109



Computer Telephony Integration

lineNegotiateAPIVersion

This function allows an application to negotiate an API version to use.
Use linelnitialize to determine the number of line devices present in the system. The device ID specified
by dwDeviceID varies from zero to one less than the number ofline devices present.
The lineNegotiateAPIVersion function is used to negotiate the API version number to use. It also
retrieves the extension ID supported by the line device, and it returns zeros if no extensions are
supported. If the application wants to use the extensions defined by the returned extension ID, it must
call1ineNegotiateExtVersion to negotiate the extension version to use.
The API version number negotiated is that under which TAPI can operate. If version ranges do not
overlap, the application and API or service provider versions are incompatible and an error is returned.

TAPI function:

LONG lineNegotiateAPrversion(hLineApp, dwDeviceID, dwAPILowVersion,
dwAPIHighVersion, IpdwAPIVersion, IpExtensionID)

hLineApp Specifies the handle to the application's registration with TAP!.

dwDeviceID Specifies the line device to be queried.

dwAPILowVersion Specifies the least recent API version the application is compliant with. The high
order word is the major version number; the low-order word is the minor version number.

dwAPIHighVersion Specifies the most recent API version the application is compliant with. The high
order word is the major version number; the low-order word is the minor version number.

IpdwAPIVersion Specifies a far pointer to a DWORD-sized location that contains the API version
number that was negotiated. If negotiation is successful, this number will be in the range between
dwAPILowVersion and dwAPIHighVersion.

IpExtensionID Specifies a far pointer to a structure of type LINEEXTENSIONID. If the service
provider for the specified dwDevicelD supports provider-specific extensions, then, upon a successful
negotiation, this structure is filled with the extension ill of these extensions. This structure contains
all zeros if the line provides no extensions. An application can ignore the returned parameter if it
does not use extensions.

TSPI function:

Most of the function is handled within TAPI.DLL, only the line extension ID is retrieved from the
appropriate service provider by means ofthe function:

LONG TSPI_lineGetExtensionID(dwDeviceID, dwTSPIVersion, IpExtensionID)

dwDeviceID Specifies the line device to be queried.

dwTSPIVersion Specifies an interface version number that has already been negotiated for this device
using TSPI_lineNegotiateTSPIVersion. This function operates according to the interface
specification at this version level.

IpExtensionID Specifies a far pointer to a structure of type LINEEXTENSIONID. If the service
provider supports provider-specific extensions it flIls this structure with the extension ill of these
extensions. If the service provider does not support extensions, it fills this structure with all zeros.
(Therefore, a valid extension ill cannot consist ofall zeros.)

110



Appendix E. TAPI I TSPI interface specification

IineNegotiateExtVersion

This function allows an application to negotiate an extension version to use with the specified line
device. This operation need not be called ifthe application does not support extensions.
If the application wants to use the extensions defined by the returned extension ID, it must call
lineNegotiateExtVersion to negotiate the extension version to use.
The extension version number negotiated is that under which the application and service provider must
both operate. If version ranges do not overlap, the application and service provider versions are
incompatible and an error is returned.

TAPI function:

LONG lineNeqotiateExtVersion(hLineApp, dwDeviceID, dwAPIVersion,
dwExtLowVersion, dwExtHighVersion, IpdwExtVersion)

hLineApp Specifies the handle to the application's registration with TAPI.

dwDeviceID Specifies the line device to be queried.

dwAPIVersion Specifies the API version number that was negotiated for the specified line device using
IineNegotiateAPIVersion.

dwExtLowVersion Specifies the least recent extension version of the extension ill returned by
IineNegotiateAPIVersion that the application is compliant with. The high-order word is the major
version number; the low-order word is the minor version number.

dwExtHighVersion Specifies the most recent extension version of the extension ill returned by
IineNegotiateAPIVersion that the application is compliant with. The high-order word is the major
version number; the low-order word is the minor version number.

IpdwExtVersion Specifies a far pointer to a DWORD-sized location that contains the extension version
number that was negotiated. If negotiation is successful, this number will be in the range between
dwExtLowVersion and dwExtHighVersion.

TSPI function:

LONG TSPI lineNeqotiateExtVersion(dwDeviceID, dwTSPIVersion, dwLowVersion,
dwHighVersion, IpdwExtVersion)

dwDeviceID Identifies the line device for which interface version negotiation is to be performed.

dwTSPIVersion Specifies an interface version number that has already been negotiated for this device
using TSPI_lineNegotiateTSPIVersion. This function operates according to the interface
specification at this version level.

dwLowVersion Specifies the lowest extension version number under which TAPI.DLL or its client
application is willing to operate. The most-significant WORD is the major version number and the
least-significant WORD is the minor version number. Note that this parameter is not validated by
TAPI.DLL when this function is called.

dwHighVersion Specifies the highest extension version number under which TAPI.DLL or its client
application is willing to operate. The most-significant WORD is the major version number and the
least-significant WORD is the minor version number. Note that this parameter is not validated by
TAPI.DLL when this function is called.

IpdwExtVersion Specifies a far pointer to a DWORD. Upon a successful return from this function, the
service provider fills this location with the highest extension version number, within the range
requested by the caller, under which the service provider is willing to operate. The most-significant
WORD is the major version number and the least-significant WORD is the minor version number. If
the requested range does not overlap the range supported by the service provider, the function returns
an error.

111



Computer Telephony Integration

IineOpen

This function opens the line device specified by its device ID and returns a line handle for the
corresponding opened line device. This line handle is used in subsequent operations on the line device.
Opening a line always entitles the application to make calls on any address available on the line. The
ability of the application to deal with inbound calls or to be the target of call handoffs on the line is
determined by the dwMediaModes parameter. The lineOpen function registers the application as having
an interest in monitoring calls or receiving ownership of calls that are of the specified media modes. If
the application just wants to monitor calls, then it can specify LINECALLPRIVILEGE_MONITOR. If
the application just wants to make outbound calls, it can specify LINECALLPRIVILEGE_NONE. If
the application is willing to control unclassified calls (calls of unknown media mode), it can specify
LINECALLPRIVILEGE_OWNER and LINEMEDIAMODE_UNKNOWN. Otherwise, the application
should specify the media mode it is interested in handling.
The media modes specified with lineOpen add to the default value for the provider's media mode
monitoring for initial inbound call type determination. The lineMonitorMedia function modifies the
mask that controls LINE_MONITORMEDIA messages. If a line device is opened with owner
privilege and an extension media mode is not registered in TELEPHON.INI, an error returned.
An application that has successfully opened a line device can always initiate calls using lineMakeCall,
lineUnpark, linePickup, lineSetupConference (with a NULL heal!), as well as use lineForward
(assuming that doing so is allowed by the device capabilities, line state, and so on).
Note that a single application may specify multiple flags simultaneously to handle multiple media
modes. Conflicts may arise if multiple applications open the same line device for the same media mode.
These conflicts are resolved by a priority scheme in which the user assigns relative priorities to the
applications. Only the highest priority application for a given media mode will ever receive ownership
(unsolicited) of a call ofthat media mode. Ownership can be received when an inbound call first arrives
or when a call is handed off.
Note that any application (including any lower priority application) can always acquire ownership with
lineGetNewCails or lineGetConmelatedCails. If an application opens a line for monitoring at a time
that calls exist on the line, LINE_CALLSTATE messages for those existing calls are not
automatically generated to the new monitoring application. The application can query the number of
current calls on the line to determine how many calls exist, and, if it wants, it can call1ineGetNewCails
to obtain handles to these calls.
An application that handles automated voice should also select the interactive voice open mode and be
assigned the lowest priority for interactive voice. The reason for this is that service providers will report
all voice media modes as interactive voice. If media mode determination is not performed by the
application for the UNKNOWN media type, and no interactive voice application has opened the line
device, voice calls would be unable to reach the automated voice application, but be dropped instead.
The same application, or different instantiations of the same application, may open the same line
multiple times with the same or different parameters.
When an application opens a line device it must specify the negotiated API version and, if it wants to
use the line's extensions, it should specify the line's device-specific extension version. These version
numbers should have been obtained with lineNegotiateAPIVersion and lineNegotiateExtVersion.
Version numbering allows the mixing and matching of different application versions with different API
versions and service provider versions.
LINEMAPPER allows an application to select a line indirectly-by means ofthe services it wants from
it.

TAPI function:

LONG lineOpen(hLineApp, dwDeviceID, lphLine, dwAPIVersion, dwExtVersion,
dWCallbackInstance, dwPrivileges, dwMediaModes, lpCallPararns)

hLineApp Specifies a handle to the application's registration with TAP!.

112



Appendix E. TAPI I TSPI interface specification

dwDeviceID Identifies the line device to be opened. It can either be a valid device ill or the value:
LINEMAPPER This value is used to open a line device in the system that supports the properties
specified in IpCallParams. The application can use lineGetID to determine the ill of the line device
that was opened.

IphLine Specifies a far pointer to an HLINE handle, which is then loaded with the handle representing
the opened line device. Use this handle to identify the device when invoking other functions on the
open line device.

dwAPIVersion Specifies the API version number under which the application and Telephony API have
agreed to operate. This number is obtained with lineNegotiateAPIVersion.

dwExtVersion Specifies the extension version number under which the application and the service
provider agree to operate. This number is zero if the application does not use any extensions. This
number is obtained with lineNegotiateExtVersion.

dwCallbacklnstance Specifies user-instance data passed back to the application's callback. This
parameter is not interpreted by the Telephony API.

dwPrivileges Specifies the privilege the application wants for the calls it is notified for. This parameter
can have multiple flags set, and it uses the following LINECALLPRIVILEGE_ constants: NONE the
application wants to make only outbound calls; MONITOR the application only wants to monitor
inbound and outbound calls; OWNER the application wants to own inbound calls of the types
specified in dwMediaModes ; MONITOR + OWNER the application wants to own inbound calls of
the types specified in dwMediaModes, but if it cannot be an owner of a call, it wants to be a monitor.

dwMediaModes Specifies the media mode(s) of interest to the application. The dwMediaModes parameter
is used to register the application as a potential target for inbound call and call handoff for the
specified media mode. This parameter is meaningful only if the bit
LINECALLPRIVILEGE_OWNER in dwPrivileges is set (and ignored if it is not).

IpCallParams Specifies a far pointer to a structure of type LINECALLPARAMS. This pointer is only
used if LINEMAPPER is used; otherwise IpCallParams is ignored. It describes the call parameter
that the line device should be able to provide.

TSPI function:

The first application that opens a line causes the consemed service provider to be called by TAPI.DLL
with the function:

LONG TSPI lineOpen(dwDeviceID, htLine, IphdLine, dwTSPIVersion,
IpfnEventProc)

dwDeviceID Identifies the line device to be opened.

htLine Specifies TAPI.DLL's handle for the line device to be used in subsequent calls to the
LINEEVENT callback procedure to identify the device.

IphdLine A far pointer to a HDRVLINE where the service provider fills in its handle for the line device.

dwTSPIVersion The TSPI version.

IpfnEventProc A far pointer to the LINEEVENT callback procedure supplied by TAPI.DLL that the
service provider will call to report subsequent events on the line.

113



Computer Telephony Integration

IinePark

This function parks the specified call according to the specified park mode.
With directed park, the application detennmes the address at which it wants to park the call. With
nondirected park, the switch detennmes the address and provides this to the application. In either case, a
parked call can be unparked by specifying this address.
The parked call typically enters the idle state after it has been successfully parked and the application
should then deallocate its handle to the call. Ifthe application performs a lineUnpark on the parked call,
a new call handle will be created for the unparked call even if the application has not deallocated its old
call handle.
Some switches may remind the user after a call has been parked for some long amount of time. The
application will see an offering call with a call reason set to reminder.

TAPI function:

LONG linePark(hCall, dwParkMode, lpszDirAddress, lpNonDirAddress)

hCall Specifies a handle to the call to be parked. The application must be an owner of the call.

dwParkMode Specifies the park mode with which the call is to be parked. This parameter can have only a
single flag set, and it uses the following LINEPARKMODE_ constants: DIRECTED the application
specifies at which address the call is to be parked in /pszDirAddress; NONDIRECTED this operation
reports to the application where the call has been parked in /pNonDirAddress.

lpszDirAddress Specifies a far pointer to a NULL-terminated string that indicates the address where
the call is to be parked when using directed park. The address is in dialable number format. This
parameter is ignored for nondireeted park.

lpNonDirAddress Specifies a far pointer to a structure of type VARSTRING. For nondirected park, the
address where the call is parked is returned in this structure. This parameter is ignored for directed
park. Within the VARSTRING structure, dwStringFormat must be set to
STRINGFORMAT_ASCII (an ASCII string buffer containing a NULL-terminated string), and the
terminating NULL must be accounted for in the dwStringSize. Prior to calling IinePark, the
application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPLDLL for returning information.

TSPI function:

LONG TSPI linePark(dwRequestID, hdCall, dWParkMode, lpszDirAddress,
lpNonDirAddress)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the call to be parked.

dwParkMode Specifies the park mode with which the call is to be parked.

lpszDirAddress Specifies a far pointer to NULL-terminated ASCII string that indicates the address
where the call is to be parked when using directed park The address is in dialable address format.
This parameter is ignored for nondirected park.

lpNonDirAddress Specifies a far pointer to a structure of type VARSTRING. For nondirected park, the
address where the call is parked is returned in this structure. This parameter is ignored for directed
park. Within the VARSTRING structure, dwStringFormat must be set to
STRINGFORMAT_ASCII (an ASCn string buffer containing a NULL-terminated string), and the
terminating NULL is accounted for in the dwStringSize.

114



Appendix E. TAPI I TSPI interface specification

linePickup

This function picks up a call alerting at the specified destination address and returns a call handle for
the picked-up call. If invoked with NULL for the lpszDestAddress parameter, a group pickup is
perfonned. If required by the device, lpszGroupID specifies the group ID to which the alerting station
belongs.
When a call has been picked up successfully, the application is notified by the LINE_CALLSTATE
message about call state changes. The LINECALLINFO structure supplies information about the call
that was picked up. It will list the reason for the call as pickup. This structure is available using
lineGetCallInfo.
Once linePickup has been used to pick up the second call, lineSwapHold can be used to toggle between
them. lineDrop can be used to drop one (and toggle to the other), and so forth. If the user wants to drop
the current call and pick up the second call, they should call1ineDrop when they get the call-waiting
beep, wait for the second call to ring, and then call lineAnswer on the new call handle. The
LINEADDRFEATURE_PICKUP flag in the dwAddressFeatures field in LINEADDRESSSTATUS
indicates when pickup is actually possible.

TAPI function:

LONG linePickup(hLine, dwAddressID, lphCall, lpszDestAddress, lpszGroupID)

hLine Specifies a handle to the open line device on which a call is to be picked up.

dWAddressID Specifies the address on hLine at which the pickup is to be originated.

lphCall Specifies a far pointer to a memory location where the handle to the picked up call will be
returned. The application will be the initial sole owner of the call.

lpszDestAddress Specifies a far pointer to a NULL-terminated character buffer that contains the
address whose call is to be picked up. The address is in standard dialable address format.

lpszGroupID Specifies a far pointer to a NULL-terminated character buffer containing the group ill to
which the alerting station belongs. This parameter is required on some switches to pick up calls
outside of the current pickup group. Note that lpszGroupID can be specified by itself with a NULL
pointer for lpszDestAddress. Alternatively, lpszGroupID can be specified in addition to
lpszDestAddress, if required by the device.

TSPI function:

LONG TSPI linePickup(dwRequestID, hdLine, dwAddressID, htCall, lphdCall,
lpszDestAddress, lpszGroupID)

dwRequestID Specifies the identifier of the asynchronous request.

hdLine Specifies the handle to the line on which a call is to be picked up.

dwAddressID Specifies the address on hdLine at which the pickup is to be originated.

htCall Specifies TAPI.DLL's handle to the new call. The service provider must save this and use it in all
subsequent calls to the LINEEVENT procedure reporting events on the call.

lphdCall Specifies a far pointer to an HDRVCALL representing the service provider's identifier for the
call. The service provider must fill this location with its handle for the call before this procedure
returns. This handle is ignored by TAPI.DLL if the function results in an error.

lpszDestAddress Specifies a far pointer to a NULL terminated ASCII string that contains the address
whose call is to be picked up. The address is standard link format.

lpszGroupID Specifies a far pointer to a NULL-terminated ASCII string containing the group ill to
which the alerting station belongs. This parameter is required on some switches to pick up calls
outside of the current pickup group. Note that lpszGroupID can be specified by itself with a NULL
pointer for lpszDestAddress. Alternatively, lpszGroupID can be specified in addition to
lpszDestAddress, if required by the device. It can also be NULL itself.

115



Computer Telephony Integration

linePrepareAddToConference

This function prepares an existing conference call for the addition of another party.
A conference call handle can be obtained with lineSetupConference or with lineCompleteTransfer
that is resolved as a three-way conference call. The function linePrepareAddToConference typically
places the existing conference call in the onHoldPendingConference state and creates a consultation
call that can be added later to the existing conference call with lineAddToConference.
The consultation call can be canceled using lineDrop. It may also be possible for an application to swap
between the consultation call and the held conference call with lineSwapHold.

TAPI function:

LONG linePrepareAddToConference(hConfCall, IphConsultCall, IpCallParams)

hConfCall Specifies a handle to a conference call. The application must be an owner of this call.

IphConsul tCall Specifies a far pointer to an HCALL handle. This location is then loaded with a handle
identifying the consultation call to be added. Initially, the application will be the sole owner of this
call.

IpCallParams Specifies a far pointer to call parameters to be used when establishing the consultation
call. This parameter may be set to NULL ifno special call setup parameters are desired.

TSPI function:

LONG TSPI linePrepareAddToConference(dwRequestID, hdConfCall,
htConsultCall, IphdConsultCall, IpCallParams)

dwRequestID Specifies the identifier of the asynchronous request.

hdConfCall Specifies the handle to a conference call.

htConsul tCall Specifies TAPI.DLL's handle to the new, temporary consultation call. The service
provider must save this and use it in all subsequent calls to the LINEEVENT procedure reporting
events on the new call.

IphdConsul tCall Specifies a far pointer to an HDRVCALL representing the service provider's
identifier for the new, temporary consultation call. The service provider must fill this location with
its handle for the new call before this procedure returns. This handle is invalid if the function results
in an error.

IpCallParams Specifies a far pointer to call parameters to be used when establishing the consultation
call. This parameter will be set to NULL ifno special call setup parameters are desired

116



Appendix E. TAPI I TSPI interface specification

IineRedireel

This function redirects the specified offering call to the specified destination address.
Call redirection allows an application to deflect an offering call to another address without first
answering the call. Call redirect differs from call forwarding in that call forwarding is performed by the
switch without the involvement ofthe application; redirection can be done on a call-by-eall basis by the
application, for example, driven by caller ID information. It differs from call transfer in that transferring
a call requires the call first be answered.
After a call has been successfully redirected, the call typically transitions to idle.
Besides redirecting an incoming call, an application may have the option to accept the call using
lineAccept, reject the call using lineDrop, or answer the call using IineAnswer. The availability of
these operations is dependent on device capabilities.

TAPI function:

LONG lineRedirect(hCall, lpszDestAddress, dWCountryCodel

hCall Specifies a handle to the call to be redirected. The application must be an owner ofthe call.
lpszDestAddress Specifies a far pointer to the destination address. This follows the standard
dialable number format.
dWCountryCode Specifies the country code of the party the call is redirected to. If a value of zero is
specified, a default is used by the implementation.

TSPI function:

LONG TSPI_lineRedirect(dwRequestID, hdCall, lpszDestAddress,
dWCountryCodel

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the call to be redirected.

lpszDestAddress Specifies a far pointer to the destination address. This follows the standard link
format.

dWCountryCode Specifies the country code of the party the call is redirected to. If a value of zero is
specified, a default will be used by the implementation. Note that this parameter is not validated by
TAPI.DLL when this function is called.

117



Computer Telephony Integration

IineRegisterRequestRecipient

This function registers the invoking application as a recipient of requests for the specified request mode.
A telephony-enabled application can request that a call be placed on its behalf by invoking
tapiRequestMakeCall, tapiRequestMediaCall, and drop a media call with tapiRequestDrop.
Additionally, other applications can request that information be logged with a given call.
tapiRequestMakeCall and tapiRequestMediaCall requests are queued by TAPI.DLL, and the highest
priority application that has registered to handle the request is sent a LINE_REQUEST message with
an indication of the mode of the request that is pending. This application is typically the user's call
control application.
Next, the call-control application that receives this message invokes lineGetRequest, specifying the
request mode and a buffer that is large enough to hold the request. (Note that tapiRequestDrop
requests are passed directly to the recipient application by the LINE_REQUEST message; they are not
queued, and are not retrieved using lineGetRequest.) The call-eontrol application then interprets and
executes the request. For media mode handling, the serving application may need to send Windows
messages back to the original application that made the request. The TAPI_REPLY message is used
for this purpose.
The recipient application is also automatically deregistered for all requests when it does a
lineShutdown.

TAPI function:

LONG lineRegisterRequestRecipient(hLineApp, dwRegistrationInstance,
dwRequestMode, bEnable)

hLineApp Specifies the application's usage handle for the line portion ofTAPI.

dwRegistrationInstance Specifies an application-specific DWORD that is passed back as a
parameter of the LINE_REQUEST message. This message notifies the application that a request is
pending. This parameter is ignored if bEnable is set to zero. This parameter is examined by TAPI
only for registration, not for deregistration. The dwRegistrationlnstance value used while
deregistering need not match the dwRegistrationlnstance used while registering for a request mode.

dwRequestMode Specifies the type(s) of request for which the application registers. One or both bits may
be set. This parameter uses the following LINEREQUESTMODE_ constants: MAKECALL a
tapiRequestMakeCall request; MEDIACALL tapiRequestMediaCall / tapiRequestDrop request.

bEnable IfTRUE, the application registers; ifFALSE, the application deregisters for the specified request
modes.

TSPI function:

None. The function is handled entirely by TAPI.DLL.

118



Appendix E. TAPI I TSPI interface specification

lineRemoveFromConference

This function removes the specified call from the conference call to which it currently belongs. The
remaining calls in the conference call are unaffected.
This operation removes a party that currently belongs to a conference call. After the call has been
successfully removed, it may be possible to further manipulate it using its handle. The availability of
this operation and its result are likely to be limited in many implementations. For example, in many
implementations, only the most recently added party may be removed from a conference, and the
removed call may be automatically dropped (becomes idle). Consult the line's device capabilities to
determine the available effects of removing a call from a conference.
If the removal of a participant from a conference is supported, the participant call, after it is removed
from the conference, will enter the call-state listed in the dwRemoveFromConfState field in
LINEADDRESSCAPS.

TAPI function:

LONG lineRemoveFromConference(hCall)

hCall Specifies a handle to the call to be removed from the conference. The application must be an owner
of this call.

TSPI function:

LONG TSPI_lineRemoveFromConference(dwRequestID, hdCall)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the call to be removed from the conference.

IineSecureCall

This function secures the call from any interruptions or interference that may affect the call's media
stream.
A call can be secured to avoid interference. For example, in an analog environment, call-waiting tones
may destroy a fax or modem session on the original call. The function lineSecureCall allows an existing
call to be secured. The lineMakeCall function provides the option to secure the call from the time of
call setup. The securing ofa call remains in effect for the duration ofthe call.

TAPI function:

LONG lineSecureCall(hCall)

hCall Specifies a handle to the call to be secured. The application must be an owner of the call.

TSPI function:

LONG TSPI_lineSecureCall(dwRequestID, hdCall)

dwRequestID Specifies the identifier ofthe asynchronous request.

hdCall Specifies the handle to the call to be secured.

119



Computer Telephony Integration

IineSendUserUserlnfo

This function send user-to-user infonnation to the remote party on the specified call. If the size of the
specified information to be sent is larger than what may fit into a single network message (as in ISDN),
the service provider is responsible for dividing the information into a sequence of chained network
messages. Whenever user-to-user information arrives, a LINE_CALLINFO message with a
UserUserlnfo parameter will notify the application that user-to-user infonnation in the call-infonnation
record has changed. If multiple network messages are chained, the information is assembled by the
service provider and a single message is sent to the application.

TAPI function:

LONG lineSendUserUserlnfo(hCall, lpsUserUserlnfo, dwSize}

hCall Specifies a handle to the call on which to send user-to-user information. The application must be an
owner of the call.

lpsUserUserlnfo Specifies a far pointer to a string containing user-to-user information to be sent to the
remote party. User-to-user information is only sent if supported by the underlying network (see
LINEDEVCAPS).

dwSi ze Specifies the size in bytes of the user-to-user information in /psUserUserlnfo.

TSPI function:

LONG TSPI lineSendUserUserlnfo(dwRequestID, hdCall, lpsUserUserlnfo,
dWSize}

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the call on which to send user-to-user information.

lpsUserUserInfo Specifies a far pointer to a string containing the user-to-user information to be sent.

dwSi ze Specifies the size in bytes of the user-to-user information in /psUserUserlnfo.

IineSetAppSpecific

This operation enables an application to set the application-specific field of the specified call's call
information record. The application-specific field in the LINECALLINFO data structure that exists
for each call is not interpreted by the Telephony API or any of its service providers. Its usage is entirely
defined by the applications. The field can be read from the LINECALLINFO record returned by
lineGetCallInfo.

TAPI function:

LONG lineSetAppSpecific(hCall, dwAppSpecific}

hCall Specifies a handle to the call whose application-specific field needs to be set. The application must
be an owner of the call.

dwAppSpeci fie Specifies the new content of the dwAppSpecific field.

TSPI function:

LONG TSPI_lineSetAppSpecific(hdCall, dwAppSpecific}

hdCall Specifies the handle to the call whose application-specific field is to be set.

dwAppSpecific Specifies the new content of the dwAppSpecific field.

120



Appendix E. TAPI/ TSPI interface specification

IineSetCaliParams

This function allows an application to change bearer mode and/or the rate parameters of an existing
call. This operation is used to change the parameters of an existing call. Examples of its usage include
changing the bearer mode and/or the data rate ofan existing call.

TAPI function:

LONG lineSetCallParams(hCall, dwBearerMode, dwMinRate, dwMaxRate,
IpDialParams)

hCall Specifies a handle to the call whose parameters are to be changed. The application must be an
owner of the call.

dwBearerMode Specifies the new bearer mode for the call. This parameter can have only a single bit set.
and it uses the LINEBEARERMODE_ constants.

dwMinRate Specifies a lower bound for the call's new data rate. The application is willing to accept a new
rate as low as this one.

dwMaxRate Specifies an upper bound for the call's new data rate. This is the maximum data rate the
application can accept. Ifan exact data rate is required, dwMinRate and dwMaxRate should be equal.

IpDialParams Specifies a far pointer to the new dial parameters for the call, of type

LINEDIALPARAMS. This parameter can be left NULL if the call's current dialing parameters are
to be used.

TSPI function:

LONG TSPI_lineSetCallParams(dwRequestID, hdCall, dwBearerMode, dwMinRate,
dwMaxRate, IpDialParams)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the call whose parameters are to be changed.

dwBearerMode Specifies the new bearer mode for the call. The dwBearerMode parameter can have only
one of the LINEBEARERMODE_ flags set.

dwMinRate Specifies a lower bound for the call's new data rate. TAPLDLL is willing to accept a new rate
as low as this one. Note that this parameter is not validated by TAPLDLL when this function is
called.

dwMaxRate Specifies an upper bound for the call's new data rate. This is the maximum data rate
TAPLDLL would like. Equal values for dwMinRate and dwMaxRate indicate that an exact data rate
is required. Note that this parameter is not validated by TAPLDLL when this function is called.

IpDialParams Specifies a far pointer to the new dial parameters for the call, of type

LINEDIALPARAMS. If this parameter is NULL, it indicates that the call's current dialing
parameters are to be used.

121



Computer Telephony Integration

IineSetCaliPrivilege

This operation sets the application's privilege to the specified privilege.
If the application is the sole owner of a non-idle can and wants to change its privilege to monitor, a
LINEERR_INVALCALLSTATE error is returned. If the application wants to, it can first drop the can
using lineDrop to make the can transition to the idle state and then change its privilege.

TAPI function:

LONG lineSetCallPrivilege(hCall, dWCallPrivilege)

hCall Specifies a handle to the call whose privilege is to be set.

dwcallPrivilege Specifies the privilege the application wants to have for the specified call. Only a
single flag can be set. This parameter uses the following LINECALLPRIVILEGE_ constants:
MONITOR the application requests monitor privilege to the call. These privileges allow the
application to monitor state changes and to query information and status about the call; OWNER the
application requests owner privilege to the call. These privileges allow the application to manipulate
the call in ways that affect the state of the call.

TSPI function:

None. The function is handled entirely within TAPLDLL.

lineSetCurrentLocation

This operation sets the location used as the context for address translation.

TAPI function:

LONG lineSetCurrentLocation(hLineApp, dwLocation)

hLineApp Specifies the application handle returned by Iinelnitialize.

dwLoca tion Specifies a new value for the CurrentLocation entry in the [Locations] section of
TELEPHON.INI. It must contain a valid permanent ill ofa Location entry in the [Locations] section,
as obtained from IineTranslateCaps. If it is valid, the CurrentLocation entry is updated.

TSPI function:

None. The function is handled entirely within TAPLDLL.

122



Appendix E. TAPI I TSPI interface specification

IineSetDevConfig

This function allows the application to restore the configuration of a media stream device on a line
device to a setup previously obtained using lineGetDevConfig.
For example, the contents of this structure could specify data rate, character format, modulation
schemes, and error control protocol settings for a "datamodem" media device associated with the line.
Typically, an application will call1ineGetID to identify the media stream device associated with a line,
and then call lineConfigDialog to allow the user to set up the device configuration. It could then call
lineGetDevConfig and save the configuration information in a phone book or other database associated
with a particular call destination. When the user later wants to call the same destination again, this
function lineSetDevConfig can be used to restore the configuration settings selected by the user.
lineSetDevConfig, lineConfigDialog, and lineGetDevConfig can be used, in that order, to allow the
user to view and update the settings.
The exact format ofthe data contained within the structure is specific to the line and media stream API
(device class), is undocumented, and is undefined. The application must treat it as "opaque" and not
manipulate the contents directly. Generally, the structure can be sent using this function only to the
same device from which it was obtained. Certain Telephony service providers may, however, permit
structures to be interchanged between identical devices (that is, multiple ports on the same multi-port
modem card). Such interchangability is not guaranteed in any way, even for devices of the same device
class.
Note that some service providers may permit the configuration to be set while a call is active, and others
may not.

TAPI function:
LONG lineSetDevConfig (dwDeviceID, IpDeviceConfig, dwSize, IpszDeviceClass)

dwDeviceID Specifies the line device to be configured.

IpDeviceConfig Specifies a far pointer to the opaque configuration data structure that was returned by
IineGetDevConfig in the variable portion of the VARSTRING structure.

dwSize Specifies the number of bytes in the structure pointed to by IpDeviceConfig. This value will have
been returned in the dwStringSize field in the VARSTRING structure returned by
IineGetDevConfig.

IpszDeviceClass Specifies a far pointer to a NULL-terminated ASCII string that specifies the device
class of the device whose configuration is to be set. Valid device class strings are the same as those
specified for the lineGetID function.

TSPI function:

LONG TSPI_lineSetDevConfig (dwDeviceID, IpDeviceConfig, dwSize,
IpszDeviceClass)

dwDeviceID Specifies the line device to be configured..

IpDeviceConfig Specifies a far pointer to the configuration data structure which had been returned in
the variable portion of the VARSTRING structure by TSPI_lineGetDevConfig.

dwSize Specifies the number of bytes in the structure pointed to be IpDeviceConfig. This value will have
been returned in the dwStringSize field in the VARSTRING structure returned by
TSPI_lineGetDevConfig.

IpszDeviceClass Specifies a far pointer to a NULL-terminated ASCII string that specifies the device
class of the device whose configuration is to be restored. Valid device class strings are the same as
those specified for the TSPI_lineGetID function when it is applied to a "line" device (that is, when
dwSelect has the value LINECALLSELECT_LINE).

123



Computer Telephony Integration

IineSetMediaControl

This function enables and disables control actions on the media stream associated with the specified
line, address, or call. Media control actions can be triggered by the detection of specified digits, media
modes, custom tones, and call states.
This function is considered successful if media control has been correctly initiated, not when any media
control has taken effect. Media control in progress is changed or is canceled by calling this function
again with either different parameters or NULLs. If one or more of the parameters lpDigitList,
lpMediaList, lpToneList, and lpCal!StateList are NULL, then the corresponding digit, media mode,
tone, or call state-triggered media control is disabled. To modify just a portion of the media control
parameters while leaving the remaining settings in effect, the application should invoke
IineSetMediaControl supplying the previous parameters for those portions that must remain in effect,
and new parameters for those parts that are to be modified.
If hCal! is selected and the call terminates or the application deallocates its handle, media control on
that call is canceled.
All applications that are owners of the call are in principle allowed to make media control requests on
the call. Only a single media control request can be outstanding on a call across all applications that
own the call. Each time IineSetMediaControI is called, the new request overrides any media control
then in effect on the call, whether set by the calling application or any other owning application.
Depending on the service provider and other activities that compete for such resources, the amount of
simultaneous detections that can be made may vary over time. If service provider resources are
overcommitted, the LINEERR_RESOURCEUNAVAIL error is returned.
Whether or not media control is supported by the service provider is a device capability.

TAPI function:

LONG lineSetMediaControl(hLine, dwAddressID, hCall, dWSelect, IpDigitList,
dwDigitNurnEntries, lpMediaList, dwMediaNurnEntries, lpToneList,
dwToneNurnEntries, lpCallStateList, dwCallStateNurnEntries)

hLine Specifies a handle to an open line device.

dwAddressID Specifies an address on the given open line device.

hCall Specifies a handle to a call. The application must be an owner of the call.

dwSelect Specifies whether the media control requested is associated with a single call, is the default for
all calls on an address, or is the default for all calls on a line. This parameter can only have a single
flag set, and it uses the following LINECALLSELECT_ constants: LINE selects the specified line
device. The hLine parameter must be a valid line handle; hCa// and dwAddressID are ignored;
ADDRES selects the specified address on the line. Both hLine and dwAddressID must be valid; hCa//
is ignored; CALL selects the specified call. hCa// must be valid; hLine and dwAddressID are both
ignored.

lpDigi tList Specifies a far pointer to the array that contains the digits that are to trigger media control
actions, of type LINEMEDIACONTROLDIGIT. Each time a digit listed in the digit list is
detected, the specified media control action is carried out on the call's media stream. Valid digits for
pulse mode are '0' through '9'. Valid digits for DTMF mode are '0' through '9', 'A', 'B', 'C', 'D',
'*', '#'.

dwDigi tNurnEntries Specifies the number of entries in the IpDigitList.

lpMediaList Specifies a far pointer to an array with entries of type LINEMEDIA-CONTROLMEDIA.
The array has dwMediaNumEntries entries. Each entry contains a media mode to be monitored,
media-type specific information (such as duration), and a media control field. Ifa media mode in the
list is detected, the corresponding media control action is performed on the call's media stream.

dwMediaNurnEntries Specifies the number of entries in IpMediaList.

124



Appendix E. TAPI/ TSPI interface specification

IpToneList Specifies a far pointer to an array with entries of type LINEMEDIA-CONTROLTONE.
The array has dwToneNumEntries entries. Each entry contains a description of a tone to be
monitored, duration of the tone, and a media-control field. If a tone in the list is detected, the
corresponding media control action is performed on the call's media stream.

dwToneNumEntries Specifies the number ofentries in IpToneList.

IpCallStateList Specifies a far pointer to an array with entries are of type LINEMEDIA
CONTROLCALLSTATE. The array has dwCallStateNumEntries entries. Each entry contains a
call state and a media control action. Whenever the given call transitions into one of the call states in
the list, the corresponding media control action is invoked.

dwCallStateNumEntries Specifies the number ofentries in IpCallStateList.

TSPI function:

LONG TSPI lineSetMediaControl(hdLine, dwAddressID, hdCall, dWSelect,
IpDigitList, dwDigitNumEntries, IpMediaList, dwMediaNumEntries,
IpToneList, dwToneNumEntries, IpCallStateList, dWCallStateNumEntries)

IineSetMediaMode

This function sets the media mode(s) ofthe specified call in its LINECALLINFO structure.

This function changes the call's media mode in its LINECALLINFO structure. Typical usage of this
operation is either to set a call's media mode to a specific known media mode or to exclude possible
media modes as long as the call's media mode is officially unknown (the UNKNOWN media mode flag
is set).

TAPI function:

LONG lineSetMediaMode(hCall, dwMediaModes)

hCall Specifies a handle to the call whose media mode is to be changed The application must be an
owner of the call.

dwMediaModes Specifies the new media mode(s) for the call. As long as the UNKNOWN media mode
flag is set, other media mode flags may be set as well. This is used to identify a call's media mode as
not fully determined, but narrowed down to one of a small set of specified media modes. If the
UNKNOWN flag is not set, only a single media mode can be specified

TSPI function:

LONG TSPI_lineSetMediaMode(hdCall, dwMediaMode)

hdCall Specifies the handle to the call undergoing a change in media mode.

dwMediaMode Specifies the new media mode(s) for the call. As long as the
LINEMEDIAMODE_UNKNOWN media mode flag is set, multiple other media mode flags may be
set as well. This is used to identify a call's media mode as not fully determined, but narrowed down
to one of just a small set of specified media modes. If the LINEMEDIAMODE_UNKNOWN flag is
not set, only a single media mode can be specified.

125



Computer Telephony Integration

IineSetNumRings

This function is used by an application to set the number of rings it wants an incoming call to ring prior
to answering the call. This function can be used to implement a toll-saver-style function. It allows
multiple independent applications to each register the number of rings. The function lineGetNumRings
returns the minimum number of all number of rings requested. It can be used by the application that
answers inbound calls to determine the number of rings it should wait before answering the call.
The lineGetNumRings and lineSetNumRings functions, when used in combination, provide a
mechanism to support the implementation of toll-saver features across multiple independent
applications. An application that is the owner of a call in the offering state and that received a
LINE_LINEDEVSTATE ringing message should wait a number of rings equal to the number
returned by lineGetNumRings before answering the call in order to honor the toll-saver settings across
all applications. A separate LINE_LINEDEVSTATE ringing message is sent to the application for
each ring cycle, so the application should count these messages. If this call disconnects before being
answered, and another call comes in shortly thereafter, the LINE_CALLSTATE message should allow
the application to determine that ringing is related to the second call.

TAPI function:

LONG lineSetNumRings(hLine, dwAddressID, dwNumRings)

hLine Specifies a handle to the open line device.

dwAddressID Specifies an address on the line device.

dwNumRings Specifies the number of rings before a call should be answered in order to honor the toll
saver requests from all applications.

TSPI function:

None. The function is handled entirely within TAPI.DLL.

lineSetStatusMessages

This function enables an application to specify which notification messages the application wants to
receive for events related to status changes for the specified line or any of its addresses.
TAPI defines a number of messages that notify applications about events occurring on lines and
addresses. An application may not be interested in receiving all address and line status change
messages. lineSetStatusMessages can be used to select which messages the application wants to
receive. By default, address and line status reporting is disabled.

TAPI function:

LONG lineSetStatuSMessages(hLine, dwLineStates, dwAddressStates)

hLine Specifies a handle to the line device.

dwLineStates Specifies a bit array that identifies for which line-device status changes a message is to be
sent to the application.

dwAddressStates Specifies a bit array that identifies for which address status changes a message is to
be sent to the application.

TSPI function:

LONG TSPI_lineSetStatusMessages(hdLine, dwLineStates, dwAddressStates)

126



Appendix E. TAPI / TSPI interface specification

IineSetTerminal

This function enables an application to specify which tenninal infonnation related to the specified line,
address, or call is to be routed. lineSetTerminal can be used while calls are in progress on the line to
allow an application to route these events to different devices as required.
An application can use this function to route certain classes of low-level line events to the specified
tenninal device or to suppress the routing ofthese events. For example, voice may be routed to an audio
I/O device (headset); lamps and display events may be routed to the local phone device, and button
events and ringer events may be suppressed altogether.
This function can be called at any time, even when a call is active on the given line device. This allows a
user to switch from using the local phone set to another audio I/O device. This function may be called
multiple times to route the same events to multiple tenninals simultaneously. To reroute events to a
different tenninal, the application should first disable routing to the existing tenninal and then route the
events to the new tenninal.
Tenninal ID assignments are made by the line's service provider. Device capabilities indicate only
which tenninal IDs the service provider has available. Service providers that do not support this type of
event routing would indicate that they have no tenninal devices (dwNumTerminals in
LINEDEVCAPS would be zero).
Invoking lineSetTerminal on a line or address affects all existing calls on that line or address, but does
not affect calls on other addresses. It also sets the default for future calls on that line or address. A line
or address that has multiple connected calls active at one time may have different routing in effect for
each call.
Disabling the routing of low-level events to a tenninal when these events are not currently routed to or
from that tenninal will not necessarily generate an error so long after the function succeeds (the
specified events are not routed to or from that tenninal).

TAPI function:

LONG lineSetTe~nal(hLine, dwAddressID, hCall, dwSelect, dwTerminalModes,
dwTerminalID, bEnable)

hLine Specifies a handle to an open line device.

dwAddressID Specifies an address on the given open line device.

hCall Specifies a handle to a call.

dwSelect Specifies whether the terminal setting is requested for the line, the address, or just the specified
call. If line or address is specified, events either apply to the line or address itself or serves as a
default initial setting for all new calls on the line or address.

dwTerminalModes Specifies the class(es) oflow-Ievel events to be routed to the given terminal.

dwTerminalID Specifies the device ID of the terminal device where the given events are to be routed.
Terminal IDs are small integers in the range of 0 to one less than dwNumTerminals, where
dwNumTerminals, and the terminal modes each terminal is capable of handling, are returned by
IineGetDevCaps. Note that these terminal IDs have no relation to other device IDs and are defined
by the service provider using device capabilities.

bEnable If TRUE, dwTenninalID is valid and the specified event classes are routed to or from that
terminal. If FALSE, these events are not routed to or from the terminal device with ID equal to
dwTerminalID.

TSPI function:

LONG TSPI lineSetTe~nal(dwRequestID,hdLine, dwAddressID, hdCall,
dwselect, dwTerminalModes, dwTerminalID, bEnable)

127



Computer Telephony Integration

IineSetTollList

This function manipulates the toll list.

TAPI function:

LONG lineSetTollList(hLineApp, dwDeviceID, lpszAddressln, dwTollListOption)

hLineApp Specifies the application handle returned by Iinelnitialize.

dwDeviceID Specifies the device ill for the line device upon which the call is intended to be dialed, so
that variations in dialing procedures on different lines can be applied to the translation process.

lpszAddressln Specifies a far pointer to a NULL-terminated ASCII string containing the address from
which the prefix information is to be extracted for processing. This parameter must not be NULL,
and it must be in the canonical address format.

dwTollListOption Specifies the toll list operation to be performed. Only a single flag can be set. This
parameter uses the following LINETOLLLISTOPTION_ constants: ADD causes the prefix contained
within the string pointed to by IpszAddressln to be added to the toll list for the current location;
REMOVE causes the prefix to be removed from the toll list ofthe current location. Iftoll lists are not
used or relevant to the country indicated in the current location, the operation has no affect.

TSPI function:

None. The function is handled entirely within TAPI.DLL.

lineSetupConference

This function sets up a conference call for the addition of the third party. lineSetupConference
provides two ways to establish a new conference call, depending on whether a nonnal two-party call is
required to pre-exist or not. When setting up a conference call from an existing two-party call, the hCall
parameter is a valid call handle that is initially added to the conference call by the lineSetupConference
request; hLine is ignored. On switches where conference call setup does not start with an existing call,
hCall must be NULL and hLine must be specified to identify the line device on which to initiate the
conference call. In either case, a consultation call is allocated for connecting to the party that is to be
added to the call. The application can then use lineDial to dial the address ofthe other party.
The conference call typically transitions into the onHoldPendingConjerence state, the consultation call
into the dialtone state, and the initial call (ifthere is one) into the conferenced state.
A conference call can also be set up by a lineCompleteTransfer that is resolved into a three-way
conference. The application may be able to toggle between the consultation call and the conference call
using lineSwapHold.
A consultation call can be canceled by invoking lineDrop on it. When dropping a consultation call, the
existing conference call typically transitions back to the connected state.

TAPI function:

LONG lineSetupConference(hCall, hLine, lphConfCall, lphConsultCall,
dwNumParties, lpCallParams)

hCall Specifies the initial call that identifies the first party of a conference call. In some environments (as
described in device capabilities), a call must exist in order to start a conference call, and the
application must be an owner of this call. In other telephony environments, no call initially exists,
heal! must be left NULL, and hLine must be specified to identify the line on which the conference
call is to be initiated.

128



Appendix E. TAPI/ TSPI interface specification

hLine Specifies a handle to the line. This handle is used to identify the line device on which to originate
the conference call ifhCall is NULL. The hLine parameter is ignored ifhCall is non-NULL.

lphConfCall Specifies a far pointer to an HCALL handle. This location is then loaded with a handle
identifying the newly created conference call. The application will be the initial sole owner of this
call.

lphConsul tCall Specifies a far pointer to an HCALL handle. When setting up a call for the addition of
a new party, a new temporary call (consultation call) is automatically allocated. Initially, the
application will be the sole owner for this call.

dwNumParties Specifies the expected number of parties in the conference call. This number is passed to
the service provider.

lpCallParams Specifies a far pointer to call parameters to be used when establishing the consultation
call. This parameter may be set to NULL ifno special call setup parameters are desired.

TSPI function:

LONG TSPI lineSetupConference(dwRequestID, hdCall, hdLine, htConfCall,
lphdConfCall, htConsultCall, lphdConsultCall, dwNumParties,
lpCallParams)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the initial call that identifies the first party of a conference call.

hdLine Specifies the handle to the line device on which to originate the conference call ifhdCall is NULL.
The hdLine parameter is ignored if hdCall is non-NULL. The service provider reports which model
it supports through the setupConfNull flag of the LINEADDRESSCAPS data structure.

htConfCall Specifies TAPI.DLL's handle to the new conference call. The service provider must save
this and use it in all subsequent calls to the LINEEVENT procedure reporting events on the new
call.

lphdConfCall Specifies a far pointer to an HDRVCALL representing the service provider's identifier for
the newly created conference call. The service provider must fill this location with its handle for the
new call before this procedure returns. This handle is ignored by TAPI.DLL if the function results in
an error.

htConsul tCall Specifies TAPI.DLL's handle to the consultation call. When setting up a call for the
addition of a new party, a new temporary call (consultation call) is automatically allocated. The
service provider must save the htConsu/tCall and use it in all subsequent calls to the LINEEVENT
procedure reporting events on the new consultation call.

lphdConsul tCall Specifies a far pointer to an HDRVCALL representing the service provider's
identifier for a call. When setting up a call for the addition of a new party, a new temporary call
(consultation call) is automatically allocated. The service provider must fill this location with its
handle for the new consultation call before this procedure returns. This handle is ignored by
TAPI.DLL if the function results in an error.

dwNumParties Specifies the expected number of parties in the conference call. The service provider is
free to do with this number as it pleases. For example, the service provider can ignore it, or use it as
a hint to allocate the right size conference bridge inside the switch. Note that this parameter is not
validated by TAPI.DLL when this function is called.

lpCallParams Specifies a far pointer to call parameters to be used when establishing the consultation
call. This parameter will be set to NULL if no special call setup parameters are desired and the
service provider uses default parameters.

129



Computer Telephony Integration

IineSetupTransfer

This function initiates a transfer of the call specified by hCali. It establishes a consultation call,
lphConsultCall, on which the party can be dialed that can become the destination of the transfer. The
application acquires owner privilege to lphConsultCali.
This function sets up the transfer of the call specified by hCali. The setup phase of a transfer
establishes a consultation call that enables the application to send the address of the destination (the
party to be transferred to) to the switch, while the call to be transferred is kept on hold. This new call is
referred to as a consultation call (hConsultCall) and can be dropped or otherwise manipulated
independently ofthe original call.
When the consultation call has reached the dialtone call state, the application may proceed transferring
the call either by dialing the destination address and tracking its progress, or by unholding an existing
call. The transfer of the original call to the selected destination is completed using
lineCompleteTransfer.
While the consultation call exists, the original call typically transitions to the onholdPendingTransfer
state. The application may be able to toggle between the consultation call and the original call by using
lineSwapHold. A consultation call can be canceled by invoking lineDrop on it. After dropping a
consultation call, the original call will typically transition back to the connected state
The application may also transfer calls in a single step, without having to deal with the intervening
consultation call by using lineBlindTransfer.

TAPI function:

LONG lineSetupTransfer(hCall, lphConsultCall, lpCallParams)

hCall Specifies the handle of the call to be transferred. The application must be an owner of the call.

lphConsul tCall Specifies a far pointer to an HCALL handle. This location is then loaded with a handle
identifying the temporary consultation call. When setting up a call for transfer, another call (a
consultation call) is automatically allocated to enable the application to dial the address (using
IineDial) of the party to where the call is to be transferred. The originating party can carry on a
conversation over this consultation call prior to completing the transfer. This transfer procedure may
not be valid for some line devices. The application may need to ignore the new consultation call and
unhold an existing held call (using lineUnhold) to identify the destination of the transfer. It may also
be necessary that the consultation call be set up as an entirely new call, by IineMakeCall, to the
destination of the transfer. Which forms of transfer are available are specified in the call's address
capabilities.

lpCallParams Specifies a far pointer to call parameters to be used when establishing the consultation
call. This parameter may be set to NULL ifno special call setup parameters are desired..

TSPI function:

LONG TSPI_lineSetupTransfer(dwRequestID, hdCall, htConsultCall,
lphdConsultCall, lpCallParams)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the call to be transferred.

htConsultCall Specifies TAPI.DLL's handle to the new, temporary consultation call. The service
provider must save this and use it in all subsequent calls to the LINEEVENT procedure reporting
events on the new consultation call.

lphdConsul tCall Specifies a far pointer to an HDRVCALL representing the service provider's
identifier for the new consultation call. The service provider must fill this location with its handle for
the new consultation call before this procedure returns. This handle is ignored by TAPI.DLL if the
function results in an error. When setting a call up for transfer, another call (a consultation call) is
automatically allocated to enable the application (through TAPI.DLL) to dial the address (using
TSPI_lineDial) of the party to where the call is to be transferred.. The originating party can carry on
a conversation over this consultation call prior to completing the transfer. This transfer procedure

130



Appendix E. TAPI/ TSPI interface specification

may not be valid for some line devices. Instead of calling this procedure, TAPI.DLL may need to
unhold an existing held call (using TSPI_lineUnhold) to identify the destination of the transfer. It
may also be necessary to set up the consultation call as an entirely new call using
TSPI_lineMakeCall, to the destination of the transfer. The transferHeld and transferMake flags
in the LINEADDRESSCAPS data structure report what model the service provider uses.

IpCallParams Specifies a far pointer to call parameters to be used when establishing the consultation
call. This parameter may be set to NULL if no special call setup parameters are desired (the service
provider uses defaults).

IineShutdown

This fimction shuts down the application's usage ofthe line abstraction of API.
If this fimction is called when the application has lines open or calls active, the call handles are deleted
and TAPI.DLL automatically performs the equivalent of a lineClose on each open line. However, it is
recommended that applications explicitly close all open lines before invoking lineShutdown. If
shutdown is performed while asynchronous requests are outstanding, those requests will be cancelled.

TAPI function:

LONG lineShutdown(hLineApp)

hLineApp Specifies the application's usage handle for the line API.

TSPI function:

The last application that calls lineShutdown causes TAPI.DLL and all service providers providers to be
unloaded. This results in the fimction TSPtproviderShutdown being called in each service provider.

IineSwapHold

This fimction swaps the specified active call with the specified call on consultation hold.
Swapping the active call with the call on consultation hold allows the application to alternate or toggle
between these two calls. This is typical in call waiting.

TAPI function:

LONG lineSwapHold(hActiveCall, hHeldCall)

hActiveCall Specifies the handle to the active call. The application must be an owner of the call.

hHeldCall Specifies the handle to the consultation call. The application must be an owner of the call.

TSPI function:

LONG TSPI_lineSwapHold(dwRequestID, hdActiveCall, hdHeldCall)

dwRequestID Specifies the identifier of the asynchronous request.

hdActiveCall Specifies the handle to the call to be swapped with the calIon consultation hold

hdHeldCall Specifies the handle to the consultation call.

131



Computer Telephony Integration

lineTranslateAddress

This operation translates the specified address into another format.

TAPI function:

LONG lineTranslateAddress(hLineApp, dwDeviceID, dwAPIVersion,
lpszAddressln, dWCard, dwTranslateOptions, lpTranslateOutputJ

hLineApp Specifies the application handle returned by Iinelnitialize.

dwDeviceID Specifies the device ill for the line device upon which the call is intended to be dialed, so
that variations in dialing procedures on different lines can be applied to the translation process.

dwAPIVersion Indicates the version ofTAPI negotiated by IineNegotiateAPIVersion.

lpszAddressln Specifies a far pointer to a NULL-tenninated ASCII string containing the address from
which the prefix infonnation is to be extracted for processing. Must be in either the canonical
address fonnat, or an arbitrary string of dialable digits (non-eanonical). This parameter must not be
NULL. If the Addressln contains a subaddress or name field, or additional addresses separated from
the first address by ASCII CR and LF characters, only the first address is translated, and the
remainder of the string is returned to the application without modification.

dwCard Specifies the credit card to be used for dialing. This field in only valid if the CARDOVERRIDE
bit is set in dwTranslateOptions. This field specifies the permanent ill ofa Card entry in the [Cards]
section of TELEPHON.INI (as obtained from IineTranslateCaps) which should be used instead of
the PreferredCardID specified in the definition of the CurrentLocation. It does not cause the
PreferredCardID parameter of the current Location entry in TELEPHON.INI to be modified; the
override applies only to the current translation operation. This field is ignored if the
CARDOVERRIDE bit is not set in dwTranslateOptions.

dwTranslateOptions Specifies the associated operations to be performed prior to the translation of the
address into a dialable string. This parameter uses the following LINETRANSLATEOPTION_
constants: CARDOVERRIDE If this bit is set, dwCard specifies the permanent ill of a Card entry in
the [Cards] section ofTELEPHON.INI (as obtained from IineTranslateCaps) which should be used
instead of the PreferredCardID specified in the definition of the CurrentLocation. It does not cause
the PreferredCardID parameter of the current Location entry in TELEPHON.INI to be modified; the
override applies only to the current translation operation. The dwCard field is ignored if the
CARDOVERRIDE bit is not set.

lpTranslateOutput Specifies a far pointer to an application-allocated memory area to contain the
output of the translation operation, of type LINETRANSLATEOUTPUT. Prior to calling
IineTranslateAdress, the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI.DLL for returning infonnation.

TSPI function:

None. The function is handled entirely within TAPI.DLL.

132



Appendix E. TAPI / TSPI interface specification

IineUncompleteCall

This function is used to cancel the specified call competion request on the specified line.

TAPI function:

LONG lineUncompleteCall(hLine, dWCompletionID)

hLine Specifies a handle to the line device on which a call completion is to be canceled.

dWCompletionID Specifies the completion ill for the request that is to be canceled.

TSPI function:

LONG TSPI_lineUncompleteCall(dwRequestID, hdLine, dWCompletionID)

dwRequestID Specifies the identifier of the asynchronous request.

hdLine Specifies the handle to the line on which a call completion is to be canceled

dWCompletionI D Specifies the completion ill for the request that is to be canceled. This parameter is not
validated by TAPI.DLL when this function is called.

lineUnhold

This function retrieves the specified held call.
This operation works only for calls on hard hold (calls placed on hold using lineHold).

TAPI function:

LONG lineUnhold(hCall)

hCall Specifies the handle to the call to be retrieved. The application must be an owner of this call.

TSPI function:

LONG TSPI_lineUnhold(dwRequestID, hdCall)

dwRequestID Specifies the identifier of the asynchronous request.

hdCall Specifies the handle to the call to be retrieved.

133



Computer Telephony Integration

IineUnpark

This fimction retrieves the call parked at the specified address and returns a call handle for it.

TAPI function:

LONG lineUnpark{hLine, dwAddressID, lphCall, lpszDestAddress)

hLine Specifies a handle to the open line device on which a call is to unparked.

dwAddressID Specifies the address on hLine at which the unpark is to be originated.

lphCall Specifies a far pointer to the location of type HCALL where the handle to the unparked call is
returned. This handle is unrelated to any other handle which might have been previously associated
with the retrieved call, such as the handle that might have been associated with the call when it was
originally parked. The application will be the initial sole owner of this call.

lpszDestAddress Specifies a far pointer to a NULL-terminated character buffer that contains the
address where the call is parked. The address is in standard dialable address format.

TSPI function:

LONG TSPI_lineUnpark{dwRequestID, hdLine, dwAddressID, htCall, lphdCall,
lpszDestAddress)

dwRequestID Specifies the identifier of the asynchronous request.

hdLine Specifies the handle to the line on which a call is to be unparked.

dwAddressID Specifies the address on hdLine at which the unpark is to be originated. This parameter is
not validated by TAPI.DLL when this function is called.

htCall Specifies TAPI.DLL's handle to the new unparked call. The service provider must save this and
use it in all subsequent calls to the LINEEVENT procedure reporting events on the call.

lphdCall Specifies a far pointer to an HDRVCALL representing the service provider's identifier for the
new unparked call. The service provider must fill this location with its handle for the call before this
procedure returns. This handle is invalid if the function results in an error.

lpszDestAddress Specifies a far pointer to a NULL terminated ASCII string that contains the address
where the call is parked. The address is in dialable address format.

134



Appendix E. TAPI/ TSPI interface specification

Messages

All of the TAPI messages are sent to the application's callback function. When an application uses
linelnitialize, it specifies this callback function by passing its entry point as a parameter.
The callback message always contains a handle to the relevant object (phone device, line device or call).
The callback function can detennine the type of the handle from the message that was passed to the
callback. The actual parameters that are passed to the application's callback function are described for
each ofthe messages.
Most TAPI messages sent to an application's callback function are a resuh of TSPI messages sent from
a service provider to TAPI.DLL's callback function. Actually, TAPI.DLL contains two callback
functions: one for asynchronous completion messages and one for line event messages.

Application's callback function profile (TAPI):

void CALLBACK CallbackFunc(dwDevice, dwMsg, dWCallbacklnstance,
dWParaml, dWPararn2, dwParam3)

CallbackFunc is a placeholder for the application-supplied function name.

dwDevice Specified a handle to either a line device, phone device, or a call associated with the callback.
The nature of this handle (line handle, phone handle, or call handle) can be determined by the
context provided by duMsg.

dwMsg Specifies a line, call, or phone device message.

dwCallbacklnstance Specifies the user instance data specified at API initialization time.

dWParaml, dwPararn2 and dwParam3 Specify parameters for the message's contents.

TAPI.DLL's callback functions profiles (TSPI):

void CALLBACK Completion_Proc(dwRequestID, lResult)

dwRequestID Specifies the ill that was passed in the original request that the service provider executed
asynchronously.

lResult Specifies the outcome of the operation. This can be zero to indicate success or a negative number
to indicate an error. The possible specific error values that may result from a function are the same
for asynchronous or synchronous execution.

void CALLBACK Line Event(htLine, htCall, dwMsg, dWParaml, dWPararn2,
dwParam3) -

htLine Specifies TAPLDLL's handle for the line on which the event occurred.

htCall Specifies TAPLDLL's handle for the call on which the event occurred if this is a call-related
event. For line-related events where there is no call, this parameter should be set to zero.

dwMsg Specifies what kind of event is being reported. Interpretation of the other parameters is done in
different ways according to the context indicated by dwMsg.

dWParaml, dwParam2 and dwParam3 Specify parameters for the message's contents.

135



Computer Telephony Integration

L1NE_ADDRESSSTATE

This message is sent when the status of an address changes on a line that is currently open by the
application. The application can invoke lineGetAddressStatus to detennine the current status of the
address. This message is sent to any application that has opened the line device and that has enabled this
message. The sending of this message for the various status items can be controlled and queried using
lineGetStatusMessages and lineSetStatusMessages. By default, address status reporting is disabled.

TAPI message parameters:

dwDevi ce Specifies a handle to the line device.

dwParaml Specifies the address ill of the address that changed status.

dWParam2 Specifies the address state that changed. This parameter uses the LINEADDRESSSTATE_
constants.

dWParam3 Unused.

TSPI line event message parameters:

htLine Specifies TAPLDLL's opaque object handle to the line device.

htCall Unused

dwMsg The value LINE_ADDRESSSTATE

dwParaml Specifies the address ill of the address that changed status.

dwParam2 Specifies the address state that changed.

dwParam3 Unused.

This message is sent when the call infonnation about the specified call has changed. The application can
invoke lineGetCallInfo to detennine the current call infonnation.
A LINE_CALLINFO message with a NumOwnerslncr, NumOwnersDecr, and/or
NumMonitorsChanged indication is sent to applications that already have a handle for the call. This can
be the result of another application changing ownership or monitorship to a call with lineOpen,
lineClose, lineShutdown, lineSetCallPrivilege, lineGetNewCalls, and lineGetConfRelatedCails.

TAPI message parameters:

dwDevi ce Specifies a handle to the call.

dwParaml Specifies the call information item that has changed. This parameter uses the LINECALL
INFOSTATE constants.

dWParam2, dwParam3 Unused.

TSPI line event message parameters:

htLine Specifies TAPLDLL's opaque object handle to the line device.

htCall Specifies TAPLDLL's opaque object handle to the call device.

dwMsg The value LINE_CALLINFO

dwParaml Specifies the call information item that has changed.

dWParam2, dwParam3 Unused.

136



Appendix E. TAPI I TSPI interface specification

This message is sent whenever the status of the specified call has changed. Several such messages will
typically be received during the lifetime of a call. Applications are notified of new incoming calls with
this message; the new call will be in the offtring state. The application can use lineGetCallStatus to
retrieve more detailed infonnation about the current status ofthe call.
This message is sent to any application that has a handle for the call. Note that the
LINE_CALLSTATE message also notifies applications that monitor calls on a line about the
existence and state of outbound calls established by other applications or manually by the user (for
example, on an attached phone device). The call state of such calls reflects the actual state of the call,
which will not be offtring. By examining the call state, the application can determine whether the call is
an inbound call that needs to be answered or not.

TAPI message parameters:

dwDevice Specifies a handle to the call.

dwPa r amI Specifies the new call state. This parameter uses the following LINECALLSTATE_ contstants.

dwParam2 Specifies call-state-dependent information.

dwParam3 Ifzero, this parameter indicates that there has been no change in the application's privilege for
the call. If non-zero, it specifies the application's privilege to the call. This will occur in the
following situations: (1) The first time that the application is given a handle to this call; (2) When
the application is the target of a call handoff (even if the application already was an owner of the
call). This parameter uses the following LINECALLPRIVILEGE_ constants: MONITOR and
OWNER

TSPI line event message parameters (1):

htLine Specifies TAPLDLL's opaque object handle to the line device.

htCall Unused

dwMsg The value LINE_NEWCALL

dwParamI Specifies the service provider's opaque handle for the call, of type HDRVCALL. TAPLDLL
will pass this value as the hdCall parameter to identify the call in subsequent procedures it invokes to
operate on the call.

dwParam2 Afar pointer pointing to a HTAPICALL. TAPLDLL writes TAPLDLL's opaque handle for the
call to the indicated location. The service provider must save this value and pass it as the htCall
parameter to identify the call in subsequent events it reports for the call.

dwParam3 Unused.

TSPI line event message parameters (2):

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Specifies TAPI.DLL's opaque object handle to the call device.

dwMsg The value LINE_CALLSTATE

dwParamI Specifies the new call state.

dwPararn2 Specifies call-state-dependent information.

dwParam3 The media mode of the call, as far as it is known. This is a combination of LINEMEDIA
MODE_ constants. If the service provider does not know the media mode, it should include the
UNKNOWN bit together with all media modes currently being monitored for.

137



Computer Telephony Integration

This message is sent when the specified line device has been forcibly closed. The line device handle or
any call handles for calls on the line are no longer valid once this message has been sent.
This message is only sent to any application after an open line has been forcibly closed. This may be
done to prevent a single application from monopolizing a line device for too long. Whether or not the
line can be reopened immediately after a forced close is device-specific.
A line device may also be forcibly closed after the user has modified the configuration ofthat line or its
driver. If the user wants the configuration changes to be effective immediately (as opposed to after the
next system restart), and they affect the application's current view of the device (such as a change in
device capabilities), then a service provider may forcibly close the line device.

TAPI message parameters:

dwDevice Specifies a handle to the line device that was closed This handle is no longer valid.

dWParaml, dWParam2, dwParam3 Unused.

TSPI line event message parameters:

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Unused

dWMsgThevalueL~_CLOSE

dWParaml, dwParam2, dwParam3 Unused.

L1NE_DEVSPECIFIC

This message is sent to notify the application about device-specific events occurring a line, address or
call. The meaning ofthe message and the interpretation ofthe parameters is device specific.
This message is used by a service provider in conjunction with the lineDevSpecific function. Its
meaning is device specific.

TAPI message parameters:

dwDevice Specifies a handle to either a line device or call. This is device specific.

dWParaml, dWParam2, dwParam3 Device specific.

TSPI line event message parameters (1):

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Specifies TAPI.DLL's opaque object handle to the call device.

dwMsg The value LINE_CALLDEVSPECIFIC

dWParaml, dWParam2, dwParam3 Device specific.

TSPI line event message parameters (2):

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Unused

dwMsg The value LINE_DEVSPECIFIC

dWParaml, dWParam2, dWParam3 Device specific.

138



Appendix E. TAPI / TSPI interface specification

L1NE_DEVSPECIFICFEATURE

This message is sent to notify the application about device-specific events occurring on a line, address
or call. The meaning of the message and the interpretation of the parameters is device specific. This
message is used by a service provider in conjunction with the lineDevSpecificFeature function

TAPI message parameters:

dwDevice Specifies a handle to either a line device or call. This is device specific.

dwParaml, dwParam2, dwParam3 Device specific.

TSPI line event message parameters (1):

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Specifies TAPI.DLL's opaque object handle to the call device.

dwMsg The value LINE_CALLDEVSPECIFICFEATURE

dWParaml, dWParam2, dwParam3 Device specific.

TSPI line event message parameters (2):

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Unused

dwMsg The value LINE_DEVSPECIFICFEATURE

dWParaml, dwParam2, dwParam3 Device specific.

L1NE_GATHERDIGITS

This message is sent when the current buffered digit-gathering request has terminated or is canceled. It
is only sent to the application that initiated the digit gathering on the call using lineGatherDigits.

TAPI message parameters:

dwDevice Specifies a handle to the call.

dwParaml Specifies the reason why digit gathering was terminated. This parameter uses the following
LlNEGATHERTERM_ constants: BUFFERFULL the requested number of digits has been gathered;
TERMDIGIT one of the termination digits matched a received digit; FIRSTTIMEOUT the first digit
timeout expired; INTERTIMEOUT the inter-digit timeout expired; CANCEL the request was
canceled by this application, by another application, or because the call terminated.

dWParam2, dwParam3 Unused.

TSPI line event message parameters:

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Specifies TAPI.DLL's opaque object handle to the call device.

dwMsg The value LINE_GATHERDIGITS

dwParaml Specifies the reason why digit gathering was terminated.

dwParam2 The dwEndToEndID that was specified in the original TSPI_lineGatherDigits request for
which this is the final result.

dwParam3 Unused.

139



Computer Telephony Integration

This message is sent to notify the application that the current digit or tone generation has terminated.
Note that only one such generation request can be in progress an a given call at any time. This message
is also sent when digit or tone generation is canceled.
This message is only sent to the application that requested the digit or tone generation.

TAPI message parameters:

dwDevice Specifies a handle to the call.

dWParamlSpecifies the reason why digit or tone generation was terminated. This parameter uses the
following LINEGENERATETERM_ constants: DONE the requested number of digits have been
generated, or the requested tones have been generated for the requested duration; CANCEL the digit
or tone generation request was canceled by this application, by another application, or because the
call terminated.

dWParam2, dwParam3 Unused.

TSPI line event message parameters:

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Specifies TAPI.DLL's opaque object handle to the call device.

dwMsg The value LINE_GENERATE

dwParaml Specifies the reason why digit or tone generation was terminated.

dwParam2 The dwEndToEndJD parameter that was specified in the original TSPI_lineGenerateDigits or
TSPI_lineGenerateTone request for which this is the final result.

dwParam3 Unused.

140



Appendix E. TAPI / TSPI interface specification

LINE_L1NEDEVSTATE

This message is sent when the state of a line device has changed. The application can invoke
lineGetLineDevStatus to determine the new status ofthe line.
The sending ofthis message can be controlled with lineSetStatusMessages. An application can indicate
status item changes about which it wants to be notified. By default, all status reporting will be disabled
except for LINEDEVSTATE_REINIT, which cannot be disabled. This message is sent to all
applications that have a handle to the line, including those that called lineOpen with the dwPrivileges
parameter set to LINECALLPRIVILEGE_NONE, LINECALLPRIVILEGE_OWNER,
LINECALLPRIVILEGE_ MONITOR, or permitted combinations ofthese.

TAPI message parameters:

dwDevice Specifies a handle to the line device. This parameter is NULL when dwParaml is
LINEDEVSTATE REINIT.

dwParaml Specifies the line device status item that has changed. The parameter dwParaml can have
multiple flags set, and it uses the LINEDEVSTATE_ constants.

dwParam2 The interpretation of this parameter depends on the value of dwParaml. If dwParaml is
LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch instructs the
line to ring. Valid ring modes are numbers in the range one to dwNumRingModes, where
dwNumRingModes is a line device capability.

dwParam3 The interpretation of this parameter depends on the value of dwParaml. If dwParaml is
LINEDEVSTATE_RINGING, dwParam3 contains the ring count for this ring event. The ring count
starts at zero.

TSPI line event message parameters:

htLine Specifies TAPLDLL's opaque object handle to the line device.

htCall Unused

dwMsg The value LINE_LINEDEVSTATE

dwParaml Specifies the line device status item that has changed. This parameter can have multiple flags
set and uses the LINEDEVSTATE_ constants.

dwParam2 The interpretation of this parameter depends on the value of dwParaml. If dwParaml is
LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch instructs the
line to ring. Valid ring modes are numbers in the range one to dwNumRingModes, where
dwNumRingModes is a line device capability.

dwParam3 The interpretation of this parameter depends on the value of dwParaml. If dwParaml is
LINEDEVSTATE_RINGING, dwParam3 contains the ring count for this ring event. The ring count
starts at zero.

141



Computer Telephony Integration

LlNE_MONITORDIGITS

This message is sent whenever a digit is detected. The sending of this message is controlled with the
IineMonitorDigits function.

TAPI messsage parameters:

dwDevice Specifies a handle to the call.

dwParaml The low-order byte contains the last digit received in ASCII.

dwParam2 Specifies the digit mode that was detected. This parameter uses the following
LINEDIGITMODE_ constants: PULSE detect digits as audible clicks that are the result of rotary
pulse sequences. Valid digits for pulse are '0' through '9'; DTMF detect digits as DTMF tones.
Valid digits for DTMF are '0' through '9', 'A', 'B', 'C', '0', '.', and '#'; DTMFEND detect and
provide application notification of DTMF down edges.

dwParam3 Unused

TSPI line event message parameters:

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Specifies TAPI.DLL's opaque object handle to the call device.

dwMsg The value LINE_MONITORDIGITS

dwParaml The low-order byte contains the last digit received in ASCII.

dWParam2 Specifies the digit mode that was detected.

dwParam3 Unused.

LlNE_MONITORMEDIA

This message is sent whenever a change in the call's media mode is detected. The sending of this
message is controlled with the IineMonitorMedia function.

TAPI message parameters:

dwDevice Specifies a handle to the call.

dwParaml Specifies the new media mode. This parameter uses the LINEMEDIAMODE_ constants.

dwParam2, dwParam3 Unused.

TSPI line event message parameters:

htLine Specifies TAPI.DLL's opaque object handle to the line device.

htCall Specifies TAPI.DLL's opaque object handle to the call device.

dwMsg The value LINE_MONITORMEDIA

dwParaml Specifies the new media mode.

dWParam2, dwParam3Un~

142



Appendix E. TAPI I TSPI interface specification

L1NE_MONITORTONE

This message is sent whenever a tone is detected. The sending of this message is controlled with the
lineMonitorTones function.

TAPI message parameters:

dwDevice Specifies a handle to the call.

dwParaml Specifies the application-specific dwAppSpecific field of the LINEMONITORTONE
structure for the tone that was detected.

dWParam2, dwParam3 Unused.

TSPI line event message parameters:

htLine Specifies TAPLDLL's opaque object handle to the line device.

htCall Specifies TAPLDLL's opaque object handle to the call device.

dwMsg The value LINE_MONITORTONE

dwParaml Specifies the application-specific field dwAppSpecific of the LINEMONITORTONE
structure for the tone that was detected.

dwParam2 Specifies the dwToneListID of the tone list containing a matching tone description.

dwParam3 Unused.

This message is sent to an application's callback function to report the results of function calls that
completed asynchronously.
Functions that operate asynchronously return a positive request ID value to the application. This request
ID is returned with the reply message to identify the request that was completed. The other parameter
for this message carries the success or failure indication. Possible errors are the same as those defined
by the corresponding function. This message cannot be disabled.

TAPI message parameters:

dwDevice Not used.

dwParaml Specifies the request ill for which this is the reply.

dwParam2 Specifies the success or error indication. The application should cast this parameter into a
LONG. Zero indicates success; a negative number indicates an error.

dwParam3 Unused.

TSPI line event message parameters:

None. The asynchronous completion callback function is used by the service provider.

143



Computer Telephony Integration

This message is sent to an application's callback to report the arrival of a new Assisted Telephony
request from another application.
This message is sent to the highest priority application that has registered for the corresponding request
mode. This callback message indicates the arrival of an Assisted Telephony request of the specified
request mode. If dwParaml is LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL, the application can invoke lineGetRequest using the
corresponding request mode to receive the request. IfdwParaml is LINEREQUESTMODE_DROP, the
message contains all ofthe information the request recipient needs in order to perform the request.

TAPI message parameten:

dwDevi ce Not used.

dwCallbacklnstance Specifies the registration instance of the application specified on IineRegister
RequestRecipient.

dWParamlSpecifies the request mode of the newly pending request. This parameter uses the following
LINEREQUESTMODE_ constants: MAKECALL a tapiRequestMakeCall request; MEDIACALL a
tapiRequestMediaCall request; DROP a tapiRequestDrop request.

dwParam2 If dwParaml is set to LINEREQUESTMODE_DROP, dwParam2 contains the hWnd of the
application requesting the drop. Otherwise, dwParam2 is unused.

dwParam3 If dwParaml is set to LINEREQUESTMODE_DROP, the low-order word of dwParam3
contains the wRequestID as specified by the application requesting the drop. Otherwise, dwParam3 is
unused.

TSPI line event message parameten:

None. The TAPI message is not a result of a service provider message.

144



Appendix E. TAPI/ TSPI interface specification

Constants

L1NEADDRCAPFLAGS_ Constants

The LINEADDRCAPFLAGS_ bit-flag constants are used in the dwAddrCapFlags field of the
LINEADDRESSCAPS data structure to describe various Boolean address capabilities.

FWDNUMRINGS

PICKUPGROUPID

SECURE

BLOCKIDDEFAULT

BLOCKIDOVERRIDE

DIALED

ORIGOFFHOOK

DESTOFFHOOK

FWDCONSULT

SETUPCONFNULL

AUTORECONNECT

COMPLETIONID

TRANSFERHELD

TRANSFERMAKE

CONFERENCEHELD

CONFERENCEMAKE

PARTIALDIAL

FWDSTATUSVALID

Specifies whether the number of rings for a no answer can be specified when
forwarding calls on no answer. If TRUE, the valid range is provided in
LINEADDRESSCAPS.

Specifies whether a group ID is required for call pickup.

Specifies whether calls on this address can be made secure at call-setup time.

Specifies whether the network by default sends or blocks caller ID information
when making a call on this address. If TRUE, ID information is blocked by
default; if FALSE, ID information is transmitted by default.

Specifies whether the default setting for sending or blocking of caller ID
information can be overridden per call. If TRUE, override is possible; if
FALSE, override is not possible.

Specifies whether a destination address can be dialed on this address for
making a call. TRUE if a destination address must be dialed; FALSE if the
destination address is fixed (as with a ''hot phone'').

Specifies whether the originating party's phone can automatically be taken
offhook when making calls.

Specifies whether the called party's phone can automatically be forced offhook
when making calls.

Specifies whether call forwarding involves the establishment of a consultation
call.

Specifies whether setting up a conference call starts out with an initial call
(FALSE) or with no initial call (TRUE).

Specifies whether dropping a consultation call automatically reconnects to the
call on consultation hold. TRUE if reconnect happens automatically; otherwise,
FALSE.

Specifies whether the completion IDs returned by lineCompleteCall are useful
and unique. TRUE if useful; otherwise, FALSE.

Specifies whether a hard-held call can be transferred. Often, only calls on
consultation hold can be transferred.

Specifies whether an entirely new call can be established for use as a
consultation call on transfer.

Specifies whether a hard-held call can be conferenced to. Often, only calls on
consultation hold can be added to as a conference call.

Specifies whether an entirely new call can be established for use as a
consultation call (to add) on conference.

Specifies whether partial dialing is available.

Specifies whether the forwarding status in the LINEADDRESSSTATUS
structure for this address is valid or is at most a "best estimate," given absence

145



Computer Telephony Integration

FWDINTEXTADDR

FWDBUSYNAADDR

ACCEPTIOALERT

CONFDROP

PICKUPCALLWAlT

of accurate confirmation by the switch or network.

Specifies whether internal and external calls can be forwarded to different
forwarding addresses. This flag is meaningful only if forwarding of internal and
external calls can be controlled separately. This flag is TRUE if internal and
external calls can be forwarded to different destination addresses; otherwise, it
is FALSE.

Specifies whether call forwarding for busy and for no answer can use different
forwarding addresses. This flag is meaningful only if forwarding for busy and
for no answer can be controlled separately. This flag is TRUE if forwarding for
busy and for no answer can use different destination addresses; otherwise, it is
FALSE.

TRUE if an offering call must be accepted using lineAccept in order to start
alerting the users at both ends of the call; otherwise, FALSE. This is typically
only used with ISDN.

TRUE if lineDrop on a conference call parent also has the side effect of
dropping (that is, disconnecting) the other parties involved in the conference
call; FALSE if dropping a conference call still allows the other parties to talk
among themselves.

TRUE if linePickup can be used to pickup a call detected by the user as a call
waiting call; otherwise, FALSE.

LlNEADDRESSSHARING_ Constants

The LINEADDRESSSHARING_ bit-flag constants describe various ways an address can be shared
between lines.

PRIVATE

BRIDGEDEXCL

BRIDGEDNEW

BRIDGEDSHARED

MONITORED

The address is private to the user's line; it is not assigned to any other station.

The address is bridged to one or more other stations. The first line to activate a
call on the line will have exclusive access to the address and calls that may exist
on it. Other lines will not be able to use the bridged address while it is in use.

The address is bridged with one or more other stations. The first line to activate a
call on the line will have exclusive access to only the corresponding call. Other
applications that use the address will resuh in new and separate call appearances.

The address is bridged with one or more other lines. All bridged parties can share
in calls on the address, which then functions as a conference.

This is an address whose idlelbusy status is made available to this line.

LlNEADDRESSSTATE_ Constants

The LINEADDRESSSTATE_ bit-flag constants describe various address status items.

OTHER

DEVSPECIFIC

INUSEZERO

146

Address-status items other than those listed below have changed. The application
should check the current address status to determine which items have changed.

The device-specific item ofthe address status has changed.

The address has changed to idle (it is not in use by any stations).



INUSEONE

INUSEMANY

NUMCALLS

FORWARD

TERMINALS

Appendix E. TAPI / TSPI interface specification

The address has changed from idle or in use by many bridged stations to being in use
by just one station.

The monitored or bridged address has changed from being in use by one station to
being in use by more than one station.

The number of calls on the address has changed. This is the result of events such as a
new inbound call, an outbound call on the address, or a call changing its hold status.
This flag covers changes in any of the fields dwNumActiveCalls,
dwNumOnHoldCalls and dwNumOnHoldPendingCalls in the LINEADDRESS
STATUS structure. The application should check all three of these fields when it
receives a LINE_ADDRESSSTATE (numCalls) message.

The forwarding status of the address has changed, including possibly the number of
rings for determining a no answer condition. The application should check the address
status to determine details about the address's current forwarding status.

The terminal settings for the address have changed.

LlNEBEARERMODE_ Constants

The LINEBEARERMODE_ bit-flag constants describe different bearer modes of a call. When an
application makes a call, it can request a specific bearer mode. These modes are used to select a certain
quality of service for the requested connection from the underlying telephone network. Bearer modes
available on a given line are a device capability ofthe line.

VOICE

SPEECH

MULTIUSE

DATA

ALTSPEECHDATA

NONCALLSIGNALING

This is a regular 3.1kHz analog voice grade bearer service. Bit integrity is not
assured. Voice can support fax and modem media modes.

This corresponds to G.711 speech transmission on the call. The network may
use processing techniques such as analog transmission, echo cancellation, and
compression/decompression. Bit integrity is not assured. Speech is not
intended to support fax and modem media modes.

The multi-use mode defined by ISDN.

The unrestricted data transfer on the call. The data rate is specified
separately.

The alternate transfer of speech or unrestricted data on the same call (ISDN).

This corresponds to a non-calI-associated signaling connection from the
application to the service provider or switch (treated as a "media stream" by
TAPI).

LlNECALLINFOSTATE_ Constants

The LINECALLINFOSTATE_ bit-flag constants describe various call information items about which
an application may be notified in the LINE_CALLINFO message.

OTHER

DEVSPECIFIC

Call information items other than those listed below have changed. The
application should check the current call information to determine which items
have changed.

The device-specific field ofthe call-information record.

147



Computer Telephony Integration

BEARERMODE

RATE

MEDIAMODE

APPSPECIFIC

CALLID

RELATEDCALLID

ORIGIN

REASON

COMPLETIONID

NUMOWNERINCR

NUMOWNERDECR

NUMMONITORS

TRUNK

CALLERID

CALLEDID

CONNECTEDID

REDIRECTIONID

REDIRECTINGID

DISPLAY

USERUSERINFO

HIGHLEVELCOMP

LOWLEVELCOMP

CHARGINGINFO

TERMINAL

DIALPARAMS

MONITORMODES

The bearer mode field ofthe call-information record.

The rate field ofthe call-information record.

The media-mode field ofthe call-information record.

The application-specific field ofthe call-information record.

The call ID field ofthe call-information record.

The related call ID field ofthe call-information record.

The origin field ofthe call-information record.

The reason field ofthe call-information record.

The completion ID field ofthe call-information record.

The number ofowner field in the call-information record was increased.

The number ofowner field in the call-information record was decreased.

The number of monitors field in the call-information record has changed.

The trunk field ofthe call-information record.

One ofthe calledD-related fields ofthe call-information record.

One ofthe calledID-related fields ofthe call-information record.

One ofthe cconnectedID-related fields ofthe call-information record.

One ofthe redirectionID-related fields ofthe call-information record.

One ofthe redirectingID-related fields ofthe call-information record.

The display field ofthe call-information record.

The user-to-user information ofthe call-information record.

The high level compatibility field ofthe call-information record.

The low level compatibility field ofthe call-information record.

The charging information ofthe call-information record.

The terminal mode information ofthe call-information record.

The dial parameters ofthe call-information record.

One or more of the digit, tone, or media monitoring fields in the call-information
record.

LlNECALLPARTYID_ Constants

The LINECALLPARTYID_ bit-flag constants describe the nature of the information available about
the parties involved in a call.

BLOCKED

OUTOFAREA

NAME

ADDRESS

PARTIAL

UNKNOWN

UNAVAIL

148

Party ID information is not available because it has been blocked by the remote party.

Caller ID information for the call is not available since it is not propagated all the way
by the network.

Party ID information consists of the party's name (as, for example, from a directory
kept inside the switch).

Party ID information consists of the party's address in either canonical address format
or dialable address format.

Party ID information is valid but it is limited to partial information only.

Party ID information is currently unknown but may become known later.

Party ID information is not available and will not become available later. Information



Appendix E. TAPI/ TSPI interface specification

may be unavailable for unspecified reasons. For example, the information was not
delivered by the network, it was ignored by the service provider, and so forth.

LlNECALLSTATE_ Constants

The LINECALLSTATE_ bit-flag constants describe the call states a call can be in.

IDLE

OFFERING

ACCEPTED

DIALTONE

DIALING

RINGBACK

BUSY

SPECIALINFO

CONNECTED

PROCEEDING

ONHOLD

CONFERENCED

ONHOLDPENDCONF

ONHOLDPENDTRANSFER

DISCONNECTED

The call is idle-no call exists.

The call is being offered to the station, signaling the arrival of a new call.
In some environments, a call in the offering state does not automatically
alert the user since alerting is done by the switch instructing the line to
ring. It does not affect any call states.

The call was offering and has been accepted. This indicates to other
(monitoring) applications that the current owner application has claimed
responsibility for answering the call. In ISDN, this also initiates alerting
to both parties.

The call is receiving a dial tone from the switch, which means that the
switch is ready to receive a dialed number.

Destination address information (a phone number) is being sent to the
switch over the call. Note that lineGenerateDigits does not place the line
into the dialing state.

The call is receiving ringback from the called address. Ringback
indicates that the other station has been reached and is being alerted.

The call is receiving a busy tone. A busy tone indicates that the call
cannot be completed---either a circuit (trunk) or the remote party's
station are in use.

Special information is sent by the network. Special information is
typically sent when the destination cannot be reached.

The call has been established and the connection is made. Information is
able to flow over the call between the originating address and the
destination address.

Dialing has completed and the call is proceeding through the switch or
telephone network.

The call is on hold by the switch.

The call is currently a member of a multi-party conference call.

The call is currently on hold while it is being added to a conference.

The call is currently on hold awaiting transfer to another number.

The remote party has disconnected from the call.

LlNEDEVCAPFLAGS_ Constants

The LINEDEVCAPFLAGS_ bit-flag constants are a collection of Booleans describing various line
device capabilities.

149



Computer Telephony Integration

CROSSADDRCONF

HIGHLEVCOMP

LOWLEVCOMP

MEDIACONTROL

MULTIPLEADDR

CLOSEDROP

DIALBILLING
DIALQUIET
DIALDIALTONE

Specifies whether calls on different addresses on this line can be conferenced.

Specifies whether high-level compatibility information elements are supported on
this line.

Specifies whether low-level compatibility information elements are supported on
this line.

Specifies whether media-control operations are available for calls at this line.

Specifies whether lineMakeCaIl or lineDiaI are able to deal with multiple
addresses at once (as for inverse multiplexing).

Specifies what happens when an open line is closed while the application has calls
active on the line. If TRUE, a lineClose will drop (that is, clear) all calls on the
line if the application is the sole owner of those calls. Knowing the setting of this
flag ahead of time makes it possible for the application to display an
[OK]/[Cancel] dialog box for the user, warning that the active call will be lost. If
CLOSEDROP is FALSE, a lineClose will not automatically drop any calls still
active on the line if the service provider knows that some other device can keep
the call alive. For example, if an analog line has the computer and phoneset both
connect directly to them (in a party-line configuration), the service provider
should set the flag to FALSE, as the offhook phone will automatically keep the
call active even after the computer powers down.

These flags indicate whether the "$", "@", or ''W'' dialable string modifier is
supported for a given line device. It is TRUE if the modifier is supported;
otherwise, FALSE. The "?" (prompt user to continue dialing) is never supported
by a line device. These flags allow an application to determine "up front" which
modifiers would result in the generation of a LINEERR. The application has the
choice of pre-scanning dialable strings for unsupported characters or of passing
the "raw" string from lineTranslateAddress directly to the provider as part of
functions such as lineMakeCaIl or lineDiaI and let the function generate an error
to tell it which unsupported modifier occurs first in the string.

LlNEDEVSTATE_ Constants

The LINEDEVSTATE_ bit-flag constants describe various line status events.

OTHER

RINGING

CONNECTED

DISCONNECTED

MSGWAITON

MSGWAITOFF

INSERVICE

OUTOFSERVICE

MAINTENANCE

150

Device-status items other than those listed below have changed. The application
should check the current device status to determine which items have changed.

The switch tells the line to alert the user.

The line was previously disconnected and is now connected to TAPI.

This line was previously connected and is now disconnected from TAPI.

The "message waiting" indicator is turned on.

The "message waiting" indicator is turned off.

The line is connected to TAPI. This happens when TAPI is first activated or
when the line wire is physically plugged in and in-service at the switch while
TAPI is active.

The line is out of service at the switch or physically disconnected. TAPI cannot
be used to operate on the line device.

Maintenance is being performed on the line at the switch. TAPI cannot be used



OPEN

CLOSE

NUMCALLS

NUMCOMPLETIONS

TERMINALS

ROAMMODE

BATTERY

SIGNAL

DEVSPECIFIC

REINIT

LOCK

Appendix E. TAPI/ TSPI interface specification

to operate on the line device.

The line has been opened by another application.

The line has been closed by another application.

The number of calls on the line device has changed.

The number of outstanding call completions on the line device has changed.

The terminal settings have changed. This may happen, for example, if multiple
line devices share terminals among them (for example, two lines sharing a
phone terminal).

The roam mode ofthe line device has changed.

The battery level has changed significantly (cellular).

The signal level has changed significantly (cellular).

The line's device-specific information has changed.

Items have changed in the configuration of line devices. To become aware of
these changes (as for the appearance ofnew line devices) the application should
reinitialize its use of TAPI.

The locked status ofthe line device has changed. (For more information, refer to
the description of the LINEDEVSTATUSFLAGS_LOCKED bit in the
LINEDEVSTATUSFLAGS_ constants.)

L1NEDEVSTATUSFLAGS_ Constants

The LINEDEVSTATUSFLAGS_ bit-flag constants describe a collection of Boolean line device status
items.

CONNECTED Specifies whether the line is connected to TAPI. If TRUE, the line is connected and
TAPI is able to operate on the line device. If FALSE, the line is disconnected and the
application is unable to control the line device through TAPI.

MSGWAIT Indicates whether the line has a message waiting. If TRUE, a message is waiting; if
FALSE, no message is waiting.

INSERVICE Indicates whether the line is in service. If TRUE, the line is in service; if FALSE, the
line is out of service.

LOCKED Indicates whether the line is locked or unlocked. This bit is most often used with line
devices associated with cellular phones. Many cellular phones have a security
mechanism that requires the entry of a password to enable the phone to place calls. This
bit may be used to indicate to applications that the phone is locked and cannot place
calls until the password is entered on the user interface of the phone so that the
application can present an appropriate alert to the user.

L1NEFORWARDMODE_ Constants

The LINEFORWARDMODE_ bit-flag constants describe the conditions under which calls to an
address can be forwarded.

UNCOND Forward all calls unconditionally, irrespective of their origin. Use this value
when unconditional forwarding for internal and external calls cannot be

151



Computer Telephony Integration

controlled separately. Unconditional forwarding overrides forwarding on busy
and/or no answer conditions.

UNCONDINTERNAL Forward all internal calls unconditionally. Use this value when unconditional
forwarding for internal and external calls can be controlled separately.

UNCONDEXTERNAL Forward all external calls unconditionally. Use this value when unconditional
forwarding for internal and external calls can be controlled separately.

UNCONDSPECIFIC Unconditionally forward all calls that originated at a specified address
(selective call forwarding).

BUSY Forward all calls on busy, irrespective of their origin. Use this value when
forwarding for internal and external calls on busy and on no answer cannot be
controlled separately.

BUSYINTERNAL Forward all internal calls on busy. Use this value when forwarding for internal
and external calls on busy and on no answer can be controlled separately.

BUSYEXTERNAL Forward all external calls on busy. Use this value when forwarding for internal
and external calls on busy and on no answer can be controlled separately.

BUSYSPECIFIC Forward on busy all calls that originated at a specified address (selective call
forwarding) .

NOANSW Forward all calls on no answer, irrespective oftheir origin. Use this value when
call forwarding for internal and external calls on no answer cannot be
controlled separately.

NOANSWINTERNAL Forward all internal calls on no answer. Use this value when forwarding for
internal and external calls on no answer can be controlled separately.

NOANSWEXTERNAL Forward all external calls on no answer. Use this value when forwarding for
internal and external calls on no answer can be controlled separately.

NOANSWSPECIFIC Forward on no answer all calls that originated at a specified address (selective
call forwarding).

BUSYNA Forward all calls on busy/no answer, irrespective of their origin. Use this value
when forwarding for internal and external calls on busy and on no answer
cannot be controlled separately.

BUSYNAINTERNAL Forward all internal calls on busy/no answer. Use this value when call
forwarding on busy and on no answer cannot be controlled separately for
internal calls.

BUSYNAEXTERNAL Forward all external calls on busy/no answer. Use this value when call
forwarding on busy and on no answer cannot be controlled separately for
internal calls.

BUSYNASPECIFIC Forward on busy/no answer all calls that originated at a specified address
(selective call forwarding).

L1NEMEDIAMODE_ Constants

The LINEMEDIAMODE_ constants describe media modes (the data type ofa media stream) on calls.

UNKNOWN

152

A media stream exists but its mode is not currently known and may become
known later. This would correspond to a call with an unclassified media type.
In typical analog telephony environments, an inbound call's media mode may
be unknown until after the call has been answered and the media stream has
been filtered to make a determination. If the unknown media-mode flag is set,



INTERACTIVEVOICE

AUTOMATEDVOICE

DATAMODEM

G3FAX

TDD

G4FAX

DIGITALDATA

TELETEX

VIDEOTEX

TELEX

MIXED

ADSI

Appendix E. TAPI/ TSPI interface specification

other media flags may also be set. This is used to signify that the media is
unknown but that it is likely to be one ofthe other selected media modes.

The presence ofvoice energy on the call, and the call is treated as an interactive
call with humans on both ends.

The presence of voice energy on the call and the voice is locally handled by an
automated application.

A data modem session on the call.

A group 3 fax is being sent or received over the call.

A TDD (Telephony Devices for the Deaf) session on the call.

A group 4 fax is being sent or received over the call.

Digital data is being sent or received over the call.

A teletex session on the call. Teletex is one ofthe telematic services.

A videotex session on the call. Videotex is one the telematic services.

A telex session on the call. Telex is one the telematic services.

A mixed session on the call. Mixed is one the ISDN telematic services.

An ADSI (Analog Display Services Interface) session on the call.

L1NETRANSLATERESULT_ Constants

The LINETRANSLATERESULT_ bit-flag constants describe various results ofan address translation.

CANONICAL

INTERNATIONAL

LONGDISTANCE

LOCAL

INTOLLLIST

NOTINTOLLLIST

DIALBILLING

DIALQUIET

DIALDIALTONE

DIALPROMPT

Indicates that the input string was in valid canonical format.

Indicates that the call is being treated as an international call (country code
specified in the destination address is the different from the country code specified
for the CurrentLocation).

Indicates that the call is being treated as a long distance call (country code
specified in the destination address is the same but area code is different from those
specified for the CurrentLocation).

Indicates that the call is being treated as a local call (country code and area code
specified in the destination address are the same as those specified for the
CurrentLocation).

Indicates that the local call is being dialed as long distance because the country has
toll calling and the prefix appears in the TolIPrefixList ofthe CurrentLocation.

Indicates that the country supports toll calling but the prefix does not appear in the
TolIPrefixList, so the call is dialed as a local call. Note that if both INTOLLIST
and NOTINTOLLIST are off, the current country does not support toll prefixes,
and user-interface elements related to toll prefixes should not be presented to the
user; if either such bit is on, the country does support toll lists, and the related
user-interface elements should be enabled.

Indicates that the returned address contains a "$".

Indicates that the returned address contain a "@".

Indicates that the returned address contains a ''W'.

Indicates that the returned address contains a"?".

153


	Voorblad
	Abstract
	Contents
	1. Introduction
	2. CTI applications.
	3. CTI configurations.
	4. CTI demo system design.
	5. Results
	6. Conclusions
	References
	Appendix



