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Abstract 

The objective is to reduce the cost per user of a video on demand system in which the users consume at a 
variable bit rate and the data blocks are of constant size. In a video server the video data is often stored on 
one or more hard disks. To increase their storage capacity, hard disks are nowadays partitioned into zones. 
A side-effect of zoning is that the disk has variable transfer rates. We present algorithms for maximize 
the guaranteed throughput over a given period of time by defining a placement of the data blocks on the 
disk. Furthermore, we revise the triple buffering and dual sweep disk scheduling algorithms, such that they 
are based on this throughput instead of the minimum guaranteed throughput. The result is a considerable 
reduction in the cost per user, both by a reduction in the required buffer capacity for a given number of 
users and by an increase of the number of users that can be serviced with the disk. This result also holds in 
relation to track pairing, which also utilizes the different transfer rates of a multi-zone disk. Although we 
also discuss how our approach can be used in combination with striping, we mainly focus on the case that 
the video data is stored on a single disk. 
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Chapter 1 

Introduction 

In a video-on-demand system multiple users can watch movies in an interactive way. This means that a user 
can choose which movie he/she wants to watch and at what time. Possibly, functions like pause/continue, 
slow motion and fast forward are also supported. 

Figure 1.1 gives a model of a video-on-demand system. The system consists of a video server, multiple 
terminals and a communication network. The video server stores a collection of movies and must be able 
to offer each user the movie of his/her choice, which is to be sent as a continuous digital data stream 
over the communication network. When a user wants to interact with the server, he/she sends a request. 
Performance criteria of the system are response time, cost per user and reliability. 

The video server often stores the movies on one or more hard disks. Although we discuss shortly the case 
that more disks are used, we mainly focus on the case where a single disk is used. Both the cost per user 
and the response time depend on the throughput of the used hard disk. Because the amount of data that can 
be stored on a single track increases with its distance to the spindle, many hard disks nowadays consist of 
several zones. A zone is a group of contiguous tracks. The tracks of a zone have an equal amount of data, 
but the amount of data per track in different zones increases with its distance to the spindle. Because a disk 
has constant angular velocity, different zones have different transfer rates. Most studies do not exploit these 
differences in transfer rate for designing a video-on-demand system, but assume the minimum guaranteed 
transfer rate of the disk. By alternately retrieving data from zones with a higher and lower transfer rate, a 
higher throughput can be guaranteed over a period of time. 

In this thesis we aim at reducing the cost per user by defining a placement of the movies on a hard disk 
that distributes the successive blocks of a movie across the different zones. Thereby, we assume that a user 
consumes at a variable bit rate and that the amount of data that is retrieved from the disk during a single 
disk access is of constant size. 

In the next two sections we discuss the model of a video server and consider in more detail how a hard 
disk can be modeled. Some notation is introduced in Section 1.3. The throughput of the disk influences 
the design of the video-on-demand system by means of the used disk scheduling algorithm. Therefore, we 
discuss in Section 1.4 some known disk scheduling algorithms. In Section 1.5 we state the problem that is 
the focus of this thesis. This chapter is concluded with some related work and an outline of the thesis. 

1.1 Model of a video server 

Figure 1.2 gives a model of a video server. Video data is often stored on hard disks, due to their large storage 
capacity and the possibility of random access. Because a hard disk can only perform one disk access at 
a time and because a server has to offer continuous data streams to several users, a buffer is reserved for 
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each admitted user. A user can consume continuously from the corresponding buffer. Offering a user a 
continuous data stream consequently comes down to preventing that the corresponding buffer overflows or 
underflows. The task of scheduling the disk accesses is performed by a scheduler. In addition, the scheduler 
also has to handle user requests. A video-on-demand system is called safe if and only if it is guaranteed 
that neither buffer overflow nor buffer underflow occurs. 

The filling of the buffers is done by periodica11y placing a data block in the buffer of each user. Several 
disk scheduling algorithms for the scheduler exist for determining on the basis of the degree of filling and 
the capacity of the buffers, which data blocks have to be fetched from the hard disk at a given moment. 
The choice of an appropriate algorithm predominately depends on whether the users consume at a variable 
or constant bit rate and whether data blocks of constant or variable size are being retrieved. In addition, the 
choice depends on which performance criterion should be emphasized, the response time or the cost per 
user. We define the response time as the time between the moment that a user request arrives at the server 
and the moment the user can start consuming the corresponding new data from the server. Note that this 
definition does not take into account the time required for transmitting a request from a user to the server 
and the time required for transmitting the data from the server to the user. The disk scheduling algorithm 
influences the cost per user by imposing a required buffer size for a given number of users and by giving a 
maximum number of admitted users that can be serviced with a given hardware configuration. 

Two advantages of supporting variable bit rates are that variable-bit-rate-encoded data streams can be used, 
such as defined in the MPEG-2 standard [14], and that we get functions like slow motion and pause/continue 
without extra effort. On the other hand it has been shown that it also gives rise to larger buffer require­
ments [ llJ. An advantage of allowing variable block sizes is smaller buffer requirements [I I]. However, it 
often results in a higher average response time and it poses some additional requirements on the storage of 
movies on disk [10]. 

In this thesis we consider the case that users consume at a variable bit rate that is bounded from above and 
data blocks are of constant size. We restrkt ourselves to the homogeneous case, i.e., the case that all users 
have the same maximum consumption rate. Furthermore, we assume that the movies are stored on a single 
disk. In Chapter 7 we shortly discuss how our results can be generalized to the case that more disks are 
used. The model of a single hard disk is discussed in the next section. 
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1.2 Model of a hard disk 

3 

Figure 1.3 gives a schematic picture of a hard disk drive. A hard disk drive usually consists of several 
platters connected to the same spindle. Each platter consists of two surfaces on which data can be stored. 
Each surface has its own read/write head, where all heads are connected to the same actuator arm such that 
they have equal distance to the spindle. As a result, you can not move the heads separately. Furthermore, 
one can only read from one head at a time. The rate at which data is read is called transfer rate. The transfer 
rate is usually expressed in Mbit1 per second. 

Each disk surface is divided into concentric circles, called tracks. These tracks in turn are divided into an 
integer number of sectors. A sector is the smallest addressable unit of data for reading or writing. The size 
of a sector is often 512 Byte. The length of a track grows linearly with its radial distance to the spindle. 
Therefore, the outer tracks can contain more data, i.e., sectors per track, than the inner tracks. To exploit 
this, the set of all tracks of a hard disk is divided into contiguous groups, called zones. Each zone can 
consist of a different number of tracks. Within a zone, the number of sectors per track is kept constant, but 
between zones the number differs. Because a hard disk rotates at a constant angular velocity, this results 
in different transfer rates for different zones. For the Seagate Barracuda 9 drive, whose characteristics are 
given in Table 1.1, the highest transfer rate is 56% higher than the lowest transfer rate. Each surface has 
an equal number of tracks and corresponding tracks have an equal number of sectors. As a result, all heads 
are positioned at similar tracks. These tracks together are called a cylinder. 

Each disk access (read or write) involves a sequence of successive sectors. Usually, the sectors are ordered 
cylinder by cylinder (see Figure 1.3). This means that successive sectors are as much as possible stored on 
the same cylinder instead of on the same platter. The reason is that the time required for moving to another 
track in the same cylinder, i.e., the time required for making another read/write head active, is usually 
smaller than the time required for moving the heads to the next track on the same surface. While moving to 
another track during a disk access, the first sector of the track might have rotated past the read/write head. 
Having arrived too late, the head should then have to stay in position until the first sector again arrives 
under the head. To avoid this loss of time, called rotational delay, the data on successive tracks is skewed. 

1 Here, we assume that I Mbit= 2211 bits and I MByte= 2211 Byte 
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Figure l.3. Schematic picture of a hard disk 

This means that the first sector of each track is staggered in comparison to the first sector of the previous 
track to allow for the time the drive takes for the movement to the track. 

The total time required for reading an amount of data generally consists of the following parts. 

• The seek time. This is the time it takes the actuator to move to the right track, i.e., the track where 
the first sector to be read is positioned. 

• Rotational delay. When a read/write head has arrived at the right track, it still has to wait until the 
first required sector is positioned under it. This time is at most the time required for one rotation. 

• Track switch time. The time required for moving the read/write heads to the next track. 

• Head switch time. The time required to make another read/write head active. 

• Read time. The time that the disk is actually reading. This time is given by the amount of data that 
has to be read divided by the average transfer rate of the disk at the position where the data is stored. 

We define the switch time as the time it takes to move a read/write head to the correct position. Hence, 
the switch time is the sum of the seek time and the rotational delay if data is stored on the surface of the 
active read/write head and it is the maximum of this sum and the head switch time, otherwise. Because 
the worst-case rotational delay is larger than the head switch time, the worst-case switch time equals the 
sum of the worst-case seek time and the worst-case rotational delay. Furthermore, we define the time 
required for a disk access as the transfer time. This time consists of read time and possibly a number of 
times the track switch time and a number of times the head switch time. The throughput of the disk is a 
measurement reflecting both the switch time and the transfer time. It represents the total amount of data 
that can be accessed during a unit of time. Because a hard disk rotates at a constant angular velocity, head 
switches and track switches appear at regular intervals during a disk access. Therefore, we can combine 
the transfer rate, the time required for the track switches and the time required for the head switches at a 
number of consecutive sectors of a disk into an adapted lower transfer rate, such that the actual transfer 
time is approximately given by the read time based on this adapted transfer rate. In the remainder of this 
thesis we assume this transfer rate, which thus implies that we can approximate the transfer time required 
for a disk access by the amount of data that has to be read divided by the transfer rate. 

The seek time per access is maximally the time required for moving the head from the inner track to the 
outer track, or vice versa. To prevent that we have to take into account such a worst-case seek for each 
single access, disk accesses are usually made in batches. The disk then moves its head from the inside to 
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Seagate Barracuda 9 drive 

Drive Capacity 9.1 GByte Minimum Transfer rate 59Mbit/s 
Platters I 0 Maximum Transfer rate 92Mbit/s 

20 Average Transfer rate 79 Mbit/s 
7200±0.5% r/min Rotational Delay 8.38ms 

126-199 Track Switch Time 0.8ms 
5273 Head Switch Time 1.2ms 

7 

Table 1.1. Characteristics of the Seagate Barracuda 9 drive 

the outside, or vice versa, and reads the blocks in the order in which they are encountered by the head. The 
execution of one such a batch of disk accesses is called a sweep. 

Although a disk consists of several surfaces, we can model it as a single surface by considering a cylinder 
as a single track. The logical surface then has just as much tracks as a physical surface, but the capacity of 
a track increases. Let the number of surfaces of the disk be m. Because each track of a cylinder is divided 
into sectors in the same way, the capacity of a logical track is m times the capacity of a corresponding 
physical track. Hence, when we define the rotation speed as the original rotation speed divided by m, the 
transfer rate of a track of the logical surface equals the transfer rate of the corresponding track of a physical 
surface. As a result, we can assume that a disk consists of a single surface. 

1.3 Notation 

Before we present some known disk scheduling algorithms in Section 1.4, we introduce some notation that 
will be used throughout this thesis. The video server handles a maximum of n users, denoted by 1 through 
n. A user consumes at a variable bit rate anywhere between 0 and Cmax. The constant size of a data block 
is denoted by B, which must be an integer number of sectors. 

When B is given, we can indicate, say, n8 positions on the disk, where a data block can be stored. We 
number the positions in order of ascending transfer rate. Hence, for all 0 :::; i :::; j < nB it holds that the time 
required for transferring a data block from position i is at least the time required for transferring a data 
block from position j. If B is not a divisor of the capacity of the disk, the positions do not cover the entire 
disk. We then leave a part of the disk with the lowest transfer rate unused. This is indicated by the shaded 
area in Figure 1.4. Because the transfer rate of a zone increases with its radial distance to the spindle, the 
numbering is as given in Figure 1.4. We assume that nB > > 1 and we define F as the set of positions. 
Hence, F = { 0, 1, ... , ns - 1}. 

As discussed in Section 1.2, the time it takes to execute a sweep consists of switch time and transfer time. 
We define s;(m) as the worst-case switch time required for fetching m data blocks in i sweeps. From the 
definition of switch time, it follows that s;(m) increases with m and with i. Fori= 1, we usually omit 
the subscripti. It can be shown that s2(m) = s(f~l) + s(L ~J), i.e., if the switching time required form 
disk accesses in two sweeps is worst-case, then the disk accesses are equally divided over the two sweeps. 
When we generalize this, we get that s;(m) and s(m) are related by 

i-1 (l + 'j) s;(m) = 1 s m i J . (1.1) 

We denote the time required for transferring the data block that is stored at position i, 0::::; i < ns, by t(i). 
By definition, the transfer time equals rfu. where r(i) is the average transfer rate at position i. From the 

numbering of the positions, it follows that t is an descending function. We define tmax as the maximum 
transfer time of any position and rmin as the minimum average transfer rate of any position. Hence, lmax 

t(O) and rmin = r(O). 

We consider the case that only one single movie is stored on the hard disk and that the movie consists of nB 
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Figure 1.4. Numbering of the positions where data blocks can be stored 

data blocks. This is not a restriction, as we show in Section 7 .2. We number the data blocks of the movie 
from 0 through ns 1, where 0 is the first data block of the movie and ns- 1 the last data block. We define 
Las the set of data blocks. Formally, L {0, 1, ... ,n8 - 1 }. We introduce a variable iu for each user u, 
1 :=:; u :=:; n, that indicates the first data block that will be fetched for u if no request arrives at the server 
until the start of the sweep in which data block i11 would be fetched. Consequently, when a data block has 
been fetched for user u, iu is raised by one and when user u requests data block m instead of iu, then the 
assignment iu := m is performed. When either the last data block of the movie has been fetched or a user 
is not admitted, then iu is chosen equal to ns, by definition. We define U as the set of users, for whom this 
is not the case. Hence, U = {uliu < ns}. Consequently, U contains the users, for whom possibly a data 
block is to be fetched. Notice that both U and iu, 1 :=:; u :=:; n, are time dependent. Hence, we can only refer 
to them if a point in time is given. 

We define the bijection a: L-+ F, where a(i) = j indicates that data block i is stored on position j. Hence, 
a describes how the movie is stored on the hard disk. We use ta as a shorthand fort oa. Consequently, ta(i) 
gives the transfer time for fetching data block i. Using the notation, we get that the time required for a sweep 
in which the data blocks Yl ,y2, ... ,ym are fetched, is at most Ift.1 ta(Yj) + s(m). In the remainder we will 
frequently write the functions a and ta as a sequence of numbers. Such a sequence has the straightforward 
meaning that a(i) and ta(i), respectively, are at the ith position. These sequences are visualized by a chain 
of boxes where the ith box contains the ith value in the sequence. With a subsequence of a, we mean a 
number of successive data blocks with their corresponding positions. The length of a subsequence is called 
window size. Hence, the subsequence of a that starts at position i and has window size 2, refers to data 
block i and i + 1 and tbier corresponding positions a(i) and a(i +I). 

Finally, we define the function avgt(A). This function gives the average of the function values of the 
elements of A with regard to the function f. Formally, 

avg (A)= LXEAf(x) 
f IAI . 

Using this definition the average time it takes to read a data block of the movie can be written as avg1a (L) 
or, because a is a bijection, as avg1(F). This time will also be denoted by tavg· Similar, we define ravg as 
the average transfer time of the disk, i.e., the total used capacity of the disk divided by the transfer time 
required for transferring all data from disk. 

We conclude this section with stating the convention that we define the minimum over an empty domain as 
oo and the maximum over an empty domain as -oo. 
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1.4 Disk scheduling algorithms 

The throughput of the disk influences the design of the video-on-demand system by means of the disk 
scheduling algorithm. In [11], three disk scheduling algorithms are presented for the case that users con­
sume at a variable bit rate and data blocks are of constant size. Namely, triple buffering, dual sweep and 
m-EDFC. All three algorithms are based on the minimum transfer rate of the disk. For the first two algo­
rithms we discuss in this thesis how they can be adjusted, such that another throughput than the minimum 
throughput is assumed. In this section we present these algorithms in their original form. 

1.4.1 Triple Buffering 

In the triple buffering algorithm (TB) the following strategy for filling the buffers of the admitted users is 
used. 

Definition 1. (Filling Strategy TB). A data block is fetched for a user in a sweep if and only if the corre­
sponding buffer has room for it at the start of the sweep. 0 

The size of a data block is chosen large enough to survive a worst-case sweep. In this case, a worst­
case sweep is a sweep in which a data block is fetched for each user at a minimum transfer rate and in 
which the switching time is maximal. The time required for a worst-case sweep is consequently given by 
n · -JL + s(n). Hence, the block size satisfies 

mm 

B 
B ~ Cmax(n·- +s(n)). 

rmin 
(1.2) 

The block size is minimal if equality holds in (1.2). As proved in [11 ], TB is safe if and only if the buffers 
of each user can store three data blocks. That this is a necessary condition can be inferred as follows. At the 
start of a given sweep w the buffer of a user can have room forB- e of data, with e being a small positive 
value. As a result, no data block wilJ be fetched for the user in sweep w. Hence, the next data block may 
not arrive before the end of sweep w + I. In the worst-case situation, two data blocks have been consumed 
during this time. Hence, a buffer must be large enough to store three data blocks. 

Equation (1.2) can only be fulfilled if Cmax · n < rmin• i.e., the total rate at which data is consumed does not 
exceed the minimum transfer rate of the disk. As a result, the value of n is bounded by .:.mm.cr · • 

max 

A user may not start consuming before the end of the sweep in which the first data block is fetched. As 
a result, the worst-case response time of TB is the time required for two worst-case sweeps. This can be 
inferred as follows. If a user request arrives at the server, just after the start of a sweep, then the first data 
block for the user can not be fetched before the next sweep. Hence, it can take two worst~case sweeps 
before a user can start consuming. 

1.4.2 Dual Sweep 

In the dual sweep algorithm (DS) the following strategy for filling the buffers of the admitted users is used. 

Definition 2. (Filling Strategy DS). A data block is fetched for a user in a sweep if and only if the corre­
sponding buffer has room for it at the start of the sweep, unless a data block for this user has already been 
fetched in the previous sweep. 0 

The size of a data block is chosen such that it is large enough to survive two successive sweeps. Because 
in two successive sweeps at most one data block is fetched for each user, this means that 

B 
B ~ Cmax(n·- +s2(n)). 

rmin 
(1.3) 
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has to hold. Again, the block size is minimal if equality holds and the value of n is bounded by £:::· 
The dual algorithm is safe if and only if the buffer of each user has room for two data blocks, as stated 
in [11]. Hence, dual sweep requires a data block less than triple buffering, although the data blocks will be 
somewhat larger than for triple buffering. The reason is that maximally one data block is consumed instead 
of two between the moment a user has room for a data block and the arrival of a data block, which, again, 
is maximally two sweeps. 

As for triple buffering, a user can not start consuming before the end of the sweep in which the fist data 
block has been fetched. The worst-case response time for dual sweep is the time required for three worst­
case sweeps. This can be inferred as follows. A request of a user can arrive just after the start of a sweep. 
Because in this sweep a data block can be fetched for the user and because a user may only fetch a data 
block once in two successive sweeps, it can take three sweeps before the user can start consuming. Note 
that in these sweeps, at most two data blocks are fetched for the same user. 

1.5 Problem definition 

As discussed in the previous section, in TB and DS, the blocks size is chosen, such that a data block is large 
enough to survive one and two worst-case sweeps, respectively. In a worst-case situation for each user a 
data block is fetched that is stored on the inner zone. Hence, when we assume a higher transfer rate we 
can service more users with the same block size and we can decrease the block size for the same number 
of users and correspondingly the buffer sizes. As a result, we can reduce the cost per user both due to an 
increase in the maximum number of admitted users and a reduction of the buffer requirements. 

As discussed in Section 1.2 the minimum transfer rate can differ considerably from the average transfer 
rate. By placing the data blocks of a movie alternately on zones with a higher and lower transfer rate, 
sweeps that take a relatively long time can be alternated by sweeps that take a short time. Consequently, 
we can then guarantee a higher throughput whenever we consider a longer period of time than just one 
sweep, as for TB, or two sweeps, as forDS. This brings us to the following problem definition. 

Problem definition 1. Let a single movie be stored on a single multi-zone hard disk, let users consume 
at variable bit rate and let the data blocks be of constant size. Define a placement of the data blocks 
on the disk, such that a higher throughput of the disk can be guaranteed over a given period of time. In 
addition, revise the buffer requirements given by TB and DS, such that the relation between the block size 
and the maximum number of admitted users can be based on this higher throughput. The placement and 
the revision should aim at minimizing the cost per user: D 

1.6 Related work 

In this section, we discuss related work on utilizing the different transfer rates of a multi-zone disk for 
increasing the throughput of the disk in a video-on-demand server. 

By storing popular movies on the faster outer zones and Jess frequently watched movies on the inner 
zones, one obtains a better throughput statistically [4, 8, 15]. However, it does not increase the guaranteed 
throughput. Consequently, when safeness has to be guaranteed, the approach does not affect the design of 
the video-on-demand system but only improves the average performance of the video-on-demand system. 

Several studies discuss region based data placement schemes to improve the guaranteed throughput of the 
disk [5, 7, 12]. In this approach, the disk is divided into regions and in each sweep, data blocks are read 
from only one region. As a result, the worst-case seek time is reduced and the guaranteed throughput over 
the period in which all regions are visited is increased. However, it results in relatively large worst-case 
response times, which can be inferred as follows. Consider the situation that a user requests a data block 
from the region from which the read/write head has just moved away. Then the user does not receive the 
requested data block before the head has visited all regions from which, in the worst-case situation, a data 
block is fetched for all other users. Furthermore, the approach assumes that a data block is fetched for the 
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consuming users in each period in which a region is visited. As a result, the approach is only suitable for 
normal playback, i.e., it is only suitable for systems without functions like fast forward and slow motion. 
Because the regions are visited in successive order, much buffer space is required to guarantee that no 
buffer under flow occurs in a period in which the inner regions are visited. In approach that we present, a 
period of several sweeps, in which only data blocks from the inner zones are fetched, is prevented. 

In [16], the different transfer rates are utilized for the case that a user consumes at a variable bit rate. A 
constant period of time is allocated for retrieving each data block. As a result, the size of each data block 
is proportional to the data transfer rate and thus varies in different disk zones. The required buffer capacity 
is determined off-line and imposes predictive variable bit streams, i.e., the buffer requirements depend on 
both the playback time of the frames of a movie and their size. Hence, as for the region based approaches, 
the approach is only applicable for a system without functions like fast forward. Furthermore, it can only 
be used in a system with a static collection of movies. 

Heltzer et al. [6] propose a scheme in which fixed-size logical tracks are constructed by comprising an 
equal number of same-numbered physical tracks from every zone. As a result, when the movies are stored 
in logical-track order, the read time is constant for each data block. Although the read time is based on 
the average transfer time of the disk, this is at cost of extra switch time. This overhead is partly alleviated 
by track pairing [1]. The amount of data on a track is approximately linear in its distance to the spindle. 
Consequently, when the innermost tracks are paired to the outermost tracks, each pair of tracks has approx­
imately the same transfer rate. Consequently, by recording a movie alternately on a range of contiguous 
outer tracks and their inner counterparts, the guaranteed throughput of the disk is approximately based on 
the average transfer rate of the disk at the cost of some extra switching overhead. However, this switch­
ing overhead is smat1er than for the approach presented by Heltzer et al. In Section 6.1, we discuss track 
pairing in more detail. Furthermore, we compare the results obtained by track pairing with our results. 

1.7 Outline of this thesis 

The organization of this thesis is as follows. In the next chapter we revise the buffer requirements given by 
TB and DS, such that the block size can be based on a higher throughput than the minimum throughput. 
In Chapter 3 we formulate the problem of minimizing the buffer requirements by means of appropriately 
placing the data blocks on the disk and we discuss the complexity of this problem. In addition, we give an 
approach to solve the problem, for which we present a solution strategy in Chapter 4. Chapter 5 discusses 
how requests from the users can be handled. In Chapter 6 we compare the cost per user resulting from 
our approach with the cost per user resulting from TB and DS. Furthermore, we compare our results with 
the results obtained by track pairing [1]. We discuss in Chapter 7 how our approach can be extended to a 
multi-disk model and that the assumption that only one single movie is stored on the disk that covers the 
entire disk is not restrictive. Finally, some concluding remarks are given in Chapter 8. 



Chapter 2 

Buffer requirements 

In this chapter we derive how the buffer requirements of TB and DS can be adapted, whenever a higher 
throughput is assumed than the minimum throughput. After a user request arrives at the server, in both TB 
and DS the first requested data block is fetched as soon as it is allowed by the corresponding filling strategy. 
For TB, this means that the first requested data block is retrieved in the first sweep, say w, after the sweep 
in which the request arrives at the server. ForDS, this is only the case if no data block has been fetched for 
the corresponding user in sweep w- t. Otherwise, the first requested data block is retrieved in sweep w+ 1. 
If we hold on to this strategy and a user requests in each sweep a data block that is stored on the inner zone 
of the hard disk, then each sweep is worst case in the case that filling strategy TB is used and each pair of 
sweeps is worst case in the case that filling strategy DS is used, regardless of how the movie is stored on 
the hard disk. As a result, the guaranteed throughput over a period of time equals the minimum throughput. 
Therefore, to assume another throughput than the minimum, we have to define additional conditions under 
which the first requested data block may be fetched. As mentioned in the problem definition, we focus on 
minimizing the cost per user. Hence, we do not want these conditions to affect the design of the video­
on-demand system. Therefore, we assume that no user requests arrive at the server when designing the 
system. In Chapter 5 we discuss how requests can be handled, such that safeness remains guaranteed and 
the required buffer sizes do not increase. 

In Section 2.1, we derive a sufficient buffer capacity for the case that filling strategy TB is used and a higher 
throughput is assumed than the minimum throughput. In Section 2.2, we do the same for filling strategy 
DS. 

2.1 Revision triple buffering 

As discussed in Section 1.4.1, in TB a data block is large enough to survive one worst-case sweep. A worst­
case sweep in TB is a sweep in which a data block is fetched for each user at a minimum transfer rate and 
at maximum switch time. Whenever we assume a higher throughput than the minimum throughput, a data 
block is no longer large enough to survive a worst-case sweep. We therefore investigate the consequences 
of choosing an arbitrary B and n for the required buffer capacity of the users, where B is assumed to be too 
small to survive a worst-case sweep. Both in Section 2.1.1 and 2.1.2, we give a sufficient buffer capacity 
to guarantee safeness. Section 2.1.1 discusses the case that a data block is at least large enough to survive 
a sweep in which a data block is fetched for each user at maximum transfer rate. In Section 2.1.2 a more 
strict condition is imposed on the block size, namely that two data blocks are large enough to survive three 
successive sweeps. 

11 
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k 

0 iu iu + k 

block number 

Figure 2.1. Interpretation of Om(i). 

2.1.1 Unconditional solution 

For a given B and n, we define td, called the dimension time, as the transfer time that may be spent per user 
in a sweep, such that a data block is large enough to survive the sweep in the case that the switch time is 

maximal. Formally, fd is defined such that B = Cmax. (n · td + s(n)). Hence, td B-~;;:;:(11}. By assumption, 
B is too small to survive a worst-case sweep. Consequently, tJ < tmax.. Figure 2.1 gives an example of the 
required transfer time for a given user u ink successive sweeps, whenever a data block is fetched for u in 
all k sweeps. 

Let us first consider how safeness is guaranteed in the original TB algorithm before we consider the case 
that B is too small to survive a worst-case sweep. Safeness is guaranteed from a given sweep w onwards 
if and only if at the start of the sweep the buffers of the consuming users 1 contain at least one data block. 
This can be inferred as follows. If the buffer of a user contains less than one data block at the start of 
sweep w, then buffer underflow can occur when the sweep is worst-case because a data block may arrive 
just before the end of the sweep. Hence, a buffer has to contain at least one data block. Assume that the 
buffer of a user contains at least one data block at the start of sweep w. If a buffer contains at least one 
data block at the start of an arbitrary sweep, then, by definition, the buffer contains enough data to survive 
the sweep. Hence, it suffices to show that at the start of each sweep from sweep w onwards, the buffer of 
each user contains at least one data block. If a data block is fetched for the user in sweep w, then the buffer 
contains at least this data block at the start of sweep w+ 1. If, on the other hand, no data block is fetched 
for the user, then the corresponding buffer must have room for less than one data block, as follows from 
the definition of filling strategy TB. Consequently, the buffer contains at least two data blocks. During the 
sweep at most one data block is consumed. Hence, at the start of sweep w + 1 the buffer contains again at 
least one data block. Hence, under the assumption that a buffer contains at least one data block at the start 
of sweep w, this also holds at the start of sweep w + 1. By induction, we get that this means that at the start 
of each sweep w', w' 2: w, the buffer of each consuming user contains at least one data block, which has to 
be showed. 

Now we consider how safeness is guaranteed in the case that a data block is too small to survive a worst­
case sweep. The condition we have for the original TB algorithm is no longer sufficient, as can be verified 
as follows. Whenever a data block arrives at the end of a given sweep and the sweep is worst-case, then 
the buffer can underflow whenever it contains just one data block at the start of the sweep. We discuss the 
minimum number of data blocks a buffer has to contain at the start of a given arbitrary sweep w to prevent 
a buffer from underfiowing. We thereby first consider the case that the required transfer time per sweep 
of just one user, say u, can deviate from ta, i.e., only for user u the required transfer time for fetching the 
ith data block of the movie is given by ta(i). Hence, for the sake of this analysis, we assume ta(i) = IJ for 
all users except u. Furthermore, we assume that a data block is fetched for user u in each sweep from w 

1ln fact, the statement holds for consuming users for whom the last data block of the movie still has not been fetched. 
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onwards until the last data block of the movie, i.e. data block nB - I, has been fetched. Because nB - iu 
data blocks have to be fetched for u from the start of sweep w, the last data block is fetched in sweep 
w + nB - iu - I. We concentrate on preventing the buffers from underflowing during sweep w through 
w + nB- iu- I, i.e., during the sweeps in which a data block is fetched for user u. Below, we will consider 
the general case where the transfer times for all the users vary. 

As mentioned, a buffer has to contain at the start of a given sweep at least enough data to survive the 
sweep, because otherwise buffer underflow can occur whenever a data block is not placed in the buffer 
before the end of the sweep. The time required for a given sweep w', w ::; w' < w + nB- iu, can maximally 
be (n- I)· td + ta(iu} + s(n). Furthermore, a data block is large enough to survive n · td + s(n) time units. 
As a result, during sweep w' a user may have consumed one data block plus the number of data blocks 
that is consumed during ta(iu)- fd time units. This time is depicted in Figure 2.1 by the shaded block in 
a bar. Note that this time can both be positive and negative. When we divide ta(iu)- fd by the time that 
can minimally be survived with a single data block, we get the maximum number of data blocks that can 
be consumed more during sweep w' than a single data block. We define the time that can minimally be 
survived with a data block, which is n · td + s( n), by sbu. Consequently, at the start of sweep w' a buffer has 
to contain at least 

l+ta(iu}-td (2.1) 
shu 

data blocks. 

We now investigate what the above implies for the number of data blocks the buffer of a user has to contain 
at the start of sweep w. Clearly, this has to be at least (2.1). However, we also have to guarantee that a 
user has the number of data blocks given by (2.1) in the corresponding buffer at the start of sweep w + I. 
Note that iu is raised by one at the start of sweep w + 1 in comparison with the start of sweep w because a 
data block has been fetched for u in sweep w. The fraction in (2.1) gives the number of data blocks a user 
may have consumed more during sweep w than the single data block that is placed in the buffer. Hence, to 
guarantee that (2.1) also holds at the start of sweep w + 1, the buffer of a user has to contain at least 

ta(iu}- fd ta(iu +I)- fd 
I + + ~;:.........,__:__----=. 

sbu sbu 

data blocks at the start of sweep w. Similarly, it can be showed that to guarantee that (2.1) holds at the start 
of sweep w + k- 1, 1 ::; k ::; nB - iu, each buffer has to contain at least 

L'~(ta(iu + j) - ld) 
I+ b (2.2) 

s u 

data blocks at the start of sweep w. Consider Figure 2.1. The fraction in Expression (2.2) can be interpreted 
as the sum of the shaded blocks that are above the dotted line minus the sum of the blocks that are below it, 
divided by the time that can be survived with a single data block. The value k denotes the window size of 
the subsequence of a over which the value is calculated. When we maximize the expression over all values 
of k, I ::; k ::; nB - i11 , i.e., over all possible window sizes, we get the minimum number of data blocks a 
buffer has to contain, to prevent the buffer from underflowing in any sweep from w through w + nB- iu- 1. 
Let crm(i) be defined by 

(

k-1 ) 
crm(i) = max . L, (ta(i + j)- td) . 

m'$.k'$.ng-l j=O 
(2.3) 

Then, a buffer has to contain at least I+ cr1 (iu)/sbu data blocks. It can be the case that no data block 
has been fetched for u in sweep w- 1, because there was no room for it in the corresponding buffer. The 
time required for sweep w- I is then (n- 1) · td + s(n- 1). Dividing by n · td + s(n) gives the maximum 
number of data blocks that is consumed during this sweep. To guarantee that the buffer of u contains at 
least I + cr1 (iu) /shu data blocks at the start of sweep w, the buffer has to contain at least 

1 
<JJ(iu) (n-l}·td+s(n-I) 

+--+-'----<..........:=----~-....:.. 
sbu sbu 
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Figure 2.2. Placement of the data blocks 

data blocks at the start of sweep w- 1. To guarantee that when u has room for less than one data block in 
the buffer, the buffer still contains this number of data blocks, the buffer capacity has to be one plus this 
number. This and rewriting the fraction to 1 + td+s(n~bs(n-l) yields that the buffers have to be large enough 

.~ u 

to store 

3
+ <rJ(iu) _ tt~+s(n)-s(n 1) 

sbu sbu 
(2.4) 

data blocks. The interpretation of the fraction is the number of data blocks that is saved by fetching only 
n - 1 data blocks instead of n. To guarantee that the buffer is large enough, regardless of the value of iu. 
i.e., regardless of the data block that has to be fetched for user u in sweep w, we have to maximize (2.4) 
over all values of i,,. This yields 

+max -- - . 3 (
al(i)) tJ+s(n)-s(n-1) 

O::;i<nB shu shu 
(2.5) 

We give an example to clarify the above. 

Example 1. We consider a hard disk that consists of six equal-sized zones, numbered from 0 through 5, 
and assume the worst-case switching time function of the Seagate Barracuda 9 drive. The transfer rate of 
the zones increases from 60 Mbitls for the inner zone to 85 Mbit/s for the outer zone in steps of 5 Mbitls. 
We assume that 12 users have to be serviced that have a maximum consumption rate of 4 Mbit/s. The 
worst-case switch time required for a sweep in which for each user a data block is fetched, i.e., s(n), is 
1 09.4 5 ms. Furthennore, s( n - 1) = 101.17. 

We assume a block size of 171 kB. Furthermore, we assume that the data blocks are stored on the hard disk 
such that data block i, 0::;; i < nn is stored on zone i mod 6 (see Figure 2.2). By definition, td = B-;;:;.-;:(n). 
Hence, tc1 = 18.69 ms. The transfer time required for fetching a data block can be calculated by dividing 
the block size by the transfer rate of the zone on which the data block is stored. Figure 2.3 depicts the 
transfer time of the data blocks. 

Let iu be 7 at the start of sweep w. In the figure x = I.J=o(ta(i)- tJ), where i mod 6 = 0, i.e., data block 
i is stored on zone 0, and y is this expression for the case that i mod 6 3, i.e., data block i is stored on 
zone 3. Hence, x = (22.27- 18.69) + (20.55- 18.69) + (19.09- 18.69) = 5.83. Similarly, y = -5.85. 
We first calculate how many data blocks have to be in the buffer at the start of sweep w, i.e., we calculate 
l +<rJ(7)/sbu. Becausex<y, 

Hence, <r1 (7) equals (20.55- 18.69) + (19.09 18.69) = 2.25 ms. Furthermore, shu = 12 · 18.69 + 
109.45 = 333.73 ms. As a result, al(7)/sbu = 0.00674. Consequently, I +<r1 (7)/sbu = 1.00674. 
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Next, we determine the required buffer capacity, i.e., we determine the value of Expression (2.5). Again 
because x < y, maXo$;i<ns 0'1 (i) = x = 5.83. Hence, maxosi<ns 0'1 (i)/shu= 5.83/333.73 = 0.01747. Fur~ 
thermore, 

tt~+s(n)-s(n-1) = 18.69+109.45-101.17 =0.0
8
0SI. 

shu 

Consequently, (2.5) equals 3 + 0.00674 + 0.08081 = 3.088. 0 

Assume that the transfer time of all users may deviate from td. Inspired by the discussion above, we require 
that at the start of a given sweep the buffer of each user contains at least 

l + ± 0'1 (iu) 
u=l shu 

data blocks. However, 0'1 (iu) is only meaningful if iu ::f:. nB, i.e., if u E U. Furthermore, buffer underflow 
can only occur in a buffer whenever the last data block of the movie still has not been placed in the buffer 
and the corresponding user is consuming. By definition, this means that we only have to define a minimum 
degree of filling for buffers of users from U. Hence, we require that at the start of the sweep the buffer of 
each user from U contains at least 

1+ L O'I(iu) +(n-IUI)·~, 
uEU shu shu 

(2.6) 

data blocks, where t / sbu is the contribution to the expression of the users that are not in U. We define t as 
t(nB- 1)- tJ. This wil1 be useful in the discussion about how to handle user requests in Chapter 5. Note 
that since tis descending, t:::; 0'1 (i) for all i, 0:::; i < nB. 

Similar we can generalize the required buffer capacity given by (2.5) to 

+n· max -- - . 3 (
O't(i)) tt~+s(n)-s(n-1) 

O$i<ns-l shu shu 

The following theorem states a sufficient buffer capacity to guarantee safeness in the case that filling strat­
egy TB is used. The theorem is based on the obtained insight. For the proof we refer to Appendix A. Note 
that the buffer capacity is (mainly) determined by 0'2 instead of O'J. Hence, the buffer capacity is (mainly) 
determined by the subsequences of a of length at least two instead of one. 

Theorem 1. If t0 2: t(nB - 1 ), where t0 = B-;;:;:~(11), if no requests are sent by the users and if each user 
from U has initially at least the number of data blocks given by (2.6) in the corresponding buffer, then 
filling strategy TB is safe if there is room for at least 

3+n· max -- -o (
0'2(i)) 

O$;i<11s-I sbu 
(2.7) 
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data blocks, where O'm is defined by (2.3) and 

O= max --(
<Y2(i)) 

O::;;i<lln-1 shu (
crt(i)) ttt+s(n)-s(n 1) max -- + -'--;_:_-:---'--..:... 

O$i<llB sbu · sbu 
(2.8) 

0 

We look at the meaning of the theorem for Example l. 

Example 1 revisited. As calculated in Example l, maxo:::;i<n
8

(crl (i)fsbu) = 0.01747 and td+s("1;~•(n-I) = 
0.08081. It can be verified that cr1 (i) = cr2(i). Hence, by (2.7), a sufficient buffer capacity is 3 + 12 · 
0.01747 +0.08081 3.13 data blocks, which equals 535.23 kB, becauseB = 171 kB. 

From (1.2), it follows that the minimum block size for the original TB algorithm is 280.19 kB, which yields 
a minimum required buffer capacity of 840.57 kB. Hence, the required buffer capacity decreases by 36%. 
0 

2.1.2 Conditional solution 

In Subsection 2.1.1, we defined Itt such that one data block is large enough to survive a sweep in which the 
switch time is maximal and the transfer time required per user is ltf, i.e., B = Cmax(n ·Itt+ s(n)). Alterna­
tively, we now define td such that 

1 
B = Cmax(n · td + 2 ·s3(2n)) (2.9) 

or, equivalently, fd = B-!~max·s3 (2"). Hence, the time that can minimally be survived with two data blocks 
Cmax·n 

is 2n · ttt + s3(2n). Consequently, two data blocks contain enough data to survive three sweeps if for a user 
at most two data blocks are fetched in three successive sweeps and the average transfer time required for 
transferring two successive data blocks for a user does not exceed td. In the next lemma we prove that 
the first condition is implied by the second one. We thereby consider an interval in which the hard disk is 
idle, because no data block has to be fetched, as an large number of sweeps. The condition on Itt can be 
formalized as 

(2.10) 

The equation has the meaning that the size of a data block is no longer based on the worst-case required 
transfer time in a single sweep, as is the case in TB, but on the worst-case required transfer time in two 
sweeps. 

B- ic ·r3(2n) 
Lemma 1. If the users do not send requests and (2.10) holds, where ttt = .m .. , · , and if each user 

Cmax·ll 
from U has initially room for at most one data block in the corresponding buffer, then in three successive 
sweeps at most two data blocks are fetched for the each user. 

Proof. We prove by induction to the number of executed sweeps, denoted by w, that in three successive 
sweeps never three data blocks are fetched for the same user. As basis, we take the cases that w is 1, 2 and 
3. The induction hypothesis trivially holds for w = 1 and w = 2. Assume that w = 3 and assume that the 
induction hypothesis does not hold. This means that a user u, 1 :::; u :::; n, exists, for whom a data block is 
fetched in sweep one, two and three. Hence, at the start of the first sweep u has to be an element of U, 
which, by assumption, implies that the buffer of u has room for at most one data block. The time required 
for the first two sweeps is maximal when in both sweeps a data block is fetched for all n users. This time 
does not exceed 

n· 1pax (ta(i)+ta(i+I))+2s(n), 
O:$•<~tn-1 
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Because, by assumption, {2.10) holds, this is at most 2n · fd + 2s(n). Multiplying with the maximum 
consumption rate Cmax yields 

2cmax • (n · td + s(n)), (2.11) 

which is the amount of data that is maximally consumed during the first two sweeps. From {1.1), it fol­
lows that 2s(n) = s2(2n). Furthermore, it follows from the meaning of Si that s2(2n) < s3(Zn). Hence, 
using (2.9), we get that in the first two sweeps, user u has consumed strictly less than two data blocks. Fur­
thermore, two data blocks have been fetched during the first two sweeps. Consequently, the buffer contains 
strictly more data at the start of third sweep than at the start of first sweep, i.e., the buffer of u has room for 
strictly less than one data block at the start of third sweep. As a result, no data block is fetched for u in the 
third sweep, which yields the contradiction. 

Consider the case w m + 1, where m 2: 3. Let u be an arbitrary user, 1 $ u $ n. Because the induction 
hypothesis holds for w 5 m, it suffices to prove that not in all three sweeps m- 1, m and m + 1 a data block 
is fetched for user u. Again, we prove it by contradiction. Hence, assume that in all three sweeps a data 
block is fetched. From the induction hypothesis and m 2: 3, it follows that in the sweeps m- 2, m- 1 and 
m at most two data blocks are fetched for the same user and that in sweep m - 2 no data block is fetched 
for u because, by assumption, this is done in sweep m- l and m. The first observation yields that the total 
time required for the sweeps m - 2, m - I and m does not exceed 

n· ~ax (ta(i)+ta(i+ l))+s3(Zn). 
051<na-l 

Because of the assumption that (2.10) holds, this is at most 2n ·td +s3(Zn). When we multiply this by Cmax 

and divide it by B, which, by definition, is Cmax · (n · td + !s3 (2n )), we get that maximally two data blocks 
have been consumed during these sweeps. As mentioned, no data block is fetched for u in sweep m- 2. 
Hence, u has room for strictly less than one data block in the buffer at the start of this sweep. Furthermore, 
a data block is fetched for u in both sweep m- 1 and m. As a result, there is room for strictly less than 
one data block in the buffer of u at the end of sweep m, which means that in sweep m + 1 no data block 
is fetched for user u. This gives the contradiction. This completes the proof of the induction step and 
correspondingly the proof of the lemma. 0 

In the next theorem we give the generalized version of Lemma I. Because the proof is similar to the proof 
of the lemma, we omit its proof. In the theorem ttl is defined such that B = cmax(n ·td + fSk+l (kn)). Hence, 
k data blocks are large enough to survive k + l sweeps if at most k data blocks are fetched for the same user 
in k + 1 successive sweeps and the average transfer time required for a user for fetching k successive data 
blocks does not exceed td. 

Theorem 2. Let k be a positive integer. If the users do not send requests to the server, 

"k-l ('+ ') maxo:s;i<ns-1 ""'j=ota l 1 
td ~ k ) 

where ld = B- {c~ax·s~+l (kn), and if there is initially room for at most one data block in the buffer of each 
Cmax· 

user, then in k + 1 successive sweeps at most k data blocks are fetched for each user. 0 

Lemma I is the key to the following theorem, which gives a sufficient buffer capacity for the case that (2.1 0) 
holds. In the theorem, we denote the time that can minimally be survived with a single data block, i.e. 
n · td + !s3(2n), by she. 

Theorem 3. If the users do not send requests to the server, if Equation (2.10) holds and if each user from 
U has initially room for at most one data block, then filling strategy TB is safe if there is room for 3 - ~ 
data blocks, where 

~= 2tJ-t(O)+s3(2n)-s2(2n I) 
she 

(2.12) 
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Proof. It follows from filling strategy TB, that no buffer overflow occurs. Furthermore, buffer underflow 
can only occur for users from U. Consider the moment that the buffer of an arbitrary user u, u E U, turns 
into the state that it is able to store a data block. This means that there fits exactly one data block in the 
buffer. We prove that between this moment and the moment the buffer has (again) room for less than one 
data block, no buffer underflow occurs. Because initially each user from U has at most one free buffer 
place, this proves the theorem. It takes at most two sweeps before u receives the fist data block. This time 
is maximally 

(n-1)· tpax (ta(i)+ta(i+I))+ max ta(i)+s2(2n-I), 
O$t<n.n-l O$t<ns 

(2.13) 

because these two sweeps contain only one data block for u. Hence, the buffer of u has to contain at least 
enough data to survive this time. Since t is descending and by (2.10), we get that this time is at most 
2n ·td +s3(2n)- e, where e = 2td -t(O) +s3(2n)- s2(2n -1). Dividing this by sbc gives the number of 
data blocks that is maximally consumed during this time. By definition, this equals 2 - Oz, which is exactly 
the amount of data the buffer contains at the moment that we take under consideration. Hence, until the 
moment that user u receives his/her first data block, no buffer underflow occurs. 

We still have to prove that no buffer underflow occurs between the moment that the first data block arrives 
in the buffer and the moment that u has less room in the buffer than one data block. Assume that the buffer 
of u receives the first data block in sweep w and that it has still room for more than one data block. This 
means that in sweep w + 1 a data block is fetched for u, as well. From Lemma 1, it follows that in sweep 
w + 2 no data block is fetched for user u. Consequently, between the arrival of the first data block and the 
moment the buffer has room for less than one data block, only one data block is fetched. This means that 
between these moments, the buffer has room for strictly less than two two data blocks. Hence, no buffer 
underflow occurs if the capacity of a buffer is at least two data blocks. This is the case, because if the 
capacity would be less than two data blocks, the buffer would have less than one free buffer place after 
receiving the first data block and this is in contradiction with the assumption that u has room for a data 
block after receiving the first one. D 

2.2 Revision of dual sweep 

The DS algorithm states that whenever a data block is large enough to survive two successive sweeps in 
which at most one data block is retrieved for each user, a buffer capacity of two data blocks suffices to 
guarantee safeness. By the used filling strategy, two successive sweeps are worst case when for each user 
one data block is fetched at a minimum transfer rate and the switch time is maximaL When we assume a 
higher throughput than the minimum throughput, a data block is no longer large enough to survive a worst­
case situation of two successive sweeps. Hence, where we derived in the previous section a required buffer 
capacity for the case that a data block is too small to survive one worst-case sweep, we now have to derive 
a required buffer capacity for the case that a data block is too small to survive a worst-case situation of two 
successive sweeps. Therefore, let B and n be chosen arbitrary, where B is not large enough to survive a 
worst-case situation. 

Again, we introduce a dimension time td. In Theorem 1, td has the meaning of the transfer time that may 
be spent per user, such that a data block is large enough to survive the sweep. We now define td as the 
transfer time that may be spent per user in two successive sweeps such that a data block is large enough to 
survive those sweeps. Although the new definition covers two sweeps instead of one, tc1 is still related to 
the retrieval of a single data block, as follows from the definition of filling strategy OS. Formally, we define 

td such that B = Cmax(n ·ttl +s2(n)) holds, i.e., fd = B-::ax·:;("). Furthermore, we define Uw, w;:::: 0, as the 
set of users for whom a data block is fetched in sweep w. Note that, by the definition of filling strategy DS, 
UwnUw+l =0,forallw;::::O. 

Before we discuss a necessary buffer capacity to guarantee safeness for the case that a data block is not 
large enough to survive a worst-case situation of two successive sweeps, we consider how safeness is 
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guaranteed in the original DS algorithm. Therefore, we first investigate the number of data blocks that are 
maximally consumed during an arbitrary sweep w. The time that is maximally required for sweep w is 
given by IUw! · tmax + s(IUwl}. When we divide this expression by the time that can maximally be survived 
with a single data block, i.e., n· tmax +sz(n), we get the number of data blocks that is maximally consumed 
during sweep w. Hence, during sweep w maximally 

IUwl· tmax + s(IUwl) 
n ·tmax + sz(n) 

(2.14) 

data blocks are consumed. We can now state a necessary and sufficient condition to guarantee safeness 
for the original DS algorithm. Let the predicate P( w) be defined as the property that at the start of sweep 
w each consuming user that is not an element of Uw has at least one data block in the buffer and each 
consuming user that is an element of Uw has at least the number of data blocks given by (2.14) in the buffer. 
Then safeness is guaranteed from a given sweep w onwards if and only if P(w) holds. We first show that 
the necessary condition holds. 

Assume that u (/: Uw and that u has less than one data block in the buffer at the start of sweep w. Then the 
first data block may not arrive before the end of sweep w + 1. In the worst-case situation one data block is 
consumed during sweep w and w + 1. Consequently, buffer underflow occurs. Next, assume that u E Uw 
and u has less data blocks in the buffer than the number given by (2.14). We showed that (2.14) gives the 
number of data blocks that is maximally consumed during sweep w. Hence, buffer underflow can occur 
when the data block for u does not arrive before the end of the sweep. 

Next, we prove the sufficient condition. Hence, we prove that if P(w) holds, then safeness is guaranteed 
from sweep w onwards. Assume that P(w) holds. If we show that P(w') implies P(w' + 1) for all w';:::: w, 
then we get by the induction principle that P(w') holds for all w' ~ w. Because P(w') implies that each 
consuming user has at least the number of data blocks given by 2.14 in the corresponding buffer, no buffer 
underflow occurs in sweep w if P(w') holds. Consequently, it suffices to show that P(w') implies P(w' + 1 ), 
w';::::w. 

Assume that P(w') holds. We show that P(w' +I) holds. We distinguish the cases that u f/: Uw and that 
u E Uw. Assume that u f/: U.v, i.e., no data block is fetched for u in sweep w'. By P(w'), u has at least 
one data block in the buffer. Expression (2.14) with w replaced by w' gives the number of data blocks 
that is maximaHy consumed during sweep w'. Hence, at the start of sweep w' + 1, u contains at least one 
data block minus (2.14). As mentioned, U.v nu>l+l = 0. As a result, n -IU.vl ~ IUw+d and s2(n) ~ 
s(IU.vl) +s(!Uw+d). Consequently, one minus (2.14) is at least (2.14), where w is replaced by w' +I. 
Hence, if u E Uw+h then P(w' + l) holds. If, on the other hand, u (/: Uw'+l then u has room for less than 
one data block, as follows from the definition of filling strategy DS and u (/: U.v. Because the buffer has 
room to store two data blocks this implies that u has at least one data block in the buffer. Hence, P( w' + 1) 
holds. 

Assume that u E U.v. Hence, a data block is fetched for u in sweep w'. Because P(w') holds, u has enough 
data in the buffer to survive sweep w'. Furthermore, by the definition of filling strategy DS, the retrieved 
data block fits in the buffer. Hence, neither buffer underflow nor buffer overflow occurs in sweep w' and 
at the end of the sweep, u has at least one data block in the buffer, namely the retrieved data block. As a 
result P( w' + I) holds. 

We now consider how safeness is guaranteed in the case that a data block is too small to survive a worst­
case situation of two successive sweeps. It is no longer the case that from a given sweep w safeness is 
guaranteed when P( w) holds, as can be verified as follows. When a user u has exactly one data block in the 
buffer and u (/: Uw, then the first data block may not arrive before the end of sweep w + 1. In the worst-case 
situation, more than one data block is consumed during sweep wand w + 1. Consequently, buffer underflow 
can occur. 

Similar as in the previous section, we first consider the case that for only one user, say u, the transfer time 
required for transferring a data block may deviate from t0 . Hence, when the ith data block is fetched for 
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user v, the corresponding transfer time is ta(i) if v = u and td, otherwise. Furthermore, we assume that from 
a given sweep w until the sweep in which the last data block is fetched for user u, for each user a data block 
is fetched once in every two sweeps. Formally, we assume that Uu~ U Uw'+I = {1,2, ... ,n }, for each w', 
w :S w' :S Wia.rt. where Wfast is the sweep in which data block ns- 1 is fetched for user u. There are ns iu 
data blocks to fetch for user u at the start of sweep w. As a result, Wfa.rt = w+ 2 · (ns- iu)- 2 if u E Uw and 
Wtast :::::: w + 2 · (ns - iu) -I, otherwise. By the assumption, we have that Uw = Uw+2 = Uw+4 = ... and that 
Uw+l = Uw+3 = Uw+5= .... 

We first derive how many data blocks are maximally consumed during two successive sweeps, say w' and 
w' + l, w :S w' < Wia.vt· By assumption, a data block is fetched for each user in these sweeps. Hence, the 
time required for sweep w' and its successor can maximally be (n -1) · td + ta(iu) +s2(n). Hence, the time 
required for sweep w' and w' + 1 is ta(iu)- td more than the time that can be survived with a single data 
block. This time is depicted by the shaded blocks in Figure 2.1. Dividing this time by the time that can 
minimally be survived with a data block, gives the number of data blocks that is consumed more in sweep 
w' and w' + 1 than the number of data blocks that arrived in the buffer during the sweeps, i.e., one. Hence, 
the user has consumed 

(2.15) 

data blocks during sweep w' and w' + 1, where sbd is the time that can minimally be survived with a single 
data block, i.e. sbct = n ·ttl + s2 ( n). Note that this expression has a similar meaning as Expression (2.1) in 
the previous section. 

Using the above, we can derive the number of data blocks that have to be in the buffer of each user at the 
start of sweep w to prevent the buffer from underflowing during sweep w through W[a.\'1. We thereby assume 
that Wfa.vt is not about as large as w, i.e., there are still a couple of data blocks to fetch for user u. Let v be 
an arbitrary user. Assume that v rf, Uw. Then a data block may not arrive before the end of sweep w + I. 
Consequently, the number of data blocks that are maximally consumed during sweep w and w + I, which 
is given by (2.15), has to be in the buffer at the start of sweep w. 

Because v rf, Uw and because, by assumption, a data block is fetched for each user once in every two sweeps, 
v E Uw+l and v rf, Uw+2· Hence, to guarantee that no buffer underflow occurs in sweep w + 2 and w + 3, 
the buffer of v has to contain again at least the number of data blocks given by (2.15) at the start of sweep 
w + 2, where iu is raised by one in comparison with the situation at the start of sweep w. As mentioned, 
the fraction in (2.15) gives the number of data blocks that are consumed more in two successive sweeps 
than the single data blocks that arrived in the buffer during the sweeps. Hence, to prevent the buffer of v 

from underflowing during sweep w + 2 and w + 3, the buffer has to contain at least (2.15) plus ta(~;); 1t! at 
the start of sweep w, which is given by 

l 
ta(iu)- fd ta(iu + 1) ttl + +~~~~ 

sbd sbd 

Similarly, it holds that to guarantee that the buffer of v does not underflow in the sweeps in which data 
block iv + k - 1 is fetched, i.e. in the sweeps w + 2( k - 1) and w + 2( k- I) + l, the buffer of v has to 
contain at least 

1 
+ l:,'-;:~(ta(i + j)- td) 

sbct 

data blocks. This expression has a similar interpretation as Expression (2.2). When we maximize the 
expression over all possible values of the window size k, we get the minimum number of data blocks the 
buffer of v has to contain to prevent the buffer from underflowing in any sweep from w through Wta.vt· By 
the definition of CJm, this means that if v ¢ Uw, then the buffer of v has to contain at least 0'1 (i14 ) / sbd data 
blocks. 

Assume that v E Uw. which means that a data block is fetched for v in sweep w. We, again, derive how many 
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data blocks the buffer at least has to contain to prevent the buffer from underflowing. The time required for 
sweep W is IUw \ { u} · td +X(Uw)(u)2 · ta(iu) + s(IUwl). This can be written as IVwl· ld + s(IUwl) + X(Uw) (u) · 
(ta(iu)- tJ). Dividing the expression by sbd gives the number of data blocks that are maximally consumed 
during sweep w. Hence, maximally 

IVwl·td+s(IUwl) () ta(iu)-td 
b +X(Uw) u · b · s d s d 

(2.16) 

data blocks are consumed during sweep w. Because v E Uw, we have that v ~ Uw+!· Hence, as discussed 
the buffer has to contain at least 1 + cr(lu) I sbd data blocks at the start of sweep w + 1 to prevent the buffer 
from underflowing from sweep w+ I through sweep Wta.ff• where the tilde indicates that iu is based on the 
situation before the start of sweep w + 1. As a result, the number of data blocks the buffer of v contains at 
the start of sweep w minus the number of data blocks that is maximally consumed during sweep w, which is 
given by (2. I 6), plus the data block that is fetched during sweep w has to be at least 1 + 0"1 Ciu) I sbd. Hence, 
the buffer of v has to contain at least the number of data blocks given by (2.16) plus cr(iu). However, when 
cr(iu) is negative, this number is smaller than the number given by (2.16). Hence, buffer underflow may 
occur during sweep w. Therefore we require that the buffer of v contains at least 

IUwl·td+s(IUwl) () ta(iu)-td max(cri(lu),O) 
b +X(Uw) u . b + b 

Sd Sd Sd 
(2.17) 

data blocks in the case that v E Uw. If u ~ Uw, then lu = iu and X(Uw)(u) = 0. Consequently, Expres­
sion (2.17) then equals 

IUwl·td+s(IUwl) + max(crJ(iu),O). (2 .18) 
sbd sbd 

Whenever u E Uw. (2. I 7) is at most this expression. For the proof we refer to the proof of Theorem 4 in 
Appendix A from Expression (A.l3). Hence, at the start of sweep w the buffer of an arbitrary user v has to 
contain at least I + 0"1 ( iu) data blocks if v ~ Uw and at least the number of data blocks given by (2.18) if 
v E Uw. Note that Expression (2.I8) does not have to be strict, as follows from its derivation. 

We now discuss what the discussion above means for the buffer capacity. An arbitrary user v may not be 
an element of Uw both because the buffer has no room for a data block at the start of sweep w and because 
a data block has already been fetched for v in sweep w - 1. Assume that the buffer has no room for a 
data block at the start of sweep w. As discussed, v ~ Uw implies that the buffer has to contain at least 
I + O"(i11 ) I sbd data blocks. To guarantee this, the buffer capacity has to be at least one plus this expression. 
To guarantee that the buffer contains 2 + O"J (i11 ) I sbd data blocks regardless of the value of i11 , we have to 
maximize the expression over all values of i11 • Hence, the buffer must be large enough to store at least 

0"! (i) 
2+ max-­

O~i<ns sbd 

data blocks. 

We return to the case that for each user the required transfer time may deviate from tJ. Because the users 
from U are the only users whose buffer possibly underflows, we only have consider the buffers of these 
users when defining a minimum degree of filling for the buffers. A straightforward generalization of the 
conditions above to guarantee that no buffer underflow occurs in any buffer from a given sweep w onwards, 
is to require that at the start of the sweep the buffer of an arbitrary user u E U contains at least 

1 + L O"J{iv) 
vEU sbd 

data blocks in the case that u ~ Uw and at least 

IUwl·td+s(IUwl) + L max(cri(iv),O) 

sbd vEU sbd 

2 . { I if i E V 
X(V)(l) = 0 if otheiWise 

(2.19) 

(2.20) 

• 
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Figure 2.4. Example 2 

data blocks otherwise. However, we require that an arbitrary user u ~ Uw contains 

1 
+ L max(cri(i,),O) 

vEU sbd 
(2.21) 

data blocks, instead of the number given by (2.19). This has two reasons. Firstly, it is useful for the 
discussion about handling user requests. In addition, it has as consequence that (2.20) and (2.21) hold at 
the start of each sweep instead of only sweep w. 

Similarly, we can generalize the buffer requirements to the case that the transfer time of each user may 
deviate from td. We get that a buffer must be large enough to store at least 

<T1 (i) 
2+n· max -­

O$i<ns sbd 

data blocks. The next theorem proves that safeness is indeed guaranteed with the discussed generalization. 
Unlike Theorems 1 and 3, the theorem also states that the given buffer capacity is necessary. For the proof 
we refer, again, to Appendix A 

Theorem 4. If n 2: 2 and t(O) 2: td 2: t(nB- I). where td = B-::·:·:;~(n), if the users do not send requests 
to the server and if each user from U has initially at least the number of data blocks given by (2.21) in the 
buffer; then .filling strategy DS is safe if and only if there is room for at least 

(2.22) 

data blocks, where <Tm is defined by (2.3). 0 

We conclude this section with an example. 

Example 2. We consider the same hard disk characteristics as in Example 1. Furthermore, we again 
assume that 12 users have to be serviced who have a consumption rate of 4 Mbitls. The value of s2(n) is 
120.50 ms. Consequently, by ( 1.3), the minimum block size in the original DS algorithm is 308.49 kB, 
which results in a buffer capacity of2 · 308.49 = 616.98 kB. 

We assume a block size of 188 kB. As a result, td = 20.55 ms. Figure 2.4 depicts the required transfer 
time for the data blocks in the case that the placement of the data blocks on the hard disk is similar as in 
Example l . Both x andy have the same interpretation as in Example I. It can be calculated that x = 6.41 
ms andy= 6.42 ms. Hence, again x < y. As in Example 1, this yields that maxo::;i<ns cr1 (i) = x = 6.41. 
By Theorem 4, safeness is guaranteed if and only if each buffer has room for at least the number of data 
blocks given by (2.22). Hence, a buffer must have room for at least 

2 _.::_=2 
6

.41 =2 
+ sbd + 12 ·20.55+ 120.50 ·

2095 



2.2. REVISION OF DUAL SWEEP 23 

data blocks. Because the block size is 188 kB, this means that the minimum buffer size is 2 .2095 · 188 = 
415.39 kB. As a result, the buffer requirements are decreased by 33% in comparison with DS. D 
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Chapter 3 

Problem reformulations and their 
complexity 

In Theorems l, 3 and 4 we derived sufficient buffer capacities for the case that a higher throughput is 
assumed than the minimum throughput of the disk. In Theorems 1 and 4 the placement of the data blocks 
on the disk influences the required buffer capacity, and correspondingly the cost per user, by a2 and 8 and 
a,, respectively. In Theorem 3, the placement determines whether condition (2.1 0) is satisfied. 

In Section 3.1 we formulate the problem of defining a placement such that the buffer requirements given 
by Theorem 1 and Theorem 4 are minimized. Because this problem is NP-complete in the strong sense, 
as we will show, we relax the problem in Section 3.2. There, we also discuss the problem of finding an 
assignment such that condition {2.1 0) in Theorem 3 is satisfied. 

3.1 Minimizing of the buffer capacity 

In Theorem 1 the required buffer capacity increases linearly with maxo::;i<118 a2 ( i) and, via o, with the value 
of maXo$i<n8 a1 (i). Furthermore, the required buffer capacity is only influenced by the placement of the 
data blocks, i.e., the assignment a, by these expressions. Consequently, defining an assignment such that 
the required buffer capacity is minimized comes down to minimizing these expressions. We first show that 
it suffices to minimize the first expression, i.e., we show that whenever the first expression is minimized, 
the second is minimized as well. 

To express a1 (i) in terms of a2(i), 0$ i < nB, we split off k == l from the range of kin a1 (i). We get that 

Consequently, 

td) if i < nB - 1 
if i::: flB- l. 

max at (i) == max ( lll;aX a2 (i), !max - ld) . 
0$•<nn 0:$•<nn 

Because tmax- fd is independent of assignment a, this implies that whenever maxo::;i<no a2( i) is minimized, 
maxo$i<n8 <Jt (i) is minimized as well. As a result, minimizing the required buffer capacity given by Theo­
rem 1 is equivalent to minimizing maxo$i<nn a2 ( i), which, by definition, equals 

(3.1) 

24 
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=Al 

Figure 3.1. Assignment a 

For an interpretation we refer to Figure 2.1. As discussed in Chapter 2, this expression can be interpreted as 
the maximum sum of the shaded blocks that are above the dotted line minus the sum of the shaded blocks 
that are below it, where the maximum is taken over all subsequences of a of length at least two. 

In Theorem 4, the required buffer capacity increases linearly with the value ofmaxo:Si<ns 0"1 (i) as well and, 
moreover, it is only influenced by assignment a by this expression. As a result. the buffer size given by 
Theorem 4 is also minimized once maxo9 <ns 0"2 ( i) is minimized. 

We define the problem of minimizing maxo::;~<ns a2(i) as a decision problem. 

Problem definition 2. (Block Assignment Problem) Given a set F of nB physical addresses, a transfer 
time function t : F -t JN+, a dimension time td and a bound Z E JN+. Is there a bijection a : {0, 1, ... , nB-
1} -t F, such that 

k-1 
tl:\ax max . L (t(a(i + j))- tc~) ;;; Z 

O::;t<ns 2::;k::;nB-t j=O 
(3.2) 

0 

To prove that this problem is NP-complete in the strong sense, we make a reduction from 3-partition, which 
is proved to be NP-complete in the strong sense [3]. The problem is defined as follows. 

Problem definition 3. (3-Partition) Given a set A of3m elements, a boundZ E JN+ and a size s(a) E fN+ 
for each a E A, such that ~ < s(a) < ~ and such that IaeA s(a) = m · Z. Can A be partitioned into m 
disjointsetsA1,A2,···•Am, such that.for 1;;; i;;; m, IaeA;s(a) =Z. 0 

Theorem 5. The block assignment problem is NP-complete in the strong sense. 
Proof. The storage capacity required for the sequence of a is polynomial in the storage capacity required 
for the input. Furthermore, it can be verified in polynomial time if a is a bijection and if 3.2 holds. This 
implies [ 13] that the assignment problem is in !J{P. 

Let I be an arbitrary instance of 3-partition. We define the function t that maps I to an instance of our 
problem. We define the set of physical addresses, i.e. F-r(/)• as A1 U {x1,x2, ... ,Xm-1 }, the transfer time 
of Xi> 1 ;;; i < m, as 1 and the transfer time of the elements from A1 as SZ1 + s1(a) +I. Furthermore, we 
define the dimension time as 4ZJ +I and Zc(l) as 4Zf. We have to prove that tis a pseudo-polynomial 
transformation [3]. The transformation clearly can be performed in a time polynomial in the input length. 
It is also straightforward that the length oft(/) is of the same magnitude as the length of I and the maximum 
value occurring in t(l) is of the same magnitude as the maximum value occurring in 1. What remains is the 
proof that I is a yes-instance of 3-partition if and only if t(l) is a yes-instance of the assignment problem. 

Let I be a yes-instance of 3-partition. Hence, the set A1 can be partitioned into m disjoint sets, each with 
total size ZJ. We will prove that t(/) is a yes-instance of our problem, i.e. there exists a bijection a such 
that 3.2 holds. We prove this by constructing a. The first four elements of the sequence of a are the three 
elements from A 1 followed by x1. The next four elements are the elements from A2 followed by x2. This 
is repeated until Xm-1 is placed in the sequence. Finally, the elements of Am are appended to the sequence. 
The obtained sequence is depicted in Figure 3.1. 

Assignment a satisfies 3.2, if for all subsequences of a it holds that 

'L(t-r<l)(i)- (rd)-ru));;; Zccl)· 
iES 

(3.3) 
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~J 

Figure 3.2. Definition a and J3 

where the setS contains the function values of a in this subsequence. Define the sequences CJ.i and ~~. 
1 ::; i::; m, as depicted in Figure 3.2. Because the total size of an arbitrary set A;, 1 ::; i::; m, eqauls Z1, 
the value of the left hand side of (3.3) equals 4Z1 for sequence a; and 0 for sequence [l1, as follows from 
the definition of -r:(/). Furthermore, because s1 has a positive range, the value is Jess than 4Z/ for each 
subsequence of CJ.; and less than 0 for each subsequence of~~ that also contains x;. 

Consider an arbitrary subsequence. Clearly, there exists an i and a p, I $ i :S i + p ::; m, such that the 
subsequence is given by 

(3.4) 

where~~ and ft.; are defined as a subsequence of [l; that contains x1 and a subsequence of a;, respectively. 
Moreover, sub1 ++sub2 defines the concatenation of sequence sub2 and sequence sub1. From the observa­
tions above, it follows that the left hand side of (3.3) for the sequence given by 3.4 is at most 4ZJ. Hence, 
-c(/) is a yes-instance of the assignment problem. 

Let -c(/) be a yes-instance of the assignment problem. This means that a bijection a exists such that (3.2) 
holds. We have to prove that I is a yes-instance of3-partition. Assume that a contains a subsequence of four 
(or more) consecutive elements from A1, starting at position i. We show that this leads to a contradiction. 
Because (3.2) holds, we have that 

3 

L(tt(J)(a(i + j))- (td)t(l)) = 4Zt(/)· 
j=O 

Using the definition of 't, the left-hand side can be written as 4Z1 + I.]=osi(a(i + j) ). Consequently, the 
equation is equivalent to 

3 

4ZI + l:Sl(a(i+ j)) :S 4Zr(I)· 
j=O 

Because the range of SJ is tv+, the left-hand side is strictly larger than 4ZJ, which, by definition, equals 
Zr(l). This yields the contradiction. Hence, the sequence of a contains at most three consecutive elements 
from AJ. Because, by definition, IA1I =3m and !Ft(I)- A1i = m- 1, this can only be the case if a has 
m disjunct subsequences of length three, which consist of elements from AJ, separated by elements from 
{xi ,x2, ... Xm-1 }. Let V be the elements of such a subsequence. By the definition of't, 

L(tt(I)(a(i)) -(tJ),.(l)) = 3ZJ+ LSJ(a(i)). (3.5) 
iEV iEV 

Because -c(I} is a yes-instance, the left-hand side is at most 4ZJ. This and (3.5) yields that L;ev sr (a( i)) ::; ZJ. 
Hence, a partitions the elements of A1 in m disjunct sets each containing three elements and with a total 
size of at most ZJ. Because the total size of A1 equals m · Z1, the total size of each set has to be exactly ZJ. 
Consequently, I is a yes-instance of 3-partition. D 
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3.2 Problem relaxation 

Because the problem of minimizing (3.1) is NP-complete in the strong sense, we relax the problem. In the 
next subsection a relaxation is given that is based on reducing the number of subsequences of a by which 
the value of Expression (3.1) is determined. 

3.2.1 Lowering the maximum windowsize 

In TB and DS, the block size is based on the guaranteed throughput over a period in which maximally one 
data block is fetched per user. This period is one sweep in the case of TB and two sweeps in the case ofDS. 
Let the block size be based on the guaranteed throughput over a period in which maximally kub data blocks 
are fetched per user. For filling strategy TB this means that a data block is large enough to survive the 
time that on average is required for one sweep, where the average is taken over kub successive sweeps. For 
filling strategy DS it means that a data block is large enough to survive the time that on average is required 
for two sweeps, where the average is taken over 2kub successive sweeps. In the first case the required buffer 
capacity is given by Theorem 1 and in the second case by Theorem 4. We investigate the consequences of 
such a block size for (3.1 ), which we have to minimize. We first write the condition on the block size in 
terms of a condition on the value of tJ. 

Consider the case that filling strategy TB is used. The time required for kub successive sweeps is at most 
the time required for fetching kub successive data blocks for each user plus kub times the worst-case switch 
time required for a sweep, i.e., kub · s(n). Hence, the time required for kut successive sweeps is at most 

n ·maXo::;i:SJte-kub 2:~~0 1 
ta(i + j) +kub· s(n). If there is a data block io for which this expression is maximal 

and for which it holds that the scenario can occur that during kub successive sweeps for each user the data 
blocks io through io + kub- I are fetched, i.e., at the start of each of the kub sweeps, all buffers have room 
for at least one data block, then the time required for kub successive sweeps can be exactly the expression. 
Consequently, the condition that a data block is large enough to survive the time that on average is required 
for one of kub successive sweeps is implied by 

B 
> . n · maxo::;i:SJis-kub 2:~; 1 

ta ( i + j) + kub · s( n) 
_ Cmax k . 

ub 
(3.6) 

Because the buffer capacities are given by Theorem 1, td satisfies B = Cmax ( n · td + s(n)). Consequently, (3 .6} 
is equivalent to 

(3.7) 

Hence, tJ is at least the maximum transfer time that on average is required for transferring a data block, 
where the average is taken over kub successive data blocks. 

Consider the case that filling strategy DS is used. The maximum time required for 2kub successive sweeps 
is at most the maximum sum of the transfer times required for transferring kub successive data blocks for 
each user plus the maximum switch time required for 2kub successive sweeps, which is kub · sz(n). Hence, 

the time required for 2kub sweeps is maximal n · maXQ::;;::;118_kub l:~~o 1 ta ( i + j) + kub · sz ( n). Dividing by 
kub gives the time that on average is required for two sweeps. Consequently, the condition on the block size 
is implied by 

(3.8) 

Because the buffer sizes are given by Theorem 4, fd satisfies B = Cmax(n · fd + s2(n}). Consequently, (3.8) 
can also be rewritten to (3.7). 

From the above, it follows that if (3.7) holds, then a data block is large enough to survive the time that 
on average is required for one sweep when filling strategy TB is used, where the average is taken over kub 
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Figure 3.3. Example 1 revisited 

successive sweeps, and it is large enough to survive the time that on average is required for two sweeps 
when filling strategy DS is used, where the average is taken over 2kub successive sweeps. Note that if 
kub = 2, then condition (3.7) is equivalent to (2.10) and if kub = 1, then (3.7) is equivalent to tc1 ~ tmax• 
which means that TB and DS are valid. We give an example to clarify the above. 

Example 1 revisited. We show that (3. 7) holds for kub = 6, i.e. we show that the transfer time that is 
worst-case required for transferring six successive data blocks does not exceed kub times td. Note that x :::; y 
is a consequence of this property. Let V be an arbitrary set of six successive data blocks. By the definition 
of assignment a, in each of the six zones exactly one data block is stored that is an element ofV. Letx;, 0:::; 
i :::; 5, be the position in zone i on which an element of V is stored. As mentioned in Example l, the transfer 
time required for transferring a data block from the zones 0 through 5 is 22.27,20.55, 19.09, 17.81,16.70 
and 15.72 ms, respectively. In Figure 3.3, the transfer time corresponding to the positions XI through xs is 
depicted. It foi1ows from the figure, that the sum of the six transfer times is less than 6td. Because V is an 
arbitrary set of six successive data blocks, (3.7) holds for kub = 6. Consequently, a data block is at least 
large enough to survive the time that on average is required for one of six arbitrary successive sweeps, i.e., 
the block size is based on the guaranteed throughput over a period in which at most six data blocks are 
fetched for each user. D 

It is easily verified that (3.7) is equivalent to 

(3.9) 

which can be interpreted as follows. Consider Figure 2.1. Equation (3.9) is true if and only if for all kub 
successive bars, it holds that the sum of the shaded blocks that are above the dotted line is at most the sum of 
the shaded blocks that are below the line. In the next theorem we show that whenever (3.9) holds, the value 
of Expression (3.1) is determined by the subsequences of length at most kub instead of all subsequences. 
More precisely, we prove that if (3.9) holds, then the value of Expression (3.1) is between the value of this 
expression with the range of k replaced by 2 through min(kub,nB- i) and the value of this expression with 
the range of k replaced by 1 through min(kub, ns- i). 

Theorem 6. If for a given kub· 1 :::; kub:::; ns, (3.9) holds, then (3.1) is between 

(3.10) 

and 

(3.11} 

Proof. Expression (3 .1) is clearly at least Expression (3.1 0) because the range of k in (3.10) is a subset of 
the range of kin (3.1 ). We will now prove that (3.1) is at most (3.11). 

Let i* and k* be the values, for which (3.1) is maximal. It suffices to show that there exist ant and a k!, 
where 0 :5 i' <no and 1 :::; /( :5 min(kub,nB- t), such that 

k*-! k1-1 

L (ta(i* + j)- ld) :::; L (ta(i' + j)- fd)· (3.12) 
l=•O }=0 
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If k* :$ kub. this holds trivially. Assume that k* > kub· Then there is a p and q, such that k* = p · kub + q, 
p ~ l and q < kub· Consequently, the left-hand side of (3.12) can be written as 

P kuh-1 q-1 

L L (ta(i* +m·kub+ j)- fd) + I',(ta(i* + P ·kub+ j} -td)· (3.13) 
m=1 j=fJ j=O 

By (3.9), I,~~0 1 (taU+ j) -td)::; 0, 0:$ i :$no -kub· Hence, (3.13) is at mosti,j,:~(ta(i* + p·kub+ j) -tJ). 
Defining i' as i* + p · kub and/( as q yields that (3.12) holds, which is to be proved. 0 

Clearly, (3.1) can be exactly (3.10) if (3.9) holds. In the next example we show that {3.1) can also be 
exactly (3.11) and can be strictly between (3.1 0) and (3.11 ). 

Example 3. Let fd be 5. Lett and a be such that the sequence ta is given by 10 1 4 10. It can be verified 
that (3.9) holds for kub 3, (3.1) is 5, (3.10} is 4 and (3.11) is 5. Consequently, (3.1) is exactly (3.11). 

Let ta be given by 10 l 4 7. Again, (3.9) holds for kub = 3. The values of (3.1), (3.10) and (3.11) are 2, 1 
and 5, respectively. Hence, the value of (3.1) is strictly between (3.10) and (3.11). 0 

By Theorem 6, the number of subsequences of a by which the value of Expression (3.1) is determined 
decreases with the value of kub· Hence, it will generally be the case that the smaller the value of kub for 
which (3.9) holds, the smaller the value of Expression (3.1 ). As a result, we relax the problem of defining 
an assignment for which (3.1) is minimized, which we proved to be formally difficult, to the problem of 
defining an assignment for which (3.9) holds, where kub is minimized. Hence, we aim at minimizing of the 
length of the period in which the guaranteed throughput is at least the throughput on which the block size 
is based. We write this problem as a decision problem. 

Problem definition 4. (Block Assignment Problem for Bounded Windowsize) Given a set F ofnn phys­
ical addresses, a transfer time function t : F -t tv+. a bound on the window size I :S kub $ ns and a dimen­
sion time tJ E tv+. Is there a bijection a: {0, 1, .. . ,no -I} -t F and a windowsize k, I$ k :$ kub· such 
that 

(3.14) 

0 

We will use the abbreviation BAPBW to denote this problem. To prove that this problem is NP-complete, 
we will make a reduction from partition, for which we know that it is NP-complete [3]. 

Problem definition S. (Partition) Given a finite set A and a size s :A -+ IJ+. Is there a subset A' ~ A such 
that 

WI I~ I and L s(a) = L s(a)? 
aEA1 aEA-A1 

(3.15) 

0 

Theorem 7. The block assignment problem for bounded window size is NP-complete. 
Proof Similarly as in the proof of Theorem 5, it can be proved that BAPBW is in 91[P. We define a function 
1: that maps an arbitrary instance of partition to an instance of BAPBW. Let I be an arbitrary instance of 
partition. If IA1I mod 2 = 1, which implies that I is not a yes-instance because A1 cannot be partitioned into 
two equal sized sets, then we define 1:{1) as an instance that is neither a yes-instance of 1:(/). Let I be an 
instance, such that IA1I mod 2 = 0. In the remainder of the proof <X denotes 

l LaEA;Sf(a) J . 
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a(O) a(l) ... a(IFt(J)I_l\ 
2 J 

a( til)!) a(!F-rinl +I . .. a(!F't(l)i 2 a(!FT(IJI- I) 

=A/ X AJ-Al 

Figure 3.4. Assignment a 

27 21 3 1-521 9 I 12 30 

Figure 3.5. Prove that tWx) is a yes-instance of APBW 

We define the set of physical addresses, i.e. FT(l)• as A1 U {x }, (kub)-r(/) as J.¥ + 1 and (td )-r(l) as ((kub)'t(/)-
1) ·a+ l. Furthermore, we define the transfer time function, such that t't(I)(v) is ((kub)-r(/) - I)· st(v) + 
(td)t(l) if v # x and t't(I)(v) == 1, otherwise. 

We clarify the function 1: by means of an example. Let /ex be the instance of partition with AI"" = 
{ao,at, ... ,as} and s such that the elements of Ap,. have a size of 1,3,4,7,9 and 10, respectively. The 
instance is a yes-instance of partition, because (3.15) holds for Ajex = {ao,a3,a4}. The total size of the 
set A1cx is 34, which yields that a= 17. By definition, we obtain that Ft(/c•) = A,c> U {x}, (kub)-r(l"") = 4, 
(td )t(l"") = 3 · 17 + I =52 and t't(Jc.) (v) = 3 · s(v) +52 for all v E AJcx. 

We have to prove that tis a polynomial-time transformation [13]. Clearly, 't(/) can be computed in a time 
polynomial in the length of/. Next, we prove that I is a yes-instance of partition if and only if 1:(/) is a yes­
instance of BAPBW. If !Ail mod 2 = 1, then, by definition, neither 1 nor -c(1) are yes-instances. Therefore, 
we assume in the remainderthat IA1i mod 2 = 0. 

Let 1 be a yes-instance of partition. Hence, there exists a set A~, such that (3.15) holds. We will prove that 
't{l) is ayes-instanceofBAPBW by defining a bijection a: {0, 1, ... ,jFd -1}-+ F1 and ak:::; (kub)t(J)• for 

which (3.14) holds. We define the first J.¥ elements of the sequence of a as the elements of Aj in order of 

a descending size. The element x is placed after these elements. The last ¥ elements are the elements of 

A1 \Aj in order of ascending size (see Figure 3.4). Furthermore, k = (kub)'t(/) = ¥ + 1. For our example, 
this means that the sequence of a is given by a4 a3 ao x at a2 as and that k = 4. Equation (3.14) holds if 
and only if for all subsequences of length kit holds that 

(3.16) 

where Sis the set containing the values of a in this subsequence. Figure 3.5 depicts the values of ft(/ex)(i)­
(td )t(Je<). It can be verified that (3.16) holds. Hence, 1:(/ex) is a yes-instance of BAPBW. We now prove 
that this is also the case for ,;( 1). 

We will first prove that the left side of Equation (3.16) is maximal for S =A/ U { x}, i.e., for the subsequence 
of length k that starts at the first position. Consider a arbitrary subsequence of length k. Because the 
sequence of a has length 2 · k - 1, the subsequence has one of the first k elements of a as its first element. 
Consequently, it has the form given by Figure 3.6. This means that there exist four sets, Vt, V2, Wt and Wz, 
such that Vt U Vz A~, W1 U Wz = A1 -A/ and V2 U {x} U W1 = S', where S' is the set containing the values 
of the subsequence. 

For proving that the left-hand side of (3.16) is maximal for S = A/U {x} = V1 U Vz U {x}, it suffices to prove 
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=A/ 

= VI 

I I I I I I I I X I I I I I ... I I I 
k 

Figure 3.6. Definition of the sets Vt, V2, Wt and W2 

that 

:r, (rt(l)(i)- (rd>t<I>> ~ :r, (tt(J){i)- (tJ)tu>>· 
iEV2U{x}UW1 iEVtU{x}UV2 

From the definitions of V; and W;, i E {0, 1 }, and from the observation that IAjl = k- I, it follows that the 
cardinality of both V1 and W1 is k -IV21· By this and the definition of 1: we get that the previous equation is 
equivalent to 

L SJ(i) ~ L SJ(i). 
iEWt iEVt 

Again because IWd = IVd. this is true if and only if avg,.1(WI) ~ avg,r1(VJ). From the way that a is 
constructed, it follows that avg,.1(Aj) ~ avgs1(VJ). Likewise, it holds that avgs1(W,) ~ avgs1(AJ-Aj). 
Because of (3.15) we also have that avg .. 1(Ai) = avgs1(AI- A/). Consequently, avg .. 1(WI) ~ avgs1(Vt). As 
a result, the left-hand side of Equation (3.16) is maximal for S = Ai U {x}. 

Hence, proving that t{/) is a yes-instance of BAPBW comes down to showing that (3.16) holds for S = 
A[ U { x}, i.e. we have to prove that 

L lt(J)(i) +tt(l)(x)- k · (tJ).r(/) ~ 0. 
iEA) 

Using the definitions oft, k and a, we can rewrite this to 

The second equation in (3.15) implies that that the left-hand side equals the term inside the floor operator. 
Furthermore, the left-hand side is clearly integral. Consequently, the equation holds. Hence, t{l) is a 
yes-instance ofBAPBW. 

Let 1:(/) be a yes-instance of BAPBW. Let a be the assignment and k the windowsize for which (3.14) 
holds. We first show by contradiction that each subsequence of a of length k contains element x. Let S be 
the set containing the values of a subsequence of a of length k, such that x tf: S. Because, by definition, 
A1 :/; 0, (kub)t(/) > I. Furthermore, Sf has a strictly positive range. Hence, tt(l)(v) > (tJ)t(/) for all v E AJ. 
Consequently, (3.16) and correspondingly (3.14) do not hold, which gives the contradiction. 

Because IF-c(/)1 = 2· (kub)t(I)• a and k can only satisfy this property if k (kub)t(l) and elementx is in the 
middle of the sequence of a, i.e. 

a( IFt(l)l- l) = x. 
2 

Note that this is possible because IA1I mod 2 = 0. We define C and D as the first k- l and the last k 
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elements of the sequence of a, respectively. Formally, 

I Ret I> I C = {a(O),a(l), ... ,a(-
2
- 1)} 

lF1:{1) I I Rcu1 I 
D = {a(-

2
-+ l),a(-

2
-+2), ... ,a(IF-c(/)l)}. 

Consequently, Ft(l) = CUDU {x} andA1 =CUD. Equation (3.16) yields that 

L'Jt't(l)(i) - (td)-r;(l}) + t.r(/)(x)- (td }r(l) :::; 0 and L(t-r;(I) (i)- (td)"t(J)) +t"t(t)(x) - (td)1:(1} ::::; 0. 
iEC iED 

Using the definition of 't and a. gives that the equations are equivalent to 

Because CUD= AI. the equations have to be equalities and the expression inside the floor operator has to 
be integral. Consequently, when we define A{ as C, (3.15) holds. Hence, I is a yes-instance of partition. D 

3.2.2 Solution approach 

As proved, the relaxed problem discussed in the previous section is still formally difficult. In this subsection 
an approach is given to solve the relaxed problem, i.e., the problem of minimizing kub such that (3.9) holds. 
The main structure of the approach is as follows. For an increasing kub we check whether there exists 
an assignment a such that (3.9) holds. If this is the case, then the algorithm stops and outputs a. This 
clearly solves the problem. One step in the approach is still NP-complete, because the approach solves an 
NP-complete problem, as we proved, and the number of iterations is bounded by na, which is polynomial 
in the input length of the problem. 

We discuss in more detail the problem of checking whether an assignment exists such that (3.9) holds for 
a given kub· We have already mentioned that (3.9) is equivalent to (3.7). Furthermore, rewriting (3.7) gives 
that there exists an assignment a such that (3. 7) holds if and only if there exists an assignment a such that 

(3.17) 

does not exceed kub · ftf, i.e., such that the maximum sum of the transfer times of kub successive data blocks 
does not exceed kub · td. Hence, the problem of checking whether there exists an assignment such that (3.9) 
holds is equivalent to the problem of checking whether there exist an assignment such that (3.17) does not 
exceed kub · tJ. This problem is solved by minimizing (3.17) and checking whether the expression exceeds 
kub · tJ. This problem is still NP-complete because it solves a NP-complete problem. To solve the problem 
of minimizing (3.17), we use a heuristic. Note that as a consequence of using a heuristic, an assignment 
that satisfies (3.9) for a given kub may not be found, while it does exist. 

Whenever (3.9) holds for kub = 1, then tJ ~ tmax holds, i.e., if tJ is defined as in Theorem I, then a data 
block is large enough to survive one worst-case sweep and if t0 is defined as in Theorem 4, then a data 
block is large enough to survive the time that is in the worst-case situation required for two successive 
sweeps. However, we assumed that this is not the case. Consequently, we can take two as starting value 
of kub· Algorithm l depicts the approach we use to solve the problem of minimizing kub such that (3.9) 
holds. In the ith iteration of the algorithm the problem of finding an assignment for which (3.7) holds for 
kub = i + I is solved. As mentioned in the previous section, condition (2.1 0) in Theorem 3 is equivalent 
to (3.7) if kub = 2. Hence, executing only the first iteration of the algorithm, solves the problem of finding 
an assignment such that (2.10) is satisfied. 

The next theorem states an lowerbound on the value of (3.17) for the case that kub is a divisor of na. 
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Algorithm 1 Approach 

repeat 
if (kub =..L) 

kub 2; 
else 

kub := kub+ I; 

COnstruct an assignment a, SUCh that X;::::: maxo:-s;i5nB-Kub L~::Q I ta(i + j) is minimized; 
until x $ kub · ta or kub = ns; 

= vo = Vt 

Figure 3.7. Definition of Vi 

= v!!.B. 
kub 
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Because (3.17) is the lowerbound of kub · IJ, this also gives a lowerbound on the value of tJ for which an 
assignment that satisfies (3.9) possibly exists. 

Theorem 8. For each window size kub that is a divisor of no and each assignment a, 

kub-1 

t:nax L ta(i + j) ?:: kub · tavg· 
O$t:5ns-k j=O 

(3.18) 

Proof We prove the theorem by contradiction. Hence, let kub be a divisor of ns and let a be an assignment, 
such that (3.18) does not hold. Define Vo, V1, ... , V.!!.ILJ as depicted in Figure 3.7. Formally, V; = {a(i · 

k~b 

kub),a(i · kub + I}, ... ,a( (i + 1) · kub- l) }, for all i, 0 ~ i < e- Because (3.18) does not hold, 

L t(j) < kub · favg, 
jE\1 

for each set V;' 0 ~ i < e. When we sum over all sets, we get that 

fiL-l ub 

L L t(j) < ns·lavg· 
i=O jEVi 

Because a is a bijection and because V; n v1 = 0, for al1 0 ~ i < j < !lf, the left-hand side is exactly the 
sum of the transfer times of all elements of F. The right-hand side can be interpreted similarly, as follows 
from the meaning of tavg. which yields the contradiction. D 

As a result of the theorem, there does not exist an assignment, such that {3.9) holds whenever tJ < lavg and 
kub is a divisor of ns. The theorem does not have to be valid if ns is not divisible by kub• which we will 
show by a counter example. Consider a hard disk with three places and with a transfer time function that 
assigns the value 2 to the inner two places and the value I to the outer place. Hence, its average transfer 
time is 1 ~ units of time. We will show that there exists an assignment a for which (3.18) is true, for 
kub = 2. Define a(O), a( 1) and a(2) as 0, 2 and l, respectively. The left side of (3.18) can now be written 
as max(t(O) + t(2),t(2) +t(I)), which is 3. However, kub · tavg:::::: 3t. Hence, (3.18) does not hold. 

For all kub ~ ns, no (nB mod kub) is divisable by kub· Consequently, by Theorem 8, (3.18) holds for the 
first ns- (no mod kub) data blocks of the movie. For practically relevant cases, ns is much larger than kub· 
As a result, the last (no mod kub) data blocks hardly affect the value of tavg· Furthermore, the right-hand 
side of (3.18) is not decreased by these data blocks. Hence, if kub is not a divisor of no, then (3.18) wil still 
approximately be true. As a result, whenever the transfer time that is reserved for a user in a data block is 
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smaller than the transfer time that on average is required for transferring a data block, where the average is 
taken over all data blocks, then no assignment exists such that (3.9) holds. Consequently, our approach is 
only applicable if fd 2:: tavg· 

Example 1 revisited. We showed that (3.9) holds for kub = 6. Consequently, by Theorem 8, td 2: tavg has 
to hold. We show that this is indeed the case. Because all zones are of equal size and because from the first 
six data blocks exactly one data block is stored in each zone, tavg is given by the sum of the transfer times 
of these data blocks divided by six. Hence, 

tavg = Lf""ota(i) = 22.27 +20.55+ 19.09+ 17.81 + 16.70+ 15.72 = 18_69_ 
6 

As a result, td tavg· 

(3.19) 

0 

Because both td and tavg depend on the block size and the maximum number of admitted users, the condition 
whether td 2: tavg can only be checked for given values of B and n. The following theorem states that this 
condition is equivalent to the condition that the block size must be based on a transfer rate that is at most the 
average transfer rate. For Theorem 1 this means that a data block has to be large enough to survive a sweep 
in which a data block is fetched for each user at an average transfer rate, i.e., B 2: Cmax ( n · r!g + s( n)). 
Again, the block size is minimal when equality holds. With these conditions it can be determined for a 
given value of n for which block sizes our approach possibly gives a feasible assignment. Hence, we do 
not have to check for each combination of B and n whether td 2: tavg when you are interested in the buffer 
requirements for different values of Band n, but we only have to calculate the minimum block size for each 
value ofn. 

Theorem 9. The condition td 2: tavg is equivalent to 

B 
B 2: clflllX(n · -+s(n)) 

ravg 

in the case that the buffer requirements are given by Theorem 1 and to 

B 1 
B 2: Cmax(n ·-+ -s3(Zn)) 

ravg 2 

in the case that the buffer requirements are given by Theorem 3 and to 

B 
B 2: Cmax(n· -+s2(n)) 

ravg 

in the case that the buffer requirements are given by Theorem 4. 

(3.20) 

(3.21) 

(3.22) 

Proof We only prove the first equivalence. The other two can be proved similarly. As stated in Theorem I, 
td satisfies B = Cmax (n ·ttl+ s(n)), by definition. Consequently, Equation (3.20) is equivalent to td 2: r!g. 

As a result, to prove the theorem is suffices to prove that tavg = .lL. 
ravg 

By definition, ravg is the total amount of data that is stored on disk divided by the time required for trans­
ferring all these data. Hence, 

IFJ·B 
ravg = . 

LieFt(i) 

Furthermore, tavg = 2.;EIFF
1

1
Ul. Hence, tavg = .lL can be written as 

'avg 

which is clearly true. 0 



Chapter 4 

Solution strategy 

In the previous chapter we presented Algorithm I for minimizing the required buffer capacities given by 
Theorems 1 and 4 and for finding an assignment such that condition (2.10} holds in Theorem 3. For the 
algorithm, we still have to solve the problem of minimizing (3.17) for a given kub• 2::; kub ::; ns. We 
showed that this problem is NP-complete. Nevertheless, for the case that kub = 2, an optimal assignment 
can be defined. This assignment is given in Section 4.1. For the case that kub > 2, we give an heuristic in 
Section 4.2. 

4.1 Window size of two 

In the first iteration of Algorithm I, (3.17) has to be minimized for the case that kub = 2. In this section 
we define the assignment a2 that gives an optimal solution of the problem. As mentioned in the previous 
chapter, the problem of finding an assignment that satisfies (2.10) in Theorem 3 is solved by the first 
iteration of Algorithm I. Consequently, this problem is optimally solved, i.e., there exists an assignment 
such that (2.1 0) holds if and only if a2 satisfies (2.1 0). 

Before we define a2, we introduce some notation. We let Expression (3.17) for kub = 2 be denoted by h(a) 
Hence, 

h(a) 

Furthermore, we define wa(i) as ta(i) + ta(i + 1 ), i.e., the sum of the transfer time of data block i and its 
successor. 

We define a2 as follows 

a2(i) = { ~ i-1 
na-l- 2 

if i mod 2= 0 
if i mod 2 =I. 

(4.1) 

Hence, fori= 0, 1,2,3, ... the sequence values for a2 are O,nB I, l,nB- 2, ... , i.e., the data blocks 
are placed alternately on the innermost and outermost free positions of the disk. The sequence of a2 is 
visualized in Figure 4.1. Before we prove that a2 gives the optimal solution with regard to the function 
f2, we prove a lemma. In terms of the sequence of a2, the lemma states the following. When the first 
place of the sequence is denoted by place 0, then the value occurring at an odd place in the sequence of 
a2 is followed by values that are all smaller than this value. Furthermore, the value at an even place in the 
sequence is followed by only larger values. 

Lemma 2. Let a2 be the assignment given by (4.1 ). Then for each pair i,j, where 0::; i::; j < na, we have 
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Figure 4. L Assignment a2 for the case that ns 1 is even 

that 

i mod 2 = 1 ::::} a2(j) ::; az(i) (4.2) 

and 

i mod 2 = 0::::} a2(j) ~ a2(i) (4.3) 

Proof. We first prove that (4.2) holds. Let i and j be two arbitrary blocks, such that 0::; i::; j < ns and 
i mod 2 = I. We have to prove that a2(j) ::; a2(i). From the definition of a2, it follows that a2(j) ::; az(i) 
is equivalent to nB I- .iy! ::; n8 - 1- i2l if j mod 2 = 1 and to ~ ::; nB- I-¥ otherwise. The first 
equation is implied by i ~ j. The second equation can be rewritten to j + i ::; 2nB- 1. This is true because 
i and j are at most nB -1. This completes the proof of ( 4.2). 

Next, we prove ( 4.3). Let i and j be two arbitrary blocks, such that 0 ::; i ::; j < nB and i mod 2 = 0. We 
have to prove that a2(j) ~ a2(i). By the definition of a2, this is equivalent to ~ ~ ~ if j mod 2 = 0 and to 

ns- 1 - ~ ~. otherwise. The first equation follows directly from i::; j. The second equation can be 
rewritten to j + i ~ 2nB- 1. As above, this is true since i, j ::; nB - 1. D 

We can now prove the following theorem, that states the optimality of a2. 

Theorem 10. Let a be an arbitrary assignment and a2 the assignment given by ( 4.1 ). In that case, 
h(a2) $ h(a). 
Proof. We will prove that, when an arbitrary assignment a, a I a2, is given, there always exists an assign­
ment a' satisfying 

h(a') $ /z(a)A.min{i E Lia(i) la2(i)} < min{i E Lla'(i) I a2(i)}. (4.4) 

This means, that we will prove the existence of an assignment a' with at most the same value for h as a 
and with the property that the number of the first block where a and a2 differ, is smaller than the number 
of the first block where a' and a2 differ. It is easy to see that this proves the theorem. 

Let a be an arbitrary assignment, different from a2 • We will prove that an assignment a' that satisfies (4.4) 
exists by defining it. Define mas the first block, where a and a2 differ. Formally, m = min{i E Lla'(i) # 
a2(i)}. Moreover, let p be the block that has been assigned to place a2(m) by assignment a. We now 
distinguish the following two cases. 

1. m mod 2 = 0. Define a' as 

{4.5) 

2. m mod 2 = 1. Define a' as 

(4.6) 
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Figure 4.2. Definition (4.5) 

a' 

Figure 4.3. Definition (4.6) 

These two definitions are depicted in Figures 4.2 and 4.3, respectively. We first show, by contradiction, 
that p > m. So, assume that p S m. From the definitions of m and p it follows that p can not be equal to 
m. What remains is the case p < m. Because, by definition, a(i) = a2(i) for all i from 0 through m- 1, 
a(p) = a2(p) holds. Furthermore, we have, by definition, a(p) = a2(m). Hence, a2(p) = a2(m) and p < m. 
But this is in contradiction with the bijectivity of a2. Hence, p > m. 

Consider the case that d is defined according to (4.5). We will prove that (4.4) holds. In terms of its 
sequence, the definition comes down to appending the last ns - p elements to the first m - 1 elements and 
appending the elements m through p - 1 in reverse order to the end of the sequence. We first prove that 
h(a') is atmostf2(a). By definition,f2(a') = maxiEL\{IIB-1} wc~(i) and/2(a) = max;eL\{118-1} wa(i). It can 
be verified that the only terms that occur in h(a') and not in h(a) are Wa' (m- I) and we~ (m + ns- p- 1 ). 
Expressed in a, these terms are ta(m- I) +ta(P) and ta(ns -1) +ta(P- I), respectively. To prove h(a') S 
h(a), it suffices to prove that these two terms are at most h(a). 

Consider the term ta ( m - I) + ta (p). Assume that ta ( m - I) S ta (p - 1). This implies that Ia ( m - I) + 
ta(P) S wa(p). From the definition of /2, it now follows that ta(m- I) +ta(P) S h(a). Hence, it suffices 
to prove that ta(m I) S ta(p-l). We do this by contradiction. So, assume that ta(P 1) < ta(m-I). 
Since tis descending, a(p- I) > a(m 1 ). Because a and a2 have the same range and because a(m- I)= 
a2(m- I), as follows from the definition of m, we can rewrite this equation to a2(j) > a2(m- 1 ), where 
a2(j) = a2(p -I). From (4.2) and from (m- 1) mod 2 = 1, which is true because of the assumption 
( m mod 2 = 0), it follows that j has to be strictly smaller than m- 1. But because of the definition of m, 
this implies that a(j) = a2 (j). Hence, a(j) = a(p- I), where j < m- I and p > m. This is in contradiction 
with the bijectivity of a. 

Next, we prove that ta(ns- 1) is at most ta(p). Similar as above, this suffices to prove that ta(ns­
l} + ta(P- I) S h(a). Again, the proof is by contradiction. So, suppose that ta(P) < ta(ne- 1). Since 
t is descending, a(ne- 1) < a(p). Because a and a2 have the same range and because a(p) = a2(m), 
we can rewrite this equation to a2(j) < a2(m), where a2(j) = a(ns- 1). By assumption, we have that 
(m mod 2 = 0). This and (4.3) yield that j has to be strictly smaller than m. Consequently, a(j) = a2(j). 
We now have a{j) = a(ns- I), where j < m and m::; ns- L This is in contradiction with the bijectivity 
of a. This completes the proof of h(a') :S h(a). 

From the definitions of m and pit follows that (min;eLa(i) :f. a2(i))< (min;eLa'(i) :f. a2(i)). Consequently, 
d satisfies ( 4.4), in the case that it is defined according to ( 4.5). 

Consider the case that a' is defined according to (4.6). This definition comes down to appending the last 
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g(GJ, j) 

=Go 

Figure 4.4. Definitions of G; and g for the case that kub lny. 

na - p elements to the first m elements and appending the elements m through p 1 to the end of the 
sequence. Again, we start with the proof of f2(d) :S h(a). The only terms of h(a') that are absent in 
h(a) are wtl (m- 1) and Wtt(m +na-p- 1 ). These terms equal ta(m- 1) + ta(P) and ta(ny- 1) + ta(m), 
respectively. We prove that these terms are at most h(a). 

Consider ta(m- 1) +ta(p}. We prove that this term is at most h(a), by proving that it is at most wa(m- I). 
Hence, we have to show that ta(P) $ ta(m). Suppose that ta(P) > ta(m). We prove that this leads to a 
contradiction. Since tis descending a(p) < a(m). This can be rewritten to az(m) < az(j), where az(j) = 
a(m), because of the definition of p and because a and az have the same range. By assumption, we have 
that (m mod 2 = 1). From (4.2) can now be concluded that j < m. Consequently, a(j) = az(j). We now 
have that a(j) = a(m) and j < m. This is in contradiction with the bijectivity of a. 

We now prove that ta(ns 1) + ta(m) is at most wa(m- 1 ), as well. This means, that we have to prove 
that ta(na- 1) $ ta(m- 1). We do this by showing that the assumption that ta(ns- 1) > ta(m- 1) leads 
to a contradiction. The equation ta(na -1) > ta(m 1) implies a(na I)< a(m-1). When we write 
this in terms of a2 we get that a2(j) < a2(m- 1}, where az(j) = a(ns -1). From the assumption that 
(m mod 2 = 1) and from (4.3) it follows that j < m- 1. Hence, a(j) = az(j). Because, by definition, 
az(j) = a(ns- 1), we have a(j) = a(nB 1). The equations j < m- I and m $ ns- 1 and the bijectivity 
of a now yield the contradiction. 

Again, it is easy to see that (min;eLa(i) f az(i)) < (mintELa'(i) =j:. az(i)). Hence, a' also satisfies (4.4), in 
the case that is defined according to ( 4.6). 0 

4.2 Heuristic for windowsize at least three 

In this section, we present a heuristic for minimizing (3.17) for the case that kub ;::: 3. By Theorem 8, 
kub · tavg is a lowerbound for the value of (3.17). Hence, it is our objective to get as close to kub · favg as 
possible. 

We first give a global idea of the heuristic. The set of positions, Le., F, is divided into kub more or less 
equal-sized sets, such that the positions of each set are contiguous. For the case that kub is a divisor of 
no these sets, denoted by Go through Gkun-1, are depicted in Figure 4.4. Because the positions of each 
set are contiguous, the average transfer time of an arbitrary subsequence of length kub will be close to tavg 
if assignment a is defined such that each subsequence of length kub contains exactly one value from each 
set. Therefore, the positions from the same set are placed kub places from each other when defining the 
sequence of a. 

As discussed in Section 3.2, we minimize (3.17) in order to find an assignment for which (3.9) holds, 
because then, by Theorem 6, the buffer size is determined by the maximum cumulative difference between 
transfer time and dimension time of any subsequence of length at most kub· Consequently, in addition to 
minimizing (3.17), we aim at an assignment in which this cumulative difference is minimized. Therefore, 
we define an ordering of the sets G;, 0 $ i < kub· that determines in which order the positions from each set 
occur in the sequence of a and correspondingly in each subsequence of length at most kub· This ordering 
has to be such that sets that contain positions with a relatively low transfer rate are alternated with sets that 
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=Go ,G1t(2) =Gl ,G1t{l) = G2 ,G1t(3) 

Figure 4.5. Definitions of G; and g in Example 4 

contain relatively high transfer times. 

= G3,G1t(O) 
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We now formalize the heuristic. We start with the introduction of some definitions. As mentioned, we 
divide the set of positions of the hard disk into kub disjoint sets, denoted by Go through Gk.b-1· Moreover, 
we let 1t be a permutation of { 0, I, •.. , kub - 1} indicating the ordering of the sets. If kub is a divisor of no, 
then we let the set Go contain the inner !l1L positions of the hard disk, G1 the next !l1L positions, and so on 
(see Figure 4.4). We define the sets simfi~Iy in the case that kub is not a divisor o~~B. except that we let 
the first (no mod kub) sets, i.e., the sets Gn(O) through G~r(nBmodkub-l)• contain one element more than the 
others. We define the set Was the indices ofthese sets. Hence, W = {il(3x<nBmodkub1t(x) = i)}. Note that 
if kub is a divisor of no, then W = 0, which corresponds to its meaning. 

To give a formal definition of the sets Go through Gkub-1, we investigate which position is the first position 
that an arbitrary set G1 contains. In the case that kub is a divisor of no, the first position that isinG; is i · f.!, 
because each set has exactly !.!B..kn elements. If, on the other hand, kub is not a divisor of no, then a set G j has ub 
L !l/Lkn J + 1 elements if j E W and l !.!B..kn J otherwise. Consequently, the first position that is an element of G; is 
~ ~ 

given by i · Lf! J + .1(i), where a(i) is the number of sets with a smaller index than i and that are an element 

of W. Hence, a( i) = I {j E Wlj < i} 1. If kub is a divisor of no. then the first position that is an element of 
G; can also be written as i · Lf! J + .1(i), because a(i) = 0 for all i, 0 ~ i < kub· Because the cardinality of 

G; is in both cases given bylf! J +X(w)(i), this yields that G; is defined by 

{i· Lkno J +~(i)+ j I o:::; j < l~0 J +X(w)(i)}. 
ub n.ub 

We define the function g, such that g(G;,j) gives the position for which it holds that the set G; has exactly 
j positions with a smaller number. Because t is a descending function, this means that g(G;,j) gives 
the position from G; for which it holds that there are at most j positions in G; with a higher transfer 
time. Formally, g(G;,j) = i · l !3f J + ~(i) + j, where 0 ~ i < kub and 0 ~ j < jG;j (see Figure 4.4). From 
the definitions of G and g, it follows that g(G;,j) is increasing in i and for fixed i also in j. Since t is 
descending, this is implies that t(g( G;, j)) is descending in i and for fixed i in j, i.e., 

(4.7) 

and 

(4.8) 

Example 4. Let the disk consist of 15 positions and let kub be 4. Hence, the positions are divided into four 
sets, Go, G1, G2 and G3. We define 1t as (3, 1,0,2). This means that the ordering of the sets is G3, GJ, 
Go, G2. Consequently, W = {il3x<31t(x) = i} {0, 1,3}. As a result, the sets Go, G1 and G3 contain four 
contiguous elements and G2 only three. Figure 4.5 gives the definition of the sets and depicts the function 
g for the set G1. 0 

We now discuss the construction of assignment a. For the time being we let 1t define an arbitrary ordering 
because 1t does not affect the discussion about the performance of the heuristic in relation to minimiz­
ing (3.17). At the end of the section, we briefly discuss the choice of1t. As discussed, we define assignment 
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G1t(O) G1t( 1) G1t(2) ... G1t(ko- l G1t(O) G1t(l) G1t(2) ... G1t(ko- 1) 

Figure 4.6. Outline of assignment a 

a(O) l. 

Figure 4.7. Assignment a after m+ I iteration steps, where .L stands for an undefined value 

a, such that each subsequence of length kub contains exactly one value from each set G;, 0 :5 i < kub· To 
achieve this, the definition of the assignment is as depicted in Figure 4.6. Hence, data blocks whose num­
bers differ a multiple of kub are assigned to positions from the same set. Formally, a is defined, such that 
data block j is assigned to a position from set 1t(j mod kub). Because a has to be a bijection, no position 
may occur twice in the sequence of a. It follows from the definition of G;, 0:;; i < kub. that each set contains 
enough positions to make this possible. 

For each data block i, we are still free to choose to which position from Gx(imodkuh) it is to be assigned. We 
discuss this choice in more detail. We denote the set of data blocks that have to be assigned to the positions 
from Gx(m) by Vm. By definition, two data blocks are assigned to positions from the same set if and only if 
their numbers differ a multiple of kub· Hence, Vm is given by 

Vm = {i · kub +m!O :5 i < l;8 j +X(w)(m)}. 
ub 

We define assignment a in a stepwise way. Initially, no positions are assigned to the data blocks, i.e., all 
places in the sequence of a are undefined. In the first step, denoted by iteration 0, the positions from the 
set G1t(O) are assigned to the data blocks from Vo. Next, the positions from Gx(I) are assigned to the data 
blocks from V1, and so on until the positions from Gx(kub-l) are assigned to the data blocks from Vkuh-1· 

Consequently, after iteration m each subsequence of a of length kub contains exactly one value from each 
of the sets G1t(O) through Gx(m) (see Figure 4.7). We aim at an assignment for which the maximum sum of 
the transfer times of kub successive data blocks is minimal. Therefore, we aim in iteration mat assigning 
the positions from Glt(m) to the data blocks from Vm in such a way that, as far as the sequence is defined, 
the maximum sum of the transfer times over all subsequences of length kub is minimal. By definition, each 
subsequence of length kub contains exactly one data block from Vi. 0 :5 i < kub· Consequently, our aim 
comes down to minimizing max;evm hm(i), where hq(p) is the function that, as far as the subsequences are 
defined at the end of iteration q, gives the maximum sum of the transfer times over all subsequences of 
length kub that contain data block p. If q = -1, then, by definition, this means that the initial situation is 
considered, i.e., the moment that a is undefined over its entire domain. Consequently, h- 1 (i) = 0 for all 
i E L. Because the subsequences that contain data block p are the subsequences that have a data block 
between p- kub + 1 and pas their first data block, this means that 

kuh-1 

2, ta(i + j). 
j=ll 

a(i+ j) is defined 
after iteration q 

In the next lemma, we prove that during iteration m, 0 $ m < kub. i.e., the step in the construction of a in 
which the positions from Gx(m:) are assigned to the data blocks from Vm, the value of hm(i), i E Vm, is exactly 
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Algorithm 2 Placing algorithm. 

Define 1t and Go through Gkuh-1· 
forall 0 :5 m < kub 

rom:= sequence containing the values from Vm in order of descending h"'- 1-value; 
forall 0:5 i < IG~t(m)l 

a(rom(i)) := g(Glt(m)• IG!t(m)l-1- i); 
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ta(i) larger than hm- 1(i). In other words, the maximum sum of the transfer times over all subsequences that 
contain data bock i is raised by exactly the transfer time required for transferring data block i from position 
a(i). 

Lemma 3. Let 0 :::; m < kub· Then 

{V;evmhm(i} = hm-! (i} + ta(i)). 

Proof. Let m be arbitrary. By definition, the value of hm-l ( i), i E Vm. is the maximum sum of transfer times 
over all subsequences of a that contain data block i, as far as the subsequences are defined at the end of 
iteration m - 1. Because a{ i) is undefined at the start of iteration m and is defined during this step, the sum 
of the transfer times of each subsequence that contains data block i is raised by at least ta( i) during iteration 
m. Hence, hm ( i} ;::: hm-l ( i) + ta ( i). Because a is constructed, such that each subsequence of length kub 
contains exactly one element from Vm, i is the only data block to which a position is assigned in iteration 
min those subsequences. Hence, hm(i) = hm- 1(i) +ta(i). 0 

Consider iteration m. Let rom be the sequence containing the numbers from V m in order of descending value 
of hm-l. By Lemma 3, minimizing maxiEVm hm(i) comes down to assigning the positions from Glt(m) with 
low transfer times to data blocks for which the function value of hm-t is high and vice versa. Furthermore, 
it follows from (4.8) that 

Hence, max.iEVm hm(i) is minimized in iteration m, if 

a(rom(O)) = g{Glt(m)> IG1t(m) I l),a(rom(l)) = g(G1t(m)• IG1t(m) 1- 2),. · · · 

Hence, if a(rom(i)) = g(Glt(m)• !G~t(m)l- 1- i). Algorithm 2 depicts the discussed algorithm. 

Example 4 revisited. Let the transfer time of a position be one plus its number. Hence, t (i) = i + 1, 
0:::; i < 15. In the first iteration of Algorithm 2, the positions of G1t(O) (= G3) are placed in the sequence 
of a. Because all places in the sequence of a are initially undefined, h- 1(i) = 0 for all i E Vo, where, by 
definition, Vo = {0, 4, 8, 11}. Hence, the sequence roo may be arbitrary. When we take the sequence 11 8 4 
0 as roo. we get the sequence given in Figure 4.8 after assigning the positions from G1t(O) to the data blocks 
from Vo. Note that Figure 4.8 depicts ta. 

In the second iteration the positions from G1 are assigned to the data blocks from V1 = { 1 ,5,9, 12}. Hence, 
we have to determine h0{1), h0(5), h0(9) and h0(12). The subsequence of length four, containing data 
block 1 with the highest sum of the transfer times, is the subsequence starting at data block 1 and ending at 
data block 4 and has as value 13. Consequently, h0 (l) = 13. Similarly, it can be verified that h0 (5) 14, 
h0 (9) = 15 and h0 (12) = 15. As a result, ro1 is either 12 9 5 1 or 9 12 5 1. Figure 4.8 depicts the result 
of assinging the values from Gt to the data blocks for the case that Wt is defined by the first sequence. 
The result of the last two iterations are also depicted in Figure 4.8. From the figure it can be read that 
the value of Expression (3.17) for the obtained sequence is 33. As mentioned, Theorem 8 is true if kublnB 
and is approximately true, otherwise. Because 4 ,.f15, this yields that it will not be possible to define 
an assignment such that (3.17) is much smaller than kub • tavg· It is easily verified that tavg 8. Hence, 
kub · tavg = 32. Consequently, the value of (3.17) for the obtained assignment is close to the optimal value 
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Iteration 0 

13 14 15 15 

Iteration 11 121 8 I ~I ~I 13 7 I ~I ~ 14 I 6 I~ I ~ 15 5 I~ I 
~ + + + 

21 21 21 20 

Iteration 2 

22 23 24 

Iteration 3 

33 

ta' I 151 8 [ 4 13 I 14 9 5 2 13 101 6 1 12 Ill I 7 

31 

Figure 4.8. Example of the execution of Algorithm 2 

kub ... ... 
~ 0 ••• c::p 

kub-1 2kub-1 3k0 b-1 n8 -l-(n8modkub) 

Figure 4.9. Interpretation of Lemma 4. 

of (3.17). 

In Figure 4.8, we also give the optimal assignment a'. For a' Expression (3.17) equals 31. 0 

In the last iteration step positions are assigned to the data blocks from the set Vkuh-1· In terms of the 
sequence of a this comes down to assigning positions to the places kub - I, 2kub - l, ... , nn 1 - ( nn mod 
kub). In the next lemma we prove that each of these places is in a subsequence of length kub for which it 
holds that the sum of the transfer times differs at most a from the maximum sum of the transfer times over 
all subsequences of length kub. i.e., from the value of (3.17), where a is the maximum difference in transfer 
time between the positions of the same set Gm, 0 ~ m < kub· Formally, for all p E Vkuh 

(4.9) 

By definition, max;evk,.- 1 hkub-l (i) = max09::; 118_kuhL~~0 1 ta(i + j). Consequently, (4.9) holds for all p E 

Vkuh-1 if and only if !hk•b-l (PI)- hkub-l (p2)j ~a for all PI ,p2 E Vkub-1· Figure 4.9 visualizes the property 
and is to be interpreted as follows. An arc is drawn over each place corresponding to a data block i E vk.h-1 

and its position and indicates the subsequence of length kub that contains data block i and for which the 
sum of the transfer times is maximal. The property implies that the sum of the transfer times of two arcs 
differ at most a. 
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Because of (4.8) the definition of a is given by 

<X= max (t(g(Gm,O))-t(g(Gm,IGml-1))). 
O$m<kub 

(4.10) 

Because the number of zones on a disk are relatively small (the Seagate Barracuda 9 drive consists of 7 
zones as follows from Table 1.1 ), the value of a is for already for small values of kub equal to the maximum 
difference in transfer time between two successive zones. 

Lemma 4. Let PI, P2 E Ykuh-I and a an assignment that is constructed by Algorithm 2. Then 

lhkuh-I (Pt) - hkuh-I (pz) I ~ a 

where a is defined by (4.10). 
Proof. We prove (4.11) by proving by induction tom that for all PI ,pz E Ym, 

lhm(pt) -hm(pz)l ~<X. 

( 4.11) 

(4.12) 

As basis case we take m = 0. By definition, h-I= 0 for all i E Yo. Hence, by Lemma 3, hi(i) = ta(i). 
During the iteration, only places from G1t(O) are assigned to the sequence. Hence, by the definition of a it 

holds that for all i,j E Yo lh0(i)- h0 (j)l ~a. Consequently, (4.12) holds in the case that m = 0. 

Next, we prove (4.12) form+ 1, m?: 0. Let PI,P2 E Ym+I· Assume that lhm(pi)- hm(p2)l ~a. Without 
loss of generality, we may assume that hm(PI) ?: hm(p2). By construction, the position that is assigned to 
data block PI during iteration m + 1 has at most the same transfer time than the position that is assigned 
to data block P2· Furthermore, by the definition of a, we have that these transfer times differ at most a. 
By Lemma 3, hm+I(ii) and hm+I(iz) are raised by ta(PI) and ta(P2) in relation to hm(pi) and hm(pz), 
respectively. As a result, lhm+l (PI)- hm+I(P2)1 ~a. 

Hence, if lhm(PI)- hm(P2)1 ~a., then lhm+I (PI) -hm+I (p2)l ~a, which has to be proved. By assumption, 
hm(pi)?: hm(p2) and PIE V,n+I· Consequently, lhm(PI) -hm(P2)1 ~<X is implied by 

By definition, max;evm+I hm(i) = max;evm hm(i). Hence, (4.13) is equivalent to 

rp.axhm(j)- hm(P2) ~ <X. 
.!EVm 

(4.13) 

(4.14) 

By the induction hypothesis, lhm(ii)- hm(iz)l ~a for all it,i2 E Vm. By definition, P2 E Ym+l implies 
P2- 1 E Ym. Hence, maxjEVmhm(j)- hm(P2- 1) ~a. Consequently, (4.14) is implied by hm(P2- 1) ~ 
hm(p2). 

It can be read from the definition of h that the only differences between hm(P2- 1) and hm(pz) are that if 
P2 ?: kub• then P2 - kub is an element of the range of the maximum quantification of hm(P2- 1) and not of 
h(p2) and that if P2 ~ nB- kub• then P2 is an element of the maximum quantification of hm(p2) and not of 
hm(P2- 1). 

The above-mentioned has the following interpretation. If kub ~ P2• then there is exactly one subsequence 
of a that contains the (p2- 1 )th place of the sequence and not the p2th, namely the subsequence that starts 
with data block p' - kub. and there is no such sequence otherwise. Similarly, we have that if P2 ~ nB - kub. 

then the subsequence that starts with data block P2 is the only subsequence that contains the data block P2· 
but not P2 - 1 and else such a sequence does not exist. 

This implies that for proving that hm(P2- 1) ~ hm(p2), we only have to show that if P2?: kub• then the sum 
of the transfer times of the subsequence of a that starts at data block P2- kub is at most hm(p2), where the 
subsequence is considered at the end of iteration m. Formally, this means that we have to prove that 

j=O 

a(p2-kub+j) is defined 

(4.15) 
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Figure4.10. Outline of the proof of theorem ll 

Consider the left-hand side of the equation. By definition we have that P2 E Vm+l· Hence, a(p2- kub) 
and a(P2) are both defined during the iteration m + 1. Because the subsequence is considered the end of 
iteration m, this means that a(p2- kub) and a(p2) are both undefined. As a result, the sum of the transfer 
times of the subsequence that starts with data block P2 - kub equals the sum of the transfer times of the 
subsequence that starts with data block p2 - kub + 1. Formally, this means that the left-hand side of ( 4.15) 
equals 

kub-1 

L ta (pz - kub + 1 + j). 
j=O 

a(/>2-kuh+l+j) is defined 

Because P2 - kub + I is an element of the range of the maximum quantification in hm(p2) we have that 
this expression is at most hm(p2), which means that ( 4.15) holds. Hence, hm(pz - 1) is a lowerbound for 
hm(pz). 0 

Using Lemma 4, we can prove the following theorem, which gives an upperbound on the value of (3.17) 
for an assignment constructed by Algorithm 2, in the case that kub is a divisor of nB. 

Theorem 11. Let a be an assignment constructed by Algorithm 2 for a windowsize kub that is a divisor of 
nn. Then 

(4.16) 

where ex is defined according to (4.10). 
Proof. Dividing both sides in (4.16) by kub yields that proving (4.16) is equivalent to proving that 

~kub-1 ( • ') 
maXo~i~ns-kub .L.j=O ta t + J ex t(O)- t(nn- 1) 

k 
S tavg + -k + .....:....:..__~--=--..;.. 

ub ub 2kub 
(4.17) 

As mentioned in Section 3.2.2, the left-hand side gives the lowerbound on the value of ttl for which (3.9) 
holds. Therefore, we denote the expression in the left-hand side by t~b. 

We define X as the set containing the r ¥ l (= r *.b 1) inner places of each set Gi, 0 5 i < kub· Hence, 

X= {g(Gi,j)ID $ i < kub/\0 s j < r 2~:b l} 
The proof strategy we will use to prove the theorem is outlined in Figure 4.1 0. We will first show that 

avgr(X) ~ t;}>- k~b and next that the difference between avg1(X) and tavg is at most r(O)-;t~-l). Because 
a~ 0, this proves ( 4.17). 

Let m E Vkun-1· By Lemma 4 or, equivalently, ( 4.9), there exists a subsequence of length kub that contains 
data block m, such that 

t~ _ ~ < l:.iesmt(i) < 1tb 
kub- kub -cl• 
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where Sm is the set containing the positions in the subsequence. Because a subsequence is related to 
kub successive data blocks and because a is a bijection, Sm and Sm+2ku~ are disjoint sets. Hence, there 
exist riV~c.~-11/21 fnB/2kubl) sets, Skub-J,S3kuh-l ,Sst.b-1···· that are all mutually disjoint and have a 
average transfer time between t~b ;: and t~b. Clearly, the average transfer time of the union of these sets 
is between these values, as welL We aefine the set Y as this union. Hence, 

y = u skub-1+2ikub 

09<f*.i; 1 

and t~b - fu; :S: avg1(Y) :S: t~b. By construction, each subsequence of a of length kub contains one position 

from each set G;, 0 $ i < kub· Consequently, Y contains f ~ 1 positions from each set G;, 0 $ i < kub· 

Because the set X contains the f ~ l positions with the highest transfer rate, we obtain that avg1(Y) :5: 
avg1(X). This and t1P- ka < avg1(Y) yields that t1J>- ka < avg1(X). This completes the first part of the 

u ub - u uh -
proof. 

The other part is 

t(O) -t(ns-1) 
avgr(X) $ tavg + 

2
kub • (4.18) 

We first introduce a definition. We define G}n as the f ~ 1 inner places of G;, 0 $ i < kub• and G?ut as the 

l *.; J outer places. Because G}n U Gfut = G; and G}n n G?ut = 0, the value of tavg is expressed by 

(~kuh-1 (Gin)) f..$Ll ("kub-1 (Gout)) l.!!LJ ki=O avgt i · 2kuh + ki=O avgt i · 2kub 

kub·cr~l + l~J) 
Using that 

ax+by 
a+b =x(l- a+ 

gives that tavg equals 

a 
+y(l--) 

a+b 

(r~r' avgt(G}n)) · (1- ~L~J) + (I.~~o- 1 avgt(Gfut)) · (1- ~r ~ l) 

kub 
(4.19) 

Because, by assumption, kub is a divisor of no. L~ J and r ~ l both equal *.; or are ! smaller and larger 

than ~, respectively. If we define x as 0 in the first case and as t in the second, then we can write ( 4.19) 
as 

("~ub-I avg (G\n)) · (l +x· &.b.)+("~""-! avg (G~ut)) · (1-x. &.b.) kt=O t 1 2 n8 kt=O t 1 2 llB 

kub 

From the definitions of G}n and Gjut, 0$ i < kub· it follows that avg1(Gjn) ~ avg1(Gj0l). Hence, removing 

the term x · ~ from the previous expression will not increase its value. Furthermore, it follows from 

the definitions of G; G\n, Gf01 , 1 ':5: i < kub• that avg1(Gf01) ~ avg1 (Gi~ 1 ). Hence, i:~0-2 avgr(Gju1 ) ~ 
"kun-1 (Gin) C 1 · 1 ki=l avgt ; . onsequent y, tavg ts at east 

I (~kun-1 (Gin)) + I (~kut>-1 (Gin) (Gout )) 2 · ki=O avgr i 2 · "'i=l avgt i +avgt kub-1 

kub 
(4.20) 

The term avg1 (~~:_ 1 ) is at least t(ns- 1). Moreover, t(O) ~ avg1(GZ1
). As a result, the expression given 
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~ ·(t(O)-I(nB-1 )) 
by (4.20) plus kub is at least 

( I7~J avgr ( Gjn)) 
(4.21) 

kub 

By the definition of G;, 0::::; i < kub• this expression equals avg1(X). Hence, (4.20), for which we derived 

that it is at most tavg. plus ! ·(t(O);r(nB-I)) is at least avg1(X). This yields that ( 4.18) holds, which we had to 
ub 

prove. 0 

Theorem 11 assumes lbat kub is a divisor of no. However, using the same arguments as for Theorem 8, it 
can be verified from the proof of Theorem 11 that the theorem also approximately holds in the case that kub 
is not a divisor of ns. 

As discussed in Section 3.2.2, an assignment constructed by Algorithm 2 is feasible, i.e., (3.9) holds, if 
and only if the left-hand side of (4.16) is at most kub · td. Hence, by Theorem 11, a feasible assignment is 

guaranteed to be found by Algorithm 2 if td 2::: tavg + k~b + t(O>-;t8 -
1). For a given B and n, the function t is 

constant. Consequently, the expression t(O)-;t~-l) is descending in kub· From the definition of a, it follows 

that « will roughly decrease when kub increases. Consequently, ka is descending in kub• as well. Hence, 
the lower bound on ttl for which it is guaranteed that Algorithm 2 gives a feasible solution approaches tavg 

when kub increases. 

In Section 3.2.2, we presented Algorithm I as an heuristic for constructing the assignment according to 
which the movie has to be stored on the disk, such that the required buffer size is minimized. This algorithm 
tries to find a an feasible assignment for an increasing kub that is at most ns, where an assignment is feasible 
if (3.9) holds or, equivalently, if (3.17) does not exceed kub · tJ. The algorithm terminates whenever such 
an assignment is encountered and subsequently outputs that assignment. The problem of finding a feasible 
solution for a given kub has been discussed in this chapter. As discussed above, the upperbound on td for 
which it is guaranteed that a feasible assignment is found approaches favg for an increasing kub· Because, 
by assumption, ns is large, this implies that for all td > tavg, Algorithm 1 outputs a feasible assignment. 
Furthermore, by Theorem 8, a feasible assignment does not exist if ttl < tavg. Consequently, if a feasible 
solution exist for any kub. our approach also finds one, except possibly if tJ ~ tavg· However, the value of 
kub does not have to be minimal, which is the result of using a heuristic. 

It can easily be verified that Theorem 9 also holds if the equations are strict inequalities. Hence, a video-on­
demand system can be defined for a given number of users if and only if the equation B > Cmax(n·td +s(n)) 
can be fulfilled in the case that the buffer requirements are given by Theorem l and if and only if B > 
Cmux (n · td + s2 (n)) can be fulfilled in the case that the buffer requirements are given by Theorem 4. Clearly, 
these equations can be fulfilled if and only if the maximum number of admitted users does not exceed ~. 

Lmax 

We still have the freedom in choosing permutation 1t. With the choice of the permutation we aim at 
preventing a accumulation of positions with a low transfer rate in the sequence of the assignment, because 
this is at cost of required buffer size. In the simulation program, for which the results are presented in 
Chapter 6, we define 1t such that sets with a large average transfer time are alternated by sets with a small 
average transfer rate. Formally, we define 1t as follows. 

{ 
L if i mod 2 = 0 n(i) = 2 

kub - I - if i mod 2 = l. 
(4.22) 

Hence, the ordering oflbe sets Go through Gkuh-1 is Go,Gkuh-l ,GI,Gkun-2' .... Note that the definition of 
1t is similar to the definition of a2. 

Example 1 revisited. Figure 4.11 gives the upperbound on the value of ttl, denoted by t,ar, for which, 
by Theorem 11, it is guaranteed that the heuristic gives a feasible assignment. Hence, tJar = favg + k:, + 
t(0)-;1~~-I). The figure also depicts favg· The permutation 1t is defined by ( 4.22). Furthermore, it is assumed 
that each of the six zone of the disk consists of 10000 positions, which implies a disk capacity of 9.8 GByte. 
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Figure 4.11. Lower bounds on tJ given by Theorem ll 
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The figure has the fo1lowing interpretation. If ta lies below the line that indicates tavg• then a feasible 
assignment does not exist. If td lies between the line indicating tavg and the line indicating tjar. then a 
feasible assignment may be found, but this is not guaranteed and if tJ lies above the line indicating tr", 
then it is guaranteed that a feasible assignment will be found. 

We conclude with a quantification of the figure. The value of tmax, which equals 22.27 ms, is 19.2% larger 
than tavg· From the figure, it follows that for kub = 10 the value of tjar is 2,7% larger tavg and for kub =50 
the value is 0.5% larger tavg· 0 



Chapter 5 

Response times 

In Theorems 1, 3 and 4, sufficient buffer capacities are given for the case that users do not send requests 
to the server. In Section 5.1, we present an algorithm for handling requests for the case that the buffer 
requirements are given by Theorem 1. In Sections 5.2 and 5.3, we do the same for the case that the buffer 
requirements are given by Theorems 3 and 4, respectively. 

5.1 Handling requests for revised TB, unconditional solution 

In this section, we present an algorithm for handling requests in the case that the buffer size of the users 
is given by (2. 7), such that safeness remains guaranteed. This means that the algorithm has to determine 
when te first requested data block of a new user may be fetched and when the user may start consuming the 
requested data. 

Before we present the algorithm, we introduce some notation and we make some assumptions. We define 
the function d: {0, 1, ... ,n} -7 LU {nB}, where d(u) = i indicates that data block i is the next data block 
that user u wants to be fetched. If user u does not want a data block, i.e. either the user does not want to 
watch the movie or the last data block of the movie has just been fetched for the user, then d{i) = nB, by 
definition. The value iu gives the first data block that has to be fetched for user u when no request arrives at 
the server, i.e. iu is raised by one during a sweep in the case that a data block is fetched for u in that sweep 
and does not change, otherwise. As long as user u does not send a request to the server d( u) = iu and at the 
moment that the user sends a request d ( u) becomes different from i,. If a request is sent by user u, then, by 
assumption, the user stops consuming and the server flushes the corresponding buffer. The user may start 
consuming the requested data, when a sign is given by the server. If in the meantime a data block other 
than d(u) is placed in the buffer, because it takes time to respond to a request, this data block is flushed as 
welL 

The time required for handling a request consists of two parts, namely the time it takes before the first 
requested data block may be fetched and the time it takes from this moment until the moment that the user 
may start consuming (see Figure 5.1). We first discuss the first part. We say that the request of u is granted, 
whenever it is allowed that the first requested data block of u is fetched. By assumption, no data block is 
fetched for a user between the moment that his/her request arrives at the server and the moment that the 
request is granted, except possibly for the data block that is fetched in the sweep that is executed at the 
moment the request arrives at the server. As mentioned, this data block is flushed. When a data block is 
fetched for user u, this is data block iu, by definition. Consequently, when a request of user u is granted, 
the value d(u) must have been assigned to i11 • We let the assignment iu := d(u) indicate that the request of 
u is granted, by definition. 

Next, we discuss the time that passes between the moment a request is granted and the moment that the 
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Figure 5.1. The handling of a request depicted on a time axis. 

Algorithm 3 Algorithm for handling requests for the case that the buffer capacity is given by (A.l ). 

forall l '5 u ~ n 
iu := d(u); 

uw := {uliu <no}; 
ui := {uliu =no}; 
uc:=0; 

while true 

/*granting each request* f 

/*initialize uw* 1 
/*initialize Ui* / 
/*initialize uc* 1 

/*updating uw* 1 
/*updating Ui* / 
/*updating uc* 1 
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uw := uwu{uliu #d(u)}; 
ui := ui \ {uliu =1- d(u)}; 
uc := uc \ {uliu =f. d(u)}; 
forall u E {uld(u) no} /*granting request of each user that wants to stop watching* f 

iu :=d(u); 
ui := uiu{u}; 

determine A ~ uw such that /*determine users that may start consuming*/ 

'rluEA u has at least I+ rLuEU 11.~1~) + (n -lUI)· i/;; l data blocks in his/her buffer or iu = ns; 
uw :=Uw\A; 
uc :=UcUA; 
determine C ~ {u!iu =f. d(u)} such that /*determine users whose request is granted*/ 

'rluEV u has at least 1 + LueU\C 11.~l~) + Luec 111 ~i~u)) + (n -!U U Cl) · i/;; data blocks in his/her buffer; 
forall u E C 

iu := d(u); 
execute sweep; 

corresponding user may start consuming. We divide the set of users into the sets uw, uc and ui. The set 
uw contains the users whose request has arrived at the server and and who are waiting for a sign that they 
can (re)start consuming. The set Ui contains the users that do not want to watch a movie and the set uc 
contains the consuming users. The moment that a sign is sent to a user that he/she may start consuming 
is now equivalent to the moment that u is transferred from uw to uc. If a user has consumed the last data 
block of a movie, then he/she is transferred from uc to Ui. 

Algorithm 3 determines how requests of users can be handled, in the case that the buffer requirements are 
given by Theorem 1, i.e., it determines for each user u when d(u) is assigned to iu, which corresponds to 
granting the request of u, and when u may start consuming or stop watching the movie, which corresponds 
to transferring u from uw to uc and Ui, respectively. In the algorithm V is defined as the set of users that 
are consuming and for whom the last data block of the movie sti11 has not been fetched, i.e. V = uc n U. 
Hence, the users from V are the only users whose buffer may underflow. Because uw, Ui and uc are 
only used between the execution of two sweeps, the algorithm updates these sets at the end of each sweep 
instead of during the sweeps. The response time is defined as the time between the arrival of a request at 
the server and the moment the user may (re)start consuming. Hence, the response time is the time between 
the arrival of a request and the moment the user is moved from uw to uc or from uw to Ui (see Figure 5.1). 

In the initialisation of Algorithm 3 the requests of all users are granted and each user who wants to consume 
is put into uw. Hence, for each user who wants a data block, a data block may be fetched, but no user is 
allowed to consume. Before the start of each sweep the algorithm determines a set of users that may start 
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consuming and a set of users, for which a request is is granted. First the requests of each user that wants 
to stop consuming is granted, which, by definition, implies that the user is also transferred from vw to Vi. 
Next, the set of users that may start consuming, in the algorithm denoted by A, is determined. The set 
consists of the users, for whom the last data block of the movie has been fetched and the users that have 
at least the number of data blocks given by Expression (2.6) in their buffer. For the interpretation of the 
expression we refer to Section 2.1.1. Note that in the algorithm the ceiling is taken from the expression. 
The reason is that only complete data blocks are fetched. Finally, a set C is determined which consists of 
the users whose request is granted. The set is chosen such that after granting the requests, each user from 
V still has at least the number of data blocks given by (2.6) in the corresponding buffer. The next theorem 
states that safeness is guaranteed when Algorithm 3 is used. 

Theorem 12. If the buffer capacity is given by (2. 7), td ;::: t(no- 1) and filling strategy TB is used for each 
user whose request has been granted, then safeness is guaranteed whenever the requests of the users are 
handled according to Algorithm 3. 
Proof. From the definition of filling strategy TB, it follows that no buffer overflow occurs. Buffer underflow 
can only occur for users from V, as follows from its definition. We prove by induction to the number of 
executed sweeps, denoted by w, that just before the start of a sweep, i.e., just before the server reaches 
the last line of Algorithm 3, each user from V has at least the number of data blocks given by (2.6) in the 
buffer. Because this number is sufficient to survive sweep w, as we showed in the proof of Theorem 1, this 
proves the theorem. 

We start with the case that w = 0. Just before the determination of A, vc = 0. Initially, all buffers are 
empty. As a result, A= 0. Hence, the assignment vc := vc UA does not affect uc. Consequently, vc = 0 
at the start of the first sweep, which implies that V = 0. Hence, the induction hypothesis trivial1y holds for 
w=O. 

We now prove the induction hypothesis for sweep w = m + 1. We may assume that at the start of sweep 
m, the buffer of each user from V contains at least the number of data blocks given by (2.6). As showed in 
the proof of Theorem 1, each user from V has again at least the number of data blocks given by (2.6) in the 
buffer at the end of sweep w. Updating vw, Ui and vc does not affect this because this only reduces the 
set V. We now prove that granting a request to stop consuming and putting the corresponding user into Vi 
does neither affect this. To prove that each user from V has still at least the number of data blocks given 
by (2.6) in the buffer after granting the request of user u, where d( u) = no, it suffices to prove that i11 :=no, 
I :5 u :5 n does not increase Expression (2.6). From the definition of V, it follows that this corresponds to 
proving that 

1 + L 0"! (ir~) + (n 
rlEU sbu 

t ~ ~(~) ~ lVI)·-;::: 1+ .£.. --+(n-IV\{u}l)·-. 
Sbu u'EU\{u} Sbu sbu 

If u fl. U, then the equation clearly holds. Otherwise, it is implied by a, (iu) ;::: ~. By the definition of a1, 
a 1 Ciu) 2:: tu (iu) - td. Since t is descending, tu(i) - tJ ;::: t( no I) - td = ~. Hence, i11 := nB does not increase 
Expression (2.6). Furthermore, because u fl. V holds after the assignment i11 := nB , u is not added to V. 
Hence, each user of V has at least the number of data blocks in the buffer given by (2.6) if each request to 
stop consuming has been granted and the corresponding users are put into Vi. This is also true after the 
users from A are put into vc, as follows from the definition of A. 

Because the requests to stop consuming are granted before the determination of C, d(u) #no for all u E C. 
Hence, as a result of granting the requests of all users from C, the users from C are added to the set U. 
Furthermore, becauseiu = d(u) for all u E uc, Cnvc = 0. Consequently, the set V, which by definition is 
vc n V, does not change after the requests have been granted. From these observations and the definition 
of C, it follows that after the assignments the buffer of each user from V still contains at least the number 
of data blocks given by (2.6). This proves the induction hypothesis and with that the theorem. 0 

The response time depends on how A and Care determined. From the proof of Theorem 12, it follows 
that the safeness of Algorithm 3 is based on the property that at any moment between two sweeps each 
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user from V has at least the number of data blocks given by (2.6) in the buffer. Between two arbitrary 
successive sweeps, we define Xu, u E V, as the number of data blocks that u has more in the buffer than 
this expression, which is thus at least 0. Consider the moment that Cis determined between two arbitrary 
successive sweeps. Let u be the user from V with the least amount of data in the buffer at this moment. 
Hence, u is the user for whom xu is minimal. As stated in Algorithm 3, Cis determined such that u, and 
with that each user from V, has at least 

1 + 2, 0"1 (iu) + 2, <Tt (d(u)) + (n -]VUCj}. ~ 
uEU\C sbu uEC sbu sbu 

data blocks in the buffer. By the definition of Xu this condition is equivalent to the condition that this 
number minus Expression (2.6) is a lowerbound on xu. Hence, the condition is equivalent to 

Xu~ 2. (jl (d{u))- 2. cr, (iu) -IC\ VI·~-
uEC sbu uecnu sbu sbu 

(5.1) 

Consequently, the value Xu gives a upperbound on how much Expression (2.6) may increase as a result of 
granting a set of requests. 

We define a( u') as the number of complete sweeps that user u' is waiting for his/her request being granted 
since it arrived at the server. Moreover, we define W as the set of users that are waiting at least one 
complete sweep. Hence, W = {ula(u) ~ 1 }. If (5.1) holds for C = W, then the request of each user from 
W is granted, i.e. if 

min xu~ 2, O"J (d(u)) - 2, 0"! (iu) -\W \VI· t . (5.2) 
uEV uEW sbu uEWnU sbu Sbu 

By assumption, the minimum over an empty set is oo, Hence, if V = 0, then (5.2) does always hold. If (5.2) 
does not hold, then we have to choose which requests are granted and which requests are not granted. We 
thereby aim at a low worst-case response time. We use the following selection criterion. The request of 
user u' E W is granted if and only if 

. a(u') ( ( ')) 
1

. I cr, (iu') 
1

. I t 
mtnxu ·I, ( ) ~ O"J d u - lu' < nB · -b-- lu' = nB · -b . 
IIEY uEW a U S u S u 

(5.3) 

The right-hand side gives the contribution of user u' to the right-hand side of Equation (5.1) if u' E C, i.e. it 
gives the increase of Expression (2.6) as a result of granting the request of user u1

• For each user that wants 
his/her request to be granted, a part of minuev xu that is linear in the time the user is waiting is reserved. 
Hence, the longer a user waits the more the user is privileged when the set of users is determined whose 
request is granted. 

We want to prevent that the choice of the set of users that may start consuming, i.e., the choice of A, affects 
the choice of C. It is easy to verify that this is the case if for each u E A it holds that either iu = nB, which 
implies that u ¢ V when u is added to uc, or 

Xu~ 2, (Jl (d(u)) - 2, (Jl (iu) -IW\ Ul· ~ (5.4) 
ueW sbu uewnu sbu shu 

or Xu~ min1tevXu'. 

We now investigate the worst-case response time of the presented approach. Before we give the lemma 
that states how much time it maximally takes before a request is granted, we give insight in the correctness 
of the lemma. By definition, a data block is large enough to survive a sweep in which for each user a data 
block is fetched, such that the switch time is maximal and the transfer time required for each user is td. 
As discussed in Section 2.1.2 (see Expression (2.4)), the number of data blocks that is minimally saved by 
fetching only n 1 data blocks instead of n is given by 

td+s(n)-s(n l) 
sbu 

(5.5) 
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When a request of a user arrives at the server, no data block is fetched for the user anymore until the 
request is granted, except for the data block that is possibly fetched in the sweep during whose execution 
the request arrives at the server (see Figure 5.1 ). Consequently, when a user is waiting for, say, m sweeps, at 
least (m 1) times the number of data blocks given by (5.5} is saved by the user. As proved in Theorem 12 
cr1 (i) ;::: 't, for all i E L. Consequently, the increase of Expression (2.6) resulting from granting the request 

f b. · th · h h d 'd f E · (5 3) · · 11 maxo<i<nn °1 (i) t H o an ar ttrary user, 1.e. e ng t an st e o xpresston . , ts maxima y -shu Sf;;;. ence, 
if a user waits 1 + y sweeps, where 

"(= rmUXQ<i<nBCit(i)-'tl 
tc~+s(n)-s(n-1) ' 

(5.6) 

then the number of data blocks that is saved during this sweeps is sufficient to compensate the increase of 
the required degree of filling of the buffers of the consuming users resulting from granting his/her request, 
i.e. the increase in Expression (2.6). The following lemma states that it takes indeed at most 1 +"(sweeps 
before a request is granted. 

Lemma 5. Let t(nB- I) ;:; ta and t(nB- 1) < t(O). Then it takes at most 1 +"(sweeps before a request is 
granted, where"( is defined by (5.6). 

Proof We first prove that y;::: 1. By the definition of cr1, maxo::;;<118 a 1 (i) ;::: t(O)- ta. This and the definition 
of 't yields that the numerator in the definition of"( is at least t(O) t(nB- 1). Because, by assumption, 
t(nn- 1) < t(O) and because ta > 0, this implies that y;::: l. 

We prove by induction to the number of executed sweeps, denoted by w, that just before C is determined 
either 

. >" () tc~+s(n)-s(n-I) mtnxu .t:,.., <Xu • --.:.....:...-,---'---'-
uEV - ueW sbu 

(5.7) 

holds or (5.2) holds. First we show that this suffices to prove the lemma. 

Let u be a user, who sends a request to the server. It takes at most one sweep before the next sweeps starts. 
From Algorithm 3, it follows that the request is granted immediately if d(u) = nB. Hence, because y;::: 1, 
the lemma holds in the case that d(u) = nn. 

Assume that d(u) < nB and assume that the request is not granted after 1 +ysweeps. This means that there 
is a sweep w, such that between sweep w and w + 1, a( u) = y and u ~ C. We prove that this leads to a 
contradiction. If (5.2) holds, just before Cis determined, then each request from W is granted. Because 
a( u) = y and"(;::: l, user u is in W. Consequently, the request of u is granted, which gives the contradiction. 
Assume that (5.7) holds. This can be rewritten to 

minueVXu > ta+s(n) -s(n-1) 
LuEwa(u) - sbu 

As a result, (5.3) is implied by 

ld +s(n)- s(n- I). y;::: cr, (d(u)) -!iu < nB!· cr, (iu) -!iu = nB!· _::_, 
~ ~ ~ ~ 

(5.8) 

In the proof of Theorem 12 we showed that cr1 (i11) ;::: 't. Consequently, the right-hand side is at most 
maxog<ns ( cr1 (i) / sbu) t/ sbu. This and the definition of y yields that (5.8) holds. Consequently, the 
request of u is granted, which gives the contradiction. 

Next, we prove by induction to the number of executed sweeps that either (5.2) or (5.7) holds just before 
C is determined. If w = 0 then V = 0. Hence, (5. 7) holds trivially. Consider the case w = m + 1, m ~ 0. 
If V =A just before Cis determined, then it follows from the definition of A that (5.2) holds. The same 
holds if (5.2) holds for all u E V \A. Assume that both cases do not hold. By the definition of A, this 
means that there exist a user u from V \A for which xu is minimal, i.e., xu = min11 ev x,;. We have to prove 
that either (5.2) or (5.7) holds, where the left-hand sides of the equations are replaced by x11 • We make a 
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distinction between whether or not a data block has been fetched for u in the last sweep, i.e. in the ( m + I )th 
sweep. 

Assume that no data block has been fetched for u in the (m + 1 )th sweep. In the proof of Theorem 1 we 
showed that the buffer of u contains at least the number of data blocks given by (A.8) at the end of the 
sweep. Updating it1 and U yields that the buffer of u contains at least 

I "" crt (itl) "" ta(izl- 2) td ( IDI) crt (i) + k --+ k + n- ·max --
tleDnU sbu IIED\U shu 09<nB sbu ' 

data blocks, where D is the set of users, for whom a data block has been fetched in the (m + 1 }th sweep. 
Subtracting Expression (2.6) gives an lowerbound for xu. Hence, 

crt (i) "" crt (iu) 't 
Xu~(n-!D1)· rn,ax -- k ---(n-IUUDI)·-, 

O::;t<nB sbu uEU\D shu shu 

where we use that 't ~ ta(iul- 2)- td for all u! ED\ U. Because a(u'):;::: 1 for each u' E W, W nD = 0. 
As a result, Xu is at least 

IWI· max CYt(i)- L O't(iu) -IW\UI·~. 
09<ns shu uEWnU shu shu 

(5.9) 

As showed in the proof of Theorem 12, granting the requests of users that want to stop consuming does 
not increase the value of Expression (2.6). Hence, xu is still at least Expression (5.9), where W, iu and U 
reflect the situation before the requests are granted. Granting the request of, say, user u1 only affects the 
expression if u' E W. Assume that this is the case. From the definition of W, it follows that if the the request 
of u1 is granted, u' is removed from W. Hence, (5.9) increases by 

In the proof of Theorem 12 we also showed that O't (i) :;::: 't, for aU 0 S i < nB. Hence, the expression 
is not positive. As a result, (5.9) is also a Iowerbound for xu if the values occurring in it are updated. 
Consequently, (5.2) holds just before Cis determined and m + 1 sweeps have been executed. 

Assume that a data block is fetched for u in the (m + 1 )th sweep. By definition, u E V \A. Because a user 
can only be added to V via A, u is also an element of V just before Cis determined and w sweeps have been 
executed. Consider this moment. Because u E V, xu is defined. We first prove that just before the ( m + I )th 
sweep is executed (5.7) holds. By the induction hypothesis either (5.2) or (5.7) holds. If (5.2) holds, then 
each request from W is granted. Hence, W = 0 after the requests have been granted. Because xu 2:: 0 is 
invariant, as we showed in Theorem 12, (5.7) holds at the start of the (m+ l)th sweep. Assume that (5.7) 
holds and (5.2) does not hold just before C is determined. As a result of granting the requests from C, Xu 

decreases exactly as much as Expression (2.6) increases, as follows from the definition of Xu. Hence, xu 

decreases by 

L O't(d(u)) _ L crt(iu) -IC\UI·~ 
uEC shu uecnu sbu shu 

data blocks. Because (5.2) does not hold, selection criterion (5.3) is applied. Consequently, the expression 
is at most 

Hence, after the requests from the users from C have been granted, xu is at least Xu minus this expression. 
Because (5.7) holds, Xu 2:: Luew a(u) · 14+s(n1b;;•(n-l) just before Cis determined. Hence, after the requests 
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have been granted Xu is at least 

where wold is the set W before the requests are granted. This can be written to 

"' ( ) td+s(n) -s(n-1) 
~ au· . 

ueW<>Id\C shu 

Because granting the requests results in the assignment W := W \ C, this implies that (5.7) holds at the start 
of sweep w + 1. As a result, both if (5.2) holds and if (5.7) holds, then the buffer of u contains at least the 
number of data blocks given by (5.7) just before the (m + l)th sweep is executed. We now prove that this 
is also true after the execution of the sweep. 

In the proof of Theorem 1 if the buffer of a user contains the number of data blocks given by (2.6) at the 
start of the sweep and if a data block is fetched for the user, then the buffer contains at least the number of 
data blocks given by (A.4) at the end of the sweep. In terms of xu, u E V, this means that if xu = 0 at the 

start of the sweep, then xu is at least n-IDl·tJ-t:~n)-.•(IDI) at the end of the sweep. Similarly, it can be proved 
.I U 

that for an arbitrary starting value of xu, xu is raised by this fraction. By definition, u' E W implies that 
a(u') ~ 1. Hence, in the (m+ l)th sweep no data block is fetched for a user from W, where W is based 
on the situation just before Cis determined and (m + I) sweeps have been executed, i.e. Dn W = 0. As a 
result, Xu is raised by at least 

I WI· td + min1 <i5;;11{s(i)- s(i- 1)). 
shu 

(5.1 0) 

It can be shown that min1g::;11(s(i)- s(i -1)) = s(n) -s(n -1). Hence, Expression (5.10) gives exactly 
the increase of the right-hand side of Equation (5.7). Consequently, (5.7) holds at the end of the (w + I )th 
sweep. As mentioned above, grantjng the requests of users that want to stop consuming, does not decrease 
x11 • Furthermore, no users are added to W, because W only contains users whose request has not been 
granted. Consequently, the right-hand side of (5.7) does not increase. Hence, (5.7) holds just before Cis 
determined and w + I sweeps have been executed. 0 

From the definition ofx11 , it follows that whenever a user has at least 1 +n ·maXo:::;i<nscrl (i)/shu data blocks 
in the buffer, (5.4) holds, which means that the user may start consuming. Consequently, the time between 
the moment that a request is granted and the moment that the user may start consuming is at most the time 
that is maximally required for fetching 1 + n · maxo::;i<lls cr1 (i) data blocks. By the used filling strategy, this 
takes I + 11 sweeps, where 

0"! (i) fn· max --l 
O::;i<ns sbu 

Lemma 5 and this observation are the key of the following theorem. 

(5.11) 

Theorem 13. Let t(ns- 1) 5 fd and t(n8 - I) < t(O). Then the worst-case response time is bounded by 
the time that is maximally required for 2 + y + 11 successive sweeps, where y and 11 are defined according 
to (5.6) and (5.11), respectively. 
Proof. Assume that user u sends a request to the server. By Lemma 5, it takes at most l + y sweeps 
before the request is granted. Hence, we have to prove that it takes at most 1 +11 sweeps before u can start 
consuming after the request has been granted. By definition, the request is granted between the execution 
of two sweeps, say w and w + l. We have to prove that user u can start consuming the requested data at 
the latest at the start of sweep w + 11 + 2. Assume that this is not the case. We show that this leads to a 
contradiction. If a data block is fetched for u in each sweep from w + I through w + 11 + 1, then u has 
1 +11 data blocks in the corresponding buffer. By the definition of Xu, this means that (5.4) holds at the 
moment that A is determined. As a result, u E A, which means that u can start consuming. This gives the 
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contradiction. What remains is the proof that u fetches a data blocks in each sweep from w + 1 through 
w + 11 + l. Because u may start consuming if the last data block of the movie has been fetched, the last 
data block is not fetched in any of these sweeps. From the definition of filling strategy TB, it now follows 
that, because the buffer of u is empty at the start of sweep w + 1, a data block is fetched in each sweep from 
w + l through w + 11 + 1 if and only if the buffer of u is large enough to store 1 + 11 data blocks. Because 
r X l ;;:; X+ l' for an arbitrary real value X, 11 ;;:; l + n. maxo::;i<ns cr I ( i) I sbu. Consequently, the buffer of u is 
large enough if 

crt (i) az(i) 
1+(1+n· max --)<3+n· max ---8. 

0:$i<ns sbu - O::>i<ns sbu 

Using the definitions of 0 and O"m and multiplying both sides with sbu, gives that the equation is equivalent 
to 

(n-1)· m.ax cr,(i);::;sbu+(n-1)· m.ax cr2{i) td+s(n)-s(n-1). 
O::>t<ns O::>t<ltB 

{5.12) 

By the definition of sbu, sbu- (td+s(n) -s(n 1)) equals (n- I) ·tJ+s(n-1). Hence, ifmaxog<ns CiJ (i) = 
maxo::;i<nsCi2(i) or n =I then the equation is clearly true. Assume that the equation does not hold. Then, 
by the definition ofcrm. maxo::;i<118 0t (i) = t(O) tJ. Furthermore, maxo::;i<ns crz(i) ~ t(O) +t(no -1)- 2tJ. 

Using this and dividing both sides by n- 1 yield that (5.12) is implied by 

t(O) td;;:; tJ+t(O) +t(no-l) -2tJ, 

which trivially holds. 0 

If we want to express the worst-case response time in time units we have to determine the time that is 
maximally required for a number of successive sweeps. The fol1owing theorem states that in the worst­
case situation, each sweep of an arbitrary set of successive sweeps can be worst-case, i.e., in each sweep a 
data block can be fetched for all users at a minimum transfer rate, such that the switch time is maximal. 

Theorem 14. The worst-case time required form successive sweeps ism· (n · t(O) + s(n)). 
Proof If during a given sweep w each user requests the data block that is stored on position 0, then each 
user is put into uw at the end of the sweep. Consequently, V becomes 0. which implies that all requests 
are granted. As a result, the time required sweep w + 1 can be n · t(O) + s(n ). If during this sweep, each 
user requests again the data block that is stored on position 0, the situation at the start of sweep w + 2 is 
similar to the situation at the start of sweep w + 1. Hence, the time required for sweep w + 1 is, again, 
n · t(O) + s(n). If this scenario is repeated m times, we get m successive sweeps with a total execution 
time of m · (n · t(O) + s(n)) time units. Hence, this expression is a lowerbound on the time required form 
successive sweeps. Clearly, it is also an upperbound, which proves the theorem. 0 

We give an example of the meaning of the discussed theorems. 

Example 1 revisited. As stated by Theorem 13, the worst-case response time is bounded by the time that 
is in the worst-case situation required for 2+Y+11 successive sweeps. As mentioned, maxo::;i<ns cr, (i) =x. 
Consequently, the value of y is given by rx+tr:;ns-lll, which equals f0.1525l = 1. Furthermore, the 

value of 11 is ro.2096l = L As a result, the worst-case response time is bounded by the time time that is 
maximally required for four successive sweeps. By Theorem 14, this time is maximally 4 · (n ·t(O) + s(n)), 
which is 1.51 seconds. For TB the worst-case response time is the time that is maximally required for two 
successive sweeps, which is 2· (n ·tmin+s(n)), wheretmin = 2~0J9 . This yields that the worst-case response 
time is 1.09 seconds. mm 

Consequently, opposite to a saving in the buffer requirements of 36%, we have an increase of the worst-case 
response time by 39%. 
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Algorithm 4 Algorithm for handling requests for the case that the buffer capacity is 3 -Oz. 
forall l :;; u :;; n 

iu :=d(u); 
uw := {u!iu <no}; 
Vi:= {u!iu nB}; 
uc:=0; 
while true 

uw := uwu{uli.f:d(u)}; 
ui := ui \ { uliu :f: d(u)}; 
uc := uc \ { uli11 :f d(u)}; 
forall u E { u!d(u) = nB} 

iu := d(u); 
ui :=vi u{u}; 

A := { u E uw liu = nB V" u has two data blocks in his/her buffer" } 
Uw:=Uw\A; 
uc:=UcUA; 
Ct := {u E Uwliu :f: d(u) 1\" in the previous two sweeps no data block has been fetched for u"} 
C2 := {u E Uwliu :f: d(u) 1\" in the previous sweep no data block has been fetched for u" 

/\t11(lastu)+tu(d(u)) :5 2td} 
forall u E C1 UC2 

iu := d(u); 
execute sweep; 

5.2 Handling requests for revised TB, conditional solution 

In this section we present an algorithm for handling requests for the case that the buffer requirements are 
given by Theorem 3. We use the same notation and assumptions as in the previous section. The pseudo 
code of the algorithm given by Algorithm 4. Because of its similarity with Algorithm 3, the comments are 
omitted in the algorithm. 

As in Algorithm 3, the initialisation consists of granting the requests of all users. Before the start of a 
sweep, the request of each user who wants to stop consuming is granted. The set A, i.e. the set of users that 
may start consuming, consists of the users that either have two data blocks in their buffer or have received 
the last data block of the movie. A request of, say, user u can be granted on the basis of two criteria. Either 
no data block has been fetched for u for at least two sweeps or no data block has been fetched for one 
sweep, but ta(lastu) + ta(d(u)) $ 2td, where lastu is the most recently fetched data block of user u. The 
equation is to be interpreted as follows. The average transfer time of the most recently transferred data 
block and the desired next data block does not exceed tJ. If still no data block has been fetched for user 
u, then lastu is the data block that is stored on position n8 - 1, by definition. Since t is descending and 
because (2.10) holds, this implies that ta(lastu) + ta(d(u)) $ 2td regardless of the value of d(u) in that case. 

Theorem 15. If Equation (2. 10) holds, the capacity of the buffers is at least 3 -lh, where 6z is given 
by (2.12),filling strategy TB is used for each user whose request has been granted and the requests of the 
users are handled according to Algorithm 4, then safeness is guaranteed. 
Proof. From the proof of Theorem 3, it follows that safeness is guaranteed, if a user from U does not start 
consuming before he/she has room for strictly less than one data block, if (2.13) remains valid and if in 
three successive sweeps at most two data blocks are fetched for the same user. We start with proving the 
first condition. By the definition of A and the assumed buffer size, which is at least 3 - ~ data blocks, 
the first requirements is satisfied if~> 0. By the definition of Oz, 6z > 0 is equivalent to 2 · tc~ > t(O)­

s3(2n) +s2(2n 1). Because s3(2n) > s2(2n -1), this is implied by td;:::: ~·This follows from (2.10). 

From the definition of C1 and C2, it follows that two data blocks that are not successive are never fetched 
for the same user in two successive sweeps. As a result, (2.13) remains valid, which is our second proof 
obligation. Finally we prove by contradiction that in three successive sweeps at most two data blocks are 
fetched for the same user. Let w be the first sweep, such that in the sweeps w, w + I and w + 2 three data 
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blocks are fetched for the same user, say u. As mentioned, these data blocks have to be successive. Because 
a data block is only fetched for a user if iu = d ( u) at the start of the sweep this implies that from the start 
of sweep w until the start of sweep w + 2 no request from u arrives at the server. 

Consider the start of sweep w + 2. If u fl. Ui, then no data block is fetched for u in sweep w + 2 which 
contradicts our assumption that a data block is fetched in sweeps w, w + 1 and w + 2. 

Assume that u fl. uc at the start of sweep w + 2, i.e., u is not a consuming user at the start of sweep w + 1. 
As a result, u fl. A, which, by definition, means that u has less than two data blocks in the buffer and that 
iu < nB. Because the server receives no request from u from the start of sweep w until the start of sweep 
w + 2, the buffer is not flushed during this period and u fl. uc also holds at the start of sweep w and w + 1. 
By assumption, a data block is fetched for u in sweep w and w + 1. Hence, u has at least two data blocks in 
the buffer at the start of sweep w + 2, which gives the contradiction. 

Assume that u E uc at the start of sweep w + 2. Because, by assumption, a data block is fetched in sweep 
w + 2, iu < nB at the start of this sweep. We define v as the sweep, at the start of which u starts consuming 
for the last time, i.e. at the start of which u is moved from uw to uc for the last time. As proved above, the 
buffer of u has room for strictly less than one data block at the start of sweep v. Consequently, in sweep v 
no data block is fetched for user u, which implies that w > v. Hence, u E uc at the start of sweep w - 1. 
Because w is chosen minimal, no data block is fetched for user u in w - 1. As a result, at the start of 
sweep w- 1 the buffer of u does not have room for a data block. Another consequence of the minimality 
of w is that the sweeps w - 1, w and w + 1 contain at most two data blocks for the same user. If for a 
user, say u', two data blocks are fetched in these sweeps that are not successive, then the request to fetch 
the second block must have been granted between the start of the sweep in which the first data block is 
fetched and the start of the sweep in which the second is fetched. By the definitions C1 and C2 this can 
only be the case if the first data block is fetched in sweep w - 1 and the second in sweep w + 1 and if 
ta(lastr~) +ta(d(u))::; 2tc~. Consequently, the total transfer time required for the two data blocks for u' is 
bounded by 2tc~. Furthermore, by (2.10), the transfer time required for a user u" for who either a single 
data block or two successive data blocks is fetched during sweeps w - 1, w and w + 1 is bounded by 2tc~, 
as well. As a result, the time required for these sweeps is bounded by 2n · fd + s3 (2n). Similarly as for the 
case that w = m + 1 in the proof of Lemma 1, this leads to a contradiction. 0 

The next theorem states the worst-case response time of Algorithm 4. 

Theorem 16. In the case that Algorithm 4 is used, the worst-case response time is the time that is maxi­
mally required for five successive sweeps, which is at most 4n · fd + ss(4n). 
Proof. Assume that user u sends a request to the server to jump to data block d( u). We are interested in the 
maximum time it takes before u can start consuming. If d(u) = nB, u does not want to consume. Hence, 
we assume that d(u) < nB. It takes at most one sweep from the arrival of the request of u to the start of a 
sweep. By assumption, no data block is fetched for u, before the request is granted. By the definition of C1, 
this takes at most two sweeps. Two sweeps after that, u has two data blocks in the buffer, unless the buffer 
is not large enough to store two data blocks. Therefore, we have to prove that 3- 02 2': 2, i.e. 02 ::; I. Using 
the definition of 02 gives that 02 ::; 1 is equivalent to 2td- t(O) + SJ(2n) - s2(2n- 1) ::; n · fd + !s3 (2n). 
Because td ::; t(O), which follows from (2.10), and because n 2': 1, this is implied by SJ(2n) ::; 2s2(2n- I). 
Using (1.1), yields that 2s(2n- 1) = s4(4n- 2). Again, n 2': 1, gives that s4(4n- 2) is at least s4(2n), which 
is at least s3(2n). Hence, 02 ::; 1. 

By the definition of A, u may start consuming if he/she has two data blocks in the buffer at the start of a 
sweep. As a result, the worst-case response time is 5 sweeps. We now prove that five sweeps take at most 
4n · td + ss(4n) time units. We showed in the proof of Theorem 15 that at most two data blocks are fetched 
for the same user in three successive sweeps. Hence, in five sweeps at most four data blocks are fetched per 
user. The data blocks fetched for a user are successive, unless he/she sends a request during the sweeps, 
which is also granted. If the data blocks are successive the maximum transfer time spent for the user is 4tc~, 
as follows from the assumption that (2.1 0) holds. If the data blocks are not successive, but each request is 
granted via C2, then the maximum transfer time does not exceed 4tc~, as well. If two fetched data blocks 
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are not successive because of a request that is granted via C1, then, by the definition of C1 , at most three 
data blocks are fetched for the user. Furthermore, the number of fetched data blocks can only be three if 
two of them are successive, as follows from the definition of C1 and C2. Since t is descending and because 
of(2.10), we get that the maximum transfer time required for the user is bounded by t(O) + 2td. From (2.10) 
it also follows that t(O) ~ 2td. Hence, the maximum transfer time is bounded by 4tJ. The maximum time 
required for five successive sweeps is given by the sum of the maximum transfer times spent for each user 
plus the maximum switch time. Hence, the time that is maximal required for five sweeps is 4n · td + ss ( 4n). 

0 

From the proof of Theorem 16, it follows that in the worst-case scenario a request arrives just after the 
start of a sweep in which a data block is fetched for the user who sends the request. Hence, the user is 
consuming and want to make a jump in the movie. If no data block is fetched for a user in at least the last 
two sweeps at the moment he/she sends the request, because, for example, the user was not watching the 
movie, then the request is granted at the start of the first sweep after the sweep in which the request arrives, 
as follows from the definition of C1. Hence, in this case the request is granted two sweeps earlier than in 
the worst-case scenario. As a result, the worst-case response time in the case that no data block is fetched 
for the user that sends the request for at least two sweeps, is three instead of five sweeps. Similarly as for 
five sweeps, it can be showed that the time that is maxima11y required for these three sweeps is bounded by 
2n · tJ +s3(2n). 

5.3 Handling requests for revised dual sweep 

Algorithm 5 gives the pseudo code for handling requests in the case that the buffer requirements are given 
by Theorem 4. The algorithm is similar to Algorithm 3, except for the determination of A and C, which give 
the set of users that may start consuming and whose requests are granted, respectively. The determination 
of both sets is based on Expression (2.20) and Expression (2.21), for which we gave the interpretation in 
Section 2.2. In Algorithm 5, Xw is defined as the set of users for whom no data block has been fetched in 
sweep w, where the sweeps are numbered from 1 onwards. Furthermore, for any moment between sweep 
w- 1 and sweep w, Uw is defined as 

{uliu E U 1\ u EXw-1 Aiu = d(u) 1\ "u has room for a data block in the buffer"} 

if w > I. If w = 1 then the second conjunct in the definition is removed. The set Uw can be interpreted as 
the set of users for whom a data block is fetched in sweep w if the situation does not change anymore from 
the moment under consideration until the start of sweep w. This definition corresponds to the meaning 
of Uw in the proof of Theorem 4. Furthermore, Uw is only meaningful in combination with a moment in 
time between sweep w- 1 and sweep w. The following theorem states that safeness is guaranteed when 
Algorithm 5 is used. 

Theorem 17. If the buffer capacity is given by (2.22), n ;:::: 2, t(O) ;:::: td ;:::: t(no- l ), filling strategy DS is 
used for each user whose request has been granted and the requests of the users are handled according to 
Algorithm 5 then safeness is guaranteed. 

Proof As in Theorem 12, we only have to prove that no buffer underflow occurs for any user from V. We 
define the predicate P(w) as the property that for all u E V it holds that user u has has at least the number 
of data blocks given by (2.21) in the buffer if u ft. u:v and at least the number given by (2.20), otherwise. 
We prove by induction to w that P( w) holds at the start of sweep w. Because no buffer underflow occurs in 
sweep w if P( w) holds at the start of it, as we showed in the proof of Theorem 4, this proves the theorem. 

As basis we take the case that w == 1. Similarly as in the basis case of the proof of Theorem 12, it can be 
showed that V = 0 at the start of the first sweep. Hence, P( 1) holds at the start of the first sweep. 

Consider the start of sweep m + l, m ;:::: 1. By the induction hypothesis, P( m) holds at the start of sweep 
m. We showed in the proof of Theorem 4 that at the end of the sweep P( m + 1) holds. Updating uw, Ui 
and uc: does not affect this because this only reduces the set V. Let u be a user who want to stop watching 
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Algorithm 5 Algorithm for handling requests for the case that the buffer capacity is given by (A.9). 

foralll $u$n 
iu :=d(u); 

uw := {uliu < ng}; 
Ui := {uiiu =nB}; 
uc:=0; 
while true 

uw := uwu{uiiu ;i:d(u)}; 
ui := ui \ {uliu i= d(u)}; 
uc := uc \ {uliu :f:. d(u)}; 
forall u E {uid(u) ns} 

iu := d(u); 
ui := ui u{u}; 

determine A~ uw such that YueA either u has at least 

1 + r Lueu max(~k!i.),O) l data blocks in his/her buffer if u E Uw and at least 

r IUu·l·td+.v(IUwll + ~ max(<JJ (iu),O) l "f d U 
.vb{j kuEU sbd I U 'f' w 

or iu = ng; 
uw :=Uw\A; 
uc :=UcUA; 
determine C ~ {uliu :f:. d(u)} such that YueV u has at least 

I+ LueU c max(~~i.),O) + LueC max(o~~:(u)),O) data blocks in the buffer if u f/: Uw and at least 
U.,.u Cnx ·t4+.v U,..U cnx +~ max(<Ji(i11 ),0) +~ max(<JJ~(u)),O) 'f d U . 

forall uEC 
iu := d(u); 

execute sweep; 

s u kuEU\C shu kuEC .v d I U 'F W• 
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the movie. After the request is granted, i.e. after iu := n8 , and after u is put into U1, O'J (iu) is -oo, u tJ V 
and u is removed from U m+ 1· As a result, both (2.21) and (2.20) do not increase and u is not added to V. 
Consequently, P(m+ 1) still holds after granting the request of each user who wants to stop watching the 
movie and putting the user into Ui. By the definition of A and because Um+i is not affected by letting users 
start consuming, P(m + 1) also holds after the users of A are put into uc. 
Because C ~ uw, granting the requests of the users from C does not affect V. The requests to stop watching 
the movie have already been granted when Cis determined. Consequently, d ( u) < na for all u E C. Hence, 
as a result of granting the requests of all users from C, U becomes U U C. Furthermore, because, by 
assumption, the buffer of each user whose request has not been granted is empty, Um+l becomes Um+l U 
( C n Xm) after granting the requests. From these observations and the definition of C, it follows that 
P(m + 1) also holds after the requests of Care granted. Hence, the induction hypothesis holds form+ I. D 

For the determination of A and C we use the same idea as for Algorithm 3. Consider a moment between 
the end of sweep w- I and the start of sweep w. The safeness of Theorem 17 is based on the property that 
at any moment between two successive sweeps the buffer of each user from V contains at least the number 
of data blocks given by (2.21) if u ¢ Uw and at least the number given by (2.20), otherwise. We define 
Yu· u E V, as the number of data blocks in the buffer of u minus Expression {2.21) if u tJ Uw and minus 
Expression (2.20), with Uw replaced by Xw-1, otherwise. Note that by the definition of C and because Uw 
can be a strict subset of X, unlike xu, Yu can be negative. Similarly as the condition that C has to answer 
for each u E V in Algorithm 3 can be written as condition (5.1 ), the condition that C has to answer for each 
u E V n Uw in Algorithm 5 is equivalent to 

Yu 2: 2: max(O'i(d(v)),O) _ L max(cri(iv),O). (S.l3) 

vEC sbd vECnU sbd 

Because, by definition, Uw ~ Xw-I, we have that 
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By this and the definition of Yu• the condition that C has to answer for each u E V \ Uw is implied by (5.13) 
as well. 

We define a2(u), 1 =:; u =:; n, as t'x(uJ- 1
, where a(u) is, again, defined as the number of complete sweeps 

that u is waiting for his/her request being granted since it arrived at the server. Furthermore, we redefine W 
as W = { ul La2(u)J ~ 1}. In terms of a we can write W = {ula(u) ~ 3}. as follows from the definition of 
a2. Hence, W contains the users that are waiting for at least three complete sweeps. 

If (5.13) holds for all u E V, where C = W, then the request of each user from W is granted. Otherwise, the 
request of u' E W is granted if and only if 

(5.14) 

holds. The meaning is similar to the meaning of Equation (5.3). The right-hand side gives the contribution 
of user u' to the right-hand side of Equation (5.13) and for each user a part of minuev Yu is reserved that is 
linear in the number of complete pair of sweeps the user is waiting for his/her request being granted. 

Again, we do not want the choice of C to be affected by the choice of A. Let u' be a user whose request has 
been granted and who is waiting for a sign to start consuming. Adding u' to A does not affect the choice 
of C in the case that u' ¢ U, because then u1 ¢:. V. The choice is neither affected whenever (5.13) holds for 
C = W or minuev Yu :$ y,; 

Next, we discuss the worst-case response time of the presented algorithm. By definition, a data block is 
large enough to survive two successive sweeps in which a data block is fetched for each user at a transfer 
time of td and the switch time is maximal. ConsequentJy, if no data block is fetched for, say, user u, in two 
successive sweeps because the user is waiting for a request being granted, then td + s2 (n) - s2 ( n - 1) time 
units are saved. Hence, during the sweeps the consuming users have consumed minimally 

td+s2(n)- s2(n-I) 
sbd 

(5.15) 

data blocks less than would have been the case when the time that is reserved for user u in the two sweeps 
would have been spent for u. The request of u can arrive at the server just after the start of a sweep in which 
a data block is fetched for the user. Consequently, when the user is waiting for 2m sweeps, at least 2(m- 1) 
times the number of data blocks given by (5.15) are saved. The increase of (2.20) and (2.21) resulting from 
granting the request of u, i.e. the right-hand side of (5.14) is at most maxo::;i<ns 0"1 (i) / sbd. Furthermore, it 
can be shown that s2(n) s2(n- I):::; s(n)- s(n 1). Consequently, if a user waits 2+ 2"(2 sweeps, where 

(5.16) 

then the number of data blocks that is saved during these sweeps is at least the increase of the minimum 
number of data blocks that have to be in the buffer at the start of the sweep resulting from granting the 
request of u, i.e. the increase of (2.20) and (2.21). The next lemma states that 2 + 2'¥2 is indeed the 
maximum number of sweeps that is required for a request being granted. 

Lemma 6. Let td < t(O) and n ;::: 2. Then it takes at most 2 + 2y2 sweeps before a request is granted, where 
'Y2 is defined by ( 5.16). 

Proof We prove by induction to the number of executed sweeps, denoted by w, that just before C is 
determined, for all u E V either 

{ 

~ La (u)J. td+s(n)-s(n-1) "f EX > ...:...uew 2 rh l u w-l 
Yu_ ~ rrv ( )l·tc~+s(n1-s(n-I) ·r LiX 

kuEWUV2 1'-"'2 U sb<l l U y; w-1· 

(5.17) 

holds, where V2 = { ula(u) = 2}, or (5.13) holds, where C = W. In the remainder of the proof we mean the 
case that C = W when we refer to (5.13). We first prove that this proves the lemma. 
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Let u be a user who sends a request to the server. It takes at most one sweep before the next sweep starts. 
If it is a request to stop consuming, then the request is granted immediately. Because ta < t(O), 'Y2 2 1. 
Hence, the lemma holds in the case that d(u) = nn. 

Assume that d( u) < nB and assume that the lemma does not hold. We show that this leads to a contradiction. 
Because the lemma does not hold, there is a sweep w, such that between the end of sweep w and the start 
of sweep w+ 1 a(u) = 1 + 2'(2 and u ftC. Let u1

, u1 E V, be the user for whom Yti is minimal. We may 
assume that either (5.17) or (5.13) holds. Because 'Y2 2 I, u E W. Hence, if (5.13) holds, the request of u' 
is granted, which gives the contradiction. Assume that (5.17) holds. This implies that 

Yu > ta+s(n) -s(n-1) 
Lvewlo:2(u)j - sbd · 

Consequently, according to (5.14) the request of u' is granted if 

tc~+s(n) -s(n-1). La
2

(u')J 
2 

max(cri(d(u')),O) _ max(cri(iti),O). 
sbd sbd sbd 

Because a(u') = I+ 2y2, La2(u')j = 'Y2· From the definition of )'2, it follows that the previous equation is 
valid. Consequently, the request of u' is granted, which gives the contradiction. 

We now prove by induction to the number of executed sweeps that just before C is determined either (5 .17) 
or (5.13) holds. From the proof of Theorem 4, it follows that whenever y11 , u E V, is non-negative at the 
start of a sweep, this is also the case at the end of the sweep. Furthermore, by the definitions of A and C, Yu 
does not become negative as a result of Algorithm 5. Consequently, Yu 2 0 is invariant. 

As basis of the induction we take the case w = 0. In that case, V = 0 when C is determined. Hence, the 
induction hypothesis holds for w = 0. 

Assume that w = m + I, m 2 0. By the definition of A, (5.13) holds just before Cis determined both if V =A 
and if Equation (5. 13) holds for all u E V \A. Assume that both cases do not hold. By the definition of A, 
there consequently exist a user u from V \A, such that Yu is minimal. As long as the buffer of a user remains 
empty afterthe start-up of the system, u f/:. V holds, as follows from the definition ofV and A. Consequently, 
because u f/:. A, sweep m + I can not be the first sweep, i.e. m 2 1. By the induction hypothesis, we may 
assume that just before C is determined and m sweeps have been executed, either (5.17) or (5.13) holds. 
Similarly as in the proof of Lemma 5 it can be showed that if it holds at the end of sweep m + 1, it also 
holds just before C is determined. Hence, proving that the induction hypothesis holds for m + l comes 
down to proving that it holds just after the execution of sweep m + 1 under the assumption that it holds just 
before C is determined between sweep m and m + 1. 

Assume that a data block has been fetched for u in sweep m + 1. Similarly as in the proof of Lemma 5, it 
can be showed that just before the start of sweep m + I Equation ( 5 .17) holds. We prove that it also holds 
at the end of the sweep. We use the convention that if a tilde above a variable indicates that the value of is 
based on the situation just before the start of sweep m + 1 and on the situation just after the end of sweep 
m + I, otherwise. As mentioned in the proof of Theorem 4, the number of data blocks in the buffer of u at 
the end of sweep m + 1 is given by 1 plus the number of data blocks in the buffer at the start of the sweep 
minus (A.10). By the definition of Yu. we have that the buffer contains at least 

1 
IXml·ta+s(IXml) " max(cri(lv},O) _ IUm+tl·ta+s(IUm+Ii) " ta(lv) -td 

+ + k +Yu- - k 
sbd veO sbd sbd vEUm+l sbd 

data blocks at the end of the sweep. Using that Um+l ~ Xm and the same arguments as in the proof of 
Theorem 4 after Expression {A.l5), we get that the expression is at least 

1 
IXm\Um+tl·tc~+s(IXmi)-s(iVm+li) "max(cri(iv),O) _ 

+ b + "- b + Yu· 
S d vEU S d 
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By definition, a(u') ~ 3, for all u' E W. Furthermore, a(u') ~ 2, 1 ~ u ~ n, implies that u1 E Xm. Hence, 
wuv2 ~Xm and (WUV2)nUm+l =0. Consequently, IXm\Um+d ~ IWUV21 ands(!Um+d) ~s(IXmi­
IW U V21}, which implies that Yu is at least Yu plus 

IWUV2I·td +s(IXmi) s(IXmi-IWUV21) 
sbd 

It can be showed thats(IXmD -sCIXmi-IWUV21) ~ IWUV2I· (s(n) -s(n-1)). Because a data block is 
fetched for u in sweep m+ 1, no data block is fetched for u in sweep m. Hence, u ~ Xm+l and u E Xm. We 
have that (5.17) holds before the start of sweep m + 1. To prove that it also holds at the end of the sweep it 
suffices to prove that 

(5.18) 

which can be written as I w u V21 ~ LuEWUVz r 0.2 ( u) l - Lue'W L (i2 ( u) J. It can be verified that w ~ w and 
that a(u') = d(u') + 1, u' E WUV2. Hence, (5.18) holds iffor all u1 E WU V2 

1 ~ r(i~l)l-lu' E WI· L ft(u'~ - 1 J (5.19) 

holds. Let u1 E W UV2. If u' ~ W, then, by the definition of W, ft(u1
) = 2. Hence, (5.19) is valid. Assume 

that u' E W. If ft( u') mod 2 = 0, then (5.19) can be written as 1 ~ a~') - (a~') - 1 ), which is clearly true. 

If, on the other hand, ii(u') mod 2 = l, then (5.19) equivales I ~ at;>+ 1- a~'), which is also true. This 
completes the proof for the case that a data block is fetched for user u. 

Assume that neither a data block is fetched for u in sweep m nor in sweep m + 1. We get that u E Xm n Xm+ 1 

and u ~ Um+ I· By the definition of filling strategy DS and because, by assumption, u E V, u has room for 
less than one data block in the bufferatthe start of sweep w+ 1, i.e. u has at least 1 +n·max1:5i<11a 0"1 (i)/ sbd 
data blocks in the buffer. A lowerbound for the number of data blocks in the buffer at the end of the sweep 
is given by this number minus (A.IO). Hence, the buffer of u contains at least 

data blocks. By the same arguments as from Expression (A.l2), we can rewrite to expression to 

( ,n_-.....:I_Um;;.:_+:...:l:_:_i)_· t.:::...d +---=s2...:...(n.:_) _-_s(~IU...::..m:.:..+:..!.:..d) ( jU j) 0"1 (i) ~ max( 0"1 (iv ), 0) - + n- m+l · max --+ "'- . 
sbd 1:5i<nB sbd vEU sbd 

m+l 

From the definition of X, it follows that Xm+ 1 n Uw+ 1 = 0. Consequently, n -IVm+ 1l ~ !Xm+ 1! and s2 (n)­
s(JUm+l J) ~ s(lXm+l 1). By the definition ofyu we consequently have that 

Yu ~ IXml· max cr,(i)- L max(crJ(iv),O) 
0$1<11B sbd vEXm+lnu sbd 

Because W ~ Xm+l, this implies (5.13). 

Finally, we consider the case that a data block is fetched for u in sweep m and no data block is fetched 
in sweep m + l. Hence, u ~ Xm and u E Xm+ 1• By the induction hypothesis, we have that just before C 
is determined and m sweeps have been executed, either (5.17) or (5.13) holds. Again, we can prove in a 
similar way as in the proof of Lemma 5, that just before the start of sweep m + l equation (5.17) holds. By 
the definition of Yu this means that the buffer of u contains at the start of sweep m + 1 at least 
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data blocks. At the end of the sweep the buffer contains at least this number minus (A.1 0). Similar as from 
Expression (A.12), we can prove that this equals 

(n-IUm+ID·td+s2(n)-s(IUm+d) "max(O'I(iv),O) " r- ( )l ld+s(n)-s(n-l) -'------'-..:......;.:..._....:;_-:-;;.,_.:..____;,.:........;."-'-'..:..:.. + £..i + £..i I a2 v . . 
sbd vEU sbd vEWUV2 sbd 

By the definition of Yu and because u E Xm+I· proving 

suffices to prove that (5.17) holds at the end of sweep m+ 1. Because W ~Wand because a(u') = a(u) + 1, 
u E W, the equation is true if for all u' E W, it holds that 

(5.20) 

If u' ¢ W U V2, then it follows from the definition of W that a( u') ::; 1. Hence, (5.20) holds. Assume that 

u' E W U V2. If a(u') mod 2 = 0, then both the left hand side and the right hand side of (5.20) equal &.~'). 
If, on the other hand, a(u') mod 2 = I, then they both equal a(ui-I. Consequently, (5.20) holds. o 

Whenever an arbitrary user u has at least I+ n · maxo:s;;<11s 0'1 (i)fsbd data blocks in the buffer, then (5.13) 
holds for C = W. which, by the definition of A, implies that u may start consuming. Because, by the used 
filling strategy, only one data block can be fetched in two successive sweeps, it takes I + 2112 sweeps to 
fetch this number of data blocks, where 

O'I (i) 
112 = rn· 1n:ax -b-l 

0$1<118 s d 

The following theorem combines this observation with Lemma 6. 

(5.21) 

Theorem 18. Let td < t(O) and n 2:: 2. Then the worst-case response time is bounded by time that is 
maximally required for 3 + 2'(2 + 2112 successive sweeps, where '(2 and 112 are defined according to ( 5.16) 
and (5.21). 

Proof By the definition of filling strategy DS, the sweep in which the first requested data block of u if 
fetched must be preceded by a sweep in which no data block is fetched for u. At most one sweep after the 
arrival of the request of u at the server, the next sweep starts. From this moment, no data block is fetched 
for u, until the request is granted. Consequently, after two sweeps the first requested data block of u may 
be fetched as far as the used filling strategy is concerned. From Lemma 6, it follows that it takes at most 
2 + 2y2 sweeps before the request of, say, user u is granted. Because 2 + 2y2 2:: 2, it takes at most 2 + 2y2 
sweeps before the start of, say, sweep w in which the first requested data block can be fetched. 

To prove the theorem, it now suffices to show that it takes at most 1 + 2112 sweeps from sweep w before u 
can start consuming. We prove it by contradiction. Hence, assume that user u is still not consuming at the 
start of sweep w + 2112 + 1, while user u wants to watch a movie. Because the buffers are large enough to 
store 1 +112 data blocks, 1 +112 data blocks are fetched for u during sweep w through w+ 2112· Furthermore, 
u E Xw+2TJ2 at the end of sweep w + 2112· From the definition of 112 and Yu it now follows that (5.13) holds 
for C = W. Hence, u E A between sweep w + 2112 and w + 2112 + 1, which gives the contradiction. 0 

In order to express the worst-case response time in time units, we investigate the time that is worst-case 
required for, say, m successive sweeps. By the used filling strategy, the worst-case time for two successive 
sweeps is n · t(O) + s2(n). Furthermore, the worst-case time for one sweep is n · t(O) + s(n). The next 
theorem states that if m is divisible by two, then the time that is maximally required for m successive 
sweeps is given by !f times the time that is maximally required for two successive sweeps, i.e. the time 
required for each successive pair of sweeps is maximal. For the case that m is not divisible by two, the 
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theorem only states an upperbound on the time that is maximally required for m successive sweeps. The 
upperbound is given by the time that is maximally required form- 1 sweeps, which is ¥ times the time 
that is maximally required for two successive sweeps because m- 1 is even, plus the time that is maximally 
required for one sweep. · 

Theorem 19. The time that is maximally required form successive sweeps equals I· (n·t(O) +sz(n)) ifm 
is divisible by two and is bounded by m:zl · (n·t(O) +s2(n)) +n·t(O) +s(n) ifm is not divisible by two. 
Proof Let w be an arbitrary sweep. We investigate the time that is maximally required for the sweeps 
w through w + m - 1. Assume that m is divisible by two. By the definition of filling strategy DS, at 
most one data block can be fetched per user in two successive sweeps. A possible scenario is that in the 
sweeps w, w + 2, ... , w + m - 2 a data block is fetched for the users 1 through r ~ l - 1 and in the sweeps 
w + 1, w + 3, ... , w + m- 1 a data block is fetched for the other users. By the same arguments as we used 
in the proof of Theorem 14, we can show only the data block is fetched that is stored on position 0. This 
and (1.1) gives that the required time for them sweeps can be I· (n ·t(O) +sz(n)). Clearly, the time is also 
an upperbound on the time required for m successive sweeps. 

Assume that m is not divisible by two. Because m l is divisible by two, the time required for the first 
m- 1 sweeps is maximal m:zl · (n · t(O) + s2(n)), as we showed above. Furthermore, the time required for 
the mth sweep does not exceed n ·t(O) + s(n). Hence, the time required form sweeps does not exceed 

· (n · t(O) + sz(n)) + n · t(O) +s(n). This time is not a strict upperbound, because the only scenario 

according to which ¥ + 1 data blocks are fetched for each user in m sweeps, is the scenario that a data 
block is fetched for each user in the sweeps w, w + 2, ... , w + m - 1 and no data block is fetched in the 
sweeps w+ 1, w+ 3, ... , w+ m- 2. As a result, the required time equals ( m;-l + 1) · (n · t(O) +s(n)), which 
is strictly less than the derived upperbound because s2(n) > s(n). 0 

In the next example we illustrate the meaning of the discussed theorems. 

Example 2 revisited By Theorem 18 the worst~case response time is bounded by 3 + 212 + 2112 sweeps. By 
definition, Y2 = f tJ+.v(n)~s(n-l) l Because s(n) = 109.45 ms and s(n- 1) = 101.17 ms, Y2 = ro.2223l 1. 
Furthermore, '112 = ro.2095l = 1. Hence, the worst-case response time is seven sweeps. By Theorem 19, 
the time required for seven successive sweeps is bounded by m:zl · (n·t(O)+sz(n)) +n ·t(O)+s(n), which 
equals 1.65 seconds. 

ForDS the worst-case response time is the time that is maximally required for three successive sweeps. 
From the proof of Theorem 19, it follows that the theorem also holds forDS. Hence, the time required for 
three successive sweeps does not exceed n · tmin + s2(n) + n · tmin + s(n), where lrnin = 308A9. Hence, the 

rmm 
worst case response time does not exceed 1.19 seconds. As a result, the worst-case response time increases 
by 39%. 0 



Chapter 6 

Results 

In this thesis we presented an approach for utilizing the different transfer rates of the disk, such that the 
relation between the block size and the maximum number of admitted users can be based on a higher 
transfer rate than the minimum transfer rate, as is the case in TB and DS. It was thereby our aim to 
minimize the cost per user. In this chapter we quantify for a practical example the reduction in the cost per 
user resulting from our approach in relation to TB and DS. Furthermore, we compare the cost per user of 
our approach with track pairing [1]. Before we discuss the results in Section 6.2, we discuss track pairing 
in more detail in Section 6.1. 

6.1 Track Pairing 

We first discuss track pairing, as it is presented in [ 1]. At the end of the section we give an improvement 
of the approach. As discussed in Section 1.2, the length of a track grows linearly with its distance to the 
spindle. Furthermore, a disk rotates at a constant angular velocity. Consequently, by conceptually pairing 
the innermost track with the outermost one, the second innermost with the second outermost, and so on, 
both the total length of each pair of tracks as their read time is constant (see Figure 6.1 ). Although the 
length of a track grows linearly with its distance to the spindle, the capacity and, correspondingly, the 
transfer rate do not, because in the same zone each track has the same capacity. However, the capacity per 
track in a zone does grow linearly with the distance of the zone to the spindle. Consequently, the capacity 
and the transfer rate of a pair of tracks comes within a few percent of a constant. We denote the minimum 
transfer rate of any pair of tracks by r~n· Hence, r:in = ravg- E, where£ is a small positive number. 

Hence, when a movie is recorded alternately on a range of contiguous outer tracks and their inner counter­
parts, the guaranteed transfer rate when reading a data block is r:in· Consequently, the transfer time that 
is maximally required for reading a data block is given by ~~ . However, because the data blocks are split 

rmin 
into two, a sweep in which n data block have to be fetched contains 2n disk accesses. Consequently, the 
time required for a sweep in which a data block is fetched for each user is maximally 

time units. As proved for TB [11], safeness is guaranteed if filling strategy TB is used, a data block is large 
enough to survive one worst-case sweep and the buffers have room for three data blocks. Hence, if filling 
strategy TB is used, if the block size satisfies 

B 
B ~ Cmax(n· IP +s(2n)) 

rmin 
(6.1) 

and if the buffers have room for three data blocks, then safeness is guaranteed. This algorithm will be 

65 
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pairO 

pair 1 

Figure 6.1. Track Pairing 

denoted by TBtP. Because r%in ~ ravg. the relation between the block size and the maximum number 
of admitted users is based on approximately the average transfer rate of the disk instead of the minimum 
transfer rate, as was the case for the original TB algorithm. However, this is at the cost of a larger worst-case 
switching overhead. Hence, whether or not the required buffer size for a given number of users decreases 
in relation to TB, depends on whether the gain in the required worst-case transfer time exceeds the increase 
in the worst-case switching overhead. 

As proved forDS, when filling strategy DS is used, safeness is guaranteed if a data block is large enough to 
survive two sweeps and the buffers have room for two data blocks. In the case that track pairing is applied, 
the condition on the block size can be formalized as 

B 
B 2:: Cmax(n • tjl + sz(2n)). 

rmin 

We denote this algorithm by DStP. 

(6.2) 

As a result of applying track pairing, the maximum number of users for whom a video-on-demand system 
can be designed with a given hard disk increases, as we will show. The Equations (6.1) and (6.2) can be 
fulfilled if and only if Cmax · n < r~in' Consequently, by using track pairing we can design our video-on-

tp 
demand system for each number of users up to~. From Section 1.4.1 and 1.4.2, it follows that for the 

Cmax 

original TB and DS algorithm, this number is bounded by ~, which is generally less. 
Cmax 

When the discussed approach is slightly altered, the block size can be based on the average transfer rate 
instead of r~n· Instead of pairing complete tracks, we pair the tracks such that the total length of a pair is 
still two tracks but the part from the inside and the outside have not necessarily an equal size. Moreover, 
the tracks are paired such that each pair has an equal capacity, which equals two times the average capacity 
of a track. Consequently, each pair has an equal transfer rate. It can be proved that such a subdivision 
always exists. However, we will not give the proof in this thesis. Storing the data blocks on contiguous 
pairs yields a guaranteed transfer rate of ravg instead of r~in· Using this altered version of track pairing, the 
conditions on the block size for TBlP and ostp become 

B 
B 2:: Cma.x(n ·-+ s(2n}) 

ravg 
(6.3) 

and 

B 
B 2:: Cmax(n ·-+ sz(2n)), 

Tavg 
(6.4) 

respectively. 
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6.2 Comparison of the approaches 

In this section we compare the cost per user resulting from our approach with track pairing and the original 
TB and DS algorithms, where the minimum transfer rate is assumed. Because the cost per user only differ 
in the relation between the maximum number of admitted users and the minimum required buffer size, we 
discuss this relation. 

We define DA1 as the disk scheduling algorithm, where filling strategy TB is used, the buffer sizes are 
given by Theorem 1, Algorithm 1 is used for minimizing the buffer sizes and Algorithm 3 is used for 
handling the requests. Similarly, we define DA2 and DADS as the disk scheduling algorithms which are 
based on Theorems 3 and 4, respectively. 

As stated in [ 11], TB is safe if and only if there is room for three data blocks. However, this is not exactly 
the case as can be inferred as follows. We showed in Section 2.1.1 that safeness is guaranteed if a buffer is 
large enough to guarantee that whenever no data block is fetched for the user in a given sweep w, the user 
has at least one data block in the buffer at the start of sweep w + 1. If no data block is fetched for a user in 
a sweep w, then at most (n- I) data blocks are fetched in that sweep. Consequently, the time required for 
the sweep is bounded by (n- 1) · tmax. + s(n- 1 ). Dividing this by the time that can minimally be survived 
with a data block, i.e., n · tmax + s(n), gives the number of data blocks that is maximally consumed during 
the sweep. Hence, if no data block is fetched for a user, which means that the buffer has room for strictly 
less than one data block, the buffer has to contain at least one data block plus this number. As a result, 
safeness is guaranteed if each buffer has room for at least 

2
+ (n-l)·tmax+s(n-1) 

n·tmax +s(n) 

data blocks, which can be rewritten to 

3 
_ tmax +s(n) -s(n -1) 

n·tmax+s(n) · 

We will assume this buffer size for TB. Similarly, the minimum buffer size for TB1P is given by 

3
_ tavg+s(2n)-s(2(n-1)) 

n · tavg + s(2n) · 

(6.5) 

(6.6) 

data blocks, instead of three. We now discuss how for each disk scheduling algorithm the minimum buffer 
size can be determined for a given maximum number of admitted users. 

For TB and TB1P the minimum buffer size for a given number of users is given by the minimum block 
size multiplied by (6.5) and (6.6), respectively. The block size for these algorithms is minimal whenever 
equality holds in (1.2) and (6.3), respectively. Analogously, forDS and DS1P the minimum buffer size is 
given by two times the block size for which (1.3) and (6.4) are equalities. As for TB, TB1P, DS and DS1P, 

the buffer requirements in DA2 are minimized once the block size is minimized. Clearly, the minimum 
block size will be at most the minimum block size given by TB. The minimum block size can be calculated 
by checking for an increasing block size whether (2.1 0) holds for az. We can not use binary search, because 
a different block size possibly results in an essentially different composition of the set of positions. Hence, 
although for a particular block size a2 does not satisfy (2.10), this can be the case when the block size is 
decreased. 

For DAI and DADS the required buffer size is not necessarily minimized once the block size is minized 
because the number of data blocks a buffer has to contain generally increases when the block size decreases. 
Again, we calculate the minimum buffer size by comparing the buffer requirements for an increasing block 
size. 

By Theorem 9, we can start at a block size that is based on the average transfer rate of the disk, i.e., for 
DAI and DA2 we can start at the block size that satisfies B = Cmax(n · ....!L + s(n)) and for DADS we can 

ravg 
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Zone Transfer rate Capacity 
(Mbit/s) (MByte) 

0 59 598 
1 64 776 
2 70 1163 
3 77 1363 
4 83 1606 
5 89 1080 
6 92 2285 

Table 6.1. Arrangement of the zones 

start at the block size that satisfies B = cmax(n · JL + s2(n)). For DA2, we stop whenever a block size is 
ravg 

encounterend for which a2 satisfies (2.1 0) or when we consider a block size as not interesting anymore, 
because it has become too large. The second criterion is also used for DA2 and DADS. A buffer must be 
at least large enough to store one data block, because otherwise no data block can be fetched for a user. 
Consequently, when the block size exceeds the buffer size that has already been derived to be safe, the 
program can stop as well. Some stricter upperbounds can be derived, but we will not discuss this problem 
in this thesis. 

We have analyzed the cost per user for the case that a single Seagate Barracuda 9 drive is used (see Ta­
ble 1.1) and the users consume at a bit rate that varies between 0 and 4 Mbit/s. The arrangement of the 
zones is given in Table 6.1. Table 6.2 and Figure 6.2 show the results for the different disk scheduling 
algorithms that are based on filling strategy TB. In Table 6.3 and Figure 6.3 this is done for disk schedul­
ing algorithms that are based on filling strategy DS In Tables 6.2 and 6.3 the columns denoted by 'Mem' 
give the buffer size per user in MByte. The columns denoted by '%Mem' give the buffer size per user as 
percentage of the buffer size per user for TB in Table 6.2 and as percentage of the buffer size per user for 
DS in Table 6.3. 

It follows that the cost per user for (especially} DAl and DADS are considerably smaller than for TB and 
TBtp and DS and DStp, respectively. For example, if maximally 10 users have to be serviced, the buffer 
requirements in DAI are roughly one third of the buffer requirements given by TB and almost half of the 
buffer requirements given by TB1P. 

It can be read from the tables that at most 16 users can be serviced with the disk. As mentioned, with 
TB1P, DA l, DS1P and DADS any number up to .:& can be serviced with a given disk. However, it follows 

em.,. 

from (6.1) that rav<> = 78.6 Mbit/s and Cmax = 4 MBit/s. Consequently,~= 19.65, which is considerably 
co cmax 

larger than 16. The reason is that we combined in this thesis the transfer rate, the track switch time and the 
head switch time into one (lower) transfer rate, while Table 6.1 gives the real transfer rate. 

In Tables 6.4 and 6.5, the worst-case response times are presented for the different disk scheduling algo­
rithms. In the tables, the column 'resp' denotes the worst-case response time and the column '%resp' gives 
the worst-case response time as percentage of the worst-case response time of TB and DS. The results 
are visualized in Figure 6.4 and 6.5. From the tables and figures it follows that although the worst-case 
response times for DAl, DA2 and DADS are higher than for the other disk scheduling algorithms, they are 
still reasonable for many applications. 
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TB mtp DA1 DA2 

n Mem %Mem Mem %Mem Mem %Mem Mem %Mem 

5 0.219 100 1£ 53 0.124 57 
6 0.290 100 0.145 50 0.153 
7 0.395 100 0.327 83 0.192 49 0.197 
8 0.518 100 0.405 78 0.233 45 0.243 47 
9 0.709 100 0.517 73 0.287 40 0.313 44 
10 1.029 100 0.632 61 ·0.364 35 0.399 39 
11 1.578 100 0.797 51 0.455 29 0.498 32 
12 2.973 100 1.020 34 0.579 19 0.674 23 
13 11.668 100 1.313 11 0.764 7 0.956 8 
14 1.779 1.042 1.470 
15 2.538 1.505 2.641 
16 4.045 2.521 10.445 

JD 8.910 5.845 

Table 6.2. The buffer size per user (in MBytes) as a function of the maximum number of users for the case 
that filling strategy TB is used. 

DS DS1P DADS 

n Mem %Mem Mem %Mem Mem %Mem 

5 0.154 100 0.154 100 0.107 69 
6 0.203 100 0.199 98 0.125 62 
7 0.275 100 0.244 89 0.155 56 
8 0.359 100 0.299 83 0.191 53 
9 0.490 100 0.375 77 0.235 48 
10 0.709 100 0.455 64 0.290 41 
11 ! 1.084 100 0.574 53 0.353 33 
12 I 2.037 100 0.729 36 0.462 23 
13 7.980 100 0.934 12 0.588 7 
14 1.256 0.796 
15 1.777 L167 
16 2.883 1.921 
17 6.242 4.553 

Table 6.3. The buffer size per user (in MBytes) as a function of the maximum number of users for the case 
that filling strategy DS is used. 
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Figure 6.2. Relation between maximum number of admitted users and the buffer requirements in the case that 
filling strategy TB is used 
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Figure 6.3. Relation between maximum number of admitted users and the buffer requirements in the case that 
filling strategy DS is used 



6.2. COMPARISON OF THE APPROACHES 

1B JBlP DAI DA2 
n resp %resp resp %resp resp %resp 

86 0.34 155 0.35 159 
87 0.43 143 0.43 143 

0.57 133 0.57 128 
0.71 122 0.71 117 
0.87 107 0.87 106 
l.lO 91 
1.39 74 
1.78 49 
2.35 16 
3.25 
4.73 
7.96 

11.80 16.96 

Table 6.4. The worst-case response time per user (in seconds) as a function of the maximum number of users 
for the case that the buffer requirements are given by Table 6.2 

DS ostp 

D~ n resp %resp resp %resp resp 

5 0.25 100 0.29 116 0.42 68 
6 0.32 100 0.38 119 0.51 159 
7 0.45 100 0.46 102 0.65 144 
8 0.60 100 0.57 95 0.80 133 
9 0.85 100 0.72 85 0.97 114 
lO 1.27 100 0.88 69 1.24 98 
11 2.00 100 1.11 56 1.53 77 
12 3.89 100 1.42 37 2.01 52 
13 15.76 100 1.83 12 2.56 16 
14 2.47 3.46 
15 3.51 5.12 
16 5.72 8.26 
17 12.44 18.31 

Table 6.5. The worst-case response time per user (in seconds) as a function of the maximum number of users 
for the case that the buffer requirements are given by Table 6.3 
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that the buffer requireme1,1ts are given by Table 6.2 

5 

4.5 

4 

.......... 3.5 OCt -(!) 
3 .5 .... 

(!) 2.5 
OCt 
d 
0 2 Q, 

"' ~ 1.5 

1 
0.5 ,__ __ 

0 L---L-------L-------L-------~------~------~ 
6 8 10 12 14 16 

Maximum number of admitted users 

Figure 6.5. Relation between maximum number of admitted users and the worst-case response time in the case 
that the buffer requirements are given by Table 6.3 



Chapter 7 

Generalization to multiple disks and 
more than one movie 

In this thesis we assumed that the collection of movies is stored on a single hard disk. However, when 
more, possibly different, disks are used, both the total storage capacity and the throughput are increased. 
Several approaches are presented in literature for increasing the guaranteed throughput of the disk array, 
for example striping [2] and random duplicated assignment (RDA) [9]. In Section 7.1 we show how our 
approach for utilizing the different transfer rates of a single disks can be combined with full striping. 
Throughout this thesis, we assumed that only one single movie is stored on the hard disk and that the 
movie covers the entire disk. In Section 7 .2, we show that these assumptions are not restrictive, i.e., we 
show that whenever the video-on-demand system is designed under these assumptions, it is also possible 
to store a set of movies that does not necessarily cover the entire disk. 

7.1 Multi~disk model 

In full striping each data block is striped across all disks in the disk array. Hence, if the video server 
contains m disks, then each data block is partitioned into m sub-blocks, where the ith sub-block is stored 
on disk i. Furthermore, all sub-blocks have the same size. 

We first show how TB and DS can be adapted for the case that striping is used. As proved for TB [II], 
safeness is guaranteed if a data block is large enough to survive a worst-case sweep, if filling strategy TB is 
used and if a buffer is large enough to store three data blocks. When striping is used, at most one sub-block 
per user has to be fetched in a sweep. Hence, the time that is maximally required for a sweep is given by 
n · _rb + s(n), where b is the size of a sub-block, i.e., b = !i. Consequently, safeness is guaranteed if the 

~'" m blocK size satisfies 

!l. 
B?. Cmax(n · .....!!L + s(n)), 

rmin 

if filling strategy TB is used and if a buffer is large enough to store three data blocks. 

Likewise, it follows from the safeness of DS that safeness of filling strategy DS is guaranteed in combina­
tion with striping if the block size satisfies 

!!.. 
B?. Cmax(n · .....!!L + s2(n)) 

rmin 

and a buffer is large enough to store two data blocks. 
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Before we discuss how the disk scheduling algorithms DAI, DA2 and DADS can be used in combination 
with full striping, we show that we may assume that each disk can store an equal number of data blocks and 
we impose requirements on the way that the data is striped across the disks. Let i be the disk with minimum 

capacity and assume that there is a disk j, such that nk < ~. where the index indicates the disk for which 
the variable is defined. Because in full striping data is equally distributed over all disks, at any moment at 
least n~ - nk positions of disk j are left unused. For the sake of a high throughput, it is preferred to let the 
inner positions of the disk unused. As a result, we can consider disk j as a disk with only nk positions, 
namely the outer n~ positions. Hence, we can assume that each disk can store an equal number of data 
blocks, denoted by nB. We define the numbering of the positions on each disk similarly as in Section 1.3, 
i.e., we define the numbering as depicted in Figure 1.4. 

In the original form, the position to which a sub-block is assigned is independent of the positions to which 
the other sub-blocks of the same data block are assigned. However, we now assign each data block on 
positions with the same number. Hence, ai(_i) = aj(xj) for alii :5 i::; j :5 m andx E L. Consequently, we 
can omit the index in the assignment. 

We define a single disk on which the algorithms are based, such that the time required for a sweep in the 
system with the virtual single disk is an upperbound on the time required for a sweep in the system with 
the disk array, where the described striping technique is applied. If the difference between these times 
is compensated by idle time1, then the behaviour of the system with the single disk is equivalent to the 
behaviour of the system with the disk array. As a result, safeness is guaranteed when we use DAl, DA2 or 
DADS and base the disk scheduling algorithm on the defined imaginary single disk. 

We define the transfer time function t, such that t(x) gives the maximum required transfer time required 
for transferring a sub-block from position x. Hence, t(x) = maxl<i<mti(.i). By definition, the transfer rate 
on position x, i.e., r(x), is now given by tfxy. Because t(x) is the-transfer time required for reading ~th 

data block, r(x) = m ·minl::;i~m,t(.i). Similarly, we define s(j) as the maximum switch time required for 
fetching j data blocks in a sweep. Formally, s(j) = maxl<i<mi(j). Consider a sweep in which the data 
blocks Yl ,y2, ... ,y1, 0::; l :5 n, have to be fetched in the multf:disk model. The time required for the sweep 
is given by the maximum required time of any disk. Hence, the sweep takes maximally 

(7.1) 

time units. We have to show that this time is bounded by the time that is required for the sweep in our single 
disk model in which the same data blocks have to be fetched. In the single disk model the time required 
for the sweep is given by 

l 

I, ta(yj) + s(l). 
j=l 

Using the definitions oft and s this can be written to 

I 

I, m~x tj, (y~) + max i (I). 
j=! l~r~m · l$r::;m 

This is clearly at most (7.1). As a result, if DAl, DA2 or DADS is used and if the algorithm is based on 
the virtual single disk, then safeness is guaranteed. As mentioned at the end of Section 4.2, if a single disk 
is used, then our approach can be used to design the system for all users up to ~ and for each block size 

Cmax 
that is based on maximally the average transfer rate. However, if different disks are used, then the value of 
r avg depends on the composition of the set of positions on each disk and correspondingly on the block size. 

1 The introduction of idle time is not necessary to guarantee safeness. However, if we do not introduce idle time, then !be proves 
of some theorems have to be changed slightly because the behaviours of the imaginary disk-model and the multi-disk model are not 
equivalent anymore. 
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Hence, we can not give such a statement anymore. Nevertheless, because generally the value of ravg will 
be within a few percent of a constant, the statement will still approximately be valid. 

7.2 Storing more than one movie 

So far, we assumed that only one single movie is stored on the hard disk and that the movie consists of 
exactly nB data blocks. We will show that these assumptions are not restrictive. Hence, we show that 
whenever the video-on-demand system is designed under these assumptions, we can also store multiple 
movies on the disk that not necessarily cover the entire disk, such that safeness remains guaranteed. We 
first introduce some notation. 

Let m be the number of movies that have to be stored on the disk. We number these movies from 0 through 
m - 1. Furthermore, we define nk as the number of data block of movie i and number these data blocks 
from 01 through nk - 1. As a result, the set of data blocks, denoted by L1, is defined as { 01, I 1, ••• , nk - 1}. 
Finally, we define a1 : L1 -t F as the injective function that indicates how the movie is stored on the hard 
disk. Note that a1 is no longer a bijection. 

In order to show that multiple movies can be stored on a disk, such that safeness is guaranteed, we give 
conditions under which the multiple movies can be stored such that safeness is guaranteed and we show 
that it is always possible to satisfy these conditions. Assume that the buffer sizes are based on assignment 
a. Before we discuss the conditions under which multiple movies can be stored, we discuss under which 
conditions safeness is guaranteed when the single movie that covers the entire disk is stored according to 
another assignment, say, d. 

Let the buffer sizes be given by Theorem 1. Assume that the assignment d satisfies 

(7.2) 

where am(a,i) is defined as O'm(i), where the assignment to which O'm(i) is related is parameterized. Be­
cause Theorem 1 states that a buffer size larger than (2.7} is safe as well, (7.2) implies that the assumed 
buffer sizes and, correspondingly, Algorithm 3 are also safe if the movie is stored according to assignment 
a' instead of a. 

Assume that the buffer size is given by Theorem 3. From the theorem, it follows that this buffer size is 
safe for any assignment that satisfies (2.10). Hence, if d satisfies (2.10), then safeness is guaranteed for 
the assumed buffer size in combination with Algorithm 4. 

SimHarly as in the case of Theorem 1, it can be verified that if the buffer sizes are given by Theorem 4, 
then safeness is guaranteed in the case that the movie is stored according to assignment a' when 

This inspires us to the following conditions on the assignments of the multiple movies, such that safeness 
is guaranteed when the buffer requirements are given by Theorems 1, 3 and 4 and the requests are handled 
by the corresponding algorithms. If buffer sizes are given by Theorem 1, then safeness is guaranteed when 
for each assignment ai, 0 s; j < m, 

(7.3) 

holds. If the buffer requirements are given by Theorem 3, then safeness is guaranteed when each assignment 
ai, 0 s; j < m, satisfies 

(7.4) 



76 CHAPTER 7. GENERALIZATION TO MULTIPLE DISKS AND MORE TilAN ONE MOVIE 

movieO movie m-1 free space 

a a(0°) a(l~ a(ng l) a(0"''1) m·l ... . .. ... a(n8 -I) ... 

Figure 7.1. Assignments for multiple movies 

and in the case that the buffer requirements are given by Theorem 4 safeness is guaranteed when 

max. cr(a.i,i) ~ ~ax cr(a,i) 
OSi<n~ 0:9<nB 

(7.5) 

We formalize the second case in the next theorem. For the proof of the theorem, we refer to Appendix A. 
The other two statements can be proved by the same strategy. However, we will not include the proves in 
this thesis. 

Theorem 20. If for all i, 0:::; i < m, (7.4) holds, filling strategy TB is used and the requests of the users are 
handled by Algorithm 4, then safeness is guaranteed if the buffers have room for 3 - ~ data blocks, with 
02 defined by (2.12). 0 

We still have to show that it is possible to satisfy the given conditions for the multiple movies. This is the 
case when the assignments are defined as depicted in Figure 7 .I. 

Finally, we briefly discuss the maintenance of the video-on-demand system. In the case that the buffer 
requirements are given by Theorems 1, 3 or 4, it can be the case that almost the only way to store a given 
collection of movies on disk such that safeness is guaranteed, is as depicted in Figure 7.1, i.e. by letting 
each assignment a1 be a subsequence of a. When this is the case, frequently adding and deleting files can 
lead to a considerable fragmentation of the disk space. This yields a considerable loss of storage capacity, 
which can only be avoided by defragmentation. Therefore, it may be preferred that the buffer requirements 
are not fully minimized, such that it is easier to fulfill Equations (7.3), (7.4) and (7.5). 



Chapter 8 

Conclusion 

In a video-on-demand system, the video data is often stored on hard disks, due to their large storage capacity 
and the possibility of random access. The system offers the users a continuous data stream by periodically 
placing a data block in the buffer of each user. A disk scheduling algorithm is used for scheduling the disk 
accesses, such that the buffers neither underflow nor overflow. In addition, the disk scheduling algorithm 
also has to handle user requests. The choice of the disk scheduling algorithm depends on whether the users 
consume at a variable or constant bit rate and whether data blocks of constant or variable size are being 
retrieved. In this thesis we focussed on the case that users consume at a variable bit rate and the data blocks 
are of constant size. Furthermore, we mainly focussed on the case that the movies are stored on a single 
disk. Although we assumed that only one movie is stored on the disk that covers the entire disk, we showed 
that these assumptions are not restrictive. 

The cost per user of the system is affected by the disk scheduling algorithm by defining a relation between 
the maximum number of admitted users and the block size and by giving a minimum number of data blocks 
that have to fit in the buffer. In most disk scheduling algorithms presented in literature, the relation between 
the maximum number of admitted users and the block size is determined by the guaranteed throughput of 
the disk. Nowadays, a hard disk often consists of several zones that each have a different transfer rate. As 
a result, the guaranteed throughput differs considerably from the average throughput of the disk. In this 
thesis we focussed on defining a placement of the data blocks of the movie on the hard disk, such that a 
higher throughput can be guaranteed over a period of time. In addition, we revised the buffer requirements 
of two disk scheduling algorithms, namely the triple buffering algorithm and the dual sweep algorithm [ 11 ], 
such that the relation between the maximum number of users and the size of a data block can be based on 
this higher guaranteed throughput. With the placement and the revision we aimed at minimizing the cost 
per user. 

In the triple buffering algorithm and the dual sweep algorithm, a request of a user is granted immediately 
after the request arrives at the server. However, when we allow this, then it can be the case that the users 
only request data blocks from the inner zone, which implies that we cannot guarantee a higher throughput 
than the minimum throughput. Therefore, we assumed that no requests are sent by the user for designing 
the video-on-demand system and we investigated how requests can be handled such that the system remains 
safe. 

First, we revised the buffer requirements of the triple buffering algorithm and the dual sweep algorithm, 
such that the block size can be based on a higher throughput than the minimum throughput. We derived a 
sufficient buffer size for the case that the same strategy for scheduling the disk accesses is used as in the 
triple buffering algorithm and that the relation between the maximum number of admitted users and the 
block size is based on the guaranteed throughput over a period in which maximally two data blocks are 
fetched per user. Furthermore, we derived a sufficient buffer size for the case that the second condition 

77 



78 CHAPIER 8. CONCLUSION 

does not hold and we derived a necessary and sufficient buffer size for the case that the same strategy is 
used as in dual sweep. 

Except for the first case, called the conditional solution, the number of data blocks that have to fit in 
the buffer increases with the maximum cumulative difference between the actual transfer time and the 
dimension time, i.e., the transfer time on which the block size is based, over any subset of successive data 
blocks of the movie. We proved that the problem of finding an assignment such that the maximum is 
minimized is NP-hard in the strong sense. We relaxed the problem to finding an assignment for which the 
number of subsets over which we have to maximize is minimized. We proved that if the dimension time is 
at least the average transfer time of any, say, kub successive data blocks, then we only have to maximize over 
all subsequences with length at most kub· Consequently, we relaxed the problem to finding an assignment 
for which kub is minimized. We showed that this problem is still NP-hard. Furthermore, we proved that the 
relaxation does not lead to an assignment if the dimension time is smaller than the average transfer time 
over all data blocks of the movie. 

The approach we presented to solve the relaxed problem is that, for an increasing kub• we try to find an 
assignment for which the dimension time is at least the average transfer time of any kub successive data 
blocks, until it is found. For a given kub this comes down to minimizing the maximum sum of the transfer 
times of kub successive data blocks and checking whether the maximum exceed kub times the dimension 
time. Hence, our new problem is to minimize the total sum of the transfer times of a given number of 
successive data blocks. 

Because we assumed that the size of a data block is based on a higher throughput than the minimum 
throughput, we only have to consider the case that kub is at least two. For kub = 2, we gave an optimal 
assignment, i.e., an assignment for which the maximum sum of the transfer times of two successive data 
blocks is minimal. This also optimally solves the problem of finding an assignment, such that the buffer 
requirements given by the conditional solution are safe. For larger values of kub we presented an heuristic. 

We showed that for each dimension time larger than the average transfer time, our approach to solve the 
relaxed problem outputs a feasible assignment, i.e., it finds a kub and an assignment, such that the average 
sum of any kub successive data blocks does not exceed the dimension time. However, as a result of using a 
heuristic for minimizing the sum of the transfer times of three or more successive data blocks, kub does not 
have to be minimal. 

For each of the three derived and minimized buffer requirements, we defined an algorithm for handling 
user requests. For each of these algorithms, we gave the worst-case response time. The combination of 
the buffer requirements and the algorithms for handling requests gives three disk scheduling algorithms, 
namely DAl, DA2 and DADS. 

We evaluated the results by means of a practical example. Thereby we compared DA 1, DA2 and DADS 
with the original triple buffering algorithm and the original dual sweep algorithm and with these algorithms 
combined with track pairing [1]. The required buffer size for a given number of users is reduced consid­
erably by our disk scheduling algorithms in comparison with the other algorithms. Furthermore, more 
users can be serviced with a given buffer size. Consequently, our disk scheduling algorithms result in a 
considerable reduction in the cost per user. The reduction is at the cost of a higher worst-case response 
time. However, the worst-case response time is still reasonable for many applications. 

Finally, we also discussed how our disk scheduling algorithms can be used in combination with full striping. 
Despite of this, more research can be done in combining our theory with several other techniques for storing 
and retrieving data from a disk array. Secondly, some more attention can be paid on handling requests, 
which we did not discuss thoroughly because our focus was on reducing the cost per user. Especially in the 
field of the average response times some improvements can be achieved. We briefly discussed the problem 
of adding and deleting movies. The problem how this can be done best is an interesting research area, as 
well. Moreover, some research can be done in basing our theory on other disk scheduling algorithms than 
the triple buffering algorithm and the dual sweep algorithm. Our theory is for example also applicable to 
n-EDFC [II]. 



Appendix A 

Proofs buffer capacities 

Theorem 1. If fd ~ t(nB- 1 ), where td = B-;:;:~(n), if no requests are sent by the users and if each user 
from U has initially at least the number of data blocks given by (2.6) in the corresponding buffer, then 
filling strategy TB is safe if there is room for at least 

(A.l) 

data blocks, where C1m and 5 are defined by (2.3) and (2.8), respectively. 
Proof. Because a data block is only fetched for a user if the buffer has room for it, no buffer overflow 
occurs. Furthermore, buffer underflow can only occur for users from U, as follows from its definition. 
Assume that at the start of a given sweep w, the buffer of each user from U contains at least the number 
of data blocks given by (2.6). By assumption, this holds initially. For proving that no buffer underflow 
occurs, it suffices to show for an arbitrary u E U (1) that the number of data blocks given by (2.6) fits in the 
buffer of u, (2) that it is sufficient to survive sweep wand (3) that at the end of the sweep the buffer contains 
(again) at least the number of data blocks given by (2.6), where U and iu. 1 ::; u::; n, have been updated. 
Updating U comes down to removing user u, 1 ::; u ::; n, from U if and only if data block ns I, i.e., the 
last data block of the movie, has been fetched for u in sweep w. Updating iu comes down to an increase 
by one if and only if a data block has been fetched for user u in sweep w. The proof that the number of 
data blocks given by (2.6) fits in a buffer is discussed later on. We first prove that it is sufficient to survive 
sweep w. 

Proofof(2): 

Expression (2.6) is at least 1 + I.ueu ta(~;t14 + (n -IUD· if;;;, as follows from the definition of cr1. By 
definition, shu is the time that can minimally be survived with a single data block. Hence, the buffer of u 
contains enough data to survive 

shu+ L (ta(iu) -td) + (n -lUI)· t (A.2) 
uEU 

time units. By definition, shu = n · tJ + s(n) and 't = t(nn- I)- tJ. Consequently, (A.2) can be rewritten to 
I.ueu ta(iu) + (n -lUI)· t(nn- 1 ). From n ~ lUI and t(nB I)~ 0, it follows that the expression is at least 
I.ueu ta(iu) + s(n). Because the users from U are the only users, for whom possibly a data block is fetched 
in sweep w, this expression gives the time that is maximally required for sweep w. Consequently, no buffer 
underflow occurs during sweep w. 

Proof of ( 3 ): 
Proving that at the end of sweep w the buffer of u contains at least the number of data blocks given by (2.6), 
where U and i11, 1 ::; u' ::; n, have been updated, comes down to proving that if u E U \ { ul u E D A iu = 
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nB- 1}, i.e., if the last data block of the movie is not fetched for u in sweep w, then the buffer contains at 
least 

data blocks at the end of sweep w, where Dis defined as the set of users, for whom a data block is fetched 
in sweep w. Hence, 

D = { ul u E U J\ the buffer of u has room for at least one data block}. 

Consequently, the time required for w is bounded by 'ItleDtaUu') + s(IDI). Dividing by shu gives the 
maximum number of data blocks that are consumed during sweep w. For proving that the buffer of u 
contains at least the number of data blocks given by (A.3) at the end of the sweep, we distinguish the cases 
that u ED and u tf:: D. 

Assume that u E D. The minimum filling of the buffer of u at the end of the sweep, expressed in data 
blocks, is given by the initial content, which is given by (2.6) minus the maximum number of data blocks 
that can be consumed during the sweep plus the fetched data block. Hence, the buffer contains at least 

data blocks. We split the range of the u' in the second term. Furthermore, we use that 'ItleDta(iu') equals 

'ItleD(ta(iu') - td) + !D! · fd and 1 equals n·td+bs(u). This yields 
s u 

+ n·tJ+s(n)-IDI·tJ-s(IDI) +(n-IUI)·2.-. 
shu shu 

We put the fifth term together with the second and third terms and use that O"t (iu') = ta(iu')- tJ, if i11 = 
no - l. This gives that the buffer of u contains at least 

+(n-IDI)· tJ +s(n)- s(IDI) + (n -lUI). 2._ 
shu shu 

data blocks. By definition, u' E U implies it1 < ns. Hence, the domain of k in the second term is not 
. . rj;;;;1 (tu(ir~+ j}-td) . 

empty. Consequently, we can s1mphfy the second term to Lu'eDmaxt~k~ne-i,., shu • Applymg 
the dummy transformations j := j + I and k := k- I on this term yields 

+ (n IUD· 2.-. 
sbu 

(A.4) 

A restriction of the range of k will not increase the value of the maximum. As a result, we can omit k = 0 
from the range of k in the second term without increasing the value of the complete expression. Because the 
cardinality of Dis at most nand sis ascending, as follows from its meaning, s(IDI) ~ s(n). Furthermore, 
td 2:: 0. Consequently, deleting the fourth term does not increase the value of the expression. From the 



assumption td ::;:: t(ns- 1 ), it follows that 1: $. 0. As a result, (n -lUI) · 't ::;:: (n -lUI+ I{ ulu E D A iu = 
ns- 1} I) · 't. This completes the proof of (A.3) for the case that u ED. 

Assume that u f. D. By the used filling strategy, this implies that the buffer of u has no room for a data 
block at the start of sweep w. Hence, by (A. I), the buffer contains at least 2 + n · maXOs;i<nrl 0'2(i){shu 
data blocks at the start of sweep w. Because the time required for sweep w is at most Lu' ED ta (iu') + s( IDI) 
and because the time that can minimally be survived with a single data block is shu, the buffer of u contains 
at the end of sweep w at least 

data blocks, which is at least 

IDI· tJ + s(IDI) 
shu 

Similarly as above, we put the sixth term together with the second and third terms. This gives 

2 + L O'J{iu'+1)+ L ta(iu'-l) td+(n-IDI)· max 0'2(i)_ 0 _1DI·tJ+s(IDI)_ 
.leD shu u'eD sbu Os;i<ns-1 shu shu 

iu'F"s-l i,;=n8-l 

Writing down the definition of o and writing I as n·t~~t:(n) yields 

(n-IDI- 1) · tJ- s(IDI)- s(n) + s(n- 1) + s(n) 
+ b . s u 

(A.S) 

From u f. D it follows that the cardinality of D is strictly less than n. This and the ascendingness of s yield 
thats(IDI) is atmosts(n -1). Hence, -s(IDI) -s(n) +s(n-1) +s(n)::;:: 0. As a result, we can delete this 
expression from the numerator of the last term without increasing the value of the complete expression. 

Next, we prove that 

(A.6) 

Let io be the block number for which 0'1 (i) is maximal. We distinguish the cases io < ns- 1 and io = ns- 1. 
Assume thatio < ns -I. From the definition of 0'2 and 0'1 it follows that O't (io) =max. (cr2(io),ta(io)- tJ). 
Consequently, because ld ::;:: 0 Equation (A.6) is implied by 

(A.7) 

From io < ns 1 we obtain that cr2(io) ;=:: LJ=o(ta(io- l + j)- tJ). Hence, Equation (A.7) follows from 

I 

L (tu(io + j) td) + td ::;:: ta(io) - tJ. 
j=O 

This can be written as ta (io + 1) ;=:: 0, which holds because the range of ta is positive. 

Assume that io = nB- I. Then, 0'1 (io) = ta(io)- tJ and cr2(io- I)::;:: LJ=n(ta(io- 1 + j) tJ). Hence, (A.6) 



is implied by 

I 

L (ta(io- 1 + j)- td) + td 2: ta(io)- tJ. 
J-=0 

This can be rewritten to ta(io- 1) 2: 0, which is true. As a result, Equation (A.6) holds. 

Using (A.6) we get that (A.5) is at least 

1 + L <1t(iu' + 1) + ~ ta(iu' -1) ld + (n jD!). max O"t(i). 
Sb k sb O<_i<nn shu 

111ED u u'ED U 

(A.8) 

iut#ns-1 i111 =ns-1 

Because maxo$i<n8 O"t (i) 2: 0"1 (iu~ ), 1 :5 u' :5 n, this expression is at least 

t (iu~ - 1) ld . 
a () +(n-IVI)· ~ax 0"1(1). 
n·td+s n O$t<nB 

From the definition oft and the descendingness oft it follows that the numerator in the fourth term as well 
as maxo$i<n8 0"1 (i) are at least 't. Hence, the expression is at least (A.3). 

Proof of ( 1 ): 
As mentioned in the beginning of the proof, we still have to prove that the number of data blocks given 
by (2.6) fits in a buffer. We have just proved that, if there is room for less than one data block at the start 
of a sweep, the buffer contains at least the number of data blocks given by (A.3) at the end of the sweep, 
regardless of the composition of D. We thereby did not use the assumption that the buffer contains initially 
the number of data blocks given by (2.6). Taking D 0 gives that at the end of the sweep the buffer 
contains at least 1 + L::=t a(iu)fsbu data blocks. Hence, it fits in the buffer. 0 

Theorem 4. If n 2: 2 and t(O) 2: td 2: t(n8 - I), where td = B-~::~:;(n), if the users do not send requests 
to the server and (f each user from U has initially at least the number of data blocks given by (2.21) in the 
buffer; then filling strategy DS is safe if and only if there is room for at least 

o-1 (i) 
2+n· max-­

O$i<n8 sbd 

data blocks, where <.1111 is defined by (2.3). 

(A.9) 

Proof We first prove the sufficient condition. By the used filling strategy, a data block is only placed in 
a buffer whenever there is room for it. Hence, no buffer overflow occurs. We prove that neither buffer 
underflow occurs. Let u' be an arbitrary user from U. Assume that at the start of a given sweep w the 
buffer of u' contains at least the number of data block given by (2.21) if u' (/. Uw and at least the number 
given by (2.20) otherwise. By assumption, this holds initially. To prove that no buffer underflow occurs it 
suffices to prove ( 1) that the number of data blocks given by (2.20) and (2.21) fit in the buffer of u1

, (2) that 
it is sufficient to survive sweep wand (3) that at the end of the sweep a buffer contains (again) at least the 
number of data blocks given by (2.21) if u' (/. Uw and at least the number given by (2.20) otherwise, where 
w, iu and U are updated in (2.20) and (2.21 ), i.e. w is replaced bye w + l, iu is raised by one if and only if 
u E Uw and u is removed from U if and only if the last data block of the movie has been fetched for u in 
sweep w. Clearly, condition (l) is satisfied. 

Proofof(2): 
The time required for sweep w is maximally !ueu,. ta(iu) + s(IU .. I), which can be written as IUwl· td + 
s(!Vwl) + !ueu.,. (ta(iu) -tJ). Dividing it by sbd gives the number of data blocks that is maximally consumed 
during this time. Hence, during sweep w maximally 

(A.IO) 



data blocks are consumed. This is clearly less than (2.20) and (2.21). Hence, the number of data blocks 
given by (2.20) and (2.21) is sufficient to survive sweep w. 

Proof of ( 3 ): 
We have to prove that at the end of sweep w the buffer of u' contains at least the number of data blocks 
given by (2.21) if u' fl. Uw+l and at least the number given by (2.20) otherwise, where w, iu and U are 
updated in (2.20) and (2.21). We distinguish the cases that u' ¢ Uw and that u' E Uw. 

Assume that u' ¢ Uw. We will prove that if u' ¢ Uw+l> then (2.21) holds and that if u' E Uw+l• then (2.20) 
holds. We start with the first case. So assume that u' ¢ Uw and u' ¢ Uw+ I· This implies that the buffer of u' 
does not have room for a data block at the start of sweep w + 1, because otherwise a data block is fetched 
for u' in that sweep w + 1, as follows from the definition of filling strategy DS. Consequently, the buffer of 
u' contains at least 

O't (i) 
l+n· max-­

O::;i<ns sbd 
(A.ll) 

data blocks at the start of sweep w + L By assumption, ta ::; t(O). Hence, maxo::;i<n8 0'1 (i) ?: 0. Conse­
quently, (All) is at least (2.21). 

Assume that u' fl. Uw and that u' E Uw+t· We have to prove that (2.20) holds at the end of sweep w. 
By assumption, the buffer of u' contains at the start of sweep w at least the number of data blocks given 
by (2.21 ). Furthermore, we have derived that the number of data blocks that is maximally consumed during 
sweep w is given by (A. I 0). Hence, at the end of sweep w the buffer of u' contains at least 

(A.12) 

data blocks. Because Uw ~ U, this can be rewritten to 

(n-IUwi)·ta+s2(n)-s(IUwi) + L max(O't(iu),O) 

sbd uEU\Uw sbd 

+ L (max(O't(i11),0) _ ta(iu) -tJ). 
uEUw sbd sbd 

Because at most one data block is fetched for each user in two successive sweeps n \Uwl ~ \Uw+tl and 
s2(n)- s(\Uwl) ~ s(\Uw+JI). Hence, the first term in the previous expression is at least the first term in 
Expression (2.20). Because i11 does not change if u ¢ Uw and because iu is raised by one if u E Uw, proving 
that the previous expression is at least (2.20) comes down to showing that 

L (max(O'J(i11),0) ta(iu)-td)~ L max(O'J(i11 +l),O), (A.l3) 
uEUw uEUwnO 

where D is U at the end of sweep w, i.e. 0 = U \ { uiu E Uw 1\ iu = ns - l}. By the definition of O'm, the 
left-hand side of (A.l3) equals 

:L (max ( max .1: (ta(iu + i)- tJ}, o) -ta(iu)- rd) . 
uEUw I $k$na-tu j=O 

(A.l4) 

Because u E Uw implies that i11 < ns, maXJ:s;k:s;na-iu I,'::;,~(ta(i" + j)- tJ) is at least ta(iu)- tJ. Hence, 
replacing the 0 in the maximum operator by ta(iu)- ta does not increase its value. When we also put 
ta(iu) tc1 inside the maximum operator, we get that (A.l4) is at least 



Putting ta(iu)- td inside the sum-quantification, applying the dummy transfotmation j = j + 1 and using 
the definition ofcrm give that the expression equals LueUw max( crt (iu + 1),0). Ifu E 0\ U, then iu = nB- t. 
Hence, cr1 (iu + 1) = -oo. Consequently, the contribution of u to the sum quantification is 0. Hence, the 
sum quantification equals the right-hand side of (A.13), which had to be proved. 

Assume that u1 E Uw. Because at most one data block is fetched for each user in two successive sweeps, 
we have to prove that at the end of sweep w the buffer of u' contains the number of data blocks given by 
(2.21 ). We may thereby assume that the buffer contains at the start of the sweep at least the number of 
data blocks given by (2.20). We have already showed that the number of data blocks that is maximally 
consumed during sweep w is given by (A.lO). Hence, at the end of the sweep the number of data blocks 
that the buffer of u1 contains is at least 1 plus (2.20) minus (A.lO). This means that the buffer contains at 
least 

(A.l5) 

data blocks. This expression equals 

As proved above, the last quantification is at least Lueuwmax (cr1 (iu + 1),0) fsbd. This completes the proof 
that in the case that u1 E Uw and u' ¢ Uw+t. u' has at least the number of data blocks given by (2.21) in the 
buffer at the end of sweep w. This completes the proof of the sufficient condition. 

Proof of necessary condition: 
We prove the necessary condition by contradiction. Assume that the buffer of each user has room for 

2 + n · maxo9<nn ~-',~) - x data blocks for some x > 0. We will prove that buffer underflow can occur. Let 

io, ko be such that 2..7':;/ ( ta (io + j) - td), i.e. cr 1 (io), is maximal. Suppose that at the start of a given sweep 
w aU users are about to fetch data block io. Furthetmore, there are f ~ 1 users that have room for at least 

1 + E data blocks, 0 < E:::; ! · t(~:b-I) and e < x, and there are l~J users that have room for less than one 
and more than l - E data blocks. We define Geven and Good as the sets that contain the users of the first and 
second category, respectively. Finally, we assume that for none of the users from Geven a data block has 
been fetched in sweep w- 1 and that all users consume at maximum bit rate. That the described situation 
can occur can be inferred as follows. If all users have room for less than one data block, no sweep will be 
executed. If the buffers of the users are inspected again, it can be the case that the buffers of some users 
have a little more room than one data block. Hence, the above described situation occurs. 

We now prove the property that alternately data blocks are fetched for users from Geven and Godd· Fotmally, 
if p mod 2 = 0, where p is an arbitrary integer between 0 and 2 · ko- 1, then a data block is fetched for all 
users from Geven in sweep w+ p and if p mod 2 = l then a data block is fetched for all users from Good· 
We prove this property, denoted by Q(p) by induction. As basis we take p = 0 and p = 1. Because, by 
assumption, all users of Geven have at the start of sweep w room for at least I data block and there has not 
been fetched a data block for these users in sweep w- 1, a data block is fetched for all these users in sweep 
w. Consequently, Q(O) holds. By assumption, we also have that the users from Godd do not have room for a 
data block at the start of sweep w. Hence, there will not he fetched a data block for them. The time required 
for sweep w is IGevenl·ta{io) +s(IGevenD· Dividing by sbd gives the number of data blocks that is consumed 
during this sweep, because, by assumption, the users consume at maximum bit rate. When we use that the 

cardinality of Geven is f'l we get that during sweep w rzl·to(:~~:s(f;nl data blocks are consumed. This is 
strictly larger than the upperbound of£. Hence, there are more than £ data blocks consumed. As a result, 
the users of Good have room for more than one data block at the start of sweep w + 1. Consequently, there 
will be fetched a data block for all these users in sweep w + 1. Hence, Q( 1) holds as well. 

Next, we prove the induction step. Let p be any integer between 2 and 2 · ko- 1. We have to prove that Q(p) 
holds under the assumption that Q(p') holds for p' < p. We first discuss the case that p is even. Because 



the property holds for 0, 1, ... , p - 1, there are exactly ~ sweeps from sweep w through w + p- 1 in which 
a data block is fetched for the users from Geven and for none of the users from Good· Likewise, we have 
that there are exactly } sweeps in which a data block is fetched for each user from Good· Consequently, the 
time required for sweep w through w + p - 1 is 

From (1.1}, it follows that s2(n) = s(f~l) + s( L~J ). This and rewriting yields that the previous expression 
equals 

;-t 
~ · (n·tJ+s2(n)) +n · L (ta(io + j) -tJ). 

j=O 

Dividing by sbd, which, by definition, equals n · tJ + s2(n), gives 

p "I.j,:01 
(ta(io + j)- td) - + n. _.::_.....:_ ____ _ 

2 sbd 
(A.16) 

which is the number of data blocks that is consumed during the first p sweeps. We will show by contradic­
tion that the last fraction is at least 0. Hence, assume that the fraction is strictly smaller than 0. Because 
2 S: p < 2 · ko we have 

ko-1 ~-1 ko-1 

L (ta(io + j)- td) = L (ta(io + j)- tJ) + L (ta(io + j}- fJ). 
j=O j=O i=!-1 

Because the first sum-quantification in the right-hand side is strictly less than 0, the second sum-fraction in 
the right hand-side of the equation has to be strictly larger than the left-hand side. This is in contradiction 
with the definitions of io and ko. Hence, we can remove the fraction from (A.l6) without increasing its 
value. This yields that during the first p sweeps each user consumes at least ! data blocks. Moreover, 
as mentioned, exactly } data blocks have been fetched for each user from the start of sweep w. Hence, 
after p sweeps the buffer of the users contain at most as much data as at the start of sweep w. Because, 
by assumption, the users from Geven have room for minimally one data block at the start of sweep w, this 
is also true at the start of sweep w + p. Furthermore, there has not been fetched a data block in sweep 
w + p - 1 for any of these users, because by the induction hypothesis Q(p - 1) holds. Consequently, there 
will be fetched a data block for them in sweep w + p. This proves the induction hypothesis for the case that 
pis even. 

We will now discuss the case that p is odd. Again, it follows from the induction hypothesis that there are 
exactly Sl + I sweeps in which a data block is fetched for each user from Geven and 9 sweeps in which 
a data block is fetched for each user from Godd from sweep w through sweep w + p - 1. Hence, the time 
required for sweep w through sweep w+ p- 1 equals 

¥ 9-J 
~(f~l·ta{io+i)+s(f~l))+ I, (l~J·ta(io+i)+s(l~J)). 
J=O J=O 

Similarly as above we can derive that during this time 

I 'L~- 1 (ta(io+j) td) r~l·ta(io+j)+s(f~l) + n. + .:...;:....:...___.:__.;:..:.__...:..:...;:...:..:.. 
sbd sbd 

data blocks are consumed and that the second term is at least 0. The last term is clearly strictly larger than 
the upperbound of e. Hence, from the start of sweep w the users of Godd have consumed strictly more 
than 9 + e data blocks. Furthermore, exactly 9 data blocks are retrieved, because, by the induction 



hypothesis Q(O) through Q(p- I) hold. From the initial buffer content of the users from Godd, it follows 
that they have room for at least one data block at the start of sweep w+ p. Furthermore, no data block has 
been retrieved for any of these users in sweep w + p 1, because Q(p - 1) holds. This means that a data 
block is fetched for all users from Good in sweep w + p, which has to be proved. 

We will use the property to show that buffer underflow can occur. From the property it follows that during 
sweep w + 2 · ko- I the koth data block, counted from the start of sweep w, is fetched for each user from 
Godd and that for each user of Geven exactly ko data blocks have been fetched from sweep w through sweep 
w + 2 · ko- 1. It can be the case that the koth data block for a user from Good arrives at the end of sweep 
w + 2 · ko - 1. From these observations it follows that the time between the start of sweep w and the arrival 
of the koth data block for a user from Good can be 

ko-1 rnl rnl ko-1 lnJ lnJ rc 2 ·ta(io+i)+s( 2 ))+ ~( 2 ·ta(io+j)+s( 2 )). 
J=O J=O 

As above, we can derive that during this time 

(A.l7) 

data blocks are consumed. This number has to be at least the number of data blocks that an arbitrary user 
from Good has in the buffer at the start of sweep w plus the number of data blocks that are placed in the 
buffer from the start of sweep w. This number is given by 

'2:.~(/ (ta(io + j) td) 
1 + n · --"----........,.....,-- - x + e + ko- 1. 

n · td +s2(n) 

Because, by assumption, e < x this expression is strictly smaller than Expression (A.17). Hence, buffer 
underflow can occur. D 

Theorem 20. If for all i, 0 ~ i < m, (7.4) holds, filling strategy TB is used and the requests of the users are 
handled by Algorithm 4, then safeness is guaranteed if the buffers have room for 3 ~data blocks, with 
~defined by (2.12). 
Proof. By the used filling strategy, no buffer overflow can occur. We have to prove that neither buffer 
underflow occurs. The outline of the prove is as follows. We define for an arbitrary video-on-demand 
system/, where multiple movies are stored on a disk that not necessarily cover the entire disk, a video-on­
demand system 11 that satisfies our assumptions, such that if buffer underflow occurs in/, then it also can 
occur in I', where in both systems filling strategy TB and Algorithm 4 are used and where in both systems 
the buffers can contain an equal number of data blocks that is at least 3 - ~- By Theorems 3 and IS, 
safeness is guaranteed for 11 if (2.1 0) holds. Consequently, if we prove that if (7 .4) holds for / 1

, then (2.1 0) 
holds for/, then safeness is also guaranteed for/. 

Definition of 11
: 

We Jet the movie of 11 consist of I,'[!,(/ n~ + m 1 data blocks. Hence, the number of data blocks of the 
movie equals the sum of the data blocks of all movies from I plus m- I. We number the data blocks 
from 0 through ns. Furthermore, we define the set of positions, i.e. Fp, as F1U {xdO $ i $ m- 2}, where 
x; ~ Fi, 0 ~ i ~ m - 2, and F1 is the set of positions from F1 on which a data block is stored. Consequently, 
IL1'I = IFI'I· We define t1,(i), i E FJ,, as t1(i) if i E F1 and as I otherwise. All other values, such as the 
switch time functions, the block size Band the maximum number of admitted users n are chosen similarly 
to these values in/. 

We define the assignment of the data blocks to the movie, such that its sequence is given by 

seq(a0
) ++xo ++seq(a1) ++xt ++ · · · ++x"'-2 ++seq(tz"l- 1 ), 

where seq( ai) is the sequence of ai. Hence, the sequence of a' is the concatenation of the sequences of the 



assignments of all movies separated by positions that are not in F1. This assignment is clearly a bijection. 
Before we prove that if buffer underflow occurs in I, then buffer underflow can also occur in t, we introduce 
some definitions. 

Introducing definitions: 
We say that a data block in I equals a data block in I' if and only if it is stored on the same position. By 
the definition of the assignment, this means for example that watching the Oth movie in I is equivalent 
to watching the first n~ data blocks from the movie in I'. From this, it follows that we can the compare 

the value of iu in I with the value of iu in I', ~xcept for the case that iu = n~ or iu = n8 , which has the 
interpretation that user u does not want to watch a movie or that the last data block of a movie has already 
been fetched for user u. By definition, these val~es are equal, i.e., n~ = n8 , 0::; j < m. 

We define the status of user u at a given moment as the triple (!, req, iu), where f is the number of data 
blocks in the buffer of u and req is the data block that user u has most recently requested and that has not 
been handled completely. If there is no non-handled request for user u, then req = ..l, by definition. The 
status of user u at the start of sweep win instance J is denoted by st1(u, w). If the last data block of a movie 
is fetched, then the number of data blocks in the buffer is irrelevant for the status, i.e. if the last data block 
has both been fetched for user u and user u' in sweep w then st1 ( u, w + I) = st1 ( u', w + I), regardless of the 
content of their buffer. 

Buffer underflow in I==? buffer underflow in I': 
We now prove by induction to the number of sweeps, denoted by w, that just before the start of sweep 
w the status of the users in I can also occur in I'. Hence, for each run in video-on-demand system I 
resulting in a given status for all users before the start of sweep w, there is a run of system I', such that 
'v'1:5u:5 11 (sti(u, w) = st!'(u, w)). Because the users have in both systems the same buffer size and because 
the same strategy is used in both system for scheduling disk accesses, this proves that whenever buffer 
underflow occurs in I, it also can occur in I'. 

As basis we take w = I. Hence, there has no sweep been executed. Initially, the buffers of all n users are 
empty. Consequently, letting the users initially request the same data blocks results in st1(u,O) = st!'(u,O). 

I 

Consider the case that w = v + I. Assume that the status of each user in I at the start of sweep v equals the 
status of the same user in I' at the start of swee~ v. By the induction hypothesis, for proving the induction 

I 

step it suffices to prove that under this assumption this can also be the case at the start of sweep v + I. 
Because each user has the same status in I and I' at the start of sweep v, the same data blocks are fetched 
for the same users in sweep v. 

Let each user consume at the same consumption rate during sweep v in both I and I'. Moreover, if u' sends 
a request in I, then the same request is sent by u' in I'. Let u be an arbitrary user. We have to prove that is 
possible that st1 ( u, v + 1) = stp ( u, v + 1). We prove this by distinguishing several cases. By the assumption 
that when u sends a request in I, u sends the same request in I', we only have to discuss whether req is 
equal in both I and I' at the start of sweep v + I if we let u send a request in I', while no request is sent by 
u in/. 

Assume that no request is sent by u during sweep v and that no data block is fetched. Consequently, the 
value of iu does neither change in I nor in I'. Moreover, the buffer contains as many data blocks in I as in I', 
because this is the case at the start of the sweep. Hence, if no data block is fetched for u because he/she has 
no room for it in the buffer, then st1(u, v + 1) = stp (u, v + 1). Otherwise, no data block is fetched because u 
is waiting for its request being granted. From Algorithm 4 it follows that the number of sweeps u has to wait 
before its request being granted only depends on the number of sweeps he/she is waiting and the last data 
block that has been fetched for u. Consequently, by the induction hypothesis, the request of u is granted 
between sweep v and v +I in I if and only if this is the case in I'. Moreover, because st1(u, v) = stp (u, v), 
the same request is granted in I and I' if a request is granted. As a result, st1(u, v + 1) = stp (u, v + 1 ). 

I 

Assume that no request is sent by the user and that a data block other than the last data block is fetched 



for the user, i.e., iu < n~, where j is the movie to which user u is watching. Then iu is raised by one in 

both cases and a data block is places in both buffers. Note that if iu < n~ in I then also i,. < nn in I'. 
Consequently, st1(u, v+ I)= stp(u, v+ 1). 

Assume that no request is sent by the user and the last data block of the movie is fetched for u in I, i.e. 

iu = n~, 0:::; j < m. If j = m- 1, then iu = nn in I'. However, if j < m- 1, then iu = Xj. We then let user 
u send a request during sweep w + 1 to stop watching the movie. By Algorithm 4, this request is granted 
immediately, which implies that iu = nn at the start of the next sweep and that req = .l in both I and I'. 
Hence, StJ(u, v + 1) = st1,(u, v + 1 ). 

Assume that a request is sent by u. Then both in I and I', the buffer of u is flushed. If d(u) = n~ in/, then 
d(u) = nn in I'. Consequently, both requests are granted. Hence, st1(u, v + 1) = stp(u, v + 1). Otherwise, 
the user has to wait at least one sweep before the request being granted. Consequently, the value of iu is 
equal in both I and I'. Which, again, means that the status is similar in both I and I'. 

These case cover all possibilities. Hence, we have proved the induction hypothesis, i.e., we have proved 
that if buffer underflow occurs in I, then buffer underflow can also occur in I'. Finally, we have to prove 
that if (7.4) holds for/, then (2.10) holds for I'. 

Equation (7.4) holds for I=> equation (2.10) holds for I': 
By the definition of a, (2.1 0) holds for I', if t1 o ai(nk- 1) + t1, (x;) :::; 2td and tp (x;) +to ai(oi+l) :::; 2td, 
0 :::; i < m- 1. We prove the first equation. The second can be proved similarly. Let i be arbitrary. By 
assumption nk >> I. Consequently, data block nk- 2 also exists. Because (7.4) holds, we have that 
t1 oai(nk- 2) +t1 o ai(nk- 2):::; 2td. By definition, tp(x;) = 1 and by assumption t1(j) 2:: 1. Consequently, 
tl' (x;) :::; t1 o a; (nk- 2). As a result, t1 o ai(nk- 1) + tJ(x;) :::; 2td. This proves the theorem. 0 
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