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Samenvatting

Droge wrijving is het verschijnsel, waarbij twee lichamen, die met elkaar in
contact zijn, weerstand bieden tegen een relatieve beweging . In de prak-
tijk veroorzaakt droge wrijving vaak ongewenste bijverschijnselen . Het kan
namelijk zichzelf in stand houdende oscillaties opwekken, die stick-slip tril-
lingen worden genoemd .

In boorstangen treden stick-slip torsie-trillingen op . Boorstangen wor-
den gebruikt bij het produceren van olie en gas . Hierbij worden putten ge-
boord met een draaiende beitel . De beitel wordt aangedreven door een elek-
trische motor aan het oppervlak, die zijn torsie doorgeeft via de boorstang .
Tussen de beitel en delen van de boorstang aan de ene kant, en het gesteente
aan de andere kant, treedt droge wrijving op . Als een boorstang een stick-
slip torsie-trilling uitvoert, draait het bovenste gedeelte van de boorstang
met een constante snelheid rond, terwijl de snelheid van de beitel varieert
tussen nul (de stick fase) en een snelheid, die veel hoger ligt dan die van het
bovenste gedeelte (de slip fase) . Dit kan beschadingen met zich meebrengen .

In de literatuur wordt droge wrijving op verschillende manieren gemodel-
leerd. De wrijvingswet van Coulomb is het bekendste . Ten gevolge van het
discontinue karakter van droge wrijving, ontstaan er zwaar niet-lineaire diffe-
rentiaalvergelijkingen. In dit rapport worden periodieke oplossingen bepaald
van 1- en 2-DOF systemen, die droge wrijving ondervinden, met behulp van
module STRDYN, behorende bij het eindige elementen pakket DIANA . Deze
module biedt een aantal numerieke algoritmes om eindige elementenmodel-
len met lokale niet-lineariteiten te bestuderen . Om numerieke problemen te
voorkomen, dienen gladde benaderingen van de discontinue wrijvingsmodel-
len te worden gebruikt .

Als eerste zijn 1- en 2-DOF modellen, overgenomen uit de literatuur,
in DIANA gemodelleerd . Het wrijvingsmodel is benaderd met een arctan-
functie. Met behulp van een semi-analytische oplossing van het 1-DOF
model, zijn relatieve fouten in de DIANA oplossingen bepaald . Een goede
overeenkomst is gevonden tussen de resultaten van DIANA en die uit de lite-
ratuur. Hierna is een 1 graad van vrijheid boorstangmodel met Coulombse
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wrijving in DIANA gemodelleerd, waarbij gebruik is gemaakt van een vierde
graads polynoom voor de benadering van het wrijvingsmodel . Ook hier in een
semi-analytische oplossing gebruikt om relatieve fouten te bepalen . Opnieuw
is een goede overeenkomst gevonden tussen de resultaten .
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Summary

Dry friction is the phenomenon, in which to bodies, that are in contact with
each other, offer resistance to a relative motion . In engineering practice,
dry friction often causes undesirable side effects . It can namely induce self-
sustained oscillations, called stick-slip vibrations .

Torsional stick-slip vibrations are observed in drill strings, that are used
in rotary drilling for oil and gas . In rotary drilling, deep wells are drilled with
a rock-crushing tool, called a drill bit. The drill bit is driven by an electric
motor at the surface, whose torque is transmitted by the drill string . Between
the drill bit and parts of the drill string on the one hand, and the rock on the
other hand, dry friction occurs . When a drill string is undergoing a torsional
stick-slip vibration, the top is rotating at a constant speed, whereas the
speed at the drill bit varies between zero (the stick phase) and a speed, much
higher than the speed at the top (the slip phase), which can lead to damage
of drilling components .

In literature, different dry friction models can be found, of which Cou-
lomb's friction law is the most familiar . Because of the discontinuous nature
of dry friction, highly nonlinear differential equations are found . In this re-
port, periodic solutions of 1- and 2-DOF systems, experiencing dry friction
are determined, using module STRDYN of the finite element code DIANA.
This module offers several numerical algorithms for investigating finite el-
ement models with local nonlinearities. To avoid numerical complications,
smooth approximations of the discontinuous friction model must be used .

First, 1- and 2-DOF dry friction models, taken from literature, are
modeled in DIANA . The friction model is approximated, using an arctan-
function. A semi-analytic solution to the 1-DOF model is used, to deter-
mine relative errors in the DIANA solutions . Good correspondence is found
between the DIANA results and the results from literature . Next, a 1-DOF
drill string model with friction, according to Coulomb's law, is modeled in Di-
ANA, using a 4th-order polynomial to approximate the friction model. Here,
also a semi-analytic solution is used, to determine relative errors . Again,
good correspondence is found between the results .
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Chapter 1

Introduction

In this introduction, dry friction is explained and the motivation and the
objective of this report are elucidated .

1 .1 Dry friction

Dry friction is the natural phenomenon, in which two bodies (in Fig . 1 .1
represented by 1 and 2), that are in contact with each other, offer resistance
to a relative motion . On each of the two bodies, a dynamic friction force F
appears, that acts in the opposite direction of the relative velocity vl =A Ó.re
This velocity is defined as the velocity of the considered body, relative to
the other body. If there is no relative motion (vrel = O), a static friction
force F can appear, that is opposite to the direction of the projection onto
the contact plane of the applied force FA . The contact plane is defined at
the contact between the bodies and is perpendicular to the normal force FN .
Fig. 1 .1 shows the forces, acting on body 1, for the cases, that (a), there

(a) (b)

Figure 1.1 : Dry friction, (a) slip, (b) stick
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is relative motion with a dynamic friction force F(the slip phase) and (b),
there is no relative motion with a static friction force F (the stick phase) .

The magnitude of the dynamic friction force is modeled as a linear func-
tion of the magnitude of the normal force. That is, F = µFN (if v"rei 0 0),
where F- JIF11 and FN = JJFN JJ . Parameter µ = µ(41re1) is the dynamic fric-
tion coefficient, that is a function of the magnitude of the relative velocity,
where Vrel - 11 vrel ll • The static friction force is a constraining force, whose
magnitude equals the magnitude of the projection onto the contact plane
of the applied force, but does not exceed a maximum static friction force
FS - µoFN . That is, F< poFN (if vrel = Ó), where yo is the static friction
coefficient. When there is no relative motion and the applied force overcomes
the maximum static friction force, a relative motion is initiated .

In literature, the dependence of the dynamic friction coefficient on the
magnitude of the relative velocity has been modeled in several, different ways .
In Coulomb's friction law, µ is assumed to be constant, where A :5 1-to . In
most other models, the dynamic friction coefficient is modeled as a decreasing
function of the magnitude of the relative velocity. This decrease in P for
increasing vrei has also been observed in experiments (see for instance Popp
and Stelter [11 ] ) .

In engineering practice, dry friction often causes undesirable side effects .
It can namely induce self-sustained oscillations, called stick-slip vibrations,
that can shorten the lifespan of mechanical parts. Examples of these vi-
brations are grating brakes and chattering machine tools . Some stick-slip
vibrations, that happen in everyday life, are squeaking chalks and creaking
doors .

1 .2 Motivation

The motivation for this report is the torsional stick-slip vibration, observed
in drill strings at the Shell oil company . Drill strings are used in rotary
drilling, which is the most common method for the exploration and produc-
tion of oil and gas .

In rotary drilling, deep wells are drilled with a rock-crushing tool, called
a drill bit . The drill bit is driven by an electric motor at the surface, whose
torque is transmitted by a drill string . This drill string consists mainly
of slender, steel tubes, called drill pipes, that are coupled with threaded
connections and have a diameter, that is smaller than that of the bore hole .
At the lower part, drill collars and stabilizers are used, to avoid buckling of
the drill string . These drill collars are thick walled pipes and stabilizers are
cylindrical elements, that fit loosely in the bore hole . At the top, the drill
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string is supported by a drilling rig .
During the drilling process, the length of the drill string can become

several kilometers. With an average diameter of about one decimeter, its
ratio between length and diameter can be larger than that of a human hair .

Between the drill bit, the drill collars and the stabilizers on the one hand,
and the rock on the other hand, dry friction occurs, which is responsible for
the observed stick-slip vibration . When the drill string is undergoing this
vibration, the rotation speed at the top of the drill string is approximately
constant, whereas the speed at the bit varies between zero (the stick phase)
and a speed, much higher than the speed at the top (during the slip phase) .
Because the stick-slip vibration can result in failure of drilling components,
at KSEPL' research is done, to develop methods, that can prevent it .

1 .3 Objective
Because of the discontinuous nature of dry friction, highly nonlinear differ-
ential equations are found, when dynamic systems, experiencing dry friction,
are modeled. The objective of this report is to find periodic solutions of
such models, using a dedicated module in the finite element code DIANA [3 ] .
This module is called STRDYN ('structural dynamics') and comprises sev-
eral numerical algorithms for investigating finite element models with local
nonlinearities .

Here, the shooting method is used, to determine periodic solutions, to-
gether with a path following algorithm, to calculate branches of periodic
solutions, if a design variable of the system is varied .

In chapter 2 these numerical algorithms are treated briefly. Chapter 3
discusses some example systems, that are modeled in DIANA . A drill string
model is presented in chapter 4 and, finally in chapter 5, some conclusions
are summarized .

1xsEPL (Koninklijke/Shell Exploratie en Produktie Laboratorium) is the oil and gas
exploration and production laboratory of Shell Research in Rijswijk, The Netherlands .
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Chapter 2

Numerical algorithms

In this chapter, a representation of dynamic systems is defined and some of
the numerical algorithms from module STRDYN, that are used in this report,
are treated briefly .

2.1 Dynamic systems

An nth-order, autonomous, nonlinear dynamic system is represented by the
state equation

(2 .1)

where x- dx/dt, x is a column with the n state variables of the system,
t is time and f is a column of nonlinear functions of the components of x .
Since f does not depend on t, the system is called autonomous, as opposed
to non-autonomous systems, where f is a function of both x and t. In this
report, only autonomous systems are dealt with .

In an initial value problem, the initial condition is usually given at t = to .
Because f is independent on t, solutions based at time to ~ 0, can always be
translated to to = 0 . Hence, the initial condition reads

x(t = 0) = xo . (2 .2)

The solution to (2 .1) is often written as 0t(xo), to explicitly show the depen-
dence on the initial condition in (2 .2) .

2.2 Shooting method
To find periodic solutions, one could integrate (2 .1), until a steady state is
reached . An advantage of this approach is the fact, that there is always
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convergence . Moreover, both quasi-periodic and chaotic attractors can be
found, as well . Disadvantages are, that it can be very time consuming and
unstable solutions will not be found .

A more sensible procedure is to solve a 2-point boundary value problem,
like the autonomous shooting method (taken from Parker and Chua [10]), in
which solutions are sought of

LI(T,T)- 0T(x)-x=0, (2.3)

where T is the period time of the periodic solution . Since (2.3) is a system
of n equations in n + 1 unknowns (the n components of x and period T), it
cannot be solved directly . Instead, y- H(x, T) is linearized, to obtain

AY
N au

Ox +
Off AT

= (!kT(x) - I)Ox + f (~ T (x))OT, (2 .4)óx aT

where matrix ~T(x) results from the variational equation (see appendix A) .
To achieve H -- Ó, Ox and AT will be chosen such, that Ay This
value of Ay is substituted in (2 .4), giving ~

-H = (IT(x) - I)Ox + f (0T(x))OT. (2 .5)

To make this system solvable, a constraint is added, which restricts the state
correction term Ox to be orthogonal to f, given by

f (x)TAX = 0 . (2.6)

From (2.5) and (2 .6), the following iterative scheme is assembled, with
which zeros of H can be found, using initial guesses x(°) and TO) .

`!TC2) (x ( z~) - I .f (0 (xt2~)) ox~2~
__ (x ( Z~)

L `T(Z) ~
11 l

~T~y> ~ l (2.7)
f(x~2~ )T 0 AT ~2 )~ 0~ J J

x (Z+l ) x~i) A-1(i)
T(Z+~~ ] _ [ T ~i) + OT ~i> (2 .8)

J L I

The superscripts have been added to indicate the iteration count. This
scheme is reiterated, until some convergence criterion is met . There is a
clear similarity to the Newton-Raphson algorithm, so the same convergence
properties apply. When the shooting method returns values x and t, it
should be tested, whether t is the minimum period of the solution, since it
could be a multiple of the actual period .

In DIANA, a slightly different approach is used . Module STRDYN offers a
multiple shooting method, in which time interval [0, T) is subdivided into nsh
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sections of equal length . In all these sections, a shooting method is applied,
implying, that zeros of a different function H must be found . In this report,
however, simple shooting is used (nsh = 1), so (2 .3) is still valid .

In DIANA, state x is defined by a column q, with the positions of the
system, and a column q, with the first time derivatives of these positions, as

To make (2.3) solvable, in STRDYN, one of the components of q is set to
zero. Here it is assumed to be the last one, giving x=[ IT 0]T. This is
substituted in (2 .3), to obtain

0

L

])-[-la] =Q,~(z)=~T(I a Ó (2.10)

where z=[ xá TIT . This system of equations can be solved with the
Newton-Raphson algorithm, using initial guess

Unfortunately, STRDYN does not perform a minimum period test on the
calculated solution .

2.3 Path following

In the path following algorithm (taken from Fey [4]), it is investigated, how
varying a design variable r influences a periodic solution . The parameterized
state equation is given by

x (2 .11)

When path following is performed, together with the simple shooting method,
solutions are calculated of

h(z ' r) =~T( ~ J ~ r) - = 0, (2.12)[ta]

where, again, z =[ xá T IT and x=[ xá 0]T . As before, the last com-
ponent of x is set to zero .

First, a periodic solution [ zs 1 rs,l ]T must be calculated, using the
shooting method . Then, starting from this solution, a branch of solutions
can be followed, by means of a predictor-corrector mechanism . In Fig . 2.1
this mechanism is shown for one path following step .
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Figure 2 .1 : Path following step k

In predictor step k, the tangent [ pz k Pr,k ]T to the solution branch at
[ zs k r,k ]T is determined by linearizing (2 .12), giving

ah ah _

ázPz,k + C~rpr'k - 0
. (2 .13)

In the first predictor step, pr,l is set to 1, if r must be increased initially, and
to -1, if r must be decreased initially . In subsequent steps, pr,k can be set
to 1, so (2 .13) can be solved for pz k . The tangent is scaled by a factor 6p,k,
derived from the elliptical constraint

~p,k(1?z kí9Íz k + pr,k) = Uk, (2 .14)

where uk is the step size, that lies in a user defined interval,

0 Gt7min C O'k C ómax. (2.15)

In step k > 1, the sign of Up,k is chosen such, that the scaled tangents of two
succeeding predictor steps form an acute angle . This is achieved by requiring,
that

Sgn(O'p,k) = sgn[óp,k-1(pz,k-1i~z,k +pr,k-lpr,k)]• (2.16)

This ensures, that a solution branch is followed in the same direction, all the
time. In Fig. 2.1 the elliptical constraint is represented by the dotted circle,
with radius uk . The prediction [ zp k rP,k ]T is given by

I pzP,k -_ zs,k pz,k

rp,k ] [ rs,k I [ + -. ~p,k pr,k
(2 .17)
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In general, this prediction will not meet the convergence criterion, that is
used, and an iterative correction process will be needed .

Corrector step m is given by

zc,k,m+1 = zc,k,m + ~z,k,m
rc,k,m+l rc,k,m Cr,k,m

(2 .18)

In the first corrector step, the first term on the right hand side of this equation
is set equal to the prediction from (2 .17) . Corrections are calculated by
solving the following system of equations, which is similar to the Newton-
Raphson algorithm .

ah 8h 1
áz ar
1 T cz km - -h (2.19)

- óh óh Cr,k,m ~ ! [ 0 ]«,9z) ár 1

In these equations, h, áh/óz and áh/ár are evaluated at [ Jc,k,m rc,k,m ]T
and the last equation forces the corrections to be orthogonal to the solution
space . The corrected term [ z~ k,m+l rc,k,m+1 ]T from (2 .18) is accepted as
the next solution [ zs k+l rs,k+l ]T, if the convergence criterion is met .

Changes in step size O'k are determined by the ratio between the Euclidean
norms of the corrections in path following steps k-1 and k - 2. If this ratio is
lower than a used defined minimum, the step size will be increased. As soon
as it exceeds a user defined maximum, the step size will be decreased and the
last prediction will be recalculated, using the new step size. Furthermore,
during the iterative correction process, it is required, that the norm of the
residue is decreased monotonically, that is

Ilh(zc,k,m+i1 rc>k,m+1)II < I) h(zc,k,m 1 rc,k,m)I1. (2.20)

If this inequality is violated, the last prediction will be rejected and a new
prediction will be calculated, using a smaller step size .

If the step size is too large, the path following algorithm may change
the direction, in which a solution branch is followed, due to (2.16) . This
often occurs in areas, where the solution branch is very curved . It can be
prevented, by requiring, that angle 01, between the scaled tangent at path
following step k and the line, pointing from solution k to solution k + 1, is
smaller than a user defined maximum 0l,ma, where

C'P k[ PTz k Pr,k ] ([ zs,k+1 rs,k+1 ]T -[ zs k rs,k ]T)
~1 = arccos

(16P k[ íi7z,k Pr,k ]TIiI) L zs,k+l rs~k+l ]T
- [ zs,k rs,k ]Til' (2

.21)

13



(a) (b)

Figure 2.2 : (a) Angle ,(31, (b) angle ,62

Furthermore, it is possible, that the path following algorithm jumps over to
another branch or a remote part of the same branch, if the step size is too
large. This can usually be prevented, by requiring, that angle 02, between
the projections onto an (n - 1)-dimensional hyper plane, perpendicular to
the r-axis, of the scaled tangent at step k and the line pointing from solution
k to solution k + 1, is smaller than a user defined maximum 32,max, where

O'p , kPz k(zs,k-F1 - zs,k)
,Q2 = arccos (Io,p'kpz kIIII(zs,k+1 - zs,k)II (2 .22)

If, at path following step k, ,131 >,31,ma,t or ,62 >,Cj2,max, solution k + 1 will be
rejected and a new prediction will be calculated, using a smaller step size .
In Figs . 2.2(a) and (b), angles 01 and ,62 are depicted, respectively .

The path following algorithm fails, when (a), Uk becomes smaller than
C'min, (b), the iterative correction process does not converge or (c), a dynamic
bifurcation point is encountered . In a dynamic bifurcation point, namely, one
of the matrices

1 T8
h and

4
+

'94 a4 a~ )
r óz ) Or (2.23)

becomes singular, so (2 .13) or (2 .19) can not be solved .

2.4 Stability

The local stability of a periodic solution Ot(x), with period time t, is in-
vestigated by linearizing (2 .1) and examining the evolution in time of an
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infinitesimal initial perturbation Sxo of x . It follows, that to first order,

8x = A(t)8x, 8x(t = 0) = Sxo, (2 .24)

where A(t) - d f/dx, evaluated at x, and A(t) = A(t + T), because of the
periodicity of 0t( _-7~ ) . In appendix A it is shown, that

6x(t) = %(x)8x0. (2.25)

According to Floquet's theory, matrix jt(x) satisfies the condition

!t-I-T(x) = (2.26)

where ~T(x) = !ka is a constant, regular matrix, called the monodromy
matrix. Using this property, it can easily be shown, that

1t(x) = ~L.(x (2.27)

where t* = t - kt, 0<_ t* < T and k E Z. Substituting this equation in
(2.25) gives, since 1o(x) = I,

Sx( kT) = ~~jxo. (2.28)

Monodromy matrix 4)a has eigenvalues Ai, where ja2 j > jAi+l 1 (i =
1, . . . , n), called the Floquet multipliers . They determine the long term be-
havior of perturbation bx(t) and, therefore, the local stability of periodic
solution 0t(x) . Because, in an autonomous system, the phase of the solution
is undefined, one of the Floquet multiplier always equals 1 . Referring to
(2.28), the stability conditions are given by

STABILITY
jAz < lj, i= 2, . . ., n, (asymptotically) stable,
IA 2 1 = 1, marginally stable,
JA1 1 > 1, unstable .
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Chapter 3

Examples

Before going to the drill string model, in this chapter some example systems
are discussed . First, the well known Van der Pol equation is treated . This
equation represents an autonomous system, displaying a self-sustained oscil-
lation, analogous to the stick-slip vibration of the drill string . It is dealt
with here, to show, how such systems are analyzed with STRDYN . To de-
termine, if dry friction can be modeled in DIANA, some results of 1- and
2-DOF dry friction models, found in literature, are reproduced . MATLAB
is used, to find semi-analytic solutions of the 1-DOF dry friction model, ap-
plying Hénon's method. These solutions are used, to estimate the errors in
the DIANA results .

3 .1 Van der Pol equation

3 .1.1 Shooting

The nondimensional Van der Pol equation is given by the state equation

x = f(x) = x
-v(x2 - 1)x - x '

where a dot (') denotes a differentiation to nondimensional time t, x=
[x x]T,andv>0.

The simple shooting method with Runge-Kutta-Fehlberg integration is
used to determined a periodic solution . Parameter v is taken equal to 1 .
To achieve convergence, an accurate initial guess is required, which can be
obtained by integrating (3 .1) from an arbitrary initial condition, until the
transient is damped out . Fig. 3.1 shows the familiar limit cycle, that is
calculated with initial guess z(°) = [ x(°) TO) ]=[ 2 .0082 6.6634 ] . The
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Figure 3.1 : Limit cycle at v = 1

Floquet multipliers of this solution are given by A1 = 1 and A2 = 0.8597• 10-3,
so the limit cycle is stable, which is obvious, because integration is used to
determine the initial guess . This implies, that the path following algorithm
is usually started from stable solutions .

It is noted, that, in addition to the limit cycle, an unstable equilibrium
point, located at xeq = [ 0 0]T, exists for all values of v . Equilibrium points
are the zeros of f. Their stability is determined by the eigenvalues of d f/dx,
evaluated at xeq . In this case the eigenvalues have positive real parts . In
Fig. 3.1 the equilibrium point is depicted by the x-mark (x) . Unfortunately,
module STRDYN does not offer a possibility for finding equilibrium points .
The shooting method, however, sometimes converges to an equilibrium point,
returning a senseless period time .

3 .1 .2 Path following

Parameter v is used as the design variable in path following . With the
calculated limit cycle at v = 1 as the initial solution, the design variable is
first decreased from 1 to 0 and subsequently increased from 1 to 15 . The
calculations took about 15 minutes of CPU time. In Fig . 3.2, the absolute
maxima of x (max jxj) and x (max 1x J) of the periodic solutions are plotted
against v. The absolute maximum of x is approximately 2 for all values of v,
whereas the absolute maximum of x increases almost linearly from 2 at v= 0
to about 20 at v= 15 . These characteristics are also found in literature. The
unexpected oscillation in the absolute maximum of x, for v > 10, is caused
by the discretization of the periodic solution by the numerical integration
method. Because of sharp peaks in the velocity, the approximation of its
maximum is not accurate . Increasing the number of output points will reduce
this effect, but has a negative influence on CPU time . The free frequency and
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Figure 3 .3: Free frequency and moduli of Floquet multipliers

the moduli of the Floquet multipliers are given in Fig . 3.3. It can be seen,
that if v ~ 0, the free frequency approaches 1/27r ,: 0.16, which corresponds
to the eigenfrequency of the linear system, where v= 0. If v -+ oo, the free
frequency approaches 0, which is also known from literature. According to
the Floquet multipliers, all solutions are stable . If v ~ 0, the modulus of
Floquet multiplier A2 approaches 1, indicating a marginally stable solution,
which again corresponds to the linear system .

3 .1 .3 Conclusions

The results, found with DIANA, correspond to what is found in literature .
The shooting method requires an accurate guess, to achieve convergence . Be-
cause of discretization, inconsistencies can occur in the results . Equilibrium
points can not be found by module STRDYN .
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Vdr

Figure 3 .4: 1-DOF model with dry friction

3.2 1-DOF dry friction model

3.2.1 Shooting

A 1-DOF model with dry friction (taken from Galvanetto et al. [5]), is de-
picted in Fig. 3.4. Mass m is attached to inertial space by spring k, where
m = 1[kg] and k = 1 [N/m] . The mass is riding on a driving belt, that
is moving at a constant velocity vdr. Between the mass and the belt, dry
friction occurs, with a friction force F . The state equation, describing this
model, reads

x
x= .f(x) = _ kx+ F ' (3.2)

m m
where a dot (') denoted a differentiation to time t, x=[ x x] and F is
given by

11IFI <_ /-LoFiv, vrel = 0 , (3.3)
F=-pFN sgn vrel, vrel 7- 0 •

Fs = µoFN is the maximum static friction force and is chosen equal to 1 [N],
whereas Vrel = x- Vdr is the relative velocity of mass m with respect to the
belt . The dynamic friction coefficient µ= µ(1vre1l) is given by

µo (3.4)
~

__

1 + (S I vrel I

Positive parameter S measures the rate, at which p decreases, with an increase
in ivrell, and is taken equal to 3[s/m] . Using this, (3 .3) can be rewritten as

IF) < Fs, vrel = 0 ,
_ Fs sgn vrel (3.5)

F 1+ S I vrel I~
Vrel ~ 0 .

Fig. 3.5 shows the friction force as a function of the relative velocity. F is
discontinuous at Vrel = 0 and, therefore, causes the differential equation to be
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Figure 3.5: Friction force F and the approximation P

highly nonlinear . To avoid numerical problems in STRDYN, the friction force
must be approximated by a smooth F . This can be achieved by dropping the
first equation of (3 .5) and substituting sgn Vrel in the second equation with
(2/7r) arctan evrel, to obtain

Fs 2 arctan evrel

F 1 + cSwrell (3.6)

Fig. 3.5 shows P as a function of vrel, for some values of s( E = 102, 103 and
104) . Clearly, increasing e improves to approximation, especially for vrel close
to 0. However, a steep slope in F is created at Vrel = 0, given by -(2/7r)eFs .
This causes a stiff differential equation, so the BDF (backward differentiation
formula, see Hindmarsh [7]) method is used for numerical integration .

In Fig . 3.6 the stable periodic solution at Vdr = 0 .2 [m/s] is shown, cal-
culated with the simple shooting method, for different values of e( E = 102,
i = 2, . . ., 7)1 . The circles (o) represent a semi-analytic solution, that is
found with MATLAB, without approximating the friction force . This solu-
tion is obtained, using simple shooting and applying Hénon's method [6], to
integrate over the discontinuity with a 4th-order Runge-Kutta scheme .

The relative errors in the absolute maximum of x and the free frequency
of a solution, calculated with DIANA can now be expressed as

e
x

(
e
) _ max Ix (E) I - max IxexactI (3.7)~

max Ixexact I

e f(£) = .f (6 ) - .fexact ' (3.8)
fexact

where max jx(E) I and max Ixexact I are the absolute maxima of x of the DIANA
solution and the semi-analytic MATLAB solution, respectively, whereas f( E)

'Some parts of the DIANA user subroutines, used in this report, are given in appendix B
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I

and feXa,,t are the free frequencies of these solutions . In Fig . 3.7, the errors at
Vdr = 0.2 [m/s] are plotted with circles (o), using double logarithmic scales .
The dashed lines in this figure are least squares fits with function e(s) = be¢,
where a and b are given in the next table .

ex ef
a -0.59 -0.60
b 3.3 3 .9

So, a relative accuracy of, for instance, 10-3 is achieved by choosing e>_
9.7 • 105, based on e f .

Like the Van der Pol equation, this system possesses an unstable equi-
librium point. It is given by xeq =[ F/k 0]T, where F = Fs/(1 + Svar) _
1/(1+3vdr), if vdr > 0 . In Fig . 3 .6 the equilibrium point at Vdr = 0 .2 [m/s] is
represented by the x-mark (x) at xeq =[ 0 .625 0]T . In the approximated
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Figure 3.8: Equilibrium point xeq (6 = 102)

system, however, the equilibrium point is located at

xe9
~ arctan svar

xeq = 0 = 1 -I- 3vdr
0

When Vdr is decreased below some value Vbif = vbif(e), this equilibrium point
becomes stable, because the eigenvalues of Of/ax cross the imaginary axis
and get negative real parts . This does not correspond to the original system,
where the equilibrium point is always unstable . Fig. 3.8 shows xeq as a
function of vdr, for e= 102, where Vbif -- 0 .052. The solid line represents the
stable equilibrium points, the dashed line unstable ones .

3 .2.2 Path following

The velocity of the driving belt is used as the design variable and is decreased
from 0.2 [m/s] towards 0. Again, the calculations are repeated for different
values of e (e = 10i, i = 2, . . ., 7) . An average of about 10 minutes of cru
time are needed per branch . Figs. 3.9 and 3 .10 show the absolute maximum of
x and the free frequency of the periodic solutions . The branches do not reach
Vdr = 0, because the step size becomes less than a user defined minimum .

If Vdr ~ 0, the absolute maximum of x should approach 1, because the
stick phase ends at x = Fs/k = 1, when the elastic force of the spring equals
the maximum static friction force . Looking at figure 3 .6, the limit cycle will
cross the x-axis at approximately x=[ 1 0]T, when Vdr ti 0 . The free
frequency should approach 0, because of a longer stick phase at low driving
belt velocities . Clearly, a larger value of e gives a better correspondence to
these conditions . It is also noted, that for all values of s , the limit cycle
vanishes, if Vdr is decreased below Vbif . This does not correspond to the
original system, where a limit cycle exists for all values of Vdr =A 0-
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Figure 3.10: Free frequency

0 .2

The eigenfrequency of the linear system, without dry friction, is equal to
1/27r N 0 .16. It seems, that this value is approached by the free frequency,
if vdr~00 .

Unfortunately, DIANA does not correctly interpret the Floquet multipliers
of the calculated solutions. Due to numerical errors, the Floquet multiplier,
that should be equal to 1, is sometimes estimated slightly greater than 1,
causing STRDYN to label a solution unstable, while it is stable . Therefore,
MATLAB is used to post-process the DIANA results, concluding that the
periodic solutions on all branches are stable .

Again, MATLAB is used, to calculate semi-analytic solutions at Vdr =
0 .05, 0.1 and 0 .15 [m/s] and parameters a and b of the relative errors are
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0 .2

determined. In Fig. 3.11, a and b are shown, as functions af Vdr . The solid
lines belong to error e, the dashed lines to e f . It can be seen, that a is
approximately constant, but b increases, when the velocity of the belt is
decreased. Also, a is about equal for both ex and e f, whereas b is larger for
e f than for ex . Therefore, the choice of parameter e should be based on the
error in the free frequency at the smallest value of Vdr, that is of interest .
The parameters of e., and e f, at different values of Vdr, are given in the next
table .

ex

ef

Vdr 0.05 0.1 0.15 0 .2
a -0.58 -0 .57 -0 .57 -0.59
b 4.7 3.5 3.2 3.3
a -0.60 -0 .61 -0 .61 -0.60
b 1 1 8.1 5.6 3.9

3 .2.3 Conclusions

In STRDYN, it is not possible to use Hénon's method . Therefore, the dis-
continuous friction force must be approximated by a smooth function . It is
concluded, that satisfactory results can be achieved, by approximating the
friction force, using an arctan-function . Due to numerical errors, DIANA does
not determine the stability of solutions of autonomous systems correctly. The
required accuracy of the calculated solutions should be defined at the lowest
driving belt velocity of interest .
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3.3 2-DOF dry friction model

3 .3.1 Shooting

A 2-DOF model with dry friction (also taken from Galvanetto et al. [5]),
is shown in Fig . 3.12. Two masses, ml and m2i are riding on a driving
belt, that is moving at a constant velocity Vdr. These masses are connected
by a spring k, , while ml and m2 are attached to inertial space by kl and
k2, respectively. Between the masses and the belt, dry friction occurs, with
friction forces Fl and F2 . It is assumed that ml = m2 = m and kl = k2 = k .
The nondimensional state equation is given by

where x = [ Xl

~

1f21 C fl Vre1,2 = 07
,6 sgn Vre1,2

f2 = - 0,1 -f- ^/l Vrel,2 1
s

(3.10)

_

1 + `

sgn

~1

yre1,1 (3.11)
1 IVre1 1,

,
Vrel,lneq0,

X1
-X1 - a(Xl - X2) + fl

X2
-X2 - Ck(X2 - Xl) + ,f2

Xl X2 X2 ]T ~

(fll < 11 vre1,1 = 0,

(3.12)

Vrel,i = Xi-Vdr (i = 1, 2), a dot (') denotes a differentiation to T, T= t k/m

(t is time), Xi = xik/Fsl, a = k~/k, ,(3 = Fs2/Fs1 and Vdr = (kmvdr)/Fs1•
Fsi is the maximum static friction force on mass mi (i = 1, 2) . The following
values are chosen .

a = 1 .2, ~3=1 .3, 1y=3 (3.13)

Vre1,2 T-
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In the calculations, carried out with DIANA, the first equations of (3 .11)
and (3 .12) are dropped and in the second equations, sgn Vrel,i is substituted
by (2/7r) arctan eVre1,2 (i = 1, 2) . Here, E = 105 is used initially, to obtain an
accuracy of about 11 •(105)-o .so = 0 .011 at Vdr = 0 .05 .

Simple shooting with BDF integration is used to determine periodic solu-
tions. Figs. 3.13 and 3.14 show some stable solutions at different values of
Vdr, that are used as initial solutions for the path following calculations in
the next subsection. In these figures, X2 is plotted against X1 . The solutions
in Fig. 3.13 show the two masses oscillating `in phase' . That is, masses ml
and m2 are roughly moving in the same direction. In this figure, period-2,
-1 and -2 solutions are plotted, at Vdr = 0 .08, 0 .14 and 0 .15, respectively. A
period-n solution is defined as a periodic solution, that crosses the Poincaré
section, given by Xl = 0, n times from negative to positive, during its min-
imum period time . Fig. 3.14 shows some `out of phase' solutions, where
masses ml and m2 are roughly moving in opposite directions . In this figure,
period-8, -4, -2 and -1 solutions are plotted, at Vdr = 0.127, 0.14, 0 .2 and
0 .35, respectively.

The unstable equilibrium point of this system is given by

xeq =

3.76
3 .4(1 + 3Vdr)

0
4.06 (3 .14)

3 .4(1 + 3Vdr)
0

In the approximated system, the equilibrium point is located at

(' 3.76~2 arctan eVdr I

xeq =

3.44(1 + 3Vdr)
0

4.061 arctan e Vdr
3.44(1 + 3Vdr)

0

(3.15)

3.3 .2 Path following

Path following is performed with Vdr as the design variable . Figs. 3.17 and
3 .15 show the absolute maximum of Xi and the free frequency of the periodic
solutions, respectively. In these figures circles (o) represent stable solutions,
while dots () represent unstable solutions . Also, +n indicates an `in phase'
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period-n solution branch, whereas -n means `out of phase', period-n . The
boxes, containing an `out of phase' period-8 branch and a part of -4 branch
in Fig. 3.17, are enlarged in Fig . 3 .16 . Both for low driving belt velocities and
higher period solution branches, the step size becomes very small, causing
long CPU times .

The eigenfrequencies of the linear system, without dry friction, are given
by 1/27r ti 0.16 and 1+ 2a/27r -- 0.29. It seems, that these frequencies
are approached by the free frequencies of the unstable +1 and stable -1
branches, if Var -+ 00.

Because in STRDYN, the Poincaré points of the solutions can not be deter-
mined, MATLAB is used, to make the bifurcation diagram, shown in Fig . 3 .18,
from the D IANA output. In this figure the Poincaré points of Xl are plotted
against Vdr . In the lower left part of the bifurcation diagram, the `in phase'
solution branches are located . The `out of phase' solutions are the branches
in the upper half, where the closed period-8 branch at Vdr .. 0.27 is omitted,
to show the other branches more clearly. This bifurcation diagram corre-
sponds very well to that, found by Galvanetto et al. [5] . However here, also
branches with unstable solutions are found, along with some extra stable `out
of phase' period-4 solutions at Vdr N 0.111, both not given in Galvanetto et
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al. [5] .
In Figs . 3 .17 and 3.18, several types of bifurcation points can be observed .

(See, for instance, Fey [4] for a description of different bifurcations .) The +1
branch shows super-critical flip bifurcations at Vdr = 0 .081 and 0.141. The
+2 branch, leaving from 0.081, has a flip bifurcation at Vdr = 0 .08. The
+2 branch, that is created at 0 .141, undergoes a cyclic fold bifurcation at
Vdr = 0 .165. A sub-critical flip bifurcation occurs in the -1 branch, at
Vdr = 0.25. The unstable -2 branch, emanating from this point becomes
stable through a cyclic fold at 0.32. It changes its stability at Vdr = 0 .29
and 0.25, where flip bifurcations occur . At Vdr = 0 .144 a stable -4 branch
originates from the -2 branch by a flip. This -4 branch loses its stability
at 0.132 and regains it at 0 .113, also by flip bifurcations. Between these
bifurcation points, a stable -8 branch exists . In the -4 branch, cyclic fold
bifurcations occur at Vdr = 0 .104 and 0 .1112. Another flip bifurcation is
observed in this branch, at 0 .1106 . In the closed -8 branch, enlarged in
Fig. 3.16, cyclic folds occur at Vdr = 0 .263 and 0 .2864 and flips are found
at Vdr = 0.274 and 0.2858 . Between these flip bifurcations a -16 branch is
found, but because of relatively large inaccuracies, due to discretization, it
is not shown .
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All calculations are repeated with e= 10 ' . Apart from some minor
differences, this increase does not structurally change the results . The CPU
times, that are used to perform the path following calculations, are given in
the next table .

~ CPU time

105 9 hrs . 35 min .
106 30 hrs. 58 min .

3.3 .3 Conclusions

Apart from longer CPU times, increasing the number of DOFs of this dry
friction model, does not cause problems in the DIANA calculations . The
path following algorithm together with the simple shooting method works
satisfactory, to find branches of periodic solutions of the approximated 2-
DOF dry friction model. The results, found with DIANA, correspond very
well to those, found in literature . DIANA can not make bifurcation diagrams
of autonomous systems .
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Chapter 4

Drill string model

In this chapter, a 1-DOF drill string model, taken from Jansen [8], is analyzed
with STRDYN. In this model, Coulomb's friction law is used, which displays
an even stronger discontinuity, than the friction forces, applied in the previous
chapter. Again, using semi-analytic solutions, error estimates are determined
of the solutions, found with DIANA .

4.1 Drill string dynamics
A drill string consists of a drill bit, drill collars and stabilizers, drill pipes and
a rotary table . At the top, the rotary table is rotated by an electric motor . In
Fig. 4 .1(a) a schematic representation of a drill string is given . The drill bit is
the tool, that crushes the rock . The stabilizers are cylindrical elements, that
fit loosely in the bore hole (not shown in the figure) . The drill collars are thick
walled pipes, that are loaded in compression, with a typical outside diameter
of 9" (0 .23 [m]) and inside diameter of 3" (0 .076 [m]) . The drill pipes, on
the other hand, are loaded in tension and are slender, with a typical outside
diameter of 5" (0.13 [m]) and inside diameter of 4.3" (0.11 [m]) . The rotary
table is a heavy disc, with a typical mass moment of inertia of 930 [Nms2/rad] .

One of the dynamic modes of a drill string is a self-sustained torsional
vibration, caused by dry friction between the drill bit, the drill collars and
the stabilizers on the one hand, and the rock on the other hand . In addition
to this motion, also lateral and axial vibrations occur . When the drill string
is undergoing a torsional stick-slip vibration, the rotary table at the top
end of the drill string is rotating at a nearly constant rate, whereas the bit
speed varies between zero and a speed, much higher than the speed of the
rotary table .

A model for investigating the torsional vibration is proposed by Jansen [8] .
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Figure 4.1 : 1-DOF drill string model

In this model the drill pipes are modeled as a linear torsional spring k , as
shown in Fig. 4 .1(b) . The drill collars are assumed to be rigid and are
modeled as an equivalent mass moment of inertia J1, also taking into account
the mass moment of inertia of the drill pipes . Viscous damping is taken into
account by introducing a linear torsional damper cl . Variable cpl is the
angular displacement of the bit and the drill collars, whereas cp2 represents
the angular displacement of the rotary table .

Dry friction is modeled by a torque Tb at the drill bit . Fig. 4.2 shows this
friction torque as a function of cpl . This figure represents Coulomb's friction
law, with a static friction torque Tst, that is larger than a constant dynamic
friction torque Tsl . Here, Tst = 4000 [Nm] and Tsl = 2000 [Nm] are chosen .

4000

- 2000
z

,AI
E -2000 -T -s

T -s

•T sl

-4000 f -T_sto {
-10 0 10

dphi_1/dt [rad/s]

Figure 4.2: Friction torque Tb
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4.2 1-DOF drill string model

4.2.1 Shooting

The 1-DOF drill string model in Fig. 4.1(b) is described by differential equa-
tion

J1 (~1 + cl ol + k (~p1 - ~02) = Tb- (4.1)
Choosing cp = cp2 - cpl as the generalized coordinate and assuming, that
the rotary table is rotating at a constant speed 522, the equation of motion
becomes

Jicp+clcp+kcp=-Tb+c1S22. (4.2)

This equation possesses an equilibrium point at

Tsi + c1 S22
cpeq =

k
(4.3)

To simplify the analysis, the following nondimensional quantities are intro-
duced .

~~' ~ ~2 Tst - Tsl cl
T=Wt, Y=(p ~= ~ ) 8= k , (

_

2J1W, (4.4)

where w = k/Jl is the angular eigenfrequency of the linear system, without
dry friction . With these quantities, (4.2) can be rewritten as

0"+2(0'+0 = T, T, =- Tb ~Tsl , (4.5)

where a prime ( ' ) denotes a differentiation to T . The state equation is given
by (x = [ ~b O' ]T)

, 0 '
x = f (x) _ [ -2(0' - 0 +T, ] ' (4.6)

Dry friction term Tc is plotted in Fig . 4.3, as a function of O'. Again, a
smooth approximation must be used in DIANA . It is assumed, that the drill
bit does not rotate backwards and thus O' <_ ~. Using this, T, is approximated
by a 4th-order polynomial, given by

T~= 0' ~ _ ~ _ s O Cq' (4.7)
p(~ ~7) (~ q) ~ 0' > q•

Parameters p and q are found from the conditions

TI~(0 ' = ~ - E) = 8
, d01(0

= 0, (4.8)
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and are given by
_ 8

P 27e4 ~ 4' = ~ - 4s. (4.9)

In Fig. 4.3 the approximation is plotted, for 0= 4 .2 and e= 1 . Decreasing
e will improve the approximation . Parameters ~ and 0 are chosen equal to
0.05 and 4.2, respectively.

In Fig. 4.4 the stable periodic solution at ~= 4 is shown, calculated with
the simple shooting method and BDF integration, for different values of e
(E = 10-i, i = 0' . . .' 4). Because the original system is piecewise linear, it can
be solved semi-analytically. During the stick phase, ~b' = ~, so (4.5) becomes

2(0 + 0 = T, (4.10)

where T, < 0 . When 0 = 6- 2(~, the stick phase ends and the drill string
starts slipping . In the slip phase, 0 and 0' are given by

2/J (T) = e-~T C2Jp COS~T + ~~~ sin 1 - (2Tl , (4 .11)
~j ~` /

0'(T) = e-(T C010 cos V,1----(-7T - 00 sin 1 - ~2Tl , (4 .12)
/

where 00 = B- 2(~ and 00 = r~ . The slip phase ends, when
This point can be found with the Newton-Raphson algorithm (this makes
the solution semi-analytic) . The circles (o) in Fig. 4.4 represent the semi-
analytic solution, determined with MATLAB . This solution corresponds to
the limit cycles, given in Jansen [8] .

Errors e,b in the absolute maximum of 0 and e f in the free frequency are
defined as in (3 .7) and (3.8), where x is exchanged with 0. In Fig . 4.5, the
errors at ~ = 4 are plotted with circles (o), using double logarithmic scales .
The dashed lines in this figure are least squares fits with function e(e) = beQ,
where a and b are given in the next table .
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This system possesses a stable equilibrium point, given by xeq =10 0]T.
In Fig. 4.4 this equilibrium point is represented by the x-mark (x) . If,
however, approximation T, is used, the equilibrium point is located at xeq =
[ Oeq 0 ]T, where

e
)3, ~eq =

_

27e4
7(r - 4e rJ G 4s,

0, ~ > 4e .
(4 .13)

When ~ is decreased below some value %if,l = %if,1(e), this equilibrium point
becomes unstable (if C < 80/27E) . At Nif,2 =Nif,2(e) it becomes stable again .
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Figure 4.6: Equilibrium point ~eq (e = 1)

This does not correspond to the original system, where the equilibrium point
is always stable . Fig. 4.6 shows ~eq as a function of ~, for E = 1, where
%;f,1 -- 3 .759 and Nif,2 -- 1 .018 . The solid lines represent stable equilibrium
points, the dashed line unstable ones .

4 .2 .2 Path following
Parameter ~ is used as the design variable in path following . Again, the
calculations are repeated for different values of e (e = 10-i, i= 0, . . ., 4) .
Figs . 4.7 and 4 .8 show the absolute maximum of V) and the free frequency
of the periodic solutions . All branches are stable . Here, ~ is subsequently
decreased from 4 towards 0 and increased from 4 . About 6 minutes of cpu
time are needed per branch .

If ~ ~ 0, the absolute maximum of 0 should approach B- 2(~ = 4.2, the
point at which the stick phase ends . The free frequency should approach
0, because of a longer stick phase at low values of ~. If ~ is increased, at
some point, the limit cycle should disappear . Because of damping, 0'(T)
from (4 .12) does not become equal to ~ anymore and the stable equilibrium
point is reached . Smaller values of s show a better correspondence to these
conditions .

MATLAB is used, to calculate semi-analytic solutions at r~ = 1, 2 and 3,
and parameters a and b of the relative errors are determined . In Fig. 4.9,
these parameters are shown as functions of ~. The solid lines belong to error
ev, the dashed lines to e f . Again, a is approximately constant and b increases,
if ri is decreased . The parameters are also given in the next table .
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Figure 4.9: Parameters a and b

eo

ef

~ 1 2 3 4
a 0.63 0.55 0.54 0.59
b 0 .30 0.25 0.28 0.30
a 0.63 0.51 0.46 0.62
b 0.22 0.16 0.093 0.086

4.2 .3 Conclusions

The 1-DOF drill string model can successfully be analyzed with DIANA,
when the friction torque is approximated, using a 4th-order polynomial . The
results, found with STRDYN, correspond to what is found by Jansen [8] .
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Chapter 5

Conclusions

• Using a smooth approximation and applying BDF integration, both dry
friction with a decreasing dynamic friction coefficient for increasing
absolute relative velocity and Coulomb's friction law can successfully
be modeled in DIANA. Applying simple shooting and the path following
algorithm, periodic solutions can be found with module STRDYN .

. Module STRDYN, exhibits some limitations in analyzing autonomous
systems. Due to numerical errors, the stability of periodic solutions is
not determined correctly. A bifurcation diagram can not be made from
the calculated solution branches, because Poincaré points can not be
determined. Also, STRDYN lacks an algorithm for finding equilibrium
points .

• Good correspondence is found between results of D IANA calculations
and those, found in literature .
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Appendix A

The variational equation

An nth-order, autonomous, nonlinear dynamic system is represented by the
state equation with initial condition'

x= f(x), x(t = 0) = -To . (A .1)

The solution to this equation is written as O t(xo), so

~t(xo) = f( t GO), ~o(xo) = xo .

Differentiating with respect to xo gives

(A .2)

194090J-10) a0040)
- 7 = I. (A.3)ao x axo axo

Defining !kt(xo) - a0t(xo)/axo, (A.3) becomes

!t (x0) =
al
!t(xo) , !o (-1") = I,

(
A .4

)

which is the variational equation .
Since the initial condition is the identity matrix, It (xo) is the fundamental

matrix of the set of linear differential equations (A.4) . It follows, that a
perturbation Sxo of xo evolves as

6X(t) = it 4040 . (A.5)

'The derivation, presented in this appendix, is taken from Parker and Chua [10] .
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Appendix B

User subroutines

B.1 1-DOF dry friction model (ndsptr . f)
C . . .
C . . . d_2 : v_dr
C . . . d_3 : eps
C . . .
C . . . force = 2/pi*atan(eps*v_rel)/(1+3*abs(v_rel))
C . . . v_rel = tvelta-v_dr
C . . .

SPSTIF = O .DO
VREL = TVELTA-DESVL(2)
EPS = DESVL(3)

C

C

TFORCE = 2 .D0/PI*ATAN(EPS*VREL)/(1 .D0+3 .D0*ABS(VREL))
SPDAMP = 2 .D0/PI*EPS/(1.D0+(EPS*VREL)**2)/(1 .D0+3 .D0*ABS(VREL))-
$ 6.D0/PI*ATAN(EPS*VREL)*SIGN(1 .DO,VREL)/
$ (1.D0+3 .D0*ABS(VREL))**2

B.2 2-DOF dry friction model (ndsptr . f)
C . . .
C . . . d_2 : beta
C . . . d_3 : gamma
C . . . d_4 : V_dr
C . . . d_5: eps
C . . .
C . . . force = 2/pi*atn(eps*V_rel)/(1+gamma*abs(V_rel))
C . . . V_rel = tvelta-V_dr
C . . .
C . . . if ELMNR=6, force = beta*force
C . . .

SPSTIF = O .DO
BETA = DESVL(2)
GAMMA = DESVL(3)
VREL = TVELTA-DESVL(4)
EPS = DESVL(5)

C
TFORCE = 2 .D0/PI*ATAN(EPS*VREL)/(1 .DO+GAMMA*ABS(VREL))
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SPDAMP = 2 .D0/PI*EPS/(1 .D0+(EPS*VREL)**2)/(1 .DO+GAMMA*ABS(VREL))-
$ GAMMA*2 .D0/PI*ATAN(EPS*VREL)*SIGN(1 .D0,VREL)/
$ (1.D0+GAMMA*ABS(VREL))**2

C

C

IF ( ELMNR EQ . 6 ) THEN
TFORCE = BETA*TFORCE
SPDAMP = BETA*SPDAMP

ENDIF

B.3 1-DOF drill string model (ndspro . f)

d_1 : f -free
d_2 : eta_
d_3 : theta
d_4 : zeta
d_5 : eps

force = 2*zeta*tvelta - T_c

I T_c
I
- theta
I . .
I . . .
I . . . .
I . . . . .

. .+ . . . . .+----------+---+-----------
01 eta_ eta_ eta_ tvelta
I -4*eps -eps

-T_c = 0 if tvelta <= eta_-4*eps
theta*(tvelta-eta_)*(tvelta-eta_+4*eps)'3/(27*eps"4) else

ETA = DESVL(2)
THETA = DESVL(3)
ZETA = DESVL(4)
EPS = DESVL(5)
TFORCE = 2 .D0*ZETA*TVELTA
SPSTIF = O .DO
SPDAMP = 2 .D0*ZETA
IF ( TVELTA GT . ETA-4.D0*EPS ) THEN

TFORCE = TFORCE + THETA*(TVELTA-ETA)*(TVELTA-ETA+4 .D0*EPS)**3/
$ (27.D0*EPS**4)

SPDAMP = SPDAMP + 4 .D0*THETA*(TVELTA-ETA+EPS)*
$ (TVELTA-ETA+4 .D0*EPS)**2/(27 .D0*EPS**4)
END IF

C
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