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Abstract

Due to the decreasing prices in semi conductors the induction motor is getting more and more
popular for controlled speed or position applications.
The induction motor is a nonlinear system and not all state variables are necessarily measur­
able. The parameters, especially the rotor resistance, vary significantly from their nominal
values.
Field oriented control is applied to decouple the control inputs. The first problem is to con­
trol Te , the electrical torque. This is a function of different parameters which are nonlinear
dynamically coupled. The Dynamic Contraction Method (DCM) is applied to the AC-motor
to control Te . This is a method similar to Nonlinear Inverse Dynamics (NID) but it can be
used in systems with uncertain parameters. A comparison between PI and DCM was made
if the input was stepwise. In this case the DCM controller was superior.
After controlling the current and flux with DCM controllers, the motor is described by a two
integrator problem with an extra time constant. The goal of this report is to solve this system
as a pure two integrator problem without taking resort to the two integrator problem with an
extra time constant, which is considerably more difficult to solve and implement. The time
optimal solution consists of two intervals of maximum positive/negative electrical torque.
This results in maximum acceleration/deceleration. If the position error is large enough there
is a third interval with maximum speed and zero acceleration.
If the system can be approximated by a two integrator problem depends on the motor pa­
rameters. As will be shown our motor can be approximated by the two integrator problem.
Two control structures, a non-feed forward and a feed forward, which solve the two integrator
problem are presented. The non-feed forward structure is superior for larger position errors
if torque is not known. This last structure is compared with a control structure from [1].
The article control structure had some disadvantages. Our current and flux controller can
use higher gains which result in smaller steady state errors and higher robustness.
As last part of this thesis observers are applied to the motor. The most problematic part is
the estimation of the flux angle, if the rotor resistance is different than assumed. All other
estimations depend on the proper observation of the flux angle.
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Chapter 1

Introduction

The last 25 years there was a fast development of new power semi-conductors, digital signal
processors and digital electronics. Due to the availability of these new devices and the price
decrease a lot of research is done in the field of controlling AC-drives.
The AC-drive has several advantages above the DC-drive. The AC-drive is brushless and
therefore maintenance free (no replacing of the brushes), and has a cheaper construction.
This all makes the AC-drive very popular. Therefore it is gradually replacing the DC-drives
in applications with controlled drives. However controlling the AC-drive is much more com­
plicated than the DC-drive. It is a nonlinear system and not all state variables are necessarily
measurable. The parameters, especially the rotor resistance, vary significantly from their
nominal values. The controllers should be robust against these effects. In the DC-drive the
electrical torque can be controlled directly by the rotor current however this is not the case
in the AC-drive. This all makes it a real challenge to control it. Field oriented control is
used on the AC-drive to keep the flux constant. The AC-drive control is now similar to the
DC-drive control.
Different approaches have been successfully applied to the AC-drive, sliding mode controllers
[2], adaptive controllers [3], and maximization of torque [4].
The motor can be used in different applications. For example in elevators, cranes, or even in
not so humane application as a large ammunition loader as described in [5]. The applications
can be split into two categories. One with symmetric and one with non-symmetric torque.
Friction, or horizontal movements of ballast cause symmetric torque. A typical non-symmetric
torque occurs in cranes, and elevators. The non-symmetrical problem is more difficult to con­
trol as the torque will not always act in opposite direction of the desired movement. This
problem is therefore most interesting, and will be analyzed in detail in this report.
Assuming that Te is controlled, the motor equations are given by:

dO
(1.1)- w

dt
Jdw = Te - T[,

dt

with J inertia, Te electrical torque, and T[ load torque. A motor has several electrical and
mechanical limits, which can be translated to speed and acceleration limits. This system can
be solved. The time optimal solution consists of two intervals of maximum positive/negative
electrical torque. This results in maximum acceleration/deceleration. If the position error is
large enough there is a third interval with maximum speed and zero acceleration.

1
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Figure 1.1: AC-motor control problem

In the AC-drive Te is a function of different parameters, which are nonlinear dynamically
coupled. The first problem is to control the Te . The electrical torque can not be changed
stepwise, as the motor is a two integrator system with an extra time constant. The goal of
this report is to solve this system as a two integrator problem without taking resort to the
two integrator problem with extra time constant, which is considerably more difficult to solve
and implement.
In [1] the control problem is solved with PI controllers which can not use as high gains as in
our setup.
Recently a new nonlinear control method, the Dynamic Contraction Method (DCM), was
developed [6]. Good results were obtained by applying this method on an airplane control
problem [7]. This method offers good performance and works well in uncertain nonlinear
systems. The DCM method will be applied to the AC-motor to control Te .

There is assumed that position, and the drive currents are measured. It would be much
cheaper to observe position too, but this will degrade our control performance. Flux, fiux­
angle, speed and torque are observed.
The drive parameters are normally not know. There is assumed that these are known. The
identification of these parameters is an other problem, and this will not be treated here (see
[8]). The parameters of [3] are used in this report. In chapter 2 the AC-motor model and
field oriented control is introduced. In chapter 3 the Dynamic Contraction Method (DCM)
is introduced, and applied to the induction motor. The control problem can be split in
two different parts as shown in figure 1.1. In chapter 4 the innerloops are analyzed and a
comparison is made between DCM and PI controllers. In chapter 5 a time optimal control is
designed (the outer loops). In chapter 6 observers are added. The induction motor model is
simulated in Simulink TM.



Chapter 2

The induction motor

2.1 Introduction

A mathematical model for a sinusoidally wound induction motor is presented in this section.
This model may also be used for squirrel cage rotors. If the inverter is operating at her voltage
maximum limit, the voltages are no longer sinusoidal. This model can also used with these
non sinusoidal signals.
After modeling, the theory of field oriented control is introduced and applied to the AC-drive.
There is assumed that the AC-drive is fed by a voltage source inverter. This type of inverters
have a good dynamic performance and smooth operation at stand still, therefore it is ideal
for servo applications.

2.2 Modeling the AC-drive

An induction motor normally consists of three stator windings and three rotor windings.
Kraus and Thomas [9J introduced a two phase equivalent representation which is used in this
report. The stator current is can be written as:

. () . . j{ . j2, . . .
Zs t = Zsl + Zs2 e + Zs3e = Zsa + JZsb

i: = C::) =is1 (~) +is2 (~A) +is3 (-~~)
This can also be rewritten as:

where matrix Ap is given by:

(2.1)

(2.2)

(2.3)

(2.4)

The factor J2/3 ensures power invariance of a three-phase system with the two-phase equiv­
alent. The inverse transformation can be calculated from AJ. The two phase equivalent will
be used to model and simulate the motor. As the motor's power is supplied by a Voltage

3
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USQ

;'"I

Usb

Figure 2.1: Schematic representation of a 2-phase induction motor

Source Inverter the control inputs are stator voltages. The dynamics of the induction motor
are described by:

Rsisa +
d'lj;sa-- = Usa

dt

Rsi sb +
d'lj;sb-- = Usb

dt

Rrird, + d'lj;rd' = 0
dt

Rrirql + d'lj;rql = 0 (2.5)
dt

Us = stator voltage [V]
R= resistance [fl]
'lj;= flux [Wb]
w= speed [rads- 1]

np= the number of pole pairs
(a, b) denotes the components of a vector with respect to a fixed stator reference frame. (d', q')
denotes the components of a vector with respect to a frame rotating at speed npw.
The angle-speed condition is given by:

d6
dt = npw (2.6)

6(0) = 0
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The vectors (ird" irq' ), ('l/Jrd' , 'l/Jrq') in the rotating frame (d', q') are transformed to the vectors
(ira, irb), ('l/Jra, 'l/Jrb) in the stationary frame (a, b).

(
'l/Jrd' )
'l/Jrq'

( ~rd' )
~rq'

[
cos(0)

- sin(o)

[
cos(0)

- sin(o)

sin(0)] ('l/Jra)
cos(o) 'l/Jrb

sin(0)] (ira)
cos(0) irb

(2.7)

Applying the transformation matrices (2.7) to Eq. (2.5) and using Eq. (2.6) gives:

. d'l/Jsa
Rs~sa + & = Usa

. d'l/Jsb
Rs~sb + ill = 'Usb

. d'l/Jra
Rrtra + & + npw'l/Jrb = 0

. d'l/Jrb
Rrlrb + ill - npw'l/Jra = 0

If saturation and iron losses are neglected the fluxes can be written as:

'l/Jsa = Lsisa + Mira
'l/Jsb = Lsi sn + Mirb
'l/Jra = Lrira + M isa
'l/Jrb = Lrirb + M isb

Eliminating ira, irb and 'l/Jsa, 'l/Jsb in Eq. (2.8) by using Eq. (2.9) gives:

(2.8)

(2.9)

(2.10)

In Eq. (2.10) the W terms are the speed voltage terms. Multiplying the speed voltage terms
with their phase currents and adding these two terms gives the power absorbed in the rotor.

(2.11)

(2.13)

The rotor power equals:
Protor = wTe (2.12)

Where Te is the electrical torque. Eliminating the rotor currents using Eq. (2.9) (2.12) gives:

Te = nr: ('l/Jraisb - 'l/Jrbisa)
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Substituting (2.13) in the well known torque equation

gives:

(2.14)

(2.15)

where TL is the load torque. Rearranging Eq. (2.10) and adding the torque Eq. (2.15) gives
the 6th order asynchronous motor model:

dB
dt

dw

dt
d'l/Jra

dt
d'l/Jrb

dt
di sa
dt

disb
dt

w

(2.16)

These equations can be rewritten in the form:

with

dB
dt

dw

dt
d'l/Jra

dt
d'l/Jrb
dt

di sa
dt

di sb
dt

w

-ry'l/Jrb + npw'l/Jra + ryMisb

1
ry{3'l/Jra + {3npw'l/Jrb - ,isa + -LUsa

a s

-{3n pw'l/Jra + ry{3'l/Jrb - ,isb + L
1

Usb,
a s

(2.17)



2.3. FIELD ORIENTED CONTROL

Table 2.1: AC-drive parameter

Rs stator resistance 0.18 n
Rr rotor resistance 0.15 n
Ls stator inductance 0.0699 H
Lr rotor inductance 0.0699 H
M mutual inductance 0.0680 H
J rotor inertia 0.0568 kgm'L

np number of pole pairs 1
T electric motor torque 15kW

Table 2 2· Constants
a 0.0536

TJ 2.1459

~ 259.5

f-l 8.3, 85.89

Rr
TJ -

Lr

(3
M

aLsLr

f-l
npM

JLr
MZRr R s (2.18), = --+-
aL~Ls aLs

Eq. (2.17) is called the a - b motor model. The most commonly used approach is to keep flux
constant using field oriented control. This eliminates the coupling between the two control
inputs, Usa and Usb. The parameters of2.18 have a known meaning. a is the total leakage
factor, 1/rJ is the rotor time constant, 1/(3 a parameter. 1/f-l= the mechanical constant, 1/,
the stator time constant.
The AC-drive parameters given in table 2.1 are used in simulation in this report.

2.3 Field oriented control

The idea of field oriented control is from Blaschke [10J. The AC-drive is controlled in such a
way that it behaves like a DC-drive. With coil 1 a constant field is generated. To produce
torque, current is applied to the rotor. The rotor, coil 3 produces a field which is perpendicular
Ito the field generated by coill. This brings the field out of the ideal position. This is unwanted
Ibecause the torque will decrease. Compensating this by coil 2 (iz = -i3) keeps the field into
lideal position.
IThe situation in the AC-drive is different. In the AC-drive the rotor current is caused by the
difference in electrical stator frequency and the mechanical rotor speed. Current is a lied
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Figure 2.2: Schematic representation of a drive

d ;,xis Field frame

/ / / d' .q.xis Rotor frame
.... .-.-

p
--'yc.:-__----L'----.l....-----"-a_axis Stator frame

g'. a,xis b axis
g allIs"

\ '

\ " Is
\ '.

\ ,
\ \.

Figure 2.3: Relation between the different coordinate systems

to stator coil 2. As the current rises in coil 2 a reverse current is generated in the rotor coil.
First the current in the rotor is exactly opposed to the current in coil 2. This is the same
situation as in a DC-motor. However the rotor induction current will change the field and
bring it out of ideal position. To keep the ideal situation the current in coil 1 and 2 have to
be changed in such way that the field is again perpendicular to the rotor current. This is the
idea of field oriented control.
The currents can be transformed to two currents i d and i q which are perpendicular and parallel
to the field.
The following transformation is called the DQ transformation:

[

COS P
- Slllp

[
cosp

- Slllp

(2.19)

(2.20)

'l/Jaia + 'l/Jbib
~d

I'l/JI
'l/Jaib - 'l/Jbia

~q

I'l/JI

'l/Jd J'l/J~ +'l/Jl = I'l/JI
'l/Jq 0 (2.21 )
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Usl U s2 U s3

AC-drive

IDQ
/+--

p

Figure 2.4: Block diagram of induction motor in field coordinates

The information about p can be obtained by an observer.

'lj;b
P = arctan 'lj;a (2.22)

Applying this transformation to Eq. (2.17) and translating the field oriented control to the
following state feedback

gIves:

dJ..u

dt
d'lj;d
dt
did
dt
diq

dt
dp

dt

(2.23)

(2.24)

This model is called the d - q model or d - q coordinate system. Eq. (2.24) is implemented
in a Simulink™ S-function. (For the S-function see Appendix D) The AC-drive structure to
be controlled is shown in figure 2.4.

2.4 Limitations in the model

Saturation is not modeled, but it is possible. In this case a good approximation can be ob­
tained by measuring the saturation curve and linearize it in different pieces. This is described
in [11 J. In the model a lumped inertia is used. Especially in elevator and crane systems, where
the rope is elastic this is not true, and much more complicated. In this case extra equations are
needed to describe the elastic rope between the elevator mass and the motor mass. Another
non-ideal effect appears when the induction motor is supplied with non-sinusoidal waveforms
[8J the rotor resistance will increase and the inductance will decrease due to the skin effect.
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2.5 Mechanical basics

In a motor systems it is important to know some mechanical background. The elevator system
is used as an example in this section. The real elevator system is more complex, than the
simplified simulation model. The ropes and the elevator can be seen as a mass-spring system.
The torque does not only dependent on the load, but also on friction. In our case the system
is simplified to a stiff system with 'stiff cables', and friction is neglected. In this case the mass
of the elevator can be added into the motor's inertia. The effective inertia can be calculated
as follow:
Newton's law for rotational motion is given by:

(2.25)

with
Te = electrical torque
'T[= load torque
J= inertia

The inertia can be calculated from the following formula:

(2.26)

with m the mass.

Figure 2.5: Elevator system

Figure 2.5 shows our simplified elevator system. Assuming no friction, backlash or slip Eq.
(2.25) gives for the motor wheel:

(2.27)

The elevator mass can be simplified to a point mass at radius r2. Using Eq. (2.26) gives:

Applying Eq. (2.25) to wheel 2 gives:

h = Jr 2 +mr~ (2.28)

(2.29)
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Since the two wheels are in balance and there is no slip, h = - hand -rlWl = r2w2·
Eliminating h in Eq. (2.27) with:

hdw
h = -d-+ mg

r2 t

gIves:
dWl rf dW2 dw]

T. - mgrl = J1- + - J2 - = J1 -
e dt r~ dt e dt '

with

11

(2.30)

(2.31 )

(2.32)
2

r1 ( 2)J1e = J1 +"2 Jr2 + mr2 .
r2

The effective inertia in the simplified case depends on the elevator mass, and the inertia of
wheel 2. The effective inertia seen by the motor will therefore be larger than the inertia of
the rotor itself.



Chapter 3

Nonlinear control

3.1 Introduction

In this chapter the Dynamic Contraction Method is introduced. It is a nonlinear control
method, which is based on designing desired trajectories for systems.
Vectors and matrices are represented by the characters in bold. Let us consider a nonlinear
time-varying system in the following form:

Y

f(t,x) + B(t,x)u(t),

g(t,x)

x(O) = Xo (3.1)
(3.2)

where x(t) is an n-dimensional state vector, y(t) is a p-dimensional output vector and u(t)
is a p-dimensional control vector.
Each output Yi can be differentiated 0:i times until the control input appears. Which results
in the following equation:

y* = c*(t, x(t)) + B*(t, x)u, x(O) = Xo, (3.3)

h - [(cq ) (02) (op)]were y* - Yl , Y2 , ... , YP .

Assume that a reference model for transients of y~Oi) (t) is given in the following vector differ­
ential equation:

y;Oi)(t) = Fi(Yi(t), Ti(t)),

where Fi is called the desired dynamics of Yi(t), ri the reference input, and

[
(1) (Oi-1)]'

Yi'Yi 'OO"Yi

[
(1) (Pi-I)]'ri,ri , ... ,ri

(3.4)

(3.5)

In case the components y~oil are mutual independent and the control inputs Ui are decoupled
the ith element of Y* could be written as:

(a;) _ (ai -1) b (Pi -1) bYi --aoi -lYi ... -aOYi+ oi-1ri + ... + Ori

The difference between the desired and the actual response of the system is defined as:

13

(3.6)

(3.7)
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The control system to be designed must provide the following condition:

lim .6. = 0
t--+oo

(3.8)

The control problem can be solved with the following Nonlinear Inverse Dynamics (NID)
control algorithm u(t) = ua(t):

ua(t) = B*(t, x)-l[F - c*(t, x(t))] (3.9)

However this control law may be used only if there is complete information about disturbances,
model parameters and the state of the system. The algorithm has therefore no real practical
value.

3.2 The Dynamic Contraction Method (DCM)

Assuming that u(t) changes much faster than x(t), y(t), and r(t) our control problem can be
translated into a two time scale problem. One for the fast motions (the control) and one for
the slow motions (the states). The new fast time scale is defined as:

(3.10)

where J.L is a small positive parameter. Let us introduce nonsingular matrices K a, and K 1

whose meaning will be discussed later. K 1 is usually a diagonal matrix. In the next equation
the new control input v is defined as:

The following equation was discussed in [6]:

P,q Dqu(q) + p,q-1 D q- 1u(q-1) + ... + p,D1u(l) + Dau = k.6., '11(0) = ua,

(3.11)

(3.12)

with p, = diag{J.L1, J.L2, ... ,J.Lp}. J.Li are small positive parameters, and D q-1, ... ,Da are diag­

onal matrices and u(t) = [u', u(1)', ... , u(q-1)']'. Us~ng Eq. (3.11) for each ith component

can be written:

Vi(O) = Vi,a, (3.13)

. _ [. (1) (qi-1)]'where V t - V t , vi , ... , vi . Assuming that qi ~ C¥i the system is proper and realizable
without differentiation.

3.2.1 Fast motions

From equations (3.1), (3.3), (3.7), (3.11), (3.12) the closed loop system can be rewritten as:

x = j(t,x) + B(t,x)KaK 1v, x(O) = xa
p,qDqv(q) + p,q-1 v (q-1)D q_1 + ... + p,D 1v(1) + rv

=k[F-c*(t,x)], v(O) = Va,

where r is defined as:

(3.14)

r = D a+ kB*(t,x)KaK 1, (3.15)
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Taking lim /-L -+ 0 and returning to the primary time scale using t = /-LT we obtain the fast
motion time system which is defined by:

0= f(t,x) + B(t,x)KoKlv, x(O) = Xo
p,qDqv(q) + P,q-lv(q-l)Dq_l + ... + p,Dlv(l) + rv

=k[F-c*(t,x)], v(O)=vo,
(3.16)

where F - c*, and x is assumed to be constant if there is good time separation between the
fast and the slow motions.

3.2.2 Slow motions

The slow motion system is found by taking the lim /-L -+ 0 using equations (3.3), (3.11), (3.14).

y* = F + k-lDo [k- l Do + B*(t,x)KoKlr
l

[c*(t,x) - F]

The steady state of the fast motion time system is defined by:

(3.17)

V S = kr- l [F - c*] (3.18)

Using u a = K oK 1va(t) can be rewritten into the following form:

V
S va+r-lDo[B*KoKlrl[c*(t,x)-F]

= va+A[c*(t,x)-F],

(3.19)

where va is the NIO solution.
If Do = 0 or Do i- 0 but k -+ 00 then V S = va and y* -+ F. (Eq. (3.9)). The OCM method
will converge to the NIO solution.

3.2.3 Conclusions

The OCM method can be used in systems with incomplete information and varying param­
eters. The matrix K 0 is often chosen as B-1 to simplify the equations. Matrix K 1 can be
used to tune the control inputs.

3.3 Applying the DCM to the induction motor

The goal of this section is to apply the OCM method to our MIMO motor system, and design
a current and flux controller. Rewriting the motor equations (2.24) in states space gives:

(3.20)

o
o
1

crLs U,
1

crLs
o

+x=

/-LX2 X4 - If­
-ryx2 + ryMX3

x 2

-'X3 + ry(3x2 + npxlx4 + ryM~
X2

-,X4 - (3npxlx2 - npx lx3 - ryMX~~4

npxl + ryM X4
X2

with Xl = W, X2 = 'l/Jd, X3 = id, X4 = iq, X5 = p, Ul = uq, U2 = Ud, Yl = iq, and Y2 = 'l/Jd·
Assuming that iq is measured, differentiating once gives:

(3.21 )
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There is assumed that 7fJd is a measurable output. Later in chapter 6 an observer for 7fJd is
constructed. The flux dynamics are given by Eq. (2.24):

(3.22)

Differentiating the flux output two times gives the differential equation with the control input.

Y2

Y2

Y2

7fJd

. dX2 M
X2 = - = -ryX2 + ry X3

dt
-ryx2 + ryMX3

ry(X2 + X3)

x 2 1
+ryM(-,x3 + ryf3x2x3 + npx lx4 + ryM ---.! + -Lud

X2 u 5

(3.23)

Equations (3.22) and (3.23) are rewritten into the following form:

y* = c*(t, x) + B*(t, x)u,

with

(3.24)

c*(t, x)

B*(t, x)

[
-,X4 - f3npxlx2 - npXlX3 - ryMX3X4/X 2]
ryM( -,X3 + ryf3X2 + npXlX4 + ryMxVX2)

[
0 l/(ULs )]

ryM/(uLs ) 0 .

(3.25)

J-L2 D 2v(2) + J-Ll Dlv(l) + Dov + B* (t, x)KoK1v

J-L2 D 2v(2) + J-L 1D l v(1) + rv

k [F - y*] (3.26)

k[F - c* - B*(t,x)KoKlV]

k [F - c*]

k [F - c*],

r = Do + kB*(t, x)KoKl .

Using K 1 = I, and K o = (B*)-l, Eq. (3.27) can be written as:

r = Do + k

3.3.1 Designing the desired trajectories

The current trajectory
Defining the desired trajectory as:

r - aoy - Ty = 0

(3.27)

(3.28)

(3.29)
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With Eq. (3.12) the current controller equation becomes:

p,d1i.J + dov = k [1' - O:oY - TY]

Rewriting this in the form with d1 = 1 and 0:0 = 1 gives:

v(s) = k [ 1 1'(s) _ (1 + TS) y(s)]
p,s + do p,s + do

The flux trajectory
Using Eq. (3.6) for q = 2 the form of the desired trajectory can be written as:

17

(3.30)

(3.31)

(3.32)

These parameters make not much sense in this form. Therefore mostly second order systems
are written in the following form:

In differential form this is:

k
H (s) = -T-"--2s---'2'-+-2-0:-T-s-+-1

2 dy2 dy
T -2 + 20:T - + Y = kv

dt dt

(3.33)

(3.34)

The parameters of (3.33) have a known meaning, T is the time constant and 0: is the damping
of the system.
The flux controller equation can be written as:

(3.35)

3.3.2 Controller design

The parameters that determine the fast dynamics of the controller can now be chosen.
The current controller
The characteristic equation for the current equation can be written as (see Eq. 3.27):

p,d1S + do + k = 0,

with do = 0 and p, = 1 this equation can be written as:

d1
kS + 1 = 0

P,iA + 1 = 0

d1
P,i = k'

using
k'

k- -- ,
Tc

and d1 = 1 gives:
Tc

P,i = k"

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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To have a good time separation the following condition must be fulfilled:

(3.41 )

In table 3.1 some current controller parameters are given which will be checked later.

Table 3.1: DCM-current controller parameters

case I case II
Ti 1e-3 1e-3

J1 1 1

do 0 0
d1 1 1
k' 50 25

l

The flux controller
The characteristic equation for the flux controller is:

(3.42)

This equation can be rewritten in the following form:

(3.43)

with

and

d01jJ = d1 jdo+ k1jJ.
do + k1jJ

To have a good time separation the following condition must be fulfilled:

(3.44)

(3.45)

(3.46)

Some values which fulfill this equation will be simulated later and are given in table 3.2.

Table 3.2: DCM-flux controller parameters

case I case II

T1jJ 1e-2 1e-2

J1 0.001 0.01
do a a
d1 1.4 1.4
k1jJ 1.6 1.6



Ch.apter 4

Design of inner loops

4.1 Introduction

In this chapter the inner loops are analyzed in more detail as was done in chapter 3. It
consists of two parts. The first part analyzes the current controller and the last part the flux
controller. The influence of different disturbances are analyzed for both controllers. There is
explained how to choose the parameters of the DCM controllers and why the DCM controller
is better than normal PI.

4.1.1 Analysis of the current controller

To give some guidelines on how to choose parameters the current equation is translated to a
model where the non-linear terms are collected in a disturbance term.
The current equation with i q was:

(4.1)

The terms - (3npw1./Jd - npwid are called the speedterm. Assuming that the flux is between
1./Jd = 0.1 ... 1 Wb, constant and using

(4.2)

gives:

Eq. (4.1) can be rewritten as:

diq . . 1- = (-"I - '11)z - ((3M - l)n WZd + -udt / '/ q p aL q
s

(4.3)

(4.4)

Taking w = 0, the speed term is zero. The system reduces to a linear equation. The system
is shown in figure 4,1. With 71 = 1/{, + 1]), d(s) = ((3M - l)npwid and B l = (r+l1)\aL

s
) '

The block B l l is used to normalize the gain, and is the new input for the controller. The
parameters relevant for the current loop are given in table 4.1. If the drive is turning the
speed term is no longer zero, and forms an important disturbance in the system. In this case

19
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d(t)
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Uq

Figure 4.1: Block diagram of current model with the nonlinear terms collected in the distur­
bance term

Table 4.1: Current dynamics parameters

Parameters Values

I 85.8927
Tj 2.14
np 1
(J 259.5321
T1 11.4e-3
B1 3.0303

changing J-L or k has the same effect, therefore J-L is chosen 1. Choosing do = 0 the controller
contains an integrator. With J-L = 1, do = 0, the DCM controller equation (3.31) becomes:

[
1 TeS + 1 ]u(s)=k· :;.r(s)- s ·y(s) (4.5)

For the sake of analysis the DCM controller is defined by Eq. (3.30) and is of order one. The
DCM controller can be translated to a PI controller with a filter at the reference input. The
block diagram in figure 4.2 is equivalent to Eq. (3.31) only for zero initial conditions and its
order is two.

Using the model of figure 4.1 the influence of measurement noise and speed disturbances are
examined. The current plant model is shown in figure 4.3. The controller is translated to the
general PI form:

u(s) = k TeS + 1 = k,TeS + 1 = k'(l + _1_),
S ~S ~S

(4.6)

with k' = kTe.
The two different time scales in the system are seen in this figure. The filter is the slow time
scale, and the control loop the fast time scale.

r(t) 1
T c s+l k' STC+ 1

S

u( t)

y(t)

Figure 4.2: The DCM-controller translated to PI with pre-filter
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d(t)

21

u(t) B-1
1

y(t)

n(t)

~H k' ]'<-1'--~~ ~
Figure 4.3: The current plant

Response time:
Assuming zero noise and zero disturbances Eq. (3.31) gives:

y(S)

y(S)

y(S)

k' 1 [~r(s)_STe+1y(s)]
Te(ST1 + 1) S S

k' 1 . r(s)
TeS(STI + 1) + (STe + l)k'

1
2 2 ·r(s),

fLn S + 2dnfLnS + 1

(4.7)

(4.8)

(4.9)

with fLn = V T1Te!k', and dn = (k' + 1)!(2vfki).
With large enough gain this equation reduces to:

1
y(s) = (ST

e
+ 1) . r(s) (4.10)

and is independent of the plant time constant T1. When k is large enough the system can be
made faster by decreasing T e.

With Te the filter time constant and VT1 Tel k' the fast motion time constant the time scale
separation can be defined by TelV(TlTelk'). The controller is well tuned ifthere is sufficient
time scale separation.

Speed term disturbance:
Most of the time the motor is accelerating or decelerating. Therefore the speed terms form
a ramp wise disturbance (d(s) = (13M -1)npid!s2). The steady state error due to the speed
ramp is defined by:

y(S)

lim S • Y(s)
s-+o

(4.11)

(4.12)

(4.13)

The gain k' must be large enough to minimize the speed term disturbances which cause a
steady state error.
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Figure 4.4: The complementary sensitivity function for the current plant, k'=50 and T e =le-3

Sensor noise:
The complementary sensitivity transfer function is defined by:

C(S = y(s) = k'(STe + 1)
) n(s) TeS(STl + 1) + (TeS + l)k'

(4.14)

If T e equals to T1 the closed loop system reduces to a first order system and the complementary
sensivity equation reduces to:

1
C (s) = -I<;.-s-+-l

k'

(4.15)

The complementary sensitivity function in figure 4.4 shows the plot for the second order sys­
tem.
Eq. (4.11) and Eq. (4.15) confront us with a classical problem. The gain must be large
enough to track the reference trajectory, and have a small steady state error. Choosing the
gain larger, the system becomes more sensitive to high frequency noise. As always it is looking
for a compromise between robustness and sensitivity. Noise is not simulated, because we do
not know in what frequency area noise will be important. Another practical reason for not
simulating noise are the long simulation times in Simulink™.

The time scale separation is easily seen from the root locus plot, with o=the zeros, x=the
open loop poles, +=the closed loop poles. Figure 4.5 shows the root locus if the controller
zero cancels the current pole. The closed loop pole for our gain Pel = -42000 is not displayed
in this picture.
If the controller zero does not cancel the current pole (Te smaller for faster response) the root
locus will look like figure 4.6. Making the system faster makes the damping worse if the gain
is not increased (see also Eq. 4.9). This is due to the larger circle radius for smaller Te .

The following design rules can be defined:

• To have a steady state error equal or smaller than P percent in iq :



4.1. INTRODUCTION

150,
I

-----,

23

-so

_500,
I

l00~
I

1

sol

~ I
~ or--------------------*
• iI I

-sol 1
-1'Or

i J
_ISO----- - ---~~. -~-----

-300 -250 _200 _150
AealAKls

Figure 4.5: Root locus if the controller cancels the current pole

I

1
1

-'ooor J
-lS00~ - ---~-.~-_.-~-~-~-

-3000 -2500 -2000 -1500 -1000 -500 0

Figure 4.6: Root locus if the controller does not cancel the current pole
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Figure 4.7: Simulation plot for k'=50 and different T c =.2e-3 (dashed), .5e-3 (dash-dot), 1e-3
(solid), 2e-3 (dots).

(4.16)

• If the controller zero cancels the current pole:
T = Tc! k' ::; O.ITI

General:
Tn = V"'(TlTc!k') ::; O.ITl

• If the controller zero does not cancel the current pole:
dn = (k' + 1)/(2V"'(k') > 0.5, no large bumps in 0(8) characteristic, and good damping
of the fast motion system.

• Noise sensitivity:
Tn > Tnoise

Figure 4.7 shows the simulation result for different Tc and constant k. From figure 4.8 the
influence is shown for choosing different values of k. If the controller is too slow to realize
the fast current dynamics, this results in overshoot in the current. The controller parameters
are shown in table 4.2. Changing T c has the most influence on the responses of the current
controller. The controller responses are almost the same for the different k' values. For larger
k' the system follows better the trajectory, is more robust against disturbances, and has a
smaller steady state error.

4.1.2 Conclusions

As shown viewing systems in different time scales is a good start for designing a control. The
principle of separation in different time scales works.
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Figure 4.8: Simulation plot for different k' and constant T, Tc=le-3, k'=30 (dashed), k'=50
(solid), k'=75 (dots), k'=lOO (dash-dot).

Table 4.2: DCM current controller parameters

Parameters Values
do a
f..L 1
a 1
Tc le-3
k' 50
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Table 4.3: Simulation parameters, in comparison between PI-DCM

Tdem 10e-4
DCM gain 50

TpI Tl =11.4e-3
PI gain 10

The first order DCM controller can be translated to a PI controller with prefilter. The
current system can be analyzed by a linear system with a disturbance term which contains
the nonlinear terms. Some basic calculations can then be made on how to choose parameters.
We distinguished two different cases: a first order and a second order case. The two root
locus plots are different. In the first case the system had no complex poles, and in the second
case it has. Therefore the first case can not be used to approximate the system if Te i- Tl.

If the guidelines for designing the controller are followed the system will follow the disered
trajectory.

4.2 Comparison between PI and DCM

There are some important differences between normal PI and a DCM controller. In the DCM
case the controller design is based on predefined trajectories which is not the case with normal
PI. The difference is that the DCM controller controls the error between the output and the
desired trajectory. The PI controller is based only on controlling the error between input and
output to zero.
The PI controller equation is:

1
u(s) = k(l + -),

TeS
(4.17)

T e is chosen to cancel the current pole.
Increasing the gain in the PI case will speed up the response time. The close loop equation
IS:

H(s) / __I_
e - ,%s + 1

(4.18)

In DCM case this equation is an approximation, in PI it is exact. To make a good comparison
between PI and DCM the time constants should be the same. To have the same time constant
as in the DCM case (Tdem = Ie - 3), the PI gain must be kP1 = 10. Normally in PI controller
design no prefilter is used. If step responses are used in PI case to tune the controller the
gains can not be as high as in the DCM case otherwise the PI controller oversteer the stator
voltages. This means a slower system. The prefilter prevents the DCM controller against step
inputs and therefore the DCM control structure makes no spikes. Another difference is the
indepancy of gain and time constant in the DCM case. The gain in DCM controller can be
higher than in the PI case for the same time constant. This makes the DCM controller more
robust agains disturbances, and causes a smaller steady state error.
A simulation in Simulink™in figure 4.9 shows this effect. The steady state error is larger
than in DCM case.
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Figure 4.9: Comparison in responces between PI-DCM, dashed=DCM and dashed-dot=PI

4.2.1 Conclusion: DCM controller is better than PI controller

As in the DCM controller higher gain can be used with the same time constant it will have
better performance than a conventional PI controller. As shown in figure 4.9 the PI controller
introduces spikes in the control signals if steps are applied to the controller input. In DCM
case the control signal is still smooth.
The DCM controller will therefore be superior to a conventional PI controller.

4.2.2 Analysis of the flux controller

From Eq. (2.24), the equations for flux and current are:

(4.19)

These equations are translated into the block diagram of figure 4.10 with the disturbance
term d(t) = npwiq+ TJMi~/'l/Jd' In table 4.4 the parameters of the flux system are given. The
transfer function of the open loop flux system is:

(4.20)

The time constants of this system are given by 71 and 72. The time constant of the id is much
smaller than the time constant of'l/Jd' Therefore we can use d'l/Jd/dt = 0 which simplifies flux
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M
s/1]+l

'l/Jd

system to:

Figure 4.10: Block diagram of the flux dynamics

Table 4.4: Parameters of the flux system

Parameters Values

'T/ 2.1459

'Y 85.8927
(3 259.5321

71 11.7e-3

72 476e-3

B2 38.9298
M 0.0680

1h 11.6e-3

'T/{3 556

(4.21)

This equation shows that the response time of id is affected by the flux disturbance term
('T/M'l/Jd).

d(t)

B-1
2 (TIS+1)(T2 S+ 1)

Figure 4.11: Linear approximation of flux system

With 71 = lib + M'T/(3) , d(t) = npwiq+ 'T/i~/id' 72 = 1h and B2 = MI(b - 'T/{3M)aLs). The
block B;;l is used to normalize the gain, and is the new input for the controller. If i q = 0 the
disturbance term is zero. In figure 4.12 the second order DCM controller is shown, which is
translated to a controller and prefilter.
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r(t)
~-+I -.,.......,----,;----:- k

Tzs2+2aTc+1
/ls(/ls+ 2dl)

u t

y(t)

Figure 4.12: DCM flux controller

The flux dynamics and controller are displayed in figure 4.13. The system is analyzed by
examining the response time, steady state error and complementary sensivity function.

d(t)

v(t) B- 1
2

k

y(t)

r(t)

Figure 4.13: The flux plant

Response time:
The transfer function from reference input to output is defined by:

(4.22)

If lim/l---+o is used in Eq. (4.22) the slow motion system appears (the desired trajectory). The
fast motion part is represented by the part in the denominator which starts with T~ J-L •. '. k
must be large enough to follow the trajectory.

Speed term disturbance:
If we assume that the current i q is most of the time changing step wise this disturbance is
easily compensated by the controller. Again the influence of the speed term is more impor­
tant, The influence of the ramp wise speed disturbance (d(s) = np i q/s2 ) on the output is
seen from Eq. (4.23).

(4.23)

(4.24)

This results in:

()
2J-Ld1B2

Y s =
k

k must be large and J-L must be small to make the speed term disturbance small. The influence
of the ramp disturbance is smaller then in the current loop. This is caused by the J-L term
which is small.
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Figure 4.14: Bode plot of C(s) with (J..L = 0.001)

Sensor noise:
The complementary sensitivity transfer function is defined by:

C s) = y(s) = k(TZS
2 + 2aTe + 1)

( n(s) J..Ls(J..Ls + 2d1)(T1S + 1)(T2s + 1) + k(TZS2 + 2aTe + 1)
(4.25)

In case the system poles are canceled by the controller zeros the system can be simplified to:

k
C(s) = -J..LS----,(-J..Ls-+-2d-,--1-:-)-+--'--k

with J..Ln = J..L/../k, and dn = drl../k·
In figure 4.14 C (s) is drawn for the optimized controller.

1
(4.26)

(4.27)

To visualize the effects of changing parameters root locus plots are generated in the next
part. The most simple case is if the controller zeros exactly cancels the two poles of the flux
dynamics. The open loop system is:

k
H (s) = -,-------

J..Ls(J..LS + 2d1)

The term 2d1 / J..L is the fast motion pole. If the gain is high enough, the poles of the closed loop
system are on the asymptote. The following formula defines the location of the asymptote.

eYe = 2:~ Pi - 2:~ Zj , (4.28)
n-r

with Pi the open loop poles, and Zj the open loop zeros.
From Eq. (4.27) follows:

(4.29)
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For the system to follow the desired trajectory ae must be larger then liTe or in formula form:

(4.30)

In figure 4.15 the root locus is shown for this case, with o=the zeros, x=the open loop poles,
+=the closed loop poles. Increasing k will decrease the damping of the fast motion system.
This is an important difference between the first order and second order DCM, as in the first
order case this increased the damping. The time scale separation is obvious from this figure.
The fast motion poles are much faster than the desired reference.
More difficult is when the poles of the system are not canceled by the controller zeros. If
the poles and zeros are close the situation is comparable with the previous case. If not the
following is still true:
Using Eq. (4.28) gives:

-2ddp, - l' - TJ + a.IT
a e = 2 (4.31)

The parameter -2ddp, must be chosen in the same way as before. In this case the a.IT term
pulls the asymptote extra in direction of the origin. Therefore - 2dI Ip, must be larger to fulfill
Eq. (4.30). This is shown in figure 4.16. This last case can be simplified to the first case as
seen from the two root locus diagrams. This is handy because the second order case can still
be used to choose parameters.

The following design rules can be defined:

• For a smaller steady state error then p percent:
k > 2p,dIB2/(npiqp)

• Sufficient time scale separation:
General:
liTe ~ ddp,
If controller zero's cancel controller poles:
P,n = p,1,,[k ~ O.hl
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Figure 4.16: Root locus if controller zeros do not cancel flux poles. The upper picture shows
the total view of the root locus, the two other pictures are zoomed views of the upper.

• No high bumps in the C(8) and good damping:
dn = ddVk > 0.5
Tc > Tnoise

4.2.3 Simulation

To show the effect of changing p two simulations are presented, one with too large p and one
with properly chosen p. Figure 4.17 shows what happens if there is not enough time scale
separation (p not small enough). As i q = a no torque is produces, and the motor speed is
zero. The system reduces to a simple electrical network with a coil and a resistance. With
zero speed in steady state the flux and the current are constant. Ud is DC and therefore
Ud = idRs· The final value of Ud can be calculated by using 'l/Jd = Mid.
This gives

(4.32)

Figure 4.18 show the flux response for the optimized controller. From the simulations is
seen that a high stator voltage is only needed for transients when an acceleration of the
flux response is required compared with the uncontrolled system. An interesting aspect in
simulation to study is what happens if the flux is constant and i q is changing. Is the speed

'2

term npwiq the most important disturbance as assumed, or is ryt important in SOme cases?
To check this a step is made on i q with constant flux and zero speed (t = 0.5 s). Later the
same step is made with speed at a high value (t = 0.6 s, and t = 1.0 s). This is simulated
for two different values of 'l/Jd, 'l/Jd = 1 Wb and 'l/Jd = 0.1 Wb. From simulation, figures 4.19,

'2

4.20 is seen that decreasing flux will increase the influence of the term ry'!,cL. Especially the
td

difference in flux error at t = 0.5 sand t = 1 s makes clear that for 'l/Jd = 1 Wb the speed term
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Figure 4.17: Typical flux response with insufficient time scale separation (p. = 0.01)
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'2

is the most important disturbance. If'l/Jd = 0.1 Wb the influence of TJ'!,9.. is larger. This can be
2d

seen from the flux error at at t = 0.5 sand t = 1 s. The difference in error is almost the same.
This means that the speed term has not large influence on the flux error in this case. The
speed is still very low. Practically the speed term disturbance will always be most important.
The motor is not accelerated at low speeds with almost zero flux. The flux is reduced only
at high speeds (field weakening) to reduce inverter voltage and still increase speed.
The optimized controller fulfills our design goals. It is not sensitive to noise. T is chosen in
such way that the inverter voltage limit (V = 230V) is not exceeded 1 .

The controller parameters are presented in table 4.5.

Table 4.5: DCM controller parameters

Parameters Values
a 1
T 1e-2
do 0
d] 1.4

f.L 0.001
k 1.6

4.3 Comparison of second order DCM with PI

The flux is controlled with two PI controllers, one to control the current and one to control
the flux. This is shown in figure 4.21.

d(t)

PI

Figure 4.21: PI flux control system

The current controller is much faster than the flux controller. This is the most important
design rule in this system. The dynamics of the current loop can be neglected, and the sys­
tem behaves like first order. If two DCM controllers were used the same design rules can be
applied.
If this DCM system is optimally tuned, the system will behave like the second order DCM

IThe flux controller can be made more robust by increasing the gain and decreasing the controller time
constant



36 CHAPTER 4. DESIGN OF INNER LOOPS

controller. Maybe there is a smaller steady state error, which is caused by the extra infor­
mation from the current sensor. The loops can be analyzed the same way as in section 4.1.1.
The same reason can be used as before why this loop will work better with DCM controllers.
It is only shown here as an alternative solution.

4.4 Implementation of controllers.

For practical implementation the controller equations must be translated to the state space
representation.
The analog state space representation is used to implement the controller in Simulink™
S-function.

4.4.1 The current controller

Rewriting Eq. (3.31) to the following form and introducing the state x gives:

u(s) [1 + ~ s-l]

u(s)

u(s)

sx(s)

sx(s)

Using inverse transformation gives:

lIT 1 1-s- 1'(s) - -y(s) - -s- y(s)
f-l f-l f-l

T 1 [lIdo ]--y(s) + s- -7'(s) - -y(s) - -u(s)
f-l f-l f-l f-l
T

---y(s) + x(s)
f-l
lIdo
-1'(s) - -y(s) - -u(s)
f-l f-l f-l
1 1 doT do
-1'(s) - -y(s) + -y(s) - -x(s)
f-l f-l f-l2 f-l

(4.33)

Introducing the new state x = T/ f-l gives the desired state-space form:

(4.34)

x

v

4.4.2 The flux controller

do 1 do
- -x + - [1' - y] + -y

f-l T f-l
kT
- [x - y]
f-l

(4.35)

First (3.35) is translated to a transfer function and written in the form:

[

82 + 20: S + 1 1 ]
_ J.L2 TJ.L2 T2J.L2 T'lilX

V(s) - k s2 + ~s + ~ y(s) - s2 + ~s + dO 1'(s)
J.L J.L J.L JlI

(4.36)
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Using appendix C this is written into statespace:

(4.37)[ ] 1[20: - ~] 1[0 ]~1 + 2" 71 _ ~ Y + 2" -1 r
2 /1 ? /-'2 /1 TT

v =

[

-~dl 1 ]
_d1L a

/-'2

1
x+-y

/12

Multiplying the old states by ~ and simplifying gives:
/-'

v

[=f?- 1]
-~ a

/-'

k
-(y - x)
/12

[ ] [
20: - ~] [ a ]

~~ + ~ _, y+ ~ r (4.38)



Chapter 5

Outer loops/time optimal control

5.1 Introduction

The general control problem in this chapter is applied to an elevator system. If the dynamics
of the current loop can be neglected the system will reduce to a two integrator system with
acceleration as input and the position as output. For given bounds on current, and velocity
the system can be solved as a time optimal control problem. The approximation of two
integrators for the AC-drive is not completely true, because of the additional time constant
in the acceleration. This is still solved as a two integrator problem. The problem with an
extra time time constant is difficult to solve and the derivation of the trajectory is based on
complex mathematics. Solution to this problem can be found in [12].
In this chapter two solutions to the double integrator are presented: a nonlinear solution and a
linear with feed forward signals [13]. Also will be explained in what system this approximation
may be used.

5.2 Electrical limits in the system

In table 2.1 the motor parameters are given. The physical constraints are given by [14]:

(5.1)

(5.2)

where Vmax and Imax are respectively the fixed voltage and current limit.

Current Limit
The maximum acceleration can be calculated from Eq. (2.24):

(5.3)

and depends on flux, current and applied torque. (i qmax = 50 A and 1/Jd = 1 Wb). This is
different if the lift goes up or down.

Stator voltage limit
Another limit in our system is the stator voltage. To increase torque, i q has to be increased.

39
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Q

Figure 5.1: Theoretical responses to different position inputs

With constant electrical torque 'l/Jd and iq are constant. This means that diq/dt = O. In steady
state the current equation of Eq. (2.24) can therefore be written as:

(5.4)

If the speed increases the dominant term wnp (f3'I/Jd + id), the speed term, will get larger and
uq must be increased to keep diq/dt = O. uq is limited by the maximum inverter voltage. To
avoid a high inverter voltage the flux 'l/Jd can be decreased, which of course means a decrease
in electrical torque. This is the same as a decrease in maximum acceleration. If the flux is
decreased too much the motor will eventually decelerate. To find a time optimal trajectory
with different maximum speeds, fluxes and torque is difficult. Therefore in our setup the flux
is kept constant and a maximum speed limit is used.

5.3 Design of the trajectory

Under assumption of a fast current loop, and neglecting friction the system can be approxi­
mated by a double integrator. The time optimal solution consists of two intervals of maximum
acceleration/deceleration. If the position error is large enough there is a third interval with
maximum speed and zero acceleration. The relation between speed and position error can be
calculated as follow:

x

w (5.5)

amax can be calculated from Eq. (5.3) if torque is known. Eliminating the time gives the
relation between position and velocity:

w = j2amaxlxerrorlsign(xerror) (5.6)

In figure 5.1 different time optimal responses are shown for limited acceleration. Eq. (5.6)
can be implemented in two different ways. The function can be implemented as a nonlinear
block (nonl) in the control loop, or it can be used in a circuit which generates feed forward
signals for a linear control system.
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Figure 5.2: Controller with nonlinear function in the control loop

5.4 The non feed forward structure

41

In figure 5.2 the controller with a nonlinear function in the control loop is shown. The
control system works as follows. A step on the input will result in a very high gain from the
nonlinear block which will saturate the speed controller (if the position error is large enough).
The position error starts decreasing and after some time the velocity controller comes out
of saturation and the nonlinear function starts the breaking trajectory. In this setup the
maximum acceleration is realized by the current limit. The deceleration curve is realized by
the nonlinear block. This function needs to be dependent on torque. The sign of the torque
should be changed in this function if the lift goes up or down.
A problem is the high gain around zero. The function has to be linearized for two reasons.
First if the system was ideal, the high gain will still lead to oscillation around zero and the
non ideal current step will otherwise cause large overshoot. Second, as the current controller
will make not an ideal step the region has to be linearized to stop the elevator in time.
In figure 5.4 the nonlinear function is shown. The solid line is the ideal function, and the
dashed line is the linearized part of the nonlinear function.

Nonlinear lunction
150,------,-~-__r-_._-_._-_,_."._-__.____,

'00

50

-50
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I
/

I
I

I

/
/

/
/

/

-1~:---_--::'30C--~_'==20--_-'-::'0--0:--~':--O--=20C-------::.:30----:""
Position

Figure 5.3: The nonlinear function

A PI instead of a P velocity controller can be used to have no steady state error in speed.
However a anti-windup part is then required to prevent the controller from saturating. In
our setup a P controller is chosen because the simulation results were good enough and no
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Table 5.1: Simulation parameters for Ti q =le-3, for non-feed forward structure

~max 50 A
W max 150 radjs

T 10 Nm
J 2*0.0586

kspeed 80
Ti

Q
1e-3

k~q 50
linearizing zone 5

anti-windup part is needed.

5.4.1 Boundaries on operation

At the beginning of the design the control system limits are known, and we can tell if the
time optimal control presented here can be used or not. It is clear that this solution can not
be applied to all systems.
In section 2.5 was shown that in a practical system the inertia is much larger than only the
motor inertia if a stiff system is assumed.
With small inertia and not fast enough current rise time (this is limited by the inverter), the
second order time optimal approximation is no longer valid. The current controller will be
too late to stop the elevator at the right position during the braking period. This results in
overshoot and some extra current peaks. Therefore the system will work not properly.
A solution to this problem is increasing the linearisation zone. With larger inertia the system
becomes slower and the time scale separation is getting larger. The system follows better the
time optimal trajectory.
The nonlinear function depends on maximum speed, flux, inertia, current, torque, and the
linear region. All these parameters have influence on the form of this function. It is interesting
to examine the effects on the nonlinear function when these values are changed. For the
moment there is assumed that the linearisation zone is not changed. If inertia is increased
the slope of the linearisation function will decrease. The function becomes more close to the
theoretical function. The same happens if the flux or torque is decreased. If for example the
inertia is decreased too much the nonlinear function will be a totally linear function, with
still the limit on maximum speed. The same can be shown for torque, flux and speed. These
must be in such way that the idea of the time optimal trajectory is not lost.

5.4.2 Simulation

First simulations were done with Ti q =le-3. Increasing k of the velocity controller had a
positive influence on the the steady state error but it was already very small (<<1%). The
overshoot was 0.17 %. In table 5.1 the parameters are shown. Figure 5.4 and 5.6 show the
two different cases for a small and a large position error. In case of a small position error
the controller is not time optimal and especially the last part is slow. The steady state error
is 0.13%. Increasing k has negative influence on the peaks in the control signal. A positive
effect of increasing k is the faster time to steady state and less overshoot in position. Figure
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Figure 5.4: Large initial position error with kspeed=80

5.7 shows the influence of the linearisation region. This effect can only be observed for small
position errors.
Next simulations were done with Ti q =5e-3 for the current controller, to see what the influence
is of a slower current controller. The simulation parameters are given in table 5.2. Figure
5.8 shows the results if the current controller is not fast enough. Increasing the gain of the
speed controller resulted in a higher and more oscillatory current peak, but a faster settling
time and a smaller steady state error. The overshoot is 0.9% and the steady state error is
«1%. In figure 5.9 the influence on torque shocks in steady state is shown. As the position
controller has no integration the steady state error is small but not zero.

Table 5.2: Simulation parameters (slow current controller), for the non feed forward structure

~max 50 A
Wmax 150 rad/s

T 10 Nm
J 2*0.0586 kgm'l.

kspeed 10
Tio 5e-3

k~a 50
linearisation zone 5
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Figure 5.10: Control structure block
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5.4.3 Conclusion

The design of the trajectory is very simple, but the linearized function could be changed in
such way that the idea of time optimal control is lost.
To successfully apply our control structure the system error and speed must be large enough,
otherwise it makes no sense to use time optimal control and the nonlinear function will then
be used in its linear area.
Increasing the gain of the velocity controller has positive effect on steady state and settling
time of the position. The peaks in the vq response increase with increasing gain.
The torque shocks caused a small position error in steady state, which can not be avoided in
this control structure.
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Figure 5.11: Feed-forward control block

Table 5.3: Simulation parameters for the feed forward structure

Zmax 50 A
Wmax 150 rad/s

T oNm
J 2*0.0586 kgm:l

kposition 10

Tposition 2

kspeed 10

Ti q lOe-4

kL 50

Linearisation zones
Sign function 0.1

Trajectory function 0.1

5.5 The feed forward structure

In figure 5.10 the linear control loop is shown. Eq. (5.6) is used in the feed forward structure
in figure 5.11 to obtain the desired reference trajectory. The feed forward part is a model of
a ideal time optimal system.
This loop has the advantage of behaving time optimal for large position errors. If the position
error is close to steady state the controller will behave linear. As the position controller is a
PI controller the steady state error will be zero. A step on the input results in high gain from
the nonlinear block. The hysteresis block switches to maximum positive gain. The electrical
torque is iq'l/JdJ.L (See Eq. 5.3). The gain block multiplies i q by k = 'l/JdJ.L. The torque must be
subtracted or added to get the right acceleration. This depends on the sign of the current.
Integrating acceleration twice gives the feed forward signal for position, which is fed back
to the input. The sign function is linearized to prevent slow simulation times. If the feed
forward signal for the current controller is zero, the sign function switches fast from minus to
maximum current. Simulink™ will decrease the step size and the simulation is slowed down.

5.5.1 Simulations

The simulation parameters are shown in table 5.3. The simulation results of the control loop
for different step sizes are presented in figures 5.12, and 5.13. In figure 5.14 the time optimal
behavior for a small position error shown. The gain of the position controller can not be too
large, this will cause overshoot. The linearisation zone of the nonlinear function can be made
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Figure 5.14: State-space trajectory

considerably smaller than in the previous structure. Therefore the system will behave also
time optimal for smaller position errors. In figure 5.15, 5.16 is shown what happens if no
torque is assumed in the feed forward structure and a torque of T = 10 Nm is applied to the
system. Large errors between reference and real position for long time saturate the position
controller. An anti windup part is needed to prevent this. In simulation this is avoided by
using a larger integration time constant.

5.6 Comparison with non feed forward structure

The feed forward (FF) structure has the advantage of behaving linear for small errors. Also
for smaller steps than in the non feed forward structure the system is time optimal. As the
position error in the loop is a PI controller the steady state error is zero. This is not true
with the non feed forward (NFF) structure the position error depends on the gains in the
loop. The steady state error can be decreased by increasing the gains. A big advantage of
the NFF structure is that torque can be unknown at start. This is due to the fact that the
first part is not realized by the nonlinear function. After some time the torque is observed
and it can be used in the nonlinear braking curve. In the feed forward structure the torque
has to be known at the beginning otherwise wrong feed forward signals for current, speed
and position controller are generated. The influence of this wrong signals is best seen if the
position error is large. For small errors with torque the response is still better than in the
NFF structure. Another important advantage of the NFF structure is it robustness against
torque shocks. The nonlinear function will still use the right position error information and
decelerate following the trajectory. The FF structure is also sensitive to inverter delays. If
the inverter reacts with a time delay, wrong and too late feed forward signals are generated.
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Figure 5.17: Control structure from article
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Another effect which is not simulated here is the difference between real and estimated inertia.
Smaller inertia is no problem, as the system will be faster then estimated. A much larger
inertia than estimated will cause extra bangs in the NFF structure. The FF structure will
generate wrong signals, but the linear loop will still work.
It is difficult to tell what structure is better. Each structure has its own advantages and
disadvantages. The main difference is for small position errors. The FF structure is better in
this case.

5.7 Comparison with article structure

The structure in figure 5.17 is presented in [1] consists of only PI controllers. The inner
loops are different in this setup. Two current controllers are used to force the motor in the
so called current-command mode. These controllers are fast enough to follow the reference
currents idr and i qr . One controller is used to control the position, and the other to control
the flux. The advantage of our control structure is simplicity. Our current and flux controller
have higher gains then these controllers and therefore have a smaller steady state error and
a higher robustness. In this article a flux reference is generated which maximizes the torque
at each speed without violating the voltage and current limits, which is explained in [14].
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Unfortunately, the analysis in [14] was performed using steady-state values and is only useful
when electrical transients are much faster than the mechanical ones. This is only true for
micro motors (low power) and useless for larger motors. Another difference is the small flux
values used in this article. No larger values for flux 'l/Jd 2: 0.05 Wb can be used. This is due to
the low current limits and smaller value of M. The problem is how to create a time optimal
trajectory for different position errors in this case.



Chapter 6

Adding observers

6.1 A flux observer without a speed measurement

The following observers are obtained from [15]. The second and the fifth equation of system
2.24 describe the dynamics of p and 'l/Jd.

p
Zq

rLpW + 'TJM 'l/Jd

-'TJ'l/Jd + 'TJMid

(6.1)

[:"

'TJ = Rr/Lr
To eliminate the dependency on speed, the slip angle S is introduced.

S= 'TJMiq/'l/Jd

Integrating the first equation of (6.1) gives:

p(t) = rLpB(t) - rLpB(O) + S(t)

The observer equations are given by:

(6.2)

(6.3)

(6.4)

'l/Jd -'TJ~d + 'TJMid
p(t) rLpB(t) - rLpB(O) + S(t)

Where pand ~d are the estimated values. The advantage of this approach is that the accuracy
no longer depends on the estimate of the speed but is limited by the encoder resolution. The
convergence rate of the error dynamics of this observer is bounded by the rotor time constant
1/'TJ. The rotor time constant in our case is: 1/'TJ = 0.4668. In figure 6.1 the practical
realization of the flux observer is shown.

6.2 A speed observer

The most simple way to construct a speed observer is differentiating the output:

w(k) = B(k) - ~(k - 1) ,
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(6.5)
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AC-drive

Figure 6.1: Observer implementation

(6.6)w

o

where T is the sample time and k is the sample number. However this leads to large errors
at low speeds and high sample rates. In this case the encoder counts per sample period are
less than at higher speeds. An alternative way is to use the measured position and estimate
the applied torque. The relevant motor equations are:

de
dt

dw

dt
dT

dt
f',

p, = npM/(JLr ).

A speed observer is then defined by:

de
dt
dw

dt
dT
dt

w+ h(e - e)

P,-Jdiq - T/J + l2(e - e)

(6.7)

Even friction can be applied in the torque if this is desired.
The convergence of this system is studied by subtracting (6.7) from (6.6):

1'1
1'2 - hE! (6.8)

dt
1'2

-1'3/J -l2E1
dt
1'3

+l3 E1
dt

f', A f', f', A A

Where 1'1 = e- e, 1'2 = w - w, and 1'3 = T - T. The observer 'l/;d converges fast enough to 'l/;d.
Therefore the assumption P,-Jdiq -+ P,'I/;diq is used. Transforming system to:

(6.9)

SE2 -1'3/J - l2E1

SE3 l3 E1

Differentiating the second equation of (6.9) and substituting 1'2 and 1'3 gives the characteristic
polynomial of the error system:

(6.10)
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1
s

1
s

Figure 6.2: Block schema of speed and torque observer

The gains ll, l2 and l3 must be chosen in such way that the poles give a small enough time
constant.

Observer gain Value
II le4
l2 le6
l3 le8

The convergence speed can be increased by increasing the gains. Choosing too large gains in
practice causes high quantization noise. The torque estimate can now be used to optimally
tune the trajectory. The motor is accelerated at maximum current as before and the torque is
know after some time. The trajectory can now be changed for the deceleration. An advantage
of these observers are that it is not needed to know Rr exactly. If Rr changes this has only
influence on the convergation time and this will not introduce an error in the estimation.

6.3 Simulation results

Figure 6.3 shows the simulation results for the observers. Increasing the gain of the torque
observer will make it better.
The observers work good, if the rotor resistance is constant. The torque is observed after
some time and can be used as input for the nonlinear function in the NFF structure.

6.4 Simulations in a - b coordinate system

In this section the motor is simulated in the a - b coordinate system. p is observed and used
for the IDQ and DQ transformation. The rest of the observers are not used as inputs for
the system in the next simulations. In figure 6.4 a simulation in a - b coordinates is shown.
Figure 6.5 and 6.6 shows what happens if the rotor resistance is wrong estimated, and used
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in the observer equation for p. Rr is the real resistance, and Rro is the resistance used in the
observer equations. The flux figures show the the flux input (step), the flux output, and the
observer for flux. The simulation in a - b coordinates shows extra transients in the current
and flux responses.
If the rotor resistance Rr changes, the slip changes, and the variable for p changes. This
has influence on the IDQ en DQ transformations. This causes a steady state error in the
flux. Due to the error in flux the torque estimated is also not correct. This make the system
performance worse, and can introduce some extra bangs as in figure 6.5. A solution would be
to construct an observer for the rotor resistance, which is not presented here.
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Chapter 7

Conclusions

The inner loops are controlled by Dynamic Contraction Method (DCM) controllers which
have advantages above PI controllers. A comparison between PI and DCM was made if the
input was stepwise. In this case the DCM controller was superior. In PI case the gain could
not be as high as in the DCM case, because this resulted in oversteered stator voltages. Due
to the high gain the DCM controller is less sensitive to disturbances and has a smaller steady
state error.
After controlling the current and flux with DCM controllers, the motor is described by a two
integrator problem with an extra time constant. If this system can be approximated by a two
integrator problem depends on the motor parameters as inertia, maximum speed, rotor time
constant, maximum rotor current, position errors and torque.
As shown our motor could be approximated by the two integrator problem. Two control
structures which solve the two integrator problem were presented. The non-feed forward
structure was superior if torque was not known. It was not time optimal for small position
errors. If small position errors are used the feed forward structure is preferred. In case of
large position errors and unknown torque the non feed forward structure is better.
A comparison was made between our non-feed forward structure and a control structure from
[1]. The article control structure had some disadvantages. The controllers had lower gains
and are therefore more sensitive to disturbances, and have a larger steady state error. In
this article a flux reference is generated which maximizes the torque at each speed without
violating the voltage and current limits [14]. The problem is how to use this flux reference and
construct time optimal trajectories for different position errors. Unfortunately the analysis in
[14] was performed assuming steady-state values and is only useful when electrical transients
are much faster than the mechanical ones. This is only useful for micro motors and useless
for larger motors.
Observers were added to the motor control structure. These work well if there was a good
observation of the flux angle. If the rotor resistance varies the flux angle is not observed
correctly. A solution would be to construct an observer for the rotor resistance, which is n.ot
shown in this report.
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Appendix A

Tips for using Simulink™

• Make blocks and test them separately

• Re-use blocks, and put them in a library. This way old and new version of files do not
mix up

• Use a separate directory for the library and m block files.

• Make a constant file.

• Make controller parameters accessible within the simulation program.

• Be very careful with using the Adams/Gear method. Spikes due to discontinuities are
filtered out with this method !!

• Save important simulations in mat files. Fast changes can be made to graphs this way.
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B.4.1 Observer block
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Appendix C

General implementation of a DCM
controller in Simulink™

This equation can be written in the form:

V(s) = boY(s) + coR(s) + s-1(b1V(s) + c1R(s) - a1Y(S)

+ s-1(b2V(S) + C2R(S) - a2Y (S)

+ s-1(b3V(s) + C3R(S) - a3Y(S)

+ .00))) (Co2)

The state variables can be defined as:

S-l [b1Y(s) + C1 R (S) - a1V(s) + X 2(s)]
s-l [b2Y(s) + C2 R (S) - a2V(s) + X 3(s)]

(Co3)

X n-1(S) = s-l [bn- 1Y(s) + Cn-1 - an-1V(s) + Xn(s)]
Xn(s) = s-l [bnY(s) + cnR(s) - an V(s)]

Equation (Co2) can be written in the form:

V(s) = boY(s) + coR(s) + X 1(s)

After substitution of equation (C.4) in (Co2) we obtain:

(C.4)

sX1(s) =
sX2 (s) =

X 2(s) - a1 X 1(s) + (b1 - a1 bo)Y(S) + (Cl - a1 co)R(s)
X 3(s) - a2X1(s) + (b2 - a2bo)Y(S) + (C2 - a2co)R(s)

Xn(s) - an-1 X 1(S) + (bn- 1 - an-1 bo)Y(S)
+(Cn-1 - an-lco)R(s)

-anX 1(s) + (bn - anbo)Y(s) + (cn - anco)R(s)
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Using the inverse s-transform on (Co5) gives:

Xl = -alxl(k) + x2(k) + (b l - albo)y(k) + (bl - albo)r(k)
X2 = -a2 x dk) + x3(k) + (b2 - a2bo)y(k) + (b2 - a2bo)r(k)

Xn-l = -an-lxdk) + xn(k) + (bn- l - an-lbo)u(k)
+(Cn-l - an-lco)r(k)

xn = -anxl(k) + (bn - anbo)y(k) + (cn - anco)y(k)

Writing this in matrix form gives:

(Co6)

r(k)

Xn-l

X n

+

-an-l 0 0
-an 0 0

bl-albo
b2 - a2bo

y(k) +

o 0
o 0

o 1
o 0

(Co7)

bn- l - an-lbo
bn - anbo

y(k) = [1 0 000 0 0]

Cn-l - an-lcO
cn - ancO

+ boy(k) + cor(k) (CoS)
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Simulink™ files

D.l DCM current controller

%First order dcm controller controller
%Modified 31/9/98
function[sys,xO]=dcm1(t,x,u,flag,dO,tau)
%u(l)=output of system
%u(2)=reference
if nargin==O, sys=[1,0,1,2,0,0]; xO=[O;O]; return, end
if abs(flag)==l
sys=-dO+(u(2)-u(1))/tau+dO*u(1);
elseif flag==3
sys= [x] ;
elseif flag==O
sys=[1,0,1,2,0,0] ;
xO= [0] ;
else
sys= [] ;
end
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D.2 DCM flux controller

Flux Controller

%Second order flux controller
function[sys,xO]=fluxcon(t,x,u,flag)
global kp_flux dO_flux d1_flux tau_flux mu_flux alfa_flux
%u(1)=output of system
%u(2)=reference
if nargin==O, sys=[2,O,1,2,O,O]; xO=[O;O]; return, end
if abs (flag) ==1
%return derative of x
sys(1)=x(2)-2*(alfa_flux/tau_flux)*u(1)-(2*d1_flux/mu_flux)*(x(1)-u(1»;
sys(2)=(1/(tau_flux)-2)*(u(2)-u(1»-(dO_flux/(mu_flux)-2)*(x(1)-u(1»;
elseif flag==3
sys= [xCi)] ;
else if flag==O
sys=[2,O,1,2,O,O] ;
xO=[O;O] ;
else
sys= [] ;
end



D.3. AC-MOTOR IN D - Q COORDINATES

D.3 AC-motor in d - q coordinates
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S-Function Demux ia
L...-_~ 4

ib

L---~5

rho

function [sys,xO] = motor_dq (t,x,u,flag)
%Model of an induction motor with field oriented control
global M L_r L_s R_r R_s J n_p alfa beta gamma sigma mu
%********************** STATE VARIABLES ************************
% x(1)=w;
%x(2)=psi_d;
%x(3)=i_d;
%x(4)=i_q;
%x(5)=ro;
%********************** INPUTS *******************************
%u(1)=u_d;
%u(2)=u_q;
%u(3)=LO;
if nargin==O, sys=[5,0,4,3,0,0] ;xO=[0;le-20;0;0;0]; return, end
if abs(flag) == 1
%Motor model after nonlinear state-feedback (=Field oriented control)
sys(l) = mu*x(2)*x(4)-(u(3)/J);
sys(2) -alfa*x(2)+alfa*M*x(3) ;
sys(3) = -gamma*x(3)+alfa*beta*x(2)+n_p*x(1)*x(4)

+alfa*M*x(4)-2/x(2)+u(1)/(sigma*L_s);
sys(4) -gamma*x(4)-beta*n_p*x(1)*x(2)-n_p*x(1)*x(3)

-alfa*M*x(3)*x(4)/x(2)+u(2)/(sigma*L_s);
sys(5) n_p*x(1)+alfa*M*x(4)/x(2);
elseif flag == 3
sys = [x(1);x(2);x(3);x(4);x(5)];
elseif abs(flag) == °
sys = [5,0,5,3,0,0];



D.4. AC-MOTOR IN A - B COORDINATES

DA AC-motor in a - b coordinates

S-Function

79

function [sys,xO] = motor_ab(t,x,u,flag)
%Model of an induction motor in a-b coordinates
global M L_r L_s R_r R_s J n_p alfa beta gamma sigma mu
%********************** STATE VARIABLES ************************
% x(1)=Yj
%x(2)=psi_raj
%x(3)=psi_rbj
%x(4)=i_saj
%x(5)=Lsbj
%x(6)= psi_d
% x(?)= rho
%********************** INPUTS *******************************
%u(1)=u_sa;
%u(2)=u_sbj
%u(3)=LO;
if nargin==O, sys=[5,0,5,3,0,0] ;xO=[Oj1e-20;0;0;0]; return, end
if abs(flag) == 1
sys(1) = mu*(x(2)*x(5)-x(3)*x(4))-u(3)/J;
sys(2) = -alfa*x(2)-n_p*x(1)*x(3)+alfa*M*x(4);
sys(3) n_p*x(1)*x(2)-alfa*x(3)+alfa*M*x(5);
sys(4) alfa*beta*x(2)+beta*n_p*x(1)*x(3)-gamma*x(4)+u(1)/(sigma*L_s);
sys(5)= -alfa*beta*n_p*x(1)*x(2)+alfa*beta*x(3)-gamma*x(5)+u(2)/(sigma*L_s);
else if flag == 3
sys = [x(1)jx(2);x(3);x(4);x(5)];
else if abs(flag) == °
sys = [5,0,5,3,0,0];

%1e-20 to have no numerical problems
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D.5 DQ transformation

rho

%DQ- Transformation
function[sys,xO]=dq(t,x,u,flag)
%transformation to DQ-coordinates
%u(1)=u_sa
%u(2)=u_sb
/. u(3)=rho
if abs(flag) == 1
sys=O;
elseif flag == 3
A=[cos(u(3)) sin(u(3));-sin(u(3)) cos(u(3))];
sys=A*[u(1);u(2)] ;
elseif abs(flag) == °
sys = [0,0,2,3,0,0];
xO = [0];
else
sys =[] ;
end
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D.6 IDQ transformation

rho

%IDQ- Transformation
function[sys,xOJ=idq(t,x,u,flag)
%Transformation to a-b coordinates
%u(1)=u_sd
%u(2)=u_sq
%u(3)=rho
if abs(flag) == 1
sys=O;
elseif flag == 3
A=[cos(u(3)) -sin(u(3));sin(u(3)) cos(u(3))J;
sys=A*[u(1);u(2)] ;
else if abs(flag) == 0
sys = [0,0,2,3,0,OJ;
xO = [0];
else
sys =[J;
end
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D.7 Flux and rho observer

Flux

DO

D01 L..!)bs.e~:1---l--~ 3

id
1.- --+-. 4

iq

'-------------~2

rho

%Flux observer
function [sys,xO] = observ1(t,x,u,flag)
global M L_r L_s R_r R_s J n_p
global alfa beta gamma sigma mu
global 1_1 1_2 1_3
%******************** STATE VARIABLES ************************
% x(1)=psi_d;
Y. x(2)=Slip;

%********************** INPUTS *******************************
%u(1)=i_sa;
%u(2)=i_sb;
if nargin==O, sys=[2,O,2,2,O,O] ;xO=[1e-10;O]; return, end
if abs(flag) == 1
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sys(l) = -0.9*alfa*x(1)+0.9*alfa*M*( u(l»;
sys(2) = 0.9*alfa*M*u(2)/x(1);
elseif flag == 3
sys = [x(1);x(2)];
elseif abs(flag) == 0
sys = [2,0,2,2,0,0];
xO = [le-l0;0];
else
sys = [];

end

APPENDIX D. SIMULINKTM FILES



D.8. TORQUE/SPEED OBSERVER

D.8 Torque/speed observer

Position

%Speed and torque observer
function [sys,xO] = observ2(t,x,u,flag)
global M L_r L_s R_r R_s J n_p
global alfa beta gamma sigma mu
global 1_1 1_2 1_3
%******************** STATE VARIABLES ************************
%x(1)=theta;
%x(2)=w;
%x(3)=torque;
%********************** INPUTS *******************************
%u(1)=x;
%u(2)=i_q;
%u(3)=psi_d;
if nargin==O, sys=[3,0,2,3,0,0];xO=[0;0;0]; return, end
if abs(flag) == 1
sys(1) x(2)+1_1*(u(1)-x(1));
sys(2) = mu*u(2)*u(3)-x(3)/J+l_2*(u(1)-x(1));
sys(3) = (-1_3*(u(1)-x(1)))*J;
elseif flag == 3
sys = [x(2);x(3)];
elseif abs(flag) == °
sys = [3,0,2,3,0,0];
xO = [0;0;0];
else
sys = [];
end
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