EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Bugs errors and mistakes in software
source code analysis with procedure summaries

Volleberg, G.T.G.

Award date:
1999

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9711cf12-27cf-42d8-ad70-4da7cba4f412

BUGS ERRORS
AND MISTAKES

IN SOFTWARE

SOURCE CODE ANALYSIS WITH

PROCEDURE SUMMARIES
Name: Guido Volleberg
Mentor: Dr. D. Brand

Supervisors: Ir. G.L.J.M. Janssen
Prof. Dr.-ing J.A.G. Jess
Dr. Ir. L. Stok

Location: IBM T.J. Watson Research Center
Yorktown Heights, NY, USA

Eindhoven University of Technology
Dept. Electrical Engineering, group ICS
Eindhoven, the Netherlands

Period: June 1998 -Jan 1999

Preface

This report describes the results of my master thesis performed at the IBM T.J. Watson
Research Center in Yorktown, NY, USA. During this six-month period (mid June 1998 — mid
December 1998) | have been working as a co-op student from the Eindhoven University of
Technology, the Netherlands. The month January 1999 has been used for gathering/grouping
the results, writing this report and preparing the presentation held on January 29, 1999.

The emphasis of my study of Information Technology was very interesting. In this respect my
graduation project, dealing with finding bugs, errors and mistakes in software was a very
chalienging one. Having written many programs one knows that the software development
process is not always as easy. Working on this project cleared my view on this point and
showed me of what is possible with today's source code analysis methods.

Hereby | would like to thank my mentor at IBM, Dr. Dan Brand, for his daily guidance and
coaching and my manager, Dr. Ir. Leon Stok, who gave me the opportunity to work at T.J.
Watson. From the Eindhoven University of Technology | would like to thank my mentor Ir. Geert
Janssen for suggesting IBM for my master thesis and for his support.

Furthermore | would like to thank the members of the Logic Synthesis group for useful
suggestions and discussions. And for all the new people | have met many thanks for making my
stay in the USA a very pleasant one!

Finally | would like to thank my family and my parents in particular for their endless support all
these years working towards this and for having to miss me for this half year.

Abstract

BEAM is a tool for source code analysis of C++ programs. It tries to uncover various errors,
either generic (e.g., bad memory access), or application specific (e.g., bad database access).
Within BEAM both procedures and loops are selectively expanded inline, which means that the
expanded control and data-flow graph tends to become large. Since not all procedures can be
expanded, the side effects of unexpanded procedures need to be summarized. This project
concerns the building of these summaries and their propagation through the CALL-graph. By
doing so the aim is to report more real errors and fewer bogus errors.

Summary

This thesis deals with source code analysis, i.e., finding symptoms of possible errors in the
C++ programming language. Programs are becoming larger and quality (fewer errors) needs to
be improved. Software developers are having problems archiving those goals in their programs.
Static source code analysis tools can help in reducing the number of errors. BEAM (Bugs, Errors
And Mistakes) is such a tool. BEAM tries to find symptoms of errors in source code by statically
analyzing it and performing data-flow analysis. This in contrast to dynamic analysis which needs
to execute the code. Each procedure that is analyzed may depend on other procedures. A
Summary that describes the behavior of a procedure would be helpful during analysis. Selective
expansion of procedures will then be possible, based on the available Procedure Summary.
With Procedure Summaries, BEAM will be able to report more real errors and fewer bogus
errors because of the detailed information available.

Prior to the actual implementation of the Procedure Summaries, the kind of analysis that
BEAM performs is explained in detail. Since there are other static source code analysis tools
available on the market a comparison is done to describe the advantages of BEAM. Most tools
available check only for stylistic errors, especially the "++" part of C++, e.g., class structures.
BEAM checks only very few stylistic errors, and focuses more on the problem of finding
executable paths leading to a real error. Besides looking for general symptoms, BEAM is also
used for finding application dependent error symptoms. Furthermore, measurements on
symptoms found showed that the application dependent part is far more powerful (order of a
magnitude) compared to finding general symptoms.

Before implementing the several Procedure Summary methods a propagation algorithm was
needed which decides (re-) computation for the procedures. This algorithm makes its decisions
based on the information available in the CALL-graph. First a post-order list is built to determine
the order in which procedures need to be (re-) computed. After a Procedure Summary is
computed, the dependencies on other procedures are checked and based on that information
the algorithm determines and initiates the (re-) computation of procedures involved.

A flexible framework for the Procedure Summaries was desirable. Only few changes in BEAM
were needed for BEAM to be able to use the Summaries. Different Procedure Summary
algorithms have to work independently and it should be easy adding new algorithms. Also the
propagation algorithm was not allowed to depend on the Procedure Summaries. A framework
conforming to these restrictions has been implemented for flexible and extendable Procedure
Summaries in BEAM.

Several Procedure Summary algorithms have been implemented, starting with an algorithm
providing merely statistics. Conclusions are drawn based on the results of computations with this
algorithm concerning demand driven analysis. The second implementation is pointer
dereferencing. At the moment this is the only algorithm actually used by BEAM in its analysis
with interesting and useful results. More detailed analysis was needed for global variables.
Control-flow analysis to determine the order of assignments and to find MAY/MUST information
was used. The last implementation is a pointer aliasing Procedure Summary. This also involved
control-flow analysis similar to the one for global variables. The data-flow analysis for figuring
out pointers was more complicated. For now only the control-flow aliasing part is implemented
and the data-flow part is described here in this report.

The core of the Procedure Summary environment for BEAM has been set with the propagation
algorithm and several Procedure Summary algorithms. All implementations behave according to
expectations and deviations from desired behavior are discussed with their possible solutions.
The use of the pointer dereferencing Procedure Summary by BEAM showed impressive results
by finding twelve new symptoms. Along with the flexible framework, the basis for the Procedure
Summary environment has been realized.

Table of Contents

Preface 1
Abstract 2
Summary 3
Table of Contents 4
List of code fragments & figures 6
Chapter 1. Introduction 7
Chapter 2. The BEAM project 8
2.1. BEAM & Source code analysis 8
2.2. BEAM’s approach 9
2.2.1. Use of BEAM 9
2.2.2. Analysis classification 10
2.23. Classification of data-flow analysis 10
2.24. Comparison of goals 12

2.3. Achievements 13
24. Competitors 14
2.4.1. Available tools 14
24.2. Comparison 15
Chapter 3. Problem outline & goals 17
3.1. Procedure expansions 17
3.1.1. Abug’s life 17
3.2. Procedure Summaries 18
3.2.1. Information in Procedure Summaries 18
3.22. Benefits for BEAM 19

3.3. Memory model and graph representation 19
3.3.1. Memory model 19
3.3.2. Graph representation 19
Chapter 4. Propagation 22
4.1. CALL-graph 22
4.2. Post-order list 23
4.3. Loopsin CALL-graph 23
44. Time-Stamp 24
4.5. Deletion from List 25
4.6. Comparing the Procedure Summaries 25
4.7. Algorithm 26
4.8. Troublesome procedures 26
Chapter 5. The Framework 27
5.1. The Data-structure and motivation 27
5.2. Other possibilities with advantages and disadvantages 28

Chapter 6. Procedure Summaries 29
6.1. Statistics 29
6.1.1. Integers 30
6.1.2. Floating-point 30
6.1.3. Bit wise 30
6.1.4. Pointer 31
6.1.5. Calls 31
6.1.6. Conclusions 32

6.2. Dereferencing of procedure parameters 32
6.3. Globals 33
6.3.1. CalcGlobalEffects 33
6.3.2. CalcGlobalCFEffects 34
6.3.3. CalcGlobalCFMMEffects 36
Chapter 7. Pointers & Aliases 39
7.1. Problem representation 39
7.1.1. Example alias 39
7.1.2. NP-Complete 40

7.2. The methods found in papers 40
7.2.1. Their Source Language, limitations 40
7.22. Their ICFG 40
7.2.3. Advantages and disadvantages of the ICFG 40

7.3. The principle for BEAM 41
7.3.1. The Source Language 41
7.3.2. The data-flow analysis 41
7.3.3. The aliasing graph traversing algorithm 42
7.3.4. Conclusions 44
Chapter 8. Conclusions and future work 45
8.1. Conclusions 45
8.2. Future work 46
Glossary and abbreviations 47
References 48
Appendix A. Static Analysis Tools 51
A.l. Companies 51
A.2. Internet links 52
Appendix B. List of rules 53
Appendix C. Boxes & Pins 55
C.1. Important definition boxes 53
C.1.1. Primary boxes 55
C.1.2. Pointer related boxes 56
C.1.3. Assignment boxes 57
C.1.4. iffswitch boxes 58
C.2. Important proto-box pins 59
C.3. Complete list of all the possible boxes 60
Appendix D. Example graph 61

List of code fragments & figures

Code 1: The good program.

Code 2: The bad program.

Code 3: Flow insensitive.

Code 4: Flow sensitive and execution insensitive.

Code 5: Execution sensitive and state insensitive.

Code 6: State sensitive.

Code 7: Path to an error in procedure Q.

Code 8: Backward graph traversal.

Code 9: Example programs for a CALL-graph.

Code 10: Algorithm for Propagation.

Code 11: “Bouncing” Procedure Summary with corresponding CALL-graph.

Code 12: Procedure Summary depending on start procedure with corresponding CALL-graph.

Code 13: Dereferencing.

Code 14: First algorithm for global calculation.

Code 15: Global type mix-up.

Code 16: Algorithm for CalcGlobalCFEffects.

Code 17: Program showing that CalcGlobal CFEffects is incorrect.

Code 18: Conditional assignments.

Code 19: Algorithm for CalcGlobalCFMMEfeects.
Code 20: Problematic procedure for CalcGlobal CFMMEffects.

Code 21: Alias example.

Code 22: The alias graph traversing algorithm.
Code 23: CompAssign algorithm.

Figure 1: Data-flow classification.

Figure 2: Comparison of goals.

Figure 3: Symptoms found by BEAM.

Figure 4: Shortening paths in BEAM.

Figure 5: The graph representation.

Figure 6: Corresponding CALL-graphs.

Figure 7: Propagation through the CALL-graph.

Figure 8: The implemented Procedure Summary framework.
Figure 9: Percentage of integer usage.

Figure 10: Percentage of pointer usage.

Figure 11: Percentage of Call usage.
Figure 12: DFS Traversal through the procedure-graph.

Figure 13: Combine and MuxCombine.

Figure 14: Example of an ICFG.

Figure 15: List of rules for alias/pointer data-flow analysis.

Figure 16: Problematic branches.

Figure 17: LITERAL_INT box.

Figure 18: LOCATION box.

Figure 19: FUNCTION box.

Figure 20: INT_CONST box.

Figure 21: POINTER box.

Figure 22: FETCH box.

Figure 23: EXTRACT_LOCATION box.

Figure 24: EXTRACT_OFFSET box.

Figure 25: ASSIGN box.

Figure 26: COPY_MEM box.

Figure 27: CALL box.

Figure 28: INT_MUX box.

Figure 29: GRAPH pin.

Figure 30: PARAMETER pin.

Figure 31: Example BEAM graph.

Figure 32: Example BEAM graph with alias/pointer info.

Chapter 1. Introduction

Static source code analysis is a useful method for finding errors in source code. Already it has
been proven to be a very useful method in software projects to increase the quality by
decreasing the number of errors. The programming language C++ is full of hazards and it takes
time for programmers to learn to work with/around them. However, it is easy to lose track in
programs that consists of millions of lines or more. This is where static source code analysis with
data-flow analysis on procedure graphs can help.

Unfortunately source code analysis is not straightforward. Procedures depending on other
procedures and recursive procedures make it hard to perform solid and stable analysis. When a
procedure changes its behavior in any way all the depending procedures need to be
recomputed. Sometimes procedures are expanded inline. This means that when it comes to
analyzing a procedure, all procedures that provide information to this procedure are loaded and
analyzed. These inline expansions need to be limited in order to handle recursive procedures
and to limit the size of the graphs.

A static analysis tool named BEAM (Bugs, Errors And Mistakes) is implemented as a research
project at the IBM T.J. Watson Research Center. One of its goals is to improve the accuracy of
current static analysis. An option is to develop a method for better handling of the (recursive)
procedures. Graph algorithms are under investigation to improve the analysis concerning
procedure expansions.

The goal of this project is to implement accurate Procedure Summary algorithms. These
algorithms are to be implemented in separate modules. Graph algorithms need to be written to
perform the extensive control- and data-flow analysis. A propagation algorithm is needed to
decide which procedures need recomputation because of its dependencies.

BEAM is still in its development phase. Other tools are available on the market and a
comparison would be useful to determine the strengths of BEAM. Especially the ratio in finding
application dependent/independent symptoms and C versus C++ like symptoms is interesting.

In this final report, BEAM's source code analysis environment is discussed; types,
classifications and comparisons of analysis and, of course, possibilities. Comparisons of the
competitor tools with BEAM are described in Chapter 2. This is followed in Chapter 3 with the
problem outline and goals of this project; also the graph structure is described here. The first
implementation is the propagation algorithm, which is discussed in Chapter 4. Chapter 5 is
devoted to the framework in which the Procedure Summaries are implemented. The algorithms
for the actual Procedure Summary computation start in Chapter 6. Statistics, Pointer
Dereferencing and Assignments to Global Variables are discussed in this chapter. Chapter 7 is
devoted to the last Procedure Summary namely pointer aliasing. The report finishes with
conclusions and future work.

Chapter 2. The BEAM project

2.1.

The demands for software-projects are getting higher and higher. Developers have to develop
more features, develop and maintain newer versions on different platforms. Everything in a
decreasing development period, without making concessions to the quality of the software. This
can only be archived if the software development process is very efficient. These processes
include a thorough test phase for improving the quality of the software. Source code analysis of
software can add quality to ensure a more effective development process including higher
product quality.

BEAM & Source code analysis

BEAM is a tool, developed at IBM Research, which performs source code analysis on C++
code. The name BEAM stands for Bugs, Errors And Mistakes. It tries to find symptoms possibly
leading to these bugs, errors and mistakes (later on referred to as errors) with static source code
analysis methods.

Starting with the unmodified source code it first parses the code with a compiler. This first
compiler phase is done with an existing compiler that has an open structure. This structure
allows tools like BEAM to tap off the parsing phase. The given parse tree is then transformed
into graphs, which is the second phase. Each procedure and loop gets its own graph with all
information needed to execute that piece of code. At this point all structures have been set up to
start with the analysis (one type of analysis has already been performed as is explained later).
Before starting with the actual bug finding, BEAM builds a Procedure Summary with information
about what happens when that procedure is called. Finally the actual analysis starts where
BEAM tries to find the bugs, errors and mistakes in the source code.

Summarizing the phases:

Parsing of the source code

Graph generation

Building the Procedure Summaries
Performing the data-flow analysis

b=

To give an idea how subtle the difference between a good and bad program is, a short
example is given. In the following procedure, with one input parameter A, is either X returned or
the value “0”. Which one depends on two if statements. In this case X might be uninitialized
when returning X in the bad program.

WO JA U b WwNPRE

int P(int A)

{

Nt

int X, I = 0;
if (A) { X=05;1I=1;}

if (I) return X;
else return 0;

Code 1: The good program.

{

WooJOUixWN R

}

: int P(int A)
int X, I = 0;
if (A) {(X=5;1=1;)

if (1I) return X;
else return 0;

2.2,

2.2.1.

Code 2: The bad program.

With only inverting the if condition at line 7 this program is transformed into a bad program.
Following the path (line 1,3,5,7) in the bad program (A being FALSE) one can see that variable
X is being read but has never been written. This is an example of an uninitialized variable, so if
the program is executed the call of this procedure results in garbage.

Since the difference between a good and bad program can be so small it is hard for
programmers to find such errors. This is where source code analysis tools like BEAM can give a
helping hand. BEAM can analyze code from realistic programs with millions of lines of code. It
has thus been found very useful in finding errors in such programs.

BEAM’s approach

Use of BEAM

Different source code analysis tools have different goals, some of them are discussed in
section 2.4. At the moment BEAM is a prototype but the intended use of BEAM in the future is
as follows. BEAM focuses on different specific applications, thus it is useful to split the analysis
into two parts. One application independent part that should understand the programming
language, and the algorithms for finding general errors. The other part consists of separate
application specific modules. These modules could be dynamic loadable, to make it easy to add
specific error analysis.

Since source code analysis consumes a lot of time (much more than when a compiler
compiles its code), BEAM maintains a database of code which has been previously computed.
When analyzing large projects only the code that has been updated during the day has to be
reanalyzed. This gives enough time during the evening/night to do thorough analysis. Of course
code relying on the updated code also needs to be reanalyzed.

As projects evolve new knowledge becomes available about the application specific errors.
This knowledge needs to be added to BEAM for being able to find these errors.

Knowing the intended use of BEAM now the goals are explained. BEAM has to be able to
handle realistic programs, in practice this means being able to handle millions of lines of code. In
contrast with other tools BEAM does not need user information in the code. It takes the code “as
is". No adding or change in the source code is wanted nor needed. This keeps the code clean
and no other knowledge from the programmer is needed for being able to use BEAM. One older
source code analysis tool, lint, was known for reporting a lot of bogus errors. BEAM rather
misses a real error than reporting bogus errors. When however in the error report from BEAM
the user decides that an error is a bogus one, the error can be turned “off” so that in the future
this error will not appear again.

Speed is of minor importance to BEAM, it has no intention of running at compiler speed. A
compiler does not need thorough code analysis for being able to build a running program.
Finding errors is more expensive in time thus it is allowed to take this time and with the updated
code recognition BEAM is well able to handle large pieces of code without the need of running at
high compiler speed.

2.2.2.

2.2.3.

The following goals are of less importance to BEAM. Reporting all errors, handling arbitrary
programming languages e.g., Java, Pascal or perhaps even VHDL and handling arbitrary
applications. Section 2.3 describes the strength of BEAM. It is better in finding application
specific errors than finding general C/C++ errors. There are other tools on the market available
(section 2.4), which handle those kinds of errors better than BEAM.

Analysis classification

In the testing phase of large software projects, developers have a wide variety of choices
available for detecting errors in their implementation. The first way of finding errors is through
dynamic analysis. This type of analysis provides possible inputs and then checks the output for
correctness. Programmers are able to use this type of methods because they know how the
program should behave and thus know the input/output relation. If one could cover all the
possible inputs a program can be thoroughly tested, however due to the size of today's software
projects it is almost impossible to cover all possible inputs. For dynamic analysis to work, it
needs to actually execute the program in order to find the input/output relation ship. This is a
disadvantage because a target machine is needed.

Another possibility is static analysis, this can be divided in symbolic simulation, data-flow
analysis and state space exploration. Without explaining the methods in full, some
characteristics are given. Symbolic simulation searches the procedure graphs in DFS order for
all possible paths. Data-flow analysis does the same but then in BFS order. State space
exploration tries to find all reachable states.

The last possibility is test case generators. These are a combination of both dynamic and static
analysis. The principle is to find interesting input patterns for dynamic analysis. Ideally they use
static analysis to determine what these interesting input patterns are.

BEAM is classified as a static source code analysis tool. More specific, it uses data-flow
analysis to find the symptoms leading to a bug, error or mistakes.

Classification of data-flow analysis

Different types of data-flow analysis are available from low accuracy but fast to high accuracy
but slow in time. Flow insensitive analysis is very fast but does not have such a high accuracy as
state sensitive analysis. In the following paragraphs it is explained, with examples, what the
exact difference is including what types of analysis BEAM uses. During this example the same
program is used as in section 2.1.

insensitive sensitive

sensitive

sensitive

Figure 1: Data-flow classification.

Flow insensitive analysis looks at the statements as an unordered set. In the example below
we see the statements concerning X in bold font. Since the order is unknown, this type of
analysis can not distinguish the good from the bad program given in section 2.1. Flow insensitive
does only work for detecting uninitialized variables if that variable is never assigned anywhere in
the program.

10

1: int P(int A)
2: {
3: int X, I = 0;
4:
5: if (A) { X =5;I=1; }
6:
7: if (I) return X;
8: else return 0;
9: }
Code 3: Flow insensitive,

Flow sensitive & execution insensitive is more detailed in its analysis. It looks only at the
variable X but in contrast with flow insensitive it now knows the order in which the statements
are executed. Plus it sees that some statements are executed conditionally but because it treats
executable and non-executable paths the same it still can not distinguish between the good and
bad program.

1: int P(int A)
2: |
3: int X, I = 0;
4:
S: if (A) { X=5;1I=1;)
6:
7: if (I) return X;
8: else return 0;
9: }
Code 4: Flow sensitive and execution insensitive.

The next step is execution sensitive & state insensitive. This does take the conditions into
account but does know nothing about the assignments to the variables. Also it does know
nothing about the relationship between A and 1. This type of analysis can still not determine
good from bad in the example.

1: int P(int A)

2: |

3: int X, I = 0;

4:

5: if (A) { X=5;1I=1; 1}
6:

7 if (I) return X;

8: else return 0;

9: }

Code 5: Execution sensitive and state insensitive.

State sensitive analysis looks at everything including assignments to other variables. Only with
this extended information gathering BEAM is able to distinguish good from bad programs.

11

: int X, I = 0;

: if (I) return X;

1
2
3
4:
5: if (A) {(X=5;I-=1;)
6 .
7
8 else return 0;

9

Code 6: State sensitive.

BEAM is able to find many errors, some of which are easy to find. It does not use expensive
state sensitive analysis to find these errors. Examples of these errors are a mismatch in a printf
pattern or dead code. Errors like this can be found for all paths, it is not necessary to search for
a specific path leading to these errors. Errors that do need a specific path can be divided into
two groups. One without constraints e.g., uninitialized variables and memory leaks and errors
with constraints, e.g., dereferencing NULL and index out of range.

2.2.4. Comparison of goals

Different tools have different objectives. Knowing the differences in data-flow analysis, let's
look at the comparison of goals of other tools using data-flow analysis.

when in doubt

leave itout | print it out

insensitive Compiler LINT

execution

sensitive BEAM Verifier

Figure 2: Comparison of goals.

The diagram shows 4 quadrants divided by execution sensitive/insensitive and yes/no error
report. Compilers and LINT-like programs are alike in their analysis, both are execution
insensitive thus not that detailed. In case they find something LINT will definitely report it, which
results in a lot of bogus (not-real) errors. Compilers in contrast to this, just leave it out, nothing is
reported unless it really affects the program. Verifiers and BEAM are more precise and use both
execution sensitive analysis. But in error-message printing they differ. BEAM wants to prevent
bogus errors and thus if it is not sure it reports nothing where a verifier does print an error
message.

BEAM uses execution sensitive analysis to make sure that a path leading to an error is actually
executable before reporting it. This is explained with the following example.

1: int Q(int *p)
2: {

3 return *p;

4: }

Code 7: Path to an error in procedure Q.

The problem in this program, what if p = NULL? BEAM will not report the error because it can
not find enough evidence that p might actually be NULL. This in contrast to a Verifier who will
report the error because p might be NULL. For BEAM this is solvable if it knows the calling
environment of this procedure Q. But the calling environment might not be known due to
different reasons; not computed yet or simply not available for analysis.

12

2.3. Achievements

The tool BEAM has been used on various large software projects. Symptoms found by BEAM
are often reviewed “by hand” and then reported. In total BEAM is able to detect about 45

symptoms of errors. They can be divided in four different groups V path, 3 path, generic and
application specific.

¥V path 3 path
General e Never used variables e Alloc/Write/Read/Dealloc
¢ Incorrect number of printf e Index out of range
arguments
Application specific e Database check not done ¢ Exiting without clean up

e Open/.../Close database errors
(not implemented)

Table 1: Symptoms types.

Leaving out the application specific symptoms that BEAM is able to find, still an extensive list
of general/application independent symptoms can be found.

Application Independent detectable symptoms by BEAM
+ Uninitialized location label never referred to

¢ returning deallocated location missing break in a switch
¢ memory leak mismatch in array initialization
« deallocating an already deallocated location procedure never called
¢ accessing a deallocated location procedure never called except by itself
e variable assigned, but not used bad printf argument type printf("%s", 123)
e variable used, but not assigned not enough printf arguments
o variable neither assigned nor used too many printf arguments
e parameter never used scanf argument is not a pointer
e parameter is a structure rather than a pointer to bad printf option printf("%y")
a structure local variable masks a global
statement has no effect constant expression
e binary op (e.g., &) inside an if condition (instead assertion
of &&) dereferencing NULL
¢ bit wise operation (e.g., &) between two relations out of range
casting a value into a type not containing the passing pointer to deallocated memory
value string index out of range

assignment inside if duplicate external procedure
unreachable statement NULL class pointer
backward goto

Table 2: Application independent symptoms.

BEAM tries to find symptoms and not errors because for example an unreachable statement
does not influence the program execution. Or one might say; “if | initialize all variables with zero,
BEAM would never report any uninitialized variables”. True, but this is only hiding the symptom
of what might become an error. The next chart gives an idea of the number of symptoms
categorized for application specific and general symptoms found by BEAM.

24.

2.4.1.

No mask permission
MsgPrintf
Uninitialized variable

Memory leak
Unreachable statement [77— —
Constant expression ST
Missing break
Statement without effect |- T

1 10 100 1000

M Application specific
T General

Figure 3: Symptoms found by BEAM.

On the y-axis the symptoms are depicted as possibly becoming errors. On the x-axis the
number of occurrences it displayed. It is of minor importance of looking at the actual numbers
because they are accumulated over time. Nor is the explanation of the specific symptoms
important. What is relevant is the ratio between the between the application specific symptoms
at the top and the general C++ symptoms below in the chart.

The difference between these kinds of symptoms is an order of a magnitude. This is one of the
strengths of the source code analysis tool BEAM. BEAM has a lot of application specific
knowledge built in for specific projects. 1t thus can find errors that no other tool is able to find
unless it has programmable analysis capabilities.

Competitors

There are, of course, other source code analysis tools available on the market. These tools
focus on different goals than BEAM. In section 2.3 it is made clear that BEAM's advantages are
mainly in the field of application specific symptoms. These kinds of symptoms are not checkable
by the tools discussed here (unless they are programmable). Thus it is not meant to compare
BEAM with other tools available, however this is sometimes done to indicate choices made in
BEAM. This section intends to give a broader view of available tools with their advantages and
disadvantages, where to get more information about them and some interesting Internet links.
This section is based on [MEYES97] and [SCZE97].

C++ is a widely used programming language, especially because of its power and flexibility but
also because of its hazards. Hazards like not implementing a virtual destructor in the base class
often result in incomplete destruction of the derived class objects, when they are deleted through
base-class pointers. These very specific C++ hazards are not checked by BEAM. Programmers
who are very experienced in the C++ language often learn to avoid these kind of troublesome
constructs. But it is a misconception that such experience should be necessary for writing good
programs. Also these kinds of errors can often be found through static source code analysis.

Available tools

So what tools are available on the market for statically analyzing C++ source code. Tools
performing dynamic analysis are ignored. However these tools may also be found very useful in
large software projects but they are not related to BEAM. Dynamic analysis complements static
analysis and does not replace it. Also tools concentrating on lexical issues (identifier naming and
style) are not part of this research.

The following alphabetical list shows the investigated tools with some important characteristics.

14

24.2.

e The Apex C/C++ Development Environment from Rational Software. This tool
includes, among other capabilities, 22 predefined rules concerning C and C++
programming under UNIX.

¢ C++ Expert from CenterLine Software. Static and dynamic analysis is performed on both
C and C++ source code. The static checks are derived from two books, [MEYE92] and
[MEYE96]. Furthermore this tool provides links in its reports to Internet links of online
versions of these books. Also this tool runs under UNIX.

o CodeAdvisor from Hewlett-Packard. HP's SoftBench development environment for
UNIX includes this CodeAdvisor analysis tool. Included are 23 predefined rules plus the
possibility is given to extend its capabilities by coding new analysis in C++.

e CodeCheck from Abraxas Software. This is one of the few tools available for multiple
platforms, DOS, Windows and UNIX. Like HP’s tool, new rules can be programmed but in
a C-like language. Several predefined analysis programs are already provided for metrics
and code-portability.

o CodeWizard from ParaSoft. A too! only for UNIX with 24 rules selected from the book
[MEYE92].

» FlexeLint/PC-Lint from Gimpel Software. Again a tool designed to run on multiple
platforms, UNIX, DOS, Windows and OS/2. Concerning rules this one exceeds all others,
it is able to check over 600 rules in both C and C++ source code. Maybe this one is the
closest to the classic lint but in contrast it is able to perform more detailed data-flow
analysis.

* QA/C++ from Programming Research, another tool for UNIX only. Like BEAM it works in
multiple phases. It first parses the C and C++ code and stores its information in a
database (graphs in BEAM). Different analysis may then be run on this database. The
modularity however does not provide user programmable analysis.

More information and company (Internet) addresses about the tools can be found in Appendix
A.

A note about the two books [MEYE92] and [MEYE96), both books contain guidelines and rules
for C++ programming. Both books written by S. Meyers, a software-development consultant, are
well received in the C++ programming community. A lot of corporate-coding guidelines currently
existing in companies have been derived from these books.

Today’s compilers are also getting better at performing data-flow analysis. They already did
perform this type of analysis to find for example def-use associations. However in contrast of
what people might think the extensiveness of analysis performed is still not close to what a static
analysis tool like the ones described above and BEAM do.

The GNU G++ compiler is known for its extensiveness in compiler messages (run with options
-ansi -pedantic -Wall -0).|n[MEYE97]five compilers are tested on their warnings about
troublesome C++. 36 rule violations were tested of which 3 compilers identified no violations and
one compiler identified only one. GNU G++ was able to identify the most, 2 out of 36. This
confirms the above that compilers analysis is not as thorough and not usable for the same
purpose.

Comparison

The comparison approach for the tools mentioned above, is as follows. First a set of rules on
the structure of C++ is developed. The set is tried to be representative of the kinds of errors real
programmers would find useful. The rules, see Appendix B, are divided into several categories.
Noticeable is that almost all rules are stylistic which implies that not all of them result in errors if
not applied. They are merely there to protect the software from becoming hazardous. When
rules like these are followed the software becomes more reliable.

15

CodeCheck and CodeAdvisor were very good at detecting rules from the list. However not
directly, for most rules the vendor claims that the user can program the tool to detect violations
of the rules. The question which symptoms/rules are checked by BEAM is simple, none!
However some are related and have been found useful in directly preventing an error. Below is a
list of those symptoms with the reasons why:

e Symptom 16) Use pass-by-ref-to-const instead of pass-by-value when both are valid.
BEAM does print a warning when a structure (or a class) is passed to a function, as
opposed to a pointer or reference. The reason is that passing a structure invokes copy
constructors and destructors behind the scenes, which is not only inefficient, but
sometimes causes problems. But BEAM has no preference for pass-by-ref-to-const as
opposed to pass-by-ref.

» Symptom 18) Do not overload on a pointer and an integer. BEAM checks code on both 32
bit and 64 bit machines. Since compatibility issues are sometimes a (application specific)
problem, BEAM checks this.

* Symptom 23) Avoid use of "..." in function parameter lists. BEAM has nothing against “..."

but flags cases where a structure (or a class) is passed to a "..." argument. The reason is

that people are normally not aware that the compiler will handle this differently from
ordinary arguments.

Most tools focus on handling the “++” part of C++ this in contrast to BEAM, which application
independent symptoms are more C like. Most tools also do this but unfortunately no information
was available for comparing that part with BEAM's symptoms. Lexical analysis is also a
possibility in some tools. In the first phase of BEAM some lexical analysis is performed but not
more than a regular compiler would do. If it can parse the code it is satisfied and does not report
any errors.

Since BEAM is designed to handle large portions of code it would be interesting to know how
these programs would behave in such an environment. The only information available about this
is that most tools have “trouble” handling such programs.

Another point of interest is the precision of the tools. State sensitive analysis is needed to find
for example uninitialized variables (section 2.2.3). Most tools do not perform that kind of
thorough analysis, which only increases the number of bogus errors reported by them. BEAM
achieves one of its goals of few bogus errors with taking the time for state sensitive analysis and
thus has a clear advantage over the other tools.

16

Chapter 3. Problem outline & goals

3.1.

Procedure expansions

Before addressing the main objectives of this thesis an introduction is given about BEAM's
analysis. This is followed with a proposal for improving the current situation with Procedure
Summaries.

3.1.1. A bug’s life

From hereon only errors (bugs) are discussed happening along a specific path. When handling
large programs, in the order of a million lines of code, a path leading to a symptom can be a
billion assignments long. Finding paths is even more difficult when conditions and branches are
considered. The paths must be checked for being executable. Also all statements where
memory is referenced need to be checked.

A B C

main() main()

if(1) if(!'T)

Figure 4: Shortening paths in BEAM.

The above diagram shows how to shorten those paths. BEAM is only able to compute the
paths if they are reduced in length. In Figure 4, A the normal situation is depicted. Starting with
executingmain () and some billion assignments the paths diverse into the actual and the
intended execution. Again after a billion assignments the symptom is executed (a recognizable
fault). This may lead to a crash or just different than expected results (a circle instead of a
square).

Looking for earlier symptoms can shorten the path. In Figure 4, B an uninitialized variable is
detected at the return X statement. There is one hazard because what is wrong with passing
garbage around? Of course it is only wrong when it is directly effecting the result. Looking for
earlier symptoms can be done in various ways. Compilers look for application independent
symptoms. Another approach is searching application specific symptoms. BEAM uses both
methods. Verifiers tend to use assertion when looking for earlier symptoms.

Starting the path at the entry of procedure P and not at main () reduces the path even more
(see Figure 4, C). Also this approach has disadvantages; the author of P might rely on a specific
state of memory for its procedure P or a specific relationship between parameters and memory.
Other tools also use a different starting state however they make different assumptions about
them. Compilers tend to say that everything is unknown, verifiers say everything is possible.
BEAM takes another approach, which is not discussed here, single- and multi-statement
reachability.

17

Now the path has been significantly reduced but is there more? Procedure calls make the
paths to investigate longer. Most of the calls are irrelevant to the execution, which gives
possibilities to shorten the path. Important is to know which calls can be ignored so more
information about the side effects of the procedures is needed. Verifiers rely on the user to
explicitly assert the side effects. Compilers assume anything, i.e., arbitrary side effects of a
procedure.

BEAM has three approaches for assuming the side effects of a procedure depending on the
information available. if none is available and nothing can be made available it assumes no side
effects. Second if a procedures side effects have been computed and been stored in a
Procedure Summary it uses that approximate information. Suppose a procedure
updates/changes relevant variables but the information supplied by the Procedure Summary is
not sufficient then BEAM will expand the procedure inline. This expansion means that BEAM wiill
try to find an executable path through the procedure.

Other burdens on long paths are loops. BEAM treats loops exactly the same as procedures
with the disadvantage that only little iteration can be considered. But in most cases symptoms
are reproducible in only a couple iterations so it suffices for BEAM analysis. Verifiers try either
loop invariance or convergence of states. Compilers also try convergence but use data-flow
instead.

Paths under investigation have multiple conditional statements. These conditions increase the
complexity of the paths mainly because the number of paths to be considered becomes larger.
Conditions are not reduced by a certain method but data-flow takes care of them. This is the
situation in BEAM and also for most compilers, verifiers tend to use symbolic simulation.

3.2. Procedure Summaries

Expanding procedures and loops inline means that all graph information needs to be in
computer memory for analysis. Consequently it is important for memory size considerations and
time that procedures can be selectively expanded. Based on information available in Procedure
Summaries this selection can be made.

The information in the Procedure Summaries should represent the procedure’s behavior to the
program. But the question is, what is representative? Several sorts of assignments influence the
program’s behavior. The goal for the Procedure Summaries would be to implement all of them
however this was not possible due to time. Here are some items listed but the list is not meant to
be complete.

3.2.1. Information in Procedure Summaries

e Global variables: global variables can be read and written in all procedures. Thus if one
procedure writes a global variable this may influence an if-statement in another procedure.
These global variables include static variables in classes.

« Pointers: pointers may point to objects which are either local or global. Also more than
one pointer may point to the same object which is then called an alias. Procedures with
assignments to pointers, aliases and dereferenced pointers can influence other
procedures and are thus interesting to include in a Procedure Summary.

* MAY/MUST information: a program normally consists of multiple if- and switch-
statements. These conditions are influencing the control-flow of a program. Assignments
to pointers/globals etc. are thus conditionally and consequently MAY happen or MUST
happen when executing the procedure. If this information with each assignment to e.g., a
global would be included in the Procedure Summary, BEAM could then do more specific
analysis. For example knowing from the generated Procedure Summary that a specific
global variable MUST change when calling a procedure, there would be no need to
analyze the procedure any further. That assigned value can be directly used in the
analysis. In contrast with MAY information, when a global MAY has a certain value, BEAM
could start a more specific computation by expanding the procedure inline.

18

3.2.2.

3.3.

3.3.1.

3.3.2.

¢ Values: values can be included in the Procedure Summaries and thus making them more
detailed. Of course it sometimes is too hard to figure out what a certain value should be,
e.g., not enough information available, thus values marked as unknown are also valid.
Further analysis by BEAM will be necessary to figure these out.

+ Range of variables: apart from one specific value sometimes ranges of values are in
order. Suppose a procedure with a for-loop; the value, which controls this loop, is allowed
to have a value within the range from which it starts until it ends. Initially only the values
will be used but in the future ranges might also be implemented.

* Procedure dependence on global state: in what sense does a procedure depend on, for
example the state of the heap. If there are certain restrictions to this, the procedure, when
called, might provide different results. This is particularly interesting in procedures that
perform hardware memory operations and thus often rely on the state of that memory.

Implementing Procedure Summaries only provides information to the analysis part of BEAM.
With this information BEAM can make decisions whether what the procedure does is relevant to
the analysis currently performed. The analysis part needs to be renewed in order to use the
Procedure Summaries and to be able to make decisions based upon them. One of them can be
to take a closer look and to expand the procedure.

Benefits for BEAM

The information provided by the Procedure Summaries gives BEAM more information before
starting its analysis. With this information BEAM is able to perform faster analysis; procedure
expansions are not always necessary. It is also possible for BEAM to detect more errors and
report fewer bogus errors.

An easy to use, expandable Procedure Summary framework would increase flexibility for
adding new Summary information and application specific information. Efficient propagation of
the computed information to other procedures will also enhance BEAM’s Procedure Summary
analysis.

Memory model and graph representation

BEAM uses a specific kind of memory model, which is enhanced for analysis but does not
always correctly represents a real computer memory. The graph representation that BEAM uses
is also focused on analysis. This section describes these working environments for BEAM.

Memory model

The memory model BEAM uses for its analysis ignores any hierarchy. It is a monolithic
memory with an unlimited number of locations of all possible sizes. There is no relation between
the locations, which implies that pointer-jumps to other locations are not possible. A NULL
pointer is identified with a special location. The result of a malloc will thus be either the actual
allocated location or this NULL location. Pointers are always a pair; location and offset. The
offset will always be linked with its location what again implies no pointer-jumps possible. If the
offset however exceeds the size of the location, it is out of range. BEAM is able to handle this. If
memory is deallocated it will never be used again. So, if a program relies on the allocater for
supplying certain memory, BEAM will not be able to detect errors violating this.

How does BEAM handle the distinction between a variable, locations and values? First,
variables exist only during parsing. If a program is executed only the memory location exists,
which is the same in BEAM, during analysis only the locations are visible. As a variable can be a
specific value, a location in BEAM can hold a certain value.

Graph representation

BEAM uses the VIM representation for its graphs. VIM is an enhanced graph representation.
More precise, VIM is a network representation because there are more entities possible than
edges and nodes. But within the BEAM project these networks have always been referred to as
graphs. Therefore will this thesis use the name graphs for these networks.

19

Using VIM enables BEAM to do easy traversal through graphs (back and forth) storing
information on nodes and edges. In this section the graph that BEAM uses is explained along
with the terminology used.

USAGE_PIN »

<
USAGE_BOX -

Figure 5: The graph representation.

A node in a VIM graph is called a USAGE_BOX. A USAGE_BOX can have one or more pins
(called INPUT_PIN or OUTPUT_PIN). These pins, called a USAGE_PIN for USAGE boxes and
NETWORK_PIN for a NET, connect the edges in the graph to the nodes. Edges in a VIM graph
are called NET’s. One NET may have multiple (more than two) pins connected to it, here they
are called SOURCE_PIN or SINK_PIN. To store information in the graph keywords are
introduced (called KEYWORD_DEF). Keywords are allowed to be of different kinds. Integers,
strings, graphs or pointers are valid types. These keywords can be stored on NETS,
USAGE_PINS and USAGE_BOXES in the graph. The graph itself is gathered in one box that is
called the PROTO_BOX. This PROTO_BOX provides input and output connections as
PROTO_PINS. These pins may consequently have NETS connected to them.

There are several functions available to request values/entities from this graph. Without giving
an extensive list a few are given to provide the reader with an idea of what is possible. Suppose
the example above where starting with the net below, traversal is wanted through the box to the
input nets. (Parameter C is a context parameter.)

03O U x WPk

(e}

e
N B

=
ENW)

e
o n

l_)
O e

NET Net;
NETWORK_PIN Q;
USAGE_PIN P;
USAGE_BOX Box;

f_net_pin(Net, SOURCE_PIN, C);
get_usage_box_from_usage_pin((USAGE_PIN) Q, C);

Box

for(P = f_usage_pin(Box, INPUT_PIN, C);
P;
P = n_usage_pin(P, C))

Net

get_net_from_usage_pin(P, C);

Code 8: Backward graph traversal.

The code parsed by BEAM needs to be translated into a VIM graph. About 40 types of boxes
are possible and vary from locations to assignments and from integers to bit operations. Not all
of the boxes are relevant to discuss; the most important ones are described in Appendix C.

20

A graph in BEAM can represent either a procedure or a loop. BEAM does not make any
distinction between these two. Loops are therefore represented as recursive procedures. A call
in a procedure might consequently be either a procedure call or a loop call.

As an example a code fragment is used in Appendix D, this fragment is especially concerning
how BEAM handles pointers and will be referred to again in Chapter 7. Important to see is the
difference between the data-flow and the control-flow. Both are built with the same VIM
components, NETS, USAGE_BOXES etc. The difference from a procedure’s point of view is as
follows. The path, which can be taken in a procedure, is a path that can be taken in the graph.
Dividing branches due to if- and switch- statements belong to these paths. Assignment boxes
are always on a path since assignments happen at a certain program point. Thus are they
related with the flow of a procedure and consequently occur only on the control-flow. Other
implementations of source code analysis tools often do not have such an extensive graph as
BEAM has. Their analysis is less precise because of this; another graph structure often used is
discussed in 7.2.2. BEAM provides the control-flow part in the graph with a data-flow part. This
data-flow part computes precise information for assignments done in the control-flow. It
computes indexes, values being assigned, pointers being referenced etc.

In the example in Appendix D the difference between control-flow and data-flow is shown with
a dashed versus a solid line patterns. The procedure starts with the assignment p = &x. The
data-flow therefore computes the “&x” with a pointer box. Together with an index “0” for location
“p” it is the first assignment on the control-flow. The next assignment does not include data-flow
operations and location “x” at index “0” is simply assigned “1”. The last assignment is more
complex. Location and index are straightforward but the index needs some data-flow
computation. First location “p” is fetched which means retrieving the content of location “p”. The
result from this operation is “&x” because this is what “p” has been assigned previously (to
figure that out the control-flow input is provided). The extract boxes now get rid of the “&” and
thus inputs for the next fetch are “x” and “0”. This fetch node searches along the control-flow for
an assignment to “x”. The result is “1” so that is used as an index to the last assign for A.

For best analysis a 1-1-graph translation of the source code is needed. Meaning, the graph
describes exactly, in full detail the source code. Unfortunately compilers have the habit of
optimizing the code, e.g., substituting constants for variables. Most compilers have options to
turn this off and so has the parser that BEAM uses. BEAM is thus able to analyze the clean code
like the programmer wrote it. However in some cases there are minor optimizations but they
were not found being of influence on the analysis.

Goto's have always been a problem in programs. It is considered best to avoid them but
sometimes they are unavoidable. When BEAM analyzes the source code it does not complain
about forward goto’s. The paths going through such goto's can be correctly analyzed. But BEAM
is not able to handle backward goto’s and complains if it finds one.

BEAM uses backward analysis on its graphs. For knowing which branch you take it is thus
relevant to see a INT_MUX box before you analyze a branch from which you do not know where
it came from. For this reason BEAM places the INT_MUX node at the bottom of the branches
and not, what is most common, at the top.

21

Chapter 4. Propagation

In this project we start with the implementation of a system for Propagation of the Procedure
Summaries throughout the CALL-graph. This is needed because recursion and loops make
procedures depend on each other and thus might need recomputation. In this chapter we
explain what a CALL-graph is and how the algorithm works for deciding which procedures need
recomputation.

4.1. CALL-graph

BEAM uses a CALL-graph to check the dependencies of procedures. Procedures might have
recursive behavior thus the information computed now depends on the information computed
before. Loops have the same behavior; each time the loop is entered, previously computed
information needs to be included in the Procedure Summary. Thus, BEAM needs to know which
procedures are recursive. In the second phase of BEAM, the building of the graphs, also a
CALL-graph is build. This CALL-graph is different from the regular procedure graphs. Each
procedure is represented with one node and is identified with a name. Dependencies are
represented with directed edges. If for example procedure A calls procedure B there will be a
directed edge from procedure B to procedure A. This represents the information flow,
information computed at B is used in A.

Below are two examples of the following small programs X and Y.

Program X

1: void A() { B{(); }

2: void B() { A(); C(); 1}
3: void C() { }

4: void D() { B(); }

Program Y

1: void P() { P(); Q(); R{); }
2: void Q) { P(); }

3: void R() { }

4: void S() { P(); R(); }

5: void T() { R(); }

Code 9: Example programs for a CALL-graph.

Program X Program Y
0800 O
w_ ‘
(& 090 O

%

Figure 6: Corresponding CALL-graphs.

22

4.2.

Both programs have independent and dependent procedures. Normally each program will
have only one main procedure and thus the CALL-graph will have only one sink node. Since
BEAM is not always supplied with the complete source code of a project (typically only one
directory) it might be possible that there are more sink nodes in the CALL-graph (program Y).

Post-order list

In one run all procedures in the CALL-graph need to be computed. The question is with which
procedure to start/end and why? The algorithm that is implemented starts with procedures with
no dependencies. From a graph point of view these are the source nodes. Procedures
computed next are those depending on the “source” procedures etc. This happens recursively
until only the sink nodes are left which consequently are computed last.

The order of computation described is equal to a post-order traversal of a graph. Such a list
starts with source nodes and ends with the sink nodes. The list can be computed in different
ways but the algorithm implemented computes the post-order list as follows. It takes an arbitrary
node from the CALL-graph to start with. The algorithm knows nothing about the graph so this is
the best (and only) thing to do. It then starts a DFS (Depth First Search) on this node but in
reverse order, meaning traversing against the arrows. If the DFS hits a source node it adds this
node to the post-order list. Then traversing recursively from the DFS back to the starting node all
nodes visited are added. At the same time all visited nodes are marked visited. It is then very
well possible that not all nodes in the CALL-graph have not been visited. The algorithm
continues at the starting point with picking another arbitrary node but now one that has not been
visited yet. Followed with performing another DFS on this node and adding the visited nodes to
the post order list. This is being continued until all nodes in the CALL-graph have been visited.

Some notes on post-order lists, first the beginning node in the post-order list does not always
need to be a source node. Imagine two procedures calling each other, performing a DFS on
either one results in a traversal without hitting a source node. This however is no reason for the
post-order list to be in-valid or not usable. Another issue is the arbitrary choice of a node from
the CALL-graph. Since this is allowed multiple post-order lists may be possible for one CALL-
graph. But on the arbitrary chosen node a DFS is performed which means that in the post-order
list to be build still the source nodes will be first and sink node will be last.

In the table below are some post-order lists given. They are valid lists for the example
programs in the previous section.

Program X Program Y

[A,C,B,D] « [RT.QPS]
[C!AiB’D] L [R,Q,P,S,T]
[C.B,AD] o efc.

4.3.

Table 3: Post-order lists for program X and Y.

Loops in CALL-graph

The post-order list is a sufficient order to compute when the CALL-graph does not have loops.
Computing the Procedure Summaries for each (depending) procedure, from left to right in the
list, will result in stable Procedure Summaries. With stable Procedure Summaries it is meant that
they will not change if they are computed again. But each interesting program has at least some
loops and/or recursive structures. The post-order list computed is still useable but now an index
pointer is needed to indicate which procedure will be computed next. Normally the index pointer
will be pointing to the next procedure in the list. When the Procedure Summary has been
computed and noted to be different than before a check is performed if there are procedures
relying on information just computed. If this is the case a second check is performed if the
procedure (may be more than one) is before or after the just computed procedure in the post-
order list. With just looking at the index of a procedure stored with a keyword on the procedure
node, and the index pointer itself this check can be easily performed.

23

4.4.

in practice this means starting with the first node in the post-order list, each node is computed
and when dependencies are encountered the index pointer will jump back to recompute the
depending procedure. From that point on the procedures to the right of the list will be
recomputed and possibly jump back again. This continues until the newly computed Procedure
Summary does not change from the previously computed one and thus no new dependencies
need to be recomputed. The following example with program X will iliustrate this.

The chosen post-order list in this example has been chosen to be [CABD]. First some
clarifications on the used coloring. The dashed fill pattern means that this node/procedure is
currently under investigation i.e., being computed. The gray fill style indicates that there is a
Procedure Summary available (not known if stable).

-

1) [CABD]

2) [CABD] 3) [CABD)] 4) [CABD]

7) [CABD)

e & e

Figure 7: Propagation through the CALL-graph.

The first picture is the start situation, no Summaries available, nothing being computed.
Continuing to the first element in the list, picture 2, the Procedure Summary for C is computed.
In picture 3 the Procedure Summary for C is available for other procedures, depicted as gray.
Presently computed is procedure A, when finished, the Procedure Summary is stored in A and
dependencies are checked. In this case A has dependencies to B which means that B needs to
be recomputed. B has a larger index in the post-order list and thus will it automatically be (re-)
computed, the index pointer does not need to be shifted backwards. Picture 4 shows that B is
computed and both A and C have Procedure Summaries available which can be used in B's
computation. When finished computing, again a check is done for dependencies. This time B
has been renewed and thus A needs to be recomputed. The index pointer is set back to
procedure A in the post-order list. Picture 5 depicts the recomputation of A, when finished the
computed Summary is compared with the old one. The one that has the most accurate
information is stored, for more information about this see section 4.6. Going from left to right in
the post-order list B is next for recomputation, again new versus old Procedure Summary is
checked plus the dependencies. Suppose B did not change and thus A does not need
recomputation, and the algorithm proceeds to situation 7. If B did change, A needs to be
recomputed and thus situation 5 is in order again. Hopping back and forth between situation 5
and 6 is done until there is a stable situation exists, no changes in Procedure Summaries. In
picture 7 the last element in the list is computed and picture 8 shows that all procedures have a
Procedure Summary available.

Time-Stamp

Imagine in the example that the post-order list was not [CABD] but also a valid one [ACBD].
With the algorithm described so far this means that if procedure A needs to be recomputed,
procedure C is also recomputed. But this is not necessary since C is a source node and
recomputation will not change the Procedure Summary for C. To solve this problem Time-
Stamps are used. Each node has connections to the edges with a pin. It is possible to store a
keyword e.g., an integer or long, on these pins. The algorithm puts the Time-Stamp integer that
is global, i.e., static, to the Propagation class on both input and output pins. The Time-Stamp is
only allowed to increment. By doing so the pins are marked to be newer than the rest with lower
Time-Stamp values.

24

4.5.

4.6.

Initially all pins have this integer Time-Stamp set to zero. Just before actual computation of the
Procedure Summary the Time-Stamp on the input pin is updated meaning that the global Time
Stamp integer is incremented followed by copying this value to the keyword on the input pin.
After computation the Time-Stamp on the output pin is updated but only when there is a change
in the Procedure Summary, i.e., the newly computed differs from the old one.

The algorithm now works as follows; having picked a procedure for possible computation the
question is asked is the procedure is out of date. Out of date means if the Time-Stamp on the
source pin of the net connecting to the input pin has a larger value than the value on the input
pin. If this is the case, only then will the procedure need recomputation. With this implemented in
the algorithm, post-order list [ACBD] will not take any more time to compute than list [CABD]
since these Time-Stamps prevent unnecessary recomputation.

Deletion from List

During the first tryouts of this algorithm on large programs, memory problems were
encountered, more specifically, memory exhaustion. The post-order list can be very large since
there can be many procedures (and loops) in the CALL-graph. The graph for each procedure is
already in memory or is loaded when needed for computation. Deletion does not happen until
Propagation of all procedures finishes. In the example described, (post-order list [CABD]) C is
no longer needed and thus its graph can be deleted from memory right after computation. Note
that the computed Procedure Summary is saved as a keyword on the node in the CALL-graph
and will always be available for depending procedures.

A second pointer in the list is introduced in the algorithm, the delete index pointer. This pointer
indicates that all procedures to the left of this pointer are deleted from memory because they are
not needed for recomputation. At the end of the algorithm when the Procedure Summary has
been computed and the Time-Stamps have been updated a check is performed to see which
procedures can be deleted. If a procedure has no dependencies or the procedure is depending
on procedures standing to the right in the post-order list, the procedure can be deleted from
memory. This addition to the algorithm was sufficient to solve the memory problem described
above.

Comparing the Procedure Summaries

To determine if the Time Stamp needs to be updated a comparison needs to be done with the
old Procedure Summary and the new one. This is not implemented as part of the Propagation.
Each Procedure Summary decides for itself if it changed. Possible decisions are the size of a
Procedure Summary. They are only allowed to grow and if the new one is smaller than the old
the old one is saved and the new one discarded. Consequently the procedure will not be
recomputed. When the sizes are the same a check is performed to check changes in the
Procedure Summary.

WoOoJau s wpP

list = BuildPostOrderList();

{

}

for (list) /* for all elements in list */
{
if (OutOfDate(list[index])) /* OutTime > InTime */
{
PutTimeStamp (inputpin) ;
if (CalcSideEffects(list[index])) /* a change? */
(;
PutTimeStamp (outputpin) ;
index = CheckIfDependencies(); /* jump back? */
}
}
DeleteBoxesPossible() ;

}

Code 10: Algorithm for Propagation.

25

4.7. Algorithm

The algorithm for Propagation is summarized in Code 10.

4.8. Troublesome procedures

There are some special cases for which the algorithm fails to work. The first problem is a
procedure for which the Procedure Summary keeps on changing with each iteration.

1: void F{()
2: {

3: N = 0;
4: F();
5: = IN;
6: }

Code 11: “Bouncing” Procedure Summary with corresponding CALL-graph.

The Procedure Summary will be repeatedly computed because of the recursive structure and a
changing Summary. With the first computation the Procedure Summary will be “N = 0" followed
by “N = 1" then again “N = 0", “N = 1" etc. When taking a closer look at the procedure one can
see that it is pretty hopeless. A programmer would never have meant to write a procedure like
this because there is no path leading out of the recursion. BEAM can solve this problem by
using path analysis to find “a way out”. However this is too complicated for Procedure
Summaries and the only restriction that should be used is to restrict the number of Procedure
Summary (re-) computations of a procedure.

The second problem concerns the choice of the starting procedure for computation. The
resulting Procedure Summary differs depending on the choice the starting procedure.

1: void P{()
2: {

3: N = 0;
4: o0);
5: }

6:

7: void Q)
8: {

9: N = 1;
10 P();
11 }

Code 12: Procedure Summary depending on start procedure with corresponding
CALL-graph.

The Procedure Summary when starting with procedure P is P: “N = 0" and for Q: “N = 0". The
other way around when first computing Q will result in P: "N = 1" and Q: “N = 1", Also these
procedures on itself are useless because there is no path which leads out of the recursion.
Again path analysis needs to be done to solve this problem.

26

Chapter 5. The Framework

5.1.

This chapter describes the Procedure Summary framework. It does not talk about each line of
implemented code but does give a description of the class structure, also each class is
discussed briefly of what it exactly does.

The Data-structure and motivation

Propagation is the main part of the Procedure Summaries. However this is not chosen to be
the class which BEAM accesses. For flexibility reasons it was desired that the Procedure
Summaries could be independently used by BEAM. The following framework was the result that
is easy to use by BEAM, only few extra lines of code are needed. More computations for
Procedure Summaries can be added by putting them along with the other calculations. In
addition it provides adjustable (without recompiling) detailed messaging for both Propagation
and Calculation. The picture below gives an idea of how the classes interconnect.

PSTrace

derived

derived
Propagate

derived

A 4

. e Calculates .
Summaries |- ______ >

uses Statistics

CalcGlobal

Aliases

Figure 8: The implemented Procedure Summary framework.

PSTrace: PSTrace is the root class, but does not provide any virtual functions so that
Propagate or Calculate can derive them. PSTrace merely takes care of the initialization of the
variables that control the message printing used in Propagate and Calculate. All variables are
static because only one instance of PSTrace is required. When BEAM calls upon the Procedure
Summaries the first time an initialize is called for PSTrace which reads the values of the variable
directly from a file. This is useful because no recompilation is needed in contrast to the present
situation in other parts of BEAM.

Summaries: this main class stands in direct connection with BEAM, Propagation and the
Calculates. First it supplies one header file, enough for BEAM to use the Summaries. Also 2
accessible member functions are provided. These two functions give BEAM the choice to
calculate a Procedure Summary for one procedure (initial calculate) or for all the procedures in
the CALL-graph through Propagate. When Propagation is used, Propagation on itself calls a
(virtual) function in Summaries, which decides the calculations to perform. Several are possible
and this is controlled also in a file so no recompilation is necessary. Functions for Procedure
Summary handling (save/store) are provided and functions for handling information stored on
edges in the graphs during computation.

27

5.2

Propagate: as described in the previous chapter, propagate starts selectively the (re-)
computation of the Procedure Summaries and is controlled by Summaries.

Calculates: (Statistics, Dereferencing, CalcGlobals and Aliases) all the Calculates are uniform
and have at least one public function CalcSideEffects. This function is being called from
Summaries, which initiates the particular calculation. All the Calculates are a friend of
Summaries. The functions for storing and retrieving the Procedure Summaries from the nets and
boxes are in Summaries.

BEAM: for BEAM are the Procedure Summaries easy to use, after including the header file
from Summaries it can initiate the Procedure Summary calculations from which the result is
stored at each procedure node in the CALL-graph.

Other possibilities with advantages and disadvantages

A disadvantage of the implementation is when Propagation decides to recompute a certain
Summary. All selected Summaries are recomputed although for example only aliasing was
needed. The choice was between either run Propagation over all calculates (present) or over
each separate Calculate. If the last situation was chosen each procedure graph needs to be
loaded into memory repeatedly for each run. Disk access is time consuming so the choice was
made at the cost of recomputation to run Propagation only once.

28

Chapter 6. Procedure Summaries

6.1.

The Procedure Summaries consist of four different types; statistics, dereferencing, globals and
aliases. Statistics compute the number of boxes of each type in the procedure graph.
Dereferencing gives a list of locations being dereferenced in a procedure and Globals computes
a list of all globals being assigned in a procedure. Aliases are discussed in the next chapter.

A Procedure Summary information node is a quadruple of four fields. Each Procedure
Summary algorithm holds its own Summary, they are not mixed or joined. The Summary class
maintains the fields (read/store/combine etc.). The fields are divided into the following groups:

o Name: the name of the location (not the variable name)

e Index: index in the location to where value is assighed

* Size: the length in bytes of the assignment

» Value: the actual value assigned to name at index of length size.

These fields are part of a structure that can be used in a linked list. A Procedure Summary will
generally be a linked list on which operations such as searching, joining etc. can be performed.

Statistics

This is the simplest of all Procedure Summary calculations; it does not involve any control- or
data-flow traversing. A procedure BEAM graph can have up to 41 different nodes each
representing a different data part or operation. To get some insight in the complexity of a
procedure it is useful to know how many types of a certain box are used. Note that BEAM does
not use these statistics in its computation and for now is not intended to. Papers have been
written about demand driven analysis inciuding for example alias analysis. Several papers,
[DUESS5], [DUESS7], [JOHN93] and [ZHANSS], talk about combined analysis (for pointer
aliasing). They use different types of analysis (from fast to slow but more thorough) under
specific conditions. In general BEAM wants to do more thorough analysis prior to “be fast”. But
these statistics measurements could provide BEAM with, for example, the number of pointers in
a procedure. This could then be used to do more or less sophisticated alias analysis on a
procedure.

The algorithm is straightforward; iterating (arbitrary) over all the nodes in the procedure graph
it looks at the type of the box. In an integer array are the node-type values stored and updated.
This information can be printed on screen and/or stored in a file on disk, which is especially
useful when comparing different projects.

The statistics measurements have been used to build charts. These charts indicate the
complexity of the selected programs. Since there are 41 possible nodes a selection has been
made. We focus on the following groups:

Statistic measurement groups

Operations Boxes/nodes in graph

Integer INT_ADD, INT_CONST, MULT_INT, MOD, DIVIDE_INT

Floating-point ADD_FLOAT, MULT_FLOAT, DIVIDE_FLOAT

Bit wise BITWISE_AND, BITWISE_OR, BITWISE_XOR, BITWISE_NOT, SHIFT
Pointer EXTRACT_LOCATION, EXTRACT_OFFSET, EXTRACT_SIZE,

FETCH, POINTER

Calls CALL

Table 4: Groups used for statistics testing.

Each group consists of a different amount of boxes so comparing the amount of floating-point
versus integer will give an unfair ratio. What is interesting is to compare the ratio of integers over
different sort of programs. For this 6 programs or program parts have been selected. The first

29

two, tryout and examples have been used for getting to know BEAM. Little programs with errors
on purpose, just to see how BEAM handles them. The next four are parts of BEAM’s source
code from which the first is the new Procedure Summary (PS) source code. Secondly the graph
handling part (GR) of BEAM followed by BB which includes the main() and another CO in which
the conditions are programmed.

The following table shows the result of the statistics in actual number of boxes. Some

programs, e.g., GR, are relatively large compared to others. The sections and charts that follow
only use percentages.

Tryout 21 0 0 132 119
Examples 39 0 0 242 160
PS 659 0 0 1872 828
GR 3388 13 152 31094 18070
BB 690 0 0] 2134 1058
CcO 1399 0 145 2930 1186
Table 5: Total number of boxes per operation type.
6.1.1. Integers

6.1.2.

6.1.3.

BEAM performs its analysis with mostly only integers. The charts can consist of more types but
as is shown in the following charts, integers are the largest number in overall types (integers/
floats/ bits). But Figure 9 shows that there is also a large distinction in percentage of integers
between the programs. Tryout and Examples are relatively low since these small programs most
of the time only have one variable on which a certain bug is tested. PS, BB and CO are more
realistic programs so they include more integer computations. This in contrast to GR that does
little integer computation, the next section explains why.

Integers

Figure 9: Percentage of integer usage.

Floating-point

None of the programs did any floating-point computations except for GR. However the usage
of floating-point operations was only 0.02%. When computing the statistics of other programs
the charts will probably look different. Unfortunately no other statistics measurements could be
performed. Most likely will programs on for example power estimation in chips have more
floating-point operations than the programs discussed here. BEAM will report relative few errors

in programs with a lot of floating-point operations. BEAM does not focus on floating-point
analysis.

Bit wise

BEAM'’s highest precision was byte size. A location in the size of one bit was not possible.
Currently BEAM'’s precision has been improved to bit size locations, which again confirms the

30

6.1.4.

6.1.5.

high precision goal of BEAM. In the period that these algorithms were written the size was still
bytes and therefore everything mentioned in this report uses byte size locations.

Of course in the graph bit operations were possible and thus represented with corresponding
operations. BEAM sees these operations as a change in the integer value in that location. Bit
operations can be common in programs especially when there is a power of 2 involved. Either
the user already optimizes his/her code by using bit shift operations or the compiler performs
this type of optimization. In the programs are no bit operations used except for CO (conditions).
CO is a piece of code within BEAM, which checks the conditions of branches during data-flow
analysis. The percentage of bit operations was very low, 3 percent and thus not usable.

Pointer

Pointers are important for alias analysis described in the next chapter. As mentioned before
some papers mention scalable or demand driven alias analysis e.g., [ZHAN98]. lt is thus
important to know what the ratio of pointers used is in a program. Looking at the following chart
there is almost no difference in the programs checked. Aimost all programs are written in C++
including classes. This also implies more pointers (e.g., *this) than in a normal C program. A
note has to be made about scalable analysis. Most papers that use that type of analysis are
written from a compiler point of view. For compilers time/speed is crucial and thus there is a lot
to gain if they get the same results with faster analysis. For BEAM precision is crucial and from
the graph can be concluded that all programs have more or less the same pointer “complexity”.
It will thus be of no gain for BEAM to use simpler analysis based on this type of complexity.

Pointer

ot @9 P ® L

Figure 10: Percentage of pointer usage.

Calls

Another type of statistics measurements was done concerning procedure calls. Unfortunately it
is for the statistics not possible to see if the calls are recursive. This would be particularly
interesting concerning the Propagation. If there are a lot of procedure calls, more recomputation

is needed which consequently takes more time. But presently no estimations on this can be
made.

In the next chart it is depicted that especially tryout involves a lot of calls. The reason for this is
that a lot of small programs have been written to test the Propagation class. The real programs
PS8, BB and CO involve about the same number of procedure calls with the exception of GR. GR
most likely involves a lot of loops which directly implies more calls since they are treated the
same by BEAM.

31

Call

© & & L

Figure 11: Percentage of Call usage.

6.1.6. Conclusions

The statistics have been written to see if demand driven analysis would be useful in the sense
of more or less detailed analysis. The above charts show that realistic programs have more or
less the same complexity with the exception for floating-point and bit operations. But those
operations can not be checked so there is no time cost involved. We can conclude that the
information presently in the statistics Procedure Summary is not sufficient to base demand
driven analysis on. These statistics are useful to give the programmers of BEAM an indication of
the complexity of procedures.

6.2. Dereferencing of procedure parameters

Dereferencing a pointer happens everywhere in the source code where pointers are involved.
But dereferencing is dangerous if the pointer is a NULL pointer, what will be the result of the
dereferencing? A programmer normally never intends to dereference a NULL pointer so for
BEAM’s analysis it is useful to know if a procedure is called which pointers will be dereferenced.
BEAM may then perform more thorough analysis if a pointer can actually point to this NULL
location. Therefore this Procedure Summary computation is written to summatrize all
dereferenced pointers.

The following program shows a fragment of source code with a dereferenced pointer location
as being a procedure parameter. Consider the lines “...” as being of no influence to p or *p. The
program is perfectly OK if the program is never called like this P(NULL).

: void P(int *p)
{

1

2

3: ...

4: x = *p;
5.

6

Code 13: Dereferencing.

The implementation for finding the dereferenced parameters traverses the graph along the
control-flow. It starts at the bottom and traverses each control-flow node bottom up by asking for
its dominator. The dominator node is the node you MUST visit to be able to get to the starting
point. This traversing through the procedure graph implies that no branches (i.e., if and switch)
statements are considered, at least not in the first version. If the algorithm finds an assign node
it then looks if at this assign node a pointer parameter is being dereferenced by doing data-fiow
analysis. On the right hand side of the assignment is a search started (also bottom up) to find
the EXTRACT_LOCATION box. If this box is found only then something is dereferenced and this
box must then be connected to an input parameter of the procedure. Only if this can be found
the specific parameter is added to the Procedure Summary.

32

The first implementation has some limitations, no branches, no call boxes plus one level
referencing only (**p is considered as only *p). In a second version these disadvantages have
been repaired. Presently this is the only Procedure Summary, which BEAM uses in its analysis.
The first tryouts on real programs have been very useful. The number of errors found by BEAM
using this has increased with 12. These are errors would not have been found without the
dereferencing Procedure Summary.

6.3. Globals
A global variable can be accessed in every part of a program. It can be read and written
anywhere so assignments done to these variables can influence any procedure in which this
variable is used. Three different versions of Global Procedure Summaries have been written, the
only really useful one is the last one. The first version is a simple one, it does not consider the
control-flow. The second version does include control-flow but no MAY/MUST information and
the last one does it all.
The algorithms are described in a pseudo C++ language. Function names will not always
represent corresponding function names in the actual source code.
6.3.1. CalcGlobalEffects
This was the first implementation of computing all the assignments done to a global variable
and stores them in a Procedure Summary. The algorithm is straightforward:
1: CalcGlobalEffects ()
2: {
3: Vboxes in graph
4: {
5: if (is{ box, LOCATION))
6: {
7: if{ Inlarger Scope(box))
8: PS = AddToPS{(Info(box));
9: }
10:
11: else if (is(box, CALL)
12: {
13: CALLNode = SystemNodeFromProcName (box) ;
14:
15: CALLPS = ReadPSFromBox (CALLNode) ;
16: while (CALLPS)
17: {
18: if(InLarger Scope{box))
19: PS = AddToPS(box);
20:
21: CALLPS = CALLPS->next;
22: }
23: }
24: }
25: }

Code 14: First algorithm for global calculation.

It iterates over all the boxes in arbitrary order. The order does not matter for this computation
because the only thing that is recorded in this Procedure Summary is if a global variabie is
assigned something. Values are ignored, only “Assigned” is stored in the Summary. The first
check in the loop tests if the box is a location box. If this is true it then checks if this location is
global. When also this is true the information from the box is extracted and added to the
Procedure Summary. The computation so far is sufficient if there are no calls to other
procedures or loops. The algorithm above however is able to handle loops and therefore the

33

else clause is implemented. If a box is a call node then is starts with extracting the node in the
CALL-graph and reading the Procedure Summary from this node. It is not sufficient to join the

Summary with the one that is presently computed as will be shown in the next example. Each

element in the Summary needs to be checked if global and only then can be added to the new
Procedure Summary.

This version of the Global Procedure Summary put is only information in the first location field
of a Procedure Summary entry, index, size and value are left unknown,

The following segment of source code shows that variables can be global for one procedure or
loop but not for another procedure.

1: int x;
2:
3: P()
4: {
5: for (int i=0; 1i<10; i++)
6: X = 1i;
7: 3}
Code 15: Global type mix-up.

The above example consists of two pieces, one procedure “P” and a “for” loop. Two variables
exist, x and i. Variable x is global to both procedure and the loop. Analyzing procedure “P” for
globals results in getting the Procedure Summary from the “for” loop. The computation from the
“for” loop resulted in the following Summary:

X [Unknown] (size Unknown) Unknown

i[Unknown] (size Unknown) Unknown

To procedure P variable i is definitely NOT global and copying this Summary directly into P’s
Summary would give incorrect results. Consequently it is needed for each element in the
Procedure Summary retrieved from a call statement to check for its global-ness. Please note
that loops and procedures are the same for BEAM. It is not able to see or detect the difference.

6.3.2. CalcGlobalCFEffects

This second computation of global variables was the first attempt to use the control-flow
information available in the graph. For example assignment x = 5; after x = 3; along the control-
flow results in only recording x = 5. Backward analysis is suited for this because then
assignments to the same locations can be ignored if previous ones have already been recorded.

The algorithm starts at the top and traverses the graph with a Depth First Search. The DFS is
implemented as a recursive procedure so this allows us to do backward analysis with the DFS
going forward. No nodes are visited more than once. Information computed is stored on the nets
and thus available for other branches. Traversal for the example code fragment is given in the
following figure.

Figure 12: DFS Traversal through the procedure-graph.

34

Information needs to be gathered to build the globals Procedure Summary. When going up in
the graph each node is checked for being either an assign node or a call node. When finding an
assign node the algorithm tries to find out what was being assigned. Starting with checking if the
location is global, then figuring out the index, size and value of the assignment. If something is
too hard to figure out “Unknown” is recorded for that specific field. Finally to decide if this
information needs to be recorded in the Procedure Summary a check is performed to see if the
same location at the same index and of the same size has not been assigned before. If this is
the case the information is added to the Procedure Summary.

CALL nodes are handled the same way as before in globals without the control-flow. However
now also the check is performed for each information entry if the location name, index and size
are dissimilar. Only then the entry is copied to the new Procedure Summary. The following
algorithm summarizes the CalcGlobalCFEffects.

1: CalcGlobalCFEffects ()
2: {
3: StartNet = GetNetFromInputPin();
4: DFSControlFlow(StartNet) ;
5: }
6:
7: DFSControlFlow (Net)
8: {
9: if (!IsControlFlow(Net) ||
10: BottomNet (Net))
11: continue;
12:
13: Vsink_boxes on net
14: {
15: box = GetBoxFromUsage (Net) ;
16:
17: if(NotVisited (box))
18: {
19: DFSControlFlow (GetNetFromBox (box)) ;
20:
21: if (is({ box, ASSIGN))
22: figure out information and add to PS;
23: else if (is(box, CALL)
24: figure out information and add to PS;
25: }
26: }
27: }
Code 16: Algorithm for CalcGlobalCFEffects.

The algorithm described does use the control-flow to traverse through the graph and to gather
information. However no information concerning branches from if- or switch-statements are
recorded. The following procedure clarifies this:

int x;

: void P(int c¢)

WOV~ Ul W

{

if(c)

X = 3;
else

x = 5;

Code 17: Program showing that CalcGlobalCFEffects is incorrect.

35

6.3.3.

The algorithm will take one (arbitrary) branch first, lets say if the condition is TRUE. The
procedure assigns 3 to the global variable x, which is recorded in the Procedure Summary.
When it computes the other branch it figures out the assignment x = 5 but x has already been
assigned and thus the result will be only:

x[0] (size 4) 3

This is of course incorrect because first the assignment is conditional which is not made clear
in the Summary. Plus possibly assignment x = 5 is nowhere recorded. The next implementation
of the globals Procedure Summary solves this problem.

CalcGlobalCFMMEffects

This implementation uses both the control-flow and the branches for storing MAY/MUST
assign information in the Procedure Summary. It also has some demand driven features to only
compute branches when needed. Furthermore it uses both backward and forward graph
traversal. Going up via the control-flow when figuring out the assignments by doing data-flow
analysis and traversing forward in the graph to build the Summary. Finally this implementation
tests if the newly computed Procedure Summary differs from the old one.

Before a DFS is started along the control-flow a list is built of all variables that are assigned
somewhere in the graph. This list is stored on the first net into the graph, values are for now
marked as “Unassigned”. The list is used to determine when a branch exists were a variable is
not assigned to still make this visible in the Summary. Take for example the following code
fragment:

{

Ve Wk

: void P{()

if(c)
X = 3;

Code 18: Conditional assignments.

The Procedure Summary looks as follows (variable x is global):
x[0]) (size 4) 3
x[0) (size 4) Unassigned

BEAM can conclude from seeing both entries in the Procedure Summary that the assignment
to x is a MAY assignment. Variable x is either assigned 3 or not assigned at all. If for a specific
variable only one entry exists BEAM knows that that assignment is a MUST. Of course BEAM
should check if the assignment is done at the same index and is of the same size.

The global unassigned list is built by iterating in arbitrary order over all boxes. Adding them to
the list if the box is an assignment to a global. In the previous code fragment this would have
resulted in the following (one element length) list:

x[0] (size 4) Unassigned

The next phase is starting with the DFS traversing backward in the graph. It traverses up in the
control-flow until it hits the top, an already visited net or an if-/switch-statement. In case of an if
or switch are separate DFS traversals started. Walking along the control-flow the algorithm stops
at each ASSIGN or CALL box to gather information. It stores these possible entries into the
Procedure Summary temporary on the node so when in the next phase the algorithm traverses
forward it can immediately retrieve this information. In principle ASSIGN and CALL nodes are
handled exactly the same. The only difference is that a CALL node consists of more than one
assignment.

The next phase traverses the graph from sink to source. At the top net is the unassigned list
stored or other information already computed, which is then merged with the information at the
connecting box.

36

ASSIGN/ CALL IF/ SWITCH

| \ | /
5

x=3, x=7 x=3 xX=7? X=

T

Figure 13: Combine and MuxCombine.

Two different merges exist; one for normal ASSIGN and CALL boxes and another one to
handle if- and switch-statements see Figure 13. The merge on the left takes two input
parameters, the Procedure Summary on the net above and the one stored on the box. An
assignment later in the control overwrites previous assignments to that variable so the result of
this combine will be x=5. However there may be other variables assigned, these may not be
changed. Only the variables with the same name, index and size need to be overwritten.

The MuxCombine gathers the information for the MAY entries. Nothing is being overwritten
only everything present at each branch into the if-/switch is joined. If for example on two (or
more) branches the same variable is assigned, they all have to be copied into the Procedure
Summary representing MAY assignments.

When the forward graph traversal finishes a new Procedure Summary is available. It does not
mean that this procedure Summary is more accurate than the former one. Which one is most
accurate is hard to figure out. The method used is first to check the size (=number of elements)
of the Procedure Summary. It is only allowed for a Procedure Summary to grow thus comparing
the new and old one the largest is stored in the CALL-graph. When they are of equal size each
element is checked if it changed from the old version. Only the newest is stored relying on the
fact that it is most accurate because it is computed with the newest information. The comparison
with the old one is needed to return a change (TRUE or FALSE) value to Propagation.
Propagation needs to know this in order to decide recomputation for depending procedures. The
algorithm is shown in Code 19.

WG Wbk W

CalcGlobalCFMMEffects ()

{
EndNet = GetNetFromOutputPin() ;
DFSControlFlow(EndNet) ;

}

DFSControlFlow(Net)

{
if(Computed(Net))
return;

if(!IsControlFlow(Net) ||
TopNet (Net))

return;

Box = GetBoxFromUsage (Net) ;

37

18:

if (is(box, INT_MUX)})

19: {
20: VBranches
21: DFSControlFlow (Branch) ;
22:
23: MuxCombine () ;
24: }
25:
26 if (is(box, ASSIGN))
27: AssignComputation();
28: if (is(box, CALL })
29: CALLComputation() ;
30:
31: DFSControlFlow (GetNetFromBox (box)) ;
32:
33: Combine() ;
34: }
Code 19: Algorithm for CalcGlobalCFMMEfeects.
The implementation has been tested on several cases and works without problems except for
the following situation:
1: int x;
2: char *c;
3:
4: void P(int cond)
5: {
6: if (cond)
7 {
8: ¢ = (char*)&x;
9:
10: x = 1;
11: ci2] = 2;
12: }
13: }

Code 20: Problematic procedure for CalcGlobal CFMMEffects.

With the resulting Procedure Summary:

x[2] (size 1) 2

x[0] (size 4) 1

c[01 (size 4) Unknown

x[0] (size 4) Unassigned
x[2] (size 1) Unassigned

The type-casted pointer-array ¢ has been found to actually be location x, which is perfectly
OK. But assignments done to either x or a part of x are not. It is not noticed that x[2] (size 1)
overwrites a pan of x[0] (size 4) which thus changes its value. Considering the MAY/MUST
information is everything in order but the precision is not. More information needs to be
considered to be able to handle this problem.

38

Chapter 7. Pointers & Aliases

In programming languages with general-purpose pointer usage like C/C++, pointer aliasing is
crucial in source code analysis. Many different pointer aliasing analysis techniques have been
presented in the literature [AMME98], [CHOI93], [COOP89], [HAN97], [LAND--], [PAND--] and
[ZHANSE]. They vary in cost, precision and produced aliasing information. Most literature talks
only about compilers in which speed is crucial. Consequently the techniques are scaled to low
precision in tradeoff for speed. However in the case of BEAM precision is important and speed is
of lower priority. There are papers that have done research about speed/precision tradeoff
[ZHANS8], so called combined analysis. Apart from speed, they also use a different kind of
graph representation, which makes porting those algorithms into BEAM more difficult.

This chapter starts with a definition about aliases and alias analysis. The next section
discusses the way it is done in most papers with their advantages and disadvantages. The last
section starts with discussing the source language for BEAM's alias analysis. Followed with the
limitations which BEAM will have using this “restricted" language. Then the algorithms are
explained and methods are defined followed by a final discussion of the implementation.

7.1. Problem representation

To acquire a better accuracy, handling of aliases has to be incorporated in BEAM. With aliases
more specific and especially more detailed information can be retained. A general definition of
an alias is given as follows:

Definition: An alias exists at a program point when two or more locations refer to the sarme
location as a result of program execution to that program point. An Alias is represented by an
unordered pair of locations, see 7.1.1. The order is unimportant since the alias relation is
symmetric.

Alias information will supply the symptom-analysis part in BEAM with alias information. If a
certain location is changed BEAM will be able to detect which other locations also have been
changed. The alias information will be stored in the summaries (and thus used for inter-
procedural analysis) so BEAM will get more detailed information of locations being changed in
different procedures.

7.1.1. Example alias

The following procedure shows an alias. It starts with setting the pointer p to &x. At this point
*p and x are an alias. The program continues with assigning a value to x, this does not have any
influence on the alias information. The last line in the procedure assigns p to q, which means
that the address of x is copied into q.

1: void P{()

2: {

3: int *p, *q, x;
4. P = &X;

5: X = 1;

6: g = p;

7: }

Code 21: Alias example.

The alias Procedure Summary algorithm should conclude for the assignment on line 4:
<*p, x>, the first alias. In line 6 it should conclude alias <*g, *p>. Sometimes papers use
<qg, p> instead depending on r-value and I-value usage. The aliases are an equivalence
relation (using <*q, *p>).Consequently the alias algorithm should figure out the <*q, x>
alias. The last one involves good administration.

39

7.1.2.

7.2.

7.2.1.

7.2.2.

7.2.3.

NP-Complete

Most data-flow problems have been proven to be NP-hard in the presence of aliasing. A more
detailed problem, intra procedural aliasing in the presence of multiple level pointers, has also
been proven to be NP-hard. One proof of flow-insensitive MAY-alias analysis being NP-hard is
given in [HORW97]. Most other proofs are alike and are a reduction from the 3-SAT problem.
The problem that we need to solve is inter procedural aliasing with multiple level pointers and
recursive data structures (e.g., linked lists).

The methods found in papers

Most papers start with a definition of the (limited) source language they use. This is followed by
a definition of the commonly used graph representation (different from the one that BEAM uses).
Here are those restrictions discussed atong with their algorithms and problems.

Their Source Language, limitations

Most alias research restricts itself on a subset of the C/C++ language. Actually not all research
is being done on C/C++ only, Fortran is a common language too but mostly in only older papers.
Most exclusions from the C language are pointers to functions, casting, union types, exception
handling, set jump and long jump. Pointer arithmetic is allowed but arrays are treated as
aggregates and assumed pointer arithmetic is only between array bounds. Concerning C++ they
have the same restrictions for C analysis, except that most do handle type casting within class
hierarchy. Also they cannot distinguish between different elements of arrays (i.e., a[i] is
considered to be the same as *a).

Their ICFG

The used graph representation differs from the one used in BEAM. Programs are represented
by inter procedural control-flow graphs, (ICFGs), e.g., presented in [LAND92]. Were BEAM uses
a flow graph (combined control and data-flow) together with a CALL graph to connect the
procedures (see section 3.3.2 and 4.1), an ICFG is a combination of both flow graph and CALL
graph. The flow graphs they use consist only of control-flow information for each procedure, with
calls connected to the procedure they invoke.

A formal description can be given as follows: an ICFG is a triple (N, E, p) where Nis the set

of nodes, E is the set of edges and p is the entry node for main. N contains a node for each
(simple) statement in the program, an entry and exit node for each function, and a call and
return node for each procedure call site. An intra procedural edge into a call node represents the
execution flow into an call site, while an intra procedural edge out of a return node represents
control-flow from a call site once the called function has returned. There are two extra inter
procedural edges for each call site: one from the call node to the entry node of the invoked
procedure, and one from the exit node of the procedure to the return node of the call site. For an
example of an ICFG see Figure 14.

Advantages and disadvantages of the ICFG
Pro:
e direct propagation of gathered information (may explode)
+ knowing in which environment the call is
¢ no graph explosion, each procedure is only once there

Con:
e relatively little information in the graph (1 node = 1 statement)
* context problem, not knowing which procedure was the calling one
e low precision

40

7.3.

7.3.1.

7.3.2.

int x; Entry P

Figure 14: Example of an ICFG.
The principle for BEAM

The Source Language

The restrictions on the source language that alias analysis for BEAM is able to handle is hard
to describe. The graphs used by BEAM do not have a 1-1 relation with the statements, like in an
ICFG. The data-flow analysis for aliases will need to figure out each pointer assignment.
Sometimes this becomes too complicated. The algorithm will need to stop and decide
“Unknown” for those pointers. Only when the algorithm is implemented and tested it will be
possible to say more about what the restrictions on the source language are.

Problems with algorithms found in papers will not be a problem for BEAM. For example
pointers to functions are visible like any other pointer. Casting will also not be a problem, see
Code 20 where the casting is handled correctly. BEAM's precision on handling arrays will
provide the necessary information for pointer arithmetic. One problem on classes and virtual
functions is present. Currently only the root-virtual function is available for analysis and not the
derived ones. Pointers to these kinds of members consequently will not be analyzable.

Precision in case of recursive data structures is a general problem. The papers [JONE82] and
[RUGG8B8] talk specifically about this problem. The solution for BEAM's Procedure Summaries is
relative straightforward. When finding these recursive data structures a method is used called k-
limiting. k-limiting means to compute recursive structures until depth k. Of course there is a
statistically known best value for k. This value is 2 and is determined in the compiler
environment depending on speed and precision. But since BEAM's analysis is more thorough
some “playing” around will be in order to determine the correct value for k.

The data-flow analysis

Each box in the data-flow needs a rule on what the input/output relation is. The following is
explained with the use of example graph in Figure 31. Information is stored/retrieved with the 4
fields in the Procedure Summary information node; name, index, size and value. Only those
needed to compute the example graph are explained. “#” means not relevant information and
“*” means any value possible.

41

7.3.3.

e LOCATION

In: # [#] (size #) ValueStr
Out: NameStr [#] (size valueStr) #
e POINTER
In: (Location Pin) NameStr [#] (size SizeStr) #

(Offset Pin) * [*] (size *) ValueStr
Out: &NameStr [ValueStr] (size SizeStr) #

e EXTRACT_LOCATION
In: &NameStr [* 1 (size *) ok
Out: NameStr [*] (size *) *

e EXTRACT_OFFSET

In: * [&IndexStr 1 (size *x) *
Out: * [IndexStr] (size *) ok
e FETCH
See below.
e ASSIGN
In: (Location Pin) L_NameStr [*] (size SizeStr) *
(Indexset Pin) I_NameStr [*] (size *}) I_ValueStr
[

(Valueset Pin) V_NameStr *] (size *) V_ValueStr
Out: L_NameStr [I_NameStr/I_ValueStr]
(size SizeStr) V_NamesStr/V_ValueStr

Figure 15: List of rules for alias/pointer data-flow analysis.

The FETCH node is a node that needs special treatment. This node searches backward in the
control-flow if it can find an assignment to the given location input at index. This will be either a
value or another variable (possibly with “&"). Sometimes FETCH will not be able to find this due
to complexity, k-limiting, branches etc. In such cases the value “Unknown” will be used. The
example graph with the computed data-flow information is shown in Figure 32.

The aliasing graph traversing algorithm

In general the algorithm traverses forward through the CFG. It starts at the top, walking
through the CFG until it sees an assign node. From hereon it tries to figure out the values of the
pins on this assign box. The algorithm works on the complete flow graph because the values
depend on the data-flow and not only the control-flow. When finding out the value of a pin, the
information is retrieved “on demand”. A new DFS algorithm is started for each assign box input
pin. It traverses the graphs backward and tries to figure out the needed data-flow information.

Paths in a program graph can be very complicated due to if/switch statements and goto's.
Double (or more) computation of boxes should be prevented so the information computed the
first time is saved in a keyword on the corresponding net. When a follow-up computation needs
the same information it does not have to be recomputed because it is already available on the
net. This saves computation time plus memory.

The algorithm AliasDFS starts with the root net of the procedure graph. It starts traversing the
CFG going forward. Recursively it calls itself and stops until it sees a proto-pin or an INT_MUX
node from which not all input nets have been computed. If all input nets from an INT_MUX node
have been computed the algorithm continues along the CF. When it hits an ASSIGN node it
knows it has to process some information so it calls the function CompAssign. Like with the
globals, ASSIGN nodes and CALL nodes are handied the same. For simplicity is chosen to only
show the ASSIGN nodes.

42

1: AliasDFS(NET Net)
2: {
3: Vsink Pins on Net
4: {
S: if (Pin == ProtoPin)
6: continue;
7:
8: Box = get_box_from_pin(Pin);
9: if (Box == INT_MUX)
10: {
11: MarkComputed (Box) ;
12: if (!QueryComputed(Box)) ;
13: continue;
14: }
15: if (Box == ASSIGN)
16: CompAssign (Box) ;
17:
18: AliasDFS (NetAlongCF (Box)) ;
19: }
20: }
Code 22: The alias graph traversing algorithm.

The CompAssign procedure gathers information about all the input pins (Location, Offset and
Value). If there is no information already available at an input pin it starts a recursive procedure
to find out the value(s) for that specific net. This procedure, ComputeAbove, first goes backward
into the graph to a sink node and tries to figure out the values on each net. Tries, because it is
not always possible to figure out the exact values.

After it checked if it was a valid net, pin and box, it calls (depending on the type of box) a
procedure which is able to calculate the properties of the box. As mentioned these properties will
be stored on the net for future use.

Crucial is the way these boxes convert their input information to the output information. This
has to be specified for each box plus it has to be defined on how to combine this information if
two (or more) nets are input to an INT_MUX box.

1: CompAssign (NET Net)

2: {

3: if (!Net)

4: return;

5:

6: Pin = SourcePin (Net);
7:

8: if (Pin == ProtoPin)
9: continue;

10:

11: Box = get_box_from_pin (Pin) ;
12:

13: switch (Box)

14: {

15: case: ... break;
16: case: ... break;
17: default: break;
18: }

19: }

Code 23: CompAssign algorithm.

43

7.3.4. Conclusions

The algorithms for aliasing/pointers have been implemented and tested so far that the example
graph can be correctly computed. Problems occur when branches are involved. For example in
the following code fragment:

int *p, x, y, A[10];

if (cond)
p = &X%;
else
P = &Yy;

P W ooJounik Wk

O e

Al*p] = 2

Figure 16: Problematic branches.

Presently the algorithm computes this Procedure Summary (concerning A only):
A[x] (size 4) Unassigned

Al x] (size 4) 2

Al vy 1 (size 4) Unassigned

Al vy 1 (size 4) 2

The real procedure Summary of course needs to be the following:
Al x] (size 4) 2
Al y] (size 4) 2

Until now, no straightforward solution has been found to solve this problem. Only extensive
administration will most likely provide the correct Procedure Summary.

Not enough information has yet been implemented in the alias algorithms. Not all pointers can

be handled, k-limiting is not used and also finding the real aliases is still not possible. The core
of the aliasing is implemented but a lot of administration issues still stand.

44

Chapter 8. Conclusions and future work

8.1.

Conclusions

This thesis first explains BEAM’s approach to static source code analysis. Several analysis
methods are described and an in depth description is given of the precision needed for finding
different error symptoms. The achievements when applying BEAM to large software projects are
measured and discussed along with the symptoms of errors that BEAM is able to find. Since
there are more companies focusing on static analysis tools a comparison is done. Advantages of
these tools versus BEAM's are also discussed in the first part of the report.

This is followed with a discussion about path lengths needed for analysis and how to shorten
these paths. The solution for this problem is given with Procedure Summaries. They will be used
as an information-providing platform for the actual symptom finding analysis performed by
BEAM. We discussed possibly useful information in the Procedure Summaries. Before
explaining the implementation a description is given about the graph representation used by
BEAM. This is a given source on which all the algorithms need to be built.

Prior to explaining the framework in which the Procedure Summaries will be used in BEAM,
the propagation algorithm is considered. This algorithm controls the decision of which
procedures need to be recomputed. It is fast in building a list in which the dependencies of
procedures are shown. This so-called post-order list provides the algorithm with the order in
which the Procedure Summaries need to be computed. Loops and recursive procedures are
handled correctly. The algorithm uses Time-Stamps to determine necessary recomputation and
in addition it deletes graphs that are no longer needed from memory, because this was found to
be a problem. There are pathological problematic procedures for which this algorithm fails. This
is solved with a restriction on Propagation by limiting the number of recomputations.

BEAM is able to use the Procedure Summaries with only little change in its own code. This is
accomplished by building a flexible framework in which different computations can be easily
added. Another possibility is given but this involves more graph loading/saving from disk, which
takes much more time than the disadvantage of the current implementation in a recomputation
every now and then.

The first implementation of the Procedure Summaries discussed is the statistics. These
statistics gather information about procedures; based on this more demand driven analysis
might be performed. The statistical results of comparing various programs are given.
Unfortunately no demand driven analysis will be possible based on only this information.
Differences between programs were either minor or irrelevant. The second implementation is the
dereferencing of pointer parameters. Analysis on pointer dereferencing is rather straightforward,
however has the potential to be of great relevance. Dereferencing resulting in garbage is never
intended and since this type of Procedure Summary is actually used by BEAM, its results can be
reported. On a logic synthesis system (about half a million lines of code) twelve extra errors
have been found which BEAM would not have found otherwise. This clearly indicates the power
of the Procedure Summaries and also their significance for BEAM. More of these results are
expected when BEAM starts using the other Procedure Summaries. The globals have been
implemented next. Starting with a relative easy implementation we progressed to a detailed and
more exhaustive analysis for searching assignments to global variables in procedures. The
thorough analysis of the control-flow resulted in precise global Summaries. The included
MAY/MUST information will be very useful to BEAM when it has to decide if a procedure needs
to be expanded inline. The final Procedure Summaries are about aliases and pointers. In a
language like C++ pointers are often found to be hazardous. The algorithm described will be
able to find these aliases and group them into a Procedure Summary. Precision like MAY/MUST
information is archived with thorough control-flow and data-flow analysis. Unfortunately no time
was available to implement and test the aliasing to a completely working Procedure Summary.

45

8.2.

Future work

The implemented Procedure Summary environment is only a start for BEAM to do more
precise analysis. It is an information-providing platform for the analysis phase. It would be very
interesting to (re-) implement the algorithms for symptom finding concerning the use of the
Procedure Summaries. Currently this has only been done for pointer dereferencing. Since this

already resulted in a high number of new symptoms it is also expected for the other Procedure
Summaries.

Furthermore BEAM is a tool under construction. It is only able to find symptoms of errors and
often it is hard to decide if such a symptom is actually a bug, and if so what the cause is. The
messages include a path leading to a symptom but in large programs it is often "hard work".
Only testing BEAM very often (also on itself) and getting feedback on the error-reports will
improve the correctness of the analysis done by BEAM. Presently the error messages are
printed as plain text. A graphical user interface would be useful with a direct link to the actual
code. The error messages would then interact with the lines in the source code such that users
are directly able to see what happens on each line. A debugger "look” is thought of as being
most applicable.

46

Glossary and abbreviations

This glossary lists and explains the terminology used in this thesis and in BEAM. Most words
and terms appear frequently in other papers/books concerning program analysis, data-flow
analysis and compiler theory.

Bottom-up

CF(G)

DF(G)

ICFG
Inter procedural

Intra procedural

MAY alias

Multiple level

MUST alias

PS

Sink node
Source node

Top-down

Backward graph traversal.

Control-flow (Graph), the graph in which executable paths can be found.
Such a path on itself is called control-flow i.e., “there where the control-
flows”.

Data-flow (Graph), the graph providing information for the control-flow
graph. BEAM uses both graphs combined into one.

Inter procedural Control-flow Graph explained in section 7.2.2.
Analysis focussing on only one graph/procedure.

Analysis focussing on graphs and procedures including their connection and
dependence.

This is only used in some papers, e.g., [LAND--]. It does not have a direct
relation with MAY/MUST information in the Procedure Summaries described
in this report. In their analysis MAY aliasing is faster and easier to compute.
They do not use high precision to figure those out. In compiler theory this
often provides satisfying results.

When performing alias analysis not only single level pointers (*p) are of
interest but also multiple level pointers (* *p or derivations).

Like MAY aliases but more detailed; takes more time to compute.

Procedure Summary, a list of relevant items that might influence program
behavior.

Nodes in a graph with only incoming edges (root nodes in trees).
Nodes in a graph with only outgoing edges (leaf nodes in trees).

Forward graph traversal.

47

References

Throughout the text references like [LAND--] are given. This reference indicates all papers
written by author “LAND”.

[AMME98] Amme, W. and E. Zehendner
DATA DEPENDENCE ANALYSIS IN PROGRAMS WITH POINTERS.
Parallel Computing, Vol. 24 (1998), Iss. 3-4, p. 505-25.

[CALLS86) Callahan D. and K. D. Cooper, K. Kennedy, L. Torczon
INTERPROCEDURAL CONSTANT PROPAGATION.
In: Proceedings of the SIGPLAN '86 Symposium on Compiler Construction, June 1986.

[CALLS8] Callahan D.
THE PROGRAM SUMMARY GRAPH AND FLOW-SENSITIVE INTERPROCEDURAL DATA
FLOW ANALYSIS.
In: Proceedings of the SIGPLAN '88 Conference on Programming Language Design and
Implementation, Atlantam Georgia, June 22-24, 1988.

[CANF98] Canfora G. and A. Cimitile, U. Decarlini, A. Delucia
AN EXTENSIBLE SYSTEM FOR SOURCE CODE ANALYSIS.
IEEE Transactions on Software Engineering, Vol. 24 (1998), Iss. 9, p 721-740.

[CHEN97] Chen, Y. F. R. and E. R. Gansner, E. Koutsofios
A C++ DATA MODEL SUPPORTING REACHABILITY ANALYSIS AND DEAD CODE
DETECTION.
Software Engineering Notes, Vol. 22 (1997), Iss. 6, p. 414-31.

[CHOI91] Choi J. D. and R. Cytron, J. Ferrante
AUTOMATIC CONSTRUCTION OF SPARCE DATA FLOW EVALUATION GRAPHS.
Conference Record of the Eighteenth Annual ACM Symposium on Principles of Programming
Languages, January 1991.

[CHOI93] Choi J. D. and M. Burke, P. Carini
EFFICIENT FLOW-SENSITIVE INTERPROCEDURAL COMPUTATION OF POINTER-
INDUCED ALIASES AND SIDE EFFECTS.
Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, (1993), p. 232-45.

[COOP85] Cooper K. D. and K. Kennedy
EFFICIENT COMPUTATION OF FLOW INSENSITIVE INTERPROCEDURAL SUMMARY
INFORMATION.
In: Proceedings of the SIGPLAN '84 Symposium on Compiler Construction, SIGPLAN
Notices, Vol. 19 (July 1985), No. 6.

[COOP88] Cooper K. D. and K. Kennedy
INTERPROCEDURAL SIDE-EFFECT ANALYSIS IN LINEAR TIME.
In: Proceedings of the ACM SIGPLAN 88 Conference on Program Language Design and
Implementation, Atlanta, GA, June 1988.

[COOP89] Cooper K. D. and K. Kennedy
FAST INTERPROCEDURAL ALIAS ANALYSIS.
Sixteenth ACM Symposium on Principles of Programming Languages, Austin, Texas, January
11-13 1989, p. 49-59.

48

[DUES95] Duesterwald E. and R. Gupta, M. L. Soffa
DEMAND-DRIVEN COMPUTATION OF INTERPROCEDURAL DATA FLOW.
Conference Record of POPL 1995: 22™ ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1995, p. 37-48.

[DUES97] Duesterwald E. and R. Gupta, M. L. Soffa
A PRACTICAL FRAMEWORK FOR DEMAND-DRIVEN INTERPROCEDURAL DATA-FLOW
ANALYSIS.
ACM Transactions on Programming Languages and Systems, Vol. 19 (1997), Iss. 6,
p. 992-1030.

[HAN97] Han, D.S. and T. Tsuda
NON-GRAPH BASED APPROACH ON THE ANALYSIS OF POINTERS AND STRUCTURES.
IEICE Transactions on Information and Systems, Vol. EB0-D (1997), Iss. 4, p. 480-8.

[HORW97] Horwitz, S.
PRECISE FLOW-INSENSITIVE MAY-ALIAS ANALYSIS IS NP-HARD.
ACM Transactions on Programming Languages and Systems, Vol. 19 (1997), Iss. 1, p. 1-6.

[JONES82] Jones N. D. and S. S. Muchnick
A FLEXIBLE APPROACH TO INTERPROCEDURAL DATA FLOW ANALYSIS AND
PROGRAMS WITH RECURSIVE DATA STRUCTURES.
Conference Record of the Ninth Annual ACM Symposium on Principles of Programming
Languages, January 1982.

[JOHN93] Johnson R. and K. Pingali
DEPENDENCE-BASED PROGRAM ANALYSIS.
SIGPLAN Notices, Vol. 28 (1993), Iss. 6, p. 78-89.

[LAND92] Landi, W. and B. G. Ryder
A SAFE APPROXIMATION ALGORITHM FOR INTERPROCEDURAL POINTER ALIASING.
In: Proceedings of the SIGPLAN '92 Conference on Programming Language Design and
implementation, June 1992, p. 235-248.

[LAND93] Landi, W. and B. G. Ryder, S. Zhang
INTERPROCEDURAL MODIFICATION SIDE EFFECT ANALYSIS WITH POINTER ALIASING.
In: Proceedings of the SIGPLAN ’93 Conference on Programming Language Design and
Implementation, Pages 56-67, June 1993.

[LAND98] Landi, W. and B. G. Rvyder, P. Stocks, S. Zhang, R. Altucher
A SCHEMA FOR INTERPROCEDURAL SIDE EFFECT ANALYSIS WITH POINTER ALIASING.
Department of Computer Science, Rutgers University, May 1998, Number DCS-TR-336.

[MEYES2] Mevers, S.
EFFECTIVE C++.
MA: Addison-Wesley, 1992.

[IMEYE96] Mevers, S.
MORE EFFECTIVE C++.
MA: Addison-Wesley, 1996

[IMEYES7] Mevers, S. and M. Klaus
EXAMINING C++ PROGRAM ANALYZERS.
Dr. Dobb’s Journal, Vol. 22 (1997), Iss. 2, p. 68,702,74-5,87.

[PAND94] Pande, H. D. and B. G. Ryder
STATIC TYPE DETERMINATION AND ALIASING FOR C++.
Laboratory of Computer Science Research Technical Report, December 1994, Number LCSR-
TR-236.

49

[PAND95]

[REPS95]

[RUGGSS]

[SAGI98]

[SCZE97]

[STOC98]

[TARJS1]

[ZHAN9S]

[ZHAN9S]

Pande H. and B. G. Ryder

STATIC TYPE DETERMINATION AND ALIASING FOR C++.

Laboratory of Computer Science Research Technical Report, October 1995,
Number LCSR-TR-250-A.

Reps T. and S. Horwitz, M. Sagiv

PRECISE INTERPROCEDURAL DATAFLOW ANALYSIS VIA GRAPH REACHABILITY.
Conference Record of POPL 1995, 22" ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1995, p. 49-61.

Ruggieri C. and T. P. Murtagh
LIFETIME ANALYSIS OF DYNAMICALLY ALLOCATED OBJECTS.

Conference Record of Fifteenth ACM Symposium on Principles of Programming Languages,
1988.

Sagiv M. and N. Francez, M. Rodeh, R. Wilhelm
A LOGIC-BASED APPROACH TO PROGRAM FLOW-ANALYSIS.
Acta Informatica, Vol. 35 (1998), Iss. 6, p. 457-504 (ZU631)

Sczepansky A.
EFFICIENT SOFTWARE DEVELOPMENT USING STATIC TEST TOOLS. (German)

Elektronik, Vol. 46 (1997), Iss. 3, p. 78-81.

Stocks, P.A. and B. G. Ryder, W. A. Landi, S. Zhang

COMPARING FLOW- AND CONTEXT-SENSITIVITY ON THE MODIFICATION-SIDE-EFFECTS
PROBLEM.

In: Proceedings of the International Symposium on Software Testing and Analysis, March 1998,
p. 21-31.

Tarian R. E.
FAST ALGORITHMS FOR SOLVING PATH PROBLEMS.
Journal of the Association for Computing Machinery, Vol. 28(3) (1981), p.594-614.

Zhang S. and B. G. Ryder, W. Landi

PROGRAM DECOMPOSITION FOR POINTER ALIASING: A STEP TOWARDS PRACTICAL
ANALYSES.

In: Proceedings of the 4th Symposium on the Foundations of Software Engineering, October
1996.

Zhang S. and B. G. Ryder, W. A. Landi

EXPERIMENTS WITH COMBINED ANALYSIS FOR POINTER ALIASING.

In: Proceedings of Workshop on Program Analysis for Software Tools and Engineering
(PASTE'98), June 1998.

50

Appendix A. Static Analysis Tools

Listed are contact addresses of tools described in section 2.4. Intrinsa has been added to the
list because they also have an interesting tool available. At the end of the list are some
interesting Internet links summarized. These links are related with source code analysis and
have been found useful in either general sense or helpful in giving more specific detail.

A.1. Companies

Abraxas Software

5530 SW Kelly Avenue
Portland, OR 97201
503-244-5253
http://www.abxsoft.com/

Centerline Software

10 Fawcett Street
Cambridge, MA 02138-1110
617-498-3000
http.//www.centerline.com/

Gimpel Software

3207 Hogarth Lane
Collegeville, PA 19426
610-584-4261
http://www.gimpel.com/

Hewlett-Packard

19410 Homestead Road
Cupertino, CA 95014-0604
408-725-8900
http://www.hp.com/sesd/CA/

Intrinsa Corporate Headquarters
444 Castro Street, Suite 130
Mountain View, California 94041
650-390-8600
http://www.intrinsa.com/

ParaSoft Corp.

2031 South Myrtle Avenue
Monrovia, CA 91016
818-305-0041
http://www.parasoft.com/

Productivity Through Software Inc.
555 Bryant, Suite 555

Palo Alto, CA 94301
415-934-3200
http://www.pts.co.uk/

51

A.2.

Programming Research Ltd.
1/11 Molesey Road, Hersham
Surry KT12 4RH, UK
+44-1932-88 80 80
http://ww.prga.co.uk/

Rational Software Corp.

2800 San Tomas Expressway
Santa Clara, CA 95051-0951
408-496-3600
http://www.rational.com/

Internet links

http://www.accu.org/

Accu is an association of C/C++ and Java users. They include professional programmers, the
suppliers of compilers, those just interested in the languages, and anyone seeking to improve
their programming skills. Based in the UK, with members in the US, mainland Europe, Russia,
Middle East and Australia. This is also an interesting link concerning book reviews on the C/C++
and Java topic.

http://www.prolangs.rutgers.edu/

B. Ryder has been a guest at IBM Research and she presented her research at PROLANGS.
The PROLANGS research group was created after a seminar given by B. Ryder in 1988. Since
then the group has met weekly as a conference/journal paper reading/discussion group. The
topics covered by the group are usually related to Compile-time Analysis, although other
subjects in Programming Languages and Compilers are also covered. Most PROLANGS
members are, or have been graduate students or are somehow related to the Rutgers
Department of Computer Science.

http://www.win.tue.nl/cs/ooti/uk/symposium/

OOTl is a Dutch acronym for Ontwerpersopleiding Technische Informatica which is the Dutch
term designating the Software Technology program of the Stan Ackermans Institute at the
Eindhoven University of Technology. Studies at the SAl/Software Technology program are
aimed at software engineers and architects. Although the theoretical basis is very important, the
curriculum focuses on practical methods, techniques and tools.

52

Appendix B. List of rules

The following is a list of rules on which the programs in section 2.4 are tested. This list should
give the reader an idea of the different error categories and more specific the diversity of errors.

General

1. Use const instead of #define for constant at global and file scope
2. Use new-style casts instead of C-style casts

3. Don' treat a pointer to derived[] as a pointer to base][]

Use of new and delete

4. Use the same form for calls to new and delete.(In general, this calls for dynamic analysis
which BEAM does not perform, but static analysis can catch some special cases; calls to
new in constructors and to delete in destructors, for example).

5. When the result of a new expression in a constructor is stored in a dumb pointer class
member, make sure delete is called on that member in the destructor

6. Avoid hiding the default signature for operator new and operator delete.

Constructors/destructors/assignment

7. Declare a copy constructor for each class declaring a pointer data member

8. Declare an assignment operator for each class declaring a pointer data-member.

9. Initialize each class data member via the member initialization list

10. List members in a member initialization list in an order consistent with the order in which
they are actually initialized

11. Make destructors virtual in base classes

12. Have the definition of operator= return a reference to *this

13. Assign to every local data member inside operator=

14. Call a base class operator= from a derived class operator=

15. Use the member initialization list to ensure that a base class copy constructor is called
from a derived class copy constructor

16. Do not call virtual functions in constructors or destructors

Design

17. Use nonmember functions for binary operations like +-/* when a class has a converting
constructor

18. Avoid public data members

19. Use pass-by-ref-to-const instead of pass-by-value when both are valid.

20. Have operators like +-/* return an object, not a reference

21. And make those return values const.

22. Do not overload on a pointer and an integer

23. Make non-leaf classes abstract

24. Avoid gratuitous use of virtual inheritance; that is, make sure there are at least two
inheritance paths to each virtual base class

Implementation

25. Do not return pointers/references to internal data structures unless they are
pointers/references to const

26. Never define a static variable inside a nonmember inline function unless the function is
declared extern.

27. Avoid use of "..." in function parameter lists

Inheritance
28. Do not redefine an inherited non-virtual function
29. Do not redefine an inherited default parameter value

53

Operators

30. Avoid use of user-defined conversion operators

31. Do not overload &&,li, or, etc.

32. Make sure operations ++ and -- have the correct return type

33. Use prefix ++ and -- when the result of the increment and decrement expression is unused

34. Declare operator= if you declare binary operator(e.g., declare += if you declare + etc.)

Exceptions
35. Prevent exceptions from leaving destructors
36. Catch exceptions by reference

54

Appendix C. Boxes & Pins

C.1.

C.11

The result of the first computational step in BEAM is a valid CF/DF-Graph. This graph uses
boxes (e.g., nodes) which represent certain C++ instructions & operations. In this section the
important boxes are described, boxes where something is computed or boxes who are needed
for a computation. Each box is described on its input-pin(s) and output-pin(s).

Note: not all the possible boxes in the generated graph are described. Only those needed for
the Procedure Summary computation.

Important definition boxes

. Primary boxes

e LITERAL_INT

Inputs: (0) None

Outputs: (1) One output-pin representing the value of the box, for example “N4” where “N’
stands for number and “4” the value.

LITERAL_INT

Figure 17: LITERAL_INT box.

e LOCATION

Inputs: (1) One input-pin indicating the size (in bytes) of the location.

Outputs: (1) One output-pin, which shows the location name. The location can for example
be local (L) or global (G).

LOCATION

Figure 18: LOCATION box.

e FUNCTION
Inputs: (0) None.
Outputs: (1) Giving the name of the function.

]

FUNCTION ——pp

Figure 19: FUNCTION box.

55

» INT_CONST
Inputs: (1) The input-pin with a net from an integer value.
Outputs: (1) The output-pin represents a expression of type:

axX+b

Where Xis the input, a an integer keyword on the input-pin and b is an integer
keyword on the output-pin.

——J» INT_CONST ——P»

Figure 20: INT_CONST box.

C.1.2. Pointer related boxes

e POINTER

Inputs: (2) First the Location-pin which derives the location to be addressed. Second the
Oftset-pin to determine the offset of the given location.

Outputs: (1) One output-pin, which gives the address of the given location at given offset.

Location POINTER

Offset

Figure 21: POINTER box.

Note: the POINTER box is the inverse of the EXTRACT_LOCATION/_OFFSET
box.

e FETCH

Inputs: (3) First a Location pin, this pin has a keyword connected to it which holds the size
(amount of bytes) to be fetched. The second pin is a graph pin that is an input
from the CF. The last pin is an index-pin to indicate the index in the given
location.

Outputs: (1) The output pin gives the fetched bytes from location-pin at index-pin and with
length, size-keyword.

size (amount of bytes)
R
Location
FETCH ——>
Graph
Index

Figure 22: FETCH box.

56

* EXTRACT_LOCATION
Inputs: (1) Input-pin, a net connected from a valid pointer-location.
Outputs: (1) The output-pin gives the location of the pointer-location-input.

EXTRACT_
LOCATION

Figure 23: EXTRACT_LOCATION box.

o EXTRACT_OFFSET
Inputs: (1) Input-pin, a net connected from a valid pointer-location.
Outputs: (1) The output-pin gives the offset of the pointer-location-input.

EXTRACT_
OFFSET

Figure 24: EXTRACT_OFFSET box.

Note: the EXTRACT_LOCATION & EXTRACT_OFFSET boxes are the inverse
of the POINTER box. The two boxes are not combined because this will lead to
a box with two output-pins. In general boxes with multiple output-pins are harder
to simplify than single output-pin boxes. For this reason EXTRACT has been
split up into two separate boxes.

C.1.3. Assignment boxes

e ASSIGN
Inputs: (4) The first input is the LHS-Location of the assignment, this pin has a keyword
) attached which indicates the element-size. The Value-pin is next which
represents the RHS of the assignment. For the CF there is a third graph-pin and
the last pin is the LHS-Index.
Outputs: (1) The output of the ASSIGN box is a pin with an expression as follows:

Location.Index(elementsize) = Value(elementsize)

elementsize

|,

Location

ASSIGN

Figure 25: ASSIGN box.

57

o COPY_MEM

Inputs: (6) LHS Location and Offset-pins. RHS From-Location and From-Offset pins. A
separate Size-pin is supplied to indicate the number of bytes to copy. The last
pin is the CF-pin.

Outputs: (1) Outputs this expression:

Location.Offset(Size) = FromLocation.FromOffset(Size)

|

Location

l

Index

Size COPY_MEM (—P»

FromLoc

l

i3y

Fromindex

Graph

l

Figure 26: COPY_MEM box.

Note: the ASSIGN box is most commonly used, however in more complicated
mem_copy and realloc cases, the COPY_MEM box is used. The reason for this
is that the size (which would normally be a keyword on the Location input-pin) is
not a previously known value.

o CALL

Inputs: (2/more) An input from the CF, second an input supplying the function address. More
input-pins may be present if the function has parameters.

Outputs: (1/2) One (always there) output just continues the CF. Another output-pin is optional
and may be supplied if the called function returns a value.

J

Function Graph
CALL

—>

Parameter1

RN

ParameterN

Return

Figure 27: CALL box.

Note: the CALL box is used for both function calls and loop calls. Virtual
functions are not yet supported because it is hard to figure out which function is
being called, the default virtual function is taken instead.

C.1.4. if/switch boxes

e INT_MUX

Inputs: (3/more) The first input-pin represents the condition under which the other input-pins are
chosen. There are two possibilities for the other input-pins. First, the input-pins
are connected with edges from the CF. This is the case after an if or switch

58

statement. A second possibility is if the edges are from the DF. For example
with a statement like:

(a?3:5)

will result in only DF edges/nodes. The input-pins will be LITERAL_INT boxes
with value 3 and 5.

All input-pins will have a keyword attached, which represents a set of conditions
under which input is taken.

Outputs: (1) Will be either the continuation with a CF-arc or a DF-arc representing the
decided MUX-input.

Conditi q
[[{e]
: INT_MUX

conditionset

Figure 28: INT_MUX box.

Note: in optimized cases the input-pins on the INT_MUX box may have been
reduced to one.

C.2. Important proto-box pins

e CF_PIN
Outputs: The CF starting point in the Graph (the CF_PIN is always present).

Figure 29: GRAPH pin.

e PARAMETER_PIN
Outputs: A parameter input of the function or loop, simply numbered from 1..N, with N as
many as needed (there may be zero or more PARAMETER_PINS).

Figure 30: PARAMETER pin.

59

C.3. Complete list of all the possible boxes

This is a list of all possible boxes that may be generated by BEAM. These boxes may thus be

encountered in the Graph.

Possible boxes
INT_ADD BITWISE_NOT INITIAL_RAM

INT_CONST
ADD_FLOAT
MULT_INT
MULT_FLOAT
MOD
DIVIDE_INT
DIVIDE_FLOAT
ASSIGN
COPY_MEM
MEMORY_OP
BITWISE_AND
BITWISE_OR
BITWISE_XOR

SHIFT

CALL

IDENT

CONVERT
SUBRANGE
ASSIGNED_BEFORE
EQUAL_LOCATION
ERROR_DEF
EXTRACT_LOCATION
EXTRACT_OFFSET
EXTRACT_SIZE

FETCH
FUNCTION

LITERAL_INT
LITERAL_INF
LITERAL_FLOAT
LITERAL_STRING
POS_FLOAT
POINTER
INT_MUX
ASSERT
LOCATION
DUMMY
LINE_NUMBER
SOME_VALUE

Table 6: List of all possible boxes in a BEAM procedure graph.

60

Appendix D. Example graph

0 1
Location p AJ E Location x
int *p, x, A[10]; L I;O
p = &x; Pointer
x = 1; : T
A{*p] = 0;
vt
Assign 1
Location A | E I
1 le¢|
Assign
vt |£ -------------- E
Fetch E
Extract Extract E
Location Offset :
1,L | J;i ------------- ;
Fetch E
[;
P |
Assign
- - Control Flow------
; -Data Flow—

Figure 31: Example BEAM graph.

61

Location p é Location x
int *p, x, A[10]; : L |o
D = &x; . Pointer
X = 1; :
Al*p) = 0; : | &x
v¢LlV£'
Assign
p=&x
Location A
NNy
Assign
x=1:
' e .
Fetch ‘
&x :
Extract Extract '
Location Offset .
X 0
| L o1 |'- ------------------ §
Fetch
Lo :
i -
Assign
A[]=0’ - Control Flow------
- V -Data Flow———

62

	Voorblad

	Preface

	Abstract

	Summary

	Table of contetns

	List of code fragmetns & figures

	Chapter 1. Introduction

	Chapter 2. The BEAM project

	Chapter 3. Problem outline & goals

	Chapter 5. The framework

	Chapter 6. Procedure summaries

	Chapter 7. Pointers & Aliases

	Chapter 8. Conclusions and future work

	Glossary and abbreviations

	References

	Appendix A. Static analysis tools

	Appendix B. List of rules

	Appendix C. Boxes & pins

	Appendix D. Exemple graph

