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Summary 

In this report, a theory based on a simple model of the apparent turbulent 
viscosity is used to describe the interactions of a fully developped turbulent 
pipe flow in hydraulicly smooth ducts with plane acoustical waves. This 
theory assumes a linear relationship between the apparent viscosity and the 
elistance to the wall, with exception of a region very close to the wall, in 
which the turbulence vanishes. This region is called the laminar sub-layer, 
of which the thickness 81 depends on the Reynolds number. Several limiting 
casescan be evaluated, resulting in different moelels of the apparent viscosity. 

In the theory of Kirchhoff, descrihing the sound wave in the absence of 
flow, the attenuation is fully determined by the thickness of the acoustical 
boundary layer 8v, which is a fundion of frequency. 

The resulting attenuation in presence of a turbulent mean flow is therefore 
determined by the ratio 8v/ 81 of the thickness of the two layers, and the 
Mach number, as a result of the Doppler effect. If the acoustical boundary 
layer is smaller than the laminar boundary la.yer, the attenuation will be 
determined by the Kirchhoff attenuation, shifted as result of the Doppler 
effect. On the other hand, if the acoustical boundary layer extends far into 
the turbulent zone, the a.ttenuation will be cletermined by the thickness of the 
laminar sublayer, resulting in an almost constant attenuation, independent 
of frequency, and in our theory also independent of the Reynolds number. 
In the critical range of conditions, where 8v ~ 81, some interference of the 
periodic acoustical shear wave (generatecl at the wall by the acoustiacl field) 
with it's reflection at the turbulent zone occurs. This interference results 
in an attenuation lower than the Kirchhoff estimate in the absence of mean 
flow. 

These features of the theory are checked by mea.surements of the atten­
uation of plane acoustical waves in a duet vvith circular cross-section. A 
multiple microphone method is used to do this. 

The measurements for high frequencies are well described by the theory, 
as was expected. The shift of up- and downstream attenuation, caused by the 
Doppler effect, is however larger than predieteel by theory. A theory which 
includes only the effects on the attenuation due to the mean velocity profile, 
the quasi-laminar theory of Ronneberger [RON 77], prediets the measured 
shïft very goocl, but doesn't describe the effect of turbulence itself. 

The interference effect is also measured, but it's seems to be even stronger 
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than can be expected on basis of the assumption of total reflection of the shear 
wave at the edge of the laminar sub-layer, the so-called rigid plate model. 
Also, the value of the ratio bv/ 81 for which this minimum occurs, is not the 
same as predicted. 

For low frequencies, the limiting value is also in good agreement with 
theory, showing no dependency on the Reynolds number within the mea­
sured range. For the moelels of the apparent viscosity similar to that used in 
descrihing the stationary turbulent flow, no modifications to the used dimen­
sionless thickness of the laminar sublayer as found in stationary flow need 
to be made. The rigid plate model has to be evaluated using a different 
value for this quantity. The predieteel doppier shift is in good agreement 
with measurement in this range. 

We concluded that the theory correctly prediets the general features of 
the attenuation. Especially in the limiting cases, when one of the layer 
thicknesses 8v or 81 is much larger than the other. The model of the apparent 
viscosity which is identical to that used in descrihing stationary flow serves 
best to preeliet the resulting attenuations. This is of general importance, 
since the theory can than be expanded to include rough pipes by using the 
the same relation between the stationary flow properties and the acoustical 
disturbances, enlarging it's application range to many industrial situations. 
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0.1 introduetion 

This report deals with theory and measurement of the propagation of plane 
pressure waves in long, hydraulicly smooth ducts, and especially the influ­
ence of a fully developed turbulent mean flow on the attenuation of those 
waves. This investigation is part of a project taking place at the laboratory 
of high veloeities of the department of transport physics. This project on 
sound and vibration in pipe systems is supported by the N.V. Nederlandse 
Gasunie and FOM/STW, and subject of a doctoral study by Ir. M.C.A.M. 
Peters, under supervision of Dr. Ir. A. Hirschberg. The available theories 
and measurements in litera.ture a.re not in agreement, and some of the basic 
principles are not well understood yet. In partienlar there is no universally 
accepted theory for turbulence in an unsteady flow. The main goal of this 
graduation research on sound a.ttenua.tion, is to obtain a better insight in the 
general principles concerned. 

Measurements of the attenuation are performed for various Mach numbers 
and frequencies. The pressure waves are created by a sirene, which can 
deliver a very strong wave. This high amplitude wave at discrete frequencies 
increases the quality of the measurement with respect to measurements using 
random noise. Also, the pressure wave doesn't have to be disturbed by 
entering the pipe with a pressure probe, as by the traversing probe method, 
because we measure the pressure at fixed positions with microphones placed 
in the wall of the tube. We call this the multiple microphone method. 

The attenuation is thought to be mainly caused by interaction of acous­
tical viscothermal boundary layers at the wall of the pipe with the pressure 
waves. The effect of the turbulence on those boundary layers is in this report 
modelled by the introduetion of a turbulent viscosity 77t in the equations for 
the mean flow. This turbulent viscosity represents the effect of the randomly 
fluctuating turbulent motions on the average motions. The equations for 
the average motions are obtained by time-avera.ging the equa.tions for the 
total velocities, with a time-scale large enough to average out the turbulent 
fluctuations, but yet so small that the periodical fluctuations with radial fre­
quencies w we want to investiga.te (sound) are maintained in the equations 
for the mean quantities. 

In theories on sound attenuation in pipes without mean flow, the main 
parameter is the thickness of the viscous ( acoustical) boundary layer Óv = 
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J2ry / pow, with 'f/ the dynamic viscosity and p0 the mean density. In our case 
we will only look at experimental conditions for which this thickness is much 
smaller than the radius of the pipe a, so we neglect influence of the radius of 
the pipeon the boundary layer. We will also confine ourselves to waves with 
wavelengths À = Cü/ f much langer than the radius of the pipe, so only plane 
wavescan propagate. Another parameter is the Mach number M = U0 /c0 , 

the ratio of the mean flow velocity U0 and the speed of sound for a quiescent 
fluid c0 , which affects the speed of sound relative to the wall in the up- and 
downstream direction (c = c0 ± U0 ). It's influence on the attenuation is a 
shift between the up- and downstrea.m attenuation. Since we've measured 
with only one pipe, with fixed radius a, and one fluid with fixed mean density 
(air under atmospheric conditions), the Mach number Af = Uo/Cü and the 
Reynolds number Re = 2U0 ap0 frl are directly connected. 

The effect of a.n apparent turbulent viscosity T/t in turbulent flow on the 
mean flow qua.ntities in the absence of sound is the elivision of the velocity 
profile in two regions. A la.mina.r region nea.r the wa.ll of a certa.in thickness 
81, in which no turbulence exists, a.nd a. turbulent region for the ma.in part of 
the flow. For the description of this stea.dy turbulent flow, the thickness of 
the la.mina.r sublayer 81 turns out to he a. major parameter. In our theory for 
the turbulent viscosity, we a.ssumed a.lso tha.t the thickness of this laminar 
layer is much smaller tha.n the radius of the pipe. In the determination of the 
relation between this thickness a.nd the mean pipe flow, we used the radius of 
the pipe, introducing a. dependency on the Reynolds number Re. The theory 
used is only valid low Mach number ftows ( !11 ~ 1), beca.use we neglect the 
effect of stationary dissipation on the tempera.ture and pressure distribution 
in the flow. 

The interaction of sound in case of a. turbulent mean flow will in first 
instanee be governed by the ratio of 8v/81. For sma.ll va.lues of this ratio, 
the entire viseaus bounda.ry la.yer will be within the la.mina.r sublayer, where 
only the dyna.mic viscosity ry determines the sha.pe of the boundary layer. 
The attenua.tion will therefore beha.ve simila.r to tha.t in the quiescent case, 
depending only on 8v, a.ltered for the up- a.nd downstrea.m direction a.ccording 
the Mach number. 

For large va.lues of this ratio, the viseaus bounda.ry la.yer will be mainly 
in ~he turbulent region, where it is controlled by the apparent turbulent 
viscosity, causing a. drastic increa.se of the a.ttenua.tion. The viseaus boundary 

6 



layer will be governed by the thickness of the laminar boundary layer 81, 

corresponding to a qua.si-steady limit of the acousic flow behaviour. The 
Mach number again is responsible for a shift for the up- and downstream 
attenuation. 

Since this apparant viscosity TJt is able to describe the structure of steady 
turbulent pipe flow quite satisfactory, it's basic features might be able to 
describe the change in the acoustical boundary layers due to the turbulence 
as well. This is of great practical importance, since the theory of turbulent 
boundary layers is then directly related to the attenuation of plane pressure 
waves. This means, that the theory of attenuation can be extended to in­
corporate the effect of rough walls by using the same relation between the 
steady flow properties and the acoustical disturbances. 

Worth mentioning is the situation of closed side branches in complex 
pipe systems, as in the gas industry. Those sicle-branches can generate low­
frequency acoustical disturbances, or even high amplitude standing waves. In 
calculating the resulting amplitudes, the attenuation plays an important role. 
For this reason, the N.V. Nederlandse Gasunie is interested in our research. 

Also, at TNO- TPD in Delft, they have developed a program to do these 
kind of calculations, called PULSIM. It is used as a development tool for 
designing complex pipe systems. An accurate description of sound attenua­
tion can of course contribute to the qua.lity of the calculations, and the final 
design. 

Another interesting application is the mea.surement of mean flow veloeities 
by measuring the amplitude ratio of standing waves [SHA 91]. Knowledge 
about the attenuation is important, since the accuracy of such measurements 
depends strongly on the ( difference in) phase veloei ty of the sound wave in 
the up- and downstream direction. This phase velocity is influenced by the 
turbulent interactions. 

A medica! application we refer to, is the measurement of the radiation and 
entry impedance of the respiratory system. It turns out that the interaction 
of turbulence with the oscillating flow is important in determining these 
physiologically important quantities. An investigation on this subject was 
made by Louis and lsabey [LOU 92]. 
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Chapter 1 

Propagation of sound in a long 
pipe through a quiescent fluid. 

Much of what is written in this chapter can also be found in 
textbooks on acoustics, such as 'Acoustics' of Allan D. Pierce 
[PIE 89], and 'Waves in ftuids', from Sir James Lighthili [LIG 80]. 
Sometimes, results obtained in these textbooks are presented as 
facts, since the underlying theories are beyond the scope of this 
report. The reader will then be referred to these textbooks. 
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1.1 Basic equations descrihing sound prop­
agation in a quiescent fluid 

To obtain a description of the propagation of acoustical waves in a quiescent 
ftuid in a pipe, the well known equations of conservation of mass, momenturn 
and energy will be used as starting point. These equations will be com­
pleted with constitutive equations and thermodynamic relations between the 
acoustical quantities, assuming local thermodynamic equilibrium. 

When consiclering only small deviations from an uniform and stationary 
state, the behaviour of the physical quantities can be linearised by writing a 
quantity Q as: 

Q = Qo + Q' 
Q' 

where: Qu < < 1 

and since we're consiclering a quiescent state in which tiö = 0 

- _, 
v=v where: Iu' I < < 1 

co 
( 1.1) 

a limit which is essentially imposed by the condition that p'f p0 ~ 1, a nec­
essary condition for the validity of the linearization of the thermodynamic 
relations. Furthermore the thermal conductivity 1\, and the viscosity 'Tl of the 
Newtonian ftuid will be considered as uniform and constant. These assump­
tions yield the following set of linea1'ised equations. 
Mass conservation: 

op' n. _, - + pov · v = 0 
fJt 

momenturn conservation (linearisecl Navier-Stokes equation): 

fJv' n. , [n2 _, 1 n.(n. -')] Po- = - v p + "7 v v + - v v · v 
fJt 3 

and energy conservation: 
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And the thermadynamie relations, which are added to obtain a complete set 
of equations: 

I 1 1 Pof3To 1 
(1.5) p 2P ---s 

Co Cp 

Tl To/3 1 Ta 1 (1.6) -p +-s 
poep Cp 

in which the definitions for the adiabatical speed of sound c6 = ~~ 5 , the 

specific heat at constant pressure cp = T gf lp' and the coefficient of thermal 

expansion (3 = p 8~fPIP are used. 
These are the basic equations used in descri bing the propagation of small 

perturbations of an ambient state in a quiescent fluid, called sound. 
In the following sections, the propaga.tion of sound in a long pipe will be 

described, neglecting the effects of thermal conduction and viscosity. The 
only boundary con di ti on is then, tha.t the velocity at the wa.ll is parallel to 
that wall (the fluid can't penetrate the wa.ll). Also an estimate will be given 
of the attenuation as a result of viscous and thermal dissipation. 

Next, the effects of viscosity a.nd heat conduction near the wall will be 
taken into account, which results for sufficiently high frequencies in a bound­
ary layer description for the acoustic velocity and temperature. 

Finally, the results will be combined todetermine the complex attenuation 
of the sound waves propa.gating along the axis of the pipe. 
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1.2 Acoustical salution of the basic equa­
tions in a pipe filled with a quiescent 
fluid. 

The goal is to derive an equation descrihing the propagation of sound in 
a long pipe. The thermal conductivity K and the viscosity 7J are in first 
approximation set to zero, since the effect on the propagation is expected to 
be smalL The conditions determining the validity of this approximation will 
be discussed in section 1.3, when the effects of visco-thermal dissipation are 
estimated. In doing so, the basic equations reduce to: 

op' 9 _, 
-+Po · v 
ot 

0 ( 1. 7) 

ov' 
-'\lp' (1.8) Poot 

os' 
0 (1.9) 

ot 

and for the thermadynamie relations, in which we have used (1.9): 

I 1 I (1.10) p -p 
c2 

0 

T' To/3 , (l.ll) -p 
poep 

As long as confusion with the other qua.ntities is unlikely, the primes will be 
omitted in the rest of this paper. 

To get an equation for p, ( 1.10) is used to eliminate p by p in equation 
( 1. 7). Taking the time derivative of the result gives: 

1 o2p - ov 
--+po\l·-=0 cö ot2 ot 

Tagether with the divergence of Euler's equation (1.8): 

- ov 2 po\l ·-=-V p 
ot 
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and aft er elimination of the factor p0 V· éJiJ j ot , we come to the wave-equation 
for the pressure disturbance p: 

_!_ éJ2p - \72 
cö éJt2 - p (1.12) 

This equation, the Helmholz equation, can be solveel analytically for cer­
tain boundary conditions. In the case of a pipe with radius a, for radial 
frequencies w = 27r f below the so-called cutoff frequency Weutof f, the only 
propagating solution is a plane wave along the axis of the pipe ( x-axis ), with 
no dependency on the radial and azimuthal coordinates. All the other so­
lutions die out within a length of order À = c0 j f [KON 91]. This cutoff 
frequency for cylinclrical pipes is given by [PIE 89]: 

_, co 
i..v'ctdof f = 1.~41-

(l 
(1.13) 

So the acoustical solution fora pipe of small radius a< .\j1r is given by: 

z)e i(l..:x- wt) 

w2 

cö 

(1.14) 

(1.15) 

in which the dispersion relation (1.15) has been obtained by substituting 
(1.14) in (1.12). The final result for the pressure pis: 

p = ~[ p+ e i(k0x- wt) + p- ei( -k0x- wt) ] (1. 16) 

with: k0 = w (1.17) 
co 

where p+ and p- are the complex amplitudes of the waves travelling in the 
positive and negative direct ion. From ( 1.17) a similar equation for the other 
acoustical quantities can be derivecl, because they are all linearly related to 
p. The relation between the pressure p and the velocity iJ i.e. 1s: 

(1.18) 

In having derived a solution for the acoustical quantities, a check should be 
made on the validity of the initial assumptions. This check will be made in 
th~ next section, where the attenuation as a result of the viscous and thermal 
terms, is calculated. 
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1.3 Viscothermal attenuation of plane acous­
tical waves in a quiescent fluid. 

In order to estimate the attenuation of sound in the absence of walls, but with 
thermal and viscous dissipation, the relations found in the previous section 
for the acoustical quantities are used to estimate the order of magnitude of 
the terms invalving viseaus dissipation and heat conduction, which have been 
neglected.The resulting error in the estimate of these terms will be small if 
the attenuation is small compared to the wa.venumber. These terms involve 
the change in density due to the entropy change, as given in (1.5), and the 
last term in the equation of momentum conservation (1.3), representing the 
shear stresses due to the viscosity. 

So, the relation between the temperature fiuctuation Tac and the pressure 
Pac (1.11), derived in the previous section, is substituted into the energy 
equation incorporating the effect of heat conduct ion ( 1.4), to gi ve an estimate 
of the entropy change äsj ät in termsof p. 

os "~ IYT K/1 ä2p 
(1.19) 

Then, the density fiuctuations Öpjät can be calculated using (1.5), resulting 
m 

äp 
ät 

(1.20) 

This yields the following equations for the conservation of mass (1.2) and 
momentum (1.3): 

0 ( 1.21) 

(1.22) 

The thermadynamie identity 1- 1 = T0(J2c6/ cp is used to rewrite the second 
term on the leftof equation (1.21) [PIE 89]. 

If we a.ssume a.ga.in tha.t only plane waves will propa.gate, we ca.n solve 
these two equa.tions for u and p. Insteacl of using this exact solution, we will 
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use the approximate linear relation between u and p (1.18), derived in the 
previous section to rewrite the last term on the right-hand side. Then we can 
eliminate u by the same procedure as in the previous section. The resulting 

homogeneaus relation for p then becomes for harmonie waves e i( kvtX - wt): 

(
w2 .wk~tK,(I- 1) .4k~t"7) 
2 +z 2 +z-- p 
c0 c0 pocp 3wpo 

(1.23) 

giving us the following dispersion relation: 

k~t ~ w; [1 + i~ry (~3 + lp- 1 )] 
Co CoPo . r 

(1.24) 

with Pr = rycpj K,. The change of À: due to introduetion of the effects of 
viscosity and heat conduction will be small, and therefore, to first order, kvt 

is approximated by w /Co, whenever product terms in volving small quantities 
are considered. This, and using the taylor expansion ( 1 +x )112 ~ 1 + x /2, 
determines the wavenumber k: 

w . w 2 r7 4 I - 1 . 
kvt = ±- ± z--(- + --) = ±ko ± Wvt 

co 2c~po 3 Pr 
(1.25) 

We see that the result for 1..~ is an aclclitional imaginairy part iavt· By writ­
ing the pressure wa.ve a.s follows, we see that Dvt describes the amplitude 
a.t tenuation. 

P = ~ [p+e -avt·re i(ko:r- wt) + ii-e DvtXe i(-ko:r- wt)] ( 1.26) 

We ca.n now estima.te the error made by neglecting the viscosity a.nd hea.t 
conduction by looking at equation ( 1.24 ). We can substra.ct the rela.tion from 
it tha.t must be fullfilled if the theory is to be valid. This rela.tion is: 

W'f] (~ + I - 1) ~ 1 
cÖpo 3 Pr' 

(1.27) 

When using the va.lues for air, we come to a. maximum ra.dia.l frequency w of: 

(1.28) 

It is then clea.r tha.t the a.ttenuation described by the ima.ginary part of kvt 
is only a. minor part of the magnitude I kvt I of the wavenumber, so that the 
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assumption that viscosity and heat conduction are only a small effect, and 
therefore of minor influence on the propagation, is justified. It must be 
mentioned, that the actual attenuation can increase strongly even below this 
limit, because of the departure from local thermadynamie equilibrium. We 
have ignored this effect bere. 
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1.4 Viscous and thermal acoustical bound­
ary layers in a quiescent fluid. 

In the previous sections the consequences of viscosity and heat conduction 
near a wall have not been considered, we only discussed bulk attenuation. 
The boundary conditions alter significantly when taking these walleffects into 
account. The viscosity requires the velocity at the wall to be zero, while for 
the heat conduction we will assume that the temperature variations become 
zero at the wall, because (Kpcp)wall ~ (Kpocp)Jtuid [PIE 89]. In order to 
achieve these boundary conditions, a thin boundary layer is formed. This 
means that the velocity u and temperature T, which until now were only a 
function of the axial coordinate :r, will in a region close to the wall also be a 
function of the radial coordinate r. 

Since the variations of the acoustical quantities with the radial coordinate 
take place over a distance, say 8, which is much shorter than the wavelength 
À, over which the same variations occur in the axial direction, all terms 
containing a derivative in the axial direction of a quantity can be neglected 
in comparison with terms containing a radial derivative of that quantity. 
Also, when the radius a of the pipe is large, compared to the thickness 8 
of the boundary layer, the equations reduce to those for a two-dimensional 
flow along a boundary in the x, y- plane. Si nee the boundary, the x-axis, is a 
straigth line, the flow will be a.ssumed parallel, neglecting the radial velocity 
v of order u8 I À, as can be derived from the law of mass conservation. So 
we assume v = (u(y), 0). This reduces the Navier-Stokes equation for the 
y-direction normall to the wall to: 

ap = o (1.29) 
ay 

resulting in a pressure, uniform over the cross-section of the pipe. 
Neglecting the terms proportional to 8 I À in the Navier-Stokes equation, 

we get for the axial x-direction: 

au apac a2u 
Po at - a:c + "7 ay 2 

uly=O 0 ( boundary con di ti on) 

( 1.30) 

(1.31) 

in which the pressure gradient OJJacléJx is the driving force for the flow. The 
particular Ûp and general 'Îtg solutions to this problem for harmonie waves, 
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are given in complex notation by 

OÎJac 1 

OX poiWac 

Ûle -EvY + Ü2e EvY 

~=(1-i)E;;ii 
V ----;,--- V 277 

(1.32) 

(1.33) 

( 1.34) 

Subjecting this solution to the boundary condition, consiclering the solution 
being finite for y ----+ oo, which is essentially the same as imposing the second 
boundary condition to be 

uiy_,= = Uac (boundary conclition) 

gi ves the veloei ty profile in the pi pe: 

u OPac -.1-( 1 _ e -EvY) 

OX PoZWac 

U Uac(1- e -EvY) = Uac + Ubt 

(1.35) 

(1.36) 

(1.37) 

The deviation Ubt = -Uace -EvY from the plane-wave velocity Uac describes 
an attenuated wave propagating in the y-direction, the so-called shear wave 
(fig. 1.1). We can define de elistance over which the amplitude of the wave 
decreases a factor e as the thickness bv of the viscous boundary layer. So, 

( 1.38) 

Similarly, the thermal bounclary layer is described by the energy equation 
(1.4), completed with the thermodynamic relation (1.6) for the temperature 
T: 

éJ ( To/3 ) 
poep at T - poep Pac 

Tly=O 

The solution is now: 

EJ2T 
K éJy2 

0 (boundary condition) 

(1.39) 

(1.40) 

T = Tof3 (1 -ETY) - T (1 -ErY)- T rr (1.41) --Pac - e - ac - e - ac + .1 bt 
poep 

ET ~ = (1- i)JwpoCp V~ 2K (1.42) 
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Figure 1.1: The shear wave, Ubl as function of y/bv. 
-~ wt = 0;--- wt = 7r/4; ·- ·- · u..:t = 27r/4; · · · wt = 37r/4; -~ wt = 1r 

For gases Pr· = 17/ "'cP = 0( 1), so that the thermal and viscous boundary 
layers will have a comparable thickness 8. We can now check the validity of 
the assumption that the boundary layer thickness is small compared to the 
radius of the pipe 8 <t: a. We have: 

8= <t:a 
0 

w » 0.1 rad s- 1 

for: a = 0.01.5 m 

( 1.43) 

( 1.44) 

( 1.45) 

where weve used the diameter of the pipe we've used for our measurements. 
Note that because we assume plane waves, so that a < À, we automatically 
satisfy the condition 8 <t: À, which we have used in the derivation of our 
equations. 

The two profiles obtained by this procedure satisfy the boundary condi­
tions imposed by the viscosity and heat conduction, while for y --+ oo they 
asymptoticaly approach the solutions fotmd when neglecting the infiuence of 
the wall. Also, the thickness of the bounda.ry layers found is sma.ll, compa.red 
to both the wavelength ). and the radius a of the pipe, as assumed. These 
are'the kind of solutions we were looking for. 
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1.5 Viscothermal attenuation ofplane waves 
due to boundary layers in a quiescent 
Huid. 

In the previous section expressions have been obtained desct·ibing the veloc­
ity and temperature distribution near the wall, in the viscous and thermal 
boundary layers, that fullfill the boundary conditions imposed by the viscos­
ity and thermal conductivity. In order to estimate the effect of these bound­
ary layers on the propagation of the acoustical waves, the procedure used 
in the previous sections to derive a dispersion relation determining the wave 
number k must be modified, since the acoustical quantities are no Jonger uni­
form over the cross-section of the pipe. Therefore, the terms in the mass and 
momenturn conservation laws containing acoustical quantities are averaged 
by integrating these terms over the cross-section. 

For the terms invalving quantities still uniform, such as p, the integration 
results in multiplication by the cross-sectiona.l area. A. 

For the termsin volving non-uniform quantities, such asT= Tac + Tbt and 
u= Uac + Ubt, the integration is performeel in two parts. The uniform (acous­
tical) part is treated a.s above, wherea.s the non-uniform boundary-layer part 
is integrated over the normal coordinate y and multiplied by the perime­
ter of the cross-section [. The integration over the normal coordinate y is 
mathematically taken from zero to oo, which is allowed since the integrand 
vanishes for y ~ Óv, Óy. We wil! write however as upper limit the thickness 
of the boundary layer, to emphasise that the contribution of the boundary 
layer for y > 8 is negligable. [HOW 79] [PIE 89] 

This elivision of the integration in two parts is not as obvious as it seems, 
because we must reeall that the boundary layersolutions were found by solv­
ing simplified boundary layer equations for mass, momenturn and energy 
conservation, including the effects of viscosity and heat transport, whereas the 
acoustical solutionswere found byneglecting thermoviscous effects.Therefore, 
to be consistent, the thermal and viscous terms are only taken into account 
for the boundary layer contributions Ubt and Tbt, and are negleeteel for the 
uniform contributions of these quantities Uac and Tac· This is the same as 
stating that we will neglect a.ny terrns invalving the viscothermal attenuation 
fomi.d insection 1.3. a.ssuming that th<"y r<"stdt in only a. minor contribution to 
the total attenuation. The equations of conservation of mass and momenturn 
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are then given by: 

1 Öp "'{3 Ö2Tbt Öu 
--+---+po­cö Öt cp Öy 2 Öx 

Öu 
Po öt 

0 (1.46) 

( 1.4 7) 

After integration over the cross-section, this results in the following equa­
tions: 

( 
1 Öp ÖUac) ( a !Sv K/3 JÓT aznl ) 

A 2-+po- +.C po-. Ubtdy-- -. 
2 

dy 
c0 Öt Öx a:c cP ay 

0 0 

0 

auac a !Sv ap Jl5v azubl 
Apofit + .Cpo at Ub[dy =-A ax + .Cry ayz dy 

0 0 

Performing the second step of the choosen procedure, the elimination of 
the acoustical velocity Uao results in: 

_.!._ [J2p- a2p- .c l-ry!!_j&v a2ubldy + K./3 !!_j6r(a2nl)dyl 
cö Öt 2 ax2 - A ax 

0 
ay2 cP Öt 

0 
ay 2 

( 1.48) 

The integrals can be evaluated, when realising that aQbt/ Öy = 0 for y -+ oo. 
So: 

is a
2
Qbl d = _ ( aQbll aQbl ) _ aQbll a2Y a -a -a 

0 y y y=/5 y y=O y y=O 
( 1.49) 

The minus sign is a result of the defini ti on of y, being the normal coordi­
natepointing in the direction of the centre of the pipe. This finally leads us 

to the dispersion relation for harmonie waves of the form e i(±kbt±X-wt): 

w
2 

A 2 A .C [· attbt iwK/3 a'ht ] 
- 2 Pac + kb1Pac =A zkbtT/ a + -c- -

8
-y-

co y y=O P y=O 
(1.50) 

which, for a circular pipe with radius a, under the same assumptions as in 
section 1.3, results in: 

kbl± = ±ko ± -. 
1- [o +i) ~ (1 + 

1 ;;,2)] 
2aco V Po v Pr 

(1.51) 
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±ko ± (1 + i)ao 

with: a 0 ( 
Î -1) 1 + VJÇ av 

1 ~~W'r] and: av = -- --
2aco Po 

(1.52) 

(1.53) 

( 1.54) 

( 1.55) 

The attenuation due to the viscotherma.l effects near the wa.ll of the pipe 
a.ppears to be much larger tha.n the attenuation due to dissipation and heat 
transfer in the bulk of the fluid. The maximum radial frequency for which the 
effect of this bulk attenuation is negligible, is given by the following relation: 

(1.56) 

(1.57) 

The attenuation due to the bounclary layers results in a change of the 
apparent phase velocity Cph = w /R( k) of the sound wave, an effect not seen 
in the free-space attenuation accorcling to equation (1.25) [PIE 89]. Equa­
tion (1.25) is however not exact, and a small decrease in the phase velocity 
is observed for low frequencies, due to the change from adiabatic to isother­
mal sound propagation. This effect is however small comparecl to the effect 
considered here. 

Knowledge about the fundamental structure of the boundary layers is 
of the utmost importance when trying to calculate the sound attenuation 
in ducts. Especially when the propagation of sound through a pipe with a 
turbulent mean flow is to be examinecl, the interaction of the boundary layers 
with the mean flow must carefully be incorpora.ted in the description of the 
acoustical quantities. An a.ttempt to clescribe these interactions is made in 
the next chapter. 
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Chapter 2 

Propagation of sound in a long 
pipe with a turbulent mean 
flow 

Just as the previous section, this section is based on theories 
described in many textbooks. Especially 'Boundary layer the­
ory', written by Schlichting [SCH 79], and 'Turbulence' by Hinze 
[HIN 75], are often quoteeL The reader is again referred to this 
textbooks for additional information. 

The basic idea of the theory described is based on two papers, 
written by Howe [HOW 79] [HOW 84]. These can be very helpfull 
w hen st udying this chapter. 
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2.1 Basic equations governing the turbulent 
motions 

In order to obtain a description of the acoustical boundary layer in the case 
of a turbulent mean flow trough a pipe, first the structure of the turbulent 
mean flow in the absence of sound is examined. A well-known procedure is 
used, to calculate the effect of the turbulent motion on the flow. We start by 
seperating the physical qua.ntities into two parts. One part being the mean 
quantity Q, and the other part the ranclomly ftuctuating part Q: 

(2.1) 

This decomposition is then substituted in the incompressible Navier-Stokes 
equation 

ov ( ~ n) ~ po-+ Po v · v v at 
~ 

D 
( 

•) i:/ u 
~ax 

i:lv +au 
a~· dy 
~~w + ~~1l 
dJ· dz 

~u+ qv 
dy dx 

•)dV 
~i:ly 

&w + &v 
ày Cl z 

àu + dw ) Clz ox 
ov + dw 
az ay 

<)OW 
~ oz 

(2.2) 

(2.3) 

which is then averagedover a time iav, long enough to average out the turbu­
lent fluctuations. Variations in the mean quantities still can exist over periods 
much longer than the averaging period. The condition of incompressibility 
will be satisfied if the Machnumber Af « 1, see [SCH 79]. 

The result is the familiar Navier-Stokes equa.tion for the mean quantities, 
altered by a term containing the a.veraged proclucts of the turbulent veloeities 
u, v and w: 

81! - ~ -
Po-+ po( v · V')v at 

-::;- ~ 

- Vp + v. 2r,J5 + v. s: (2.4) 

ij2 -- - -uv uw 

-- iJ2 - --po vu vw (2.5) 

-- -- w2 W1t wv 



..... 

S~ is called Reynolds stress tensor, for ..... he was the first to formulate the 

above equations. The precise form of S~ is not known, but the following 
argumentation can give some insight in the properties of the Reynolds stress 
tensor. It is a short version of an argumentation held in the hook 'Boundary 
layer theory', by Schlichting [SCH 79]. It is strongly recommended to read 
the original version, since it is a more complete argumentation. 

y i 
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0.5 

{)~~~----~--~----~--~----~--~----~--~--~ 
() 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 2.1: The turbulent shearing motion u ( horizontal axis) as function of 
y ( vertical axis). 
· · · velocity difference. 

That the time averages, like üü, differ from zero, can be argued by con­
siclering a hypothetical two-dimensional shear flow, as in figure (2.1 ). When 
fluid particles with a turbulent velocity of +v move from y0 upwards, they 
arive at a lamina in which a higher mean velocity u prevails. The mean 
velocity deficient occuring, will generally give rise to a lower longitudinal 
turbulent velocity in the lamina at Y+l· Conversely, particles which move 
downwarcis due to a turbulent velocity -v, will generally give rise to an in-
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crease in the turbulent velocity u at y_1• So, mostly, u is associated with -v, 
and therefore the turbulent stress üv will be negative. It is easily seen, that 
to first order, a fiuid partiele coming from a lamina a distance l away, will 
introduce a turbulent velocity u of approximately löuj oy. 

The magnitude of the transverse turbulent velocity v will be of the same 
order of magnitude, by consiclering the mechanism by which they are gen­
erated. Consicier two particles ariving at a lamina a distance y0 from the 
wall, the slower one from Y-1 preceding the faster one from Y+l· These par­
ticles will collide, and thereby squeeze out the fiuid separating them, and in 
doing so introduce a transverse velocity. Similar, if the faster partiele pre­
ceeds the slower one, the growing space between them will be filled in by the 
surrounding fiuid, again giving rise to a transverse velocity. 

Consequently, the total average Reynold stress can be written as 

-;;;-:::- 2 1 au I ou -pouv = p0 l -.- -. -. oy oy (2.6) 

The distance l is called the Prandtl mixing length, for he was the first to use 
the above argumentation. It is a simila.r concept as the mea.n free pa.th, used 
in molecular theories on viscosity. 

In the vincinity of a. solid boundary, the mixing length l is limited by 
the presence of the wall, and is therefore set proportional to the distance to 
the wall, according to l = f{ y. The constant f{ is also known a.s the von 
Kármánn constant. This results in a Reynolds stress of 

= '2 21ofl au -pouv =pol\ y - -.-oy oy (2.7) 
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2.2 Turbulent boundary layers due to a sta­
tionary mean flow 

Now, returning to the problem for the stationary turbulent pipe flow with 
1J = (u(y ), 0, 0), the N avier-Stokes equation in the axial and radial direction 
for the turbulent flow reduces to 

0 op a ( au --) (2.8) = -- + - TJ- - pailv ax 8y 8y 

op ()1)2 
(2.9) 0 = ----

8y 8y 

in which the familiar boundary layer approximations have been made, with 
the y-coordinate defined as the elistance to the wall. 

This equation is valiel for pipe flow as well as for a two-dimensional chan­
nel flow. In the following argumentation we will, for the sake of mathematica! 
simplicity, derive the structure of the flow for the 2-D channel flow. It will 
turn out, that in the region of interest, very near the wall, the same relations 
hold for pipe flow [RIN 75]. 

Integration of the second equation with respect to y yields 

P + Pt' 2 = Pext 

In this equation v2 is independent of :r, so Öpj8:c = dpextfdx. 
external pressure gradient, acting as the elriving force. 

Integrating the first equation with respect to y yielels 

dpext OU = C -y-- + ry-. - pauv + = 0 
d x oy 

(2.10) 

This is the 

(2.11) 

The integration constant C is eletermineel by rea.lising that at the wall the 
elisturbance veloeities must be zero, so that - p0üv = 0, resulting in 

C =- 17~ = -To a-~ 
oy y=O 

(2.12) 

To being the so-ca.lleel wall shear stress. The other bounelary condition, that 
in the mielelie of the cha.nnel the tota.l shear stress must be zero, so 

_ aul -pailv + TJa; = 0 
y y=h/2 

(2.13) 
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results in arelation between dpldx and r 0 : 

hdp 
--- = To 

2dx 
(2014) 

completing the basic equation to one descrihing the velocity profile as func­
tion of the Reynold stress p0uv: 

= ou d p ( 2y) 
-poUV + 7]- = To + y- = 1 -- To oy d x h 

(2015) 

Dividing this equation by r 0 , introducing the so-called friction velocity u* 2 = 

rol p0 , as well as the previously found relation for the Reynold stress (20 7), 
results in: 

2y 
1-- ~ 1 

h 

for: y ~ h 

(2016) 

(2017) 

Since the first term on the left varies with y2 ( oul oy )2
, going to zero for 

y ---+ 0, whereas the other term varies only with 8ul8y, the region near the 
wall can be divided into two partso One, very close to the wall, in which 
the viscous stresses dominate, and the other in which the turbulent Reynold 
stresses dominateo This elivision is even stricter than the above equation 
implies, since not only the mixing length l = f{ y tenels to zero, but also the 
fluctuations v and therefore ü vanish at the wal!. 

In order to estimate the thickness of the small laminar sublayer, the 
factor ouloy is estimated by CéJui8Yiy=O = Cpou* 2/TJ, since 8ul8y will be 
of the same order as 8ul oy ly=O close to the wallo The cri ti cal value Ót of y, 
determining the transition between the laminar sublayer and the turbulent 
layer then becomes Ót = Cry IJ( p0u* 2 

0 The velocity profile is then given by: 

u* 

u* 

c 7] 
0 < y < --:;- = Ót 

A pou* 

c 71 
for: y > --:; -- = Ót 

A pou* 

(2018) 

(2019) 

The integration constant c2 can be cletermined by COlmeeting the solutions 
in y = Cry IJ( p0 tt*

2 
0 This gi ves for the logarithmic layer the relation: 

u* 
1 ( c 7] ) --:; In y + C- In--:;---
!\ A pou* 

(2020) 
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1 ( p0 u"' C) = --;- ln --y + C - ln ---;: 
J\ 7] !i. 

(2.21) 

This last step is performeel for two rea.sons. One is to seperate all the con­
stants. These constants should be universa! constants for the fully developped 
turbulent pipe flow, since the assumptions made in deriving this equation are 
all general assumptions. The second reason for separating is, that the equa­
tion is now dimensionless, giving the appropriate velocity and length scales 
as u* resp. p0u* 117· When making elistances dimensionless with use of this 
scale factor, we denote them by a superscripteel +, so 

(2.22) 

The constauts can be determinecl by measurements on the profile of chan­
nel flow. These measurements are available from the litera.ture and yield the 
relation [SCH 79]: 

u pou"' 
- = 2.44ln --y + 4.9 
u* 7] 

(2.23) 

from which follows that I< = 0.41 ancl C = 4.38, so that the dimensionless 
thickness of the laminar sublayer 8( = C I I< = 10. 7. The result for pipe flow 
usually is given as 

u . p0 u* 
- = 2 .. 5ln --y + 5.5 
u* 17 

(2.24) 

obtained from data measurecl by Nikuradse (see [HIN 7.5]) for smooth pipes, 
but these are the parameters fitteel on the entire velocity distribution. Hinze 
[HIN 75] fitteel the data obtained by Nikura.clse a.ga.in for the near-wall region, 
and obtained the same parameters as given for the 2-D channel flow. 

It should be noted, that nothing has been said about the determination 
of the friction velocity u"'. It follows from a. simple bala.nce of farces on a 
piece of the pipe flow, that 

1 f:j.71 A 
(2.25) 

Po Po ~:TL 

so it can be directly cletermined from measurement of ~PI ~x. 
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It can also be shown that the friction velocity u~ depends only on the 
Reynolds number. This relation of u* on Re is given by the universa! law of 
friction for smooth pipes, 

~ = 2.0 log Re~- 0.8 

Re= poUo2a 

Tl 

with 'ljJ the dimensionless friction coefficient. 

(2.26) 

(2.27) 

Now that the velocity profile is determined, the Reynold stress p0ûv can 
be determined as a function of u by (2.7). It is then possible to rewrite the 
N avier-Stokes equation in axial direction as follows: 

d fi a [ au] 0 = -d + ~ ( 11 + 1lt) -;:;-
.1" uy uy 

(2.28) 

with 

T/t 0 for: 0 < y < 8( ~ = 8, 
Po V 

(2.29) 

'2 2 OU I . * + Tl T/t = pol\ y -;:;- = /\ pou y for: y > 81 -- = 8, 
uy pou* 

(2.30) 

We see from this equation derived for an incompressible turbulent pipe flow, 
that the Navier-Stokes equation for the mean quantities keeps the same form 
as in the non-turbulent case, except for a change in the effective viscosity, 
due to the turbulent mixture. This extra apparent viscosity T/t is proportional 
to the distance to the wall, but vanishes completely in a small sublayer, 
which is therefore described by the equations for normallaminar flow. This 
sublayer is called the laminar sublayer. The turbulent layer is a logarithmic 
one, containing two undetermined constants, /{ and C / J(, representing the 
relation between the transverse a.nd longitudina.l turbulent velocities, resp. 
the dimensionless thickness 8( of the lamina.r subla.yer. The requirement 
for the two layers to meet a.t y = 8,, determines a relation between these 
consta.nts. 

·Using this relation a.nd measurements on the velocity profile of the tur­
bulent loga.rithmic la.yer, the two constants can be determined, resulting in a. 
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complete, semi-empirica! theory of stationairy turbulent pipe flow. A picture 
of the resulting velocity profile is given figure 2.2. 

It should be noted that in this treatment of turbulence, the transition 
between the laminar and turbulent zone is very sudden, this in contrast with 
to the more general treatment as found in [SCH 79], which assumes a buffer 
zone. This wil! turn out to be of major influence on the resulting attenuation. 
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Figure 2.2: The dimensionless velocity U0 fu* as function of y+ 
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2.3 Acoustical solution incorporating the ef­
fect of an axial mean flow. 

The effect of a non-zero mean flow on the propagation of sound in the axial 
direction will be investigated. Variations of the mean flow in the axial direc­
tion will be neglected, as wel! as the effects of viscosity and heat conduction 
in the bulk. In the radial direction however, the mean velocity will vary from 
the maximum in the middle of the pipe, to zero at the wall, according to the 
fully developped turbulent pipe flow description derived in the previous sec­
tion. So, when separating the physical qua.ntities in a mean and a fluctuating 
part again, the velocity can be written as follows: 

u uo(r) + u'(r,:r) u'~ uo ~co 

wrt> = 0 

(2.31) 

(2.32) 

The linearized laws of conservation of mass, momenturn and energy for the 
acoustical perturbations can be written in the form 

op op 8u 
-0 + uo(r)-0 + Poö-

t x x 
Ou 8u 

Poot +pouo(r)ox 

Ds 
poTo D t 

D ä ä 
with: - = - + u0(r)-

D t ät ä:r 

D p 8u 
-+po-=0 
D t äx 

(2.33) 

D u op 
Po-=--

D t ox 
(2.34) 

0 (2.35) 

in which the primes have been omittecl again. Now, the recipy is used again 
to obtain a wave-equation for p. Therefore, p is eliminateel by the thermo­
dynamic relation (1.10). Then, in ta.king the tota.l time derivative of (2.33), 
tagether with the axia.l clerivative of (2.34), we get: 

1 D2 P [)2p 
(2.36) 

After averaging over the cross-section, we get: 

1 ( ä ö) 2 

8
2
p 

2 Uo-;;- + ä-t P = :::l .2 
~ ux u~ 

(2.37) 
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with U0 the average of u0 (r) over the cross-section of the pipe. This results 

in a dispersion relation for plane waves of the form e i( km x - iwt): 

(ikmMo- i:) 
2 ( ikm) 2 (2.38) 

k±m 
w 1 

(2.39) ±-
co 1 ± Mo 

with: 1\10 
Uo 

(2.40) = 
co 

descrihing the propa.gation of sounel incorporating the effect of a mean flow, 
M0 representing the global Mach number, rela.ted to the mean velocity. 
Again, the other quantities are linearly relatecl to p. The velocity u for 
example, can be cleclucecl from equation (2.:3:3), and is given by: 

• ±z3± ( 1 ) U±---
- poco l ± [Mo- mo(r)] 

(2.41) 

with m0(7') the local Mach number u0 (1')jc0 . For the flow along the center 
line of the pipe this recluces approximately to the fa.miliar rela.tion 

, ±z3± 
U±=--

poCo 

whereas for the region nea.r the wall, the rela.tion becomes 

PoW 

The temperature T still obeys the simpler relation 

T
, Tof3 , 
± = --p± 

poep 

(2.42) 

(2.43) 

(2.44) 



2.4 acoustical boundary layer in case of a 
turbulent mean flow 

In the previous section, a dispersion relation descrihing the propagation of 
sound in a pipe with flow, neglecting the effects of viscosity and heat con­
duction, has been derived. It will serve as a basis to examine the structure 
of the acoustical boundary layer, which is the main cause of attenuation of 
sound in a pipe. Consiclering the attenuation as a small effect, we can use 
the approximate dispersion relation found to estimate the spacial derivatives. 
We will use the time-averaged Navier-Stokes equation (2.4) in the boundary 
layer approximation, and write the physical quantities Q, conform equation 
(2.1), as 

(2.45) 

which is equivalent with stating tha.t the acoustical variations can be regarded 
quasistationary with respect to the turbulent variations. An other way of 
saying this, is that the acoustical variations take place on a time scale much 
larger than the fluctuating turbulent motions. The avera.ging time is then 
choosen so long that the turbulent fluctuations are averaged out, but short 
enough to allow an oscillating acoustical variation of the mean quantity to 
exist. The result is: 

öu' Öu' Öpo op' a [ (Öllo Öu') =] (2.46) po-- pouo(y)- = --.--- -.- + -.- TJ - + -.- - pouv 
Öt Öx Öx Ö:e äy Öy Öy 

The Reynold stress was estimatecl by (2. 7): 

= 1,2 2 1Öu.o Öu' (Öuo Öu') -po uv = Po \. Y -. - + -. - -. - + -. -
Öy Öy Öy Öy 

(2.47) 

If öu' / Öy < Öu0 / Öy, we get after performing the multiplication, using equa­
tion (2.30): 

= (Öuo , Öu') , 2 2 (öu') I Öu'l 
-pouv = Tft Öy + 2 Öy +pol\ y Öy Öy (2.48) 

where Tft is defined on basis of the sta.tionary flow velocity u0 • lnserting 
this in the above Navier-Stokes equation leads to an equation, equivalent to 
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that descrihing the stationary equation for turbulent pipe flow, except for 
the terms invalving the small acoustical perturbations. We see that, if there 
are no acoustical disturbances, the equation is exactly the stationary one, 
for which we know the solution. So the stationary equation (2.28) can be 
substracted to obtain an equation for the a.coustical quantities. In doing so, 
and neglecting the term (au'jay)iau'jayl, the result is: 

po-- pouo(1·)- = -- + -. (17 + 2ryt)-au' au' ap' a [ . au'] 
at ax ax ay ay (2.49) 

in which u0 is given by the salution of the stationa.ry equation. This equation 
must be solved under the condition that u'(O) = 0. The other boundary 
condition, for y -+ oo, will be governed by the thickness of the acoustical 
boundary layer 8v in comparison to the turbulent boundary la.yer thickness 
Ót. When taking the limit for w -+ oo, so that 8v ~ Ót, the second term 
on the left will be negligible, since the a.coustical shear wave will be damped 
completely befare entering the area in which u 0 is significantly grea.ter then 
zero. The resulting error will be of order O(m0 (8v)). The boundary condition 
then becomes, in complex notation, omitting the primes: 

A ( ) km A u 00 = -p (2.50) 
PoW 

in which km is the wavenumber for the acoustical salution with mean flow as 
given in (2.39). Using the following relation for the apparent viscosity 7]t: 

1]t ( y) 

1]t ( y) 

0 for: 0 < y < 81 

poKu*(y- Yo) for: y > Ót 

(2.51) 

(2.52) 

the salution to (2.56) can be given in terms of Hankelfunctions. It must be 
noted that this relation is slightly different from that derived in section 2.2, 
with respect to the factor y0 . This factor y0 is an arbitra.ry constant. We 
will use this relation, since it is a. more general description of the apparent 
viscosity. 

The particula.r salution to the problem 

(2.53) 

34 



is substracted from the equation, altering the boundary conditions to: 

and leaving to be solved: 

u(O) 

u(oo) 

kp 
pow 

0 

(2.54) 

(2.55) 

(2.56) 

For y < 81, the problem is si mi lar to that of the viseaus boundary layer in 
the absence of mean flow, so the salution is of the form: 

Ûl =Ale -tvY + A2e EvY 

with: Eu= J-lWPo 
7] 

Satisfying the boundary condition for y = 0, results in: 

(2.57) 

(2.58) 

( 
t Y t. Y) krn]J é ·y kf) ( t y'y Û1 = A2 e u - e - u - -e - u = - A sin(itvY)- e - v f2.59) 

PoW PoW 

The reason for the decomposition of A2 in AkrnP/ p0 w is that it simplifies the 
final expressions. The salution to the equation for y > 81 can be found in 
terms of Bessel-functions, since the equation can be rewritten to take the 
form of Besseis equation: 

a ( ay) 2 2 x- x- +(x - v )y = 0 ax ax (2.60) 

with v a constant. Writing (2.56) somewhat differently, we get the following 
homogeneaus differential equation: 

a [ ( 17 ) éJû J iw , - . + Y - Yo - + --u = 0 ày 2f{u•p0 · ày 2]{u* 

Now, when making the substitution 

éJy 

7] 
.-. r,' • + Y- Yo 
~1\ u Po 

2f.af, 
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the equation becomes: 

(2.64) 

The first term now has the required form, but the second term contains the 
unwanted factor 2iw / J( u*. In writing 

(2.65) 

à( (2.66) 

we obtain 

a ((&ü) ., 
&( &( +~u= 0 (2.67) 

This is a Bessel equation with 11 = 0, so the salution is a linear combination 
of Bessel-functions of order zero. In order to obey the boundary condition 
for y -+ oo, being ü -+ 0, the salution must be a. Ha.nkel-function. Since 
( "' (1 + i)yfij, y rea.l, the salution is the first Ha.nkel-function of order zero. 
So, for y > 8,, 

with: a 

1 kp 1 
B1H0 (() = -BH0 (() 

pow 

2iw v,--2-TJ-t (-y-) 
-,-f, = a 1 + --
J\ u* TJ 

ZTJEv 1 + i 
f( u* p0 J( 8t 

(2.68) 

(2.69) 

(2.70) 

The solutions Ü1 a.nd ü2 must now be mateheel at y = 8,. In doing so, both 
the velocity ü a.nd the shea.r stress TJOÎljoy must be matched at y = 81• The 
following property of Ha.nkel-functions is used to ca.lcula.te the first deriva.tive 
of Û2. 

(2.71) 
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Because ae = (2iw I]{ u* )8y' the result is: 

8û 2 = B 2iw 8HJ(() = B 2iw _1_H1 (() 

8y Ku* 8(2 /{u* -2( 1 (2. 72) 

So by requiring û1 (8i) = û2(8t) and ryil;(8t) = (TJ + 2ry1(8t))û;(bt), a closed set 
of equations for A and B is obtained 

BHci(ae) 
. . 

-ZW -Zf.v 
e2 B , H{(ae) = B--H{(ae) = 

l\ u*ac c 

A sin b- e ib 

A . b ib 
Zfv COS + Eve 

(1 +i)8t 
8+ 

V 

(2.73) 

(2.74) 

(2.75) 

e= 
1 + 277t( 8!) 

77 
V1 + 2K(8t- Yci) (2.76) 

So the solutions are: 

A= [eH{(ae) + iHJ(ae)] e ib 
HJ(ae) cos b + eHl(ae) sin b 

-1 
B = -----"------,-----

HJ ( ae) cos b + eH{( ae) sin b 

The total salution is therefore given by: 

u = - + 1-e v 
kmp [(eH{(ae) + iHJ(ae)) sin(iEvy)e ib ( -E Y)l 
pow HJ(ae) cos b + eHf(ae) sin b 

for: 0 :S y < 81 

_kmp rl _ --:--H--'--J (a -'----1 + ---,-----:.217 ~(y) )_] 

pow HJ ( ae) cos b +eH{ ( ae) sin b 

for: y 2: 81 

With the constants a, b and e clefined a.s: 

1+i (l+i)8t 1 , + + 
a = J( 8+; b = 8+ ; e = V 1 + 2/\. ( 81 - Yo ) 

V V 
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(2. 78) 

(2. 79) 

(2.80) 



With this explicit expression for the velocity in the boundary layer an esti­
mate can be made on the attenuation as a result of the viscosity TJ + 2TJt· 

Some special and limiting cases of the used model for the turbulent vis­
cosity can be calculated. 

When increasing the turbulent intensity to oo for y > 81 by enlarging f{ 
, we arive at the so-called rigid-plate model, as proposed by Ronneberger 
[RON 77], in which the acoustical shear wave is completely reflected at the 
boundary between the laminar and logarithmic layer. It can be derived 
directly by setting u(y > 81) = Uac and matching the salution for y < 81 to 
this boundary condition. 

If the effect of turbulence is neglectecl, by setting the f{ = 0, or the 
laminar boundary layer thickness bt to oo, the Kirchhoff salution is found, 
because then A becomes zero. 

If the boundary layer thickness bt is set to zero, as wellas Yt, the salution 
found in the first paper of Howe turns up [HOW 79]. 

In the special case that Yt = ot. the salution given by Howe in a second 
paper [HOW 84] is the result, since then c = l. 

When setting y0 = 0, the turbulent viscosity takes the form derived in 
section 2.2. This model wil! be referrecl to as the new model or the new 
theory, since it is an adaptation of the existing model used by Howe. 

An expression for the thermo-a.coustical boundary layer ha.s yet to be 
determined. Therefore the linearizecl energy equation in case of a mean flow 
is used: 

os' os' 8 [ fJT'] poTo--;;- + poTouo(r)~ =-;:.:;-- (K + 2Kt) ;:;-
ut ux uy uy 

(2.81) 

The thermal conduction is assumed to behave in a. simila.r wa.y as the viscosity, 
the two being rela.ted by 

(2.82) 

with Prt the turbulent Prandtl number. Measurements on Prt have been 
performed, resulting in a value of 0. 7 < Pr1 < 0.9 [SCH 79]. The energy 
equation then is rewritten, using the thermadynamie relation (1.6), resulting 
in an equation equivalent with that for the boundary layer velocity: 

[
o(T'- TL) a(T'- T~J] a [ . oT'] 

poep Ot +uo(r) OX = Oy (K+2Kt) Oy (2.83) 
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x From Laufer's data 

C From Schubauer's data 

o From Abbrecht's et. al. data 

••••• sinh2 (0.0688 y) 
-·- 0.007 y+2 

Dis tribution of eddy viscosity near the wall in pipe flow. (Adapted from: 
Laufer J.;41 Abbrecht, P. H., mui S. W. Churchil/52~ and in boundary-layer flow. 
(Adapted from: Schubauer, G. B. 30

) 

Figure 2.4: Measurement of r7t/11 a.s fundion of y+. 
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The salution to this equation, under the same assumptions as above, can be 
found by making the obvious substitutions in (2.79). 

T 

with: A' 

a' 

Tac (A' sin( iETY) - e -ETY) 

To/3 (A' . (. rnp ) -Mt: y) --p sm z V rrtvY - e v 
poep 

A( a', b', c') 

(2.84) 

(2.85) 

(2.86) 

Prt ' rn --a- b = bv Pr· VPr' ' c' = Pr , + +) 1 + p
1
•
1 
2/\. ( 81 - Yo (2.87) 

This enables us to incorporate the effect of turbulent heat transport in the 
calculation of the attenuation due to the bounclary layers. A calculation of 
this kind was first performeel by Howe [HOW 84]. 
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2.5 Viscothermal attenuation of plane waves 
due to boundary layers in case of a tur­
bulent mean flow. 

In having an expression for the acoustical boundary layers in case of an turbu­
lent mean flow, we're able to calculate the attenuation due tothese boundary 
layers in a way similar to that of sec ti on ( 1.5) 0 Again, the equations of mass 
and momenturn conservation are used, neglecting the effects of viscosity and 
heat conduction, except for the region close to the wall, where the boundary 
layer solutions are usedo This means that the attenuation in the bulk of the 
fluid due to viscosity and heat concluction, molecular as wellas turbulent, is 
neglectedo That the turbulent bulk attenuation can be negleeteel in compar­
ison to the attenuation due to the bounclary layers, bas been shown by Howe 
[HOW 79]0 So we write: 

D p àu 
D t +Po a:c 

Du 
Po D t 

0 (2088) 

àp à [ oul --a + -;:) ( rt + 2rtt) -a x uy y 
(2089) 

completecl with the energy equation ancl the equation relating p, p ancl s 

a [ ar] 
-

0 
(K + 2Kt) -

0
-

ày ay 
(2090) 

1 Pof3To 
2p---s 
Co Cp 

p (2091) 

and after taking the total time cleriva.tive of (2088) and taking the axial 
clerivative of (2089), substracting them, ancl eliminating p with help of (2090) 
and (2091), we get: 

!._ n2 P- !3 .!l_~ [(/\.~ + 2Kt) an,] 
cö D t 2 Cp D t ay ay 

(2092) 

o2p a a [ 0 aub'] 
= a o2 - ~-;:) (rt + 2r1t) ~ x u1 uy oy 

(2093) 
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Performing the integration over the cross-section as in section 1.5 results in 

[ 
1 ( a a ) 

2 a2] - -+Uo- -- p= cö at ax ax2 
(2.94) 

[, [. ) a aub, ,B( K + 2Kt) a an,l ] - (Tl + 2rtt - -- - - -
A ax ay y=O cp at ay y=O 

(2.95) 

in which the factor uoaTbt/ a x has been negleeteel in calculating the integral 
with respect to aTbt/ at, si nee near the wallu0 k ~ w. When again assuming 
plane harmonie waves, and renaming the righthand side expression divided 
by pas F(k,w), we get the following dispersion relation: 

2 

( ikM- iw) + e = F(!._:,w) 
co 

(2.96) 

Since the attenuation is assumecl to change the free-space wave number km 
only slightly, the function F can estimated by setting F = F(km,w), because 
it contains only product terms of k with smal! quantities. The dispersion 
relation can than be re-expressecl as follows: 

resulting in 

~ 

_2Mw ± 4M2w2 + 4(1- Af2) (w2 + F(k w)) 
co ~ ~ ±m' 

-~ ± J~ + (l- M 2 )F(k±m,w) 

1- M 2 

_Mw ± [..'ó!.. + (I-M2
)co F(k w)] 

co co 2w ±m, 

1 - 1112 

w 1 Co 
±Co 1 ± 111 ± 2w F ( k±m' w) 

The attenuation thus can be expressed as: 

(2.97) 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

(2.102) 



Evaluation of F by using the salution of the boundary layer equations (2.79) 
results in the following expression for the attenuation: 

_ ( 1+iA (t-1)(1+iA'))( .) 
0'± - ± (1 + J\1")2 + Jp;: 1 + Z O'v (2.103) 

with A and A' conform equations (2.77) and (2.86), as found in the previous 
section, and av the real part of the attenuation as it woulel be only resulting 
from a zero mean flow viscous boundary layer, as in equation (1.55). 

It must be noted that this attenuation is a complex quantity. The imag­
inary part determines the amplitude clecay along the pipe, whereas the real 
part introduces a change in the fase velocity of the sound wave. 

Some comment must be given on the method usecl to come to this at­
tenuation. The acoustical bounclary layer description is clerived under the 
assumption that the acoustical shear wave stays completely within the tur­
bulent boundary layer, resulting in the boundary condition ft( oo) = kpj p0w. 
This assumption is fullfilled for a fixecl smal! Mach number in the limit that 
w-----+ 00. 

On the other hand, if for fixecl t.;.J the Mach number is taken to zero, so that 
the shear wave is completely in the turbulent region, the bounclary condition 
should be altered to ü(oo) = zîfp0 c0 . But in this limit of .M-----+ 0, k ~ wjc0 , 

so the expression for the attenuation remains valid. 
Therefore it is argued that the above expression for the attenuation is an 

apropriate one for the intermediate combinations of !11 and w. 

2.5.1 lmplications for measurement 

When making measurements, we want to seperate the Mach number de­
pendence from that on the dimensionless viscous length scale 8t. Also, we 
want to normalize the mea.surement in some way. Therefore, we will plot the 
attenuation as found above, however without any Mach dependence, normal­
izeel by the Kirchhoffamplitudeattenuation iS'( a 0 ). We're mainly interesteel 
in theimaginary part of the attenuation, since tha.t ca.uses the amplitude at­
tenuation, which bas now become thereal part of the normalized attenuation. 
So, we will plot 

. st [ixed a± 1 +i 1 +iA+ #( 1 +iA') 
hm - = -- ------'--.:.....:..._....,...-__ _ 
M-o ia0 i 1 + ~ 

vPr 
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We've introduced the dimensionless fundions ZT and Zq, known as the di­
mensionless wall impedances of the sound wave. They are defined as the wall 
impedances, 

T 
(2.105) 

u ac y=O 

-,- (2.106) 

- n ÖÎLac. ;. = -"' Ö'Î'ac with: 7- = .1 '1' '" 
Öy ' Öy 

(2.107) 

made dimensionless by the value resulting for the Kirchhof estimate: 

Óv 
(2.108) 

(2.109) 

These impedancies ZT, Zq and Ztot will be used in this report only as ab­
breviation, and there will be no inquiry on the physical background of the 
similarity between the theoretica! results obtained bere for the attenuation 
and the results obtained by others on basis of the impeda.nce. We have plot­
teel the total impedance for the different moelels for the effective viscosity in 
figure 2.5, using Pr1 = Pr. When we look at the real part, we see a low 
region limit of unity, a typical clip for 8t ;:::::: 8(, a.ncl a straight line with a 
certain slope, looking iclentica.l for the three moclels. The low region limit 
shows that the attenuation attains the form of the Kirchhoff attenuation. 
The dip is thought to be a result of interference of the shear wave with it 's 
reileetion at the edge of the turbulent zone. The slope will turn out to be 
of importance in determining the static limit, since it is proportional to the 
attenuation for low frequencies. Therefore, we take a closer look at the slope 
for the different models. 

We want to determine the behaviour of ZT for large 8t. When we look 
at the rigid plate model, as introcluced in section 2.4, A takes the following 
form: 

e ib 
A=­

sin b 
(2.110) 
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. l b ( 1 + i)8( 
wit 1: = 

8
+ 
V 

(2.111) 

lf we expa.nd it into power series for large 8t, so for sma.ll b, we get the 
following result: 

A (2.112) 

(2.113) 

So, we get: 

. . . i(l- i)8t 
hm 1 +zA= 

8
+ 

o;!- --co 2 1 
(2.114) 

Returning to Z7 , we get: 

1. z 1 +i ( .A) 8t 
1111 T = -.- 1 + Z = J:+ 

~-oo Z UI 
(2.115) 

We see tha.t the slopetencis toa. limiting value of 1/8(. For the other two 
models, we just state that the slope will go to zero for 8t ---+ oo. This will 
occur however for va.lues of 8t far beym1d the valid range, determined by 
the dimensions of the pipe in relation to the thickness 8v. In the region of 
interest, for 8t ~ 30, the slope will vary only slowly, as can be seen in figure 
2.5. 
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Chapter 3 

Some other theories from 
literature 
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3.1 The stationary limit 

We can imagine that for very low frequencies, the attenuation of sound could 
be determined by the same mechanisms as those responsible for the static 
pressure drop in fully developped turbulent pipe flow. Therefore, we could 
expand the static pressure drop in a taylor series, from which we will only 
use the first term. That is to say, we linearize the behaviour of the pressure 
drop due to a small periodical change in the mean velocity. For the static 
pressure drop we write: 

(3.1) 

in which 'Ij; is the dimensionless friction factor. Variation of U0 by introducing 
a disturbance u', results in change in the pressure drop p': 

d Po+ p' 

dx 
d p' 

dx 

(3.2) 

(3.3) 

If we now assume the relation p' = p0 c0 u' for plane waves is still valid, we 
come to the expression: 

d p' 1p Uo , ~~ , 
- = -:---p = -1\Iop 
d x '2u c0 2a 

(3.4) 

Since the attenuation a is described by p'(x) = p'(O)e -ax, we see that: 

~~ 7/-'.M 
astat =- = --

p' 2a 
(3.5) 

This is the attenuation due to a uniform pressure drop. Since we're consicler­
ing harmonie oscillations, we must take the effective average over one period, 
resulting in halve the value found above. So, 

i 'Ij; JIJ 
astat = --

4a 
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the additional i is introduced because we actually determined the imaginairy 
part of the attenuation as defined in equation (1.2.5). \Vhen making dimen­
sionless again with ia0 , we get the following equation for Ztot: 

Z _ 'l(JJ\,f _ 8v+ ~ 
tot - 4 - 1 + -y-1 ') aao 7Pr ~ 

(3.7) 

A more detailed desn·iption of the theory of this static limit is given by 
Ingard and Singhal [ING 74]. 
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3.2 The quasi-laminar limit 

As we've found in the previous chapter, when Dv ~ 81 the attenuation can 
actually be described by the Kirchhoff attenuation, altered for the up- and 
downstream direction of propagation according to the Doppler effect. This 
shift is essentially caused for two reasons. One is that the wavenumber is 
affected by the mean flow, so: 

w 1 
k±m = ---­

Co1±.M 
(3.8) 

The other rea.son is that the equations governing the shear waves contain 
convective terms invalving the mean velocity profile, such as u08j8x. In our 
approach we simply negleeteel the convective terms in the wall region, by 
assuming that this will cause only a minor error. 

Ronneberger [RON 77] ha.s made a very thourough investigation on the 
effects of these terms, ancl has also inclucled the influence of the pressure 
graclients along the pipe clue to the friction ancl the pressure gradients in the 
axial direction due to turbulent dissipation. He performeel his calculations for 
the attenuation of sounel using only the molecular viscosity TJ, so neglecting 
the turbulent viscosity rJ1. 

His theory describes how a sounel wave shotdel propagate theoretically, 
under the influence of a mean velocity profile, in our case of course the 
turbulent profile. It does not incluele any interaction of the turbulence with 
the acoustical field. 

The result of his investigation is a relation for the attenuation, in which 
the difference in up- and downstrearn attenuation is described by three cli­
mensionless functions. These fundions depend only on the Mach number, 
and have been calculatecl for air. 

a= av r;:((o- (;E*- (IE) V?.: (3.9) 

• • - C) 2 - ( 1 + i)TJ wJth. Pw- 1- O.l~M , t-- 8v 
2poco 

(3.10) 

In the figure 3.1' the ratio E* IE is plotteel as function of o;. In the following 
three figures 3.2 , 3.4 ancl 3.:3, the dimensionless functions are plotteel against 
the Mach number. 
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We will not go any further in descrihing his theory or the results. We 
just included this section to introduce the theory of Ronneberger, sirree it 
prediets the Doppler effect very well in it's range of validity, for 8v < 81, as 
we will see when discussing the measurements . 
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Chapter 4 

Measurement 
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4.1 Experimental setup 

In order to measure the attenuation of plane pressure waves in a long duet, 
a multiple microphone method is used. The measurement setup is presenteel 
in figure 4.1. 

4 5 3 

2 1 
Po 

Figure 4.1: The experimental setup 
1 microphones; 2 sirene; 3 buffer vessel; 4 dry air supply; 5 turbine meter; 6 
pipe; 7 frame 

Six acceleration compensatecl piëzo-electrical pressure probes, type PCB-
116A, are mounted upon a long duet. A schematic picture of the mounting 
of the micropbones is given in 4.2. The size of the probes makes a flush 
mounting impossible. Therefore, they are pla.ced in a small cavity conneeteel 
with the fluicl in the pipe by a smal! channel. The form of this construction 
is of general importance, since when making the cavities to small, viscous 
eff~cts will alter the behaviour of the probe, whereas to big cavities will 
disturbe the pressure waves in the pipe. The effect of the cavities on the 

58 



pressure response of the probes is minimized by a calibration procedure, see 
[HUI 92]. 

10.3 
I· ~ 

0.5 

I 
ft 

Figure 4.2: The mount.ing of the micropbones 

The duet of about 7 m, wit.h a.n inner radius of a = 0.015 m, consists 
of several pieces. It is therefore possi bie to reassemble the duet to the alter 
the length or to change the positions of the microphones. The inner wall 
roughness is about f = 0.1 J-lm, a.nd therefore the duet ca.n be regarcled as 
hydraulicly smooth within our range of mea.surements. The duet ends in a 
large room (2000 m3 ), minimizing t.he effect of externa.l a.coustica.l fields. 

The signa! from the micropbones is a.mplifiecl by charge amplifiers (Kistler 
type 5007 /8), which tra.nform the charge cleliverecl by the piezo-eleetrical 
micropbones into a. voltage. The charge amplifiers are equipped with a !ow­
pass internal filter with a cutoff frequency of 22 KHz. By using the leak 
resistor of the charge amplifier in t.he posit.ion medium, frequencies below 
approximatly 0.1 Hz arealso cut off. 

The resulting signa! delivered by the amplifiers is used as input for a 
data acquisition unit, the HP:3.56.5S. This unit is able to perform reai-time 
Fast Fourier Transformation on the pressure signals. This data acquisition 
unit is controlled by a micro computer (HP9000j:360), which is also used to 
present and store the data colleeteel by the a.cquisition unit. From there, the 
datp, is transfercel to an IBM cornpa.tible personal computer, to perform the 
necessary calculations to determine the attenuation of the sound wave. 
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The sound field is produced by a sirene at the entrance of the duet, driven 
by an electromotor. The sirene consists of a rotating disc with holes in it, 
through which the dry air (dew-point -40 .0 e), supplied by the buffer vessel 
(60 bar.) flows. The frequency of the sirene is controlled and tuned by an 
electronica! motor control unit. The frequency can be varied, depending on 
the number of holes in the disk, in the range 5 Hz to 1 kHz. The frequency 
fluctuations, limiting the coherent measurement time and the accuracy of the 
measured transfer functions, are of the order of 0.1 Hz. 

The amplitude of the pressure variations in the flow leaving the sirene 
can be lowered by allowing a part of the air to bypass the rotating disc and 
mix with the choppeel flow. The pressure in the buffer vessel placed directly 
in front of the sirene is ma.inta.ined constant by a. high pressure pipe-system. 

In order to ca.lcula.te the mea.n flow velocity U0 in the duet, the air flowing 
into the buffer vessel is measured by a turbine meter. The pressure a.nd 
temperature at the turbine meter, as well as the temperature along the duet, 
is measered to compensate for the decompression of the air when it flows into 
the duet under atmospheric pressure. The pressure ( 0-15 Bar), is measured 
by a conventional bourdon barometer, type Wallace & Tyrmann, whereas 
the temperatures are mea.sured by PT-100 probes, accurate up to 0.1 .0 e. 
Also, the speed of sound in dry air c0 is determined from this temperature 
measurement using tables of mea.sured data on c0 , as function of temperature 
[ eRC]. This results in an a.ccuracy in the Machnumber Af = U0 / c0 of about 
1%, which has been checkecl by mea.surements on the maximum velocity 
on the center line of the pipe flow with a Pitot tube [BAL 92], assuming 
the valiclity of the relations given for the maximum and mean velocity by 
literature [SeH 79]. M can be variecl in the range of 0 S M < 0.3. 

Different pipe terminations can be conneeteel to the duet, in order to 
change the reflected part of the sound wave, and therefore the ratio of the 
amplitudes of the up- ancl clownstream sound wave. The circular flare is one 
of great usefullness, since it has a strong reflection coefficient , giving the 
reflected wave enough power to be accurately measured. 

In order to measure the attenuation in the absence of a mean flow, the 
duet can be closedat the termina.tion, wherea.s between the exit of the sirene 
and the beginning of the duet, a gap of about .5-50 mm allows the air to 
escape. 
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4.2 Determination of the attenuation coeffi­
cient 

As we've seen, the pressure perturbation for harmonie waves along a pipe 
can be represented by the following linear equation: 

( 4.1) 

k generally complex. In this equa.tion, the oscillations are represented by 
e -iwt, justas in the cha.pter about the theory of a.ttenuation. This makes 
it easy to compare theory with some references. 

In experimental situa.tions however, we a.ren't dealing with harmonie 
waves. Therefore, Fa.st Fourier Transformation is used as a. tool to pro­
vide us the information about the harmonie waves in which the signa.l can be 
decomposed. The data. acquisition unit performing the F.F.T. uses a.nother 
convention to represent the oscillations, the +iwt convention. This means, 
in order to achieve consistency, that we shotdel write: 

or, rela.tive to the pressure at some posit.ion ;r,.ef, 

The information a.bout the pressure signa.ls from the different micropbones 
is given in the form of transfer functions, descrihing the linea.r dependency 
between the signals. The transfer function H 21 is definecl as: 

( 4.3) 

in which the time dependency bas droppeel out. P(xi,w) is the fourier com­
ponent of the pressure wave with frequency w, mea.sured at position Xi. 

Since we know that the attenuation is different for waves tra.veling in the 
up~ a.nd downstrea.m direction, we want to seperate the pressure amplitudes 
of the two waves. Therefore, it is convenient to define a. pressure refiection 
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coefficient R( Xref, w ), being the ratio of those complex amplitudes at some 
position Xref: 

R( ) 
_ p(:rrej,W)_ 

Xrej,W - '( ) 
P Xrej,W + 

( 4.4) 

This reflection coefficient can be expressecl in terms of the transfer function, 
and for the special case of x,·ef = x 1 we get [HUI 92] 

H2I - e -ik+~x 
R( x 1 , w) = -t-: --=-i/;..,...-~ _-.6_--=-; -:r-. --J-J-21-

with: .6.:r = :r2 - :c1 

This enables us to write for the tota.l pressure 

giving for the compositing parts 

P(xi) 

1 + R(xi) 
+ P(x 1 )R(xi) 

R(xi )p (:r1) = R( ) 
1 + x1 

(4.5) 

( 4.6) 

( 4. 7) 

(4.8) 

( 4.9) 

So, if the complex wavenumber /;.~ is known, the reflection coefficient, and 
therefore the relative amplitudes of the up- and downstream waves at some 
position x 1 can be determined by measuring the transfer function for a mi­
crophone placed at x 1 and an other microphone. 

The problem is, however, that we do not know the wavenumber exactly, 
since we want to measure the small deviations from the wavenumber for free 
space plane waves due to the acoustical boundary layers! But, when the other 
microphone is placed relatively close to :c 1 , the errors in the amplitudes will 
be small if the approximate wavenumber is usecl: 

u.) 1 
k±~±--­

Co 1 ± M 
( 4.10) 

"Now, in order to determine the wavenumber more exactly, and thereby 
the small attenuation factor ±a±, the following procedure is used. The 
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amplitudes p+ (x I) and p- (x I) are determined by two microphones at the 
beginning of the duet, placed relatively close to each other at XI and x2, as 
imposed by the reasons mentioned above. The same is clone at the other end 
of the duet, with a second pair of microphones at positions x 3 and x 4 • Now, 
by having the complex amplitudes of the waves at two, distant positions XI 

and x 3 , we can calculate the wavem1mber by means of the following equation: 

p±(x3) p±e =Fik±x3 - =Fik±D.x 
p±(xi) - p±e =Fik±XI - e 

(4.11) 

so, 

(4.12) 

Since we're consiclering complex amplitudes, some thougth is to be given on 
taking the logarithm of a complex quantiLy. Because each time the wave 
has made one circle in the complex plane, the cut in the complex plane is 
crossed, we willloose information on the angle of the quantity <I>( Q), resulting 
in an unknown factor 2n7ri. The real part of k: can however be estimated by 
iwD.xfc0 (1 ± M), since the effect of the attenuation on k will be very small. 
So by rounding of the difference of the last term of ( 4.12) with the estimate 
on ?R(k) to 2n7r, we can determine n. 

Now, we're able to determine the wavenumber k, based on the calcula­
tion of the reflection coefficient with use of the approximate wavenumber 
k = iwD.x / eo( 1 ± M). It is obvious to u se this new wavenumber as an im­
proved estimate to recalcttlate the reflection, in order to get an even better 
approximation. By repeating this procedure until no impravement is noti­
cable, we can determine the wavenumber /..~, and thereby the attenuation o:. 

Convergence of the iteration procedure is usually obtained rapidly (five steps 
are sufficient to achieve a convergence of 1..~ and o: of order O(lo- 5) ). 

It should be mentioned that other methods of determining k with use of 
the transfer functions can be used. The method we used however, has an 
important feature. The amplitudes p± are determined by local parameters 
only, and therefore the errors resulting from extrapolition over long elistances 
with use of parameters which can vary over that distance, for example the 
speed of sound c0 , are minimizecl. Then, by knowing the up- and downstream 
wave at two distant positions, the complex wave number can be determined 



using the average speed of sound over that distance, removing the need to 
extrapolate. 

In fact, we didn 't use four microphones, but six, clustered in two groups. 
This gave us the opportunity to get independent results for the different 
possible choices of the four microphones, improving the reliability of the 
measurements. 
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4.3 Measurement results 

We've measured the sound propagation and attenuation with a multiple mi­
crophone method. In principle, the problem is that of the determination of a 
salution to an over-determined system of lineair equations. This can be clone 
by regression analysis. But, for the sake of simplicity, and to keep contact 
with the underlying problems, we've choosen data of several combinations 
of microphones, each time forming a closed set of equations to be solved. 
The resulting solutions for one measurement are then simply averaged, after 
being disposed of the unreliable solutions. 

In this way, better insight is obtained in the problems arising for certain 
conditions, especially important since we're in the development fase of the 
measurement facili ty. 

4.3.1 measurement for the quiescent case 

We will presnt the attenuation as measured in the quiescent case. This 
measurement is clone to check the validity of the Kirchhoff solution, as well 
as to get an impression of the accura.cy of the measurements. In figure 
4.3 measurements of the attenuation are plotted, as well as the Kirchhoff 
estimate. 

We know that without flow, the direction of propagation shouldn't have 
any infuence on the attenuation. In the calculation of the wavenumber of 
the sound wave, we didn't exclude however the dependenee on the direction 
of propagation. As we can see, both the real and imaginairy parts of the 
attenuation in both directions are in good agreement, with each other as 
well as with the Kirchhoff estimate. This enables us to calculate the speed 
of sound from the measured wavenumber, as shown in figure 4.4. 

w 
Ie = - + ( 1 + i )o0 

co 
w 

co=------
R(k)- ~(k) 

( 4.13) 

( 4.14) 

For the high frequencies, the agreement with the adiabatic sound speed Co 

is outstanding. We clearly see a drop in the speed of sound Co as calculated 
for the lower frequencies. 
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4.3.2 measurements with a turbulent mean flow 

Before presenting the mea.surements, let 's first take a. closer look at the the­
oretica.! rela.tion descrihing the a.ttenua.tion. 

( 
1+iA (l-1)(1+iA'))( .) 

± (1 + !v/)2 + ~ 1 + z av 

A A(8t); A'= A'(8t, Prt) 

( 4.15) 

(4.16) 

We see, tha.t the effect of the turbul~nt intera.ctions is described by a di­
mensionless function of the variabie parameters M a.nd 8t. They are not 
independent, since 8t is a. function of Re, so for one pipe with a fixed radius, 
a function of M. But since 8t a.lso depends on the frequency w of the sound 
wave, we can choose a.ny combination of 8t and J\1, making them effectively 
independent parameters. So, theoretically speaking, all measurements should 
fa.ll on one curve when made dimensionless by av or a 0 and plotteel a.ga.inst 
Mand 8t. 

It woulel be very helpfull for studying the attenuation, if the effects due 
to the turbulence, possibly depending on the Reynolds number Re, could 
be seperated from the mean flow effects, cletermined by the Mach number 
M. Therefore, two methocls can be used to elimina.te the Mach clependence, 
which will bedescribed below. 

The factors descrihing the Mach dependenee are different for the viscous 
and the thermal part of the attenuation, resulting in an unknown Mach 
dependenee if we make no assumptions on the relation between the viscous 
a.nd therma.l contributions to the a.ttenuation. Therefore, a problem arises 
if we want to determine the form of the functions A and A', or the more 
commonly used quantities Zr = (1 +iA)(l-i) ancl Zq = (1 +iA')(1-i), also 
called the normalizeel wa.ll impeda.nce, since we ca.nnot elimina.te the Mach 
effect from one mea.surement. This can be overcome by extrapolating several 
measured valnes , 'contamina.ted' by a.n unknown Mach dependence, to zero 
Mach number, with respecttoa fixed va.lue of 8t. 

s;J jixed lX± 
lim -

M-+O ia0 

1 +i 1 +iA+ fiÇ( 1 +iA') ZT + fiÇZq - z 
1 + 1 _ 1 1 

+ 1 _ 1 - tot (4.17) 
Fr Fr 

This method, used by Ronneberger a.nd Ahrens [RON 77], has the disad­
vantage that information a.bout a possible Reynolds-dependence will be lost, 
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because the Reynolds number is a function of the mean velocity in the pipe 
U0 and the radius of the pipe a. Since we used only one pipe, we cannot 
change U0 without changing the Reynolcls number Re, so by extrapolating 
the Mach number to zero, the Reynolds number will also vary. Also, the num­
ber of measurements must be consiclerable to make a reliable extrapolation 
possible. 

Therefore, we used an other procedure. \Ne do know the theoretica! Mach 
number dependenee in the region of interest, where 8~ ~ 8(. It is however 
different for the thermal and viscous impedances, two quantities we do not 
know. But for Pr1 = P1·, thanks to the similarity between heat conduction 
ancl momentum transport, expressed in the Prandtl number Pr, the real 
partsof Zr ancl Zq, of importa.nce for the Reynolcls clependence, are related 
by: 

(4.18) 

Since we know that Zr becomes proportiona.l to 8t, the ratio between the 
slopes of the impedances will become M, assuming Zr will not vary to 
much over a range of 8~ / yrp;: to 8~. If we u se this approximation, we can 
eliminate the Mach dependenee without extra.polation, keeping the Reynolds 
dependenee unaltered. This is clone by summation of the measurements for 
the up- and downstream direction, and correcting the so obtained 'averaged' 
value a = (a+ + a_ )/2 for the theoretica! Mach dependence, a.nd thereby 
eliminating the Mach dependence. 

Zr C8~:::} Zq = ~8~ (4.19) 

(4.20) 

( 4.21) 
JO:o 

( 4.22) 

The correction factor is close to unity for low Mach numbers, so a slight 
error in it due to the theoretica! assumptions made above is only of minor 
influence on the results. 
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A typical example of the mea.sured attenua.tion is given in figures 4.5 and 
4.6. We see that the scatter for the up- a.nd clownstream attenuation is rather 
large, especially in the low requency region, but the average showes a much 
more stabie behaviour. 
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Figure 4.5: Typical mea.surement of o (m- 1 ) as function of w (rad s- 1 ); 

M = 0.04. 

+ S'(a+); o S'(a-). 

Some check can be made on the a.ssumptions on the Mach dependence, 
since for the ratio S'(a+)/S'(o_ ), the following rela.tion should hold: 

1 + -y-1 
(ï"+M)2 -p;:-

1 + 't'-1 
(1-M)2 Pr 

( 4.23) 

The result is shown in the following ta.ble, calculated with use of the data in 
figu.re 4. 7. 
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M S'( a+) /S'( a_) eq.4.23 
0.1 1.60 1.30 
0.2 1.69 1.69 
0.3 2.28 2.26 

We can see from it, that for 8t < 8t, the Mach dependenee is not as we 
expected, but since the correction factor is close to unity, we will use ( 4.22) 
for the whole range of measurements. 

The result for Ztot is shown in figure 4.8, in which also measurements made 
by Ronneberger and Ahrens are plottecl, who usecl the mach extrapolation. 

To make a comparison with the stationary limit, we have plotteel Ztotf 8t 
as function of (l/8t) 2 for the diffPrPJ1t measurements in figure 4.9. Only the 
real part is plotted, since that's the part possibly related to the stationary 
limit. 
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Chapter 5 

discussion 
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5.1 Quiescent case 

As can be seen from the measurements for the quiescent case, the multi­
ple microphone method provides us the possibility to measure the real and 
imaginairy parts of the attenuation with an accuracy of 5%. This means a 
maximum accuracy of about 3 · 10-4 % in the determination of the real part 
of the wavenumber of the sound k! Also, the agreement between the up- and 
downstream attenuation is excellent. 

The drop in the calculated speed of sound for low frequencies, is probably 
a result of the error introducee! by using the boundary layer approximation, 
and not a drop in the a.ctual adiahatic sound speed c0 . For the lower frequen­
cies, the boundary layer becomes so large, that the radius a of the pipe is no 
longer large compared to the bounda.ry layer thickness bv. The attenuation 
becomes asymmetrical for the real and the imaginairy parts, so ~(a) is not 
equal to ~(a) any more. The result is that the metbod of calculation of Co 

is no longer valid. An exact salution of the equa.tions on which we based our 
boundary layer approxima.tions is given by Tijdeman [TIJ 75]. We ca.n con­
clude from this mea.surement, that we must be carefull when using very low 
frequencies, since the bounda.ry layer approximations may not be accurate 
enough. 

5.2 Situation with flow 

We've plotteel our measurement of Ztot with those of Ronneberger and with 
the theoretica! curves in figure 5.1. When looking at the measured total 
impedance Ztot, we can distinguish the three typical zones, also found in the 
theoretica! Ztot. 

5.2.1 The Kirchhoff limit 

We see clearly, that the measurements all go to the theoretica! limit of unity 
for small EJt, so they all tend to the Kirchhoff a.ttenuation, as expected. 
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5.2.2 The dip 

The measured minimum in Ztot, due to the interference of the shear wave 
with it's reftection on the turbulent zone, is cleeper than that measured by 
Ronneberger, but the place is in agreement. If we compare it with the theo­
retica! curves, we see that value of the minimum as measured by Ronneberger 
coincides with the value given by the curve for the model of "lt we proposed, 
but non of the three theories does preeliet the position of the minimum ac­
curately. 

It must be stated, that the measurements of Ronneberger were recon­
structed from the values he presenteel for the impeclancies Zr and Zq. He 
actually measured Ztot, a.nd substracted a Zq, calcula.tecl from measurements 
on the turbulent heat transport i11 the abse11ce of sound, and presenteel it 
as Zr. He dicl however measure Zr also more clirectly, by an experiment 
in water. Both measurernents agree welL clespite the fact, that the Zq he 
used, doesn't have the same form as Zr, as imposed by the analogy between 
the heat conduction ancl momentum transport, as expressecl by the Prandtl 
number Pr. 

The dip is thought to be caused by interference of the shear wave with 
it's reftection at the turbulent zone (see [RON 77]). 

One reason for a possible shift of the position of the dip with respect to 
the calculated position, is an interaction of the shear wave with the apparent 
viscotity "lt· We could imagine, that the Prancltl mixing length l becomes 
comparable to the 'wavelength' of the shear wave. If this woulel occur, the 
approximations used in cleriving the apparent viscosity are no longer valid, 
as we can see in figure 5.2. We usecl the approximation: 

A lau _!(Buo 8u') 
!..j.u~ -- -+-

8y 8y 8y 
(5.1) 

This approxirnation will be valiel if l « rrbv, since then the mixing length l 
will be less then halve the wavelength of the shear wave, which is defined as: 

(5.2) 

This wavelength of the shear wave must of course be evaluated for the tur­

bulent region. Since bv = j2r7 jwp0 , we can estimate the wavelength for the 

turbulent zone by setting "7 =: 1]t :S 2/{ btrJ, resulting in a wavelength for the 
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turbulent zone Àshear,t which is at least three times of that in the laminar 
regwn. U sing the relation l = J( y, we co me to the relation 

7r 
Y « }~ Dv turbulent ~ Sbv tUJ·bulent ~ 25bv 

\. ' ' 
(5.3) 

Tresspassing of this condition will not be of infiuence if the shear wave is 
dampeel befare reaching the turbulent zone, so for bv « b1. The same is true 
if bv > bt, since then the shear wave will also be dampeel befare y becomes 
of order bv,turbulent, because of the clecrea.se in amplitude with height at least 

exponentially, conform u'= u'(O)e -ylbv.tw-bulent. \Vhen however b1 is of the 
sameorder as bv, the wave ha.sn't had the chance to damp very much, and the 
wrong approximation of !::.u= laul8y is used in a region were the amplitude 
of the shear wave cannot be neglected, resulting in an error of considerable 
magnitude. 5 ,-------.----.-----.---.-------,---.-----.---.-----.--~ 
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Figure 5.2: Illustration of a possible pha.se error due to the elistance tra.velled. ubL/ luacl 
ubt/ I Uac I a.s function of y I bv 

· · · error in the predieteel velocity difference 

Another reason for this shift in position of the dip coulcl be tha.t during 
the time that the fiuid partiele with turbulent velocity in the a.xia.l direction 
tra.vels from one layer to another, causing the transport of momentum, the 
pha.se of the destination la.yer has shifted, as illustratecl in figure 5.3. Since 
the phase of the shear wave changes accorcling to wt, the limiting condition 
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becomes wt < 1r. The time the fiuid partiele takes, can be calculated by 
realising that t = lluo ~ (BuoiBy)- 1 = TJIT0 . Combining these relation gives 
as limiting condition: 

WTJ - < 7f 
To 

8wr7 
2 < 7f 

cPpoUo 

(5.4) 

(5.5) 

Since cP does not change much in the range of Reynolds numbers we're con­
sidering, we use the approximate value of <P ~ 0.02, resulting in the condition 

(5.6) 

This means, that for Ivf = 0.00.5, the maximum radial frequency becomes 
w < 1500(rad s- 1 

). All our measurements fall within that range, but it 
shows that we must be cm·efull when measuring with extremely smal! Mach 
numbers. 5 .----,----.----,----.------"--.----,----.--------r--------, 
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Figure 5.3: Illustration of the possible error due to the time of the journey 
from one layer to another. 
Ubt I I Uac I as function of y I Dv 
-- shear wave on t = 0 
- - - shear wave on t = 1r 12 
· · ··error in the predicted velocity difference. 
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Ztot i 

Correcting both errors described above is essentially the same as intro­
ducing a phase lag between the incident and reflected shear wave. We will 
show that this will shift the calculated position of the dip to the right by 
examining the behaviour of the rigid plate model (see section 2.4). We have 
plotted in figure 5.4 the normalized tota.l impedance Ztot as function of 8t, 
for different values of 8(. 
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As we can see, the dip shifts to the left for increasing 81• The minimum 
(maximum interference) will occur if half the wavelength of the shear wave 
matches the distance the shear wave travels going from the wall to the edge 
of the turbulence and back. This implies, using (.5.2): 

(5.7) 

(5.8) 

The position of the minimum as observed 111 the measurements, could be 
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explained as a result of a phase lag of the reftected wave. The actual elistance 
where the reileetion occurs, determining the depth of the minimum, is then 
combined by the virtual elistance of the node of the wave, determined by the 
phase lag. This results in a position of the dip on the right side of the position 
determined by the actual edge of the turbulent zone. So, the position of the 
dip calculated with for example 8t = 15, could be shifted due to this phase 
lag to a position in accordance with the ca.lculated position for 8t = 20. As 
we can see in figure 5.4, this minimum will then shift to the right. 

A reason for lowering of the dip might be the caused by the fact that 
the turbulence time scale bec01nes compa.rable to the time scale of the sound 
wave. The quasisteady approach then becomes questionable. The conditions 
for which these time-scales become comparable, ca.n be estimated by the 
following argumentation. 

The maximum elimension of the turbulent structures is the diameter of 
the pipe, 2a. If we realise tha.t these structures travel with the velocity of the 
mea.n flow, we ca.n estima.te the frequency of these turbulent motions with 
respect to a fixed position in the pipe. We get fturb = U0 /2a, or, expressed 
in the radial frequency, WtU?·b = 7rU0 / a. If we compare this frequency Wturb 

with the frequency of the sound waves Wac, we get the Strouhal number, 
ST = Wtur&/Wac = 1rUo/ awac· lf we calculate for which frequency the Strouhal 
number becomes of order 0(1 ). fora typical value of the mean flow velocity 
of U0 = 1:3 rn)s, (Af= 0.04) and a pipe radius of 0.01.5 rn, we get: 

Wa.c ~ :3000 (rad/ s) (5.9) 

This is also the maximum frequency we used in our experiments. We see 
however , that the a.ssumption of qua.sisteacly behaviour of the acoustical 
disturbances must be kept in mincl. It coulcl be a rea.son for a possible 
Strouhal number dependenee of the attenuation, especially for values of bv > 
bt. 

5.2.3 The static limit 

For determining the behaviour of Ztot for large 8t, we've plotteel ZT / 8t as 
function of (1/8t) 2

. In figure 5.5, we've clrawn the lines cletermined by the 
static limit for the different measurements. As we ca.n see, All mea.surements 
are on the line corresponcling to the mea.surement with the lowest Reynolds 
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number. More important is, that the measurements show no Reynolds de-
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o Re= 2. 7 · 10-4
; x Re = 5.3 · 10- 4

; * Re = 8 · 10-4 ; + Ronneberger. 
-- static limit Re = 2. 7 · 104 

- - - static limit Re = 5.3 · 104 

· · · static limit Re = 8 · 104 

When plotting the theories using an apparent viscosity with the data, 
as in figure 5.6, we see that in the upper right corner of the figure, the 
theoretica! curves converge into a straight line, corresponding to the limiting 
value Ztot = 1 for small 8Z". We a.lready saw that the measured data also 
tends to this limit. 

When looking at the other limit, for small values of the parameter ( 1/ 8t) 2 , 

we also see the three theories converging. They will start to diverge however 
when they have passed the point of convergence, although very slowly. Both 
the theories with a finite estimate on 1lt wil! continue to lower, while the rigid 
plate theory asymptotically attains the value 1/ 8(. The most important fea-
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ture is, that non of them shows a Reynolds dependence. The measurements 
are in good agreement with the theoretica! curves. This is achieved for the 

rigid plate model by changing the empirica.! value of 8( = 10.7 to 8( rp = 15. 

For the model of Howe, the same is clone, resulting in a value of 8( Howe = 7. 
The new model does well without changing the empirica! value of 8( = 10.7. 

Because of the scatter in the data, no clefinite juclgement on the moelels 
can be made, but there is a slight favor for the moelels using a finite apparent 
viscosi t y TJt. 

0 

------·------- x • 
------.--x.--~ x. } ~ + +"'-p+ + *+ .. 

x 

Figure 5.6: Ztotf8t as function of (1/8t) 2 . 

o Re= 2.7 · 104
; x Re= .s.:J · 104

; * Rt = 8 · 104
; + Ronneberger. 

-- rigid plate limit ( 15( = 15) 
- - .- Ho we (yri = 15( = 7) 

· · · new model of T/t (yri = 0; 8( = 10.7) 
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The absence of a Reynolds dependenee in the theories is the result of 
using a 2-dimensional theory with infinitive dimensions of the boundary lay­
ers. Therefore, the radius of the pipe has ceased to be of importance in 
determining the attenuation. 

There is however a lower limit to the validity of the theories, since we've 
used the 2-dimensional equations in determining the expressions for the 
boundary layers. To be valid, the ratio bv/ a must be small. When set­
ting an arbitrary limit of 10% for this ratio, we come in our experimental 
setup to a maximum of bv < 1..5 · 10-3 rn conesponding to a radial frequency 
of w > lOrads- 1 . 

We can now determine the maximum va.lue of 8t, a.fter which the theory 
ceases to he valid, for the three different Reynold numbers at which we mea­
sured. The results are printed in the following ta.ble: 

Re (·104
) bv+max (1/bv+ma~·) 2 (·10- 5

) 

2.7 75 18.0 
5.3 13.5 .5.3 
8.0 195 2.6 

These values are of the same order as the a.ctual positions of the crossings 
of the theoretica! curves for the turbulency theories with those determined 
from the stationary theory. 
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Chapter 6 

Conclusions and 
recommendations 
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6.1 Conclusions 

We've found that the multiple microphone method can be used to determine 
the attenuation of plane waves in a pipe. In the quiescent case the agreement 
between theory and experiment is outstanding, for the real and imaginairy 
partsof the opposite directionsof propagation, indicating that the method is 
accurate enough to measure the attenuation in the case of a fully developped 
turbulent mean flow in a hydraulicly smooth pipe. 

The measurements that where performeel for the case of a turbulent mean 
flow show some interesting features. Two parameters turn out to be of im­
portance in the determination of the attenuation, being óv+ and st' repre­
senting the dimensionless thicknesses of the viscous ( acoustical) and laminar 
(turbulent) boundary layers. In our experimenta.l set up, the thickness of the 
laminar boundary layer is cletermined by the choice of Re, equivalent to the 
choice of M or U0 , wherea.s the thickness of the oscillating viscous sublayer, 
also called the shea.r wave, is cletermined by w. They together determine 
completely the form of the climensionless total impedance of the sound wave 
Ztot, which is closely related to the attenuation. 

These parameters di vide Ztot essentia.lly in three regions, óv+ ~ ói, ót :::::::: 
ói ancl ót ~ ói. In the first region, the a.ttenuation is actually described by 
the Kirchhoff estimate, which also is fotmei as a limiting case of the moelels 
based on an apparent turbulent viscosity 1]t· 

In the seconcl area, a strong minimum in Ztot is founcl, being the result 
of interference of the shear wave with it 's reflections at the turbulent region. 
The theories do preeliet such a minimum, but neither of them is at the right 
place. The clepth of the clip as measurecl by Ronneberger is in agreement 
with the depth of the new model on the turbulent viscosity, but only for the 
case of the measurements in air. The error in the clepth of the clip might be 
clue to interference of the shear wave with the mixing length hypothesis. 

In the thirth region, the attenuation is either determinecl by the elevation 
of the function Ztot as function of ót, or by the static limit clirectly clecluced 
from the linearisation of small disturbances of the sta.tiona.ry turbulent flow. 
The first option implies that there is no dependenee of the attenuation on 
the Reynolds number, whereas the secor1d implies that there is such a cle­
pendency and a limiting value. The measurements don't reach far enough to 
make a definite juclgement on this, but there's no indication of a Reynolds 
dependenee in our present mea.surements. 
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It is however quite surprising that when calculating the maximum value 
of ot for which the theories based on the apparent viscosity remain valid, the 
corresponding limiting value of the elevation of Ztot is in agreement with the 
static limit. This is a strong indication that the static limit may determine 
the behaviour beyond the validity of these theories, effectively re-introducing 
a Reynolds dependency. This Reynolds dependency was essentially lost due 
to the use of a 2-dimensional approximation for the boundary layer equations, 
neglecting the finite elimension of the pipe, being the radius a. 

Another important condusion is, that the new model for the apparent 
turbulent viscosity TJt, fits the data as well as the other theories, but uses a 
value for the dimensionless thickness ot = 10.7' which is in agreement with 
the value found from the semi-empirical theory of fully developped station­
ary turbulent pipe flow. This gives us the possibility to expand it's use to 
completely rough pipes, we're the turbulent profile is not determined by the 
thickness of the laminar boundary layer, but by the height of the protru­
sions. This is of course of major importarlCe for industrial applications of the 
theory. 

6.2 recommendations 

As can be read in the conclusions, some questions are not answered yet. Some 
answers can only be given when further mea.surements are made, expanding 
the range of measurements mainly towards the lower values of 8t. Then 
we can determine if the Reynolds clependency occurs for this region, and if 
the valiclity of the moelels is maintained in that region. The measurements 
must be clone systematically, which is possible since we've found the two 
parameters of interest. 

An interesting option for expanding the range of measurements, is to 
increase the mean pressure, and thereby the density p0 of the fiuid. Since 

bv = J2ryjwp0 depends on the density, and 8, is approximately proportional 
to TJ / p0U0 , we see that we can alter the ratio bv/ 8, proportional to /fiö. 

Also, measurements on rough pipes can be very interesting, to check 
if the new theory holels for that case. Thourough investigations must be 
made, to determine the sort of roughness and the characteristic height of the 
prótrusions to be used to get interesting results. 

On the theoretica! sicle, attemps could be made to include the dimensions 
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of the pipe, re-introducing the Reynolds dependency. This can be clone 
in several degrees. The most easy introduetion is possibly to perfarm the 
integration of the boundary layer in radial coordinates, just as was clone for 
the case of stationary turbulent flow. 

Second, the boundary conditions could be imposed at the middle of the 
pipe, instead of using infinitive boundary layers. One could attempt to solve 
the entire equations for the axial coordinates, but this will probably introduce 
unsolvable problems for analytica! treatment. 

The possible coupling of the Prandtl mixing length with the shear wave 
must thouroughly be investigated. The use of a second order approximation 
in the determination of the turbulent veloeities could be a solution. 

Also, the Mach dependency for the low values of ót predicted by the 
turbulent viscosity models is not right, whereas the quasilaminar theory of 
Ronneberger [RON 77], ba.sed only on the velocity profile of the turbulent 
flow, is in excellent agreement with mea.surement. Attempts could be made 
to use the approach of Ronneberger with respect to the determination of the 
Mach dependency in the theories including the effect of turbulent viscosity. 
Since his final result is rather complex, clue to the complete radial coordi­
natesystem he uses, it could be wortl1 wile to attempt to rewrite his theory 
in wall coordinates, neglecting the curvature of the wa.ll. 
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List of symbols 

a 

A 
c, Co 

Cp, Cv 

f 
Hba 

H~ 
z 
k 
J( 

L 
mo 
M 
P, P 
Pr, Pr1 

Re 
R 
s 
T 

pipe radius 
cross-sectional area 
speed of sound, adiabatic 
specific heat at constant pressure, volume 
frequency 
transfer function from position a to position b 
Hankel function of order n and kind m 

;=T, index 
complex wavenumber 
Karmanns constant 
perimeter of cross-sectinal area A 
stationary local Mach number 
stationary global lVIach number 
pressure 
Prandtl number, turbulent 
Reynolds number 
reftection coefficient 
entropy 
temperature 

t time 
u velocity in x-direction ( axial) 
u* friction velocity 
v = (u, v, w) velocity 
v velocity in y-direction (radial, wall: y = 0) 
x axial coordinate 
y 
z 
z 

Greek 

radial coordinate, normal to wa.ll 
wall impedance 
wall impedance, normalized with o 0 

attenuation coefficient, quiescent 
case, quiescent case viscous part 
coefficient of thermal expa.nsion 
Poission ratio cpj Cv 

thickness of lamina.r sublayer of turbulent 
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Öv, ö+ 
V 

Öv, 8+ 
T 

TJ, T/t 

K, Kt 

À 

ll 

p 
T 

w 

vY 
<I> 

flow, dimensionless 
thickness of viscous (acoustical) sublayer, 
dimensionless 
thickness of thermal (acoustical) sublayer, 
dimensionless 
dynamic viscosity, turbulent 
heat conduction coefficient, turbulent 
wavelength 
order of Besseis equation 
density 
shear stress 
radial frequency 
friction factor 
heat flow 

super- and subscripteel 

Qac 
Qbl 

Qo 
Qv 
Qr 
Qt 
Q± 
Q+ 
Q' 
Q 
Q 
Q 

IQI 
<P( Q) 
?R(Q) 
S'(Q) 

acoustical contri bution 
boundary-layer contribution 
quantity evalua.ted at y = 0; static value 
viscous part 
thermal part 
turbulent 
up- and downstream value 
made dimensionless with r1/ pou· 
acoustical deviation from static quantity 
turbulent deviation from static quantity 
average 

complex amplitude 
norm of complex quantity 
angle of complex quantity 
real part 
imaginairy part 

partial derivative in .r-clirection 
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D a a 
Dt = at + Uoax convective time derivative (total derivative) 
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