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Slimmary

In this report, a theory based on a simple model of the apparent turbulent
viscosity is used to describe the interactions of a fully developped turbulent
pipe flow in hydraulicly smooth ducts with plane acoustical waves. This
theory assumes a linear relationship between the apparent viscosity and the
distance to the wall, with exception of a region very close to the wall, in
which the turbulence vanishes. This region is called the laminar sub-layer,
of which the thickness §; depends on the Reynolds number. Several limiting
cases can be evaluated, resulting in different models of the apparent viscosity.

In the theory of Kirchhoff, describing the sound wave in the absence of
flow, the attenuation is fully determined by the thickness of the acoustical
boundary layer é,, which is a function of frequency.

The resulting attenuation in presence of a turbulent mean flow is therefore
determined by the ratio é,/0; of the thickness of the two layers, and the
Mach number, as a result of the Doppler effect. If the acoustical boundary
layer 1s smaller than the laminar boundary layer, the attenuation will be
determined by the Kirchhoff attenuation, shifted as result of the Doppler
effect. On the other hand, if the acoustical boundary layer extends far into
the turbulent zone, the attenuation will be determined by the thickness of the
laminar sublayer, resulting in an almost constant attenuation, independent
of frequency, and in our theory also independent of the Reynolds number.
In the critical range of conditions, where §, ~ §;, some interference of the
periodic acoustical shear wave (generated at the wall by the acoustiacl field)
with it’s reflection at the turbulent zone occurs. This interference results
in an attenuation lower than the Kirchhoff estimate in the absence of mean
flow.

These features of the theory are checked by measurements of the atten-
uation of plane acoustical waves in a duct with circular cross-section. A
multiple microphone method is used to do this. «

The measurements for high frequencies are well described by the theory,
as was expected. The shift of up- and downstream attenuation, caused by the
Doppler effect, is however larger than predicted by theory. A theory which
includes only the effects on the attenuation due to the mean velocity profile,
the quasi-laminar theory of Ronneberger [RON 77|, predicts the measured
shift very good, but doesn’t describe the effect of turbulence itself.

The interference effect is also measured, but it’s seems to be even stronger



than can be expected on basis of the assumption of total reflection of the shear
wave at the edge of the laminar sub-layer, the so-called rigid plate model.
Also, the value of the ratio é,/6; for which this minimum occurs, is not the
same as predicted.

For low frequencies, the limiting value is also in good agreement with
theory, showing no dependency on the Reynolds number within the mea-
sured range. For the models of the apparent viscosity similar to that used in
describing the stationary turbulent flow, no modifications to the used dimen-
sionless thickness of the laminar sublayer as found in stationary flow need
to be made. The rigid plate model has to be evaluated using a different
value for this quantity. The predicted doppler shift is in good agreement
with measurement in this range.

We concluded that the theory correctly predicts the general features of
the attenuation. Especially in the limiting cases, when one of the layer
thicknesses ¢, or ¢; is much larger than the other. The model of the apparent
viscosity which is identical to that used in describing stationary flow serves
best to predict the resulting attenuations. This is of general importance,
since the theory can than be expanded to include rough pipes by using the
the same relation between the stationary flow properties and the acoustical
disturbances, enlarging it’s application range to many industrial situations.
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0.1 introduction

This report deals with theory and measurement of the propagation of plane
pressure waves in long, hydraulicly smooth ducts, and especially the influ-
ence of a fully developed turbulent mean flow on the attenuation of those
waves. This investigation is part of a project taking place at the laboratory
of high velocities of the department of transport physics. This project on
sound and vibration in pipe systems is supported by the N.V. Nederlandse
Gasunie and FOM/STW, and subject of a doctoral study by Ir. M.C.A.M.
Peters, under supervision of Dr. Ir. A. Hirschberg. The available theories
and measurements in literature are not in agreement, and some of the basic
principles are not well understood vet. In particular there is no universally
accepted theory for turbulence in an unsteady flow. The main goal of this
graduation research on sound attenuation, is to obtain a better insight in the
general principles concerned.

Measurements of the attenuation are performed for various Mach numbers
and frequencies. The pressure waves are created by a sirene, which can
deliver a very strong wave. This high amplitude wave at discrete frequencies
increases the quality of the measurement with respect to measurements using
random noise. Also, the pressure wave doesn’t have to be disturbed by
entering the pipe with a pressure probe, as by the traversing probe method,
because we measure the pressure at fixed positions with microphones placed
in the wall of the tube. We call this the multiple microphone method.

The attenuation is thought to be mainly caused by interaction of acous-
tical viscothermal boundary layers at the wall of the pipe with the pressure
waves. The effect of the turbulence on those boundary layers is in this report
modelled by the introduction of a turbulent viscosity 7, in the equations for
the mean flow. This turbulent viscosity represents the effect of the randomly
fluctuating turbulent motions on the average motions. The equations for
the average motions are obtained by time-averaging the equations for the
total velocities, with a time-scale large enough to average out the turbulent
fluctuations, but yet so small that the periodical fluctuations with radial fre-
quencies w we want to investigate (sound) are maintained in the equations
for the mean quantities.

In theories on sound attenuation in pipes without mean flow, the main
parameter is the thickness of the viscous (acoustical) boundary layer 6, =



\/ 21/ pow, with n the dynamic viscosity and pg the mean density. In our case
we will only look at experimental conditions for which this thickness is much
smaller than the radius of the pipe «, so we neglect influence of the radius of
the pipe on the boundary layer. We will also confine ourselves to waves with
wavelengths A = ¢/ f much longer than the radius of the pipe, so only plane
waves can propagate. Another parameter is the Mach number M = Uy/co,
the ratio of the mean flow velocity Uy and the speed of sound for a quiescent
fluid ¢g, which affects the speed of sound relative to the wall in the up- and
downstream direction (¢ = ¢o & Up). It’s influence on the attenuation is a
shift between the up- and downstream attenuation. Since we’ve measured
with only one pipe, with fixed radius «, and one fluid with fixed mean density
(air under atmospheric conditions), the Mach number M = Uy/cq and the
Reynolds number Re = 2Uyapo/n are directly connected.

The effect of an apparent turbulent viscosity n; in turbulent flow on the
mean flow quantities in the absence of sound is the division of the velocity
profile in two regions. A laminar region near the wall of a certain thickness
61, in which no turbulence exists, and a turbulent region for the main part of
the flow. For the description of this steady turbulent flow, the thickness of
the laminar sublayer ¢, turns out to be a major parameter. In our theory for
the turbulent viscosity, we assumed also that the thickness of this laminar
layer is much smaller than the radius of the pipe. In the determination of the
relation between this thickness and the mean pipe flow, we used the radius of
the pipe, introducing a dependency on the Reynolds number Re. The theory
used is only valid low Mach number flows (M < 1), because we neglect the
effect of stationary dissipation on the temperature and pressure distribution
in the flow.

The interaction of sound in case of a turbulent mean flow will in first
instance be governed by the ratio of é,/é;. For small values of this ratio,
the entire viscous boundary layer will be within the laminar sublayer, where
only the dynamic viscosity n determines the shape of the boundary layer.
The attenuation will therefore behave similar to that in the quiescent case,
depending only on 6,, altered for the up- and downstream direction according
the Mach number.

For large values of this ratio, the viscous boundary layer will be mainly
in the turbulent region, where it is controlled by the apparent turbulent
viscosity, causing a drastic increase of the attenuation. The viscous boundary



layer will be governed by the thickness of the laminar boundary layer ¢,
corresponding to a quasi-steady limit of the acousic flow behaviour. The
Mach number again is responsible for a shift for the up- and downstream
attenuation.

Since this apparant viscosity 7, is able to describe the structure of steady
turbulent pipe flow quite satisfactory, it’s basic features might be able to
describe the change in the acoustical boundary layers due to the turbulence
as well. This is of great practical importance, since the theory of turbulent
boundary layers is then directly related to the attenuation of plane pressure
waves. This means, that the theory of attenuation can be extended to in-
corporate the effect of rough walls by using the same relation between the
steady flow properties and the acoustical disturbances.

Worth mentioning is the situation of closed side branches in complex
pipe systems, as in the gas industry. Those side-branches can generate low-
frequency acoustical disturbances, or even high amplitude standing waves. In
calculating the resulting amplitudes, the attenuation plays an important role.
For this reason, the N.V. Nederlandse Gasunie is interested in our research.

Also, at TNO-TPD in Delft, they have developed a program to do these
kind of calculations, called PULSIM. It is used as a development tool for
designing complex pipe systems. An accurate description of sound attenua-
tion can of course contribute to the quality of the calculations, and the final
design.

Another interesting application is the measurement of mean flow velocities
by measuring the amplitude ratio of standing waves [SHA 91]. Knowledge
about the attenuation is important, since the accuracy of such measurements
depends strongly on the (difference in) phase velocity of the sound wave in
the up- and downstream direction. This phase velocity is influenced by the
turbulent interactions.

A medical application we refer to, is the measurement of the radiation and
entry impedance of the respiratory system. It turns out that the interaction
of turbulence with the oscillating flow is important in determining these
physiologically important quantities. An investigation on this subject was

made by Louis and Isabey [LOU 92].
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Chapter 1

Propagation of sound in a long
pipe through a quiescent fluid.

Much of what is written in this chapter can also be found in
textbooks on acoustics, such as ’Acoustics’ of Allan D. Pierce
[PIE 89], and "Waves in fluids’, from Sir James Lighthill [LIG 80].
Sometimes, results obtained in these textbooks are presented as
facts, since the underlying theories are beyond the scope of this
report. The reader will then be referred to these textbooks.



1.1 Basic equations describing sound prop-
agation in a quiescent fluid

To obtain a description of the propagation of acoustical waves in a quiescent
fluid in a pipe, the well known equations of conservation of mass, momentum
and energy will be used as starting point. These equations will be com-
pleted with constitutive equations and thermodynamic relations between the
acoustical quantities, assuming local thermodynamic equilibrium.

When considering only small deviations from an uniform and stationary
state, the behaviour of the physical quantities can be linearised by writing a
quantity @ as:

!

Q=Qo+ Q" where: g— <<1

0

and since we’re considering a quiescent state in which vy =0

7

Co

v=19 where:

Il

<<1 (L.1)

a limit which is essentially imposed by the condition that p'/py < 1, a nec-
essary condition for the validity of the linearization of the thermodynamic
relations. Furthermore the thermal conductivity « and the viscosity n of the
Newtonian fluid will be considered as uniform and constant. These assump-
tions yield the following set of linearised equations.
Mass conservation:

dp’

ar V.7 =0 1.2
8t+p0 v (1.2)

momentum conservation (linearised Navier-Stokes equation):

T - L lo oo
Pogr = ~Vp' + [V + §V(V -0')] (1.3)
and energy conservation:
as’' .
To— = &V*T" .
Polo ot K (1.4)



And the thermodynamic relations, which are added to obtain a complete set
of equations:

r_ 1 / PoﬂTo !
plo= cgp ; s (1.5)
T T
T = ~—(—)-'-8—p'+ 2y (1.6)
PoCp Cp
in which the definitions for the adiabatical speed of sound ¢ = g,} o the

, and the coeflicient of thermal

specific heat at constant pressure ¢, = T'5% b

. 81
expansion 3 = pa—é’"P are used.

These are the basic equations used in describing the propagation of small
perturbations of an ambient state in a quiescent fluid, called sound.

In the following sections, the propagation of sound in a long pipe will be
described, neglecting the effects of thermal conduction and viscosity. The
only boundary condition is then, that the velocity at the wall is parallel to
that wall (the fluid can’t penetrate the wall). Also an estimate will be given
of the attenuation as a result of viscous and thermal dissipation.

Next, the effects of viscosity and heat conduction near the wall will be
taken into account, which results for sufficiently high frequencies in a bound-
ary layer description for the acoustic velocity and temperature.

Finally, the results will be combined to determine the complex attenuation
of the sound waves propagating along the axis of the pipe.

10



1.2 Acoustical solution of the basic equa-
tions in a pipe filled with a quiescent

fluid.

The goal is to derive an equation describing the propagation of sound in
a long pipe. The thermal conductivity « and the viscosity 7 are in first
approximation set to zero, since the effect on the propagation is expected to
be small. The conditions determining the validity of this approximation will
be discussed in section 1.3, when the effects of visco-thermal dissipation are
estimated. In doing so, the basic equations reduce to:

ap, = -
E + [)ov U = 0 (17)
av' S,
po*@? = —Vp (1.8)
as’
B 1.
R (1.9)

and for the thermodynamic relations, in which we have used (1.9):

1

po= (1.10)
<o

T = T—O/))—pl (1.11)
PoCp

As long as confusion with the other quantities 1s unlikely, the primes will be
omitted in the rest of this paper.
To get an equation for p, (1.10) is used to eliminate p by p in equation
(1.7). Taking the time derivative of the result gives:
1 9% = JU
il V. —=0
TR NT
Together with the divergence of Euler’s equation (1.8):

. 97 )
POV'E——VP

11



and after elimination of the factor poﬁﬁf)’/at , we come to the wave-equation
for the pressure disturbance p:

102

%'a't_f =V (1.12)
This equation, the Helmholz equation, can be solved analytically for cer-
tain boundary conditions. In the case of a pipe with radius a, for radial
frequencies w = 2r f below the so-called cutoff frequency weutofy, the only
propagating solution is a plane wave along the axis of the pipe (z-axis), with
no dependency on the radial and azimuthal coordinates. All the other so-
lutions die out within a length of order A = ¢o/f [KON 91]. This cutoff
frequency for cylindrical pipes is given by [PIE 89]:

Wentogy = 18112 (1.13)
a

So the acoustical solution for a pipe of small radius a < A/7 is given by:

p = pe i(ke — wi) (1.14)
2
2 _ Y
k* = 2 (1.15)

in which the dispersion relation (1.15) has been obtained by substituting
(1.14) in (1.12). The final result for the pressure p is:

p:%[ ]5+6 i(k0$"(-‘)t)+13—e i(—k‘oll‘-—wt) ] (116)
with: ko = — (1.17)
Co

where pt and p~ are the complex amplitudes of the waves travelling in the
positive and negative direction. From (1.17) a similar equation for the other
acoustical quantities can be derived, because they are all linearly related to
p. The relation between the pressure p and the velocity v 1.e. is:

k*ﬂ: At
af = o P (1.18)
wpo PoCo

In having derived a solution for the acoustical quantities, a check should be
made on the validity of the initial assumptions. This check will be made in
the next section, where the attenuation as a result of the viscous and thermal
terms, is calculated.



1.3 Viscothermal attenuation of plane acous-
tical waves in a quiescent fluid.

In order to estimate the attenuation of sound in the absence of walls, but with
thermal and viscous dissipation, the relations found in the previous section
for the acoustical quantities are used to estimate the order of magnitude of
the terms involving viscous dissipation and heat conduction, which have been
neglected. The resulting error in the estimate of these terms will be small if
the attenuation is small compared to the wavenumber. These terms involve
the change in density due to the entropy change, as given in (1.5), and the
last term in the equation of momentum conservation (1.3), representing the
shear stresses due to the viscosity.

So, the relation between the temperature fluctuation Ty, and the pressure
Pac (1.11), derived in the previous section, is substituted into the energy
equation incorporating the effect of heat conduction (1.4), to give an estimate
of the entropy change ds/0t in terms of p.

0s k 0T kB O

= = 1.19
at  polo 0x?  pic, da? ( )

Then, the density fluctuations dp/dt can be calculated using (1.5), resulting
in

0 _ 10p_ B0

ot ot pock Oz? (1.20)

This yields the following equations for the conservation of mass (1.2) and
momentum (1.3):

1dp «k(y—1)0% ou
£ _ M7 JrE — =0 1.21
ck ot cdpoc, 02 T po dx (121)
du  Op N 4n 0*u
P90 T Tax T 3 e
The thermodynamic identity v — 1 = Tp3%c2/c, is used to rewrite the second
term on the left of equation (1.21) [PIE 89].

If we assume again that only plane waves will propagate, we can solve
these two equations for « and p. Instead of using this exact solution, we will

(1.22)
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use the approximate linear relation between v and p (1.18), derived in the
previous section to rewrite the last term on the right-hand side. Then we can
eliminate u by the same procedure as in the previous section. The resulting

homogeneous relation for p then becomes for harmonic waves e w(kuz — wt),
T ke(y—1) 4k
kztp _ (Liz. n Zu) ut:(7 ) 44 vtn) D (123)
€ C6P0Cp 3wpo
giving us the following dispersion relation:
w? wn (4 y—1
k2 ~ — |1 N (‘ ) 1.24
vt ck [ * ctpo \3 * Pr (1.24)

with Pr = ncy/k. The change of £ due to introduction of the effects of
viscosity and heat conduction will be small, and therefore, to first order, &,
is approximated by w/cg, whenever product terms involving small quantities
are considered. This, and using the taylor expansion (1 + z)/2 =~ 1 4 z/2,
determines the wavenumber k:

win 4 oy -1

w
ky=+— %1 - = tko + 10, 1.25
! Co Z268/)0(3 + Pr ) 0 ( )

We see that the result for £ is an additional imaginairy part ta,,;. By writ-
ing the pressure wave as follows, we see that «,; describes the amplitude

attenuation.
p=R|pte ~Fule 1(koz — wt) + e Qule 1(—kor — wt) (1.26)
We can now estimate the error made by neglecting the viscosity and heat

conduction by looking at equation (1.24). We can substract the relation from
it that must be fullfilled if the theory is to be valid. This relation is:

wn (4 7—1)
(= 1 .
o (3+ )< (1.27)

When using the values for air, we come to a maximum radial frequency w of:
w<4-10°Hz (1.28)

It is then clear that the attenuation described by the imaginary part of k.
is only a minor part of the magnitude |k,;| of the wavenumber, so that the

14



assumption that viscosity and heat conduction are only a small effect, and
therefore of minor influence on the propagation, is justified. It must be
mentioned, that the actual attenuation can increase strongly even below this
limit, because of the departure from local thermodynamic equilibrium. We
have ignored this effect here.

15



1.4 Viscous and thermal acoustical bound-
ary layers in a quiescent fluid.

In the previous sections the consequences of viscosity and heat conduction
near a wall have not been considered, we only discussed bulk attenuation.
The boundary conditions alter significantly when taking these wall effects into
account. The viscosity requires the velocity at the wall to be zero, while for
the heat conduction we will assume that the temperature variations become
zero at the wall, because (kpcp)war > (KpoCy)fiuia [PIE 89]. In order to
achieve these boundary conditions, a thin boundary layer is formed. This
means that the velocity u and temperature T', which until now were only a
function of the axial coordinate x, will in a region close to the wall also be a
function of the radial coordinate r.

Since the variations of the acoustical quantities with the radial coordinate
take place over a distance, say ¢, which is much shorter than the wavelength
A, over which the same variations occur in the axial direction, all terms
containing a derivative in the axial direction of a quantity can be neglected
in comparison with terms containing a radial derivative of that quantity.
Also, when the radius « of the pipe is large, compared to the thickness é
of the boundary layer, the equations reduce to those for a two-dimensional
flow along a boundary in the z,y-plane. Since the boundary, the z-axis, is a
straigth line, the flow will be assumed parallel, neglecting the radial velocity
v of order ud/A, as can be derived from the law of mass conservation. So
we assume U = (u(y),0). This reduces the Navier-Stokes equation for the
y-direction normall to the wall to:

dp
oy
resulting in a pressure, uniform over the cross-section of the pipe.

Neglecting the terms proportional to /X in the Navier-Stokes equation,
we get for the axial z-direction:

0 (1.29)

Ju OPac d*u
POE = T 77‘,(‘)? (1.30)
u|y=0 = 0 (boundary condition) (1.31)

in which the pressure gradient dp,./dz is the driving force for the flow. The
particular 4, and general &, solutions to this problem for harmonic waves,

16



are given in complex notation by

Opec 1
0. = _ 1.32
U 0z polwg. ( )
a4, = e @Y+ dpe Y (1.33)

€ = o —mePO (] =), [ el (1.34)
U] 2n

Subjecting this solution to the boundary condition, considering the solution
being finite for y — oo, which is essentially the same as imposing the second
boundary condition to be

Uly—moo = U4 (boundary condition) (1.35)

gives the velocity profile in the pipe:
Opae 1

T —(1—e ¥ 1.36

Jdz pozwac( ) ( )

U = Uge(l—e ") = ug 4 uy (1.37)

The deviation uy = —ug.e ~ Y from the plane-wave velocity u,. describes

an attenuated wave propagating in the y-direction, the so-called shear wave
(fig. 1.1). We can define de distance over which the amplitude of the wave
decreases a factor e as the thickness 8, of the viscous boundary layer. So,

. 21

by = | — (1.38)

Wacfo

Similarly, the thermal boundary layer is described by the energy equation
(1.4), completed with the thermodynamic relation (1.6) for the temperature

T:
0 Tof 0T
—|T-—"p..] = k— 1.3
PoSr ( Pocpp ) Kalﬂ (1.39)
T|,=o = 0 (boundary condition) (1.40)
The solution is now:
— TL’B —p ETYY — _ e TETYy —
T = 0C pac(]. € ) = Tac(l € ) - Tac + TbI (141)
0Cp

| —iwpoc, N [WPICy
€r p ( Z) 2% (1 42)
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Figure 1.1: The shear wave, uy as function of y/é,.
—wt=0;---wt=n/4; - —- —- wt=2r/4; - wt=31/4; —wt=m

For gases Pr = n/kc, = O(1), so that the thermal and viscous boundary
layers will have a comparable thickness §. We can now check the validity of
the assumption that the boundary layer thickness is small compared to the
radius of the pipe 6 < a. We have:

2n
=, <a (1.43)
wWpo

w> 0.1 rad s (1.44)
for: @« = 0.015 m (1.45)

where weve used the diameter of the pipe we've used for our measurements.
Note that because we assume plane waves, so that ¢ < A, we automatically
satisfy the condition 6 <« A, which we have used in the derivation of our
equations.

The two profiles obtained by this procedure satisfy the boundary condi-
tions imposed by the viscosity and heat conduction, while for y — oo they
asymptoticaly approach the solutions found when neglecting the influence of
the wall. Also, the thickness of the boundary layers found is small, compared
to both the wavelength A and the radius a of the pipe, as assumed. These
are the kind of solutions we were looking for.

18



1.5 Viscothermal attenuation of plane waves

due to boundary layers in a quiescent
fluid.

In the previous section expressions have been obtained describing the veloc-
ity and temperature distribution near the wall, in the viscous and thermal
boundary layers, that fullfill the boundary conditions imposed by the viscos-
ity and thermal conductivity. In order to estimate the effect of these bound-
ary layers on the propagation of the acoustical waves, the procedure used
in the previous sections to derive a dispersion relation determining the wave
number k& must be modified, since the acoustical quantities are no longer uni-
form over the cross-section of the pipe. Therefore, the terms in the mass and
momentum conservation laws containing acoustical quantities are averaged
by integrating these terms over the cross-section.

For the terms involving quantities still uniform, such as p, the integration
results in multiplication by the cross-sectional area A.

For the terms involving non-uniform quantities, such as T = T,.+ Ty and
U = U + upl, the integration is performed in two parts. The uniform (acous-
tical) part is treated as above, whereas the non-uniform boundary-layer part
is integrated over the normal coordinate y and multiplied by the perime-
ter of the cross-section £. The integration over the normal coordinate y is
mathematically taken from zero to oo, which is allowed since the integrand
vanishes for y > 6,, é7. We will write however as upper limit the thickness
of the boundary layer, to emphasise that the contribution of the boundary
layer for y > 6 is negligable. [HOW 79] [PIE 89]

This division of the integration in two parts is not as obvious as it seems,
because we must recall that the boundary layersolutions were found by solv-
ing simplified boundary layer equations for mass, momentum and energy
conservation,including the effects of viscosity and heat transport, whereas the
acoustical solutionswere found byneglecting thermoviscous effects. Therefore,
to be consistent, the thermal and viscous terms are only taken into account
for the boundary layer contributions uy and Ty, and are neglected for the
uniform contributions of these quantities u,. and T,.. This is the same as
stating that we will neglect any terms involving the viscothermal attenuation
found in section 1.3, assuming that they result in only a minor contribution to
the total attenuation. The equations of conservation of mass and momentum
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are then given by:

1 6p nﬂ 82Tbl au

8u . Op Dy
Poa—t = T +7n by? (1.47)

After integration over the cross-section, this results in the following equa-
tions:

5 57
1 dp Oige d kB [ 0Ty _
A(c38t+p0 (9:c)+£ poda.o/ubldl__ D7 dy| = 0
O 0? Ul
Apo 5t +£[)oat/ubldy——./4 + Ly /

Performing the second step of the choosen procedure, the elimination of
the acoustical velocity u,., results in:

1 (92 82}) . L J Y OQUbld hﬂ 0 / (82Tb,)dy

3o ot A| o] By vt o) oy

(1.48)

The integrals can be evaluated, when realising that Q) /dy = 0 for y — oo.

So:
/&aQthdy _ o _ IQu
dy? Dy 40 dy

0
The minus sign is a result of the definition of y, being the normal coordi-

natepointing in the direction of the centre of the pipe. This finally leads us

to the dispersion relation for harmonic waves of the form e (ke — wi),

IQu
dy

(1.49)

y=5 y=0

w2 ,C dub, iumﬂ 8Tb1
———ﬁac + k2ﬁac = — Zl‘bm — 1.50
Cg . A [ ()y y=0 Cp ay y=0 ( )

which, for a circular pipe with radius @, under the same assumptions as in
section 1.3, results in:

l 2wn v —1
k = thot I+ 1+ 1.51
bl 0t S [( ) . ( \/—P—;)} (1.51)
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with: o = (1 + 7 1) a, (1.53)
(1.54)

1 2
and: a, = il (1.55)
2aco ' po

The attenuation due to the viscothermal effects near the wall of the pipe
appears to be much larger than the attenuation due to dissipation and heat
transfer in the bulk of the fluid. The maximum radial frequency for which the
effect of this bulk attenuation is negligible, is given by the following relation:

2 3
Qyy wn Po w°n
LN |2 = =1« 1.56
ao  2¢ipo\ 2wy Scipe & (1.56)

w <2 10°rads™! (1.57)

The attenuation due to the boundary layers results in a change of the
apparent phase velocity c,, = w/R(k) of the sound wave, an effect not seen
in the free-space attenuation according to equation (1.25) [PIE 89]. Equa-
tion (1.25) is however not exact, and a small decrease in the phase velocity
is observed for low frequencies, due to the change from adiabatic to isother-
mal sound propagation. This effect is however small compared to the effect
considered here.

Knowledge about the fundamental structure of the boundary layers is
of the utmost importance when trying to calculate the sound attenuation
in ducts. Especially when the propagation of sound through a pipe with a
turbulent mean flow is to be examined, the interaction of the boundary layers
with the mean flow must carefully be incorporated in the description of the
acoustical quantities. An attempt to describe these interactions is made in
the next chapter.



Chapter 2

Propagation of sound in a long
pipe with a turbulent mean

How

Just as the previous section, this section is based on theories
described in many textbooks. Especially 'Boundary layer the-
ory’, written by Schlichting [SCH 79}, and "Turbulence’ by Hinze
[HIN 75], are often quoted. The reader is again referred to this
textbooks for additional information.

The basic idea of the theory described is based on two papers,
written by Howe [HOW 79] [HOW 84]. These can be very helpfull
when studying this chapter.

8]
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2.1 Basic equations governing the turbulent
motions

In order to obtain a description of the acoustical boundary layer in the case
of a turbulent mean flow trough a pipe, first the structure of the turbulent
mean flow in the absence of sound is examined. A well-known procedure is
used, to calculate the effect of the turbulent motion on the flow. We start by
seperating the physical quantities into two parts. One part being the mean
quantity @, and the other part the randomly fluctuating part Q:

Q=0Q+Q (2.1)
This decomposition is then substituted in the incompressible Navier-Stokes
equation
ov LS = = 3
Poy +po(v- V)0 = —Vp+V-nD (2.2)
9 du du e du Jw
I TN
D = 3;'+z H?é—y é;-;a—y (2.3)
dw Ju  dw dv w
wTE wtE: 2E

which is then averaged over a time t,,, long enough to average out the turbu-
lent fluctuations. Variations in the mean quantities still can exist over periods
much longer than the averaging period. The condition of incompressibility
will be satisfied if the Machnumber M < 1, see [SCH 79].

The result is the familiar Navier-Stokes equation for the mean quantities,
altered by a term containing the averaged products of the turbulent velocities
@, v and w:

v

= V.S 2.
Pog, +V-S5 (2.4)

Sy

V)T = -Vp+V-2q

<y

+ po(

U

S, = —po| vu ¥ ow (2.5)
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S, is called Reynolds stress tensor, for he was the first to formulate the

above equations. The precise form of S, is not known, but the following
argumentation can give some insight in the properties of the Reynolds stress
tensor. It is a short version of an argumentation held in the book 'Boundary
layer theory’, by Schlichting [SCH 79]. It is strongly recommended to read
the original version, since it is a more complete argumentation.
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Figure 2.1: The turbulent shearing motion @ (horizontal axis) as function of
y (vertical axis).
- velocity difference.

That the time averages, like ud, differ from zero, can be argued by con-
sidering a hypothetical two-dimensional shear flow, as in figure (2.1). When
fluid particles with a turbulent velocity of +v move from yo upwards, they
arive at a lamina in which a higher mean velocity @ prevails. The mean
velocity deficient occuring, will generally give rise to a lower longitudinal
turbulent velocity in the lamina at y,,. Conversely, particles which move
downwards due to a turbulent velocity —v, will generally give rise to an in-
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crease in the turbulent velocity @ at y_;. So, mostly, @ is associated with —9,
and therefore the turbulent stress @v will be negative. It is easily seen, that
to first order, a fluid particle coming from a lamina a distance ! away, will
introduce a turbulent velocity @ of approximately [9u/dy.

The magnitude of the transverse turbulent velocity v will be of the same
order of magnitude, by considering the mechanism by which they are gen-
erated. Consider two particles ariving at a lamina a distance yo from the
wall, the slower one from y_; preceding the faster one from y;. These par-
ticles will collide, and thereby squeeze out the fluid separating them, and in
doing so introduce a transverse velocity. Similar, if the faster particle pre-
ceeds the slower one, the growing space between them will be filled in by the
surrounding fluid, again giving rise to a transverse velocity.

Consequently, the total average Reynold stress can be written as

0_ﬂ
dy

ou
% (2.6)

—/)017!5 = Pol2

The distance [ is called the Prandtl mixing length, for he was the first to use
the above argumentation. It is a similar concept as the mean free path, used
in molecular theories on viscosity.

In the vincinity of a solid boundary, the mixing length [ is limited by
the presence of the wall, and is therefore set proportional to the distance to
the wall, according to [ = Ky. The constant K is also known as the von
Kéarmann constant. This results in a Reynolds stress of

@
dy

ou

o (2.7)

—potet = pol*y*




2.2 Turbulent boundary layers due to a sta-
tionary mean flow

Now, returning to the problem for the stationary turbulent pipe flow with
v = (u(y),0,0), the Navier-Stokes equation in the axial and radial direction
for the turbulent flow reduces to

op 0 ( Ou —
0 = —% + % <T]0—y - pouv) (28)
ap  ov?
= £ 2.
0 5 B (2.9)

in which the familiar boundary layer approximations have been made, with
the y-coordinate defined as the distance to the wall.

This equation is valid for pipe flow as well as for a two-dimensional chan-
nel flow. In the following argumentation we will, for the sake of mathematical
simplicity, derive the structure of the flow for the 2-D channel flow. It will
turn out, that in the region of interest, very near the wall, the same relations
hold for pipe flow [HIN 75].

Integration of the second equation with respect to y yields
P+ po? = pew (2.10)

In this equation ©? is independent of , so Jp/02 = dpey/dx. This is the
external pressure gradient, acting as the driving force.
Integrating the first equation with respect to y yields
d I_Jext aﬂ
T + n@y
The integration constant C' is determined by realising that at the wall the
disturbance velocities must be zero, so that —peav = 0, resulting in

— poio +C =0 (2.11)

= —Tp (2.12)

7o being the so-called wall shear stress. The other boundary condition, that
in the middle of the channel the total shear stress must be zero, so

— Ou

—poUV + 17—

Y

=0 (2.13)

y=h/2
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results in a relation between dp/dz and 7y:

hdp
Gl . 2.14
2da o ( )
completing the basic equation to one describing the velocity profile as func-
tion of the Reynold stress pouv:
— Ou dp 2
—poUU'f-T]—"’:TQ—er—p: (1 ——y) To (215)
Jdy dz
Dividing this equation by 75, introducing the so-called friction velocity u*? =
To/po, as well as the previously found relation for the Reynold stress (2.7),
results in:

K*y? |ou| ou ou 2
ty jomow  om dwo oy (2.16)
u*? |Jy{dy  pour? dy h

for:y < h (2.17)

Since the first term on the left varies with y? (9u/dy)?, going to zero for
y — 0, whereas the other term varies only with du/dy, the region near the
wall can be divided into two parts. One, very close to the wall, in which
the viscous stresses dominate, and the other in which the turbulent Reynold
stresses dominate. This division is even stricter than the above equation
implies, since not only the mixing length [ = Ny tends to zero, but also the
fluctuations v and therefore w vanish at the wall.

In order to estimate the thickness of the small laminar sublayer, the
factor 9u/dy is estimated by Cdu/dy|,_, = Cpou?/n, since 9u/dy will be
of the same order as J%u/dy|,_, close to the wall. The critical value é of y,
determining the transition between the laminar sublayer and the turbulent
layer then becomes & = Cn/K pou*®. The velocity profile is then given by:

_ « C

v P Yy for: 0 <y < — 1= o (2.18)
u* n K pour

a 1 , C 7

- = % Iny + C, for: y > K oo = ¢ (2.19)

The integration constant Cy can be determined by connecting the solutions
in y = Cn/K pou*®. This gives for the logarithmic layer the relation:

u 1 C 7
; = F(lny—i—C—ln]—&,pou*) (220)
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1 - C
= — (ln pott y+C—1In —,) (2.21)
K n K

This last step is performed for two reasons. One is to seperate all the con-
stants. These constants should be universal constants for the fully developped
turbulent pipe flow, since the assumptions made in deriving this equation are
all general assumptions. The second reason for separating is, that the equa-
tion is now dimensionless, giving the appropriate velocity and length scales
as u* resp. pou*/n. When making distances dimensionless with use of this
scale factor, we denote them by a superscripted +, so

pou”™

m

yt =y

(2.22)

The constants can be determined by measurements on the profile of chan-
nel flow. These measurements are available from the literature and yield the
relation [SCH 79):

u pou”

— =2.44In
u*

y + 4.9 (2.23)

from which follows that K = 0.41 and C = 4.38, so that the dimensionless
thickness of the laminar sublayer §; = C/K = 10.7. The result for pipe flow
usually is given as

U pout”

— =25In
u* i

y+ 5.5 (2.24)

obtained from data measured by Nikuradse (see [HIN 75]) for smooth pipes,
but these are the parameters fitted on the entire velocity distribution. Hinze
[HIN 75] fitted the data obtained by Nikuradse again for the near-wall region,
and obtained the same parameters as given for the 2-D channel flow.

It should be noted, that nothing has been said about the determination
of the friction velocity u*. It follows from a simple balance of forces on a
piece of the pipe flow, that
2 _ T LApA

= —— 2.2
po poldz L (2.25)

(4

so it can be directly determined from measurement of Ap/Az.
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It can also be shown that the friction velocity u* depends only on the
Reynolds number. This relation of ©* on Re is given by the universal law of
friction for smooth pipes,

1
—— =2.0log Re —-0.8 2.26
7 g Re\/t (2.26)
_ polo2a _ u*?
Re=P22 w=sp (2.27)

with 3 the dimensionless friction coefficient.

Now that the velocity profile is determined, the Reynold stress po@t can
be determined as a function of @ by (2.7). It 1s then possible to rewrite the
Navier-Stokes equation in axial direction as follows:

dp 0 du
= — 4+ — — 2.2
0 Tt 7 [(7;+m) By] (2.28)
with
o= 0 for: 0<y< 6 —— =4 (2.29)
Poll
s2 2 dﬂ - x g c+ U
e = poly’|—| = KNpou"y for: y > ¢, = (2.30)
dy pou”®

We see from this equation derived for an incompressible turbulent pipe flow,
that the Navier-Stokes equation for the mean quantities keeps the same form
as in the non-turbulent case, except for a change in the effective viscosity,
due to the turbulent mixture. This extra apparent viscosity 7, is proportional
to the distance to the wall, but vanishes completely in a small sublayer,
which is therefore described by the equations for normal laminar flow. This
sublayer is called the laminar sublayer. The turbulent layer is a logarithmic
one, containing two undetermined constants, A" and C/I, representing the
relation between the transverse and longitudinal turbulent velocities, resp.
the dimensionless thickness & of the laminar sublayer. The requirement
for the two layers to meet at y = §;, determines a relation between these
constants.

-Using this relation and measurements on the velocity profile of the tur-
bulent logarithmic layer, the two constants can be determined, resulting in a
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complete, semi-empirical theory of stationairy turbulent pipe flow. A picture
of the resulting velocity profile is given figure 2.2.

It should be noted that in this treatment of turbulence, the transition
between the laminar and turbulent zone is very sudden, this in contrast with
to the more general treatment as found in [SCH 79], which assumes a buffer
zone. This will turn out to be of major influence on the resulting attenuation.
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Figure 2.2: The dimensionless velocity Up/u* as function of y*
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2.3 Acoustical solution incorporating the ef-
fect of an axial mean flow.

The effect of a non-zero mean flow on the propagation of sound in the axial
direction will be investigated. Variations of the mean flow in the axial direc-
tion will be neglected, as well as the effects of viscosity and heat conduction
in the bulk. In the radial direction however, the mean velocity will vary from
the maximum in the middle of the pipe, to zero at the wall, according to the
fully developped turbulent pipe flow description derived in the previous sec-
tion. So, when separating the physical quantities in a mean and a fluctuating
part again, the velocity can be written as follows:

u = up(r)+u(rz) v K uy < co (2.31)
v, = wy, =0 (2.32)

The linearized laws of conservation of mass, momentum and energy for the
acoustical perturbations can be written in the form

%WLUO(”)%WLPOZ—E = %—§+po% =0 (2.33)
po%}tf + pouo(r)% = po% = _Z—Z (2.34)
poTo%—‘; =0 (2.35)

it 22 2 s 2

in which the primes have been omitted again. Now, the recipy is used again
to obtain a wave-equation for p. Therefore, p is eliminated by the thermo-
dynamic relation (1.10). Then, in taking the total time derivative of (2.33),
together with the axial derivative of (2.34), we get:

1 D*p 9%
— = 2.36
o Dt? Oa? ( )
After averaging over the cross-section, we get:
1 8 a\> 9%
c2 ( ° Oz * 0t> P= 922 (2.37)
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with Uy the average of ug(r) over the cross-section of the pipe. This results

in a dispersion relation for plane waves of the form e (ke — iwt).

w2

(ikmMo - i—> = (iky) (2.38)
Co
w 1
kim = +— 2.39
* N (2:39)
with: My = % (2.40)
Co

describing the propagation of sound incorporating the effect of a mean flow,
M, representing the global Mach number, related to the mean velocity.
Again, the other quantities are linearly related to p. The velocity u for
example, can be deduced from equation (2.33), and is given by:

+p 1
4y = 2P* (2.41)
poco \ 1 & [My — mg(r)]

with mg(r) the local Mach number wg(r)/co. For the flow along the center
line of the pipe this reduces approximately to the familiar relation

. +p
Uy = i (2.42)
PoCo
whereas for the region near the wall, the relation becomes
. Ehiwp
Uy = Thambt (2.43)
Pow
The temperature T still obeys the simpler relation
- T
Ty = -‘léﬁi (2.44)
PoCp



2.4 acoustical boundary layer in case of a
turbulent mean flow

In the previous section, a dispersion relation describing the propagation of
sound in a pipe with flow, neglecting the effects of viscosity and heat con-
duction, has been derived. It will serve as a basis to examine the structure
of the acoustical boundary layer, which is the main cause of attenuation of
sound in a pipe. Considering the attenuation as a small effect, we can use
the approximate dispersion relation found to estimate the spacial derivatives.
We will use the time-averaged Navier-Stokes equation (2.4) in the boundary
layer approximation, and write the physical quantities ¢}, conform equation

(2.1), as
Q=0+Q=Qo+Q +Qo+¢ (2.45)

which is equivalent with stating that the acoustical variations can be regarded
quasistationary with respect to the turbulent variations. An other way of
saying this, is that the acoustical variations take place on a time scale much
larger than the fluctuating turbulent motions. The averaging time is then
choosen so long that the turbulent fluctuations are averaged out, but short
enough to allow an oscillating acoustical variation of the mean quantity to
exist. The result is:

ou' ou’ dpe  Op' 0 dug  Ou —

7 A A Y e L 2.46
P05t pouo(y)am dr  Ox + dy 7 dy * dy potiv| (246)
The Reynold stress was estimated by (2.7):

— du ou'| [Ouy O
—potid = polK Y == + —| | = + — 2.47
= ok 2 50 (G 5 (240
If Ou'/0y < Ouo/0y, we get after performing the multiplication, using equa-
tion (2.30):
— Jug ou’ au’\ |ou’
—poliv = — +2 Ky? — i
pott? m((’)er 0y)+p0\y (ay) dy (2:48)

where 7, is defined on basis of the stationary flow velocity uo. Inserting
this in the above Navier-Stokes equation leads to an equation, equivalent to
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that describing the stationary equation for turbulent pipe flow, except for
the terms involving the small acoustical perturbations. We see that, if there
are no acoustical disturbances, the equation is exactly the stationary one,
for which we know the solution. So the stationary equation (2.28) can be
substracted to obtain an equation for the acoustical quantities. In doing so,
and neglecting the term (9u'/0y)|0u’/dy|, the result is:

ou’ ou’ ap’ 0 o’
 _ P)— = e — 2 .

in which wg s given by the solution of the stationary equation. This equation
must be solved under the condition that w/(0) = 0. The other boundary
condition, for y — oo, will be governed by the thickness of the acoustical
boundary layer é, in comparison to the turbulent boundary layer thickness
6;. When taking the limit for w — oc, so that é, <« 6, the second term
on the left will be negligible, since the acoustical shear wave will be damped
completely before entering the area in which ug is significantly greater then
zero. The resulting error will be of order O(mg(6,)). The boundary condition
then becomes, in complex notation, omitting the primes:

knl ~
ti(oo) = p (2.50)

in which k,, is the wavenumber for the acoustical solution with mean flow as
given in (2.39). Using the following relation for the apparent viscosity 7;:

n(y) = 0 for: 0 <y < & (2.51)
m(y) = polKu™(y — yo) for: y > § (2.52

the solution to (2.56) can be given in terms of Hankelfunctions. It must be
noted that this relation is slightly different from that derived in section 2.2,
with respect to the factor yy. This factor yo is an arbitrary constant. We
will use this relation, since it is a more general description of the apparent
viscosity.

The particular solution to the problem

kn.p

Pow

(2.53)

Up =
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is substracted from the equation, altering the boundary conditions to:

kp

u(0) = (2.54)
Pow
u(oo) = 0 (2.55)
and leaving to be solved:
ou' 0 ou'’
— = 2m,) — 2.
PG = By [(77+~m) ay} (2.56)

For y < 6, the problem is similar to that of the viscous boundary layer in
the absence of mean flow, so the solution is of the form:

iy = Aye &Y + Aye &Y (2.57)

with: ¢, = |/ —t0 (2.58)

m

Satisfying the boundary condition for y = 0, results in:

, oo kb o kp o _
u; = Aq (e “Y _ ¢ t’“y) — ——I(r“ @y = TP (A sin(ie,y) — € vaX‘Z.E)Q)
Pow Pow
The reason for the decomposition of A, in Ak,,p/pow is that it simplifies the
final expressions. The solution to the equation for y > &; can be found in
terms of Bessel-functions, since the equation can be rewritten to take the

form of Bessels equation:
g (0 . .
2~ (:c—y> (et =)y =0 (2.60)

with v a constant. Writing (2.56) somewhat differently, we get the following
homogeneous differential equation:

3] n au tw
— —Yo| = =0 2.61
dy |:(2]\'u"p0 Ty yu) 03/} + 2K ux N (2:61)
Now, when making the substitution
£ = [ ty- (2.62)
2Kup, 0P e
dy = 2£0¢ (2.63)
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the equation becomes:

a ( ou 2w
- -— — U = )
o€ (§0§> * Ku~ S =0 (2.64)

The first term now has the required form, but the second term contains the
unwanted factor 2iw/Ku*. In writing

2iw
= 2
¢ KNu* (2.65)
, 2w
¥ - — ¢ 9
¢ v/ ]\,uKdﬁ (2.66)
we obtain
15} ot o
52@594%u_o (2.67)

This is a Bessel equation with v = 0, so the solution is a linear combination
of Bessel-functions of order zero. In order to obey the boundary condition
for y — oo, being &« — 0, the solution must be a Hankel-function. Since
¢ ~ (1+41)\/y, y real, the solution is the first Hankel-function of order zero.
So, for y > &,

: kp
i, = BiHN() = —-BH}() (2.68)
Pow
2 2
Y e S R 5] (2.69)
Ku n
e, L+

with: ¢ =

Ku*py K& (2.70)

The solutions %; and @3 must now be matched at y = ;. In doing so, both
the velocity 4 and the shear stress dd/dy must be matched at y = §;. The
following property of Hankel-functions is used to calculate the first derivative
of ’112.

(G

Ha(¢) = (—20) (2.71)



Because 9(? = (2iw/Ku*)dy, the result is:

Oty 2w OHM() 2w 1
o - Prw o P _2<H1(C) (2.72)

So by requiring (&) = u2(6;) and nu}(6;) = (n + 2n:(6:)) 84 (61), a closed set
of equations for A and B is obtained

BHlac) = Asinb—e (2.73)
*B ,—zw H|(ac) = B Hl(ac) = Aie,cosb+ eye b (2.74)
Ku*ac ¢
. . (1 + )8
with: b = ibe, = -—g}——l— (2.75)
2n4(6
=14 2o _ V142K (88 —yd)  (2.76)
n
So the solutions are:
Ao [chll(ac) + tHj(ac)] e Z.b (2.77)
Hi(ac)cosb + cH} (ac)sinb
—1
B = 2.7
Hl(ac) cosb + cH{(ac)sinb (2.78)
The total solution is therefore given hy:
o = b |(eHi(ac) +iH(ac)) sinicy)e (1 - e —o)
pow H(ac)cos b+ cH{(ac)sinb
for: 0 <y < ¢
[ Xt
_ kb | H; (a\/1+“*2"1f‘")) .
T pow H}(ac) cosb + cHl(ac)sinb '
for: y >
With the constants a, b and ¢ defined as:
141 (14 2)8 >
a:m; :—63‘_1_-; c:\/1+21'\(6,+—y8’) (2.80)



With this explicit expression for the velocity in the boundary layer an esti-
mate can be made on the attenuation as a result of the viscosity n + 27;.

Some special and limiting cases of the used model for the turbulent vis-
cosity can be calculated.

When increasing the turbulent intensity to oo for y > §; by enlarging K
, we arive at the so-called rigid-plate model, as proposed by Ronneberger
[RON 77], in which the acoustical shear wave is completely reflected at the
boundary between the laminar and logarithmic layer. It can be derived
directly by setting u(y > 6;) = u,. and matching the solution for y < & to
this boundary condition.

If the effect of turbulence is neglected, by setting the K = 0, or the
laminar boundary layer thickness 6; to oo, the Kirchhoff solution is found,
because then A becomes zero.

If the boundary layer thickness &;" is set to zero, as well as yg, the solution
found in the first paper of Howe turns up [HOW 79].

In the special case that y§ = &, the solution given by Howe in a second
paper [HOW 84] is the result, since then ¢ = 1.

When setting yo = 0, the turbulent viscosity takes the form derived in
section 2.2, This model will be referred to as the new model or the new
theory, since it is an adaptation of the existing model used by Howe.

An expression for the thermo-acoustical boundary layer has yet to be
determined. Therefore the linearized energy equation in case of a mean flow
is used:

I} S A
poToaa—i + poTouo(r)g% = % [(K + 2Ky) 5
The thermal conduction is assumed to behave in a similar way as the viscosity,
the two being related by

(2.81)

NS
Ky = — 2.82
t P7't ( )
with Pr; the turbulent Prandtl number. Measurements on Pr; have been
performed, resulting in a value of 0.7 < Pr; < 0.9 [SCH 79]. The energy
equation then is rewritten, using the thermodynamic relation (1.6), resulting
in an equation equivalent with that for the boundary layer velocity:

AT Ty | AT-Tu)] O T
PoCp o +“0(7) Oz = ay (/‘v+—‘l€t) 0y (283)
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The solution to this equation, under the same assumptions as above, can be
found by making the obvious substitutions in (2.79).

T = T.(A'sin(iery)—e ~TY) (2.84)
T v/
= Lﬂp (A' sin(zvV Pre,y) —e — P'revy) (2.85)
PoCp
with: A = A(d, ¥, ) (2.86)
ro w2 1 Erakst — ) (2.87)
a = \/P_ra’ = r; ¢ = Pro T —ud) (2

This enables us to incorporate the effect of turbulent heat transport in the
calculation of the attenuation due to the boundary layers. A calculation of
this kind was first performed by Howe [HOW 84].
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2.5 Viscothermal attenuation of plane waves
due to boundary layers in case of a tur-
bulent mean flow.

In having an expression for the acoustical boundary layers in case of an turbu-
lent mean flow, we’re able to calculate the attenuation due to these boundary
layers in a way similar to that of section (1.5). Again, the equations of mass
and momentum conservation are used, neglecting the effects of viscosity and
heat conduction, except for the region close to the wall, where the boundary
layer solutions are used. This means that the attenuation in the bulk of the
fluid due to viscosity and heat conduction, molecular as well as turbulent, is
neglected. That the turbulent bulk attenuation can be neglected in compar-
ison to the attenuation due to the boundary layers, has been shown by Howe

[HOW 79]. So we write:

Dp du
D gy Y (2.88)
Du dp 0 Jdu
—— = o+ (14 2m) 5 2.
PO e 9y [(77+ M) 0y} (2.89)

completed with the energy equation and the equation relating p, p and s

D s d aT
7 = k39, =— _
pOTODt 3y [(N + 2k4) ay} (2.90)
1 T
p = —=p-— pobTo (2.91)
Co Cp

and after taking the total time derivative of (2.88) and taking the axial
derivative of (2.89), substracting them, and eliminating p with help of (2.90)
and (2.91), we get:

1D*p B D 0 0Ty

_ - — 2

2Dt ¢, Dty [(h +260) dy (2:92)
. 02}) (? 8 8ub1
T 922 020y [(77 +27) e (2.93)



Performing the integration over the cross-section as in section 1.5 results in

1 (9 a\: &
[% (b—t + UO()_.I> - 8—1‘2':| P = (294)
< 9 Qua| e+ 20 0 0Ty
o |+ 2m) 5 By |, e o0y, (2.95)

in which the factor ugd7y/0x has been neglected in calculating the integral
with respect to 0Ty /0t, since near the wall ugk < w. When again assuming
plane harmonic waves, and renaming the righthand side expression divided
by p as F(k,w), we get the following dispersion relation:

2
. W [
<sz - z—) + k2 = F(kw) (2.96)
Co

Since the attenuation is assumed to change the free-space wave number k,,
only slightly, the function F' can estimated by setting F' = F'(k,,,w), because
it contains only product terms of £ with small quantities. The dispersion
relation can than be re-expressed as follows:

2 Muw 2
(1 - MK + 2k — (“’—2+F(km,w)> - (2.97)
CO CO

resulting in

_2My 4 ﬂlgw_ +4(1 — M?) (“’—7: + F(kimaw))

L 2.
+ . 2(1 — M?) (299
—Me g (L= M2)F (k. w)
_ o 2.
1 — M? (299
My [y 02 pi )]
N . o (2.100)
1— M?
w 1 Co
— _ — F(k my )
ico 1+ M + 2w (ko 0) (2100

The attenuation thus can be expressed as:

ap = i%F(kim,w) (2.102)
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Evaluation of F' by using the solution of the boundary layer equations (2.79)
results in the following expression for the attenuation:

_ 1+:A (y—1)(1 44"
a*'i<(1+M)2+ VPr

with A and A’ conform equations (2.77) and (2.86), as found in the previous
section, and «, the real part of the attenuation as it would be only resulting
from a zero mean flow viscous boundary layer, as in equation (1.55).

It must be noted that this attenuation is a complex quantity. The imag-
inary part determines the amplitude decay along the pipe, whereas the real
part introduces a change in the fase velocity of the sound wave.

Some comment must be given on the method used to come to this at-
tenuation. The acoustical boundary layer description is derived under the
assumption that the acoustical shear wave stays completely within the tur-
bulent boundary layer, resulting in the boundary condition @(o0) = kp/ pow.
This assumption is fullfilled for a fixed small Mach number in the limit that
w — 00.

On the other hand, if for fixed w the Mach number is taken to zero, so that
the shear wave is completely in the turbulent region, the boundary condition
should be altered to 4(oo) = p/poce. But in this limit of M — 0, k =~ w/co,
so the expression for the attenuation remains valid.

Therefore it is argued that the above expression for the attenuation is an
apropriate one for the intermediate combinations of A and w.

) (1+4)a, (2.103)

2.5.1 Implications for measurement

When making measurements, we want to seperate the Mach number de-
pendence from that on the dimensionless viscous length scale 1. Also, we
want to normalize the measurement in some way. Therefore, we will plot the
attenuation as found above, however without any Mach dependence, normal-
ized by the Kirchhoffamplitudeattenuation :3(ag). We're mainly interested
in thetmaginary part of the attenuation, since that causes the amplitude at-
tenuation, which has now become thereal part of the normalized attenuation.
So, we will plot

gl g il 4iAd A 24 k2

lim —
‘ REC

q
= Zie (2.104
M—0 1ag 1 1+% ot (2:104)
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We’ve introduced the dimensionless functions Z, and Z,, known as the di-
mensionless wall impedances of the sound wave. They are defined as the wall
impedances,

5 = — (2.105)
uac y=0
®
zg = = (2.106)
Tac y:O
Otlge = OTM
ith: 7 = — ;o =— 2.107
with: 7 n 9y K 3y (2.107)
made dimensionless by the value resulting for the Kirchhof estimate:
by
Zr = z;— (2.108)
Y]
) by
Z, = z—=: (2.109)

£ 'wVPr

These 1mpedancies Z,, Z, and Z,,, will be used in this report only as ab-
breviation, and there will be no inquiry on the physical background of the
similarity between the theoretical results obtained here for the attenuation
and the results obtained by others on basis of the impedance. We have plot-
ted the total impedance for the different models for the effective viscosity in
figure 2.5, using Pr; = Pr. When we look at the real part, we see a low
region limit of unity, a typical dip for 6} =~ §;, and a straight line with a
certain slope, looking identical for the three models. The low region limit
shows that the attenuation attains the form of the Kirchhoff attenuation.
The dip is thought to be a result of interference of the shear wave with it’s
reflection at the edge of the turbulent zone. The slope will turn out to be
of importance in determining the static limit, since it is proportional to the
attenuation for low frequencies. Therefore, we take a closer look at the slope
for the different models.

We want to determine the behaviour of Z, for large 6. When we look
at the rigid plate model, as introduced in section 2.4, A takes the following
form:

(2.110)
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(1+2)§
oF

with: b =

(2.111)

If we expand it into power series for large 6F, so for small b, we get the

following result: ’

1+1b
A = :’ =1/b (2.112)
(1= )6t
So, we get:
. , (1 =)ot
A= —— 1Y 2
5}13101 + A 257 (2.114)
Returning to Z,, we get:
: 1+ . oF

We see that the slope tends to a limiting value of 1/6;". For the other two
models, we just state that the slope will go to zero for 6§} — oo. This will
occur however for values of § far beyond the valid range, determined by
the dimensions of the pipe in relation to the thickness é,. In the region of
interest, for 6} = 30, the slope will vary only slowly, as can be seen in figure
2.5.
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Chapter 3

Some other theories from
literature
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3.1 The stationary limit

We can imagine that for very low frequencies, the attenuation of sound could
be determined by the same mechanisms as those responsible for the static
pressure drop in fully developped turbulent pipe flow. Therefore, we could
expand the static pressure drop in a taylor series, from which we will only
use the first term. That is to say, we linearize the behaviour of the pressure
drop due to a small periodical change in the mean velocity. For the static
pressure drop we write:

dpo ¥ po, .
T = %TZ-UO (3.1)

in which v is the dimensionless friction factor. Variation of Uy by introducing
a disturbance u’, results in change in the pressure drop p':

dpo+p ’ ' ! !

S Fa %%"(UOMM%%%USHUW+u2) (3.2)
dyp '
dl; = %poUgU (33)

If we now assume the relation p’ = pocou’ for plane waves is still valid, we
come to the expression:
dy v U i
L. — 2 = .—l-(——/\ffop' (3.4)
2a

dz  2a ¢

Since the attenuation « is described by p'(z) = p'(0)e ~— T, we see that:
vt M
dz :
stat = - = 3.5
Q' stat P 24 ( )

This is the attenuation due to a uniform pressure drop. Since we’re consider-
ing harmonic oscillations, we must take the effective average over one period,
resulting in halve the value found above. So,

wM
4a

(3.6)

Astat =
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the additional ¢ is introduced because we actually determined the imaginairy
part of the attenuation as defined in equation (1.25). When making dimen-
sionless again with zag, we get the following equation for Z,,:

M Oyt
2o = f ST N i (3.7)
atgp 1 + 73: 2

A more detailed description of the theory of this static limit is given by
Ingard and Singhal [ING 74].
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3.2 The quasi-laminar limit

As we’ve found in the previous chapter, when §, < é; the attenuation can
actually be described by the Kirchhoff attenuation, altered for the up- and
downstream direction of propagation according to the Doppler effect. This
shift is essentially caused for two reasons. One is that the wavenumber is
affected by the mean flow, so:

w 1
Col:t]\/[

The other reason is that the equations governing the shear waves contain
convective terms involving the mean velocity profile, such as uod/dz. In our
approach we simply neglected the convective terms in the wall region, by
assuming that this will cause only a minor error.

Ronneberger [RON 77] has made a very thourough investigation on the
effects of these terms, and has also included the influence of the pressure
gradients along the pipe due to the friction and the pressure gradients in the
axial direction due to turbulent dissipation. He performed his calculations for
the attenuation of sound using only the molecular viscosity 7, so neglecting
the turbulent viscosity 7;.

His theory describes how a sound wave should propagate theoretically,
under the influence of a mean velocity profile, in our case of course the
turbulent profile. It does not include any interaction of the turbulence with
the acoustical field.

The result of his investigation is a relation for the attenuation, in which
the difference in up- and downstream attenuation is described by three di-
mensionless functions. These functions depend only on the Mach number,
and have been calculated for air.

ki = (3.8)

1 -
o =aq, F)——(Co — (7" = (ye) (3.9)
‘ 1+
with: P, =1 —0.18M?, ¢= —Méu (3.10)
2POC0

In the figure 3.1, the ratio €*/¢ is plotted as function of 6. In the following
three figures 3.2 , 3.4 and 3.3, the dimensionless functions are plotted against
the Mach number.

51



1.0
08
3
W
06
04
0 10 20 30
—

Figure 3.1: € /€ as function of &}



Lo(1eM)3

1.8

14

1.0

-

Figure 3.2: (5(1 + M)* as function of M




‘ L

2
\\\\‘\
Y
-~
~
\\\
\\
0 N
N
N\
\
\\
\
\
\
\
b
-2 \
\
\
\
\
\
\
\
\
-4 \
\
\
0 02 0.4 06

—_—— M

Figure 3.3: (J(1 + M)* as function of M



g, (1eM)¢

38

32

2.6

-
—
e o -

|

02 0.4

_— M

Figure 3.4: ¢; as function of M

29

06




We will not go any further in describing his theory or the results. We
just included this section to introduce the theory of Ronneberger, since it
predicts the Doppler effect very well in it’s range of validity, for 6, < ¢, as
we will see when discussing the measurements.
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Chapter 4

Measurement
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4.1 Experimental setup

In order to measure the attenuation of plane pressure waves in a long duct,
a multiple microphone method is used. The measurement setup is presented
in figure 4.1.

Uo

—Cr

2 1

Po To

-

6

\

Figure 4.1: The experimental setup
1 microphones; 2 sirene; 3 buffer vessel; 4 dry air supply; 5 turbine meter; 6
pipe; 7 frame

/[
DIMIIMINIY

Six acceleration compensated piézo-electrical pressure probes, type PCB-
116A, are mounted upon a long duct. A schematic picture of the mounting
of the microphones is given in 4.2. The size of the probes makes a flush
mounting impossible. Therefore, they are placed in a small cavity connected
with the fluid in the pipe by a small channel. The form of this construction
is of general importance, since when making the cavities to small, viscous
effects will alter the behaviour of the probe, whereas to big cavities will
disturbe the pressure waves in the pipe. The effect of the cavities on the
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pressure response of the probes is minimized by a calibration procedure, see

[HUI 92].

150 i 0.5
|
3
Figure 4.2: The mounting of the microphones

The duct of about 7 m, with an inner radius of @ = 0.015 m, consists
of several pieces. It is therefore possible to reassemble the duct to the alter
the length or to change the positions of the microphones. The inner wall
roughness is about € = 0.1 pm, and therefore the duct can be regarded as
hydraulicly smooth within our range of measurements. The duct ends in a
large room (2000 m?), minimizing the effect of external acoustical fields.

The signal from the microphones is amplified by charge amplifiers (Kistler
type 5007/8), which tranform the charge delivered by the piezo-electrical
microphones into a voltage. The charge amplifiers are equipped with a low-
pass internal filter with a cutoff frequency of 22 KHz. By using the leak
resistor of the charge amplifier in the position medium, frequencies below
approximatly 0.1 Hz are also cut off.

The resulting signal delivered by the amplifiers is used as input for a
data acquisition unit, the HP3565S. This unit is able to perform real-time
Fast Fourier Transformation on the pressure signals. This data acquisition
unit is controlled by a micro computer (HP9000/360), which is also used to
present and store the data collected by the acquisition unit. From there, the
data is transfered to an IBM compatible personal computer, to perform the
necessary calculations to determine the attenuation of the sound wave.
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The sound field is produced by a sirene at the entrance of the duct, driven
by an electromotor. The sirene consists of a rotating disc with holes in it,
through which the dry air (dew-point -40 .°C), supplied by the buffer vessel
(60 bar.) flows. The frequency of the sirene is controlled and tuned by an
electronical motor control unit. The frequency can be varied, depending on
the number of holes in the disk, in the range 5 Hz to 1 kHz. The frequency
fluctuations, limiting the coherent measurement time and the accuracy of the
measured transfer functions, are of the order of 0.1 Hz.

The amplitude of the pressure variations in the flow leaving the sirene
can be lowered by allowing a part of the air to bypass the rotating disc and
mix with the chopped flow. The pressure in the buffer vessel placed directly
in front of the sirene is maintained constant by a high pressure pipe-system.

In order to calculate the mean flow velocity Up in the duct, the air flowing
into the buffer vessel is measured by a turbine meter. The pressure and
temperature at the turbine meter, as well as the temperature along the duct,
is measered to compensate for the decompression of the air when it flows into
the duct under atmospheric pressure. The pressure (0-15 Bar), is measured
by a conventional bourdon barometer, type Wallace & Tyrmann, whereas
the temperatures are measured by PT-100 probes, accurate up to 0.1 .°C.
Also, the speed of sound in dry air ¢q is determined from this temperature
measurement using tables of measured data on ¢, as function of temperature
[CRC]. This results in an accuracy in the Machnumber M = Uy/co of about
1%, which has been checked by measurements on the maximum velocity
on the center line of the pipe flow with a Pitot tube [BAL 92], assuming
the validity of the relations given for the maximum and mean velocity by
literature [SCH 79]. M can be varied in the range of 0 < M < 0.3.

Different pipe terminations can be connected to the duct, in order to
change the reflected part of the sound wave, and therefore the ratio of the
amplitudes of the up- and downstream sound wave. The circular flare is one
of great usefullness, since it has a strong reflection coefficient , giving the
reflected wave enough power to be accurately measured.

In order to measure the attenuation in the absence of a mean flow, the
duct can be closed at the termination, whereas between the exit of the sirene
and the beginning of the duct, a gap of about 5-50 mm allows the air to
escape.
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4.2 Determination of the attenuation coeffi-
cient

As we’ve seen, the pressure perturbation for harmonic waves along a pipe
can be represented by the following linear equation:

P(:L',t) =R [3+6 Z(k+:L‘ —wt) +I3—e ’i(—k‘-.’l? —-wt) (4'1)

k generally complex. In this equation, the oscillations are represented by
e _“")t, just as in the chapter about the theory of attenuation. This makes
it easy to compare theory with some references.

In experimental situations however, we aren’t dealing with harmonic
waves. Therefore, Fast Fourier Transformation is used as a tool to pro-
vide us the information about the harmonic waves in which the signal can be
decomposed. The data acquisition unit performing the F.F.T. uses another
convention to represent the oscillations, the +iwt convention. This means,

in order to achieve consistency, that we should write:

P(ZI?, t) — §R []3+6 z(—k+;1? + Z(.u‘t) + ]3—6 i(‘i‘k_ilf + zwt) (42)

or, relative to the pressure at some position .y,

P(a,t) = R [ (zrug)e (TR m ) Fl) e 0P (2 = 2res) )

The information about the pressure signals from the different microphones
is given in the form of transfer functions, describing the linear dependency
between the signals. The transfer function Hy; is defined as:

P(xy,w)
H(w)y = ———= (4.3)
P(:B?a w)
in which the time dependency has dropped out. P(z;,w) is the fourier com-
ponent of the pressure wave with frequency w, measured at position z;.

Since we know that the attenuation is different for waves traveling in the
up- and downstream direction, we want to seperate the pressure amplitudes
of the two waves. Therefore, it is convenient to define a pressure reflection
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coefficient R(z,.s,w), being the ratio of those complex amplitudes at some
position Z,.y:

P(Tres, )~ | (4.4)

R(a:ref,w) = =
p(:rrefa w)+

This reflection coeflicient can be expressed in terms of the transfer function,
and for the special case of 2, = x; we get [HUI 92]

H21 —e _Zk+A.’I/'

R(xl,w) = . ’I.,IC_AI _ [[21 (45)
with: Ax = 2, — @y (4.6)
This enables us to write for the total pressure
P(zq) = p*(21) + p~(21) = p(21)[1 + R(z1)] (4.7)
giving for the compositing parts
P(zy)
+
—_— 4.
- P(z1)R(z:)
: = R tg) = ——~—~ 4.
P (ll) (Tl )p (‘11) 1 + R(J:l) ( 9)

So, if the complex wavenumber & is known, the reflection coefficient, and
therefore the relative amplitudes of the up- and downstream waves at some
position z; can be determined by measuring the transfer function for a mi-
crophone placed at 27 and an other microphone.

The problem is, however, that we do not know the wavenumber exactly,
since we want to measure the small deviations from the wavenumber for free
space plane waves due to the acoustical boundary layers! But, when the other
microphone is placed relatively close to @1, the errors in the amplitudes will
be small if the approximate wavenumber is used:

w 1
ki%:t——

‘Now, in order to determine the wavenumber more exactly, and thereby
the small attenuation factor +ay, the following procedure is used. The
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amplitudes p*(z;) and p~(z;) are determined by two microphones at the
beginning of the duct, placed relatively close to each other at z; and z;, as
imposed by the reasons mentioned above. The same is done at the other end
of the duct, with a second pair of microphones at positions z3 and z4. Now,
by having the complex amplitudes of the waves at two, distant positions x;
and z3, we can calculate the wavenumber by means of the following equation:

p*(zs) _ pre ?ljkixa _ . FiksAz (4.11)
pr(z1)  pre Trheta ’
$0,
+i pHlas)  H pE(as)] pt(z3)
ke = — =\ ' 2 4.1
T Ag nPi(xl) Az \" pE(ay) T pt(zy) onm) ) (412)

Since we’re considering complex amplitudes, some thougth is to be given on
taking the logarithm of a complex quantity. Because each time the wave
has made one circle in the complex plane, the cut in the complex plane is
crossed, we will loose information on the angle of the quantity ®(Q), resulting
in an unknown factor 2nwi. The real part of k can however be estimated by
wAz/co(l £ M), since the effect of the attenuation on k will be very small.
So by rounding of the difference of the last term of (4.12) with the estimate
on R(k) to 2nm, we can determine n.

Now, we're able to determine the wavenumber &, based on the calcula-
tion of the reflection coefficient with use of the approximate wavenumber
k = wlAzx/co(l £ M). It is obvious to use this new wavenumber as an im-
proved estimate to recalculate the reflection, in order to get an even better
approximation. By repeating this procedure until no improvement is noti-
cable, we can determine the wavenumber k, and thereby the attenuation a.
Convergence of the iteration procedure is usually obtained rapidly (five steps
are sufficient to achieve a convergence of k and «a of order O(1075)).

It should be mentioned that other methods of determining k& with use of
the transfer functions can be used. The method we used however, has an
important feature. The amplitudes p* are determined by local parameters
only, and therefore the errors resulting from extrapolition over long distances
with use of parameters which can vary over that distance, for example the
speed of sound c¢g, are minimized. Then, by knowing the up- and downstream
wave at two distant positions, the complex wave number can be determined
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using the average speed of sound over that distance, removing the need to
extrapolate.

In fact, we didn’t use four microphones, but six, clustered in two groups.
This gave us the opportunity to get independent results for the different
possible choices of the four microphones, improving the reliability of the
measurements.
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4.3 Measurement results

We’ve measured the sound propagation and attenuation with a multiple mi-
crophone method. In principle, the problem is that of the determination of a
solution to an over-determined system of lineair equations. This can be done
by regression analysis. But, for the sake of simplicity, and to keep contact
with the underlying problems, we’ve choosen data of several combinations
of microphones, each time forming a closed set of equations to be solved.
The resulting solutions for one measurement are then simply averaged, after
being disposed of the unreliable solutions.

In this way, better insight is obtained in the problems arising for certain
conditions, especially important since we'’re in the development fase of the
measurement facility.

4.3.1 measurement for the quiescent case

We will presnt the attenuation as measured in the quiescent case. This
measurement is done to check the validity of the Kirchhoff solution, as well
as to get an impression of the accuracy of the measurements. In figure
4.3 measurements of the attenuation are plotted, as well as the Kirchhoff
estimate.

We know that without flow, the direction of propagation shouldn’t have
any infuence on the attenuation. In the calculation of the wavenumber of
the sound wave, we didn’t exclude however the dependence on the direction
of propagation. As we can see, both the real and imaginairy parts of the
attenuation in both directions are in good agreement, with each other as
well as with the Kirchhoff estimate. This enables us to calculate the speed
of sound from the measured wavenumber, as shown in figure 4.4.

k=24 (1+i)ag (4.13)

Co

(4.14)

For the high frequencies, the agreement with the adiabatic sound speed ¢
is outstanding. We clearly see a drop in the speed of sound cy as calculated
for the lower frequencies.
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4.3‘.2 measurements with a turbulent mean flow

Before presenting the measurements, let’s first take a closer look at the the-
oretical relation describing the attenuation.

B 1+14 (v = 1)(1 +:A") :
ap = <(1 M) + NG ) (14+17)a, (4.15)
A = A(6F); A= A'(6F, Pry) (4.16)

We see, that the effect of the turbulent interactions is described by a di-
mensionless function of the variable parameters M and é7. They are not
independent, since 6} is a function of Re, so for one pipe with a fixed radius,
a function of M. But since 6 also depends on the frequency w of the sound
wave, we can choose any combination of 6 and M, making them effectively
independent parameters. So, theoretically speaking, all measurements should
fall on one curve when made dimensionless by «, or o and plotted against
M and é}.

It would be very helpfull for studying the attenuation, if the effects due
to the turbulence, possibly depending on the Reynolds number Re, could
be seperated from the mean flow effects, determined by the Mach number
M. Therefore, two methods can be used to eliminate the Mach dependence,
which will be described below.

The factors describing the Mach dependence are different for the viscous
and the thermal part of the attenuation, resulting in an unknown Mach
dependence if we make no assumptions on the relation between the viscous
and thermal contributions to the attenuation. Therefore, a problem arises
if we want to determine the form of the functions A and A’, or the more
commonly used quantities Z; = (1+:4)(1 —2) and Z, = (1 +:A")(1 —1), also
called the normalized wall impedance, since we cannot eliminate the Mach
effect from one measurement. This can be overcome by extrapolating several
measured values , ‘contaminated’ by an unknown Mach dependence, to zero
Mach number, with respect to a fixed value of é}.

51{;;(19_{ Ll A+ (1A Z:+ I 2,
M=0 1aq 1+ 2L 1+ =2

This method, used by Ronneberger and Ahrens [RON 77], has the disad-

vantage that information about a possible Reynolds-dependence will be lost,

== Ztot (417)
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because the Reynolds number is a function of the mean velocity in the pipe
Uy and the radius of the pipe . Since we used only one pipe, we cannot
change Uy without changing the Reynolds number Re, so by extrapolating
the Mach number to zero, the Reynolds number will also vary. Also, the num-
ber of measurements must be considerable to make a reliable extrapolation
possible.

Therefore, we used an other procedure. We do know the theoretical Mach
number dependence in the region of interest, where 6% > 6. It is however
different for the thermal and viscous impedances, two quantities we do not
know. But for Pr; = Pr, thanks to the similarity between heat conduction
and momentum transport, expressed in the Prandtl number Pr, the real
parts of Z, and Z,, of importance for the Reynolds dependence, are related
by:

oy
/P
Since we know that Z, becomes proportional to éF, the ratio between the
slopes of the impedances will become VPr, assuming Z, will not vary to
much over a range of 6} /+/Pr to 6. If we use this approximation, we can
eliminate the Mach dependence without extrapolation, keeping the Reynolds
dependence unaltered. This is done by summation of the measurements for
the up- and downstream direction, and correcting the so obtained ’averaged’
value @ = (a4 + a-)/2 for the theoretical Mach dependence, and thereby
eliminating the Mach dependence.

Z.(8%) = Z,(—==) (4.18)

C
VvV Pr

Z, = C6'= 7, = ——=6F (4.19)

CoF(1+ %)

Liog = — LD (4.20)
e
1 1 1 ~v—1
a . (5(1 M?"’(l-M?)"‘W)
— = Cf (M) n A (4.21)
0 ;;Pr
g [ 1+%
D = — (T (4.22)
tag \ | +3M2 + 1];1_—

The correction factor is close to unity for low Mach numbers, so a slight
error in it due to the theoretical assumptions made above is only of minor
influence on the results.
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A typical example of the measured attenuation is given in figures 4.5 and
4.6. We see that the scatter for the up- and downstream attenuation is rather
large, especially in the low requency region, but the average showes a much
more stable behaviour.
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Figure 4.5: Typical measurement of a (m™') as function of w (rad s7!);
M = 0.04.

+ S(ay); o Fa-).

Some check can be made on the assumptions on the Mach dependence,
since for the ratio $(ay)/S(a-), the following relation should hold:

1 ~y—1
(ay) (1412 + 5

(4.23)

1 y—1
(1-A1)? + Pr

The result is shown in the following table, calculated with use of the data in
figure 4.7.
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Figure 4.6: The average of up- and downstream parts @ (m~!) as function
of w(rad s™); M = 0.04.
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M || S(ay)/S(a-) | eq.4.23
0.1 1.60 1.30
0.2 1.69 1.69
0.3 2.28 2.26

We can see from it, that for 67 < §;, the Mach dependence is not as we
expected, but since the correction factor is close to unity, we will use (4.22)
for the whole range of measurements.

The result for Z;, is shown in figure 4.8, in which also measurements made
by Ronneberger and Ahrens are plotted, who used the mach extrapolation.

To make a comparison with the stationary limit, we have plotted Z;,/é;
as function of (1/67)? for the different measurements in figure 4.9. Only the
real part is plotted, since that’s the part possibly related to the stationary
limit.
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Chapter 5

discussion
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5.1 Quiescent case

As can be seen from the measurements for the quiescent case, the multi-
ple microphone method provides us the possibility to measure the real and
imaginairy parts of the attenuation with an accuracy of 5%. This means a
maximum accuracy of about 3-107*% in the determination of the real part
of the wavenumber of the sound k! Also, the agreement between the up- and
downstream attenuation is excellent.

The drop in the calculated speed of sound for low frequencies, is probably
a result of the error introduced by using the boundary layer approximation,
and not a drop in the actual adiabatic sound speed ¢q. For the lower frequen-
cies, the boundary layer becomes so large, that the radius @ of the pipe is no
longer large compared to the boundary layer thickness é,. The attenuation
becomes asymmetrical for the real and the imaginairy parts, so («a) is not
equal to S(a) any more. The result is that the method of calculation of ¢
1s no longer valid. An exact solution of the equations on which we based our
boundary layer approximations is given by Tijdeman [T1J 75]. We can con-
clude from this measurement, that we must be carefull when using very low
frequencies, since the boundary layer approximations may not be accurate
enough.

5.2 Situation with flow

We've plotted our measurement of Z;,, with those of Ronneberger and with
the theoretical curves in figure 5.1. When looking at the measured total
impedance Z;,;, we can distinguish the three typical zones, also found in the
theoretical Z;,;.

5.2.1 The Kirchhoff limit

We see clearly, that the measurements all go to the theoretical limit of unity
for small 8}, so they all tend to the Kirchhoff attenuation, as expected.
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5.2.2 The dip

The measured minimum in Z;,, due to the interference of the shear wave
with it’s reflection on the turbulent zone, is deeper than that measured by
Ronneberger, but the place is in agreement. If we compare it with the theo-
retical curves, we see that value of the minimum as measured by Ronneberger
coincides with the value given by the curve for the model of 1, we proposed,
but non of the three theories does predict the position of the minimum ac-
curately.

It must be stated, that the measurements of Ronneberger were recon-
structed from the values he presented for the impedancies Z, and Z,. He
actually measured Z,,;, and substracted a Z,, calculated from measurements
on the turbulent heat transport in the absence of sound, and presented it
as Zr. He did however measure Z, also more directly, by an experiment
in water. Both measurements agree well, despite the fact, that the Z; he
used, doesn’t have the same form as Z,, as imposed by the analogy between
the heat conduction and momentum transport, as expressed by the Prandtl
number Pr.

The dip is thought to be caused by interference of the shear wave with
it’s reflection at the turbulent zone (see [RON 77)).

One reason for a possible shift of the position of the dip with respect to
the calculated position, is an interaction of the shear wave with the apparent
viscotity 7;. We could imagine, that the Prandtl mixing length [ becomes
comparable to the 'wavelength’ of the shear wave. If this would occur, the
approximations used in deriving the apparent viscosity are no longer valid,
as we can see in figure 5.2. We used the approximation:

0u _ e, OV
dy " dy = Oy

) (5.1)

This approximation will be valid if [ <« #6,, since then the mixing length {
will be less then halve the wavelength of the shear wave, which is defined as:

/\shear = 27(((51, (52)

This wavelength of the shear wave must of course be evaluated for the tur-

bulent region. Since §, = \/2n/wpg, we can estimate the wavelength for the
turbulent zone by setting n =: 7, < 26,7, resulting in a wavelength for the
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turbulent zone Agpeqr: which is at least three times of that in the laminar
region. Using the relation [ = Ky, we come to the relation

Yy (5.3)

< 'l,(sv,turbulent ~ Séu,turbulent ~ 2561}
K

Tresspassing of this condition will not be of influence if the shear wave is

damped before reaching the turbulent zone, so for é, < é;. The same is true

if 6, > &, since then the shear wave will also be damped before y becomes

of order 6, tyrbutent, because of the decrease in amplitude with height at least

exponentially, conform u' = v'(0)e —Y/bu.turbuient When however 6; is of the
same order as 6, the wave hasn’t had the chance to damp very much, and the
wrong approximation of Au = [Ju/dy is used in a region were the amplitude
of the shear wave cannot be neglected, resulting in an error of considerable
magnitude. 5

45+

T e
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y/ oy

25¢F
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1+

0.5

0

T 08 06 04 02 0 02 04 06 08
Figure 5.2: Illustration of a possible phase error due to the distance travelled.
upt/|tac| as function of y/é,

-« - error in the predicted velocity difference

Another reason for this shift in position of the dip could be that during
the time that the fluid particle with turbulent velocity in the axial direction
travels from one layer to another, causing the transport of momentum, the
phase of the destination layer has shifted, as illustrated in figure 5.3. Since
the phase of the shear wave changes according to wt, the limiting condition
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becomes wt < 7. The time the fluid particle takes, can be calculated by
realising that ¢ = [/ug ~ (Jue/dy)™" = n/79. Combining these relation gives
as limiting condition:

w1

T_o <7 (54)
8wn

— <7 5.5

¢P0U§ (5:5)

Since ¢ does not change much in the range of Reynolds numbers we're con-
sidering, we use the approximate value of ¢ = 0.02, resulting in the condition

w< 6107 (rad s~H)M? (5.6)

This means, that for M = 0.005, the maximum radial frequency becomes
w < 1500(rad s™'). All our measurements fall within that range, but it
shows that we must be carefull when measuring with extremely small Mach
numbers. 5 ' '
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Figure 5.3: Illustration of the possible error due to the time of the journey
from one layer to another.

upi/|Uqc| as function of y/é,

—— shear waveon t =0

- - - shear wave on t = 7/2

... error in the predicted velocity difference.
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Correcting both errors described above is essentially the same as intro-
ducing a phase lag between the incident and reflected shear wave. We will
show that this will shift the calculated position of the dip to the right by
examining the behaviour of the rigid plate model (see section 2.4). We have
plotted in figure 5.4 the normalized total impedance Z;,, as function of 6},
for different values of §; .

0 5 10 15 20 5+
Figure 5.4: Z,, as function of 61 .- - - = 10;—~76,+ = 15)‘ ——bF=20 v

As we can see, the dip shifts to the left for increasing ¢;. The minimum
(maximum interference) will occur if half the wavelength of the shear wave
matches the distance the shear wave travels going from the wall to the edge
of the turbulence and back. This implies, using (5.2):

/\s ear
= 24, (5.7)
267
o =L .
- (5.8)

The position of the minimum as observed in the measurements, could be
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explained as a result of a phase lag of the reflected wave. The actual distance
where the reflection occurs, determining the depth of the minimum, is then
combined by the virtual distance of the node of the wave, determined by the
phase lag. This results in a position of the dip on the right side of the position
determined by the actual edge of the turbulent zone. So, the position of the
dip calculated with for example & = 15, could be shifted due to this phase
lag to a position in accordance with the calculated position for & = 20. As
we can see in figure 5.4, this minimum will then shift to the right.

A reason for lowering of the dip might be the caused by the fact that
the turbulence time scale becomes comparable to the time scale of the sound
wave. The quasisteady approach then becomes questionable. The conditions
for which these time-scales become comparable, can be estimated by the
following argumentation.

The maximum dimension of the turbulent structures is the diameter of
the pipe, 2a. If we realise that these structures travel with the velocity of the
mean flow, we can estimate the frequency of these turbulent motions with
respect to a fixed position in the pipe. We get fi..5 = Up/2a, or, expressed
in the radial frequency, w3 = 7l/p/a. If we compare this frequency wiyrp
with the frequency of the sound waves w,., we get the Strouhal number,
Sr = Wb /wee = 7Ug/aw,.. It we calculate for which frequency the Strouhal
number becomes of order O(1), for a typical value of the mean flow velocity
of Ug =13 m/s, (M =0.04) and a pipe radius of 0.015 m, we get:

Wae = 3000 (rad/s) (5.9)

This is also the maximum frequency we used in our experiments. We see
however , that the assumption of quasisteady behaviour of the acoustical
disturbances must be kept in mind. It could be a reason for a possible
Strouhal number dependence of the attenuation, especially for values of é, >

4.

5.2.3 The static limit

+, we've plotted Z,/éF as
function of (1/6F)%. In figure 5.5, we've drawn the lines determined by the
static limit for the different measurements. As we can see, All measurements
are on the line corresponding to the measurement with the lowest Reynolds

For determining the behaviour of Z;, for large 6
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number. More important is, that the measurements show

no Reynolds de-

100 pendence, at least not within the measuring range.
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When plotting the theories using an apparent viscosity with the data,
as in figure 5.6, we see that in the upper right corner of the figure, the
theoretical curves converge into a straight line, corresponding to the limiting
value Zy,y = 1 for small §F. We already saw that the measured data also
tends to this limit.

When looking at the other limit, for small values of the parameter (1/68})2,
we also see the three theories converging. They will start to diverge however
when they have passed the point of convergence, although very slowly. Both
the theories with a finite estimate on ¢ will continue to lower, while the rigid
plate theory asymptotically attains the value 1/8}. The most important fea-
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ture is, that non of them shows a Reynolds dependence. The measurements
are in good agreement with the theoretical curves. This is achieved for the
rigid plate model by changing the empirical value of §" = 10.7 to 6,+Tp = 15.
For the model of Howe, the same is done, resulting in a value of 6 towe = T
The new model does well without changing the empirical value of § = 10.7.

Because of the scatter in the data, no definite judgement on the models
can be made, but there is a slight favor for the models using a finite apparent

viscosity 7.
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Figure 5.6: Z,5¢/6} as function of (1/6F)%.
o Re=2.7-10"; x Re =53-10"; * Re =38-10%; + Ronneberger.
—- rigid plate limit (6;" = 15)
- - - Howe (yg = ¢ =7)
- new model of 7, (yd& = 0; & = 10.7)
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The absence of a Reynolds dependence in the theories is the result of
using a 2-dimensional theory with infinitive dimensions of the boundary lay-
ers. Therefore, the radius of the pipe has ceased to be of importance in
determining the attenuation.

There is however a lower limit to the validity of the theories, since we've
used the 2-dimensional equations in determining the expressions for the
boundary layers. To be valid, the ratio 6,/a must be small. When set-
ting an arbitrary limit of 10% for this ratio, we come in our experimental
setup to a maximum of §, < 1.5-107>m corresponding to a radial frequency
of w > 10rads™*.

We can now determine the maximum value of 67, after which the theory
ceases to be valid, for the three different Reynold numbers at which we mea-
sured. The results are printed in the following table:

Re (.104) 6U+mal‘ (1/6U+771(11‘)2 (10_5)
2.7 75 18.0
5.3 135 5.3
8.0 195 2.6

These values are of the same order as the actual positions of the crossings
of the theoretical curves for the turbulency theories with those determined
from the stationary theory.
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Chapter 6

Conclusions and
recommendations



6.1 Conclusions

We’ve found that the multiple microphone method can be used to determine
the attenuation of plane waves in a pipe. In the quiescent case the agreement
between theory and experiment is outstanding, for the real and imaginairy
parts of the opposite directions of propagation, indicating that the method is
accurate enough to measure the attenuation in the case of a fully developped
turbulent mean flow in a hydraulicly smooth pipe.

The measurements that where performed for the case of a turbulent mean
flow show some interesting features. Two parameters turn out to be of im-
portance in the determination of the attenuation, being é,+ and §;, repre-
senting the dimensionless thicknesses of the viscous (acoustical) and laminar
(turbulent) boundary layers. In our experimental setup, the thickness of the
laminar boundary layer is determined by the choice of Re, equivalent to the
choice of M or Uy, whereas the thickness of the oscillating viscous sublayer,
also called the shear wave, is determined by w. They together determine
completely the form of the dimensionless total impedance of the sound wave
Ziot, which is closely related to the attenuation.

These parameters divide Z,,, essentially in three regions, §,+ < &, 6F ~
6 and &F > 6. In the first region, the attenuation is actually described by
the Kirchhoff estimate, which also is found as a limiting case of the models
based on an apparent turbulent viscosity 7.

In the second area, a strong minimum in Z;,; is found, being the result
of interference of the shear wave with it’s reflections at the turbulent region.
The theories do predict such a minimum, but neither of them is at the right
place. The depth of the dip as measured by Ronneberger is in agreement
with the depth of the new model on the turbulent viscosity, but only for the
case of the measurements in air. The error in the depth of the dip might be
due to interference of the shear wave with the mixing length hypothesis.

In the thirth region, the attenuation is either determined by the elevation
of the function Z,,; as function of 6, or by the static limit directly deduced
from the linearisation of small disturbances of the stationary turbulent flow.
The first option implies that there is no dependence of the attenuation on
the Reynolds number, whereas the second implies that there is such a de-
pendency and a limiting value. The measurements don’t reach far enough to
make a definite judgement on this, but there’s no indication of a Reynolds
dependence in our present measurements.
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[t is however quite surprising that when calculating the maximum value
of 6F for which the theories based on the apparent viscosity remain valid, the
corresponding limiting value of the elevation of Z,, is in agreement with the
static limit. This is a strong indication that the static limit may determine
the behaviour beyond the validity of these theories, effectively re-introducing
a Reynolds dependency. This Reynolds dependency was essentially lost due
to the use of a 2-dimensional approximation for the boundary layer equations,
neglecting the finite dimension of the pipe, being the radius a.

Another important conclusion is, that the new model for the apparent
turbulent viscosity 7, fits the data as well as the other theories, but uses a
value for the dimensionless thickness § = 10.7, which is in agreement with
the value found from the semi-empirical theory of fully developped station-
ary turbulent pipe flow. This gives us the possibility to expand it’s use to
completely rough pipes, we're the turbulent profile is not determined by the
thickness of the laminar boundary layer, but by the height of the protru-
sions. This is of course of major importance for industrial applications of the
theory.

6.2 recommendations

As can be read in the conclusions, some questions are not answered yet. Some
answers can only be given when further measurements are made, expanding
the range of measurements mainly towards the lower values of §F. Then
we can determine if the Reynolds dependency occurs for this region, and if
the validity of the models is maintained in that region. The measurements
must be done systematically, which is possible since we’ve found the two
parameters of interest.

An interesting option for expanding the range of measurements, is to
increase the mean pressure, and thereby the density pg of the fluid. Since

6, = 1/2n/wpo depends on the density, and §; is approximately proportional
to 1/pollo, we see that we can alter the ratio 6,/6; proportional to ,/po.
Also, measurements on rough pipes can be very interesting, to check
if the new theory holds for that case. Thourough investigations must be
made, to determine the sort of roughness and the characteristic height of the
protrusions to be used to get interesting results.
On the theoretical side, attemps could be made to include the dimensions
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of the pipe, re-introducing the Reynolds dependency. This can be done
in several degrees. The most easy introduction is possibly to perform the
integration of the boundary layer in radial coordinates, just as was done for
the case of stationary turbulent flow.

Second, the boundary conditions could be imposed at the middle of the
pipe, instead of using infinitive boundary layers. One could attempt to solve
the entire equations for the axial coordinates, but this will probably introduce
unsolvable problems for analytical treatment.

The possible coupling of the Prandtl mixing length with the shear wave
must thouroughly be investigated. The use of a second order approximation
in the determination of the turbulent velocities could be a solution.

Also, the Mach dependency for the low values of éF predicted by the
turbulent viscosity models is not right, whereas the quasilaminar theory of
Ronneberger [RON 77}, based only on the velocity profile of the turbulent
flow, is in excellent agreement with measurement. Attempts could be made
to use the approach of Ronneberger with respect to the determination of the
Mach dependency in the theories including the effect of turbulent viscosity.
Since his final result is rather complex, due to the complete radial coordi-
natesystem he uses, it could be worth wile to attempt to rewrite his theory
in wall coordinates, neglecting the curvature of the wall.
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List of symbols

a pipe radius

A cross-sectional area

¢, Co speed of sound, adiabatic

Cpy Cu specific heat at constant pressure, volume
f frequency

Hy, transfer function from position a to position b
H! Hankel function of order n and kind m

2 V—1, index

k complex wavenumber

K Karmanns constant

L perimeter of cross-sectinal area A

mo stationary local Mach number

M stationary global Mach number

P p pressure

Pr, Pr, Prandtl number, turbulent

Re Reynolds number

R reflection coefficient

K] entropy

T temperature

t time

u velocity in z-direction (axial)

u* friction velocity

U = (u,v,w) velocity

v velocity in y-direction (radial, wall: y = 0)
x axial coordinate

Yy radial coordinate, normal to wall

z wall impedance

A wall impedance, normalized with «ag

Greek
Qa, Qg, Qo attenuation coefficient, quiescent
case, quiescent case viscous part

J¢] coeflicient of thermal expansion
v Poission ratio ¢,/c,
o, 6,+ thickness of laminar sublayer of turbulent
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flow, dimensionless

thickness of viscous (acoustical) sublayer,
dimensionless

thickness of thermal (acoustical) sublayer,
dimensionless

dynamic viscosity, turbulent

heat conduction coefficient, turbulent
wavelength

order of Bessels equation

density

shear stress

radial frequency

friction factor

heat flow

super- and subscripted

Qac
Qul
Qo
Q'U
Qr
Qs
Qs
O+
Q/

acoustical contribution

boundary-layer contribution

quantity evaluated at y = 0; static value
viscous part

thermal part

turbulent

up- and downstream value

made dimensionless with 7/pou”
acoustical deviation from static quantity
turbulent deviation from static quantity
average

complex amplitude

norm of complex quantity

angle of complex quantity

real part

imaginairy part

partial derivative in w-direction

96



2 _ -Q_ o . . . . . .
i = 3; T Uo3; convective time derivative (total derivative)
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