EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Control engineering programme package

Oosterbaan, A.M.

Award date:
1975

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/08ec2818-25bb-4968-8a59-4033fdfbf53a

Jaqcf/al/

AFDELING DER ELEKTROTECHNIEK
TECHNISCHE HOGESCHOOL
EINDHOVEN

Groep Meten en Regelen

CONTROL ENGINEERING PROGRAMMING
PACKAGE

door A.M. Qosterbaan

Rapport van het afstudeerwerk
uitgevoerd van mei 1974 tot mei 1975
in opdracht van prof. ir. F.J. Kylstra

onder leiding van ir. J.J.H. v. Nunen

|336 bse

TECHNISCHE M 3ESCHOOL
BT . W

STUDIZZ W0 LTNELK

ELEKTHOTL S v

CONTENTS

Foreword

1.00 Introduction
1.01 The On-line Design of Control Systems
1.02 The Aim of the Control Engineering Programming Package
1.03 (Proposed Hardware Configuration)
1,04 The Design Process
1.05 The Dynamic Behaviour of the Design Process
1.06 The Proposed Software Support
1.07 The Proposed Data Structure

2.00 Special Topics concerning the Burroughs B6700
2,01 The B6700 System Organization
2,02 The Concept of Working Set and Virtual Memory

3.00 Special Variables + Statements of the Burroughs Extended Algol
3.01 Task Invocation
3,02 Variables of the Type task and Task Attributes
3,03 Variables of the Type event and Software Interrupts

4,00 Special Software Constructs
4,01 Interrupting a Sleeping Task
4,02 Separately Compiled Procedures

5.00 The Realization of the Control Engineering Programming Package
5.01 The Design of the Software Support
5.02 A General Description of the Implemented Software Support

6.00 The Program Units of the Software Support
6.01 SYSTEM/CEPP
6.02 The SUPERVISOR
6.03 The INPUTSYSTEM
6.04 The DESIGN Programs

APPENDIX
A Provisional Users Guide

B Binding Fortran Programs to Algol Procedures

Foreword

The digital computer with its supporting software languages and peripheral
input-output devices is essentially a new tool extending the capacities

and resources of the human mind.

However, the access to these tcols presents a large number of difficulties
to the potential user.

The main difficulties can be enumerated as follows -

a) Language
The nescessity of mastering a computer language such as FORTRAN , COBOL
or ALGOL ,

b) Algorithms

Sufficient knowledge of algorithms and their implementation,

c) Man/Machine Interface

A working knowledge of the installation dependent input,output and storeage

facilities is reguired.

The aim of this project will be to remove as far as possible the above
mentioned difficulties , so that the potential user will have & more immediate

access to the potentialities offered by the digital computing machine .

1,00 Introduction

1.01 The On-line Design of Control Systems

" Almost ©ll losipgn procidures . o it rative process during which

-

the lesigner continu: lly m.kes decisions bused on the results of

cxl2ul tions nd his cxpoerience in the desi.n crt" N, Muao (Ref. 14)

_it is highly desirable that the designer is able to concentrate his
thoughts on the correct sequence of decisions rather than that he is pre-
occupied with tedious numerical computations. The digital computing machine
has the capacity to solve numerical problems with great speed and accuracy.
What is needed however is an efficient and effective scheme to exploit

this potentialitye.

Mh: goisnce of sontrel azineoering Zots hove | lirge nwebor of powenol
Jemign teels guch .8 the liyguist, Dol t;d the Hootlocus dicgr.ns,., llowever,
ther dvvrelve r.other tircsome eclecul tions cucept in the Lost triviel coses.

The designer vould sipend meore bime and energy on wciuwliy muking, these

13 sooms then he would oo the anzlysis and interpretutiocon . TFreguently
1301 nd routine pooceduras such ws Nyguigt dlagrams should be effcriless-

ly accessible to the wctential designer, To put it simply " The designer

shculd he able to coumunicate with the comgputer in an efficient munner" .

Tn genar.l this is not vhe case., The path to fthe computing machinery s
tocl , is puved with .11 kinds of diflicultics - computer

1 rguages such .8 Algol A0 or Fortr.n, nvmeric input problems and progru

idiosyner. sies of alrendy existing prorms. Dapending ¢n the design

prehlem the dosiomer uicily reaches the "break-ev:n point " in terms of

time and enargy tc be invested,ﬂnd will rovert to the old L. .per wnd

perizil methole,

The aim of this project will be to enable the potential designer to commun-
ic e with the computer in wa eifuntiv. .nd efficient mionaer. A syston CI-
metva~-17ror emd Lush be lesimned so $ht A1l exdsting cormputer progr.us wnd
future progrms will be direotly cecessivle to the desirmer by simple
co:mands en v oteletype keyboor!l or by coumends cr punchued coras for a

¢ cMrs der,

1.02

The A of the Control Fr-dusaring Preorsd: Packege

The aim of the Control Engineering Program Package will be to design a
conversational on-line facility for designers in control engineering. By
on-line is meant that the response time of the communication between the
designer and the computer is within reasonable limits. By conversational
is meant that the designer can communicate with the computer via a teletype

or via a visual display.

The re sons for desiring such a ficility can be enumer ited as fol ilovs-

«
ot
G
¢

wY A1) combrel enginzering techniguss such s Nyguist, Dode, Rootleocus

%111 become directly accessible to th: poteati-sl designer.

s
p—

The input intorm . $ion to soubsr pee 7 ns is gre tly £ocilitntad,
Pogsinl: errers wre noticed imme’i tely .nd on b corracted vit

rininwn of e7lorte.

%)
~ -
L

Th: Lorm of the outrat inform.tica e be detersined by the dusigiier o

£

4

ot
ot
"

5

1. lysis of the preblem proresies. At on stege of the desien rce.s,

ot
o2
L.

legigner nicht desire ¢nly numeric cutyut via the teletype wherc.s I ter

=
i

mi ht Jem nd = uordcopy from » plotier device,

1) The rw riz v.lu: ol veri bles can he ¢ ltered as dssivel,

-

‘o through & soguznce of contrel prroesrams, 1ch

- (M 1 vm S e ., 0
2) ™ Tasi omee gon Tol

nrnTr . a3lng the v % fror the peo2vicuw. provrrs 3

Tho o reault Wil o be o renlize aao o optiol o 1ntesrt o e ok L Land 1. Shilag.

T q e, : m o P T s s 4. PN N 4 .- 3 R) . ey
T Cunpntnr leing Ll the compub tiensl ond eoutin. socs cad tos e doing

e tadnkinge &b La. poesenb thde ds not zo. First tae user Lush

L)

nilorin

]

S N <4 oud 4 Lmente T - + N . Ca - .y an P 4 - e
cv RlF with L perdioulor corprtor Loigu e ownd the perlionlor Svps ool
e Ay, FIN vy o PP R e " et g T e 3~ - o « 3 v -
consrc s dngbrunticus vefore hoe can steat with nic zaobiom. Zometines progr ms

Lo the svaution of vhe problem alres 3y exdst but wre herdly wccescivle without

1-3

1.02
One of the mosf import.nt wits of the Control Ingineering Progr.m Packege
is to moke «ll progrms wcessible to potuonticl dezsigners without any
knewlelige win.t so ever of computer l.ngu.ges or of computer system organiz-
~tion. 4 user should not be encumbered with unything except the problen
he wishz2s te solve .nd then as effectivaly cnd efficiently ws possibvle,

According to Mr. Munro (ref. 14) there are four basic requirements for an

on-line design facility.

%) the prevision of o 'suit:ble' digitil cormputer.

v) The provisicn of proor.ms to curry out the design cileul-tions.

Q
A g

L omouns wasreby bt e deusiyner cwn communicate 'efficisntly! with the

cempuataer.

1) 4 . ns wherehy the computer c.n cormunic.te 'efractively! with the
/ 5 ¥Y v

dzsinar.

Ad a, T"hot i3 . 'suit ble! computer ? A zuit bl: computer is 4 machine
iith sufficient ccrs memory to hundle design progr sms without difficulty.
"he rochine st he wble te b adle periyheral diviees such s lino:-

rrinters , on-line teletypes wnd som2 form of backup stor.gce.

AZ by The v i1 Wle pre mms ore 10t . croblom except for tuelr comput-

ivilitye This i3 to sty that tie output from on: ;rojrim must be

™,

usabl: 3 input for the next orcqr m.

(3 thare 1 oon-line telelype wviil ble or = video device 7

Al 4, Low ¢ n the couput:r colaamic t2 with the decigner 7 Vil o telotype

Video Mspl y? Tu o« hordecoyy posuidble?

Mhe yu.lity of tae vwryriechine interfloce will be lurgely dojendznt on
the Werdw .ore devices forming interface und the supperting softr re.

The naxt saction will nondl: the computsr cenfirurction wna the software

1.03 The Proposed Hardware Configuration

The installation of the B6700 Computer at the Mathematical Computing

Center of the Technological University of Eindhoven has created a number

of new possibilties that previously were not possible but very much desired.
Many Departments possess one or more smaller digital or analog computing
devices, The digital machines are extremely fast but suffer from the lack
of backup storage facilities for the output from these machines. There is
also insufficient core memory available for large programs without some
form of overlay. The analog machines produce large amounts of numeric out-

put for which no convenient and efficient storage medium is available,

The present hardware configuration permits a smaller computer such as the
PDP 11 to communicate with the large B6700 computer. In this way, the

smaller computer can use the resources of the larger machine. These resources
are two processors of 9 MHz, , central core memory of 164 Kilo byte , fixed
disk storage of 100 Mega bytes, exchangable disk storage of 50 Mega bytes,

6 magnetic tape units and such hardcopy devices as lineprinters, plotters

cardpunchers,
BURROUGHS B6700
DIGITAL COMPUTER - DISK
- DISKPACK
PDP 11 - MAGNETIC TAPE
fox e - LINEPRINTER
HITACHI |— - PLOTTER
ANALOG COMPUTER - CARDREADER
= - CARDPUNCHER
. I—

D= Visual Display

T= Teletype
P fig. 1.03 a

1003
Block Diagram of the Proposed Hardware Configuration fig. 1.03b

DCP= Datacommunication Processcr

PC = Peripheral Controller
ME = Memory Exchange
VIDEOQ MM = Memory Module
DISPLAY PDP 11
DIGITAL LINE DCP
COMPUTER ADAPTER
TELE-
TYPE
ME
HITACHI
ANALOG
COMPUTER
PROCESSOR A -
PROCESSOR B MM
ME
DISK PC

MAGNETIC TAPE PC

LINEPRINTER PC

PLOTTER PC

CARDREADER PC

1,04 The Design Process

In the previous section the design process has been described as an

iterative process during which the designer continually mekes decisions

based on the results of calculations and experience.

This iterative process is represented in the following block diagram.

THE DESIGNER

INTERFACE

THE MACHINE

INTERFACE

INITIAL INFORMATION

Experimental or

‘Theoretical Data

DESIGNER DECISION PROCESS

Designer Resources

Degired Goal of Designer

Goal

Reached
?

Determine New Information

Desired

End of
Design Process

v

Instruction to Machine

:

CALCULATING MACHINE

Machine Resources

The Computation

v

The Representation
of the Computation

fig. l.4a

Result- Possible
New Information

1-7

1.04

In the block diagram it is agsumed that the numeric calculations are
performed by a digital computing machine. The following will be a brief

analysis of the design process depicted in fig
The basic components of this process are-

a) The Designer with the resources -Theoretical Knowledge

-Experience

-Insight

b) The Digital Machine with the resources - High Speed Computing Capability

~ large Information Storage
Capacity

- Information Handling Capabilties

The two spheres of interaction between the designer and the digital machine

are-

a) The communication from the designer to the machine.

How can/does the designer tell the machine what to do i.e. what program
is to be executed, what is to be used as input information and how is

+the output information to be presented.

b) The communication from the machine to the desigmer.

How can/does the machine tell the designer what it has computed i.e.
can the machine represent the computed numeric data in such a manner
that the designer can extract the information he desires without undue

effort or misinterpretation.
The activities performed by the two components of the design process are-

a) The Designer does

the interpretation of the information produced

by the machine.
- the evaluation of the information
- the deciding on possible alternatives

- the issuing of instructions to the machine

b) The Machine does - the numeric computation on the basis of the given
instructions
- the conversion of raw numeric output data into

the form desired by the designer

1-8

1.04

The process goes through a number of cycles until the designer has either
found a satisfying solution or he has concluded that-

a) His initial information was invalid or insufficient

b) The design programs are incorrect or insufficient.

It is of course desirable that the number of cycles needed to reach an
acceptable solution will be minimal. This will be dependent on the quality
of the two main components of the design process i.e. the designer and

the programs for the digital machine and the designer/machine interfaces.,

The aim of this project is to guide the above described design process
in an optimal manner.

By optimal is understood~

a) The efficiency or ease by which the designer can communicate with the

machine.

b) The effectiveness of the communication between the machine and the designer.
This effectiveness is measured in terms of information representation
and the time lag between the issuing of an instruction to the machine

and the availability of the desired information to the designer,

1-9

1.05 The Dynamic Behaviour of the Design Process

In the previous section the design process has been described and

a few degiderata for this process have been formulated. The design
process generates a sequence of activities - designer &ctivity- machine
activity- designer activity - etc. until an acceptable solution has been
found. This sequence of activities is the manifestation of the design

process. The activities are detectable by -

a) The instructions given to the muchine by the designer
b) The computation performed by the machine

¢) The appearance of new information for the designer.

The following paragraphs will attempt to describe this sequence of activ-
ities , starting from an initial set of information through to +un accept-
able solution., In order to facilitate the description of the design process
it #ill be desirable to formulate the general properties of the relation-
ship (s) between the input information to a computer program, the action

performed by the computer program =nd the cutput from the computer program.

The execution of a computer program can be defined as the mapping or trans-
formation of an initial set of data into a resultant set of data by an
algorithm defined by the program text. On the basis of the above concept

of mapping, the iterative process by which the designer arrives at the
desired results (Section 1.0l or Ref. 14) can be conceived as a seguence

of mappings.or transformations.

This seguence can be visualized as follows-

Initial Acceptable
Information Program Solution
Theoretical /——---"’L B Prog. Numeric

or Program C or
Experimental A Graphic

fig. 1l.05a

The intitial set of information , either theoretical or experimentally

obtained, will undergo a series of transformations until the designer has

1-10

1.05

reached an acceptable solution. The sequence can be divided into a number
of transitions.

Each transition has the following elements-

a) A transformation algorithm
b) A source i.e. the data which is acted upon by the transformation algorithm

c) A result i,e, the data produced by the transformation algorithm.

A program can now be defined as the implementation of an algorithm which
performs a given transformation.

A transition can be described by the following metalinguistic expression.

& result » := (transformation algorithm y ((source))

The transformation algorithm will act on the item in parentheses., If the

following definition also holds
¢ source » ::= (result) or ¢ initial data’)

then a chain of transformations leading to the acceptable solution can

be described by

< acceptable solutiony =T T T oo -1y (£ initial datay,)

where Tn is the n-th and last transformation and Tl the first .

In the above , it has been assumed that each transformation will accept as

input the output from any previous program. This is in general not the case.

Up to now the influence of the designer on the sequence of transformations

and the specific choice of data to be used as source , has not been taken

into account. The designer can be expected to follow through a logical

sequence of transtformations and to use only those source items for a part-
icular transformation which are relevant. However the possibility of amerronecus
or delibrate attempt to let a transformation act on data that will produce
nonsense will always remain. Whether the transformation on faulty source

data is performed or not is a question of implementation. In the following

it is assumed that each transformation will accept an arbitary set of data

ag source.

1-11

1.05
In order to analyse the influence of the designer on the seqguence of

transformations let

a) A,B,C be three programs performing three transformations

b) X . be the initial data set information

0
c) XOA be the result of program A operating on data set XO
XOAB be the result of program B operating on data set XOA etc.

Then the following graph can be drawn

fig. 1.05b

An arrow represents an activity of the machine in performing the algorithm
of the transformation. At each node, the designer has the choice of three
progrims and =z number of data sets. The initial data set XO can go through
a large number of transformations before the designer reaches an acceptable
gsolution. The important thing to note is that the path taken through the
graph is not a priori known and therefore the number and manner of creation
of the data sets is also unknown. For the time being it has been assumed
that each program will accept an arbitrary data set as source. By arbitrary
is meant that a program is indifferent to the history of creation of the
data set specified as source by the designer. This is not a realistic

assumption but will be amended later on,
In general it can be said that at each node the designer determines
a) Which transformation (program) will be next

b) Which data set will be used as source for this transformation

1-12

1.05

In fig. b the collection of datasets from which the desigmer will choose
a new gource has not been indicated. If for example program A had been

activated followed by program B and assuming an initial data set XO then

on the termination of program B the possible data sets will be-

Xo » Xon » *opp # Xop -

process can be said to be the collection of data sets created by the sequence

Therefore the record of activation of the desigr

of transformation algorithms chosen by the designer.,

The situation at each node of the graph can be sketched as follows-

PROGRALL BANK
Choice of Program A
Program Program B
Program C
DATA BANK
XO
. X
Choice of OA
Source Data XOAB
etc.

flgO 10050

The conclusions of the analysis can be summarized as follows-

a) The designer must be able to indicate to the machine which transformation

algorithm he desires.
b) He must also be able to indicate which data set is to be used as source.

¢c) The designer would logically choose a particular sequence of programs
to act on a meaningful series of data sets but it will be necessary
to safeguard the design process from the creation of data sets with no

inherent meaning i.e. data sets containing nonsense .

1-13

1,06 The Proposed Software Support

From the preceeding sections , the areas in which software support will

be desirable for the optimal performance of the design process have become

evident.

These areas are-

a) The necessity. of an efficient and effective man/machine interface.

b) The maintenance and logging of data sets created by the designer during

the design process.

c) The maintenance of a library containing the design programs.

d) The coupling of a particular data set with the design program desired

by the designer,

e) The availability of suitable design programs.

The following diagram will illustrate these issues.

PROPOSED
THE DESIGNER & SOFTWARE SUPFORT

m

DIGITAL MACHINE

Active Program

Program A 44]‘.

é’ PROGRAM BANK

(e)

Program A
Program B
Etc.

(b)

DATA BANK

Data Set

(a)

Source Input

Resultant Output

1.06

Each of the above mentioned areas will be handled in more detail in the

following paragraphs.

a) The Man/Machine Interface

The first prereguisite for an efficient and effective man/machine inter-
face is an on-line information channel between the designer and the
machine. By an on-line information chammel is meant that there is no
intervening information medium between the designer and the machine,

A set of punched cards containing instructions and numeric input data
is an example of an intervening information medium . The cards must
first be punched and then be read into the cardreader device. There
can also be a considerable time lag between the input and the final
output. In general an on~line information channel will consist of a
teletype or visual display at the designer side of the chammel and the
necessary input-output supporting software and hardware at the machine
side. The designer will then be able to type in his instructions and
data directly on the teletype keyboard and recieve the return inform-
ation from the design program via the teletype line printer. An on-line
information channel can therefore be very efficient and effective if
the time between an instruction from the designer and the response from

the machine is a matter of seconds,

Tha man/machine communication can be divided into two main categories-
from the designer to the machine and from the machine to the desigmer.
The designer/machine communication will consist mainly of instructions
to activate design programs . Supplementary instructions demanding
information on the presence of design programs and data sets would also
be useful to the designer. Designer instructions will require the imple-

mentation of an interpreter . This interpreter will convert the instruc-

tions into meaningful software entities. The machine/designer communication

will consist largely of the numeric or graphic information demanded by the

desigrer. This information is produced by the design programs. Other types

of desirsble communications to the designer will be error messages on
faulty designer instructions and error messages on possible run-time

errors in the design programs.

1-15

1.06

It is obvious that all designer/machine communication should be straight-
forward and to a large extent self-evident. This will promote the ease in

use and therefore enhance the accessibilty of the design programs.

b) The Maintenance and Logging of Data Sets

Whenever the designer gives an instruction for the execution of a trans-
formation (design program) y & demand for a particular data set to be used
as source is created. During the design process a large number of these data
sets may be created. In order that the designer can specify and the machine
can identify a given data set , each data set must have & unique name. The
existence of a particular data set to be used as source must be verified
before the desired design program is activated. A list of data sets must

be kept and updated. Complications may arise if the resultant data set of

a design program is to have the same name as an already existing data set.

The supporting software in this area should consist of-
a) The upkeeping of a directorycontaining the names of data sets and if

necessary on which device they are stored.

b) The verification of the existence of the"data set specified by the designer

as the source data to the desired design program.

¢) A check for ambiguity if the designer is about to create a data set with

the same name as an already existing data set.

d) Any other possible operations necessary so that the design program can

be activated without error conditions arising.

¢) The Maintenance’of a library.

The demand for a design program will entail the verification of the exist-
ence of the desired program and the preparation necessary for the execution,

The designer may also desire information on the availibilty of design programs.
The software support can be expected to perform the following-

a) The maintenance of a directory containing thernames of available

design programs.

b) The preparation for the execution of the design program.

1-16

1,06

4) The Coupling Data Set/ Design Program

Once the existence of a desired design program and indicated data set has
been verified , then the design program must have a means of knowing which
data set it must use as source. Therefore some provision must be made to

couple the fixed data input base to data set indicated by the designer.

e) The Available Design Programs

The primary requirement of each design program will be that it is able to
perform the transformation it is intended to perform in the most efficient
manner, By efficiency is meant the amount of processor time and core memory
it will require. This will depend on the particular algorithm employed and

the manner of its implementation.

Fach design program will in general demand an input source data set and pro-
duce new output data. This output data is destined for the designer. A copy
of this data set must be made so that the designer can use it as a source
input data to the next transformation . This next transformation could be

a transformation creating a new data set or a transformation creating a hard-

copy output on the line printer.

It will be desirable to protect each design program from run-time errors
such as divide-by-zero etc. which could have a negative effect on the

designer.

Once the indicated source data set has been coupled to the design program ,
there will be the problem of extracting the correct information from the data
set . This problem is closely associated with the problem of the structuring
of the output data set. This because it has been assumed that a design program
will accept an arbitary data set as source . But this source data set could

have been created by a previous design program.

The software support in each design program will be

a) Means of extracting the correct information for the computation.
b) The actual computation

¢) The handling of run-time errors

d) The creation of the output data set in such a manner that the next design

program can extract the information it will need.

1-17

1,07 The Proposed Data Structure

In considering the proposed data structure it will be advantageous to make
use of those data handling facilities which have been implemented on the
B6700, The B6700 is file-oriented in the sense that the user does not have
direc t access to the actual peripheral device. In general the access to data
on physical devices such as cardreaders, disk units and the transference

of the data is handled by the Input-Output Subsystem . The I/O Subsystem
acts as an interface between the program reading or writing the data and

the device containing the actual data.

A file is considered to be a group of related records. Each file has a
number of properties called "attributes" . These file attributes are used

for a) Identification - name of the file and on which device

b) Structuring -maximum record size and units used(words or char)
c) Status - to determine if a file exists and is available
d) Diagnostics ~ to determine which errors have occurred during an

I/0 operation
e) Security - to specify how certain files may be used and by

whom,

The I/0 Subsystem does the searching for a file and manages the transference
of data from the program and the physical device. It also maintains a dir-
ectory for the fixed head-per-track disk and directories for the removable

disks. These directories are also accessible to the user.

The following is a functional divisicn of the kinds of files per device type

as can be considered relevant to the proposed CEPP configuration.

a) For the On-line Communication

To ensure a reasonable response time in the communication between the
designer and the design programs a DATACOM file can be considered essential,
DATACOM files are handled by the DATACOMMUNICATIONS PROCESSOR (see Section
1.04 fig 1.04b) and are associated with remote devices such as teletypes

and visual displays.

b) For Long Term Storage

There are two possibilities for the long term storage of user data and
design programs. These are the removable disk and the magnetic tape .
Storage on magnetic tape has the disadvantage that operator intervention

is needed to mount the desired tape.

1-18

1.07

c) For Temporary Storage

All data files created during a design session can be stored on the fixed
head-per-track disk, Files destined for long term storage can be copied
to removable disk or magnetic tape in a more efficient format at the end
of the session. By a more efficient format is meant that the physical

amount of storage space will be minimal,

d) For Hardcopy Output

The following forms of hardcopy output can be considered desirable for
an effective design process.

1) Numeric and graphic output from a line printer.

2) Graphic information from a plotter device.

3) Hardcopy storage of numeric data from the card puncher or paper tape

puncher,

The above mentioned files have been incorporated in the following diagram

representing the proposed data structure.

On-line Communication

DATACOM
file

I/0 SUBSYSTEM
and
DATACOM PROCESSOR

CENTRAL CORE
MEMORY

1] . ‘

i

MAGNETIC LINE PLOTTER CARD
TAPE PRINTER DEVICE PUNCH
file file file file

N N

DISK
file

N4

2-1

2.00 Special Topics Concerning the Burroughs B6700

2,01 The B6700 System Organization

My BATUC i oa Wivalr steectur A syre of comnting mochine nd is

iegi ne?l i ke gspedific intention of £o.211it -ting the excocution

of ALOOT- like propnT lis. The struevure of the oE700 Oper.ting Sysiem is
advw .o the ALGOL 60 piomise thet (stutic) vlock structuring is the
netur 1, if not esseusicl, Torm for the exprescion of complex algorithms,
S11 TATOC cren bing syst.n wloorlthms ore writien in ALGCL-like

I ongu gos wnd wee block ssructurad,

The £cllving scor2e ced dick for the BOT70U will demonstr e this

? JUB COULATBALT 5 NTUL=2 3 U R=T4113417 f

T

FRLD e

2 COUNMITLY B/ /007 TRAA/TUST UITT ATGOL FOR TITRLLY 9§

2ile I DR LN
e

prozedire (4);
o b [*],

L

cvesus SOURCE
csese COMPILE
gnis TASK

JOB
TASK

AN PROCRA:

.o
2nd o -
[-) -l
T T/””’H”“”*”'“ T/J_?T T

2 DaTA T

RUN
WULnIe TR DeTS TASK

2-2

2.01

The s8ource deck given on the previous page is an example of a JOB

as implemented on the Burroughs B6700. It is writen in an ALGOL-like
language called Work Flow Language or in short WFL, The ALGOL-like
program structure is clearly visible. The following description of the
JOB will convince the reader that WFL language has the same character-
istics as normal ALGOL., The WFL compiler i.e. the code program that
processes the JOB input deck is true compiler and produces output in

JOBCODE in the same way as the ALGOL compiler produces ALGOLCODE ,

A JOB is the principal unit of work containing one or more units of work
called tasks between the delimiters BEGIN (first) and TEND JOB , The
individual tasks are delimited by invocation statements such as 7TCOMPILE,
?PROCESS and ?RUN , Anything appearing between two tasks invocations or
a task invocation and 7END JOB is considered to be declared (implicit)

in the former task . The numeric input data set between the RUN and ?END JOB
igs declared to be of the type DATA and named IN, This data set is
therefore local to the task RUN, The source deck contains two tasks
each with its local data set, First the ?COMPILE with its local data set
containing the the ALGOL source deck and then the TRUN containing its
local data deck. N.B. The complete JOB is also a task.

Not only is the static structure of the WFL JOB ALGOL-like but also the
excecution of the JOB has the features of an ALGOL program. There exists
a primary system (intrinsic) procedure called RUN (see ref 12 page 116)
which initiates and terminates tasks, First the reader should be aware of
the fact that there is no basic difference between a compiler that
produces executable machine code and a normal user program that produces

some form of visible information. In fact the B6700 FORTRAN and ALGOL

compilers are written in ALGOL. The machine-encode version of the WFL
compiler is called SYSTEM/WFL and the ALGOL compiler SYSTEM/ALGOL. All
executable code files process a number of input files(could be none) and

produce a number of output files. The B6700 SYSTEM handles all code files

in a similar manner,

2-3

2.01

The previously illustrated WFL source deck can be split up into the following

tasks.

1) Task 1
Compile all WFL source cards with WFL and call the resultant JOBCODE
OOSTERBAAN

2) Task 2
RUN the JOBCODE file with the name OOSTERBAAN,

3) Task 3
Compile the Algol source deck with Algol and call the resultant ALGOLCODE

E/ER/OOSTERBAAN .

4) Task 4
RUN the ALGOLCODE file named E/ER/OOSTERBAAN and use the card images after

the control card 7TDATA IN as a cardreader file of the name IN,

It can be noted that a Compile task is an implied RUN i.e. COMPILE WITH
ALGOL translates into RUN SYSTEM/ALGOL and the COMPILE WITH WFL becomes
RUN WFLCOMPILER .

The sequence of the tasks in the execution of the JOB is illustrated in the

following diagram.

(1) Task 1 ———p (2) Tagk 2 -)[(3) Task 3 ——p (4) Task 4

Task 2 is initiated by the WFLCOMPILER.,
Task 3 and Task 4 together form Task 2,

The WFL JOB text could be replaced by the following BEA source text.
procedure RUN(ACODEFILE or APROCEDURE)s specification part + body ;
procedure WFLCOMPILER(WFLMESSAGE);

array WFLMESSAGE[*] ;
begin
translate the contents of the array into JOBCODE.

if OK then RUN(the JOBCODE) ;
end;

RUN (WFLCOMPILER);

The above is a gimplified illustration of the correspondence between the Algol
60 premise and the Burroughs System Organization. The JOB is converted to a sec-

uence of procedural steps and is structured as a set of nested blocks.

2-5

2.01

Assuming that the previously mentioned SYSTEM intrinsic RUN has the

following simplified form-

procedure RUN («&executable code file name 9 ,
€ source input » ,

¢ destination output ») ;

where ¢ source input ® :3= ¢ card images in an array »
Cdata files >

¢ none »

«€ destination output y :: = ¢ executable code filey
¢ data filey

(none 9

then execution of the JOB will have the following operations.

Tagk 1
RUN (SYSTEM/WFL, card images of JOB deck , CODE of JOB deck);

Task 2

RUN (CODE of JOB deck) ;

The CODE of the JOB deck as produced by the WFL compiler is in JOBCODE

and will have the following content but in machine code.

Task 3

RUN (SYSTEM/ALGOL, ALGOL source deck , CODE version of source deck);
Task 4

RUN(CODE of ALGOL source, DATA IN , output files if wuny);

The above is a simplified illustration of the correspondence between the
ALGOL 60 premise and the Burroughs System Organization. The JOB is con-
verted to a sequence of procedural steps and is structured as a set of

nested blocks,

2.01

The outer most block is the WFL task which produces two blocks
a) The compile with ALGOL block
b) The execute the ALGOL code block

Since a block defines the scope of the algorithms identifiers and the
dynamic resource requirements, each block can be executed without refer-
ence to any other bdock except for those blocks it contains itself.

In other words programs like ALGOL procedures can be produced which
exhibit strong locality i.e. self supporting.

The result is that also the manifestation of the computing process of
each block, that is to say a) The Core Memory requirements
b) The Processor Time requirements

¢) The I/0 requirements

will also exhibit strong locality.Only the block that defines the scope
of the identifiers used in the execution of an instruction in that

block needs to be in core memory at the moment of execution.

The realization of the ALGOL 60 premise in the Burroughs System Organization

is demonstrated Dby-
a) All JOBs are block-structured into tasks. Each task contains local entities.

b) The presence of the system intrinsic procedure RUN. This procedure can
be understood to be declared beyond the JOB block. The actual parameters
of this procedure are the names of executable code files, input information
and output information. This type of algorithm is representative for
for algorithms generally found in ALGOL,

The bonus derived from this highly structured organization is the possible
implementation of "virtual" memory and the possible assessment of the
dynamic resource requirements at any particular phase in the execution of

a program. This will be handled in the next section.

2.02

The Workine Set and Virtual lMemory

The BAT700 definition of : "JOB"™ hus two couponents :

) Th: time-invariant al-orithn.
b) Th. time-v wying 4 .t2 structure which is czlled the"record of execution "

of that algorithnm .

Th."r2:ord of execution"defines at .iny time
) the exescution state of the job, including the values of all veriabless

b) the dllressing enviromment that the processor serving this jcb iy

Aco238}

) the interbloch/intb;procedure/intertask flow of contrcl nistery .

Thet deeg the "record of execution" nced to contuin ot agy given inst .t
of tim: in orler to process « "JOL" eifectively 7 The cumswer to tanis
Jusstion zan be given by considering that w1l B6TC0 compilers produce
seguients of machine code o Zach segment is the ceded version of a block
~g Jdescribed by the syntex of such & blozk-structured l:inguage,.
Tor instuance, the ALGOL 6U block delimiters are the puir begin ana end
L othe p.dr peocedurs antl ";" o For the WORK FLOV LANGUAGE compiler
these «re JOB,BRECIN, IID O JOB, @nd any stutement contweining COMPILE,
RUZT, PROCESS,CALL , COPY, WIOVE and BIUD (there ure othars)

Tre o (ol blosls .x2 storsd os physiz 1iy sepurnte (nct necess .rily
centionors; $20nle. - ch sepuent s pointed to by o de.criptor in the
so-c.tr 1 g .t Tictiun vy, Since tue TocessoT ool only be wehive

i: one p.oticul.r seorent at the tire, only those segmionts thov d=fine

the contovr of the varidbles used iu thet jerticul o sagment should ha
tvesent in ddress ble core. Actuclly, one should speak of the records of
Lotivetion of shose ssgnents theé define the contour(the scope of validity
of the verithliglot the viriibles of thit se-men: in which the pruceszor

ic now «wtivz,

2,02

ut on wxili ry storige suck . s o DISK b..ckup

11 ot e tegaent. oy (o
device. The s2gwent dicticn-ry of = pro v m contising serment descriytors
contdlning-

) A Prras oaze™ bit vhich i3 senscd Uy the hordw.re wddross-

Jorm tien vrehaiism, TP the bit is "on" then the segnrent

:)OI‘:,' .

" arvon refe et 1o rnode to o 32 nt An toe "reoord of otir

of She croram onu 1f the "progscencae" it ods "off" i.:. net in core then
h.r'. re interrurt cooucg which vill del y further execution of the

STACK sout tinine the "rocord of exesution". The S:etow intriusic yroc:durs:

G 7PNl will then loc t: the oo nir.d szgnent on the .axili oy storige .nd

tr unst v it to core.

This ieo the rincisle of ™virsu 1 icocoe", A1l cor: ddyoss s:oce is in, 1l

n. dyn mic 11y lloo 424,

v

Mo BT dpe Do b Hdon of Mrivtu 1. 207 w0w0 aoh e puging wochenion
to transfer segments to/from core because this does not reflect the infor-
Getion steactar: of Y2 (rooras. The llon ction of varihle-size Seglolts
o sezt zotr o processos time Luld nind dzes woosted stoo. e spice dus to
icvern .l ircoomentoation, Towever, under odverse conditions it cun leud to
the phoecowenca o lloua "Harvasning'. This puencoenen ccceurs vllen the Spotar

j‘r;_gu(seghents rele.sed by teruin ted pro.,r ms «nd

]

is a0 Twsy ~ollic
se nents dsallestted b, toe overluy nmochonisn; nd re llos ting seg ents,

v

that She Crstean 2 mnoe wccentlish oy userul work ... »rocess user proju ..

orAYCnLT

-

W SVATTITL nu the ays

B Bl

74 s T e P Lot . o T BT
w111 oo eldy dafluence tl: weouat of Meix ohidop”

Lo QLAVOO T 43 uscd bo sobt tae overl) rote ia
dwase ond s wTinel s the yoevcent e of the poorsrins overly bio slano
sie b will be ceccoved witady ol cert G ol tiierv 1. A proor a's overlic Lla

R O O WV N R S o emvers] g S e 7 : N
EE AN FeA S TR ¢ S s T oo tres et hoen Torenoesd wit,dn the ias time

2.02

interr.l.s The poormetor ATLTLION is the perceunt ge of tot .l core ztor.ge
th & roast rendn v dludle, IE the percuout g of vi:ll ble storege is lsss
thon SVATLIT then the JOU with the lowest priority is suspended, The
gysterm dmund createl by the user prosr ms c.n be considered a non-

st. tion .oy stoel stic yrocess so th ¢ the sat vilues for CLAYCGOLL nd

A

AVZTINTY ¢ n oonly rougudy reilect the .ciu 1l shors
52T

cteri.tics of the user

grosT ms. Any ious mmismateh will cosult i the ghanomonon cwlled "thruoshiag".

The Vierkin, Sat

The dmvl-menthion orf "wirfu.l newory" con e d to very sffoctive ccown

utildzoticn wader svrit bl conditicns 8 menticned in the wrviens wtiom
Oniy towse it:mg sithir code segments or rrays thh wre ot 1lly aeeded

4 4 oeorcb o in phoss of the counputaticn vill be present in cere. This brings
up the notion of the ".orking Det". Mr, Dennings in ref., 12 4sfines w
"woriing set" s "thot ninimun collection of progr.o senkents woich nust
reside in r.in menory Uor the process to run efficientlsy". 4 prog~.mmer
> visu lize boforeh nd which items vill be in core it cert.in critic 1
o223 of the sxecuticu of his wlgoritw . A progr. nmoer ¢ n influence the
lem.nd on systen razourcas i.e, procescor time .nd core erncry reguiremeants
hy the strwetureof his Jgorithes end his progr.mning style.

The k:y point iu e, Denning's definition is of course "cificiently" . The
sorsing set can be mnde vory sm.ll but if cezrib.in items ..re used very fre-
juzat’y then th: yrocsss will be contiim liy interrurted in order to btriasfar

tois it from disk teo core if there is hiigh overlay r .te.

wr. Org nick in rel 11 ¢ ge 34 gives the followiny wdvice o o generul rule
foxr the contaents of the “am: 11l workiiy: set"

-

o

1) Tucse sarjmests bt froommentls ref oconced .

2) “tructurad v ri blos such os files .nl svents,
}) Primuwry deszripiors of arrys

) Toserigtears of Srstu. iatrinsies suct s I/0 prcoedar s osnd othor
E & u k

ioetingirs such s wodt, ¢ use, procure nd liover-ts .

Tor uomewe det dled wocownt of the "Sm 11 Vorking S " the re.dor is wdviser

te sonsalt section 3.7 of Computsr Systuw Org niz.tion by P. Orginick (refll).

.

3-1

3.01

Task Invocation

On the Burroughs B6700 , a wide range of task invocation statements are
possible in Work Flow Language but only three are possible in Burroughs
Extended Algol, This due to the fact that most WFL invocation statements
are variants of the three basic Algol types., The correspondence will de
handled in the following paragraphs.First the three basic types of task

invocation statementss -

a) call invokes a synchronous dependent task
b) process invokes an asynchronous dependent task
¢) run invokes an asynchronous independent task

An explanation of the terminology wused is as follows.
The process that initiates a task is called the initiator. The process
that has been invoked is called either a sibling or a partner. By a

synchronous dependent task is meant that the initiator will not continue

processing while the sibling is active.i.e. the initiator will be suspended
until the sibling has become inactive . The initiator must not terminate

before the sibling terminates., The same words apply to an asynchronous

dependent task except that the initiator may continue processing. The run
invokes the task as & completely independent task. Both the initiator and
the sibling will be processed at the same time and terminate without

influencing each other ,

The correspondence between the WFL task invocations and the BEA task

invocations can be listed as follows -

In WFL In BEA

PRUN ¢ filename y call ¢ filename y

?COMPILE ¢ filename y WITH ALGOL call SYSTEM/ALGOL use ¢ filename »
as input file

?PROCESS ¢ filename y proctss ¢ filename

?PROCESS RUN ¢ filename y run ¢ filename

The WKL compiler translates the WFL task invocations into equivalent BEA
invocation statements . In principle there is no difference between a task

initiated via a WFL JOB or via BEA invocation statements.

3.02

Variables of the Type Task and Task Attributes

Variables of the type task are structured variables and are used to
achieve special types of control and monitoring relationships between
tasks. They are similar to variables of the type file in that they also

have "attributes" which can be assigned or interrogated,

All task "attributes" are set to default values either by the compiler or
by the Burroughs System. Not all task "attributes" are accessible to the
user but a large subset is accessible either via control cards in WFL or

by suitable assignment statements in BEA,

In general, task variables are used to set, log and interrogate the state

of a task i.e. active, scheduld, suspended or terminated or to obtain log
operational data such as the elapsed time, processor time and I/O time

used by a task, The following will be an example in the use of task variables
and the assignment of values to task attributes. The correspondence bet-

ween a JOB in WFL and effectively the same JOB but in BEA will be shown,

Let the JOB be-

2J0OB TEST;USER=U411S4 17/HONEYBEE; QUEUE=2;
BEGIN T(PRIORITY=99);

?IF FILE MY/PROGRAM IS PRESENT THEN

RUN MY/PROGRAM [T] ;

?END JOB

N.B. Variables in WFL are not declared but implicitly declared by the

first usage.

The net result of the JOB will be-

If the file MY/PROGRAM is present on DISK then execute it as & dependent
synchronous task with a priority 99 else do nothing. The JOB is then
processed by the WFL compiler which will produce the JOBCODE., The JOBCODE
will then be executed either as a dependent or an independent task. The

program MY/PROGRAM must (in this case) be executed as a dependent task

3.02

because the JOBCODE task must remain active, Otherwise a critical block
exit will occur and program MY/PROGRAM will be disabled , This kind of
disabling is aptly called YDEATH IN THE FAMILY" , Therefore the RUN
statement in the WFL JOB must be interpreted as a BEA call .

The JOB can now be converted to BEA,

begin

task T;

procedure DUMMY; external ;

file TEST(FILETYPE=T,KIND=DISK) ;

replace TEST,TITLE by "MY/PROGRAM." ;
if TEST,RESIDENT then
begin
replace T.NAME by "MY/PROGRAM," ;
7. DECLAREDPRIORITY:= 99 ;
call pummy [T] ;
end;

end .

The result of this BEA program text is identical to the WFL JOB. The
variables however must be explicitly declared i.e. procedure DUMMY,
task T, file TEST .,Moreover it can be seen that the assignment of task

attributes 13 accomplished in the same manner as the assignment of

file attributes .

Tagk attributes may be of the type integer,real ,pointer or Boolean .

The assignment of a pointer task attribute to .a task variable has the
following construct.

replace ¢ task identifier ¢y o ¢ pointer task attribute

by ¢ simple pointer variable y ;
The interrogation of a pointer task attribute has a similar form-

replace ¢ simple pointer variable y Ez_(task identifier),¢ pointer task
attribute y ;

3,02
The two most important pointer task attiributes are-

NAME Generally used to assign the TITLE of an executable code file to

a task. Can be writen or read,

FILECARDS Is used to assign file declarations and label equations to a
task. Write only.

To illustrate the use of the pointer task attribute NAME let the following
BEA text be compiled as MY/PROGRAM i.e, the TITLE of the code file will be
MY/PROGRAM .

begin

file OUT(XIND=PRINTER);

array HELP[O: ll] H

integer Lj

replace pointer(HELP) by MYSELF,NAME ; % MYSELF task attribute of the
% type task

scan pointer(HELP) for L:72 until EQL "," ;
WRITE(OUT, € "CODE TITLE IS ", A*$, 73-L, pointer(HELP));

end.
The result will be the printout -CODE TITLE IS MY/PROGRAM on the lineprinter.

The use of FILECARDS is gimilar to the file declarations and label equations
used in WFL. In WFL the file declarations and file lable equations which
follow a task invocation statement are local to the task invocated.and are
passed along to the task at RUN time. The above also applies to the assign-
ment of file declarations and label eqguations to a task via the attribute
FILECARDS. The following will illustrate the equivalence between a WFL task

invocsation and a BEA task invocation.

In Work Flow language In BEA
?RUN MY/PROGRAM task Tj
?FILE OUT(KIND=REMOTE) replace T,NAME by "MY/PROGRAM,";

" replace T.FILECARDS by
"FILE OUT iKIND:REMOTE) mAMOOM;

call APROGRAM [T ; % APROGRAM is
external

* The WFL and BEA programs will produce identical results. Program MY/PROGRAM
is started up and text "CODE TITLE IS MY/PROGRAMY is printed on a REMOTE device.

5.02

The reader will note that the terminating character of the attribute NAME
is "." whereas the terminating character of the attribute FILECARDS is the

Hexadecimal character 4"00" .,

The assigment of real,integer or Boolean task attributes has the following

construct.

{ task identifier) ., <€ task attributed) := variable or value of the same

type as the task attribute
The interrogation of a task attribute has the construct-
variable of the same type as the task attribute :=
< task identifiery .task attributelp

For example if T is the task identifier of a task that has been activated
then the statement
if T.STATUS GTR O then T.STATUS:=-1 ;

will result in the termination of task T if it has not already terminated.

The task attribute STATUS used above is one of the most important attributes
for Inter-Program Communication. The value of STATUS reflects the state
of the task ,

The values and meanings are-

STATUS =0 not active
=1 scheduld i.e.waiting for a processor
=2 active i.e. awarded a processor
=3 suspended i.e. waiting for & processor after being
active
=-1 terminated either normal or abnormal

Once a task is active it can be suspended or terminated by assigning the
attribute STATUS to 3 or -1 respectively. A task can also be reactivated

after it has been suspended.

3.02

6ther useful real task attributes are -~

STACKNO

STOPPOINT

HISTORY

INITIATOR

ELAPSEDTIME
PROCESSTIME

PROCESSIOTIME

For further information on task attributes see Ref. ¢ the section on

Inter~-Program Communication , Ref. 7 and Ref. 11 .

The last two importanttask attributes to be handled in this section are

EXCEPTIONTASK

EXCEPTIONTEVENT of the type EVENT .

A brief explanation of their use is as follows~

If task A intitiates task B then task B will be the EXCEPTIONTASK of task A,
If task B undergoes a change in the value of STATUS then the EXCEPTIONEVENT

of task A is caused, Task A cam be made aware of changes in STATUS of task B
by attaching the EXCEPTIONEVENT to a software interrupt (to be handled in

section 3,03) or via the wait/waitendreset intrinsics.

Returns the MIX number of an active task or the negative
MIX number if the task has terminated. Each task can there-

fore be uniquely identified.

Returns the segment and relative address at which the last
arithmetic fault occurred or at which the task was terminated

or suspended,

Returns a real value with a bit pattern encoded to determine

how and why a task has terminated.

Returns the relative station number of the REMOTE device from
which the task was initiated. Assigning this attribute has the
effect that all files of the KIND=REMOTE in a particular task
are associated with that station number. For DATACOM only.

Returns the total elapsed time since the actual intitiation

of the task in multiples of 2.4 microseconds.

Returns the accumulated processor time in multiples of 2.4

micro seconds.

Returns the accumulated I/0 time in multiples of 2.4 micro-

seconds,

of the type TASK

3.03

Variaebles of the Type Event and Software Interrupts

Vari:bles of the type event wre structured variables contiining two
binary switch fields. The first of theseswitches is the "happened"
bit »nd has a " situ.tion-oriented " function. The second is called

the" avioiluble "™ bit and has a " resource-oriented " function,

The vuriables of the type event cre used to signzl the "hopening "

of cartein eveonts or the " aveilobility " of certuin resources betwsen
asynchronous t.sk., If, for instines & sert .in tisk hus completed an
impertont ph.se of its computation it cun notify the other tusks of
this evint., "Then used as a " resource-oriented " function , it will
allow 2 tusk to enter and exit from what Prof. Dijkstra culls a
"oriticsl section ". Such u " criticzl section " could be that two
tusks , tusk A und task B huve uccess to the same date arrey. Tack B
readies the contents of the array for tusk A, Vhile task A is per-
forming certain computitions dependent on the contents of the arruy,
tosk B3 could be updating the contents of the array. In order to
orevant this frow hoppening , task A must set a £flug (the “aveilable®
bit)} thot the array is " not available™ . Vhen tusk A has no further
use of the coatents of thz array in guestion , the flag cen be reset
to " aveilsble M

The B5T700 implementwtion of the variuble of the type event has the
folloving storage structure in the wctivition record of that block in

which the event is declared,

The "honpened " bit
The wait head

An event wait queue

=

The interrupt head

An 2vent intercupt gueue

The "resource " bit

3.8

5.03

The first part of this structure contains the "happened" bit of the
"gjtuation-oriented" event. The "situation-oriented" event is used in
combination with-

a) the System intrinsics set,reset,wait and cause

b) the System composite intrinsics waitandreset and causeandreset

¢) the software interrupt .

The following is a brief sketch of how the implementation works.

The event wait queue contains the STACK NUMBERS (Task attribute STACKNO)
of all stacks waiting for that event to happen. Let ANEVENT be a
variable of the type event. Whenever a wait statement is entered by a
task (wait (ANEVENT) ;) and if the “happened" bit is "off"(NOT
HAPPENED) then the stack will be linked to the event wait queue of that
event instead of the READY QUEUE . If a stack is linked to the READY
QUEUE it can be awarded a processor and become active againe. The stack
will be re-attached to the READY QUEUE if the event of the event wait
queue is caused i.e. cause (ANEVENT) , It is obvious that some other

process must cause the event in question.

The event interrupt queue contains the STACK NUMBERS of those stacks that
wish to be interrupted whenever the event is changed from "NOT HAPPENED"
to "HAPPENED" ., An interrupt can be associated with one event only. Any
new association with an event will override the o0ld association. An inter-
rupt must first be declared, then attached to an event and enabled. For
example~ interrupt HANDLEIT;
begin
program text
end ;
attach ANEVENT to HANDLEIT ;
enable HANDLEIT 3

If the event ANEVENT is caused (by the task itself or some other task) then
the interrupt will be entered and excecuted. Control will return to the next
statement following the statement in which the interrupt occurred unless some

go to statement js wsed. =~~~ ——

3.03

The following BEA prograw text should help te illustrate the workings

of events, interrupts and the intrinsics wait and cauge.

Iet tusk A be,

linz nr.

400

700

begin

event OF,"ELPB;

array HELPTEXT [0:29) ;

procedure B(OK, HELPB, HELPTEXT);
event OK, HFLPB;

wrray HELPTOXT[*] ;

external ;

interrupt HZTPTASKS ; begin

determine the rezson of the interrupt

£ind some suit.ble ~lternitive

enter this irformation in arrsy HFELPTEXT
cause (0K);
end ;

.t ch HYIPB to HELPTASKE ;

encble HRIPTASKB

rocess L(OK,HiILPB,HELPTFXT) ;

tusk A dous som. useful werk in this segment

2ait(0%) ; % tesk A must wiit for task B before it

con resume processing.

« o

tusk A loes more useful vwork here

¢ e e

3-10

5.05

Iet tl"«-sk B beu

line nr procedure B(AOK,HELPIE,HYINFO)
event AOK,HFIPIT ;
array MYIUFO[*]

“e

bezin
start processing

if an “onorwm:l situstion wrises then

begin
100 cause (ARLPITE) ;
200 waitondresst(AOK)
analyse »ltern.tives given vy tosk A as given in aveiy WYIIFO
end
end of procsz;sing-notify tusk A
300 cruse (AOK)
end .

A brief explanation of the above BEA program text is as follows.
Tegl A is te indti te t sk B s wn wsynchroucus dependent vwsk., Then
1 comiziie procresing watil it has rowcned line 700 ccatoining

the beit(NF) statzwent. Yhile processing tosk A cun be iaterrugpted by

t-sk 3. In th.t cuse the interrupt decl.red on line 400 will be sutered.
Tha rzegons for the intsrrupt will be deteruined, altern.tives will bLe
founl if possible and stored in array HULPTEXT, Task B is waiting for
the event OK { the actual pacvameter) to FAPPEI .t line 20u of +.sk B,
The gzgég Oﬁéis caused and reset to NOT HAPPENED because the gxgﬁi K is

élso us2d in line 700 of t.sk A, Task B will come out of the event wait

queua of event O and excecut the anext statement ofter line 200 of tusk B.

Task A will return to the n=xt statement follcuing the st .fement wigre it
8 daterrupt:zl und continue processing until it rewches line 700 or it

iz intercu; t2d wgin.

3-11

5.03
Only cne complic.tion cun wurise. If tusk A hus wrrived ut line 700 and
the event OK is in the "HOT HAPPENED" stite then task 4 will be linked
to the event wait jueue of gvent OK. But now un interrugt occurs, How
can task A be nade active again, so thut it cin service the interrupt 7
This difficulty will be hundled in the section " Interrupting a
Sleaping Task",
As already mentioned in this section, events can also be "resource-oriented".

The system implemsnted intrinsics procure,liberate and fix are used to

coordinate the entries and cxits of tuesks to/from "eritical scctions",

Let EVT be the event identifier. The procure(EVT) will fcrea uny task

thet is trying to chznge the stute of the "resource" bit of event IVT to
"NOT AVAILABLE™ , into the event wuit jueuwe of event IVT if the bit

hzs already been set tc "JOT AVAILABLN" by some other tusk. If some other
task excecutes the liberute(EVT) then the "resource" bit will be set to
"AVAILABLE" and all tusks in the event wait yueue of event EVT will be
linked to the READY (ULUL. If the "resource" bit wus "AVAILABLE" then

the bit will bz set to "NOT AVAILABLE"™ and the task will resume processing.

The iii(EVT)iS a Beoolean function intrinsic and can be cousidered a type
of conditional procure o If the event IVIT is "AVAILABLE" then fix will
return the valuees= folse aud set the "resource" bit to "HOT AVATLABIEM,
Had the_event IZVT been in the stute of "NOT AVAILABLE" then fix would
have raturned the values= true and left the bit unchanged. This cen be
impertunt because wny task trying to enter a "eriticzal section" will be
forced into the event wiit queue of that event whereasit could be busy
processing date which is not dependent on information pertainavle in the
"oeritical section'. The t-sk could from time to time try to gain access

to thcse resources which hauve hitherto been " NOT AVAILABLIM,

|Jl
If YT is "AVATLADLEY then stotement S. will be excecuted wnd statement S

2 1
if the event ZVD is "MOT AVAILABLE",

A simple exumple could ber if f£ix(¥VT) then glse 82 H

4,00 Special Software Constructs

4.01 Interrupting a Sleeping Task

This section will be concerned with the problem of waking a sleeping task.
so that it can service an interrupt. The subject has been mentioned briefly
in the section 3,035 . The solution offered here is essentially the sol-
ution offered by Elliot Organick (see Ref.1l) .

The problem can be stated as follows-

let task A be waiting on event X .
let task A have a software interrupt that is attached to event Y .

Let task B as an asynchronous dependent task of task A cause event Y.

Degired is =~
a) That the software interrupt of task A is service i.e., executed .

b) That task A returns to the previous wait condition after the interrupt.

The above outlined problem occurs at line 700 of the program text in section
3.03. Task B has not finished processing therefore task A enters the wait .
Task A will remain in this wait until the event OK is caused . In the
meantime some abnormal condition may arise in task B and event HEPLB (actual
parameter) will be caused . Task B will then wait on event OK . The
interrupt of task A however can not be service unless task A is active.
Therefore both tasks will wailt for event OK to be caused. This undesirable
situation can be remedied by the fact that an event can be associated with

its wait queue and with its interrupt queue simultaneously .

Therefore if the statement

wait (OK,HELPB) were to repluce wait(OK) in line 700

then task A would come out of the wait queue of event HELPB and consequently
captured by the interrupt . After the execution of the interrupt , the next
statement following the wait will be executed. It is however desired that task
A returns to the wait after the execution of the interrupt . In other words
a conditional type of wait is needed i.e. if event HELPB is caused then
service the interrupt and return to the wait else if event OK is caused then

come out of the wait and execute the next statement.

The solution to the problem is based on the implemented complex wait and the

use of a dummy statement.

4.01

The following will be an explanation of the complex wait and its use

in the solution of the problem described.

The wait intrinsic is implemented as an integer function . The value return-
ed depends on the order of the events given in the event wait list.and the

particular event caused.

let EVT1,EVT2,EVT3 be variables of the type event .

Let EVENTNUMBER be a variable of the type integer .

Let the statement

EVENTNUMBER:= wait(EVT1,EVT2,EVT3) ; if EVENTNUMBER EQL 1 then... else..;

appear in the program text,
If event EVT1 is caused then the wait function will return the value = 1
and come out of the wait. Similarly,if event EVT2 had been caused then the

value = 2 would have been returned.

The net effect of such a construct is that it is now known which event has

caused the wait to be left,

If EVT1 had been attached to an interrupt then EVENTNUMBER would have the

value =1 and the interrupt would be executed . However after the interrupt

the next statement- the if clause would be executed instead of returning to

the wait .

The following construct has been devised.

while wait (EVT1,EVT2,EVT3) EQL 1 do S S

o %91}

Here SO is a dummy statement and event EVT1 is assumed to be attached to

an interrupt.
If event EVT1 is caused then wait intrinsic will return the value = 1 but
it will be immediately captured by the interrupt . On return from the inter-

rupt statement S. will be executed and the while clause evaluated . The

while clause is gggg' therefore the wait will be re-entered. If the while
had been false then statement S1 would be executed . This is the case if
either event EVT2 or EVP3 had been caused . The while clause would be eval-
uated on leaving the wait as being false and therefore statement Sl would
be executed.

The desired construct at line 700 in the previous section will be

while wait (HELPB,OK) EQL 1 do ;

4.02 Separately Compiled Procedures

The Burrcughs Al L) Corgiler will ace:pt any block as suitable for

arrril rtion.

i

A Wlock hia tro forme.

) besin b) type procedure (form .1 prrumeter

declar tiono list)
at.tuments v.lue identifies list

spacificition paxrt
eni. stutem:nt 5 or .

4 blo-k iy . statement th .t groups cne or nore declarutions nd
stotenents inbe o loodctl entity. A stutoment however con 1so be -

hlnck.

Yoom.l user vroe ms coe blosks of the type () with one or rore
hlecks or the frpe jaccelure but the siitewsnt is terrionwbed by th:
seri-tolone IE @ gvoor ©ois compilsd ss a block of type (~) it will
not be ponsibls wo pass wetull perawctars to the progrur. Tince it wilil
hz mor: then necessxy o be able t0 pugs purancters fron one progr

to anctiher in tioo proge.ed CEPE configuration , this secticn will be

devotad to how and why ithis c.m be done.

It must fiest be siiown tit t it c.n be done. The Durroughs System Utility
JYOTU/OMEALL con by concigered e peime exemple.

A vior could iscue vhe sk invoc.biicn in Tork Flow Langu.ge

PRUIL YOI /DT AL)

The user will then receive instructions via the lineprinter as how to
use SYSTEM/DUMPALL « The string "TEACH" is passed to the program SYSTEM/
dumpall as actual parameter. The string will then be analysed and inter-

preted to mean that the user wants information on how to use SYSTEM/DUMPALL,

4.02

The BEA source deck for SYSTEM/DUMPALL would have the following text-

?COMPILE SYSTEM/BURROUGHS WITH ALGOL FOR LIBRARY

?DATA
procejure DUMPALL (A) ;
array A [*] ;
Degin
pointer PA;
file OUT(KIND=PRINTER});
PA:=pointer(A);
if PA EQL "TEACH"™ for 5 then
begin
WRITE(OUT, The teach information);
end
else
begin
gcan for other valid commands
if found then uct accordingly
21se WRITE(OUT, Error message to user)

end;

end, 9% END OF DUMPALL

The last identifier of the program filename (in this case BURROUGHS) is
replaced by the procedure identifier by the ALGOL COMPILER . The net
result of the above source deck is that the procedure DUMPALL is compiled
with the CODE filename SYSTEM/DUMPALL .

Tre important thing to note is that the lower bound of array A is not spec-
if'ied but given by the usteriks . Also array A is one dimemsional. The
activation of the procedure DUMPALL with the literal "TEACH" as actual
perameter is only possible via a WFL task invocation statement. In BEA it
is not possible to call a procedure with an array as parameter by value

because an array has no inherent value.

All parameters of procedures to be activuted by WFL task invocution state-~
ments must be called by value. Since structured variables such as task, event

and file 1o not have values they can not be passed &as parumeters.

4-5
4.02

The special exception, &s wzlready mentioned, was the array with a literal

as actual parameter.

Programmatically activated (in BEA) separately compiled procedures may have
parameters that are either call by name or call by value depending on the

type of parameter and the use intended.

The reasons for desiring a program compiled as a separate procedure can be

enumerated as follows-

a) Passing run-time information to programs initiated via WFL task invocation

statements. SYSTEM/DUMPALL has been given as an example.

b) Because separately compiled procedures are independent executable progrewn
units they can be activated by BEA task invocation statements. A small
program gsegment containing the task invocation statement can activate a
very large program and pass along the desired parameters. Moreover, the
same program segment can be used to activate different programs in

succession.

¢, If it is intended to build up a library of programs then each new addition

can be debugged before it is added.

d) Fach new addition will not nescessitate the re-compilation of the whole.
The program doing the activation needs only to be notified of its exist-

ernce.

e) Only those programs or program segments needed are present in core memory
and on the fixed head-per-track disk, Other programs can he stored on a

removable disk and called up as needed,

d) A number of users can share the same program segments if they work under
the same USERCODE .

Whather or not one is to compile & program or a set of programs as separate
procedures will depend on the use intended. Will it be necessary to pass
paraneters to the program 7 If so then & separately compiled procedure will

offer a solution.

4.02
Th: gener 1 idea hizis been given in these possagzes us to how wnd why
programs could .nd should be compiled ..s sepurate procedures. The
following will be a brief outliine of the actucl implementation .
The first consgider-ticn is that only untyped procedure s may be compiled
saj wrutely.

An untyped procedure hws the genersl form:

procedure procedure identifier (foruul purumeter list)

velue identifier list
specification part H

begin

the procedmwe body which is a sttement which may be

= block.

and ,

e

The mein progrum thit will initiate the zbove generclized procedure

will thon be
hesin

)

L.sx T3 pointer Dhoj areny UDLP [0:29)

incl . rations of the variubles used in the formal porancter list
of the procedure ATIIMOGRAM
roceduse AITYPROGIAM (
P B A AL N

) -, s e
valua dentificr lisu 3
RACEAES

foirmel parameter list) ;

srecificaticn p.rh H
2XPi0n.] i.e. the proceuure body oi precedure ANYTRCCRAL
will become the procedwrs body(actunl progrua)

0L the sejaritely conplied procedure
*e s e 9

~a, luce TJWAID hy Tk

heiTe! .

e ': 1l T . PITJAJU-AWD‘(‘ b’\f I-—ﬁ., y

4-7

4.02

process ANYPROGRANI(actual parameter list) [T];

Thz t.sk attribute NALLD will contuein the code filenume of the sepirately
compiled procedure .
™TTC

The t.ak wttribute PITECARDS will contain fils eyuotion: ‘sl declarcticns,.

The only p.rt th 't rwoains 711l be bhe contents of the form.l varcneter

list., "h-t shewld iv contain? o Obviocuslyr the contents will depani on

S

the desired rel.ticnship between the w:in program and the sepurutely

renptied yrocadura thet iz to sey the user royuestel progrem. Further

[*5
(&)
ct
“

$ls .re worked out iu the section " Implementuticn of the CEPF/

5.00 The Realigzation of the Control Engineering Programming Package

5.01 The Design of the Software Support

In sections 1,04 and 1,05 the design process has been outlined and those
reas considered appropriate for software support have been indicated.
Some potential aoftwaure tools have been described in sections

What remains is the actual designing of the software support.

In the first instance , the software support to be designed is directly
connecteca with the overal desired end result. Once the desired end result
has been described and analysed into components, then those entities which
will contribute to the properties of the end result can be described. The
functions performed by the entities and their interrelationships will
together define the structure of the software support. The realization

will be dependent on the available software and hardware resources,

The desired end result will be to guide the designer to an acceptable sol-

ution in an efficient and effective manner. By efficient is meant that the

time and energy to be invested by the designer will be minimal and by

effective is meant that the design process is simulating and instructive.

The efficiency can be advanced by

a) An on-line communication chamnel between the designer and the digital
machine. This will mean that the access to the design programms will
be simple and direct. The design information desired will also become
immediately available to the designer if a reasonable reponse time is

assumed.

b) The availability of suitable design programs and conversion programs.
A design program can be said to be suitable if it cun accomplish the
desired computation with a minimum of processor and I/0 time and
present the output information to the designer in a concise manmer,
The availability of conversion programs will permit the designer to
enter his input data in different forms. For instance , a transfer
function can be defined by the coefficients of volynomials or by the
roots of the factored polynomials. Both of these input forms are

desirable,

5.01

c)

General software support in routine operations and in complex situations,
Recurring operations such as the finding data sets snd the verification

of the existence of a design program must be part of the software support.
Complex situations such as the activation of the design program and the
coupling of & data set with that program must also be done by the support-
ing software. Possible error conditions and reasons must also be made

know to the designer,

The effectiveness can be promoted by

a)

e)

The on-line communication because the concentration of the designer on
the problem at hand has not been diminished by the time interval between

guestion and answer.,

The availability of graphic aids . The most desirable would be in the
form of a video display but a hardcopy graphic aid such as a plotter

device could suffice,

The possibility of obtaining a hardcopy of the results of the computations
on & lineprinter. The designer may wish to keep a permanent record of
certain results or wish to study the numeric output data at his con-

venience.

The possibility of some form of control over the execution of a design
prozram. The designer might wish to halt a program and desire to know
how far the program hus progessed and what it has produced. On the basis
of this information he could decide whether to continue the program in-

stead of being forced to wait until the final result is produced .

The possibility of posing questions on the availabilty of programs or
the existence of data sets. Also informeation on processor time and I/O

time could be useful to the designer.

5.01

The above mentioned points can be listed briefly as-

a) Facility
An on-line communication between the designer and the machine will

promote the ease of uccess and a quick response,

b) The provision of suitable design programs and conversion prograums.

¢) The surveillance of all operations in case of errors.

d) The flexibility of handling during the execution of a design program,

e) The utility offering the designer useful information.

f) The assistence in routine or difficult operations.

These points roughly define the operations to be performed by the supporting
softwere.The available tools in Burroughs Extended Algol can be enumerated
ags follows-

a) Structured variables of the type file

b) Variables of the type pointer

c) Structured variables of the type task

d) Task invocation statements

e) Separately compiled procedures

f) Facilities offered by the I/0 Subsystem accessible in BEA

g) Other possible facilties such as TIME intrinsics etc.

The basic operation to be performed by the supporting software will be

the actualization of the concept of mapping introduced in section 1.0
This basic operation will provide the framework for all other operations,
All other operations,in effect,will support the basic operation: of mapping
in order to ensure the the overal software support possesses the desired

characteristics,

5-4

5.02 A General Description of the Implemented Software Support

This section will describe the basic program units of the software support.

Each unit will be handled in more detail in section 6.00 .

The CEPP configuration consists of three basic program units and a number
of design programs. The program units are-

a) SYSTEM/CEPP The preliminary program

b) SUPERVISOR The main CEPP program

c) INPUTSYSTEM The auxiliary program to the SUPERVISOR,

The degign programs can be any desired program such as NYQUIST,ROOTLOCUS
as long as these programs have the correct procedure headings so that
they can be initiated by the SUPERVISOR,

The overall performance of the CEPP configuration can be split up in

the following mein phases,

1) The preparation of the CEPP user session.
The SYSTEM/CEPP program prepares a WFL JOB for the session on
the basis of user's USERCODE/PASSWORD. This JOB contains the

following items=-

a) COPY from PACK statements for necessary code files,
b) RUN the SUPERVISOR statement
¢c) RUN a diagnostic program called MESSAGE if certain

code files are missing.

d) REMOVE all CEPP code files and user data files

at the end of the session .

This WFL JOB is compiled by the WFLCOMPILER and the resultant JOBCODE
is either processed or run by the SYSTEM/CEPP., If the JOBCODE is

run then the CEPP user session will remain within the previous JOB
otherwise & new JOB will be created. Also if the JOBCODE is processed
then the SYSTEM/CEPP will remain active (in a waitandreset) until
the user session has ended.The net result of the SYSTEM/CEPP program

is that all relevant code files are copied from PACK to DISK and the
SUPERVISOR program is initiated within a WFL JOB as a dependent

gynchronous process. If errors occur then the user will by notified
by SYSTEM/CEPP .

5=5

5.02

2) The activation of the main program the SUPERVISOR
As already mentioned the SUPERVISOR is initiated by the SYSTEM/-
CEPP program as a component of a WFL JOB. The SUPERVISOR is

responsible for the proper functioning of the user design programs
and the INPUTSYSTEM. It should be aware of abnormal conditions and
if possible correct these. The operations to be performed by the
SUPERVISOR can be enumerated as follows-

a) The initialisation of the INPUT/OUTPUT files. The
INPUT file is either of the KIND READER or the KIND
REMOTE whereas the OUTPUT file is of the KIND PRINTER
or REMOTE if the program SYSTEM/CEPP is initiated
via a CARDREADER or via a REMOTE station respectively.

b) The activation of the INPUTSYSTEM and user design

programs.,

¢) The monitoring of the STATUS of the INPUTSYSTEM
and design programs.

d) The co-ordination of the flow of control between
degign programs and the INPUTSYSTEM in the case of

user entered control commands.

e) The provision of suitable diagnostics whenever error

conditions occur.

The SUPERVISCOR is initiated as & dependent synchronous process within the
WFL JOB created by the SYSTEM/CEPP program. The SUPERVISOR in turn starts up
the INPUTSYSTEM and design programs as dependent &synchronous processeg. This
has been done in order to permit a design program and at the same time the
INPUTSYSTEM to be active. Also the SUPERVISOR must be able to monitor the
STATUS of both the INPUTSYSTEM and the design program. The three processes
the SUPERVISOR , the INPUTSYSTEM and the user design program are parallel

processes. This solution has been implemented in order to permit instructions
from the designer, to be entered via the INPUTSYSTEM or via the design
program. This based on the constraint that only one INPUT file of the KIND
REMOTE is permitted. Therefore the input must be switched from the INPUT-

SYSTEM to the design program and vice versa .,

5.02

3) The activation of the INPUTSYSTEM

The INPUTSYSTEM

is initiated by the SUPERVISOR as & dependent

asynchronous process, Its main function is to serve as an inter-

face between the CEPP user and the SUPERVISOR ., As an interface,

it will interpret all user instructions into meaningful software

statements or comstructs. In some cases the INPUTSYSTEM will
handle the interpretted user instructions otherwise the SUPERVISOR
will perform the desired operation. The INPUTSYSTEM will also

handle user requests for information concerning the available CEPP

programs, the user data file content and other log operational
data such as ELAPSEDTIME,PROCESSTIME and IOTIME . The operations

to be performed

1)

2)

3)

4)

5)

are as follows~

Initiate the procedure DATACOM as a dependent
asynchronous process. :

Handle all user instructions as recieved from
process DATACOM.

If necessary it will copy code files and user

data files from PACK,

Supply the SUPERVISOR with meaningful software

data for the initiation of user requested design’
programs.

Supply the user with information on the availability

of CEPP design programs and log operational data.

The procedure DATACOM is initiated as a dependent process because

only this procedure has access to the REMOTE input file. By giving

this asynchronous process the task of reading the input file , the

INPUTSYSTEM will always be accessible for user instructions. The

process DATACOM will determine by the contents of the instuction
and the state of the INPUTSYSTEM if the message is to be passed to

the INPUTSYSTiM,

the request for

control command.,

There are three types of user instructions -
a design program, the request for information ang the

These instructions are handled in the section- on

the INPUTSYSTEM and in the Appendix A .

51

5.02

4) The activation of the design program

All design programs are intiated by the SUPERVISOR as dependent
asynchronous processes..The design programs must have identical
procedure headings if they are to be initiated via the CEPP con-
figuration. Existing design program blocks or procedures can be
accomodated by the addition/alteration of the CEPP standard
procedure heading. The operations to be performed by the design

programs are as follows-

a) Initiate a dependent asynchronous process to serve
as an INPUT facility. The design program will then

remain accessible at all times.
b) Do the actual design computation.

¢) Give the user diagnostic messages in the case of

errors or missing data,

The INPUT data to design programs will come from DISK or PACK files,
Data,if = created during the present session then the data will be
present on DISK., If the data is from a previous session then the

data will be on PACK. Local INPUT data i.e. data needed for this
computation only will be given via the REMOTE input file. Each

design program will produce only one output file on DISK, This file
will contsin sufficient information for subsequent programs to
decipher the contents. let the following serve as example .

let a design program compute the values of the real and imag. parts
of a given transfer function for a given frequency range and frequency
increment., The data concerning the numeric values of the coefficients
of the transfer function have been created during the present session
and are therefore present on DISK. The local information will be the
desired freyuency rdnge and frequency increment . This local information
#ill be given via the REMOTE input file. The output from the design
program will be stored on DISK . The original data set containing

the coefficients of the transfer function has been mapped into a

new datsa set containing the values of the reul and imaginary parts

of the transfer function in the desired frequency range.

5.02

5) The termination of the CEPP user session

The user can end the session whenever desired.lIf the user wishes

to store one or more of the data files created during the session

then he can give the appropriate commands to copy the desired

data files to PACK. From the point of view of disk hygiene it is

desirable that not a trace is left on DISK of the user session.

This will entail the removal of all CEPP code files used during

the session and the removal of the user data files . The operations

to be performed are as follows-

a)

Copy ‘those data files which the user desires to

keep from DISKX to PACK .

b) Remove all CEPP code files from DISK.

c) Remove user data files from DISK.

The reason that new data files are first created on DISK and then

topying to PACK instead of directly creaging the file on PACK is

baged on the following considerations-

a) PACK storage economy. The actual size of the user

b)

c)

data files are not known before they are closed at
the end of the session. The file attributes of DISK
files are set be default by the I/O Subsytem . When
the DISK file is copied to PACK it can be copied with
the most economical (minimum storage space) file

attribute combination.

Not all user data files on DISK are expected to

become permanent files{ worthwhile storing) .

Disk files can be protected from System failure using
the file attribute PROTECTION. Setting the attribute
PROTECTION=PROTECTED will maske it possible to find

the last valid block written in the event of a HALT/LOAD

- -

5.02

The following is a block diagram of the CEPP configuration in the situation

where the JOBCODE has been processed and a design program is active.

SYSTEM/CEPP

process
run

e |

|

SUPERVISOR
process

process INPUTSYSTEM

| ' process |

DESIGN
PROGRAM

process | DATACOM
—1 l

INPUT
PROCEDURE

.

REMOTE
INPUT

LE‘I]JE\

fig. .02 a

6-1

6.00 The Program Units of the Software Support

6.01 SYSTEM/CEPP

The purpose of SYSTEM/CEPP is to handle preliminaries and to initiate the
CONTROL ENGINEERING PROGRAMMING PACKAGE . These preliminaries consist of
USERCODE/PASSWORD verification, assignment of options and the preparation
and creation of a WFL JOB containing the necessary WFL statements to start
up the PACKAGE .,

If a potential user has been accepted as being a valid user then SYSTEM/CEPP
will create a WFL JOB.
The WFL JOB will be created on the basis of -

a) The USERCODE/PASSWORD combination given by the designer

b) The built-in USERCODE/PASSWORD combination of the PACKAGE

c) The present MIX NUMBER of SYSTEM/CEPP (STACKNO)

d) Whether the JOB is to be activated as an independent or a dependent

asynchronous process .
The essential elements of the WFL JOB are-

a) COPY statements to copy the necessary program units from storage

b) A RUN statement to activate the SUPERVISOR

c) A REMOVE statement to REMOVE all CEPP CODE files and user DATA files
at the end of the JOB .

The rationale of the two types of JOB tasks i.e. independent wversus dependent

is as follows.

Whenever a JOBCODE file is initiated as an independent asynchronous process,
the process as a whole is monitored by the MCP (Master Control Program) . The
MCP enters log coperational information into a DISK file with the TITILE
*SYSTEM/SUMLOG . EBach entry into the file is uniquely identified by the
STACKNUMBER of the JOBCODE stack. At the end of the JOB , the entries %n

the file are edited by the LOGANALYZER and a JOB SUMMARY is printed via a
LINEPRINTER, (See Ref. 9 page 6-22 to 6-29).

In order to obtain on-line, the information from the *SYSTEM/SUMLOG file,

the relevant entries must be found, edited and sent to the designer.,

6-2

6.01

Since the correct entries in the *SYSTEM/SUMLOG file can only be found

by the STACKNUMBER of the JOBCODE activated as an independent process, the
CONTROL ENGINEERING PROGRAMMING PACKAGE must be activated via a WFL JOB

and activated as a independent process. All log-operational information

can then be received on-line, If the JOBCODE is activated as a dependent
asynchronous process then no on-line information is extractable from the
*SYSTEM/SUMLOG file but & JOB SUMMARY is available at the end of the session.

The contents of the *SYSTEM/SUMLOG file are,as already mentioned, filled by the

MCP and contain the following information.

a) The beginning (BOJ) and the end (EOJ) of the JOB-neme and statistics
b) The beginning (BOT) and the end (EOT) of all tasks within the JOB.
¢c) Reasons for the abnormal ending of tasks
d) If available a STACKHISTORY
e) End of task statistics such as processor time, I/O time and elapsed time
f) Hardcopy information such as- Number of lines printed
Number of cards read or punched
g) File open and close information
h) Messages from Library Maintenance - files copied

-~ files not copied and reasons

SYSTEM/CEPP is designed to filter out only abnormal conditions when a
normal user has activated it. Whenever a special user activates SYSTEM/CEPP
options can be set to watch any type of the above mentioned activities,

It is then used as an on-line debugging facility.

The main operations performed by SYSTEM/CEPP can be divided into the following

phases.,

a) The INITIALIZATION

1) The initialization of the I/O files of SYSTEM/CEPP
2) The formation of the unigue prefix (CEPP € 4 digits of STACKNO y)
for the CEPP CODE files and the user temporary data files .

3) The formation of the unigque TITLE of the JOBCODE (CEPP € 4 digits of
STACKNO » / SYSTEM .

6-3

6.01

b) USER IDENTIFICATION and VERIFICATION (Boolean procedure VALIDUSER)

1) Request user to enter USERCODE and PASSWORD
2) Verify if user is authorized to use the PACKAGE
3) Verify if the USERCODE/PASSWORD combination is valid

g) USER OPTIONS

1) Request if user desires an independent or dependent asychronous

process 1i.e. a separate JOB or not

2) If an independent asynchronous process is desired and the user is
a special user then let this user set options to watch certain activ-
ities. The default option setting is - All abnormal EOT and EOJ,
FILE.. .. NOT COPIED and NO FILE

d) PREPARATION and CREATION of the CEPP JOBCODE

1) Fill the pseudo-card deck with additional information. This information
is the designer usercode and password, the CEPP usercode and password,
the unique prefix for file TITLEs , information on how the PACKAGE
will be activated and the unique JOB name . (procedure FILLPSEUDOCARDS)

2) Convert the pseudo-card deck to the correct WFL MESSAGE format .
(procedure FILIWFLMESSAGE)

3) Creste the CEPP JOBCODE using the bound-in DCALGOL procedure CONTROLCARDS.
Procedure CONTROLCARDS activates the SYSTHM intrinsic procedure WPL-
COMPILER .

e) MONITORING of the CEPP JOB

1) If the CEPP JOB has been uctivated as an independent asynchronous process
and the beginning (BOJ) of the JOB can be found by procedure FINDJOB
then the messages (edited copies from file *SYSTEM/SUMLOG) to the

user will be determined by the watch options.

2) If a dependent process, then SYSTEM/CEPP will wait until the JOB has

terminated. Diagnostic wessages will be given if errors occur.

6.01

Summing up- SYSTEM/CEPP can initiate the CONTROL ENGINEERING PROGRAMMING
PACKAGE as an independent asynchronous task in the following cases.

a) Whenever a separate JOB is desired. Under SYSTEM/CANDE the beginning of
the SESSION is also the beginning of the JOB., That is to say that a
CANDE/SESSION is synonymous with a JOB, A separate JOB will have its
own JOB SUMMARY whereag if the CEPP JOB is initiated as a dependent
asynchronous task , the entries from the *SYSTEM/SUMLOG file will be
added to the CANDE JOB SUMMARY,

b) To provide a more comprehensive surveillance of the PACKAGE . Not all
error conditions are visible or accessible programatically . This is
specially the case with LIBRARY MAINTENANCE activities .

¢,) To provide on-line debugging facilities in the case of new program

additions etc,

The following page contains a blockdiagram of SYSTEM/CEPP and is intended

to give the reader a visual support to the above passages.

6~5
Block Diagram of SYSTEM/CEPP

BEGIN
MO VALIDUSER ? Y5
JT Y
INFORM
Separate Job?
NO SEPARATE Options ?
JOB ? l
FILL
PSEUDOCARDS
process run |
JOBCODE JOBCODE FILL
]] WFIMESSAGE
1
NO JOBFOUND ? NO process
CONTROLCARDS
(WFL Compiler)
YES YES
waitandreset LOGJOB ERROR
EXCEPTIONEVENT l 1N WFL 2
TERMINATE YES

DISPLAY
MESSAGE
WSYNTAX IN WFL

ERROR IN
JOB ?

YES

GIVE
DIAGNOSTICS

JOBCODE ON
DISK 7%

REMOVE
JOBCODE FROM
DISK

END

6-6

6.02 The SUPERVISOR

The SUPERVISOR is the main program of the CEPP configuration and as such

is responsible for the proper functioning of the design programs and its
auxiliary program the INPUTSYSTEM., It should be aware of abnormal conditions
and attempt to correct these if possible. The designer will recieve appro-

priate diagnostic messages if errors do occur.

The functions performed by the SUPERVISOR are briefly as follows-
a) The activation of the INPUTSYSTEM and design programs.

b) The monitoring of the INPUTSYSTEM and the design programs.

¢) The co-ordination of the access to the REMOTE input file between the
INPUTSYSTEM and an active design program .

d) The supplying of suitable diagnostic messages in the case of errors in
either the INPUTSYSTEM or the design programs.

The implementation of these functions 1s shown graphically in the block-
diagram of the SUPERVISOR on page 6-9 of this section. The salient features
in the block diagram are the two software interrupts HANDLECONTROL and
HANDLEIOBREAK and the two COMPLEX WAIT s, The pragmatics of these

sof tware constructs have been handled in sections 3%.,03% and 4.01 .

The interrupt HANDLECONTROL handles all operations resulting from a CONTROL

command instruction (See Appendix A) . Such a command may be 3GO, 3STOP

or IBYE . The action taken by the interrupt will depend on the instruction

and whether a design program is active or not. The interrupt HANDLEIOBREAK
handles all operations resulting from the malfunctioning of the INPUT-

SYSTEM . The INPUTSYSTEM must always be restarted if errors occur because

it provides the only access to the CEPP configuration. If the INPUTSYSTEM

terminates abnormally it will be restarted with a maximum of three times and

always restarted in the case of accidental operator intervention .

The two COMPLEX WAIT s can be described briefly as follows-

a) COMPLEX WATIT 1
The SUPERVISOR w.its here if no design program is active but can be

expected. The STATUS of the design program ig therefore -1 ,

6.02

b) COMPLEX WAIT 2

The SUPERVISOR waits here whenever a design program is active or has
been suspended., If the design program is terminated by the designer
disabled or terminated normally the SUPERVISOR will return to COMPLEX
WAIT 1 via the DIAGNOSTIC PHASE .

A more detailed account on the workings of the software interrupts will be
given at the end of the section,

The following paragraphs will give a brief description of the operations
performed by the various phases as portrayed in the block diagram on page

1) The INITIALIZATION

a) The initialization of the INPUT-OUTPUT files

b) The transference of information from SYSTEM/CEPP which has been
passed as parameter, This information is the designer USERCODE/
PASSWORD combination and the unique file prefix-CEPP ¢ 4 digitsy .

2) The COMPLEX WAIT 1

a) Wait for a signal from the INPUTSYSTEM that all the necessary items

for the activation of a design program are present.

b) While in the WAIT monitor the STATUS of the INPUTSYSTIM (interrupt
HANDLEIOBREAKDOWN) .

¢) While in the WAIT remain accessible for CONTROL commands (interrupt
HANDLECONTROL) .

3) The DESIGN PROCRAM PHASE

This phase is entered whenever the INPUTSYSTEM has notified the SUPER-

VISOR that a new design progream is ready for activation .

a) Copy the contents of the arrays containing the information on the
requested design program to arrays not held mutually by the SUPERVISOR
and the INPUTSYSTEM,

b) Fill the pointer task attribute NAME and FILECARDS .,

¢c) Activate the design program as a dependent asynchronous process. Signal

error conditions if they occur.

6-8

6.02

4) The COMPLEX WAIT 2

a) The SUPERVISOR waits here until the design program has terminated

normally or abnormally.
b) Remains in this wait if the design program is suspended.
¢c) While waiting the SUPERVISOR will monitor the STATUS of the INPUTSYSTEM.

d) While waiting it will remain accessible to CONTROL commends from the
active design program or from the INPUTSYSTEM if the design program

has been suspended .

5) The DIAGNOSTIC PHASE

a) If the design program has terminated abnormally then suitable diagnostic

message will be given.,

b) If the design program has terminated normally then only the statistics
of the design program will be given . (Processor time, I/0 time znd

elapsed time) .

6) The return to the COMPLEX WAIT 1 via a while true loop

The above is a brief sketch of the implemented algorithm of the SUPERVISOR. The
SUPERVISOR is normally in the state of no-operation i.e. in a COMPLEX WAIT ,
The SUPERVISOR becomes active in the following cases.

a) To activate a design program
b) If errorconditions arise in either the design program or the INPUTSYSTHM .

¢) If CONTROL command instructions are entered by the designer .

d) Whenever a design program has terminated . A—J

6'02

Block Disgram of the SUPERVISOR

SYSTEM/CEPP

interrupt
HANDLECONTROL

interrupt
HANDLEIOBREAK

OPERATOR
DSED — |- —.(THEBEGINNING)

INITIALIZATION

FEND EBYE

I1/0 files

Designer
USERCODE/
PASSWORD

File prefix
CEPP ¢ 4 digitsy

NO EXITSUPERVISCR

INPUTSYSTEM

(WAIT1)(-
.__,@MPLEX WAIT 1 >(_J

v

PROGRAM PHASE

Activeation of
the
Design Program

DIAGNOSTIC
PHASE

NO

Design Prog.
active ¢

4___,@&’1@){ WATT 2. >‘__l

L

6-10

6.02

In the following paragraphs a slightly more detailed account of the two
software interrupts HANDLEIOBREAK and HANDLECONTRL will be given,

a) Interrupt HANDLEIOBREAK

As already mentioned this interrupt is intended to ensure that the INPUT-
SYSTEM will at 811 times remain active, This is necessary because all designer
instructions are received and interpreted by the INPUTSYSTEM. A special case
arises if a design program is also active . If the designer enters an instruct-
ion via a design program then the INPUTSYSTEM is activated to process the
instruction.

The interrupt is attached to the EXCEPTIONEVENT of the EXCEPTIONTASK of the
SUPERVISOR. The INPUTSYSTEM is assigned to be the EXCEPTIONTASK of the SUPER-
VISOR . The interrupt is executed whenever the value of the task attribute
STATUS undergoes a change in value,which will result in the causing of the
EXCEPTIONEVENT, The task attribute RESTART of the INPUTSYSTEM has been set

to the value 3 § therefore the INPUTSYSTEM will restart three times before
the interrupt is executed by to a program error. If the INPUTSYSTEM is dis-
abled then suitable diagnostics will be given, In the case that the INFUT-
SYSTEM is disabled by the OPERATOR (by accident or intentionally-due to a

NO FILE message) , the OPERATOR is warned the the INPUTSYSTEM will restart
and a branch is made to label THEBEGINNING (See Blockdiagram).

b) Interrupt HANDLECONTROL

This interrupt handles instructions of the type CONTROL COMMAND . Such a
command can either be given by the designer via the INPUTSYSTEM or viea an
active design program. The interrupt will determine from which process the
instruction came and act on the basis of the instruction. In some cases the
INPUTSYSTEM will be reactivated to handle those instructions that pertain to
the INPUTSYSTEM,

The analysing of the instruction is done by the MASKSEARCH System Intrinsic
and the action to be taken by a case of statement. The MASKSEARCH compares the
characters (max. 6) in an array element with the fixed churacters in an

alpha value array . The value returned depends on the position of the array

element of the alph: value array containing the identical character sequence.,

6-11

6.02

If an identical character sequence can not be found among the given elements

of the alpha value array , then the MASKSEARCH will return the value ~1,

The value returned by the MASKSEARCH is then used in a case of statement.
This case statement contains the instructions to handle the different wvalid

CONTROL COMMAND instructions .

After the execution of the interrupt , the next program instruction per-
formed by the SUPERVISOR will depend on the CONTROL COMMAND instruction.

If the designer wishes to terminate the present active design program

(CONTROL COMMAND EEND) then the SUPERVISOR will branch to the label WAITL .
(See the Blockdiagram on page) . In general however , the SUPERVISOR

will return to the COMPLEX WAIT where it was before the interrupt occurred,

6.03 The INPUTSYSTEM

The immediate purpose of the INPUTSYSTEM is to act as an interface between
the designer and the SUPERVISOR. The instructions from the designer are anal-
ysed and converted into BEA software entities . All activities leading to
the activation of a design program are performed by the INPUTSYSTEM . It also
handles those activities which have no direct bearing on a possible activation
of a design program. These activities can be described as utility-oriented

i.e. as an aid to the designer.
The activities performed can be divided into the following categories.,

a) The interpretation of instructions from the designer. The three types

of instructions, the PROGRAM request, the UTILITY request and the CONTROL

command are differentiated, analysed syntactically and converted to BEA

software esntities.

b) The preparation for the activation of a design program. The presence of

the to be activated design program code file and the designer indicated
source data set files are checked. If necessary these files are copied
from storage i.e. from removeble disk (DISKPACK) to fixed head-per-track
disk (DISK) .,

¢) The furnishing of utilities for the designer. These utilities can be

seen as aids for the designer . These aids take the form of supplying
the time of day, the available program names and the names of the data

sets created by the designer etc,

The three basic program units a)procedure UTILITYREQUEST
b)procedure PROGRAMREQUEST
¢)interrupt HANDLECONTROL

as portrayed in the block diagram of the INPUTSYSTEM on page s Clearly
reflect the implementation of the three types of instructions. The procedurs
DATACOM , activated as a dependent asynchronous process , reads messages

from the REMOTE input file and does a preliminary scanning of the input to
ascertain which type of instruction has been entered by the designer. The
COMPLEX WAIT construct is similar to the COMPLEX WAIT encounter in the SUPER-
VISOR (see s=ction 6.02) . The only difference is that the value returned

6-13

6.03

)

by the wait intrinsic is assigned to the variable COMMANDIYPE . The value

of the variable COMMANDTYPE is then used in a case of statement , branching
to either procedure PROGRAMREQUEST or procedure UTILITYREQUEST . The
COMPLEX WAIT and software interrupt structure and their functioning is ident-
ical to the similar construct described in section 6.02 on the SUPERVISOR.

The following paragraphs will contain descriptions of the basic program
units as portrayed in the block diagram of the INPUTSYSTEM on page N

a) The INITIALIZATION

This program segment attaches and enables the software interrupt HANDLE-
CONTROL . Interrupt HANDLECONTROL is attached to event CONTROL, As a
service to the designer , the time of day, month and year are given. The
important operation performed is the determination of the availability of
the design programs. The directories of a number of removable disk (DISK-
PACK) storage devices are searched for the presence of a standard program
TITLE . If this TITLE is found , it is assumed that the other (if any) are
also present on that particular storage device . If it is not found then

the designer will be notified and the session will be aborted.

b) The PRELIMINARIES

The preliminaries consist of two procedures - GETUSERNAME and USERTEXT .
Procedure GETUSERNAME asks the designer to enter his name . The name
given is used as an identifier in the TITLEs of the designer created or
to be created data sets . In this way , the names of the data sets are
unique although two designer could be working simultaneously under the
same USERCODE/PASSWORD combination. Procedure USERTEXT prints out

an abridged version of Appendix A , instructing the designer how to
formulate his instructions. The preliminaries are bypassed if the INPUT-

SYSTEM has restarted due to a program error .

¢) The INPUT Process

Procedure DATACOM performs as primary input procedure for the CEPP structure.
The REMOTE input file is switched between procedure DATACOM of the INPUT-
SYSTEM and the INPUT procedure of «n active design program.

6.03

6-14

¢) Cont.

Procedure DATACOM handles the following operations.

1)

3)

4)

The scanning of the input string from the REMOTE file for illegal
characters . If there are illegal characters then the input string is

rejected and the offending character is indicated .

Determines the type of instruction entered by the designer. If the
firgt character if the instruction string is -

"&" a Dollar sign then it is assumed to be a CONTROL command

"&i" 5 Crosshatch then it is assumed to be a UTILITY request

otherwise it is assumed to be a PROGRAM request if the first character

of the string is an alpha character,

On the basis of the type of instruction entered by the designer the
following events are cause'd .

If a PROGRAM request then event REQUEST

If a UTILITY request then event UTILITY

If a CONTROL command then event CONTROL

Because procedure DATACOM is an asynchronous process , it can be active
simultaneously with the other parts of the INPUTSYSTEM. Safeguards have
been implemented to ensure the correct handling seguence of the incomuming
instructions., If the previous instruction has not been completed then

the instruction will be rejected except in the special case of the CONTROL
command . A CONTROL command will always be accepted if the(possible)
previous CONTROL command has been completed. The particular CONTROL
instruction RBYE will result in the termination of the process DATACOM

and in turn the termination of the other active processes .

The switching of azccess to the REMOTE input file. The construct used

ig as follows., If & design program has been successfully activated by
the SUPLRVISOR, the design program will wzit until the designer has
entered the CONTROL command &GO,before resuming processing. The STATTS
tagk attribute of the design program is visible to the procedure DATACOM

and is checked , along with the CUNTROL command instructiocn.

6-15

6.03

If the two conditions are met viz the STATUS of the design program equal
to 2 and the instruction is BGO then & waitandreset is entered instead

of the READ from the REMOTE file. The process DATACOM will wait until the
event INTERCOM is cause'd by the SUPERVISOR . The SUPERVISOR cause's the

event INTERCOM whenever the designer program is terminated (normal or
abnormal) or in the case of a temporary suspension of the design program
on request from the designer. The causing of the event INTERCOM will result
in the exiting of the waitandreset and the entering of the READ statement .

In the mean time the design program is in a waitandreset so that the procedure
DATACOM is the only process that has access to the REMOTE file .

d) The PROGRAM Request

The procedure PROGRAMREQUEST performs all the preparation necessary for
the successful activation of a design program. The syntax of the PROGRAM
request instruction is handled in Appendix A . The operations performed by
this procedure will be discussed on the basis of the syntax of the PROGRAM

request instruction, the general format of which is -

¢ destination identifier y := ¢ program identifiery [source listy]

The ¢ source listy 1is a number of source identifiers delimited by commas.
The operations performed can be ennumerated as follows -

1) The instruction is checked on syntax and error messages to the designer

are formulated if errors occur,

2) If the input string is syntactically correct then the individual items
are copied to fixed arrays. These items are the source identifier, the
program identifier and the three possible source identifiers. (The above

two operations are performed by procedure USERREQUEST)

3) The program indicated by the designer is then verified . The code file
for the program could be present on the fixed head-per-track disk or on
removable disk (DISKPACK) . If the code file is on DISKPACK then it must
be copied to the fixed head-per-track disk . In the present implementation
of the INPUTSYSTEM this accomplished in a roundabout way which will be
described in the paragraph on the copying process .

6-16

6,03
d)3 Cont.

If the design program code file is not present on the fixed head-per-track
disk or on the removable disk then the designer will be notified and further

verification will be aborted.,

4) The next items to be verified are the designer given source identifiers.
Each source identifier is associated with a particular data file of the
designer. A designer data file may be present on DISK (if created during
the present session) or on DISKPACK . If the data file is not present on
DISK then the directories of the removable disks are searched . If the
data set can not be found then the designer is notified and the rest of
the verification is aborted, The information on the whereabouts of the
designer data set (s) is stored in arrays to be passed on to the design
program by the SUPERVISOR .

5) The last item to be verified is the destination identifier . The designer
could by accident or intentionally use a destination identifier of a
data set thut is already existent on DISK . If this is the case the

designer is notified and ask to explicitly state his intention.

All the prerequisites for the successful activation of a design program
have now been verified (pending the successful copying of the code file) .
The SUPERVISOR can be notified that it can activate a design program. This
is done by cause'ing the event NEWIO which will result in the SUPERVISOR
entering the PROGRAM PHASE (See section 6.02) . If the designer attempts
to activate a new design program before a present active design program has
terminated,the designer will be notified and the PROGRAM request will be

rejacted.

e) The Copying Process

In the present implementation the copying process is handled in very
roundabout fashion compared to the copying operations performed by the
program SYSTEM/CEPP in section 6.01 . The copying of files is achieved
by creating a DISK file containing the WFL COPY statements . An auxiliaxry
program ocalled SYSTEM/WFL is then activated and the DISK file label
equated, SYSTEM/WFL in turn activates the WFLCOMPILER and creates a

6-17

6.03

e) Cont.

a JOBCODE file of the WKL COPY statements. This JOBCODE file is then activatel
a8 & dependent synchronous process. It goes without saying that this COPY proc:zss
is in need of updating . The method employed in the program SYSTEM/CEPP is
directer and more efficient . (by activating the WFLCOMPILER by a DCALGOL

procedure) .

f) The UTILITIES

A utility instruction is an instruction prefixed by the crosshatch symbol. They
are intended to aid the designer in the design process. All utility instructions
are handled by the procedure UTLITYREQUEST . The interpretation of tne insturuc-
tions is done with the usual MASKSEARCH of an alpha value array containing

the valid instructions. The value returned by the MASKSEARCH intrinsic is

then used to branch the corresponding set of instructions via & case of state-
ment. Measures have been implemented to prevent the designer from entering
new instructions before procedure UTILITYREQUEST has terminated . This is

done by procedure DATACOM which will reject any instruction that is not a
CONTROL command until procedure UTILITYREQUEST has finished processing.

g) The Software Interrupt HANDLECONTROL

The interrupt HANDLECONTROL handles &ll CONTROL commands. These CONTROL commands
can arise from the following sources-

a) From procedure DATACOM as entered by the designer
b) From the design program as entered by the designer

¢) Created programmatically by the SUPERVISOR or by the INPUTSYSTEM itself.

The interrupt can be attached to either event CONTROL or event IOCONTROL
depending the accessibility of the REMOTE input file ., If no design progreanm
ia active then the interrupt is attached to event CONTROL . It is attachned
to event IOCONTROL whenever a design progrum is active but noit suspended
teriporarily. If the design progrum is suspended temporurily it is in a
wiaitandreset which is not the same as suspended when the STATUS is equal

to 3 .

6-18

6.03
g) Cont.

Whenever the designer enters the instruction 8GO0 the interrupt is executed.
The STATUS of the design program must be equal 2 otherwise the command is
rejected. The interrupt then attaches itself to event IOCONTROL and returns
to the COMPLEX WAIT . The INPUTSYSTEM is reactivated by the SUPERVISOR if
the event IOCONTROL is cause'd . The interrupt also contains the necessary
checks in order to ensure a correct sequence of possible CONTROL commands.
For instance if the designer enters the command BSTOP but no design program

is active then the designer will be notified and the instruction rejected.

Another point of interest is the fact that there is form of communication
between the interrupt HANDLECONTROL of the SUPERVISOR wnd the interrupt
HANDLECONTROL of the INPUTSYSTEM ., The events SUPCONTROL and IOCONTROL

are used to coordinate the activities between the two infterrupts whenever
necessary . If , for example the designer has entered the commeand TEND with
the intention of terminuting the present active design program (this
command is only accepted after the command $STOP has been entered) then

the SUPERVISOR must terminate the design program. Once the design program
has terminated , the SUPERVISOR will cause the event IOCONTROL . The

interrupt nas been waiting for this event to happen . If the event ITOCONTRCL

has been caused then the design program has terminated and therefore the

designer can enter a new command,

In the above passages the principle program units of the INPUTSYSTEM have
been described in their functions,and the operations performed to fulfill
those functions. Some improvements can be made (i.e. the Copy Process) to
increase the efficiency and dependability of the program. New instructions
can be incorporated with a minimum of difficulty with regard to the UTLILITY
request instruction . The CONTROL commands implemented should provide the
designer with sufficient control over the activities of the design prograu.
The major feature of the implementation is the extensive use of variables

of the type event . These variables are used to coordinute the activities
of processes and to provide the necessary No-Operation state by using the

wait system intrinsic.

6-19

6,03 Block Diagram of the INPUTSYSTEM

SUPERVISOR

interrupt } - = = INITIALIZATION
HANDLECONTROL 1

process DATACOM

|

MYSELF.RESTART
=3 ?

procedure

DATACOM

|
| | NO GETUSERNAME
| I

| USERTEXT
I |
, |

| "GIVE COMMAND"
| 1
| L_ —_— — _.(CONTROLLABED
| —

NO

I YES
e . _.4— COMPLEX WAIT

NO

Y8

UTILITYREQUEST

PROGRAMREQUEST

6-20

6.04 The DESIGN Programs

The operation performed by a design program has been envisaged as a trans-
formation or a mapping of one data set into another (See Section) .

Such a transformation can be broken down into the following basic activities-

a) The INPUT PHASE
b) The COMPUTATION PHASE
¢) The OUTPUT PHASE .

These basic activities are of course also performed in normal programs . In
most cases however the activities are intermixed ; for example part of the
input data is read, certain computations are performed and the results sent

to the LINEPRINTER (say) y then further input data is read and sc¢ forth ..

The numeric input information is supplied generally speaking vie = CAPDREADER
file or a disk file of the type DISK or DISKPACK. The programmer knows how
the data is structured in the disk files and will program his read statements
accordingly . If the input is to be read from a CARDREADER file then the
programmer can either structure his card deck according to the read statements
in the program or change the read statements. The results of the computation
are,in most cases,sent to the LINEPRINTER only . Whenever all or part of the
ortput is stored on a disk file , it is generally intended that this data is

to be read by a particular program in & particular way. This means however
that the program producing the output and the program using this output as
input will be inter-dependent . Any changes in the OUTPUT PHASE of the firsg!
program will necessitate the alteration of the second program. In the case

of the design process,where any number of design programs produce output to

be used again as input data , this is a highly undesirable state of affairs.
What is desired of a design process cuan be put as follows-

a) That each design program can extract the information it needs for the

computation from a given data set.

b) That each design program produces zan ouput data set ixn such a way that
another design program can perform (a) .

If each design program can perform these two cperations then it becomes to

large extent independent of other design programs. The program then becomes

self-supporting in the sense that it will be indifferent to the data set

assigned to it by the designer. If the program can extract all the information

£-21

6.04

it needs for the computation , it implicitly accepts the designer assigned
source data set as being a valid data set. Otherwise it will reject the

data set or demand further information from the designer. The implementation
of such a scheme will result in the much desired property of "modularity" .
The set of available design programs will then consist of a number of modules.
An existing module can be omitted or a new module added without affecting the
other modules., An extra bonus derives from the fact that the designer will
not need to know which data set can be used with which program. The design
program will simply notify the designer if it can not use the assigned data
set. The advantages accrued by the modular structure of the design programs
will have to be paid for by extra software support in each design program and

a more complex structure of the data set files.,

Besides performing the operations directly related to the mapping process ,

each design progrem should also be able to-
a) Catch run-time arithmetic errors during the computation

b) Remain accessible for designer entered CONTROL commands .

The handling of run-time errors can be accomplished by the BEA ON FAULT
statement or by the SUPERVISOR ., If handled by the SUPERVISOR , the design

program must be reactivated by a PROGRAM request instruction .

The design program will remain accessible for CONTROL commands if the

REMOTE input file is read by an asynchronous dependent process activated by

the design program. This process can be made to scan for valid CONTROL commands
entered by the designer and if necessary activate a software interrupt. During
important phases of the design program the software interrupt can be detached,
so that the possible return from the interrupt to the last-but-one performed

instruction.

Appendix A

Provisional Users Guide

The Control Engineering Programming Package is implemented with three

types of instructions-

a) The PROGRAM request
b) The UTILITY request
¢) The CONTROL command

In short, a PROGRAM request instruction is a request for a specific design
program such as NYQUIST or ROOTLOCUS, a UTILITY request is a reguest for
some form of aid such as the present status of a design program and a
CONTROL command is an instruction for the commencing, suspending or ter-
minating of a design program. The following will be a more detailed uccount

of each of the three types of instructions.

a) The PROGRAM Request

The syntax of the PROGRAM request instruction , using the Backus-Nauxr
notation with the metalinguistic symbols . . , t:= , | can be described
as follows. (For a short description of the meanings of these symbols

see Ref., 10)

¢ program request y ::= ¢ destination identifier y := ¢ program identifiery

[¢ source list)] |
& program identifier y { ¢ source list)y]

¢ source list y ::= ¢ source list y | ¢ source list y , ¢ source

identifier y

il

¢ source identifiery ::= ¢ BEA identifier 3 | ¢ CEPP identifier y I *
¢ destination ident. y:3= ¢ BEA identifier y | ¢ CEPP identifier y

¢ program ident.) ::= ¢ BEA identifiery

¢ BEL identifier) ::= ¢ letter y | ¢ BEA identifiery ¢ letter y |
¢ BEA identifier y ¢ digit

& CEPP identifier 9 3:= ¢ letter y | ¢ CEPP identifier y ¢ lettery £

¢ CEPP identifier y ¢ digit y §
¢ CEPP identifier y ¢ special character y

¢ special character y ::= (%)

N.B. A maximum of 3 source identifiers is permitted in the source 1list.

The symbol * , the asterisk as a source identifier is used when no
data file is available or is about to be created. The foliowing will be

an example of valid program requests given in a meaningful sequence.

Instruction Number

1 B(S):= POLY[*]
2 NYQl:= NYQUIST[B(S)]
3 PLOT[NYQl]

Instruction nr., 1 means that the user desires to create a data set of
a transfer function in polynomial form. The data set will be named B(S) .
The program POLY will ask the user to enter his data in a particular

sequence. Once the data set is filled the user can enter the next instruction.

Instruction nr. 2 performs the mathematical operation called NYQUIST on
the data set called B(S) and creates a new data set called NYQl. In this
case the new data set NYQl will contain the real and imaginary parts of

of the transfer function B(S) for a certain frequency range.

Instruction nr. 3 initiates the program PLOT . The program PLOT will use
the data set NYQl to produce a NYQUIST diagram on a given(in progsram PLOT)

rlotter device.

A-3

Other programs may use the same data set. Bach program prepares its output
data set for its successor(s) « Ingstruction nr. 3 could have been
-WRITE NYQl . In this case the data set NYQl would then have been printed

out on the Ilineprinter.
Summerizing, the PROGRAM request construct permits the user-
a) to name his own data sets with BEA or CEPP identifiers

b) to indicate which data sets are to be use as source for the design
program

c) to name the resultant data set

d) to initiate any available CEPP program

b) The UTILITY Request

The utility request is designed to give the user supplementary information.
All utility requests are prefixed by the symbol'ﬁ#"(crosshatch) « The

following utility requests have been implemented.
1, #ﬁ PROGRAMS - gives the user the names of available GEPP programs.

2. ﬁz TIME -~ gives time of day,day of the month,month of the year
and the year.

3. ﬁL STATUS -gives the present state of a CEPP program
If the program is active or has terminated the
e lapsed,process and I/O time will be given.
If the program is waiting to be activated the user

will be given notice to that efrect.

4. # DATA -(to be implemented) will give the user the names

of his data sets.

A-4

c) The CONTROL Command

The CONTROL command is designed to give the user some measure of control
over the progress of his program(s) .The user should be able to stop the
processing at will, He could then ask for information via a UTILITY request
and either resume processing or terminate the program.

A1l CONTROL commands are prefixed by the symbol "3" (dollar sign) .

The following CONTROL commands have been implemented.

1. EGO -All CEPP programs when active will give notice to
the user that it has started.The program will wait

until this command is given by the user,

2. FSTOP -If a program is active i.e. being processed then
this command will cause the program to be interrupted
and suspended., It will wait until the user gives either

a IGO0 command or IEND command

3. TEND -If a program is active this command will czuse the
program to terminate before the normal end of the

program.

4e EBYE -This command causes the termination of the CEPP user

session, All active programs are terminated.,

If the command ISTOP is given then only a UTILITY request or a CONTROL
comnand can be given. Any attempt to start up a new program via a PROGRAM
request will be discarded. Any active program must terminate normally or

be terminated by the IEND command before a new PROGRAM request is accepted.

Appendix B

Binding Forterun Prosroms to Aleol Procoiures

It is pos=ible to bind Fortron progrims into Algol progerums using the
Algol Compiler Option - 8 SET AUTOBITT . If this option is set in aun
Alg0l program then all missing code segments(sepuritely compiled

Fortron subreutines) will be autom.tically bound into the Algol code.

In general . Fortran progral will consist of & muin progr.m and & nunber
of subroutines. Ii the nein progriam is alse mide a subroutine then it

cun be bound inte the Algel program as a prccedure .

.

e gener.] scheme can be outlined as follows-

a) Rewove =1l fils decl aotions m the Fortran main rogrom bescuuse the

) R e =11 file decl aitions from thae For [e, o} et
file daclarcticns of the Alsol nost c.n be used. This wlso avolas the
complication of Fortran files being globwl te the Fortr.n program body.

All READ and WRITE st.temeats in Fortren cun be left unchonged,

») Declure the Fertran main srosram (8 a subroutine. Include the Iortren
Compiler Option - ¥ SET SEPARAVE bucouse Fortran subroutines are
not rermittod to bu compiled withort a muin progrisi <. with an 4lgol

prozedure .

[¢]

N

The originul subrcutines of the Fertron nain progruw con be leid

2nchanged,

1) Cempile the Fortren deck for LIBRARY (i.:. DISK)

2) Declare the Fortr.n subroutine coubuining the mein Fortran pro r.

35 .n extern.l procedwe in the "1:¢l progr.m. Spenify which Algol

file identifisrs the compiler nust uvse for the Fortr n filss .nd of
[= e)

oursz incluls tie cowmyiler option 3 CJEY AUTOBIND .

ry
S’

Com:ile the hest Alzol progr.an. The STTCBRINY option «wilil c.use those
pro :edurzs vhich . declured ws cxternal .nd locoteu con DITK tc
be 2dded to the procedure denl.ration 48 being the mislinge procsdure
rodyr.

ohr on

The following, § oo Tive 2 oor, lete 2vuwg 1o of the binding of & o
progr &owith o subroutine to o A1l wroceiurs . Tha Alool procadwre
wloo hes o forn.l porancier o The proc:durs #ill recaive ing actusl

yrrameter ria o COVTROL cord and pass this velue te th: Fortruin susroutines.

Tha followsing points ura essentisl in using the Algel Cempiler Option

§ SET AUTOBITDH,

1) The HOST must be in &lgol

b) The Fortr.n ssgments must 1) Have the s.me directory =s the Algol HOST
2) Be previously compiled
3) Be loc-ted on DISK

The Fertr:-n sgguents wea destroyed in the Binding cperction uanless the

congiler option ¥ DTN 3ubroutine ideutifier is used.

Py

If the Algol HOTT cont .ins externwl procsdurs decliuraticns Jhich aon no
0o bz bound in then the compiler ojticn ¥ EXTERNAL procziurs identificr

shiuld be insert: 4.

45

If the Tortr-on subrcutine cont .ins fil. identifier which hove net bezn

azzlired then the decl-rotion in the HOST is wsed. The flgel compilex

2111 use the HOOT file identifier for thae Forir n file ileantifi:r il

the fol'owing compiler cpiion is usad- E USE IN TOR FIL®Z
a ﬁ

@d i vhe floel WOST nd file 3 is the Forstran fils,

berin ‘
£ile TH(UTT-RETED) SUTROUTTI™ FOTT

Py T) ReD(3, 100)
100 POR AT (ve.)

NTTIR
[

j2 ¢tV EN

M 2Urznt dn g bt SIoed fils dlsanidisr TN is used for the Fortr n
Tile fientiddiar ILFS .

Thz parimehzrs th v ¢ o e v otued oetwren g Aloel HOST ad FPortran sub-

routinas ro lidtad to vl crued 2.3 nd one dimension 1 oreroys,
MeBe TL o Alecl cwy iz dicloced 500 A 0198 thew Jh, Tortr.oa i1l
he DMTTOSTIOT A (lOC). et ce w0 2 e Lleol wree oy 312 tocdin at A C

Tan ozt Romhm o ooy 110 Lerin 5 A (1)
J z Ll

References

1 Work Flow Management-Reference Manual
Rdok 98 - Burroughs 5000709

2 Work Flow Management -User's Guide
Rdok 99 - Burroughs 5000714

3 Program Binder
Rdok 93 -~ Burroughs 5000045

4 Using Pointer Expressions on the B6700/B57OO Computing
Systems., Rdok 97 - Burroughs 4000095

5 Input/Output Subsystem
Rdok 92 - Burroughs 5000185

6 User's Guide to Memory Control
Tasking and Inter-Program Communication
Chapters 1 and 6 of System Miscellanea
Rdok 92 - Burroughs 5000367

8 Inter-Program Communication
The B6700 Hot Line
Rdok 76 ~ Burroughs 1042298-012

9 System Software Handbook
Rdok 75 - Burroughs 5000276

10 Algol Language Reference Manual
Rdok 107 -Burroughs 5000649

11 Computer System Organization. Elliot I. Organick,
The B5700/B6700 Series, Academic Press, 1973 .

12 Virtual Memory. P.J. Denning , ACM Computer Surveys
2(3),153-189, 1970 .

1% The Working Set Model for Program Behavicur. PeJ Denning,
Communications of the ACM, Vol. 11 , Number 5,
May 1968 , 323-3%3 .

14 On-line Design of Control Systems. N, Munro, The Computer
Bulletin, Vol. 14 p 184-186, 1970 .

	Control engineering programming package

	Contents

	Foreword

	1. Introduction

	2. Special topics concerning the burroughs B6700

	3. Task invocation

	4. Special software constructs

	5. The realization of the control engineering programming package

	6. The program units of the software support

	Appendix

	References

