
 Eindhoven University of Technology

MASTER

Control engineering programme package

Oosterbaan, A.M.

Award date:
1975

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/08ec2818-25bb-4968-8a59-4033fdfbf53a

AFDELING DER ELEKTROTECHNIEK

TECHNISCHE HOGESCHOOL

EINDHOVEN

Groep Meten en Regelen

CONTROL ENGINEERING PROGRAMMING

PACKAGE

door A.M. Oosterbaan

Rapport van het afstudeerwerk

uitgevoerd van mei 1974 tot mei 1975

in opdracht van prof. ir. F.J. Kylstra

onder leiding van ir. J.J.H. v. Nunen

TECHNISC!-lE l-'~'GESCHOOL

E.:<~ ,,',
STUD;':':":: ~ ..• ',: ::::C:K

ELEIOh0Ti:(.,; .;~:;"K

CONTENTS

Foreword.

1.00 Introduction

1.01 The On-line Design of Control Systems

1.02 The Aim of the Control Engineering Programming Package

1.03 (Proposed Hardware Configuration)

1.04 The Design Process

1.05 The Dynamic Behaviour of the Design Process

1.06 The Proposed Software Support

1.07 The Proposed Data Structure

2.00 Special Topics concerning the Burroughs B6700

2.01 The B6700 System Organization

2.02 The Concept of Working Set and Virtual Memory

3.00 Special Variables + Statements of the Burroughs Extended Algol

3.01 Task Invocation

3.02 Variables of the Type task and Task Attributes

3.03 Variables of the Type event and Software Interrupts

4.00 Special Software Constructs

4.01 Interrupting a Sleeping Task

4.02 Separately Compiled Procedures

5.00 The Realization of the Control Engineering Programming Package

5.01 The Design of the Software Support

5.02 A General Description of the Implemented Software Support

6.00 The Program Units of the Software Support

6.01 SYSTEM/CEPP

6.02 The SUPERVISOR

6.03 The INPUTSYSTEM

6.04 The DESIGN Programs

APPENDIX

A Provisional Users Guide

B Binding Fortran Programs to Algol Procedures

Foreword

The digital computer with its supporting software languages and peripheral

input-output devices is essentially a new tool extending the capacities

ani resources of the human mind.

However, the access to these tools presents a large number of difficulties

to the potential user.

The main difficulties can be enumerated as follows -

a) Language

The nescessity of mastering a computer language such as FORTRAN, COBOL

or ALGOL •

b) Algorithms

Sufficient knowledge of algorithms and their implementation.

c) Man/Machine Interface

A working knowledge of the installation dependent input,output and storage

facilities is required.

The aim of this project will be to remove as far as possible the above

mentioned difficulties , so that the potential user will have a more immediate

access to the potentialities offered by the digital computing machine.

1-1

1.00 Introduction

1.01 The On-line Design of Control Systems

the J.u:d.gner continu ll~r rJ..J<:c:lS iecisions bu.sed on th<= recmJ.tOJ of

c·...:) ~ultim1S -.,nd hio3 '3:c,j/n'ience he th~ iUS}bn i.•rt" N. ~<\L.J:"o (Ref'. 14) •
It is highly desirable that the designer is able to concentrate his

thoughts on the correct sequence of decisions rather than that he is pre­

occupiei with tedious numerical computations. The digital computing machine

has the capacity to solve numerical probleIllB with great speed and accuracy.

What is needed however is an efficient and effective scheme to exploit

this potentiality •

.l(2:,,~.';Ti Goo1::-; "lUG.,.,S th.;; ITyy.uist, :50.1, :-.ml the Hc;otlocu.s :li.:.e;r,J:16. Eowevar;

t111::<" :i,·.vc~lvG r .. th8:C ti..::')3Cme ~ lcul.tions <.LU.>;;;rt ill th8 ;.;();c trivic..l C~.SE=S.

T,l-.".' u·:>'· ,·t 1".. J.. 't. '-.1 .. ~

lyJ..ccessib12 to the -yotential lesi.:;nel.'. To put it sir::.l-l~l " The dasi6nsr

sLc·uld be ...bl<: to co;.J1mnic:J.te \vi ttl tho conFuter in an efficient m~;.nner" •

In g:ener..;.l tLis is not l;h~ clol.se. The p:l,th to the COT:lputing Dl:J.chinery ~:.s

tool , is 1J ...vt:1.:Hh ..11 kind.., of iifi'icuHi-::s - computer

J f'gUc:.g8S SUCCl .;.S '!llgol 60 or li'ortr,n, numeric input probL:ms ...nd. prog-rc...n::

tljo8yn~rsjl~s.of :J.l.r(~J.d;y exi.3ting pr(;r~mi;;. Dapeniing en thG d.esign

tirrG ami en}riS,Y tc be inv~sted,'md r611 r8v8rt to the ali .l:-'per c..nd

pen,~il metrlO:le.

The aim of this project will be to enable the potential designer to commun:
ic-.'.:;i}.,:i.th the: C01:l_uter ~n ~cd I~rf....::tiv_ ..:'101 efi'icitmt U ..!1J18.c. .i-.. D;lstur.. ci.'

1-2

1.02

The aim of the Control Engineering Program Package will be to design a

conversational on-line facility for designers in control er~ineering. By

on-line is meant that the response time of the communication between the

iesigner and the computer is within reasonable limits. By conversational

is meant that the designer can communicate with the computer via a teletype

or via a visual displayo

The riO:: SO:O:;;l for d~siring' 3uch f.cih ty C;.(.11 be emuw'r t8:1 ::"8 :01.1.0"Js-

, """-C) '~.·rI3 fOT1n of tl.i.'?

tr., n ,ly:ds of th0 prcb 18m .pro~'re~) :;e5. :, ton> St_g8 of th8 i,~~i:':ll 1.:::-(c.:3 ,

th.; '.L;.;;j,c;:n.:lr ni~ht :i.~~j r~ u!'.ly numeric outrut Vi'l th~ t,:> Ie t;ype ';d1E:!r";"~3 J; ter'

h·~ mi.:ht iemnrl :, :i..rd0opy from ". l!lotLc;r device.

r"~1i .1.''-J'''J~~l·~.~ ,~'j ~.1 b,,; ;,;(:;.\.:,-_li~e::1 opt'~L' 1 ~!1t~~t'"o.l C...;: .J~.J .'-..;:1 1• L.,_,il .-.r:.ll. :, !~~LL,~.~ ..

.1.i."~ ,jv;.•. .t,lJ,·L,~: ..C ·~C~Il<.~· " tl-1t:= ;";OIil.,bJLl.t, .ti('"{L. 41 i. ...::·l ..~ 1.·\~"utiri, ,.. {}i-"L.i.~ (.11d tLL':; ::::,~Ll dol%
.". ,

1: 11"3 C t":"J.8 user

1-3

1.02

is to m ·.ke ... 11 1J:C0i:>r JllS <4cas:3ible to pot,;litL.l d.asii;,ners without:tl1y

knowledge whot so ,3ver of computer 1.Ylt,uu.ges or of computer syst~m org"'-lliz­

"tiOll. A user should not be encumbi;l:ced. with cJ.l1ything exr;el:Jt the p:cob1.em

h.,;: ;;i:1hc;s tc'~olv~~ .nd then i&S eff8ctiv'3l~t :.n1 efficientl:;s .ti0ssi:)le.

According to Mr. Munro (ref. 14) there are four basic re~uirements for an

on-line design facility.

l)l.'lL? }Jrcvisioll of 'sui t.ble' di@;it~l C()r1~uter.

b) 'rhe pro'Tision v1' p::C0t-;:rJlls to C....l~·:.y out tht::: desiGn c~.lcul.tions.

i) A ::l •.ns wher'?by ths' computer c...n CCE'JllUnic te 'eff8ct:'<rdl./',,::..th the

1'.'1 ,,\,"1· +-....... v is _ 'suit bL' COn1fubr? A 2uit b1.:l computer ilil ,t m,-,;.chi~

lith sufficient ccrE: memory to he.niL 188ign prcg'.rms \!ithout iiffi<:mlty.

ioiJit;:r. The/; i3 to S",)' ~ch.~t tht: c.'Utl'ut from ons :ro;.;.c.1lIl mu,;t b~

U:lu,bl.:: .3 in~".lt [or the next prCc,'l' :rr.•

LO:I en cOl.:.i:-ut ~r Vi ...•.. tclctyp':l

th,; h·..r.t\'; ..J:"J Jevic:::a f(1JYii11[i;ttt:rf~l.ce :...n.t the sU]jf-ortino' :o:oftJ .1'e.

ThE: ;"n:t ",ec tio:1 \;ill f1o.nil'3 thid coml,utJr ccnfii:ur: .tion 41CJ. th8 sofh;oxe

1-4

1.03 The Proposed Hardware Configuration

The installation of the B6700 Computer at the Mathematical Computing

Center of the Technological University of Eindhoven has created a number

of new possibilties that previous~ were not possible but very much desired.

Many Departments possess one or more smaller digital or analog computing

devices. The digital machines are extremely fast but suffer from the lack

of backup storage facilities for the output from these machines. filere is

also insufficient core memory available for large programs without some

form of overlay. The analog machines produce large amounts of numeric out­

put for which no convenient and efficient storage medium is available.

The present hardware configuration permits a smaller computer such as the

PDP 11 to communicate with the large B6700 computer. In this way, the

smaller computer can use the resources of the larger machine. These resources

are two processors of 5 MHz. , central core memory of 164 Kilo byte, fixed

disk storage of 100 Mega bytes, exchangable disk storage of 50 Mega bytes,

6 magnetic tape units and such hardcopy devices as lineprinters , plotters

cardpunchers.

R

APE

ER

BURROUGHS B6700

DIGITAL COMPUTER
- DISK

- DISKPACK

PDP 11 - MAGNETIC T

0\) - LINEPRINT

HITACHI - PLOTTER

ANALOG COMPUTER - CARDREADER

-CARDPUNCHE

CJ
\ TJ

I
D= Visual Display

T= Teletype
fig. 1.03 a

1-5

PDP 11

DIGITAL ljt. LINE DCP
COMPUTER 1'1' ADAPTER

VIDEO
DISPLAY

1.03

Block Diagram of the Proposed Hardware Configuration fig. 1.03b

DCP= Datacommunication Processcr

PC = Peripheral Controller

ME = Memory Exchange

MM = Memory Module

TELE­
TYPE

ME

HITACHI

ANALOG
COMPUTER

PROCESSOR A

PROCESSOR B MM

ME

DISK PC

MAGNETIC TAPE PC

LINEPRINTER PC

PLOTTER PC

CARDREADER PC

1-6

1.04 The Design Process

In the previous section the design process has been described as an

iterative process during which the designer continually makes decisions

based on the results of calculations and experience.

This iterative process is represented in the following block diagram.

THE DESIGNER

[INTERFACE

THE :rvlACHINE

[INTERFACE

INITIAL INFORMATION

Experimental or

Theoretical Data

....-
~ ,

DESIGNER DECISION PROCESS

Designer Resources

Desired Goal of Designer

Goal YES End of- - Design ProcessReached r

?

NO

Determine New Information

Desired

J,

Instruction to Machine

1
CALCULATING MACHINE

Machine Resources

The Computation

J,
The Representation .. Result- Possible

of the Computation ..
New Information

fig. 1.04a

1-1

In the block diagram it is assumed that the numeric calculations are

performed by a digital computing machine. The following will be a brief

analysis of the design process depicted in fig

The basic components of this process are-

a) The Designer with the resources -Theoretical Knowledge

-Experience

-Insight

b) The Digital Machine with the resources - High Speed Computing Capability

- Large Inform':l.tion Stor::J..ge
Capacity

- Information Handling Capabilties

The two spheres of interaction between the designer and the digital machj_ne

are-

a) The communication from the designer to the machine.

How can/does the designer tell the machine what to do i.e.

is to be executed, what is to be used as input information

the output information to be presented.

what program

and how is

b) The communication from the machine to the designer.

How can/does the machine tell the designer what it has computed i.e.

can the machine represent the computed numeric data in such a manner

that the designer can extract the information he desires without undue

effort or misinterpretation.

The activities performed by the two components of the design process are-

a) The Designer does - the interpretation of the information produced

by the machine.

- the evaluation of tho information

- the deciding on possible alternatives

the issuing of j,nstructions to the machine

b) The Machine does the numeric computat ion on the bas is of the given

instructions

the conversion of raw numeric output data into

the form desired by the designer

1-8

The process goes through a number of cycles until the designer has either

found a satisfying solution or he has concluded that-

a) His initial information was invalid or insufficient

b) The design programs are incorrect or insufficient.

It is of course desirable that the number of cycles needed to reach an

acceptable solution will be minimal. This will be dependent on the quality

of the two main components of the design process i.e. the designer and

the programs for the digital machine and the designer/machine interfaces.

The aim of this project is to guide the above described design process

in an optimal manner.

By optimal is understood-

a) The efficiency or ease by which the designer can communicate with the

machine.

b) The effectiveness of the communication between the machine and the designer.

This effectiveness is measured in terms of information representation

and the time lag between the issuing of an instruction to the machine

and the availability of the desired information to the designer.

1-9

1.05 The Dynamic Behaviour of the Design Process

In the previous section the design process has been described and

a few desiderata for this process have been formulated. The design

process generates a sequence of activities - designer activity- machine

activity- designer activity - etc. until an acceptable solution has been

found. This sequence of activities is the manifestation of the design

process. The activities are detectable by -

a) The instructions given to the machine by the designer

b) The computation performed by the machine

c) The appearance of new information for the designer.

The following paragraphs will attempt to describe this sequence of activ­

ities , starting from an initial set of information through to ~n accept­

able solution. In order to facilitate the description of the design process

i t.vil1 be desirc1.ble to formulate the general properties of the relation­

ship (8) between the input information to a computer program, the action

performed by the computer program :~d the output from the computer program.

The execution of a computer progrmil can be defined as the mapping or trans­

formation of an initial set of data into a resultant set of data by an

algorithm defined by the program text. On the basis of the above concept

of mapping, the iterative process by which the designer arrives at the

desired results (Section 1.01 or Ref. 14) can be conceived as a sequence

of mappings .. or transformations.

This sequence can be visualized as follows-

Initial
Information

Theoretical
or

Experimental
Program

A

Program
B Prog.

C

Acceptable
Solution

Numeric
or

Graphic

The intitial set of information, either theoretical or experimental~

obtained, will undergo a series of transformutions until the designer has

1-10

1.05

reached an acceptable solution. The sequence can be divided into a number

of transitions.

Each transition has the f 0 Howing e lements-

a) A transformation algorithm

b) A source i.e. the data which is acted upon by the transformation algorithm

c) A result i.e. the data produced by the transformation algorithm.

A program can now be defined as the implementation of an algorithm which

performs a given transformation.

A transition can be described by the following metalinguistic expression.

<. result) :c (transformation algorithm) (<.source»)

The transformation algorithm will act on the item in parentheses. If the

following iefinition also holds

< source) ::= <result) or <initial data)

then a chain of transformations leading to the acceptable solution can

be described by

< acceptable solution) :c T T T •••• Tl « initial data'\...)n n-l n-2 ,

where Tn is the n-th and last transformation and Tl the first •

In the above , it has been assumed that each transformation will accept as

input the output from any previous program. This is in general not the case.

Up to now the influence of the designer on the se~uence of transformations

and the specific choice of data to be used as source , has not been taken

into account. The designer can be exp8cted to follow through a logical

sequence of transformations and to use only those source items for a part­

icular transformation which are relevant. However the possibility of a~erroneous

or delibrate attempt to let a transformation act on data that will produce

nonsense will always remain. Whether the transformation on faulty source

data is performed or not is a question of implementation. In the follOWing

it is assumed that each transformation will accept an arbitary set of data

as source.

1-11

1.05

In order to analyse the influence of the designer on the sequence of

transformations let

a) A,B,C be three programs perrforming three transformations

b) Xo be the initial data set information

c) XOA be the result of program A operating on data set Xo
XOAB be the result of program B operating on data set XOA etc.

Then the following graph can be drawn

fig. 1.05b

An arrow represents an activity of the machine in performing the algorithm

of the transformation. At each node, the designer has the choice of three

progr1ms anl a number of data sets. The initial data set Xo can go through

a large number of transformations before the designer reaches an acceptable

solution. The important thing to note is that the path taken through the

graph is not a priori known and therefore the number and manner of creation

of the data sets is also unknown. For the time being it has been assumed

that each program will accept an arbitrary data set as source. By arbitrary

is meant that a probTam is indifferent to the history of creation of the

data set specified as source by the designer. This is not a realistic

assumption but will be amended later on.

In general it can be said that at each node the designer determines

a) Vfuich transformation (program) will be next

b) Which (lata set will be used as source for this transformation

1-12

1.05

In fig. b the collection of datasets from which the desibrner will choose

a new source has not been indicated. If for example program A had. been

activated followed by program B and assuming an initial data set Xo then

on the termination of program B the possible data sets will be-

Xo ' XOA ' XOAB and XOB Therefore the record of activation of the desig!"

process can be said to be the collection of data sets created by the sequ0llce

of transformation algorithms chosen by the designer.

The situation at each node of the graph can be sketched as follows-

PROGRAl\l BANK

THE DESIGNER

Choice of

Choice
Source

fig. 1.05c

Program A

Program B

Program C

DATA BANK

etc.

The conclusions of the analysis can be summarized as follows-

a) The designer must be able to indicate to the machine which transformation

algorithm he desires.

b) He must also be able to indicate which data set is to be used as source.

c) The designer would logically choose a particular sequence of programs

to act on a meaningful series of data sets but it will be necessary

to safeguard the design process from the creation of data sets with no

inherent meaning L e. data sets containing nonsense •

1-13

1.06 The Proposed Software Support

From the preceeding sections , the areas in which software support will

be desirable for the optimal performance of the design process have become

evident.

These ureas are-

a) The necessity- of an efficient and effective man/machine interface.

b) The maintenance and logging of data sets created by the designer during

the design process.

c) The maintenance of a library containing the design programs.

d) The coupling of a particular data set with the design progr'am desired

by the designer.

e) The availability of suitable design programs.

The following di~arn will illustrate these issues.

THE DESIGNER

~
(c) ..

PROGRAM BANK (e)- r

Program A

Program B

~ (J'l) PROPOSED
Etc... , SOFTWARE SUPPORT

(b).. ..
DATA BANK.. ,

Data Set

~ ~ Xo
~

If (a) X
OA

DIGITAL MACHINE Etc. .-
Active Program (d)

Program A 4- - Source Input

~-
Resultant Output

1-14

1.06

Each of the above mentioned areas will be handled in more detail in the

following par~6Taphs.

a) The Man/Machine Interface

The first prerequisite for an efficient and effective man/machine inter­

face is an on-line information channel between the designer and the

machine. By an on-line information channel is meant that there is no

intervening information medium between the designer and the machine.

A set of punched cards containing instructions and numeric input data

is an example of an intervening information medium. The cards must

first be punched and then be read into the cardreader device. There

can also be a considerable time lag between the input and the final

output. In general an on-line information channel will consist of a

te letype or visual display at the designer side of the channel and the

necessary input-output supporting software and hardware at the machine

side. The designer will then be able to type in his instructions and

data directly on the teletype keyboard and recieve the return inform­

ation from the design program via the teletype line printer. An on-line

information channel can therefore be very efficient and effective if

the time between an instruction from the designer and the response from

the machine is a matter of seconds.

The man/machine communication can be divided into two main categories-

from the designer to the machine and from the machine to the desib~er.

The designer/machine cODlDlunication will consist mainly of instructions

to activate design programs • Supplementary instructions demanding

information on the presence of design programs and data sets would also

be useful to the desiG~ler. Designer instructions will require the imple­

mentation of an interpreter • This interpreter will convert the instruc­

tions into meanil~ul software entities. The machine/designer cOITilllunication

will consist largely of the numeric or graphic information demanded by the

designer. This information is produced by the design programs. Other types

of desirable communications to the designer will be error messages on

faulty designer instructions and error messages on possible run-time

errors in the design programs.

1-15

1.06

It is obvious that all desiD~er/machine communication should be straight­

forward and to a large extent self-evident. This will promote the ease in

use and therefore enhance the accessibilty of the design programs g

b) The Maintenance and Logging of Data Sets

Whenever the designer gives an instruction for the execution of a trans-

formation (design program) , a demand for a partic~lar data set to be used

as source is created. During the design process a large number of these data

sets may be created. In order that the designer can specify and the machine

can identify a given data set , each data set must have a unique name. The

existence of a particular data set to be used as source must be verified

before the desired design program is activated. A list of data sets must

be kept and updated. Complications may arise if the resultant data set of

a design program is to have the same name as an already existing data set.

The supporting software in this area should consist of-

a) The upkeeping of a directory containing the names of data sets and. if

necessary on which device they are stored.

b) The verification of the existence of theft data set specified by the designer

as the source data to the desired design program.

c) A check for ambiguity if the designer is about to create a data set with

the same name as an already existing data set.

d) Any other possible operations necessary so that the design program can

be activated without error conditions arising.

c) The Maintenance:of a library.

The demand for a design program will entail the verification of the exist­

ence of the desired program and the preparation necessary for the execution.

The designer may also desire information on the availibilty of design programs.

The software support can be expected to perform the following-

a) The maintenance of a directory containing thernames of available

design programs.

b) The preparation for the execution of the design program.

1-16

1.06

d) The Coupling Data Set! Design Program

Once the existence of a desired design program and indicated data set has

been verified , then the design program must have a means of knowing which

data set it must use as source. Therefore some provision must be made to

couple the fixed data input base to data set indicated by the designer.

e) The Available Design Programs

The primary requirement of each design program will be that it is able to

perform the transformation it is intended to perform in the most efficient

manner. By efficiency is meant the amount of processor time and core memory

it will require. This will depend on the particular algorithm employed and

the manner of its implementation.

Each design program will in general demand an input source data set and pro­

duce new output data. This output data is destined for the designer. A copy

of this data set must be made so that the designer can use it as a source

input data to the next transformation • This next transformation could be

a transformation creating a new data set or a transformation creating a hard­

copy output on the line printer.

It will be desirable to protect each design program from run-time errors

such as divide-by-zero etc. which could have a negative effect on the

designer.

Once the indicated source data set has been coupled to the design program ,

there will be the problem of extracting the correct information from the data

set. This problem is closely associated with the problem of the structuring

of the output data set. This because it has been assumed that a design program

will accept an arbitary data set as source • But this source data set could

have been created by a previous design program.

The software support in each design program will be

a) Means of extracting the correct information for the computation.

b) The actual computation

c) The handling of run-time errors

d) The creation of the output data set in such a manner that the next design

program can extract the information it will need.

1-17

1.07 The Proposed Data Structure

In considering the proposed data structure it will be advantageous to make

use of those data handling faoilities which have been implemented on the

B6700. The B6700 is file-oriented in the sense that the user does not have

d:imc t access to the ac tual peripheral device. In general the access to data

on physical devices such as cardreaders, disk units and the transference

of the data is handled by the Input-Output Subsystem • The I/O Subsystem

acts as an interface between the program reading or writing the data and

the device containing the actual data.

- to determine which errors have occurred during an

I/O operation

- to specify how certain files may be used and bye) Security

A file is considered to be a group of related records. Each file has a

number of properties called "attributes" • These file attributes are used

for a) Identification - name of the file and on which device

b) Structuring -maximum record size and units used(words or char)

c) Status - to determine if a file exists and is available

d) Diagnostics

whom.

The I/O Subsystem does the searching for a file and manages the transference

of data from the program and the physical device. It also maintains a dir­

ectory for the fixed head-per-track disk and directories for the removable

disks. These directories are also accessible to the user.

The following is a functional division of the kinds of files per device type

as can be considered relevant to the proposed CEPP configuration.

a) For the On-line Communication
•

To ensure a reasonable response time in the communication between the

designer and the design programs a DATACOM file can be considered essential.

DATACOM files are handled by the DATACOMMUNICATIONS PROCESSOR (see Section

1.04 fig 1.04b) and are associated with remote devices such as teletypes

and visual displays.

b) For Long Term Storage

There are two possibilities for the long term storage of user data and

design programs. 1bese are the removable disk and the magnetic tape •

Storage on magnetic tape has the disadvantage that operator intervention

is needed to mount the desired tape.

1-18

c) For Tamporary Storage

All data files created during a design session can be stored on the fixed

head-per-track disk. Files destined for long term storage can be copied

to removable disk or magnetic tape in a more efficient format at the end

of the session. By a more efficient format is meant that the physical

amount of storage space will be minimal.

d) For Hardcopy Output

The following forms of hardcopy output can be considered desirable for

an effective design process.

1) Numeric and graphic output from a line printer.

2) Graphic information from a plotter device.

3) Hardcopy storage of numeric data from the card puncher or paper tape

puncher.

The above mentioned files have been incorporated in the following diagram

representing the proposed data structure.

On-line Communication

DATACOM
file

Ilo SUBSYSTEM
and.

DATACOM PROCESSOR

CENTRAL CORE
MEMORY

REMOVABLE
DISK
file

MAGNETIC
TAPE
file

FIx:c;D
DISK
file

LINE
PRINTER
file

PLOTrrER
DEVICE
file

CARD
PUNCH
file

2-1

2.00 Special Topics Concerning the Burroughs B6700

2.01 The B6700 System Organization

)...J.,3,-, __ .u t1::.0 ATL')L 6e l-:i"ornise th....t (st'J.t~c) 'olock st':'ucturing is the

n.~.hT 1, if not ~us~~il;j.,"l, 10rm fer th..: ~xi'rc:d,;i(m of coml,lax fil.4:oI'ithms.

J .rlU-U ,::;.:s _,TIl :....cr; b1uck 3tructur~d.

U:TTl.=TJ4113i~ 17
n "('Tl'T

..... ~u -0-."'"

r T).;'..T.A
, .
l)i::r;ll1

:"ile 11T(I~·':·1.b:T;;~J:r);- ., T' It)
prO(~i:::.l1'T,] ;:'\.ci. ;

'-".'1.".;r P. [*];

b .n'i-'
~~

wnd.-

ALGOL

SOURCE

COMPILE

TASK

RUN

TASK

JOB

TASK

2-2

2.01

The source deck given on the previous page is an example of a JOB

as implemented on the Burroughs B6700. It is writen in an ALGOL-like

language called Work Flow Language or in short WFL. The ALGOL-like

program structure is clearly visible. The following description of the

JOB will convince the reader that WFL language has the same charaoter­

istics as normal ALGOL. The WFL compiler i.e. the code program that

processes the JOB input deck is true compiler and produces output in

JOBCODE in the same way as the ALGOL compiler produces ALGOLCODE •

A JOB is the principal unit of work containing one or more units of work

called tasks between the delimiters BEGIN (first) and ?END JOB • The

individual tasks are delimited bY' invocation statements such as ?COMPlLE,

?PROCESS and ?RUN. Anything appearing between two tasks invocations or

a task invocation and ?END JOB is considered to be declared (implicit)

in the former task • The numeric input data set between the RUN and ?END JOB

is declared to be of the type DATA and named IN. This data set is

therefore local to the task RUN. The source deck contains two tasks

each with its local data set. First the ?COMPILE with its local data set

containing the the ALGOL source deck and then the ?RUN containing its

local data deck. N.B. The complete JOB is also a task.

Not only is the static structure of the WFL JOB ALGOL-like but also the

excecution of the JOB has the features of an ALGOL program. There exists

a primary system (intrinsic) procedure called RUN (see ref 12 page 116)

which initiates and terminates tasks. First the reader should be aware of

the fact that there is no basic difference between a compiler that

produces executable machine code and a normal user program that produces

somEl form of visible infoI1llf.J.tion. In fact the B670Q__WRTRAN and ALGOL

compilers are written in ALGOL. The machine-encode version of the WFL

compiler is called SYSTEM/WFL and the ALGOL compiler SYSTEM/ALGOL. All

executable code files process a number of input files(could be none) and

produce a number of output files. The B6700 SYSTEM handles all code files

in a similar manner.

2-3

2.01

The previously illustrated WFL source deck can be split up into the following

tasks.

1) Task 1

Compile all WFL source cards with WFL and call the resultant JOBCODE

OOSTERBAAN •

2) Task 2

RUN the JOBCODE file with the name OOSTERBAAN.

3) 'l'ask 3

Compile the Algol source deck with Algol and call the resultant ALGOLCODE

E/E~/00S1ERBAAN •

4) Task 4

RUN the ALGOLCODE fi le named E/ER/OOSTERBAAN and use the card images after

the control card ?DATA IN as a cardreader file of the name IN.

It can be noted that a Compile task is an implied RUN i.e. COMPILE WITH

ALGOL translates into RUN SYSTEM/ALGOL and the COMPILE WITH ~'L becomes

RUN WFLCOMPILER •

The sequence of the tasks in the execution of the JOB is illustrated in the

following diagram.

(1) Task 1 ~ (2) Task 2 --+ [(3) Task 3

Task 2 is initiated by the WFLCOMPILER.

Task 3 and Task 4 together form Task 2.

--~... (4) Task 4]

The Y,,rFL JOB text could be replaced by the following BEA source text.

procedure RUN(ACODEFILE or APROCEDURE); specification part + body;

procedure WJ:i'LCOMPILER(WFLrvLESSAGE);

array WFLMESSAGE[*] ;
begin

translate the contents of the arr~ into JOBCODE.

if OK then RUN(the JOBCODE) ;
end;

RUN (WFLCOMPILER);

The above is a simplified illustration of the correspondence between the Algol

60 premise and the Burroughs System Organization. The JOB is converted to a sec,­

uence of procedural steps and is structured as a set of nested blocks.

2-3

2.01

Assuming that the previously mentioned SYSTEM intrinsic RUN has the

following simplified form-

proced.ure RUN (<. executable code file name '> ,

< source input > ,
<: destination output>)

where < source input) : s= ~ card images in an array>

C data files>

< none >

< destination output ~ :: ,executable code file)

(data file)

(none)

then execution of the JOB will have the following operations.

Task 1

RUN (SYSTEM/WFL, card images of JOB deck, CODE of JOB deck);

1'ask 2

RUN (CODE of JOB deck)

The CODE of the JOB deck as produced by the WFL compiler is in JOBCODE

and will have the following content but in machine code.

Task 3

RUN (SYSTEM/ALGOL, ALGOL source deck, CODE version of source deck);

Task 4
RUNC CODE of ALGOL source, DATA IN ,output files if uny);

The above is a simplified. illustrution of the correspond.encu between the

ALGOL 60 premise and the Burroughs System Organization. The JOB is con­

verted to a sequence of procedural steps and is structured as a set of

nes ted. blocks.

2-4

2.01

The outer most block is the WFL task which produces two blocks

a) The compile with ALGOL block

b) The execute the ALGOL code block

Since a block defines the scope of the algorithms identifiers and the

dynamic resource requirements, each block can be executed without refer­

ence to any other baook except for those blocks it contains itself.

In other words programs like ALGOL procedures can be produced which

exhibit strong locality i.e. self supporting.

The result is that also the manifestation of the computing process of

each block, that is to say a) The Core Memory requirements

b) The Processor Time requirements

c) The I/O requirements

will also exhibit strong 10cality.Only the block that defines the scope

of the identifiers used in the execution of an instruction in that

block needs to be in core memory at the moment of execution.

The realizationof' the ALGOL 60 premise in the Burroughs System Organization

is demonstrated by-

a) All JOBs are block-structured into tasks. Each task contains local entities.

b) The presence of the system intrinsic procedure RUN. This procedure can

be understood to be declared beyond the JOB block. The actual parameters

of this procedure are the names of executable code files, input information

and output information. This type of algorithm is representative for

for algorithms generally found in ALGOL.

The bonus derived from this highly structured organization is the possible

implementation of "virtual" memory and the possible assessment of the

dyn;~ic resource requirements at any particular phase in the execution of

a program. This will be handled in the next section.

2-5

2.02

Tho Workinpj Set and VD:,tuill r.Ielllorz

'I'hf~ 136700 d.efini tion of;e "JOB" has t";IO components

:J.) 'l'h~ time-invariant al,_~()rithr.l.

b) Th,. timc-7 u-ying clt·..). structure ':lhich is cs-lled the"record of execution"

of that ii, 4;ori thlJ •

'111-; "r J:ord of o):ec:ution"defines at ,i.llY time

,j,) thtl eX9c:ution sta.te of the job, inc ludinr; th,~ values of all vi·.rio.hles;

b) thlO 1'111'a33ing environment thut the flroces~,or ",erving this jeb :IUJ

~) thG interblock/intel'procedure/intertask flow of contrel nistoIJT •

",11 __ t 1u<;;:8 th...l ":i.'(~cor1 0f execution" nued. to~ont~1.in ,;1t 1.l.rJ;)' giV0T\ inst.llt

of tiru,; ir~ ()i.~i.(;r to process c.. "JOlJ" 8ffBctive J..y-? The L,rwwer tu tnis

lu)sticn:.::cUl b", gj.v.:m bj-- considering that ,dl B6700 com,iJiJers produce

s8e,"LH:mtJ of m~l.chine code • ~a.ch segment i~ the coded version of a block

s lesc.db2d by th,~ S,i)lt,,-x of such a blo;:::,~-structured l'albuQ{,l'O.

}'or inst",nce, tll~ ALGOL 6u block ilelimiters are the .t'~dr bdgin ana. end

11.11, • For the 'l:JRK FLO\'j LANGUAGE conI-iIeI'

these ,:'.l''} JOB, n:":GIIr, EI,:}) or .JOB, and. a,ny stutement contcdning COMPILE,

mrr,PH')CES3,CAIoL, COpy, Jl.E'3~Vi.: awl BmD (there "re othars) •

~.~+.: .,. ,.,,\ ·~·'11'··1.'(' ('h '''·'1· ... 11t)':. r,,·,il'.·t'."i tC) by ;', "'"'!':~:'-':_<"i'tO'r 1_'11 th"-tJe .l.V.J..:.:),,~.u v/ O'~,.J" ,.:. Lv. -- ~ wl··bl.~ .v r _ :..L_-..._~ .. "'""

j r';S',;I1'; jn.J:l=~.c'~"; '!.:.·L CC1'e. A(~l;1J.,.1.l.~r, on," ;3houlJ. sl-ec1.k of the reJords of

",tiv.~Gim 0:: tllUS0 ':;'~GTlent;;;; th~ dGf:'l1e th.'~ contou.r(th-J scope of vOJ.li::i.ity

01 ti'l!; v,:ri· '.bl':s)Ol th..: ,,·.'.ri,ble:s oi';h;.. t 3~'Tlel1: in Nhich the procaS30r

i::. nOi~ ·.c t; 5.v,; •

2-6

2.02

cont'iLing-

h~r'l, r·~ int.'~""11rt ('::',:)1.1;'8 which "lill :}(-)1 Y further ex",',;ution of the

ST1'J~K:')""l. "inin'~' +'11:; "r >y,rl of eX8,;utioJl". The S;: .:.:t;;: intrinsic lrc,~;:iuJ')

~r nsf ,r it to ~tre.

to transfer segments to/from core because this does not reflect the infor-

~ ~

t ,eh11fi

" ".... .1..1.
th +.: ,,~.

,3 th: of .' ,~."'.:,,-, J:- ,...... ~ '-.'

2-7

2.02

st.tir)ll .1':/ stach she lTocos:, so th.-:; the S3t v:,luns for ClJlYG01.IJnd

A"\LILFI:r G n only rouE;:lly ::'Gl1\Jct th>2 .,C ~u' l~h,r.:'.cterLtics of th~ USdr

~::'ll_;I'!r..J. 1"tn:l s~t'ious rni..;m:....tch ':fill .£':mlt L" tile lh,mon::m.on cc... llcd "tltrEsr.~L'16".

<-'v -"-

'l}.- tne Dution uf tht:: lI'.,(j,;,"l:ing f3et". :h'. Dennin.(; in r.ef. 12 d.<::fines :~

1')2' the stru::turoof his ·Jc:oritb:, 1..nd hL~ }..1.'OE,T.rfJ,.ing styb.

"'h<:: l;;y rclint ill f'fr. D,Clru'til1g's d:~finition is of course "01'ficiently" • '='h';,;

.1'X~:lt'y trIon th, 1.TO(~3SS wiI1 be contLn..... Ly interru}ted in ~r:l.eJ· to tr:~1Sf2.r

t l
\"'; '.- it tl~OHl lisk to • .0 the;)re i.e> Lie:;h over1J.y .te.... -.) ~L .. c~or~ 1.J. , r

1\;'2. (ire; Did~ in ref 11 1- ge 34 b iv8S tb~ :t'o 1 lOW in;; ""dvie.:: ~ ',;3 '- ... gane:c..... l ru18

1) ":.0::>(;;

2) .I1'2 events.

7'0t' 'J. 11"(,"'e .le';i.'"d. ,,-C :Oililt of the 1I:~m 11 "crk:Llb ;::kt 11 th,:: L~e:i.:r is ;...dvi~c'l

tc r~cn.'LlJt ",~.:tioYl 3.7 ol COf,lf·-1,l·tH' SY3t'.~w OrG'niz.~tLm by B. 0r5~·nid (rdfll).

3-1

3.01
Task Invocation

On the Burroughs B6700 , a wide range of task invocation statements are

possible in Work Flow Language but on~ three are possible in Burroughs

Extended Algol. This due to the fact that most WFL invocation statements

are variants of the three basic Algol types. The correspondence will be

handled in the following. paragraphs.First the three basic types of task

invocation statements, -

a) call

b) process

c) run

invokes a synchronous dependent task

invokes an asynchronous dependent task

invokes an asynchronous independent task

An explanation of the terminology used is as follows.

The process that initiates a task is called the initiator. The process

that has been invoked is called either a sibling or a partner. By a

synchronous dependent task is meant that the initiator will not continue

processing while the sibling is active, i.e. the initiator will be suspended

until the sibling has become inactive. The initiator must not terminate

before the sibling terminates. The same words apply to an asynchronous

dependent task except that the initiator may continue processing. The~

invokes the task as a completely independent task. Both the initiator and

the sibling will be processed at the same time and terminate without

influencing each other •

The correspondence between the WFL task invocations and the BEA task

invocations can be listed as follows -

call

call

In WFL

?RUN (filename)

?COMPILE (filename) WITH ALGOL

?PROCESS < filename)

?PROCESS RUN (filename ')

In BEA

< filename)

SYSTEM/ALGOL use (filename)

as input file

proc~ss « filename)

run <- fi Iename)

'l'he WFL compiler translates the WFL task invocations into equivalent BEA

invocation statements • In principle there is no difference between a task

initiated via a WFL JOB or via BEA invocation statements.

3-2

Variables of the Type Task and Task Attributes

Variables of the type task are structured variables and are used to

achieve special types of control and monitoring relationships between

tasks. They are similar to variables of the type file in that they also

have "attributes" which can be assigned or interrogated.

All task "attributes" are set to default values either by the compiler or

by the Burroughs System. Not all task "attributes" are accessible to the

user but a large subset is accessible either via control cards in WFL or

by suitable assignment statements in BEA.

In general, task variables are used to set, log and interrogate the state

of a task Le. active, scheduld, suspended or terminated or to obtain log

operational data such as the elapsed time, processor time and I/O time

used by a task. The following will be an example in the use of task variables

and the assignment of values to task attributes. The correspondence bet­

ween a JOB in WFL and effective~ the same JOB but in BEA will be shown.

IJat the JOB be-

?JOB TEST; USER=U4llS4l7/HONEYBEE; QUEUE=2;

BEGIN T(PRIORITY=99);

?IF FILE MY/PROGRAM IS PRESENT THEN

RUN MY/PROGRAM [T]
?END JOB

N.B. Variables in WFL are not declared but implicit~ declared by the

first usage o

The net result of the JOB will be-

If the file MY/PROGRAM is present on DISK then execute it as a dependent

synchronous task with a priority 99 else do nothing. The JOB is then

processe1 by the WFL compiler which will produce the JOBCODE. The JOBCODE

will then be executed either as a dependent or an independent task. 1ne

program MY/PROGRAM must (in this case) be executed as a dependent task

)-)

3.02

because the JOBCODE task must remain active. Otherwise a critical block

exit will occur and program MY/PROGRAM will be disabled. This kind of

disabling is aptly called "DEATH IN THE FAMILY" Therefore the RUN

statement in the WFL JOB must be interpreted as a BEA call •

The JOB can now be converted to BEA.

begin

task T;

procedure DUMMY; external ;

file TEST(FILETYPE=7 l KIND=DISK)

replace TEST. TITLE l2;r. "MY/PROGRAM. n

if TEST.RESIDENT then

begin

replace T.NAME...llz "MY/PROGRAM."

T.DECLAREDPRIORITY:= 99 ;
call D~IT [T] ;
end;

end.

The result of this BEA program text is identical to the WFL JOB. The

variables however must be explicitly declared i.e. procedure D~IT,

task T, file TEST .Moreover it can be seen that the assignment of task

attributes is accomplished in the same manner as the assignment of

file attributes •

Task attributes may be of the type integer,real ,pointer or Boolean •

The assignment of a pointer task attribute to ,a task variable has the

following construct.

replace (task identifier ") • (pointer task attribute)

l2;r. (simple pointer variable) ;

The interrogation of a pointer task attribute has a similar form-

replace <simple pointer variable l by (task identifier).< pointer task

attribute) ;

3-4

The two most important pointer task attributes are-

NAME Generally used to assign the TITLE of an executable code file to

a task. Can be writen or read.

FILECARDS Is used to assign file declarations and label equations to a

task. Write on~.

To illustrate the use of the pointer task attribute NAME let the following

BEA text be compiled as MY/PROGRAM i.e. the TITLE of the code file will be

MY/PROGRAM •

begin

file OUT(KIND=PRINTER);

~y RELP[O: ll] ;
ill teger L;

replace pointer(HELP) ~ MYSELF.NAME %MYSELF task attribute of the

%type tCisk

~ pointer(HELP) for L: 72 until EQL "."

WRITE(OUT, <"CODE TITLE IS ", A* >, 73-L, pointer(HELP));

end.

The result will be the printout -CODE TITLE IS MY/PROGRAM on the lineprinter.

The use of FILECARDS is similar to the file declarations and label equations

used in WFL. In WFL the file declarations and file lable equations which

follow a task invocation statement are local to the task invocated.and are

passed along to the task at RUN time. The above also applies to the assign­

ment of file declanl,tions and label equations to a task via the attribute

FILECAImS. The following will illustrate the equivalence between a WFL task

invocation and a BEA task invocation.

In Work Flow Language In BEA

task T·-- ,?RUN MY/PROGRAM

?FILE OUT(KIND=REMO'l'E) replace T.NAME E.Y. "MY/PROGRAM.";

. replace T. FILECARDS E.Y.
"FILE OUT ~KIND=REMOTE) "4"00" ;

call APROG~I lTJ; io APROGRAM is
external

The WFL and BEA progranls will produce identical results. Program 1IT/PROGRAM

is st8['ted up and text "CODE TITLE IS MY/PROGRAM'~ is printed on a REMOTE device.

)-5

).02

The reader will note that the terminating character of the attribute NAME

is "." whereas the terminating character of the attribute FlLECARDS is the

Hexadecimal character 4"00" •

The assigment of real,integer or Boolean task attributes has the following

construct.

<task identifier) • <task attribute) := variable or value of the same

type as the task attribute

The interrogation of a task attribute has the construct­

variable of the same type as the task attribute :=

<task identifier') .(task attribute)

For example if T is the task identifier of a task that has been activated

then the statement

if T.STATUS GTR 0 then T.STATUS:=-l;

will result in the termination of task T if it has not already terminated.

The task attribute STATUS used above is one of the most important attributes

for Inter-Program Communication. The value of STATUS reflects the state

of the task •

The values and meanings are-

STATUS =0 not active

=1 scheduld i.e. waiting for a processor

=2 active i.e. awarded a processor

=) suspended i.e. waiting for a processor after being

active

=-1 terminated either normal or abnormal

Once a task is active it can be suspended or terminated by assigning the

attribute STATUS to 3 or -1 respectively. A task can also be reactivated

after it has been suspended.

3-6

Other useful real task attributes are 1-

STACKNO

STOPPOINT

HISTORY

INITIATOR

ELAPSEDTIME

PROCESSTIME

Returns the MIX number of an active task or the negative

MIX number if the task has terminated. Each task can there­

fore be uniquely identified.

Returns the segment and relative address at which the last

arithmetic fault occurred or at which the task was terminated

or suspended.

Returns a real value with a bit pattern encoded to determine

how and why a task has terminated.

Returns the relative station number of the REMOTE device from

which the task was initiated. Assigning this attribute has the

effect that all files of the KIND=REMOTE in a particular task

are associated with that station number. For DATACOM only.

Returns the total elapsed time since the actual intitiation

of the task in multiples of 2.4 microseconds.

Returns the accumulated processor time in multiples of 2.4

micro seconds.

PROCESSIOTIME Returns the accumulated I/O time in multiples of 2.4 micro­

seconds.

For further information on task attributes see Ref. 9
Inter-Program Communication , Ref. 7 and Ref. 11 •

the se'ction on

The last two importanttask attributes to be handled in this section are

EXCEPTIONTASK of the type TASK

EXCEPTIONTEVENT of the type EVENT •

A brief explanation of their use is as follows~

If task A intitiates task B then task B will be the EXCEPTIONTASK of task A.

If task B undergoes a change in the value of STATUS then the EXCEPTIONEVENT

of task A is caused. Task A cau be made aware of changes in STATUS of task B

by attaching the EXCEPTION1~T to a software interrupt (to be handled in

section 3.03) or via the wait/waitandreset intrinsics.

3-7

Variables of the Type Event and Software Interrupts

Vari',bles of' the type event ;~re structured. vu.riables cont::.:.ining two

bina.ry switch fie Ids. Th8 first of the0e swi tches is the "harrpened"

bit :md h:'lS a " situ.•tion-oriBnted "function. The second is called

the" Ci.viliL~b18 " bit and. hCl.s a " resource-oriented" function.

The v:...riaOles of the type event are used to sit:.nb.l the "h"'lP~ni!l€ tI

of c'n't'in evomts or th8 tI av:dk.bility tI of cert'J.in reSOUTr~os betv:een

,'isynchronous t __sk. I:f, for inst:..nc'~ (~ ::;ert ,in t'lsk hiJ.s cOIHpletei an

import-:nt ph_se of its comFutation it Cl...ll notify the oth~r tLLSks of

this GV':::nt. '7hc11 used. as a " resourc8-oriented " functioil , it will

<.l.llow :1 t:Lsk to enter ~tnd exi t from whc:,t Prof. DijkstrCJ. c,~l1s 0.

"critic"..:.! s~ction ". Such ,1 " critical section" could be th""t two

tLcsks , t::sk A ~nd t,-,-sk B h,""ve cl.cceSS to the S,JJll8 data. 8.rr,~,y. 'l' ...sk B

readies th,? contents of the array for tc;.sk A. VIhile bsk A is per­

forn,hlg cert:),in corr,put'ltions dependent on the contents of the arr:.J-y,

t;:,sk '3 coulI be upd,.~cting the contents of the ar:::'uy. In oriel' to

prev9r.t this from h.~ppsmir..g , t1':~sk A must se t a fb£' (the "avl,~i1G..blett

bi t) thc_t the array is II not'w::.ilo..bl.'3 t1 • VI11~n ti,~sk A hQ.s no further

use of the contents of th::: ar.J.'ay in q,uestion , the fl:1g Ci.!l be reset

to II aVl',i leob 18 II

The B6700 imp 18I:lont«tion of the v2.riub Ie of the] type event hc...s the

follo.ving storut';e structlll'e in tha ~~cti'J'ition record of th"wt block in

wr.ich the event is ieek.red.

event A

T'ne "h:,:'l)(med II bi.t

The~ he&d

An eV8nt wait queue

The inte:crtlpt heud

An '.lV'ant interJ:upt '-lueue

The "resource" bit

3-8

).03

The first part of this structure contains the "happened" bit of the

"situation-oriented" event. The "situation-oriented" event is used in

combination with-

a) the System intrinsics ~,reset,~and cause

b) the System composite intrinsics waitandreset and causeandreset

c) the software interrupt •

rupt must

exarnple-

The following is a brief sketch of how the implementation works.

The event wait queue contains the STACK NUMBERS (Task attribute STACKNO)

of all stacks waiting for that event to happen. Let ANEVENT be a

variable of the type event. Whenever a wait statement is entered by a.

task (wait (ANEVENT) ;) and if the "happened" bit is "off"(NOT

HAPPENED) then the stack will be linked to the event wait queue of that

event instead of the READY QUEUE. If a stack is linked to the READY

QUEUE it can be awarded a processor and become active again. The stack

will be re-attached to the READY QUEUE if the event of the event wait

queue is caused i.e. cause (ANEVENT). It is obvious that some other

process must cause'the event in question.

The event interrupt queue contains the STACK NUMBERS of those stacks that

wish to be interrupted whenever the event is changed from "NOT HAPPENED"

to "HAPPENED" • An :Lnterrupt can be assoc:B.ted with one event only. Any

new association with an event will override the old association. An inter-

first be declared, then attached to an event and enabled. For

interrupt HANDLEIT;

begin

program text

~;

attach ANEVENT to RANDLEIT

enable RANDLEIT ;

If the event ANEVENT is caused (by the task itse If or some other task) then

the interrupt will be entered and excecuted. Control will return to the next

statement following the statement in which the interrupt occurred unless some
KQ. !2. s tatement is_us_ed_•. _

3-9

The follo',ving BEA frogra.u. text shouB. be 11' to illustrtl.te the workings

of events, interrurts and the intrinsic8~ and cu.use.

Let tu.sk A be.

lin,~ nr.
begin

event m:,!-1'ELP:R;

o.cray HELPTEXT (0:29]

proced.ure B(OK, HELPB, HELPTEXT);

event OK, HELPB;

u.T'I:3-Y HELPTf::xT["*]

e:.dern8.1 ;

400 interrupt H?U'TASIG

450

?jOG

d.eterLlinra th", reason of the interrupt

find som~ suit'..ble ... ltern,!..tive

entor this ir.forIDCition in arJ:i;;,.Y H:r.LPl'EXT

oa.use (OK) ;
end

.~ t ,;J~h IBLPB .1£. HELPrASh'B

811:.:.'01e IillI"prrASIa3;

process D(OIC,m;;LPB,HELPrFXT)

t~sk .~ deus sem~ useful work in this segment

700 ',lait(O::C) % tc.sk A lllu~t w:.it for t,Lsk B before it

3-JD

Let bsk B be.

line 1".1'

100

200

300

procedure J3(AOK ,HELP1'1E,HYINFO)

event AOK,HFIJPTIE ;

arr'ly: },lYTIJFO[*1
be,:;in

3t~rt proc8ssing

if all c":'r)llonlnl sitU'd.tion arise3 then

begin

c':.use (IIT<;I,I'l1F,) ;

wc.dt~'ndre S 8 t (A OK)

anc.lyse :'.ltern,tives given 'uy tcsk A].s given in 3,lT',-y LYIlTFO

end

end of p'oce;sing-notify t;.;.sk A

c :"use (AOK)

A brief explanation of the above BEA program text is as follows.

it shnnl-l 00,;;,;12:1,,:<.; r:rcc:l",.sin;; lentil it h::1,3 r.c....cDcd lin~ 7('0 GCi1.t:.:inin::;

t,!1t;: J_·.i t("r) stateraollt. l,'hile pl'oce.3Ging tC::lk A C..ill be Ll.terru,IteJ. b;y

L.sk i3. In th.t Cc.lse tnt:: interrupt decL.red on line 40C will be aut0red..

I"fllla r32.S0ns for the inter~~upt will be d3ta:'uitled, altern. tiv0S will '00

fC1m3. if ,fJossiJle and stored in array HEL.'PTEXT. Task B is ",:'.Hill(; for

tho ~v2nt OK (the actua.l F1.rdJn0tel.~) to J-IAPf'EiT .~t hne 20", of '~: .sk B.

The event OK is caused and reset to NOT HAPPENED because the event OK is

e.130 us.d in line: 700 of t~sk A. Task B will come out of tho event wait

queue of event OK and excecut th3 llQxtjt£~t'Jm~nt '.fter lin0 200 of tc•.sk B.

'l'J.sk A ':till return to th~ n~:x:t st~J.tement follc,.1.l'l6 the st.tement where it

','1"3 idterrult:d ""nrl continue rroc8;"]:Jil1(;' until it rec..ches liue 70v or it

i;~ Int,~rru~ t,'d :J'D'·in.

3-11

Only one cOwplicction C,e11 :U"ise. If tc<.8k A h,-13 ,"rrived ~t line 7CO and

the eVi;mt OK is in th:c: "HOT HAPPF::r\T}<,"'1)" stc.lte then to.sk A will be linked.

to the event vtait :lueue of event OK. But no\'l a.n interruf,t occurs. How

c;J.n t,).sk A bf~ BRde D.ctive again, so th,-lt it c:::.n service the interrupt ?

This iifficulty will be h:.mdled in tho section" Interrupting a

S leaping TlSk".

As already mentioned in this section, events can also be "resource-oriented".

The system impl9mented intrinsics procure t liber~Jte and fix D.re used to

coordim.te the entries and exits of tc.:.sks to/froD! "critical sr.'ctions".

Let E'lJT be the event iientifier. The procure(EVT) will fcrc:) '.'.I'.y task

th,~t is trJring to ch'.J.l1ge the stc-eta of the "resource" bit of event EVT to

"NOT AVAIIJJ3LE" , into the event wuit s.ueue of event LVT if the bit

hCl8 c..lrendy been set to "iWT AVAILABLE" by some other t:~sk. If' some other

task excecutes the liberiJ. te(EVT) then the "resource" bit wi 11 be set to

"AVAlLABLB" and all t~ska in the event wait y'ueue of event EVT will be

linkt:d to the RE'J'J)Y QUEUE. If the "resource" bit Wu.s "AVAILABLE;" then

the bit will b3 set to "HOT AVAILABLE" and tho tu.sk will resume proce:..;sirJG.

The fix(EVT)is a Boo loan function intrinsic and co.n be COLkiiJ.0I';;d a type

of condi tiona.l proclU'e • If the event YVT is "AVAILil,BL~" then fix will

return tIle value:= f2.1se d.llcl set the "resource" bit to "HOT AVAIkUlI.J:".

Had thf~ event INT been in the stute of "NOT AVAILABLE" then f:i..x would.

hC:ive r~turne1 the: value:= true and left the bit unch::mged. This cc·.n be

import::;,nt bec..:J.us8 ::;,ny task tI"'.{ing to ent\;!r a "critical section" will be

forcel into the eventR",i t "lueue of that event whereas it could. be busy

procGssing dat::.:. which is not del'endent on information lJertaina'ole in th'2

"critica1 section". 1'11.8 tsl:: could. from tim~ to time try to gain a.ccess

to those re8011:;.'C,;S which h~ve hithe2'to b(~en " NO'r AV1.ILADLL'''.

A simple ex'}.:nl-b could. be: if fix(EVrr) then 3
1
~ 8

2
;

If "S11T is "AVAIlJiliLE" thl;n c;L.t0ment 8
2

'lill be 8xcecuted ;,.nd st""tement Sl

if the ev':mt _=,,1'1£ is "HOT A'l:rl~IL.ABLEfI.

4-1

4.00 Special Software Constructs

4.01 Interrupting a Sleeping Task

This section will be concerned with the problem of waking a sleeping task,

so that it can service an interrupt. The subject has been mentioned briefly

in the section 3.03. The solution offered here is essentially the sol­

ution offered by Elliot Organick (see Ref.ll) •

The problem can be stated as follows-

Let task A be waiting on event X •

Let task A have a software interrupt that is attached to event Y •

Let task B as an asynchronous dependent task of task A cause event Y.

Desired is -

a) That the software interrupt of task A is service i.e. executed.

b) That task A returns to the previous wait condition after the interrupt.

The above outlined problem occurs at line 700 of the program text in section

3.03. Task B has not finished processing therefore task A enters the wait.

Task A will remain in this wait until the event OK is caused. In the

meantime some abnormal condition may [~ise in task B and event HEPLB (actual

parameter) will be caused. Task B will then wait on event OK. The

interrupt of task A however can not be service unless task A is active.

Therefore both tasks will wait for event OK to be caused. This undesirable

situation can be remedied by the fact that an event can be associated with

its wait queue and with its interrupt queue simultaneously •

Therefore if the statement

wait (OK,HELPB) were to replace wait(OK) in line 700

then task A would come out of the wait queue of event HELPB and consequently

captured by the interrupt • Ai'ter the execution of the interrupt , the next

statement followi~s the wait will be executed. It is however desired that task

A returns to the wait after the execution of the interrupt • In other words

a conditional type of wait is needed i.e. if event HELPB is caused then

service the interrupt and return to the wait else if event OK is caused then

come out of the wait and execute the next statement.

The solution to the problem is based on the implemented complex wait and the

use of a dummy statement.

4-2

The following will be an explanation of the complex wait and its use

in the solution of the problem described.

The wait intrinsic is implemented as an integer function • The value return­

ed depends on the order of the events given in the event wait listcand the

particular event caused.

Let EVTl,EVT2,EVT3 be variables of the type event •

Let EVENTNUMBER be a variable of the type integer •

Let the statement

EVENTNUMBER:= wait(EVTl,EVT2,EVT3) if EVENTNUMBER EQL 1 then••• else •. ;

appear in the program text.

If event EVTl is caused then the wait function will return the value = 1

and come out of the wait. Similar}Y,if event EVT2 had been caused then the

value = 2 would. have been returned.

The net effect of such a construct is that it is now known which event has

caused the wait to be left.

If EVTl had. been attached to an interrupt then EV:E.:NTNUI'IIBER would have the

value =1 and the interrupt would be executed • However after the interrupt

the next statement- the if clause would be executed instead of returning to

the wait.

Tho following construct has been devised.

while wait (:B,-VTl,EV'l'2, EVT3) EQL 1 do So ; 8 1 ;

Here So is a dummy statement and event :t-;VTl is assumed to be attached to

an interrupt.

If event EVTl is caused then wait intrinsic will return the value = 1 but

it will be immediately captured by the interrupt • On return from the inter­

rupt statement So will be executed and the while clause evaluated. The

while clause is true therefore the wait will be re-entered. If the while

had been false then statement S1 would be executed • This is the case if

either event EVT2 or EVr3 had been caused. The while clause would be eval­

uated on leaving the wait as being false and therefor8 statement 81 would

be executed.

The desired construct at line 700 in the previous section will be

while wait (HE1PB,OK) EQL 1 do

4-3

4.02 Separate~y Compiled Procedures

Th(~ BtT!'('U.GI13 :\J,,;'_1 C';c14.1er will acc:l,t any block as suit:J,ble for

A b lock r~ :':1 t,IO forms.

b) type ;procedure (formJ F-r,.J.meter

Jist)

v "lue id\r;.tific..:- list

A blo~k is

:3tc'teIr,'"nt ; or •

1. stuterr.ent th ,t bTOUps one or more declD.r:.~tions ;.'.rid

bInck.

'l)lc',,:ks 01 the f;~rp-:: .t.:;,:c.~elurEl b'.lt the s t:,Celll'.311t is terr..i;J.i;l,t;;;;;l b;r ~hj

-~e,i-'; 'lou. If (:1 ",<:,()ur n is corr:pib:-1 ,s d block of tj'l-" C-) it RilJ

not be .t'0'J3i'bLl:iv 1:-18S u.ctu:...l pc;r;.uJ.;.c.te:cs tv the fru~ru.r.. ~~ince it will

h9 :2.or! th.:.cn ne~e;,;:Jry~c be Cl.b18 to p:~ss IL:':"Cl.rJGtt:lrs frc'L ond pr06Tln

+.0 ano tht~r i:l tJ..? J:!,L'o;cV3cl enp? CO]'J.fi5Ul~,.1tion , this section will be

ievot31 to !lO'ii and 'Ihy tILL, c ...n bo d.one.

The user will then receive instructions via the lineprinter as how to

use SYSTEM/DUMPALL • The string "'l'EACH" is passed to the program SYSTEM/

dumpall as actual parameter. The string will then be analysed and inter­

preted to mean that the user wants information on how to use SYSTEM/DUMPALL.

4-4

4.02

The BEA source deck for SYSTEM/DUMPALL would have the following text-

?COMPILE SYSTEM/BURROUGHS WITH ALGOL FOR LIBRARY

?DATA

procelure DUMPALL (A)

array A [*] ;

begin

pointer PA;

file OUT (KINIl=PRIN'rER) ;

PA:=pointer(A) ;

if PA EQL "TEACH" for 5 then

begin

WRITE(OUT, The teach information);

end

else

begin

scan for other valid commands

if found theni.ct a.ccordincly

else WRITE(OUT, Error message to user)

end'--'

end. %ENIl OF DUMPALL

The last identifier of the program filename (in this case BURROUGHS) is

replaced by the procedure identifier by the ALGOL COMPILER. The net

result of the above source deck is that the procedure DUMPALL is compiled

with the CODE filename SYSTEM/DUMPALL •

The important thing to note is that the lower bound of array A is not spec­

ified but G'ivfm by the asteriks. Also array A is one dimemsional. The

ac tivation of the procedure DUMPALL with the literal "TEACH" as actual

pc_rruneter is only possible via a WFL task invocation statement. In B:B:A jt

is not possible to calJ. a procedure with an array as parameter by value

because an array has no inherent value.

All parameters of procedures to be 8.ctivu.ted by WFL task invoccition state­

ments must be called by value. Since structured variables such as task, event

an,i fi 1e 10 not hi:1ve values they can not be passed as pardllleters,

4-5

4.02

The special exception, as ulready mentioned, was the array with a literal

as actual parameter.

Programmatically activated (in BEA) separately compiled procedures may have

pa.rameters that are either call by name or call by value depending on the

type of parameter and the use intended.

The reasons for desiring a program compiled as a separate procedure can be

enumerated as follows-

a) Passing run-time information to programs initiated via WFL task invocation

statements. SYSTEM/Drn~PALL has been given as an example.

b) Because separately compiled procedures are indelJendent executable progrbiil

uni ts they can be activated by m.:A task invocation statementD. A sma: ..!.

program segment containing the task invocation statement can activate a

very large program and pass along the desired parameters. Moreover, the

same program segment can be used to activate different programs in

succession.

c) If it is intended to build up a library of programs then each new addition

can be debugged before it is added.

d) Each new addition will not nescessitate the re-compilation of the whole.

The program doing the activation needs on~ to be notified of its exist-

ence.

e) Only those programs or program segments needed are present in core memory

and on the fixed head-per-track disk. Other programs can be stored on a

removable disk and called up as needed.

d) A number of users can share the same program segments if they work under

the same USERCODE •

Wh2ther or not one is to compile a program or a set of programs as separate

procedures will depend on the use intended. Will it be necessary to pass

parameters to the program? If so then a separately compiled procedure will

offer a ~301ution.

4-6

4.02

Th" cen;;r' 1 idea h1S oden 2;iven in th2se p·,ssa.:.,"es c~s to hov .:.nd \lby

i-,ro.;r.iIlIS cou 11 ~.n:l should be COI:~piled ·,,8 GEip-lro.te proce:iures. The

fo~_loNing will be 11 briE:f outline of th.:: actUu.l implamenta.tion •

'Phi;: 'firs t cvrlsid.er'ticn i,~ thd.t on1;y' untyyai J;rocedure S ffii:.r.y be compi18d

An untyped procedure h~..s the gener""l form:

procedure !,rocedur8 Llentifier (foI'"w.'-i.l pururoeter list)

v2...lue identifier list

specifi'J:J.tion Y.l.rt

begin

the :f!roce~'luro body which is a st'ctement which may be

c. block.

:~ncl •

1':lcJ. rations ()f thd vd.J,:i,....bles used i:l -the fO:r'lIliJ.1 'p~r3J.l,~ter list
of the: ,j;;L'v'J(dure ;1.\r:rTWGRJ'...~1

~rcse.t tL'8]JrIpnOGIU\l·I (f 01'1..2.1 parumeter lis t)

valuQ ill:JntjfiQr lLni

3~ SGif iCcttion I,.rt

i.e. the iT C3Cl.Ure boly of);iroet:dw'e .AlTYI'HOCT:.i:JI

~d::J. b<~corr.e tho3 rrocedu;'e bo:iy(a.ctu;..l progTc..1)

of thu sep.lor:. te ly COl:l,tJUeJ. prl-·eedu:ce

4-7

4.02

proceS:3 ANYP!WGRAU(""dual pcl.rwnB tel' Ii.s t) [T]

en3..

TIl:! tc-skittribute lITlL:i; will cont,dn th~ co1e filenume of the sepcrd.t<:dy

th\i:: -lesir.cd reLticn3hilJ b8tween th-J l.l~in prC{;TaITl n.nl the sep·tr;.:.te],y

C0.:.f i ~cl -croc,dur·) trr,t i;::; to SeW the user rJ'.;.uest,d. prOoT~..m. Fu.rthur

:let""il.3 .•ro 'Norkwl out Ll thd section" IniIJlementu.tion of thG CEPr!

5-1

5.00 The Realization of the Control Engineering Programming Pack~

5.01 The Design of the Software Support

In sections 1.04 and 1.05 the design process has been outlined and those

areas considered appropriate for software support have been indicated o

Some potential 30ftware tools have been described in sections

What remains is the actual designing of the software support.

In the first instance , the software support to be designed is directly

connecte& with the overal desired end result. Once the desired end result

ha.s been described and analysed into components, then those entities which

will contribute to the properties of the end result can be described. The

functions performed by the entities and their interrelationships will

together define the structure of the software support. The realization

wi 11 be dependent on the available software and hardware resources.

The desired end result will be to guide the designer to an acceptable sol­

ution in an efficient and effective manner. By efficient is meant that the

time and energy to be invested by the designer will be minimal and by

effective is meant that the design process is simulating and instructive.

The efficiency can be advanced by

a) An on-line communication channel between the desib~er and the digital

m8..chine. This will mean that the access to the design prOb'TarnIDS will

be simple and direct. The design information desired will also become

immediately available to the designer if a reasonable reponse time is

assumed.

b) The availability of suitable design programs and convt:rsion programs.

A design program can be said to be suitable if it cun accomplish the

desired computation with a minimum of processor and I/O time and

present the output information to the designer in a concise manner.

The availability of conversion programs will permit the designer to

enter his input data in different forms. For instance , a transfer

function can be defined by the coefficients of nolynomials or by the

roots of the factored polynomials. Both of these input forms are

desirable.

5-2

5.01

c) General software support in routine operations and in complex situations.

Recurring operations such as the finding data sets and the verification

of the existence of a design program must be part of the software support.

Complex situations such as the activation of the design program and the

coupling of a data set with that program must also be done by the support­

ing software. Possible error conditions and reasons must also be made

know to the designer.

The effectiveness can be promoted by

a) The on-line communication because the concentration of the designer on

the problem at hand has not been diminished by the time interval between

question and answer.

b) The availability of graphic aids • The most desirable would be in the

form of a video display but a hardcopy graphic aid such as a plotter

device could 3uf'fice.

c) The possibility of obtaining a hardcopy of the results of the comput4tions

on a lineprinter. The designer may wish to keep a permanent record of

certain results or wish to study the numeric output data at his con-

venience.

d) The possibility of some form of control over the execution of a design

pro-srwn. The df~signer might wish to halt a program and desire to know

how far the program hus progessed and what it has produced. On the basis

of this information he could decide whether to continue the program in­

stead of being forced to wait until the final result is produced.

e) The possibilHy of posing questions on the availabilty of programs or

the existence of data sets. Also information on processor time and r/o
time could be useful to the designer.

5-3

5.01

The above mentioned points can be listed brief~ as-

a) Fac i li;ty

An on-line conununication between the designer and the machine will

promote the ease of access and a quick response.

b) The provision of suitable design programs and conversion programs.

c) The surveillance of all operations in case of errors.

d) The flexibility of handling during the execution of a design program.

e) The utility offering the designer useful information.

f) The assistence in routine or difficult operations.

These points rough~ define the operations to be performed by the supporting

soft~8re.'I'he available tools in Burroughs Extended Algol can be enumerated

as follows-

a) Structured variables of the type file

b) Variables of the type pointer

c) Structured variables of the type task

d) Task invocation statements

e) Separately compiled procedures

f) Facilities offered by the r/o Subsystem accessible in BEA

g) Other possible facilties such as TIME intrinsics etc.

The basic operation to be performed by the supporting software will be

the actualization of the concept of mapping introduced in section 1.05

This basic operation will provide the framework for all other operations.

All other operations,in effect,will support the basic operatiomof mapping

in order to ensure the the overal software support possesses the desired

characteristics.

•

5-4

5.02 A General Description of the Implemented Software Support

This section will describe the basic program units of the software support.

Each unit will be handled in more detail in section 6.00 •

The CEPP configuration consists of three basic program units and a number

of design programs. The program units are-

a) SYSTEM!CEPP The preliminary program

b) SUPERVISOR The main CEPP program

c)]NPUTSYSTEM The auxiliary program to the SUPERVISOR.

The design programs can be any desired program such as NYQUIST,ROOTLOCUS

as long as these programs have the correct procedure headings so that

they can be initiated by the SUPERVISOR.

The overall performance of the CEPP configuration can be split up in

the following main phases.

1) The preparation of the CEPP user session.

The SYSTEM/CEPP program prepares a WFL JOB for the session on

the basis of user's USERCODE/PASSWORD. This JOB contail~ the

following items-

a) COPY from PACK statements for necessary code files.

,~) RUN the SUPERVISOR statement

c) RUN a diagnostic program called MESSAGE if certain

code files are missing.

d) REMOVE all CEPP code files and user data files

at the end of the session •

This WFL JOB is compiled by the WFLCOMPILER and the resultant JOBCODE

is either processed or run by the SYSTEM/CEPP. If the JOBCODE is

run then the CEPP user session will remain within the previous JOB

otherwise a new JOB will be created. Also if the JOBCODE is £rocessed

then the SYSTflJ/CEPP will remain active (in a waitandreset) until

the user session has ended.The net result of the SYSTEM/CEPP program

is that all relevant code files are copied from PACK to DISK and the

SUPERVISOR program is initiated within a WFL JOB as a dependent

synchronous process. If errors occur then the user will by notified

by SYSTEM/CEPP •

5-5

5.02

2) The activation of the main program the SUPERVISOR

As already mentioned the SUPERVISOR is initiated by the SYSTEM/­

CEPP program as a component of a WFL JOB. The SUPERVISOR is

responsible for the proper functioning of the user design programs

and the INPUTSYSTEM. It should be aware of abnormal conditions and

if possible correct these. The operations to be performed by the

SUPERVISOR can be enumerated as follows-

a) The initialisation of the INPUT/OUTPUT files. The

INPUT file is either of the KIND READER or the KIND

REMOTE whereas the OUTPUT file is of the KIND PRINTER

or REMOTE if the program SYSTEM/CEPP is initiated

via a C.ARDREADER or via a REMOTE station respectively.

b) The activation of the INPUTSYSTEM and user design

programs.

c) The monitoring of the STATUS of the INPUTSYSTEM

and design programs.

d) The co-ordination of the flow of control between

design programs and the INPUTSYSTEM in the case of

user entered control commands.

e) The provision of suitable diagnostics whenever error

conditions occur.

The SUPERVISOR is initiated as a dependant synchronous process within the

WFL JOB created by the SYSTEM/CEPP program. The SUPERVISOR in turn starts up

the INPUTSYSTEM and design programs as dependent asynohronous p»ocesses. This

has been done in order to permit a design program and at the same time the

INPUTSYSTEM to be active. Also the SUPERVISOR must be able to monitor the

STATUS of both the INPUTSYSTEM and the design program. The three processes

the SUPERVISOR, the INPUTSYSTEM and the user design program are p~allel

processes. This solution has been implemented. in order to permit instructions

from the d.esigner, to be entered. via. the INPUTSYSTEM or via the design

program. This based on the constraint that only one INPUT file of the KIND

REJ\il0TE is permittedo Therefore the input must be aWl tched from the INPUT­

SYSTEM to the d.esign program and vice versa •

5-6

3) The activation of the INPUTSYSTEM

The INPUTSYSTEM is initiated by the SUPERVISOR as a dependent

asynchronous process. Its main function is to serve as an inter­

face between the CEPP user and the SUPERVISOR. As an interface,

it will interpret all user instructions into meaningful software

statements or constructs. In some cases the INPUTSYST~l will

handle the interpret ted user instructions otherwise the SUPERVISOR

will perform the desired operation. The INPUTSYSTEM will also

handle user requests for information concerning the available CEPP

programs, the user data file content and other log operational

data such as ELAPSEDTIME,PROCESSTIME and IOTIME • The operations

to be performed are as follows-

1) Initiate the procedure DATACOM as a dependent

asynchronous process.

2) Handle all user instructions as recieved from

process DATACOM.

3) If necessary it will copy code files and user

data files from PACK.

4) Supply the SUPERVISOR with meaningful software

data for the initiation of user requested design'

programs.

5) Supply the user with information on the availability

of CEPP design programs and log operational data.

The procedure DATACOM is initiated as a dependent process because

on~ this procedure has access to the REMOTE input file. By giving

this asynchronous process the task of reading the input file , the

INPUTSYSTEM will always be accessible for user instructions. The

process DATACOM will determine by the contents of the instuction

and the state of the INPUTSYSTEM if the message is to be passed to

the INPUTSYSTiM. There are three types of user instructions

the request for a design program, the request for information ~ the

control command. These instructions are handled in the section- on

the INPUTSYSTEM and in the Ap~endix A •

5.02

5-7

4) The activation of the design program

All design programs are intiated by the SUPERVISOR as dependent

asynchronous processes •. The design programs must have identical

procedure headings if they are to be initiated via the CEPP con­

figuration. Existing design program blocks or procedures can be

accomodated by the addition/alteration of the CEPP standard

procedure heading. The operations to be performed by the design

programs are as follows-

a) Initiate a dependent asynchronous process to serve

as an INPUT facility. The design program will then

remain accessible at all times.

b) Do the actual design computation.

c) Give the user diagnostic messages in the case of

errors or missing data.

The INPUT data to design programs will come from DISK or PACK files.

Data, if , created during the present session then the data will be

present on DISK. If the data is from a previous session then the

data will be on PACK. Local INPUT d&ta i.e. d&ta needed for this

computation only will be given via the REMOTE input file. Each

design program will produce only one output file on DISK. This file

will Gont~in sufficient information for subsequent programs to

decipher the contents. Let the following serve as example •

Let a design program compute the values of the real and imago parts

of a given transfer function for a given frequency range and frequency

increment. The data concerning the numeric values of the coefficients

of the transfer function have been created during the present session

and are therefore present on DISK. The local information will be the

desired fre~uency range and frequency increment • Thi~__!Q~al information

will be given via the R~~OTE input file. The output from the desisD

program will be stored on DISK • The original data set containing

the coefficients of the transfer function has been mapped into a

new data set contu.ining the values of the real and imaginary parts

of th(~ trunsfer function in the desired frequency range.

5.02

5-8

5) The termination of the CEPP user session

The user can end the session whenever desired.If the user wishes

to store one or more of the data files created during the session

then he can give the appropriate commands to copy the desired

data files to PACK. From the point of view of disk hygiene it is

desirable that not a trace is left on DISK of the user session.

This will entail the removal of all CEPP code files used during

the session and the removal of the user data files • The operations

to be performed are as follows-

a) Copy those data files which the user desires to

keep from DISK to PACK •

b) Remove all CEPP code files from DISK.

c) Remove user data files from DISK.

The re~on that new data files are first created on DISK and then

copying to PACK ~nstead of directly creating the file on PACK is

based on the following considerations-

a) PACK storage economy. The actual size of the user

data files are not known before they are closed at

the end of the session. The file attributes of DISK

files are set be default by the I/O Subsytem • When

the DISK file is copied to PACK it can be copied with

the most economical (minimum storage space) file

attribute combination.

b) Not all user data files on DISK are expected to

become permanent files' worthwhile storing) •

c) Disk files can be protected from System failure using

the file attribute PROTECTION. Setting the attribute

PROTECTION=PROTECTED will make it possible to find

the last valid block written in the event of a HALT/LOAD

5-9

5.02

The following is a block diagram of the CEPP configuration in the situation

where the JOBCODE has been processed and a design program is active.

SYSTEM/CEPP

process
run

SUPERVISOR

process

_-----4 process

DESIGN

PROGRAM

process

INPUT
PROCEDURE

fig.).02 a

INPUTSYSTEM

process

I
REMOTE
INPUT
FILE

~

DATACOM

6-1

6.00 The Program Units of the Software Support

6.01 SYSTEM!CEPP

The purpose of SYSTEM/CEPP is to handle preliminaries and to initiate the

CONTROL ENGINEERING PROGRAMMING PACKAGE • These preliminaries consist of

USERCODE/PASSWORD verification, assignment of options and the preparation

and creatj.on of a WFL JOB containing the necessary WFL statements to start

up the PACKAGE •

If a potential user has been accepted as being a valid user then SYSTEM/CEPP

will create a WFL JOB.

The WFL JOB will be created on the basis of -

a) The USERCODE!PASSWORD combination given by the designer

b) The built-in USERCODE/PASSWORD combination of the PACKAGE

c) The present MIX NUMBER of SYSTEM/CEPP (STACKNO)

d) Whether the JOB is to be activated as an independent or a dependent

asynchronous process •

The essential elements of the WFL JOB are-

a) COpy statements to copy tlle necessary program units from storage

b) A RUN statement to activate the SUPERVISOR

c) A REMOVE statement to REMOVE all CEPP CODE files and user DATA files

at the end of the JOB •

The rationale of the two types of JOB tasks i.e. independent versus dependent

is as follows.

Vfuenever a JOBCODE file is initiated as an independent asynchronous process,

the process ~s a whole is monitored by the MCP (¥aster Control Program) • The

MCP enters log operational information into a DISK file with the TITLE

*SYSTEM/SUMLOG • Each entry into the file is uniquely identified by the

STACK}~ER of the JOBCODE stack. At the end of the JOB , the entries in

the file are edited by the LOGANALYZER and a JOB SUMMARy is printed via a

LINEPRINTER. (See Ref. 9 page 6-22 to 6-29).

In orier to obtain on-line, the information from the *SYSTEM/SUMLOG file,

the relevant entries must be found, edited and sent to the designer.

6-2

6.01

Since the correct entries in the *SYSTEM/SUMLOG file can on~ be found

by the STACKNUMBER of the JOBCODE activated as an independent process, the

CONTROL ENGINEERING PROG~JING PACKAGE must be activated via a WFL JOB

and activated as a independent process. All log-operational information

can then be received on-line. If the JOBCODE is activated as a dependent

asynchronous process then no on-line information is extractable from the

*SYSTEM/SUMLOG file but a JOB S~UffiY is available at the end of the session.

The contents of the *SYSTEM/SUMLOG file are,as already mentioned, filled by the

MCP and contain the following information.

a) The beginning (BOJ) and the end (EOJ) of the JOB-name and statistics

b) The beginning (BOT) and the end (EOT) of all tasks within the JOB.

c) Reasons for the abnormal ending of tasks

d) If available a STACKHISTORY

e) End of task statistics such as processor time, I/O time and elapsed time

f) Hardcopy information such as- Number of lines printed

Number of cards read or punched

g) File open and close information

h) Messages from Library Maintenance - files copied

- files not copied and reasons

SYSTEM/CEPP is designed to filter out on~ abnormal conditions when a

normal user has activated it. Whenever a special user activates SYSTEM/CEPP

options can be set to watch any type of the above mentioned activities.

It is then used as an on-line debugging facility.

The main operations performed by SYSTEM/CEPP can be divided into the following

phases.

a) The INITIALIZATION

1) The initialization of the I/O files of SYSTEM/CEPP

2) The formation of the unique prefix (CEPP <4 digits of STACKNO))

for the CEPP CODE files and the user temporary data files

3) The formation of the unique TITLE of the JOBCODE (CEPP <4 digits of

STACKNO) / SYSTEM

6-3

6.01

b) USER IDENTIFICATION and VERIFICATION (Boolean procedure VALIDUSER)

1) Request user to enter USERCODE and PASSWORD

2) Verify if user is authorized to use the PACKAGE

3) Verify if the USERCODE/PASSWORD combination is valid

c) USER OPrIONS

1) Request if user desires an independent or dependent asychronous

process i.e. a separate JOB or not

2) If an independent asynchronous process is desired and the user is

a special user then let this user set options to watch certain activ­

ities. The default option setting is - All abnormal EOT and EOJ,

FILE•• •. NOT COPIED and NO FILE •••• •

d) PREPARATION and CREATION of the CEPP JOBCODE

1) Fill the pseudo-card deck with additional information. This information

is the designer usercode and password, the CEPP usercode and password,

the unique prefix for file TITLEs , information on how the PACKAGE

will be activated and the unique JOB name • (procedure FILLPSEUDOCARDS)

2) Convert the pseudo-card deck to the correct WFL MESSAGE format •

(procedure FILLWFLMESSAGE)

3) Cre;c"te the CEPP JOBCODE using the bound-in DCALGOL procedure CONTROLCARD~3.

Procedure CONTROLCARDS activ~tes the SYST~~ intrinsic procedure WFL­

COTvIPILER •

e) MONITORING of the CEPP JOB

1) If the CEPP JOB has been activated as an independent asynchronous process

and the beginning (BOJ) of the JOB can be found by procedure FINDJOB

then the messages (edited copies from file *SYSTEM/SUMLOG) to the

user will be determined by the watch options.

2) If a dependent process, then SYST~I/CEPP will wait until the JOB has

terminated. Diagno~tic messages will be given if errors occur.

6-4

6.01

Summing up- SYSTEM/CEPP can initiate the CONTROL ENGINEERING PROGRAMMING

PACKAGE as an independent asynchronous task in the following cases.

a) Whenever a separate JOB is desired. Under SYSTEM/CANDE the beginning of

the SESSION is also the beginning of the JOB. That is to say that a

CANDE/SESSION is synonymous with a JOB. A separate JOB will have its

own JOB SUMMARY whereas if the CEPP JOB is initiated as a dependent

asynchronous task , the entries from the *SYSTEM/SUMLOG file will be

added to the CN~DE JOB SUMMARY.

b) To provide a more comprehensive surveillance of the PACKAGE. Not all

error conditions are visible or accessible programatically. This is

specially the case with LIBRARY Jl&INTENANCE activities.

c) To provide on-line debugging facilities in the case of new program

addi tions etc.

The following page contains a blockdiagram of SYSTEM/CEPP and is intended

to give the reader a visual support to the above passages.

6-5
Block Diagrrun of SYSTIDu/CEPP

BEGIN

process

JOBCODE

wai tandreset

EXCEPTIONEVENT

GIVE
DIAGNOSTICS

NO

NO

JOBCODE

LOGJOB

YES

NO

NO

INFORM

Separate Job?
Options ?

FILL
PSEUDOCARDS

FILL
WFLMESSAGE

process
CONTROLCARDS
(WFL Compiler)

YES

DISPLAY
MESSAGE

·SYNTAX. IN WF~

YES

REMOVE
JOBCODE FROM

.....--------------4IlM-;..;..----------I DISK

6-6

6.02 The SUPERVISOR

The SUPERVISOR is the main program of the CEPP configuration and as such

is responsible for the proper functioning of the design programs and its

auxiliary program the INPUTSYSTEM. It should be aware of abnormal conditions

and attempt to correct these if possible. The designer will recieve appro­

priate diagnostic messages if errors do occur.

The functions performed by the SUPERVISOR are briefly as follows-

a) The activation of the INPUTSYSTEM and design programs.

b) The monitoring of the INPUTSYSTEM and the design programs.

c) The co-ordination of the access to the REMOTE input file between the

INPUTSYSTEM and an active design program •

d) The supplying of suitable diagnostic messages in the case of errors in

either the INPUTSYSTEM or the design programs.

The implementation of these functions is shown graphically in the block­

diagram of the SUPERVISOR on page 6-9 of this section. The salient features

in the block diagram are the two software interrupts HANDLECONTROL and

HAIillLEIOBRE.AK and the two COII1PLEX WAIT s. The pragmatics of these

software constructs have been handled in sections 3.03 and 4.01 •

The interrupt HANDLECONTROL handles all operations resulting from a CONTROL

co~~and instruction (See Appendix A). Such a command may be $GO, $STOP

or $BYE. The action taken by the interrupt will depend on the instruction

and whether a design program is active or not. The interrupt HANDLEIOBREAK

handles all operations resulting from the malfunctioning of the INPUT­

SYSTEM • The Il~UTSYSTEM must always be restarted if errors occur because

it provides the only access to the CEPP configuration. If the INPUTSYSTEM

terminates abnormally it will be restarted with a maximum of three times and

always restarted in the case of accidental operator intervention •

The two COMPLEX WAIT s can be described briefly as follows-

a) COMPLEX WAIT 1

The SUPERVISOH w"its here if no design progriJlll is active but can be

expec ted. The STATUS of the design program is therefore -l. 0

6-7

6.02

b) COMPLEX WAIT 2

The SUPERVISOR waits here whenever a design program is active or has

been suspended. If the design program is terminated by the designer

disabled or terminated normally the SUPERVISOR will return to COMPLEX

WAIT 1 via the DIAGNOSTIC PHASE •

A more detailed account on the workings of the software interrupts will be

given at the end of the section.

The following paragraphs will give a brief description of the operations

performed by the various phases as portrayed in the block diagram on page

1) The INITI~LlZATION

a) The initialization of the INPUT-OUTPUT files

b) The transference of information from SYSTEM/CEPP which has been

passed as parameter. This information is the designer USERCODE/

PASSWORD combination and the unique file prefix-CEPP (4 digits)

2) The COMPLEX WAIT 1

a) Wait for a signal from the INPUTSYSTEM that all the necessary items

for the activation of a design program are present.

b) Vfuile in the WAIT monitor the STATUS of the INPUTSYSTEM (interrupt

HANDLEIOBREAKIlOWN) •

c) While in the WAIT remain accessible for CONTROL commands (interrupt

HANDLECONTROL) •

3) The DESIGN PROGRMd PHASE

This phase is entered whenever the INPUTSYSTEM has notified the SUPER­

VISOR that a new design program is ready for activation •

•

•

a) Copy the contents of the arrays containing the information on the

requested design program to arruys not held mutual~ by the SUPERVISOR

and the INPUTSYSTEM.

b) Fill the pointer task attribute Nfu~ and FILECARDS •

c) Activate the design program as a dependent asynchronous process. Signal

error coniitions if they occur.

-8

6.02

4) The COMPLEX WAIT 2

a) The SUPERVISOR waits here until the design program has terminated

normally or abnormally.

b) Remains in this wait if the design program is suspended.

c) While waiting the SUPERVISOR will monitor the STATUS of the INPUTSYSTE11.

d) While waiting it will remain accessible to CONTROL commands from the

active design program or from the INPUTSYSTEM if the design program

haa been suspended •

5) The DIAGNOSTIC PHASE

a) If the design program has terminated abnormal~ then suitable diagnostic

message will be given.

b) If the design program has terminated normally then only the statistics

of the design program will be given. (Processor time, I/O time and

e lapsed time) •

6) The return to the COMPLEX WAIT 1 via a while~ loop

The above is a brief sketch of the implemented algorithm of the SUPERVISOR. The

SUP~~VISOR is normally in the state of no-operation i.e. in a COMPLEX WAIT.

The SUPERVISOR becomes active in the following cases.

a) To activate a design program

b) If error conditions arise in either the design program or the INPUTSYSTEM •

c) If CONTROL command instructions are entered by the designer.

d) Vi'henever a desi~program has terminate_d_. ---"

6-9

6.02

Block Diagram of the SUPERVISOR

SYSTEM/CEPP

interrupt

HANDLEIOBREAK

interrupt

HANDLECONTROL

OPERATOR
DSED

INITIALIZATION

I/O files

Designer
USERCODE/
PASSWORD

File prefix
CEPP <4 digits)

$BYE

PROGRAt'VT PHASE

Activation of
the

Design Program

NO

NO
DIAGNOSTIC

PHASE

6-10

6.02

In the following paragraphs a slightly more detailed account of the two

software interrupts HANDLEIOBREAK and HANDLECONTRL will be given.

a) Interrupt HANDLEIOBREAK

As already mentioned this interrupt is intended to ensure that the INPUT­

SYSTl'1tf will at all times remain active. This is necessary because all designer

instructions are received and interpreted by the INPUTSYSTEM. A special case

arises if a design program is also active • If the designer enters an instruct­

ion via a design program then the INPUTSYSTEM is activated to process the

instruction.

The interrupt is attached to the EXCEPTIONEVENT of the EXCEPTIONTASK of the

SUPERVISOR. The INPUTSYSTEM is assigned to be the EXCEPTIONTASK of the SUPEE-·

VISOR • The interrupt is executed whenever the value of the task attribute

STATUS undergoes a change in value,which will result in the ~ing of the

EXCEPTIONEVENT. The task attribute RESTART of the INPUTSYSTEM has been set

to the value 3 ; therefore the INPUTSYSTEM will restart three times before

the interrupt is executed by to a program error. If the INPUTSYST~~ is dis­

abled then suitable diagnostics will be given. In the case that the INPUT­

SYSTEM is disabled by the OPERATOR (by accident or intentional~-due to a

NO FILE message) , the OPERATOR is warned the the INPUTSYSTEM will restart

and a branch is made to label THEBEGINNING (See Blockdiagram).

b) Interrupt HANDLECONTROL

This interrupt handles instructions of the type CONTROL COMMAND • Such a

command can either be given by the designer via the INPUTSYSTEM or via an

active design program. The interrupt will determine from which process the

instruction came and act on the basis of the instruction. In some cases the

INPUTSYSTEM will be reactivated to handle those instructions that pertain to

the INPUTSYST~f.

The analysing of the instruction is done by the MASKSEARCH System Intrinsic

and the action to be taken by a~ of statement. The MASKSEARCH compares the

characters (mEi..X. 6) in an 8.rray element with the fixed chL..racters in an

alpha value array • The value returned d8pends on the position of the array

element of the alphcj, value array cont8.ining the identical character sequence.

6-11

6.02

If an identical character sequence can not be found among the given elements

of the alpha value array , then the fu~SKSEARCH will return the value -1.

The value returned by the l~SKSEARCH is then used in a~ of statement.

This case statement contains the instructions to handle the different valid

CONTROL COMMAND instructions •

After the execution of the interrupt , the next program instruction per­

formed by the SUPERVISOR will depend on the CONTROL COMMAND instruction.

If the designer wishes to terminate the present active design program

(CONTROL CO~\UU~D $END) then the SUPERVISOR will branch to the label WAITl .

(See the Blockdiagram on page). In general however , the SUPERVISOfc

will return to the CONPLEX WAIT where it was before the interrupt occurred.

6-12

6.03 The INPUTSYSTEM

The immediate purpose of the INPUTSYSTEM is to act as an interface between

the designer and the SUPERVISOR. The instructions from the designer are anal­

ysed and converted into BEA software entities. All activities leading to

the activation of a design program are performed by the INPUTSYSTEM. It also

handles those activities which have no direct bearing on a possible activation

of a design program. These activities can be described as utility-oriented

i.e. as an aid to the designer.

The activities performed can be divided into the following categories.

a) The interpretation of instructions from the designer. The three types

of instructions, the PROGRAM request, the UTILITY request and the CO}YfR01

command are differentiated, analysed syntactically and converted to BEA

software entities.

b) The preparation for the activation of a design program. The presence of

the to be activated design program code file and the designer indicated

source data set files are checked. If necessary these files are copied

from storage i.e. from removable disk (DISKPACK) to fixed head-per-track

disk (DISK) •

c) The furnishing of utilities for the designer. These utilities can be

seen as aids for the designer • These aids take the form of supplying

the time of day, the available program names and the names of the data

sets created by the designer etc.

The three basic program units a)procedure UTILITYREQUEST

b)procedure PROGRAMREQUEST

c)interrupt HANDLECONTROL

as portrayed in the block diagram of the INPUTSYSTEM on page ,clearly

reflect the ilIlplementation of the three types of instructions. The procedurE:

DATACOM , activated as a dependent asynchronous process , reads messages

from the REMOTE input file and does a preliminary scanning of the input to

ascertain which type of instruction has been entered by the designer. The

COMPLEX WAIT construct is silIlilar to the COMPLEX WAIT encounter in the SUPER­

VISOR (see section 6.02). The only difference is that the value returned

6-13

6.03

by the wait intrinsic is assigned to t;hn vo.riable COMMAND'rYPE • 'l'he value

of the variable COMMANDTYFE is then used in a~ of stHotement , branching

to either procedure PROGRAMREQUEST Q£ procedure UTILITYREQUEST. The

COMPLEX WAIT and software interrupt structure and their functioning is ident­

ical to the similar construct described in section 6.02 on the SUPERVISOR.

The following paragraphs will contain descriptions of the basic program

units as portrayed in the block diagram of the INPUTSYSTEM on page •

a) 'fhe INITIALIZATION

This program segment attaches and enables the software interrupt HANDLE­

CONTROL • Interrupt llih~LECONTROL is attached to event CONTROL. As a

service to the designer , the time of day, month and year are given. Tne

important operation performed is the determination of the availability of

the design programs. The directories of a number of removable disk (DISK­

PACK) storage devices are nearched for the presence of a standard program

TITLE. If this TITLE is found, it is assumed that the other (if any) are

also present on that particular storage device. If it is not found then

the designer will be notified and the session will be aborted.

b) The PRELIM~INARIES

The pre liminaries consist of two procedures - GErUSERNAME and USERTEXT •

Procedure GETUSERNA1lli asks the designer to enter his name • The name

given is used as an identifier in the TITLEs of the designer created or

to be created data sets • In this way , the names of the data sets are

unique although two designer could be working simultaneous4r under the

same USERCODE/PASSWORD combination. Procedure USERTEXT prints out

an abridged version of Appendix A , instructing the designer how to

formulate his instructions. The preliminaries are bypassed if the INPUT­

SYSTEM has restarted due to a program error •

c) The INPUT Process

Procedure DATACOM performs as primary input procedure for the CEPP structure.

The REMOTE input file is switched between procedure DATACOM of the INPUT­

SYSTDJ and the INPUT procedure of dll active design program.

6-14

6.03

c) Cont.

Procedure DATACOM handles the following operations.

1) The scanning of the input string from the REMOTE file for illegal

characters • If there are illegal characters then the input string is

rejected and the offending character is indicated •

2) Determines the type of instruction entered by the designer. If the

first character if the instruction string is -
"$," a Dollar sign then it is assumed to be a CONTROL command

"H" a Crosshatch then it is assumed to be a UTILITY request

otherwise it is assumed to be a PROGRAM request if the first character

of the string is an alpha character.

3) On the basis of the type of instruction entered by the designer the

following events are cause'd •

If a PROGRAM request then event REQUEST

If a UTILITY refluest then event UTILITY

If a CONTROL commo..nd then event CONTROL

Because procedure DATACOM is an asynchronous process , it can be active

simultaneously with the other parts of the INPUTSYSTEM. Safeguards have

been implemented to ensure the correct hE1.Ildling sequence of the incomrdng

instructions. If the previous instruction has not been completed then

the instruction will be rejected except in the special case of the CONTROL

command. A CONTROL command will always be accepted if the (possible)

previous CONTROL command has been completed. The particular CONTROL

instruction ~YE will result in the termination of the process DATACOM

and in turn the termination of the other active processes •

4) The switching of '-,-ccess to the REMOTE input file. The construct used

is as follows. lf it design program has been successfully activated by

the SUPERVISOR, thee! design program will wait until the designer has

entered the CONrrHOL command $,GO, before resuming processing. The STA'l'f!S

task attribute of the design program is visible to the procedure DATACOM

and is checked, along with the CUNTROL 00mmand instruction.

6-15

If the two conditions are met viz the STATUS of the design program equal

to 2 and the instruction is ~O then a waitandreset is entered instead

of the READ from the REMOTE file. The process DATACOM will wait until the

event INTERCOM is cause'd by the SUPERVISOR. The SUPEHVISOR cause's the

event INTERCOM whenever the designer program is terminated (normal or

abnormal) or in the case of a temporary suspension of the design program

on request from the designer. The causing of the event INTERCOM will result

in the exiting of the waitandreset and the entering of the READ statement •

In the mean time the design program is in a waitandreset so that the procedure

DATACOM is the on~ process that has access to the REMOTE file •

d) The PROGRAM Request

The procedure PROGRA1ffiEQUEST performs all the preparation necessary for

the successful activation of a design program. The syntax of the PROGRN~

request instruction is handled in Appendix A. The opera.tions performed by

this procedure will be discussed on the basis of the syntax of the PROGRAM

request instruction, the general format of which is -

< destination identifier) := <program identifier) [(source list)]

The < source list) is a number of source identifiers delimited by commas.

The operations performed can be ennumerated as follows -

1) The instruction is checked on syntax and error messages to the designer

are formulated if errors occur.

2) If the input string is syntactically correct then the individual items

are copied to fixed arrays. These items are the source identifier, the

program identifier and the three possible source identifiers. (The above

two operations are performed by procedure USERREQUEST)

3) The program indicated by the designer is then verified. The code file

for the program could be present on the fixed head-per-track disk or on

removable disk (DISKPACK). If the code file is on :SISKPACK then it must

be copied to the fixed head-per-track disk. In the present implementation

of the INPUTSYSTEM this accomplished in a roundabout way which will be

described in the paragraph on the copying process •

6-16

6.03

d)3 Cont.

If the design program code file is not present on the fixed head-per-track

disk or on the removable disk then the designer will be notified and further

verification will be aborted.

4) The next items to be verified are the designer given source identifiers.

Each source identifier is associated with a particular data file of the

designer. A designer data file may be present on DISK (if created during

the present session) or on DISKPACK • If the data file is not present on

DISK then the directories of the removable disks are searched. If the

data set can not be found then the designer is notified and the rest of

the verification is aborted. The information on the whereabouts of the

designer data set (s) is stored in arrays to be passed on to the design

program by the SUPERVISOR •

5) The last item to be verified is the destination identifier. The designer

could by accident or intentionally use a destination identifier of a

data set tho. t is already existent on DISK. If this is the case the

designer is notified and ask to explicitly state his intention.

All the prerequisi~for the successful activation of a design program

have now been verified (pending the successful copying of the code file) •

The SUPERVISOR can be notified that it can activate a design program. This

is done by cause'ing the event NEWIO which will result in the SUPERVISOR

entering the PROGRM~ PHASE (See section 6.02). If the designer attempts

to activate a new design program before a present active design program has

terminated,the designer will be notified and the PROGRAM request will be

rejected.

e) The Copying Process

In the present implementation the copying process is handled in very

roundabout fashion compared to the copying operations performed by the

program SYST~~/CEPP in section 6.01. The copying of files is achieved

by creating a DISK file containing the WF1 COpy statements • An auxiliary

program oalled SYSTEM/WFL is then activated and the DISK file label

equated. SYSTEM/~~L in turn activates the \~LCOMPILER and creates a

6-17

6.03

e) Cont.

a JOBCODE file of the WE'L COpy statements. This JOBCODE file is then activated

as a dependent synchronous process. It goes without saying that this COpy proc8ss

is in need of updating • The method employed in the program SYSTEM/CEPP is

directer and more efficient c (by activating the WFLCOMPILER by a DCALGOL

procedure) •

f) The UTILITIES

A utility instruction is an instruction prefixed by the crosshatch symbol. 'I'her

are intended to aid the designer in the design process. All utility instructiuYl':>

are handled by the procedure UTLITYREQUEST • The interpretation of tne instI'UC­

tions is done with the usual ~ffiSKSEARCH of an alpha value arr§Y oontaining

the valid instructions. The value returned by the MASKSEARCH intrinsic is

then used to branch the corresponding set of instructions via a ~£f state­

ment. Measures have been implemented to prevent the designer from entering

new instructions before procedure UTI1ITYREQUEST has terminated • This is

done by procedure DATACOM which will reject any instruction that is not a

CONTROL command until procedure UTILITYREQUEST has finished processing.

g) The Software Interrupt HANDLECONTROL

The interrupt HANDLECONTROL handles all CONTROL co~~ands. These CONTROL coromanis

can arise from the following sources-

a) From procedure DATACOM as entered by the designer

b) From the design program as entered by the designer

c) Created programmatically by the SUPERVISOR or by the INPUTSYSTEM itself.

The interrupt can be attached to either event CONTROL or event IOCONTROL

depending the accessibility of the ~~OTE input file • If no design progrE~,

io. active then the interrupt is attached to event CONTROL It is attached

to event IOCONTROL \vhenever a design progr:;<Jll is active but not suspended

tenporarily. If the d.esign proc;ru.m is suspended temporarily it is in a

wa i ti-mdreset which is not thE: same as suspenied when the STATUS is equal

to 3 .

6-18

6.03

g) Cont.

Whenever the designer enters the instruction $GO the interrupt is executed.

The STATUS of the design program must be e~ual 2 otherwise the command is

rejected. The interrupt then attaches itself to event IOCONTROL and returns

to the COMPLEX WAIT. The INPUTSYSTEM is reactivated by the SUPERVISOR if

the event IOCONTROL is cause'd. The interrupt also contains the necessary

checks in order to ensure a correct sequence of possible CONTROL commands.

For instance if the designer enters the command ESTOP but no design program

is active then the designer will be notified and the instruction rejected.

Another point of interest is the fact that there is form of communication

between the interrupt HANDLECONTROL of the SUPERVISOR ~nd the interrupt

HANDLECONTROL of the INPUTSYST~~. The events SUPCONTROL and IOCOWrROL

are used to coordinate the activities between the two interrupts whenever

necessary. If, for example the designer has entered th~ corr~and SEND with

the intention of terminating the present active design program (this

command is on~ accepted after the comnJand SSTOP has been entered) then

the SUPERVISOR must terminate the design program. Once the design program

has terminated , the SUPERVISOR will cause the event IOCONTROL. The

interrupt has been waiting for this event to happen. If the event IOCONTROL

has been caused then the design program has terminated and therefore the

designer can enter a new command.

In the above passages the principle program units of the INPUTSYSTEM have

been described in their functions,and the operations performed to fulfill

those functions. Some improvements can be made (i.e. the Copy Process) to

increase the efficiency and dependability of the program. New instructio~~

can be incorporated with a minimum of difficulty with regard to the UTILITY

request instruction • The CONTROL commands implemented should provide the

designer with sufficient control over the activities of the design progrblL.

The major feature of the implementation is the extensive use of variables

of the type event. These variables are used to coordim1.te the activities

of processes and to provide the necessary No-Operation state by using the

wait system intrinsic.

6-19

6.03 Block Diagram of the INPUTSYSTEM

SUPERVISOR

interrupt

HANDLECONTROL
-- - INITIALIZATION

process DATACOM procedure

DATACOM

YES

USERTEXT

GETUSERNANIE

NO

I I

I I

I I

I I

I I
I

"GlVE CONJl\!IAND"

I
I L

I

I
I
I
I- - - COMPLEX HAlT

NO YES

U'rrLITYHEQUEST PROGRJ.\lI~REQUEST

6-20

6.04 The DESIGN Programs

The operation performed by a design program has been envisaged as a trans-

formation or a mapping of one data set into another (See Section) •

Such a transformation can be broken down into the following basic activities-

a) The INPUT PHASE

b) The COMPUTATION PHASE

c) The OUTPUT PHASE.

These basic activities are of course also performed in normal programs • In

most cases however the activities are intermixed; for example part of the

input data is read, certain computations are performed and the results sent

to the LINEPRINTER (say) , then further input data is read and so forth •.

The numeric input information is supplied generally speaking vie. .:J. CAPDREADER

file or a disk file of the type DISK or DISKPACK. The programmer knows how

the data is structured in the disk files and will program his read statements

accordingly. If the input is to be read from a CARDREADER file then the

programmer can either structure his card deck according to the read statements

in the progr3ffi or change the read statements. The results of the computation

are ,in most cases,sent to the LINEPRINTER only. ~~enever all or part of the

output is stored on a disk file , it is generally intended that this duta is

to be read by a particular program in a particular way. This means however

that the program producing the output and the program using this output as

input will be inter-dependent. Any changes in the OUTPUT PHASE of the fi.rs~

program will necessitate the alteration of the second program. In the case

of the design process,where any number of design programs produce output to

be used again as input data, this is a highly undesirable state of affairs.

Wfiat is desired of a design process cun be put as follows-

a) That each design program can extract the information it needs for the

computation from a given data set.

b) That each design program produces ~n ouput data set in such a way that

another design program can perform (a) •

If each design program Cqn perform these two operations then it becomes to

a large extent independent of other design programs. The program then becomes

self-supporting in the sense that it will be indifferent to the data set

assigned to it by the designer. If the program can extract ~ll the information

6-21

6.04

it needs for the computation, it implicit~ accepts the designer assigned

source data set as being a valid data set. Otherwise it will reject the

data set or demand further information from the designer. The implementation

of such a scheme will result in the much desired property of "modularity" •

The set of available design programs will then consist of a number of modules.

An existing module can be omitted or a new module added without affecting the

other modules. An extra bonus derives from the fact that the designer will

not need to know which data set can be used with which program. The design

program will simp~ notify the designer if it can not use the assigned data

set. T'ne advantages accrued by the modular structure of the design programs

will have to be paid for by extra software support in each design program and

a more complex structure of the data set files.

Besides performing the operations direct~ related to the mapping process ,

each design program should also be able to-

a) Catch run-time arithmetic errors during the computation

b) Remain accessible for designer entered CONTROL commands •

The handling of run-time errors can be accomplished by the BEA ON FAULT

statement or by the SUPERVISOR • If handled by the SUPERVISOR , the design

program muat be reactivated by a PROGRAM request instruction •

The design program will remain accessible for CONTROL commands if the

RTIAOTE input file is read by an asynchronous dependent process activated by

the design program. This process can be made to scan for valid CONTROL commands

entered by the desi€;l1er a.nd if necessary activate a software interrupt. During

important phases of the design program the software interrupt can be detached,

so that the possible return from the interrupt to the ll~t-but-one performed

instruction.

A-l

Appendix A

Provisional Users Guide

The Control Engineering Programming Package is implemented with three

types of instructions-

a) The PROGRAM request

b) The UTILITY request

c) The CONTROL command

In short, a PROGRAM request instruction is a request for a specific design

program such as NYQUIST or ROOTLOCUS, a UTILITY request is a request for

some form of aid such as the present status of a design program and a

CONTROL cownand is an instruction for the commencing, suspending or ter­

minating of a design program. The following will be a more detailed account

of each of the three types of instructions.

a) The PROGRAM Request

The syntax of the PROGRMJ request instruction , using the Backus-Naur

not'1tion with the metalinguistic symbols , ::= , I can be described

as follows. (For a short description of the meanings of these symbols

see Ref. 10)

(program request) ::= (destination identifier) := (program identifier>

[(source list) J
< program identifier) { < source list)]

< source list) ::= <source list') I < source list) , (source

identifier>

(source identifier) ::= (B1<-:A identifier) I (CEPP identifier) I *

(destination ident.)::= < BEA identifier) I < CEPP identifier)

(program ident.) : : = (BEA identifier>

(BEA identifier) .. ­.. - < letter) I <BEA identifier) < letter)

<B:B::A identifier) <digit)

A-2

(CEPP identifier) .. - (letter) I (CEPP identifier) (letter) J.. -

<CEPP identifier) (digit) t
C CEPP identifier> <special character)

< special character) : : = (I)

N.B. A maximum of 3 source identifiers is permitted in the source list.

The symbol * , the asterisk as a source identifier is used when no

data file is available or is about to be created. The following will be

an example of valid program requests given in a meaningful sequence.

Instruction Number

1

2

3

B(S):= POLY [*]

NYQl:= NYQUIST [B(S)]

PLOT [NYQl]

Instruction nr. 1 means that the user desires to create a data set of

a transfer function in polynomial form. The data set will be named B(S) •

The program POLY will ask the user to enter his data in a particular

sequence. Once the data set is filled the user can enter the next instruction.

Instruction nr. 2 performs the mathematical operation called NYQUIST on

the data set called B(S) and creates a new data set called NYQl. In this

case the new data set NYQl will contain the real and imaginary parts of

of the transfer function B(S) for a certain frequency range.

Instruction nr. 3 initiates the program PLOT. The program PLOT will use

the data set NYQl to produce a NYQUIST diagram on a given(in proGram PLOT)

plotter d.evice.

A-3

Other programs may use the same data set. Each program prepares its output

data set for its successor(s) • Instruction nr. 3 could have been

-WRITE NYQI. In this case the data set NYQI would then have been printed

out on the lineprinter.

Summerizing, the PROGRAM request construct permits the user-

a) to name his own data sets with BEA or CEPP identifiers

b) to indicate which data sets are to be use as source for the design

program

c) to name the resultant data set

d) to initiate any available CEPP program

b) The UTILITY Request

The utility request is designed to give the user supplementary information.

All utility requests are prefixed by the symbol "It" (crosshatch) • The

following utility requests have been implemented.

2.

11= PROGRAMS - gives the user the names of available CEPP programs.

11= TIME - gives time of day,day of the month,month of the year

and the year.

II- STATUS -gives the present state of a CEPP program

If the program is active or has terminated the

elapsed,process and I/O time will be given.

If the program is waiting to be activated the user

will be given notice to that efI'ect.

-(to be implemented) will give the user the names

of his data sets.

A-4

c) The CONTROL Command

T~e CONTROL command is designed to give the user some measure of control

over the progress of his program(s) .The user should be able to stop the

processing at will. He could then ask for information via a UTILITY request

and either resume processing or terminate the program.

All CONTROL commands are prefixed by the symbol l1al" (dollar sign) •

The following CONTROL commands have been implemented.

1.

2.

4.

alGO

alSTOP

3lBYE

-All CEPP programs when active will give notice to

the user that it has started.The program will wait

until this command is given by the user.

-If a program is active i.e. being processed then

this command wi 11 cause the program to be interrupted

and suspended. It will wait until the user gives either

a alGO command or alEND command

-If a program is active this command will cause the

program to terminate before the normal end of the

program.

-This co~nand causes the termination of the CEPP user

session. All active programs are terminated.

If the command alSTOP is given then only a UTILITY request or a CONTROL

command can be given. Any attempt to start up a new program via a PROGRAM

request will be discarded. .Any active program must terminate normally or

be terminated by the alENJ) command before a new PROGRAM request is accepted.

B-1

Appendix B

Binding Fortran PrO,)T"'Illd to AJgo1 Procrdures

It is possible to bind]'ortrc,n progr;CJlIS into AJeo1 pro5"~:J.lIlS using the

Aleol Compiler Option - $ SET AUTOBUn;.. If this option is St::t in an

Algol proc;r....'U th..m all missing code se,srrnents(sep""r:~te~ cOllll'i1ed

Fcrtrc.n subroutin.Js) will be d.uton:..,bea11y bound into the Algol code.

In e!,'envrul, Fortri__n IJrCc,l"c..L1 will consist of ", muin proc:r.....m .£md a nur.lber

of suhroutin-;:s. If the tlb.in pr(;e;r,~ i8 0.1::30 m~.de a subroutine then it

c:...n be bound into the 'U.,~;o1 :Fo,":r;:..rJ1 a-S a p'ocaiurG •

The gener:.] scheme can be outlined. as fol10:,s-

fila :lackl.~""tion5 of the .A 1£'01 l10st c ..•n be used. Thi3 ",,!so .:J.voici.s th,:,

COD1)lic:J.tj,on of Fo:r:trc..n files being gJ.ob,.. l to tho Portr..n },jrGgr:.A.n bOd.~T.

All READ'~md ',:RITI~ st ..t~meflts in liortrt__n c""n be left unchi..ni!;ecl.

b) nee Lre the Fortr...:n m....in iJro,;T:;JU :. s a subroutine. Inc lude the Portrc..n

::.ot l.errni ~ t:Jd to b::: cOlllJ:>i lei WitJ101·t ,';1 m.dn progT; Ll c. with an ~}EO1

;pre '~e:luri:: •

c) ~he original stll)rC~t2ti1193 of the Fcrtr~n l:'L~in proor:·.Ull c ..·~..n be left

j) Ccm:;ile the Fcrtl.'c.-n :leek for LIIlRf,I\Y (~.:.:. DISK)

Ll th.~ ··l.~cll'l'()gr...m. Sl'e~if:r which Algol

file ijentifi-:r;; th.J cOIniJilc'r unt u;;),:;) fa'" the Fc>rtl~.n fih)s .-.nl of-- -

pro ;,.durJs '!hic1J :::. J.ecJ:n',~d. L..sJxtc]rnal -.nd loc __ t •.::.l. 011 DISK tc

hOlY.

p::C'JJJJ-a:tt)r -ria t, CO}T'fIR.0L G',rd :::.nd pas;., t~,is v<.;.lue to th:; Fcrtrr::..n ::moroutines.

B-2

Thd follo:rir.l.g t;oints"ra essenti:;l in using the ,Algel CLlTi1.l.'iler Option

$ SET AUTOJ3rm.

1) The HOST mUG t be in Alr~o 1

b) The Fortr ,n segments must 1) HiW<:: the s __me dir~ctory 3.S the Algol HOST

2) Be pr(~vious lJ coml,i led

3) Be loc~ted on DISK

The 1<'ortrn saguents '-U'') i3stroyed in the Binling 0l)ertioll unless the

i.mbroutin~ iia:<ltifier is used.

If th2 .Alsfol HafT cont',iru:> eX"burl1..l.l proc;;iu::e :iecLr~~,ticn.::; "hich a.~"; not

sh\ ul:i hI:: in."3;Jrt;1.

~he fal 'oiling ccnpiler cption is usal- $ nsF, nr POR 1<'11."'3

bei)'in

.pi Ie PY(KP';',•." "QT,:_~ TT~;

P-:'~n (rr,);
JOO

11fTrTnjT

-..:E.J. •

,
I

References

1

2

3

4

5

6

7

8

9

10

11

12

13

Work Flow Management-Reference Manual

Rdok 98 - Burroughs 5000709

Work Flow Management -User's Guide

Rdok 99 - Burroughs 5000714

Program Binder

Rdok 93 - Burroughs 5000045

Using Pointer Expressions on the B6700/B5700 Computing

Systems. Rdok 97 - Burroughs 4000095

Input/Output Subsystem

Rdok 92 - Burroughs 5000185

User's Guide to Memory Control

Tasking and Inter-Program Communication

Chapters 1 and 6 of System Miscellanea

Rdok 92 - Burroughs 5000367

Inter-Program Communication

The B6700 Hot Line

Rdok 76 - Burroughs 1042298-012

System Software Handbook

Rdok 75 - Burroughs 5000276

Algol language Reference Manual

Rdok 107 -Burroughs 5000649

Computer System Organization. Elliot 1. Organick,

The B5700/B6700 Series, Academic Press, 1973 •

Virtual Memory. P.J. Denning, ACM Computer Surveys

2(3),153-189, 1970 •

The Working Set Model for .Program Behayicur. p.J Denning,

Communications of the ACM, Vol. 11 , Number 5,

May 1968, 323-333.

On-line Design of Control Systems. N. Munro, 'l'he Computer

Bulletin, Vol. 14 P 184- 186,1970 •

	Control engineering programming package

	Contents

	Foreword

	1. Introduction

	2. Special topics concerning the burroughs B6700

	3. Task invocation

	4. Special software constructs

	5. The realization of the control engineering programming package

	6. The program units of the software support

	Appendix

	References

