
 Eindhoven University of Technology

MASTER

Real-time system control and X, from specification to implementation

van Rosmalen, J.

Award date:
1998

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/843a3b72-227b-4834-b665-8d600565ea75

Master's thesis

Coaches: ing. H.W.A.M. van Rooij

Re al-Time System Control and x,
from Specification to
lmplementation

J. van Rosmalen

Systems Engineering, 420164

dr.ir. J.M. van de Mortel- Fronczak
Supervisor: prof.dr.ir. J.E. Rooda

EINDHOVEN UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

SECTION SYSTEMS ENGINEERING

Eindhoven, January 1998

EL."l"DSTUDIE-OPDRACHT

TECHNISCHE tTNIVERSITEIT EINTIHOVE"\i
Faculteit \Verktuigbouwkunde
Vakgroep WP A
Sectie Systems Engineering

Student:

Hoogleraar:

Begeleider(s):

Start:

Einde:

J. van Rosmalen

Prof.dr.ir. J.E. Roo.da

Dr.ir. J.M. van de Mortel-Franczak
Ing. H.W.A.M. van Rooij

juli 1996

maart 1997

juli 1996

Titel: Koppeling van X met een reai-time kemel en een I/ 0
systeem.

Onder"i.Verp:
Machinebesturingen kunnen met X worden gespecificeerd. Vervolgens is simulatie van
de besturing bruikbaar om de functionaliteit ervan te toetsen.
De overgang van specificatie naar implementatie kan op diverse manieren worden
uitgevoerd. Hierbij worden meestal andere software gereedschappen gebruikt dan bij de
specificatie. Onderzocht wordt of deze 'gereedschapswissel' voorkomen kan worden
door de specificatie te gebruiken voor de directe afleiding van een e.xecuteerbaar
besturingsprogramma.

Opdracht:
Bestudeer de werking van digitale besturingen. Analyseer de interactie tussen
machinebesturing en de machine en beschrijf de basis operaties die nodig zijn om het
adequaat besturen van een machine mogelijk te maken. Neem een van de Festo
werkstations en het Interbus-S I/0-systeem als uitgangspunt.
Probeer een set basisfuncties af te leiden, waarmee besturingen met de specificatietaal X.
goed te beschrijven zijn.
Ontwikkel een executeerbare versie van de bovengenoemde specificatie van het
werkstation. Maak (gebruik van) de drivers voor het Interbus-S systeem.
Onderzoek de werking van RT-Kemels. Geef aan of de huidige X-kemel gebruik kan
maken van een RT-Kemel voor het besturen van machines. Voer een aantal
experimenten uit.

Prof.dr.it:. J.E. Rooda
-:f.vd.. koM -4lcl.<..~

Dr.ir. J.M. v.d. Mortel-Franczak

-

Systems

Eng i neering Faculteit Werktuigbouwkunde

i

"The boundries of my language are the borders of my world."

L.J.J. Wittgenstein (1889-1951)

lll

I would like to thank Lilian, for patiently putting up with me for the long years I
spent at the university. Her support means a lot to me.

Also, I would like to thank Albert and Wilbert. They kindly let me shareintheir
expertise in the x-kemel and c++.

Samenvatting (in Dutch)

In de Sectie Systems Engineering aan de Technische Universiteit te Eindhoven wordt
een specificatie taal ontwikkeld genaamd x. Met de specificatie taal x is men in staat
om modellen te maken van industriele systemen. (Deze industriele systemen kunnen
zowel fabrieken als machines zijn.) Een model van een machine bevat een deel waarin
de besturing van de machine gemodelleerd wordt. Wanneer er een model wordt
gemaakt van de besturing van een machine is het wenselijk om de functionaliteit van
dit model direct te kunnen overdragen op een besturingsprogramma voor de fysieke
machine. Het probleem hierbij is dat het model implementatie-onafhankelijk is en
aangepast dient te worden om te kunnen functioneren in een real-time omgeving. Er
moeten een aantal toevoegingen gedaan worden aan het model om, met het model
als uitgangspunt, een besturingsprogramma te kunnen genereren voor de werkelijke
machine. Dit project onderzoekt welke deze toevoegingen zijn, wanneer ze moeten
worden toegevoegd, en door wie dit gedaan moet worden. Aan de ene kant is er de
modelleur, die geen of nauwelijks kennis heeft van het fysieke systeem, aan de andere
kant de implementator, die niet of minder op de hoogte is van de functionaliteit die
in het besturingsmodel beschreven is.

In dit rapport worden eerst de besturing en computer interfaces in zijn algemeenheid
bekeken. Daarna komt het gedrag van real-time programma's aan bod en welke eisen
er gesteld worden aan de communicatie met actuatoren en sensoren. Er worden ver­
schillende manieren aangedragen om deze eisen te beschrijven in het x-formalisme.
De verschillende mogelijkheden worden hierna onderzocht in een kleine case waarna
op basis van de resultaten één van de mogelijkheden wordt uitgekozen om verder
mee te experimenteren. Hoe deze mogelijkheid is geïmplementeerd wordt hierna uit­
gelegd. Vervolgens wordt beschreven hoe een gebruiker om dient te gaan met de
nieuwe x-kernel. Aan bod komen nog enkele onderwerpen waarmee tijdens toekom­
stig onderzoek rekening dient te worden gehouden. Tenslotte volgen de conclusies en
aanbevelingen.
De appendices bevatten een introductie in het interface-systeem InterBus-S, dat tij­
dens dit onderzoek gebruikt is, en de code van de programma's die voor dit onderzoek
zijn geschreven.

V

vi Samenvatting (in Dutch)

Summary

At the Section Systems Engineering of the Eindhoven University of Technology, the
Netherlands, a specification language, called x, is being developed. With the spec­
ification language x it is possible to model industrial systems. (These industrial
systems can be either machines or complete plants.) A model of a machine control
system contains a part in which the machine control is modelled. It is desirabie to
be able to transfer the functionality described in the model directly to an executable
program that can be used as control program for the physical machine. The problem
that arises is that the model is completely implementation independent. The model
must therefore be adjusted in such a way that it is able to function in a real-time
environment. To generate a control program from the model, a number of additions
to the model is required. In this project the necessary additions are determined,
when they should be added, and by whom these additions should be made. On the
one hand there is the modeler, with his limited knowledge of the physical system,
and on the other hand there is the implementor, with his limited knowledge of the
functionality of the control system as described by the model.

This report first examines the control program and its interfaces in generaL Then, the
behavior of real-time systems is examined, as wellas the demands that are made on
the communications with actuators and sensors. Different ways to incorporate these
demands into the x-formalism are presented. Hereafter, these different methods are
presented in a small test case. The results of this test case are then used to choose
one method that is incorporated into the x-kemel. The way in which the kemel
is adjusted to create a x-kemel using the chosen method is explained. How a user
should operate the new kemel is explained. Several subjects that are to be considered
in further research are mentioned after which the conclusions and recommendations
are presented.
The appendices contain an introduetion to the interface system, InterBus-S, that is
used during the experiments, and the souree code of the software that is written for
the experiments.

VIl

viii Summary

Contents

Samenvatting (in Dutch)

Summary

1 Introduetion

1.1 Purpose of the Report

1. 2 Extent of the Report .

2 Physical lmplementation of Control Systems

2.1 Control System

2.1.1 Control Programs .

2.1.2 Computer Interfaces

2.1.3 Standard Interfaces .

2.1.4 The Test Interface for x

V

VIl

1

1

2

3

3

5

6

9

10

3 Interfacing and x 11

3.1 Real-Time Program Structure 12

3.1.1 System Initialization, Reset and Shut-down Procedure 13

3.1.2 The User's Program . 14

3.2 IO-Communication Behavior . 15

3.3 IO-Communication Requirements in x 15

3.3.1 Continuons IO-Communications . 16

i x

x

4

5

3.3.2 Discrete IO-Communications .

3.4 Testing of IO-Signals in x

3.5 Possible Means for IO-Communications in x

3.5.1 IO-process in x .

3.5.2 IO-variables in x

3.5.3 IO-channels in x

Case Study: A Piston Control

4.1 A x model ..

4.1.1 Types

4.1.2 System Definition .

4.1.3 ProcessOp

4.1.4 Process C

4.1.5 Process Ph

4.2 IO-Communication in the x Model

4.2.1 IO-process .

4.2.2 IO-variables

4.2.3 IO-channels

4.3 A Choice for an IO-Mechanism in x .

Interfacing x with Hardware

5.1

5.2

The x Formalismin Hardware Control

The Experiment, IO-communication in x

5.2.1 Combining the x-Kemel with DOS Driver Software

5.2.2 The Real-Time x-Kemel

Contents

17

17

19

20

23

25

29

29

31

31

32

32

33

35

36

37

39

40

43

43

45

45

45

5.2.3 Initialization and Shut-Down Procedure of the Interface System 53

Contents

6 U sing Real-Time x
6.1 Restrictions to Real-Time x
6.2 Creating a Control System with Real-Time x
6.3 Test Results with Real-Time x

7 10-Communications Incorporated in the x Kernel

7.1 Commonly Used IO-Mechanisms.

7.1.1 Polling

7.1.2 Interrupt-driven 10

7.1.3 Mailbox

7.2 Suggested IO-Mechanism for the x Kernel

8 Real-Time Aspects of X

8.1 Time and Timing in Real-Time x
8.2 Error Handling in x .
8.3 Concurrency in x ..

9 Conclusions and Recommendations

9.1 Conclusions

9.2 Recommendations.

Bibliography

A Introduetion to the InterBus-S System

A.1 The InterBus-S System

XI

55

55

56

57

59

59

60

60

60

61

63

63

64

65

67

67

68

69

71

71

A.l.1 General Structure and Method of Operation of InterBus 72

A.l.2 InterBus Protocol Sequence 72

A.2 Process and Parameter Data 73

A.2.1 IBS Data Format: Motorola versus Intel 73

A.3 InterBus Topology and Data Addressing 7 4

xii Contents

A.3.1 InterBus Topology 74

A.3.2 InterBus Data Addressing 74

AA Working with InterBus-S ... 78

A.4.1 Utilities for InterBus-S 79

A.4.2 Start-up of the InterBus-S System . 79

A.4.3 Shut-Down of the InterBus-S System 80

A.5 InterBus-S Documentation 81

B Library Text 83

B.1 Library Souree Code 83

B.l.1 IBSCHI.H .. 83

B.l.2 IBSCHI.CPP 84

B.2 Additional Utilities 90

B.2.1 Ibsutil.h .. 90

B.2.2 Ibsutil.cpp . 91

Chapter 1

Introd u ct ion

At present, machines become more and more complex. As a result, the demands
placed upon the machine control systems also increase. The design and development
of these control systems, therefore, is a task that can no longer be considered to be
separate from the design process of the machine itself. When dealing with compli­
cated control systems it would be preferabie to be able to validate their performance
befere they are implemented. This can be achieved by modeHing the control systems
and their controlled systems. These models can then be used in simulation runs.

Various languages have been developed to design and validate models of machines
and control systems. Most often, these languages were developed with a specific field
of implementation in mind (for instance, gProms for continuous systems), and they
were able to specify either continuous systems or discrete systems. Hybrid system
design, for these systems in which both continuous and discrete parts are present, is
supported poorly at best.

At the Eindhoven University of Technology, the Netherlands, in the sectien Systems
Engineering, a specificatien language x is being developed which is able to specify
continuous systems, discrete systems, as well as hybrid systems. The language x
is already being used to specify and validate industrial plant control systems. For
machine control systems, many questions are yet unanswered.

1.1 Purpose of the Report

The purpose of this report is to examine the ability of the language x to be used for
machine control systems. Not only does it examine whether x is capable to specify

1

2 Chapter 1. Introduetion

machine control systems, it also presents the means to communicate withareal-time
system.

Examined must he if it machine control systems can he specified in X· If so, is it
then possihle to generate a control program for a physical system? Prohlems that
arise are how the control system is to communicate withits environment and if this
communications can he executed real-time.

1.2 Extent of the Report

By no means is this work meant to he a manual on real-time control systems and
implementation. As the area of interest of this work is the functionality of control
system specifications in x, most technica! characteristics of processors, sensors and
converters are not discussed. Most often the components that are comhined to form
a control system are considered to he 'hlack hoxes'. If information ahout a compo­
nent is vital to the understanding of its functionality, this information is, of course,
presented.

Chapter 2

Physical lmplementation of
Control Systems

Before being able to implement a control system, it is necessary that one understands
the various components of an industrial system. In Figure 2.1 the structure of a
physical system and its control system is presented as defined by [Lei92].

In this system 3 different areas can be distinguished.

• At the bottom, there is the physical system. This system is the actual machine
or combination of machines that is to be controlled.

• Above this, the control system operates. It is this part of the system that
is examined in detail in this report. The formalism x is used to specify the
functionality of this part.

• A Man-Machine Interface (MMI) is linked to the control system. If one is not
able to give orders to the control system as well as to monitor its progress, a
control system is useless.

Of the three areas mentioned above, only the control system is considered. The other
two are only mentioned when their relation with the control system is examined.

2.1 Control System

The central part of Figure 2.1 is the control system, which usually consists of a PC
or an embedded system. The interest of this paper lies in the software description

3

4 Chapter 2. Physical Implementation of Control Systems

Man-Machine Interface

Serial Digital Data

Control System
'-.................................... 1····-······--·-----···-········

Analog Signal Analog Signal
,---·-·······-··············1··································-··---···- ······················+· ··············-··-··-·····-

Actuator

Controlled Process

Physical System

Figure 2.1: A Controlled System [Lei.1992]

of the control program. Within the software, the functionality of the control system
has been defined using a programming language. The hardware that the processor
is made of and that allows it to communicate with its environment is not examined
in this work (for further information on processors, see [Hor85]).

This paper examines the possibility of using the formalism x in a control system
operating in a 'real-world' environment. The functionality of the control system is
defined in the formalism X· The specifi.cation in x is then used as a basis from which
the control program is generated.

2.1. Control System 5

2 .1.1 Control Programs

Demands on control systems can vary greatly. Nonetheless, it is possible to distin­
guish different sorts of control systems. Three different sorts of control programs
are presented in [Ben94]. These are sequentia[programs, multi-tasking programs and
real-time programs.

• Sequentia[programs are strings of actions ordered in time. The performance
of a sequentia! program depends on the effects of the actions and the order
in which these actions are made. The time needed to perfarm an action is of
no importance. The logical correctness of a sequentia! program is therefore
ensured when the actions are defined correctly, and the order in which the
actions are taken is the right one.

• Multi-tasking programs are programs in which the actions are not necessarily
disjoint in time, though the order in which the actions are done is still im­
portant. A multi-tasking program is built from separate parts, aften called
processes, which are executed concurrently. These processes can themselves be
partly sequentia!. The processes communicate with each other through shared
variables or synchronization.

• Real-time programs differ from the previous two in that the sequence in which
actions are performed is not completely predetermined, in addition to these
actions being not necessarily disjoint in time. The sequence in a real-time
program is not determined by the programmer but by the environment in which
the program is embedded. Extensive communication is necessary between the
program and its environment to decide on the course of action. Actual time is
of great importance in real-time programming, as certain requirements specify
timing aspects. The most common timing requirement in real-time programs
is a guaranteed maximum response time.

This report's main interest lies in real-time applications. These applications operate
under certain timing requirements. These requirements can be divided into two cat­
egories: hard real-time timing requirements and soft real-time timing requirements.

• Hard real-time requirements have to be met for an application to be able to
function correctly. An example of a hard real-time requirement is an emergency
shutdown procedure of a machine. If the activation of an emergency stop is
detected, the machine must be shutdown within a certain time period. If this
takes too much time, this could lead to catastrophic malfunction.

6 Chapter 2. Physical Implementation of Control Systems

• Soft real-time requirements are more like a preferabie time in which an ac­
tion should be completed. If a cash machine is nat able to deliver its money
within 20 seconds because of heavy telephone traffi.c, this does nat result in a
catastrophic malfunction.

To be able to meet hard real-time requirements demands a very precise knowledge
of the hardware and software being used bath in the control system as wellas in the
physical system. In this report only soft real-time requirements will be considered.

2.1.2 Computer Interfaces

As is already mentioned in the previous chapter, a real-time application depends
heavily on the ability to communicate with its environment. This communication
is established through a multitude of sensors and actuators; they may be used to
measure temperature using thermocouples with voltage signals, or they can be used
to measure flow, generating pulse signals. There areabout as many different signals
as there are sensors and actuators. To design a different interface for every application
would be costly and a lot of work. Most interfaces are part of one of the following
categories:

• Digital interfaces can be 1 bit interfaces, like a switch being open or closed,
or they can be several bits wide, like the digital quantities from the signal of a
digital voltmeter in BCD (Binary Coded Decimal).

• Analog Interfaces. Some sensors, like thermocouples and strain gauges e.g.,
have voltage output signals. These outputs are then amplified to the range of
-10 to 10 V; conventional industrial instruments often use current outputs in
the range of 4 to 20mA. (A current signal is less sensitive to interference than
a voltage signal.) All these signals have in common that they are continuous
signals. All these signals must therefore be sampled and converted toa digital
value.

• Pulse and pulse train interfaces. Many sensors, particularly flow meters, pro­
duce inputs in the form of pulses or pulse trains. The increasing usage of
stepping motors also increases the need for step output.

To divide interfaces into the above groups can help to limit the work that has to be
done to design an interface for a particular process. Common practise for hardware
producers is to provide a variety of interface modules each for a specific type of in­
terface. These modules are then combined to provide the right interface for a certain

2.1. Control System 7

process. For example, the interface for a process containing a large amount of flow
measurements would be made up largely from modules made for pulse interfacing.

In this report, only single bit digital interfaces are considered. This interface is the
least complex of the interface types mentioned. Also, only the discrete modeHing in
x has been completely tested and is fully operational. The other interface types are
considered to be beyond the scope of this paper.

Digital Interfaces

If requirements for interfaces in the formalism x are to be defined, one must first
examine the hardware operations of such an interface. As mentioned before, in this
report only digital interfaces are considered. In this chapter, an output and an input
interface are presented.

Digital Input Interface A simple digital interface is shown in Figure 2.2, as
defined in [Ben94]. The outputs of the physical system are considered to be logical
signals. It is usual to transfer one word at a time to the digital input register. The
input register will normally have the same number of lines as is needed to transfer
one word. The logic levels of the signals that are transmitted are 0 and +5 Volts. If
this is not the case, some sort of signal conversion will be required.

The physical system provides data that is put in the digital input register. The CPU
signals which register may put its contents on the data bus by selecting the address of
this register. To do so, the CPU uses an address decoder. Aft er a particular register
is selected, it must first receive confirmation before it can transmit its contents to the
data bus. This is done to prevent the possibility that data from the register might
corrupt information already present on the data bus. This conformation is given by
an 'enable' signal from the control bus, after which the register copies itself on the
data bus. Information in the register is continuously updated by the output from
the machine.

Note that this input interface only presents data upon request ofthe CPU. It does not
signal if new data is presented to its input register. To achieve this, interrupt abilities
should be added to the interface and the control program. As these interrupts are
not yet available in the formalism x, this option is not considered.

Digital Output Interface A digital output interface is presented in Figure 2.3,
as defined in [Ben94]. Again, the outputs of the output register are logical signals,
with levels of 0 and +5 Volts. If these are not able to control the physical system,

8

Address
decoder

i

Chapter 2. Physical Implementation of Control Systems

Physical System

Digital input
signals

.------ Data bus

CPU

Figure 2.2: A Simple Digital Input Interface

signal conversion is needed. This conversion is achieved by sending the !ow-voltage
signals to relays that switch high-voltage signals; an additional gain of this procedure
is that a separation is made between the electrical components of the control system
and the physical system.

All that is needed for an output interface is a register in which the computer can store
information before this data is sent to the physical system, or the physical systems
demands this data. The output register reads the data presented on the data bus.
This only occurs if a particular register is selected to read the data bus. A register
is signaled by an address encoder to select it. After the selection, the register must
wait for confirmation by an enable signal from the control bus. This conformation is
given only when the control bus detects that the data on the data bus is stable.

Interface Requirements

If the operation of the input and output interfaces presented in the previous chapter
is considered, some interface requirements can he distilled. First, of course, there
must he a notion of what is to he transmitted or received. This information is
provided by the model that is made of the system.

Secondly, the computer must he able to transmit this information at the correct
moment. At the level of the programming language, this decision is made by the

2.1. Control System 9

T
I

Digital IJ!!
Physical

output
I:::J
IS. system

register leS
I

l
j Select

I
Address

I decoder

Enable _jl
Ad dress bus

c ontrol bus

- Data bus

Figure 2.3: A Simple Digital Output Interface

control program, in this case written in X· At the level of computer operations,
the timing is achieved by the internal timing mechanisms of the computer's CPU as
explained in previous sections.

Thirdly, the CPU must have an idea of where this communication is to take place.
It is this requirement that poses a problem. Before, it has nat been necessary in the
x-formalism to incorporate means to define hardware architectmal information in
the model. The reason for this is that, until now, the only models that have been
made in x were models of plant control systems. What was used of these models
was the data that the simulations from the models of the systems yielded. As the
plant that was modelled is nat controlled by some all-encampassing control program,
no electronic equivalent of these models existed. This is nat the case with models
of machine control systems where a electronic equivalent of the model is present by
definition. This equivalent is the program that is used to control the machine. It
would be desirabie to be able to translate the functionality defined and tested in a
model directly into an operational control program. How to do this is nat explored
in this chapter, but solutions are presented in Chapters 3, 5 and 6.

2.1.3 Standard Interfaces

Most companies that supply computer hardware and software for real-time control
systems have developed their own 'standard' interfaces. Although a supplier is able

10 Chapter 2. Physical Implementation of Control Systems

to support these systems with a wide variety of interface cards, the problem with
interfaces from different suppliers is that they are not compatible.

An attempt to define a standard interface was made by the British Standards In­
stitution (BS 4421, 1969). Unfortunately, this standard only defined the concept
of how the components of an interface should interconnect. It did not standardize
the hardware of the system. This standard was quickly overtaken by more recent
developments.

In the early 1970's, Hewlett Packett developed a General Purpose Interface Bus
(GPIB) to conneet laboratory equipment toa computer. This bus was taken by the
IEEE as their standard and adopted as the IEEE 488 bus system.

The International Organization of Standardization (ISO) has defined a standard pro­
tocol system in the Open System Interconnection Model (OSI). This is a hierarchical,
layered model containing seven layers from the physical conneetion to the highest
computer protocol. The standard of the ISO is an architecture and by no means
unambiguously defines the interfacing of system components.

2.1.4 The Test Interface for x

Because standard interfaces do not exist, an interface has to be chosen to be used
for testing of the control programs resulting from the x models. This choice for an
interface has been an arbitrary one.

The test interface used in this report uses InterBus-S interface system, produced by
Phoenix Contact. The InterBus-S interface system is a bus system that is indepen­
dent of the control program. The conneetion between the InterBus-S system and the
control system is made by a special host controller board for every control system,
or, in the case of a conneetion toa PC, by an interface board. The controller board
used in this particular project is the IBS PC ISA SC controller board, also designed
by Phoenix Contact. A detailed description of this system can be found in Appendix
A.

Chapter 3

Interfacing and x

If x is to control areal-time system, some form of interfacing is needed between the
control system designed in x, and the controlled system. The x language, at this
moment, does not support any possibilities to communicate with its environment.
One should see to it, when these possibilities are integrated into the x language,
that no implementation-dependent code is added to the language. The x language
should be kept implementation-independent because the x-formalism is used to spec­
ify functionality of a system, not its implementation. This aspect of the x formalism
should be maintained. The main problem, therefore, is to define a set of IO-functions
without a direct linktoa specific implementation. These IO-functions must be com­
piled according to the needs of a specific interface system. The definition of these
IO-functions will be done in an extra layer between the control system (specified in
x) and the controlled system, being any physical machine or construct. This extra
layer, called controllayer, must be designed for each individual interface system (see
Figure 3.1).

Before an implementation of the means for IO-communications in x can be pre­
sented, it is necessary to define what functions are needed. To do so it is necessary
to look at IO-communications, where IO-communications occur, what its behavior
is and what is required to implement IO-possibilities in the x language. The ex­
periments of this project use only discrete communications. In the discussion how
to incorporate IO-communications in the x formalism, both discrete and continuous
communications are considered. This is both easier and more complete. When the
results of this examination are to be incorporated into the compiler, only the discrete
part is implemented. The continuous part lies beyond the scope of this paper.

11

12

x
Application

,

Chapter 3. Interfacing and x

~------ -- ------~

I
1 Control Layer 1 ______ _ _________ /

Controlled System

Figure 3.1: Application and Controlled System connected through a Control Layer

3.1 Reai-Time Program Structure

Areal-time control program can be divided into several parts. Some parts are almast
exclusively defined by the functionality described in the x model. Other parts are
specified largely by the choice of the interface system that is used to communicate
with the controlled system. To establish which parts of a control program are influ­
enced by the x model, it is necessary to have an idea of the structure of areal-time
control program.

Three different partscan be distinguished in areal-time control program:

• A system initialization procedure determines the system configuration and
recognizes communication partners and peripheral systems.

• A user program introduces the functionality that is to be enforced upon the
real-time system. In this part of the program, the functionality of the x model
is integrated.

• A shut-down procedure ensures that a shut-down of the system is achieved in a
controlled manner. A reset procedure for the system might also be incorporated
in this part.

In each of these sections, IO-communications may occur. These parts are explained
in more detail in the next sections.

3.1. Reai-Time Program Structure 13

3.1.1 System Initialization, Reset and Shut-down Procedure

First, it should be made clear what is meant by these terms in this context. System
initialization is used with respect to the interface system and the software that is used
by this interface system. In the system initialization one will only find initialization
procedures of the interface system, and computer software and hardware. These pro­
cedures check hardware configuration, software requirements, etc. The initialization
of the physical system has to be part of the user's program.

The same goes for the term shut-down andreset procedure. The shut-down procedure
ensures a controlled shut-down of the interface system, its software and embedded
processors at a machine-language level. The reset procedure takes the system into
a state from which it is again operational after an error has occurred. Again, the
shut-down and reset procedures for the physical system are a functional part of the
user's program.

Both system initialization and shut-down are performed at machine-language level.
The actual procedures, therefore, depend on the interface system and the software
which are used. This means that these procedures are, by definition, implementation
dependent. To implement the functionality of these procedures in a x program would
be incorrect. This undermines the implementation-independent character of the x
formalism. Also, most interface systems available have predefined functions that
execute a complete IO-initialization or shut-down without the help of the user. In
other words, as far as the user is concerned, in these two parts of the program no
IO-communication is needed.

However, the notion that the IO-system is to be initialized before use, and shut­
down in case of an error must be incorporated into the executable generated from
the x model that is made of the control system. This initialization can be an explicit
function call in the x text or it can be inserted automatically when the model is
being compiled into an executable program. The precise contents of the procedures
is left to the implementor.

The modeler must also consider the hardware requirements of his model. The number
of necessary IO-positions must be stated as well as the timing requirements which the
implementation must meet. This is an area in which the modeler, with his limited
knowledge of computer and embedded hardware, must consult the implementor on
a regular basis. Precisely which decisions are left to the modeler and which to the
implementor is a problem that is dealt with later in the report.

14 Chapter 3. Interfacing and x

3.1.2 The User's Program

The user's program is the main interest of this chapter. The functionality of this
part of the control program is directly derived from the functionality of the x model.

A model in x of a machine control system usually consists of two parts. One part
describes the model of the physical system. The other part is a description of the
model of the control system operates. The two parts are linked together to form a
closed model with which simulations and calculations can be performed.

If a reai-time control program is needed, the model of the control system is the only
part of the model that is of interest. In this report, this part will be called C. If the
model is specified correctly it holds all the functional information needed to operate
the physical system. The model of the physical system, Ph, is deleted from the
model as it is replaced by the actual physical system (see Figure 3.2).

Figure 3.2: Model of Control System

When the model of the control system is uncoupled from the model of the physical
system a clear problem arises. The separated model of the control system is an open
model. The current x-kernel cannot compile open models.

As it is obligatory for compilation that the model is closed, the compiler must be
redesigned so that it is able to compile open models. Alternatively this open model
must be adjusted in such a way that the compiler views it as closed. The means that
might be used to do this are presented in Section 3.5.

3.2. IO-Communication Behavior 15

3.2 10-Communication Behavior

Before a specific solution is presented to incorporate IO-communications in the x
formalism, the behavior of 10-communications is examined to allow definition of the
requirements of these IO-communications.

Communication is a transfer of information between tasks or processes. Usually, if a
message is sent between two different tasks or processes, a confirmation is generated
by the receiver that the signal has been received. Also, the sender of the signal
waits for this confirmation before proceeding with the rest of his program. This
form of message sending is called handshaking. A sender can only complete his
communication when a receiver is ready, and capable to receive the message. In the
x formalism, transfer of discrete signals is organized in this way.

10-communications behave differently. First, processes are not always in direct con­
tact with the environment. Communication with the environment is established
through various hardware and software tools. In this case, it is not always the ini­
tial sender that waits for the confirmation from the peripheral device. Instead, this
handshake is made by a process or a tool closer to the device. The process initiating
the communication does not receive a handshake for its signal.

Second, some physical devices do not generate a handshake. A sensor always creates
new data and stores this in an address in the computer. Whether or not a process
is using the data, is of no concern to the sensor. The stored data is always available
but the sensor itself will not make an active attempt to present this data to other
processes. Some actuators behave in a similar way, but the other way around. These
actuators are always able to receive commands. No confirmation, or handshake, is
generated. lnstead, checking if the actuator executes the command correctly is done
using sensors to detect a desired change in the state of the physical system.

3.3 10-Communication Requirements in x

What is said in the previous sections, is used to define the requirements of the
functionality of IO-communications in the x formalism. If the precise form of the
signal and the address to which the signal is to be sent are not considered, it can be
said that:

1. 10-communications must always be possible. This means that, if some output
is sent to an actuator this actuator must always be able to receive this output.
If a process requires input from a sensor, this input must always be available.

16 Chapter 3. Interfacing and x

It must be possible totest the value of an input variable, especially in the case
of sensory input.

2. The 10-communications must not rely on the hand-shake principle. This means
that a sender of a signal does not have a direct means to test if the signal is
received. lnstead, the verification of the output is done by checking sensory
input from the physical system. Also, a control process must he able to pull
the input it needs. Another process is not explicitly presenting this input to
the controller. The control process must receive this input without an apparent
sender at the other end.

These two requirements must he met to properly deal with 10-communications in
the x formalism.

3.3.1 Continuous 10-Communications

There is in fact already an object, continuous channel, in the x formalism that
meets the requirements mentioned above. Literally spoken, this channel does not
transfer data. This channel sends continuous variables. By doing so, it connects two
equations containing the same unknown variables from different processes. A process
is then able to solve an equation that contains unknown variables by enlarging the
number of different equations in which these variables are present. The variabie
that is 'sent' over a continuons channel can better he seen as a variabie that both
processes connected to the continuons channel can read and influence. A process
can, at any time, read and test the value of this variable. Also, a process can at any
time change the value.

The problem with using the continuons channel as a means of 10-communication
is the functionality of the continuons channel in X· Computer communications are
mostly discrete. A discrete signal could be faked by descrihing it as a continuous
signal with discrete event changes. It would not be correct to use continuous channels
in this way simply because they behave according to the requirements while, in fact,
they are not related to the sort of signal that is specified. Also, if a continuons
channel is used to specify a discrete signal, the compiler adds a large amount of
unnecessary code to the executable program. This code has to do with solving
equations, integration formulas, and so on. All this code is not needed for 10-
communications and does not make it possible to communicate with the environment.
Therefore, it is necessary to create a new kind of object in the x language to make
10-communications in specifications of machine control systems possible.

3.4. Testing of IO-Signals in x 17

In addition to the requirements mentioned, the process that wants to communicate
must know where the other partner can be found. In other words, if a process wants to
share information with peripheral equipment, it must know where the conesponding
computer address is situated. This is implementation-dependent information and
should not be visible in the model of the control system.

Again, the specific form of the signals sent to the pheripheral devicesis not discussed
in detail in this paper. In practice, sensors and actuators are bought as packages
from a supplier. These packages can be made to support any signal that is desired.
Thus, no standard can be assigned to the signals that are used by these IO-devices.
The signals are adjusted according to the wishes of the implementor.

3.3.2 Discrete 10-Communications

The discrete communication in x requires the most extensive adjustments. The
discrete channel in the current x formalism depends on the hand-shake principle.
As has been explained in the previous section, this dependency must be removed if
IO-communications are to occur using this channel. The only thing that remains,
therefore, of the discrete channel that is currently used in x is the discrete form of
the signal that is sent over this channel.

A discrete output generated by the control system must be sent to the environment
without waiting for a hand-shake from a receiver. This send action must always
be possible. The signal that is sent is stored in a computer address and left there
for other processes to use. Thus, the only difference between this channel and the
discrete channel as it is currently being used, is the fact that it operates without a
hand-shake.

A discrete input is more difficult to achieve. If the control system needs an input, it
must be able to pull this input from a specific computer address. This communication
is not initiated by an other process, as would be the case when the communication
depended on hand-shaking. The control process itself must be able to initiate this
communication.

3.4 Testing of 10-Signals in x

A control system is acting on signals from an environment. Thus, the control system
must be capable of monitoring the value of the input signals it receives from the
environment. In most x models, channels are used to transfer data and synchronize
two processes, using the hand-shake principle that communication depends on in the

18 Chapter 3. Interfacing and x

x formalism. In a real-time environment one often encounters communications of
which most instances are ignored. For instance, a certain sensor might measure the
heat in a fermentor once every two minutes. Only when the temperature reaches
critica! levels, the controller will act. All other instances of the measurement are
ignored by the controller. Also, a controller might want to wait fora specHic change in
the state of the physical system to occur. An other example is a large reactor reservoir
that is heated to reactor temperature. As this takes much time, the controller checks
the temperature occasionally.. When the temperature has reached the prescribed
level, the program is continued.

In both these cases, the controller must have the ability to test the signal and wait
for a specHic state change to occur before continuing the program. There are two
options. Either the designer of the model can code this testing in the model, creating
some sort of polling in the x code, or a construct must be designed that is able to test
an IO-signal for a specHic change in the system state. To illustrate both possibilities
an example is presented.

Consider the discrete variabie a. This variabie is sent over the discrete channel b.
The control process wants to wait until the variabie reaches the value 10 or higher.
Polling as a means to monitor an input signal can be achieved with the following x
text.

;b?a
* [-, (a ~ 10) ; b ? a --+ skip

l
A major disadvantage of the polling option is that it increases the workload of the
main program. In x specifically, a polling statement causes even more problems
because the program will loek in the polling statement as long as the boolean ex­
pression remains true. (Under the assumption that communication is timeless and
non-blocking.) This causes all other tasks of the same process to be suspended and
possibly resulting in control errors.

The other option the current x formalism offers, is the use of the V operator. The
advantage of the V operator is its simplicity, and the fact that it uses less program
text. This operator is already available for continuous variables. To be able to use it
with discrete input signals, the functionality of this V operator must be expanded.
A major difference exists between continuous and discrete communication in X· A
continuous channel always has a continuous variabie linked to it. A discrete channel is
not attached toa discrete variable. Thus, if a V statement is used totest a discrete
variable, it must either be specifically stated over which channel this variabie is
received, or the V operator must be used directly on the discrete channel itself.

The functionality that is to be added to the V operator would be to receive any

3.5. Possible Means for IO-Communications in x 19

signal over the discrete channel it is connected to, to test it against its guard, and
then either continue with the program if the guard evaluates to true or wait to receive
the next signal. This would create a compound statement like the one below:

V'(b? a, a 2: 10)

In this compound statement, a variabie a is received over channel b. lf the guard
a 2: 10 evaluates to true, the variabie a holds the value received over channel b, that
had caused the V' -operator to respond. The variabie a can then be used for further
computations.

A disadvantage of the V' is the fact that the current x engine used to test the
functionality of the model of the control system through simulations does not support
such use of the V' operator on discrete channels. The kemel must be adjusted to allow
the V' operator on discrete channels if the coding out of polling is to be prevented
in the x code. Needless to say, it is impossible to do without polling. Onsome level
polling will always take place. It is likely, however, that this polling can be made
more efficient if implemented at a lower level than the x formalism.

3.5 Possible Means for 10-Communications in x

In this section, the means for IO-communications in x mentioned in the previous
sections are further examined. As has been explained, a control system must be
able to communicate with its environment. To do so, the control system must be
connected to the physical environment.

The functionality of communication methods in the current x kemel differs from the
functionality of the means for IO-communication. Different farms of communication
must therefore be added to the x formalism. This also means that one must be able
to distinguish the methods for IO-communication from the communication between
processes and systems within the control system. This is to avoid confusion over the
specific form of communication that is used.

There are three alternatives to conneet the control system with the environment.

• First, it is possible to define an additional process, which is called an IO-process,
in which the connections to the 'real' world can be defined. This IO-process is
added to the model of the control system.

• Second, the model of the control system can be considered as a separate model.
Places in which the control system needs input from or writes output to the

20 Chapter 3. Interfacing and x

environment are connected directly to this environment. No channels are used
as connection.

• Third, the unconnected channels of the model of the control system can be
connected directly to the various addresses of the PC or embedded system
that is used to run the controller. These direct connections are then made
in the connecting system of the model. There are no means to indicate this
graphically. Graphically, the model remains open unless an addition is made
to the graphical representation of the x systems. This addition must define the
IO-channels.

Each of these possibilities are examined in the following sections. The programs that
are presented in these paragraphs will contain variables, especially those concerning
addresses, that are not defined or initialized.. The reason for this is that, as yet,
the specific addresses are unknown. If the model is compiled, specific addressing is
not necessary .. If the executable generated by the compilation and linked is run, a
separate data-file can be included specifying the addresses. The means to initialize,
shut-down or reset the system are not integrated into the models at x level. These
actions are inserted while compiling.

3.5.1 10-process in x

As mentioned in the previous chapter, an additional process, called IO, can be defined
to accomplish IO-communications. The function of this process is to conneet the
model of the control system withareai-time system. This reai-time system might be
a PC or an embedded system. The necessity of this IO-node arises when the model of
the control system is uncoupled from the model of the physical system. This results
in an open system. If an IO-process is added the system is closed (see Figure 3.3).

Consider the functionality of this process. For the control system, this IO-process
is a black box representing the actual physical system. The channels that run from
and to the control system are connected to this node. Over these channels signals
are sent to actuators and signals are received from sensors. Within the IO-node
the conneetion is made between these signals and the computer addresses that the
signals must be sent to.

The above would result in the following x code for the IO-process.

prae IO(a: ?int, b: !int)=
I[io1, io2 : @int

3.5. Possible Means for IO-Communications in x

Model
Open

Control System
Control System
with 10-process

Figure 3.3: IO-Process added to Control System

I *[a? io1 ---+skip
~ b! io2 ---+ skip
]

Jl

21

In the IO-process the channels to and from the model of the control system are
linked to specific computer addresses. The conneetion between the channels and the
computer addresses is made by introducing a special kind of variabie called the IO­
variable. An IO-variable is distinguished from a normal variabie by the addition of
the symbol @ to its type definition. To explain the functionality of the IO-variables,
the IO-variables are best viewed as pointers to a specific computer address. If an
action is performed on the IO-variable, it is actually being performed on the value
of the computer address the IO-variable points to. As is said before, the conneetion
of these IO-variables with their corresponding computer addresses is done by the
implementor when the executable is created.

The statements in the IO-process have the following meaning. The statement a? io1

means if a signal is received over channel a, then write the value of the signal received
to the address io1• The statement b! io2 tries tosend the most up-to-date value found
at address io2 to the control process. The IO-process will never exit its repetition
loop because the IO-process is always readytosend signals to the control process.

When the control system wants to send a command to an actuator using channel
a, the IO-process executes a? io1. The value at a computer address is adjusted

22 Chapter 3. Interfacing and x

according to the value received over channel a by the IO-process. An actuator then
uses this information and acts accordingly.

Consirlering the example given above, the process JO would behave as follows. In
the body of the IO-process, the program has the option of executing one of two
alternatives. If the control system requests the value of an input variabie over channel
b, process JO executes the statement b! io2. The value that is sent over channel bis
the latest update of the computer address that io2 is pointing to. The value of the
address is being generated by a sensor.

This concept works for both discrete and continuous channels between the control
system and the IO-process. To give an example that uses a continuous channel, con­
sider the example above, with this difference that the channel b is now a continuous
channel of the type [m/ s]. This results in the following code for the IO-process.

proc JO(a: ?int, b: -o [m/s])=
I[io1 : @int, io2 : @[m/ s]
I b -o io2
I * [a? io1 ------7 skip

]
]I

An IO-process has the following advantages. First, it demands minimal adjustments
of the x compiler. Only one new language item is introduced. This is the IO­
variable used in the IO-process. This variabie has a type definition preeerled by a@
to identify it as an IO-variable. The deelaratien io1 : @int is read as 'the variabie
io1 of type at integer'. The adjustments that have to be made to the x-kemel are
rather straightforward. These IO-variables can be of any type. The functionality of
the IO-variable linked to a channel is explained above. The IO-process also ensures
that all IO-connections are made at one single place in the model. This simplifies
the setup of the model. A second advantage is the fact that the processes used in
the simulation of the model are the same as the processes used to define the control
system.

A disadvantage is the fact that a processis used to conneet the control system to the
environment. In the x formalism the system definition is used to define the various
connections of the system, both between processes and between the system and its
environment. (In the case of the current x formalism, the environment of a specific
system consists of other systems.) As all connections inside a model are made by the
system definition it is logical that all the connections to the environment should also
be initialized in this part of the model. Another disadvantage is the extra work that
must be done. Of course, the system definition must he rewritten. This has to be

3.5. Possible Means for IO-Communications in x 23

done anyway, as the model of the physical system is deleted from the system. But
besides this, a new process, the 10-process, must be defined. This might seem easy
in a small example. Remember, however, that industrial systems with hundreds of
10-connections are not uncommon.

3.5.2 10-variables in x

This option does not use any additional processes. lnstead, the connections to the
environment are made by directly inserting 10-variables in the x-text.

When separated from the model of the physical system the model of the control
system is considered without the channels that connected it to the model of the
physical system (see Figure 3.4).

Model
Open

Control System
Control System

with JO-variables

Figure 3.4: Control System using 10-Variables

The conneetion to the computer addresses is made separately for each variabie that
needs to communicate with the environment. This can be done by using the concept
of 10-variables presented in the first option. 10-variables are defined by adding a
@ for the normal type definition of the variable. lnstead of transmitting the signal
over a channel, the value is assigned to an 10-variable. The 10-variables are pointing
directly to a computer address. Again, one new language item is introduced being
the 10-variable.

Consider a process C as presented in Figure 3.4. To illustrate clearly the differ­
ences between the simulation model and the processes that are used to generate the

24 Chapter 3. Interfacing and x

executable, the original x-text of process C precedes the adjusted process C.

In the simulation model a binary variabie y is used to store a value that is received
from the physical system over channel b. The output is sent over channel a. The
process C first receives a signal that is stored in variabie y. lf the value of y is 1,
the process C sends the output 1 over channel a. This cycle is then repeated. In the
simulation model process C is described as follows.

proc C(a: ! int, b: ? int)=
I[y: int
I *[b? y----+ [y = 1 ----+a! 1

~ y = 0 ----+ skip
]

]I

In the control system that is used as the basis forthereal-time control program, this
would result in IO-variables, io1 and io2, being input and output signals respectively.
If the concept of IO-variables is incorporated into the model this produces the text
presented below.

proc C=
I[io1, io2 : @int, y: int
I * [y := io1 ----+ [y = 1 ----+ io2 := 1

~ y = 0 ----+ skip
]

Jl

The IO-variable doesnotsuffer under the rules for synchronous communication in the
x formalism. Strictly speaking there is no communication because the IO-variables
are directly linked to the computer addresses. An assignment will never block the
system as an assignment will, per definition, succeed. Thus, timing requirements
depend not on the communication procedures but on the remainder of the program,
as well as on the performance of the hardware the program is executed on.

A disadvantage of this salution is that in the graphical representation of the system
the various IO-connections are not apparent. This is no problem when using small
systems. lf a large system is specified, however, it is hard to understand the control
system if it is not clear which of the processes communicate with the environment
and which do not. The processes in which communication with the environment

3.5. Possible Means for IO-Communications in x 25

occurs might be indicated in some way, for instanee with an asterix added to its
name. Even then it is not visible how and how much the process communicates with
its environment. Also, the connections with an environment are not made in the
system definition where they belong.

Another disadvantage is the fact that, in this option, one must change the processes
that were used to simulate the behavior of the control system. First, this might
result in tedious work when searching through the system trying to find the various
places were IO-communications must take place. Second, if one tests a system only
to change it when one is to implement it, one cannot be completely sure that the
conversion from the model to an implementation is done without errors.

3.5.3 10-channels in x

An alternative to implement the means to IO-communications is the use of IO­
channels. In this solution, the unconnected channels of the control system become
IO-channels. These IO-channels are coupled directly toa certain computer address.
Through these channels the IO-communications are established.

Model
Open Control

System

Figure 3.5: IO-Channels used for interfacing

Control System
With 10-Channels

See Figure 3.5. In this figure, a model of a machine control is presented. The
physical part of the model is described in process Ph. The processes C1 and C2

are two controllers. The system 82 is another system with which the process C2

communicates.

Consider the IO-communications. At any time IO-communications are able to com­
municate. An actuator is always able to receive commands. A sensor always produces

26 Chapter 3. Interfacing and x

data. In this respect this data is considered to be valid at any time. Thus, commu­
nication between the control system and the physical system is successful whenever
the control system initiates a send or receive action.

Consicier the functionality of the IO-channels. As in theory communication is always
possible, the control system is always able to communicate using the IO-channels.
This implies that the system will never loek in an IO-communication as these always
succeed. Also, the IO-communications can be of any type.

It must be noted that the continuous IO-channel should be a stripped form the
continuous channel that is used in the current version of the x formalism. After all,
there is no need for the various mechanisms to solve equations that are now part of
the code of an executable program after compilation of a model that uses continuous
IO-channels. At computer language level continuous data transfer of course does
not exist. Computer communications are discrete per definition as the computer
operates in a discrete domain. On the level of the x model some communications
can be viewed as continuous signals (sometimes with discrete changes). Some farms
of sensoryinput can beseen as a souree that produces data continuously.

A discrete version of the IO-channel must also be designed. As already has been
mentioned, this discrete IO-channel cannot depend upon the hand-shake principle
due to the fact that some equipment does not generate a hand-shake. Also, this
discrete IO-channel must be able to pull its own input from a computer address.

The compiler must be able to recognize IO-channels and compile them accordingly.
Using the IO-channels, the system must be able tosend even when there is no appar­
ent receiver togeneratea hand-shake. It must also be able to pull data from a sensor
when no apparent send signal is initiated by the sensor at the other side. In other
words, the IO-channels would not operate conform the synchronous communication
that is used in the x formalism.

The adjustments that are demanded of the compiler are severe. Not only a new sort
of channel is defined, the semantic expansion of the kemel for the various actions
that can be performed over this channel are not to be underestimated. Send and re­
ceive actions over the IO-channels are made without hand-shaking as the hardware
to which these signals are sent sametimes does not generate these sorts of confir­
mation. The compiler must recognize the IO-channels and their different way of
communication and act accordingly.

This salution is more conform to the functionality of the x formalism as it is used
currently. The connections tothereal-time system are made by the IO-channels. In
the x formalism channel connections are defined in the system definition and not in
a process. The IO-channels are defined in the parameter definition of the system.
In this option two sorts of channels are declared in the parameter deelaratien of the

3.5. Possible Means for 10-Communications in x 27

system. The fi.rst already exists in the current x formalism. These channels conneet
one system with another system. The second are the newly introduced IO-channels.
The IO-channels are distinguishable from the conventional channels by a@ symbol
preceding the type declaration of the channel.

Consider Figure 3.5. In this Figure a model is described with three processes, Ph,
C1 and C2 , and a system, S2 . The processes C1 and C2 are models of the control
system. The process Ph is a model of the physical part of the system. The system
S2 describes another part of the model. The contents of each is not important. If a
simulation is run using this model a system definition must be made, which is called
S1 . The system S1 is connected to system S2 in the system definition of system S.
This system definition defines in which way the three processes and the system S2

interact. The system declarations are given below.

syst S1(c:! int)=
I[a : real, b : [m], d : int
I C1(a, b, d)
11 C2(c, d)
11 Ph(a, b)

ll

syst S() =
I[c: int
I S1(c)
11 S2(c)
ll

If the model of the physical system is deleted from the system, as shown in Figure
3.5, then a new system definition, called C, must be made. The process Ph is no
langer part of this system. The process is replaced with the real physical system.
The resulting system C contains the two processes C1 and C2• These processes are
exactly the same as the ones that were used in the simulation run of the model.
The system Cis connected to the environment with channels a and b. The system
C is still connected to another system, S2• Using the concept of IO-channels, the
system declaration of system C can be generated very easily. System C can then be
connected to system S2 in the usual way.

This results in system declarations as is shown below.

28 Chapter 3. Interfacing and x

syst C(a: ! @real, b: -o @[m], c: ! int)=
I[d: int
I C1(a, b, d)
11 C2(c, d)
ll

syst S(a: ! @real, b: -o @[m]) =
I[c: int
I C(a, b, c)
I S2(c)
ll

In this example, the channels a and bare IO-channels whereas channel cis a discrete
output channel to an other system or process. Notice that a is a discrete output
channel, whereas b is a continuous channel. In the graphical representation of the
systems IO-channels are defined by adding an asterix to the channel name. (Channel
a is a conventional channel, channel a* is an IO-channel.)

The extra work that has to be done to achieve a model that can be compiled into a
real-time control system is minimaL No additional process has to be defined. The IO­
process in the previous section seems to be easily made but remember that real-time
systems with several hundred actuators and sensors are not uncommon. To make a
process for these systems requires much more work. The open channels of the model
of the control system are made into IO-channels. This is not done in the parameter
definition of the processes themselves. Whether or not a channel is an IO-channel
is only specified by the system definition. A new system definition is made. In this
new system definition, the IO-channels are parameters of the system. Therefore the
IO-channels are placed in the parameter declaration of the system definition and
are not defined in the system itself. Another advantage of this approach is that the
processes that are used in both the simulation model as well as the control system
remain unchanged. Also, the IO-communications can be of any type.

To clarify these three possibilities presented here an example is given in the next
chapter.

Chapter 4

Case Study: A Piston Control

In this chapter, a simple x model is described. This model is used to illustrate three
different methods presented in the previous chapter to incorporate the means for
10-communication in the x formalism. First, the presented system uses the current
x-formalism and the \7 operator on discrete channels as suggested in Chapter 3.4.
The model is therefore not considered correct according to the current x formalism.

Second, the model of the control system is adjusted according to one of the three
methods explained in Chapter 3.5 to produce a possible real-time implementation
of the control system. The presented model is used to illustrate the ways in which
these methods work. The model is not used in tests.

4.1 A X model

The system that is used in this example is an ordinary piston (see Figure 4.1).

This piston is controlled by two air valves, combined in a, one at each side of the
piston. The position of the piston can be monitored by two sensors, combined in s,
one at each end of the piston.

The x model consists of three processes (see Figure 4.2).

• Process Op simulates the behavior of an imaginary operator. This operator
waits for the process C to finish the initialization of the physical system. When
the system is initiated correctly the operator receives a confirmation from the
control system. The operator Iets the piston extend and retract five times after
which heshuts down the system.

29

30 Chapter 4. Case Study: A Piston Control

sensor1 ----. sensor2 _

:::1------ro--.

air-valve 1 air-valve 2

x
0 I

Figure 4.1: The Air-piston

c

Figure 4.2: System Description

• Process C is the controller. The controller begins with an initialization of the
physical system. The initia! state the control system wants the physical system
to be in is when the piston is completely retracted. When this has happened
the control system sends a confirmation to the operator that the system is
operational. The control system then waits for commands from the operator.

• System Ph is the representation of the physical system. The behavior of this
process depends on the commands it receives from the control system. The
physical system responds with sensory output.

4.1. A x model 31

4.1.1 Types

In this model a number of additional types is defined. These types are the following.

• A type is defined for the various commands the operator can give the control
system. The instances of this type, called COM, are 1 (extend), -1 (retract), 0
(off) and 10 (idle).

• A type is defined to descri he the status of the system. The values of this type,
STATUS, are true (ok) and false (not-ok).

• A type ACT is defined to hold the two actuator commands. These commands
are either 0, 1 or 10, representing OFF, ON or SHUT-DOWN respectively. These
commands are combined in a tuple to be able to send them simultaneously.
This prevents the system from entering an inconsistent state.

With these additions the type definition becomes the following.

type COM = int
STATUS = bool
ACT = < int2 >

4.1.2 System Definition

In order to function together, the various processes of the model must be connected.
These connections are made in a system definition. In this system definition, the
output channel of one processis coupled totheinput channel of an other process. The
type of each channel is also defined. This results in the following system definition.

syst Piston() =
I[c: COM, r: STATUS, a: ACT, s1, s 2 : bool
I Op(c, r)
11 C(a, Sr, s2, c, r)
11 Ph(a, s1, s2, 10, 2)

ll

The two values in the definition of the process Ph are the values of the variables l
and v.

32 Chapter 4. Case Study: A Piston Control

4.1.3 Process Op

The process Op represents the operator of the system. Before the operator starts
sending commands to the control system the operator waits for confirmation over
channel r that the initialization of the physical system has succeeded. This confir­
mation is received by variabie s.

As soon as confirmation has been received the operator starts sending commands
over channel c to the control system. The commands can be to retract the piston,
using -1, or to extend the piston, using 1. Aftereach command the operator waits
until the command is successfully executed. The operator extends and retracts the
piston five times after which the operator shuts down the system with the command
c! 0.

proc Op(c: ! COM, r:? STATUS)=

I[x : nat, s : bool
1 x :=o
;r?s
; *[x< 5 ---+ c! 1; r? s

;c!-1;r?s
; x:= x+ 1

; c! 0

ll

4.1.4 Process C

The control system is described in process C. This process farms the conneetion
between the operator and the physical system. The control system C receives com­
mands from the operator over channel c and sends confirmation to the operator over
channel r. The control system is connected to the physical system using the actuator
channel, a, and two sensor channels, s1 and s2• Commands from the control system to
the physical system are sent over the actuator channels. Response from the physical
system is received from the sensor channels. The actuators are modelled using the
tuple as described earlier. The sensor channels are discrete. In the x text, one will
notice that the sensor channels are only used to receive a confirmation once. The
experienced x programroer will argue that this is easier to model using a synchro­
nization channel. The reason for not choosing a synchronization is that in real-life
applications there are virtually no sensors that generate a synchronization signal as
specified in the x environment.

4.1. A x model 33

When started the control process first initializes the physical system. During this
initialization the control system makes sure that the piston is completely retracted
before it sends confirmation to the operator that the system is operational. The
control system now enters a loop that executes the commands received from the
operator.

At a command from the operator, the control system Iets the piston extend with
a! < 0, 1 > . This command opens the correct air-valves. The control system waits
for the sensorsignalover 82 to signal that the piston is extended. A \7 operator is used
for this purpose. In the simulation model it is not necessary to use this command.
The process Ph only sends a signal when this signal becomes true. However, if the
control processis converted toa real-time control program it is likely that the process
also receives sensory input that is of no use to the process, making the \7 operator
necessary (see Section 3.4). The control system then signals the operator that it is
ready to receive the next command. The retraction of the piston works in a similar
manner.

If the operator signals the system to shut-down at the end of the cycle the variabie
on becomes false. The program leaves the control loop and terminates.

proc C(a: !ACT, 81,82 : ?bool, c: ?coM, r: !STATUS)=
I[on, 8en1, 8en2: bool, cmd: COM
; cmd := 10; on := true
I a! < 0, 1 > ; \7(81? 8en1, 8en1 = true)
; a! < 0, 0 > ; r ! true
; * [on; c? cmd ~ [(cmd = 1) ~ a! < 1, 0 >

; a!< 10,10 >
]I

4.1.5 Process Ph

; \7(82 ? 8en2, 8en2 = true); r! true
~ (cmd = -1) ~ a! < 0, 1 >

; \7(81? 8en1, 8en1 = true); r! true
~ (cmd = 0) ~a! < 0, 0 > ; on:= false
~ (cmd = 10 ()~skip
]

The process Ph roodels the behavior of the physical system, in this case an air­
piston. The continuous part of this process contains an equation for the change in
position of the air-piston. This equation defines the change in the position of the

34 Chapter 4. CaseStudy: A Piston Control

air-piston to be equal to the velocity of the air-piston multiplied by a constant st.
This constant st is used to fix direction of the velocity. The discrete part describes
the various combinations of commands that might occur, the physical restrictions
that the air-piston enforces upon the system and the possibilities of the physical
system to communicate with the control system.

The following states are possible. When the air-valves are both closed, com.O = 0 1\

com.1 = 0, the air-piston will not move. This results in st := 0 which evaluates in
the continuous equation to x'= 0 * v = 0. If both the air-valves are under pressure,
com.O = 1 1\ com.1 = 1, the air-piston will slowly extend. This is caused by the fact
that the surface on one side on which the pressure works is reduced by the surface
of the piston-rad, causing the air-piston to extend slowly. The variabie st := 0.5.
When com.O = 1 and com.1 = 0 the variabie st:= 1 and the piston extends. When
com.1 = 1 and com.O = 0 the variabie st:= -1 and the piston retracts.

When the piston is moving the process changes the value of the sensors according
to the position of the piston rod. If the air-piston reaches the physical constraints
of the system, either x ::; 0 or x 2:::: l (where l is the length of the piston), the
movement of the piston is stopped by st := 0 and the corresponding sensor is ac­
tivated, sen1 := true respectively sen2 := true. When the piston is at a position
between the end positions both sensors are false. As the operator is not able to send
other signals during execution of his commands, no means are incorporated to allow
communication possible during the movement of the piston rod.

proc Ph(a:? ACT, s1,s2: !bool, l,v: real) =
I[on : bool, st : real, com : ACT, x : [m]
; com := < 0, 0 > ; st := 0; x : := .5 x l; on := true
I x'= st x v
I*[on ---+ a?com

; [com.O = 1 1\ com.1 = 1 ---+st:= 0.5
~ com.O = 01\ com.1 = 0 ---+st:= 0
~ com.O = 1 1\ com.1 = 0 ---+st:= 1
~ com.O = 01\ com.1 = 1 ---+st:= -1
~ com.O = 10 1\ com.1 = 10 ---+ st := 0; on := false
]

4.2. 10-Communication in the x Model

ll

; [st = 1 ---+ \7 x > 0; s1 ! false
; \?x~ l; st:= 0; s2 !true

~ st= 0.5 ---+\?x> 0; s1 ! false
; \?x~ l; st:= 0; s2 !true

~ st = -1 ---+ \7 x < l; s2 ! false
; \?x~ 0; st:= 0; s1 !true

~ st= 0 ---+skip

l

35

Note that in the initialization of the variables the position of the air-piston is said to
be somewhere between the end positions. This can be any random position. Chosen
here is x := .5 x l, a position in the middle of the air-piston stroke. The process
Ph presented above does not generate an executable when compiled. The process
as described is a desired form. It differs significantly form the current x syntax and
semantics due to the usage of the V-operator. Also, the kemel used in this project
is a discrete kemel. The process Ph in the presented model is hybrid.

4.2 10-Communication in the x Model

The model of the air-piston presented in the previous chapter is adapted in three
different ways for IO-communication in this chapter. Each of these ways is de­
scribed in Section 3.5 and represents a different approach to the integration of IO­
communication in the x formalism. The specific mechanisms behind each of the
options have already been explained in Section 3.5. In these examples the introduc­
tions with the options are therefore brief. All the options discussed are using only the
model of the control system from the model presented above. The physical system
and the operator process have been deleted. The signals from and to the operator
process are being seen as IO as far as the controller is concemed. The open control
system remains.

4.2.1 10-process

This option adds an additional process to the model of the control system. This
additional processis called JO. In this process, the channels that run to and come
from the model of the control system are linked to addresses. The additional process
doses the system as shown in Figure 4.3.

36 Chapter 4. Case Study: A Piston Control

c

Figure 4.3: The conversion of a modeltoa control system with an IO-process

The process C is not changed and the text of this process is only repeated here for
convenience.

proc C(a: !ACT, s1,s2 : ?bool, c: ?coM, r: !sTATus)=
I[on, sen1, sen2 : bool, cmd: COM
; cmd := 10; on := true
I a! < 0, 1 > ; \7(sl? sen1, sen1 = true)
; a! < 0, 0 > ; r! true
; * [on ; c ? cmd ----7 [(cmd = 1) ----7 a!< 1,0 >

; \7(s2? sen2, sen2 = true); r! true
~ (cmd = -1) ----7 a ! < 0, 1 >

; a!< 10,10 >
ll

~ (cmd = 0)
]

The process I 0 contains the following.

; \7(s1 ? sen1, sen1 = true); r! true
----7 a! < 0, 0 > ; on := false

4.2. IO-Communication in the x Model

proc IO(a:? ACT, s1, s2 :! bool, c:! com, r:? status

)=
I[io1 :@ACT, io2, io3: @bool, io4: @com, io5 : @status
I *[a? io1 ---+skip

~ s1 ! io2 ---+ skip
~ s2 ! io3 ---+ skip
~ c ! io4 ---+ skip
~ r? io5 ---+ skip

l

ll

37

Inside process I 0 all the channels coming from, and going to the control system
are linked to specific computer addresses. Only one channel can be linked to an
address and only one address can be linked toa channel. Notice that these computer
addresses can be linked to channels of any type. The specific implementation of the
computer address will always be an integer because computer addresses can always
be denoted as integers. The type declaration only serves as a means to define the
type of variabie that is transferred to or from this specific address. The system
definition is given below.

syst Piston() =
I[a: ACT, s1, s2 : bool, c: com, r: status
I C(a,sl,s2,c,r)
11 IO(a,s1 ,s2,c,r)
ll

This option seems very easy but might become a lot of work when the system that
is described contains a large number of IO-communications. An advantage of this
salution is that the same processes that are used in the simulation model can be used
unchanged to describe the reai-time control system.

4.2.2 10-variables

This option creates a new sort variabie which can be used in assignments. The model
of the control system is decoupled from the rest of the model. The in- and outgoing
channels of this process are also deleted (see Figure 4.4).

This causes major changes in the model text. Channels are deleted and replaced
by IO-connections. The send and receive actions over these channels become IO­
assignments. The text of the model of the control system changes to the following.

38 Chapter 4. CaseStudy: A Piston Control

c

Figure 4.4: The conversion of a modeltoa control system using IO-variables

proc C =
J(on: bool, a: @ACT, s1 , s2 : @int, c: @COM, r: @STATUS, vc: COM
; on:= true
J a:= < 0, 1 > ; V'(s1 = true)
; a := < 0, 0 > ; r := true
; *[on ----+ vc := c; ((vc = 1) ----+a:=< 1, 0 >

; a := < 10, 10 >
ll

; V'(s2 = true); r := true
~ (vc= -1)----+ a:=< 0,1 >

; V'(s1 = true); r := true
~ (vc = 0) ----+ a := < 0, 0 > ; on := false

l

All the channels disappear. They are replaced by IO-variables. Tothese IO-variables
other internal variables can be linked, with statements like s1 := sen1. Or one can
write tothese JO-variables directly, like a:=< 1, 0 > . With the disappearance of all
the channels, all the instauces of send and receive actions also disappear. They are
replaced by assignments, insteadof send actions, or they are replaced by a 'read', in
case of receive actions.

The major disadvantage of this option is the enormous amount of work and the fact
that it is prone to errors. After the processes are simulated and tested the processes
that are tested are changed before they are compiled into a control system. This
means that the complete system should once again be debugged and tested to make
sure the processes are adjusted correctly. This is an unnecessary and tedious job.

4.2. 10-Communication in the x Model 39

4.2.3 10-channels

This example uses 10-channels instead of an additional 10-process. These 10-
channels are connected to the model of the control system on one side. At the
other side they are linked directly to computer addresses. This results in a control
system as shown in Figure 4.5.

c

Figure 4.5: The conversion of a modeltoa control system with 10-channels

The process C is not changed. lnstead, the system definition is used to link the
channels to addresses. The channels that are to be linked to an address are recog­
nized by the addition of a @ to the type declaration of a channel in the parameter
declaration of the system. This is clone to be able to discern them from channels
that are connected toother model components like higher-level system definitions or
other processes. The model of the control system is now described by the following
text.

40 Chapter 4. Case Study: A Piston Control

proc C(a:! ACT, 81,82 : ?bool, c:? COM, r:! STATUS)=
I[on, 8en1, 8en2 : bool, cmd : COM
; cmd := 10; on:= true
I a! < 0, 1 > ; V(81? 8en1, 8en1 = true)
; a ! < 0, 0 > ; r ! true
; *[on; c? cmd---+ [(cmd = 1) ---+a!< 1, 0 >

; a!< 10,10 >
ll

; V (82 ? 8en2, 8en2 = true) ; r ! true
~ (cmd = -1) ---+ a ! < 0, 1 >

~ (cmd = 0)
l

; V(81? 8enb 8en1 = true); r! true
---+ a! < 0, 0 > ; on := false

syst Pi8ton(a: @!ACT, 81,82 : @?bool, c: @?COM, r: @!STATUS)=
I[C(a, 81, 82, c, r)
ll

Every IO-channel is assigned an IO-address by the implementor. Each channel can
only be connected to one address and one particular address can only be connected
to a single channel. Some channels transport tuple typed variables. In this case it
might be necessary that each position of the tuple is connected toa different address.

The major advantage of this approach is that nothing of the model that does not
change functionally, does not change in text. The processes of the model of the
control system are still the same. A new system definition is made with IO-channels.
The processes that were used to build the simulation model can be used unchanged
in the control system.

This option is easy to implement and efficient. To implement this option only the
concept of IO-channels must be defined in the x formalism.

4.3 A Choice for an 10-Mechanism in x

In the previous chapters, three different mechanisms to incorporate IO­
communications in x have been presented. Each of these mechanisms can be used
to implement IO-communications in X· The time available for this project is not
sufficient to examine all these three mechanisms in detail. A choice must be made
for one specific possibility.

4.3. A Choice for an IO-Mechanism in x 41

The second option, the one using the IO-variables, is discarded. The reason for this
is the amount of work the option takes. Also, the connections to the environment are
scattered throughout the various processes. The connections are not collected in one
place in the system. A third disadvantage is the fact that the option of IO-variables
changes the syntax of the processes that are used in the simulation of the model. No
certainty can be given on the correct conversion of these changed processes.

The other two options remain. On the one handthereis the IO-process, on the other
hand there is the IO-channels. Both options have three similar advantages.

• The processes used in the simulation of the model remain unchanged when
the model is converted to a real-time control system. No unnecessary and
error-prone replacing of text has to be done.

• In both options, the signal used for IO-communication can be of any type.

• In both options, the places where IO-communication must occur are clearly
visible. In the first option, all channels that are connected to the IO-process
are used to transfer IO-communications. In the second option, all channels
that are connected only to the control system on one side and not connected
to another system or process on the other side, are IO-connections.

The first option using the IO-process has an additional advantage that the adjust­
ments to the kernel to implement this option in the x formalism seem rather straight­
forward. With the third option, that of the IO-channels, the kernel needs larger
adjustments than the first one.

However, the first option also has two major drawbacks. First, it is notconform the
philosophy of the current x language. In the x formalism, the conneetion to parts
outside the system are made in the system definition. It is logical to define the IO­
connections in this system definition. In the first option, the IO-addresses are defined
in a process. This means that a modeler or implementor must first access the IO­
process to examine the various IO-connections. In the third option, the connections
to the real world are defined in the system definition together with all the other
connections in the system. The values of the various IO-addresses are parameters of
the system. Programs with the same functionality can have different address values
when run on two different machines. As the IO-connections are parameters as far
as the system is concerned, they should be found in the parameter deelaratien of a
system, not in a process within that system.

A second disadvantage of the first option concerns the conneetion that is made be­
tween the IO-process and the rest of the system. The channels that run between

42 Chapter 4. Case Study: A Piston Control

the model of the control system and the 10-process are conventional x channels.
This causes no problems when continuons data transfer is considered. When dis­
crete channels are concerned however, some major adjustments must be made on
the 10-process. First, the connections that are made between the channels and the
10-addresses in the 10-process must be made to generate a hand-shake to satisfy
the synchronous character of the communication protocol in x. This must be done
for both input and output signals. Second, in case of a discrete input (from the
control systems point of view), an external process must be defined that at regular
intervals provides the control system with data. As the discrete channel between the
control system and the 10-process is not able to pull its own data, the data must be
presented to the control system. A mechanism must be designed to ensure correct
data transfer.

When the option using an 10-process and the option using 10-channels are com­
pared, the disadvantages of the first option outweigh the advantages. The third
option, using 10-channels, seems to be the most promising. Hence, the third option
is implemented in the course of the project. With this implementation, tests are
conducted. lmplementation of the first option is left for future research.

Chapter 5

Interfacing x with Hardware

In this project, the x formalism is used to design specifications of control systems.
If these specifications are to be used to generate real-time control systems, it is
necessary to interface the x code with the IO-routines and drivers used to control
the real-time system. To do so, two conditions must be met. First, it has to be
possible to access driver routines or it has to be possible to make system calls, using
the kemel of the real-time system. Second, a conneetion must be made between
the x code and the driver routines that control the real-time system. Currently, a
x-model is compiled into c++. It is therefore required, that system calls and driver
routines of the real-time system arealso written in C or c++.

5.1 The x Formalismin Hardware Control

In the previous chapters, the means to incorporate IO-communications into the x­
formalism have been presented. Through the IO-channels, the x specificatien is able
to access the driver routines or the system calls of the real-time system.

It is possible to link function calls in x to driver routines. This is done using an
interface file as described by [Nau96]. If areal-time system is controlled in this way,
some overhead will be present because the scheduling of the processes that control
the application is done using the x engine. It might also be possible to change the
x engine in such a way that it would generate code that is linkable withareal-time
kemel. This is a better method because overhead in the machine code is reduced. It
does mean that the code generation part of the x compiler will have to be changed
for each specific type of real-time kemel. Also, for each new hardware, the real-time
kemel eperating on that hardware, will have to be accessed.

43

44 Chapter 5. Interfacing x with Hardware

The position of the x application in respect to the hardware is illustrated in Figure
5.1.

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

/
z

Application

,-------- ---------------------,

Interface RTK

IO-Drivers

Control Layer
'--------------------- ______"

Hardware

\

Figure 5.1: An interface between a x application and hardware [Nau96]

Consicier Figure 5.1. The x application communicates with the interface. The inter­
face communicates with the hardware, using areal-time kernel (RTK), or directly,
accessing the 10-driver routines.

Because it is possible to access the driver routines directly using the interface file, it
is better to bypass the real-time kernel, if possible. This will reduce overhead, and
leaves only the overhead of the x kernel.

The layer between the x application and the hardware is called the Control Layer.
In this layer, the x application is coupled to the hardware.

5.2. The Experiment, 10-communication in x 45

5.2 The Experiment, 10-communication in x

In this section, it is explained how the means for IO-communications are implemented
into X· The major problem in this respect is the fact that the x-kernel is written
using c++ in a Linux environment. The driver software that is used by the InterBus­
S system is usabie only on a DOS-based platform. Unfortunately, these two are not
completely compatible. Some adjustments have therefore been made to the souree
code of the x-kernel. These adjustments are presented first.

Second, the various actions executed to generate a control program are explained
in detail. This explanation goes beyond what is visible for a normal user of the
reai-time x-kernel.

5.2.1 Combining the x-Kernel with DOS Driver Software

The interface system that is used with the experiments during this research is the
InterBus-S system. The driver software for the InterBus-Sinterface card is supported
under either C for DOS, Pascal for DOS, WIN 3.1x, WIN95 or WindowsNT. As the
x-kernel is written in GNU, this means that either the driver software must be
rewritten in GNU, or the x-kernel must be adjusted to fit the driver software.

For this research, the choice is made to adjust the x-kernel in such a way that it
is possible to compile x-code on a DOS platform. The application that is used to
create all the necessary code is Visual c++ 4.2 for WIN95.

The adjustments to the x-kernel that have been made are the following:

1. The class String has been altered to string.

2. In the original x-kernel, the class CChannelint had a nested structure. This
structure has been rewritten to remave the nested statements.

The rest of the kernel has been left unaltered. Most of the work in this stage of
the research has been done by experts that have access to the souree code of the
x-kernel.

5.2.2 The Reai-Time x-Kernel

The work done during this research yields a reai-time x-kernel. As is defined in
Section 2.1.1, a control program functions reai-time if the sequence in which its

46 Chapter 5. Interfacing x with Hardware

actions are made is determined by its environment. The new x-kernel corresponds
with this property. Unfortunately, it is not possible to define timing requirements in
the new real-time x-kernel. In this respect, the new kernel is very limited. A coupling
between the simulation time and real-time has not yet been achieved. The new
kernel can be used to create control programs. This section describes the underlying
functionality of the real-time x-kernel.

The Batchfile of the Reai-Time x-Kernel

When a control program is generated, a batchfile, chirt. bat, is called by the user.
This batchfile is used as a means to explain the working of the real-time x kernel.
First, the batchfile is presented. Then, the commands executed in this batchfile are
explained one at the time to clarify the real-time x kernel. To illustrate the contents
of this batchfile a flowchart is given in Figure 5.2.

The text of the batchfile chirt. bat is given below.

@echo off

set CHIHOME=c:/rtchi
set PATH=s:\appl\chi\chi03;%PATH%
c:\rtchi\util\sed -f %chihome%/util/sedf %1.chi > tmp.chi
chi.exe -o -l%CHIHOME%/stdlb.l -l%chihome%/ibschi.l tmp.chi

c:\rtchi\util\sed -f %chihome%/util/sedf2 tmp.cc >tmp.cc1

set INCLUDE=c:\msdev\include;c:\rtchi\kernel;c:\ibsdriver\inc;c:\rtchi\ibschi
set INCLUDE=%INCLUDE%;c:\rtchi\ibsutil
set LIB=c:\rtchi\kernel;c:\rtchi\ibschi;;c:\rtchi\ibsutil;c:\msdev\lib
copy tmp.cc1 %1.cpp

cl /c /GX /W3 /D 11 WIN32 11 /D 11 _CONSOLE 11 /YX /nologo /I%CHIHOME%/kernel %1.cpp

link /NODEFAULTLIB:libc %1.obj kernel.lib ibschi.lib ibsutil.lib

First, the variabie chihome is adjusted so that it is pointing to the real-time x-kernel.
Then, the path indication is altered to allow the program to use the correct version
of the kernel.

After this, a line is added in the batchfile that calls a program, called sed. exe, that
substitutes functions fora part of the x code in the control program text. How this

5.2. The Experiment, IO-communication in x

Replacing 10-
channe/s with

Functions

CHI Compiler
ereales c++ file

Visual c++
Compiler ereales

objectcode

Linking to
Libraries

Figure 5.2: From CHI Application to Executable

47

is done, and what is substituted for what is explained in the next subsection. The
adjusted program text is saved in the file tmp. chi. This file is then compiled using
the x-compiler. The file ibschi.l is used by the compiler to define the relation
between the functions used in the x-program tmp. chi with the functions defined in
the various libraries for the hardware that is to be used, as defined by [Nau96].

The result of the compilation is a temporary file, called tmp. cc. To explain the
addition of the next call to sed. exe, an explanation of the handling of a selective
waiting statement is needed. A selective waiting statement contains guards with

48 Chapter 5. Interfacing x with Hardware

either a communication or a delta statement. When a selective waiting is used in the
x-code of the model, the x-compiler will keep track of how many communications
and how many delta statements are used in the selective waiting. These numbers
are then stared in arrays. For example, the following selective waiting contains 2
communication alternatives and 1 delta alternative.

[x=l ;b?a---t
~x=O ;c!2 ---t

~x=-1;~5 ---t

l
The selective waiting statement below contains only 2 communications and no delta
alternative.

[y = 0; al ! 1 ---t

~ y = 5; sl? x ---t

l
As the ~-statement cannot be used yet inthereai-time x-kemel, a selective waiting
will always contain zero ~-statements. The corresponding arrays in the tmp. cc
are therefore at length zero. This poses no problem for the gcc-compiler but the
Visual c++ 4.2 compiler will not compile arrays of length zero. To solve this, the
corresponding arrays of length zero are replaced by empty arrays of length one. As
these arrays are only declared and not used by any other part of the program, this
is not a problem. This salution is certainly not an elegant one, as it does not cure
the disease but merely hides the symptoms. It is only implemented for the sake of
the experiment.

The next lines define the location of include files and libraries necessary for compi­
lation. Then, the temporary file that is generated by the x-compiler is renamed to
allowit to be used by the compiler of Visual c++ 4.2. The file is then compiled by
Visual c++ 4.2.

In the last line of the batchfile the generated object file is linked with the kemel
libraries and the libraries ibschi .lib and ibsutil.lib that is created in this re­
search. In the first the driver software of the InterBus-S system can be found. The
latter holds utility procedures for the program.

Substituting Functions for x-Code using Sed. exe and Sedf

Because the resources and time available for this research are limited, it has not
been possible to generate a full-automatic conversion of the new components in x
for IO-communications to function calls during the compilation of a description of a

5.2. The Experiment, IO-communication in x 49

control system in X· This results in the necessity to insert these function calls into
the x-text befare compilation.

To do so, a small utility program, called sed. exe, is executed. This program is used
in conjunction with another file, called sedf, in which is defined what should be
substituted for what. The file sedf itself is given below. This file holds the various
statements in x and its replacements. After this a small example program is given
together with the resulting text when it has been processed.

The program text of sedf.

s/\(IO[A-Za-z0-9]*\)!\([01]\)/\[PutBit("\1",\2) ->skip \]/g
s/\(IO[A-Za-z0-9]*\)?\([A-Za-z] [A-Za-z0-9]*\)/\2:=GetBit("\1")/g
s/IO[A-Za-z0-9]*:\@!int[]*,/ /g
s/IO[A-Za-z0-9]*:\@!int[]*)/)/g
s/IO[A-Za-z0-9]*:\@?int[]*,/ /g
s/IO[A-Za-z0-9]*:\@?int[]*)/)/g
s/IO[A-Za-z0-9]*: !int[]*,/ /g
s/IO[A-Za-z0-9]*: !int[]*)/)/g
s/IO[A-Za-z0-9]*:?int[]*,/ /g
s/IO[A-Za-z0-9]*:?int[]*)/)/g
s/IO[A-Za-z0-9]*[]*,/ /g
s/IO[A-Za-z0-9]*[]*)/)/g
/prae/ s/(*)//
/syst/ s/(*)//
s/(*)//
/syst/,/\] 1/ s/, []*)/)/g
/syst/ ,/\] I I s/ ([] * ,/ C/g
/syst/ ,/\] I I si, [] * ,/ ,/g
/prae/ s/,[]*)/)/g
/prae/ s/([]*,/(/g
/prae/ s/,[]*,/,/g

Example The execution of the sed -f sedf command is illustrated using a simple
example program. The example program consists of one process that controls a
piston. The piston is extended and retracted five times after which the program
terminates (this is not the same example as used in Chapter 4). The topology of the
various actuators and sensors on the piston is given in Figure 5.3.

In this example, the channels IOa1 and IOa2 sent to actuators 1 and 2 respectively.
The channels IOs1 and IOs2 receive from sensors 1 and 2. The example is created
using the concept of 10-channels. The resulting x text is given below.

50 Chapter 5. Interfacing x with Hardware

sensor1 sensor 2 ---,

' , .. 1------1

, .. 1------i

'

air-valve 1 air-valve 2

x
0 I

Figure 5.3: The Air Piston

proc pTest(IOa1,IDa2:!int, IOs1,IDs2:?int) =
I [on: bool, x,s1,s2: int
I on:=true; x:=5; s1:=0; s2:=0
; *[on -> [x>O -> [IOa1!1; IOs2?s2

*[s2=0 -> I0s2?s2]
IOa1 !0

]

J I

]

I0a2!1; I0s1?s1
*[s1=0 -> I0s1?s1]
I0a2!0
x:=x-1

lx=O -> on:=false
]

syst Test(IOa1,IOa2:~!int, IOs1,IDs2:~?int)=

I [
I I pTest(IOa1, IOa2, !Os!, I0s2)
J I

If the sed -f sedf cammand is used on this file, all the instauces of the IO-channels
are replaced by function calls. This results in a program that can be connected to
function calls of the IO-drivers as explained by [Nau96]. The program is converted
into the text below.

5.2. The Experiment, IO-communication in x

proc pTest =
I [on: bool, x,s1,s2: int
I on:=true; x:=5; s1:=0; s2:=0
; *[on-> [x>O -> [[PutBit("IOa1",1) ->skip]; s2:=GetBit("IOs2")

*[s2=0 -> s2:=GetBit(''IOs2'')]
[PutBit(''IOa1'',0) ->skip]

]

J I

syst Test=
I [
11 pTest
J I

]

[PutBit("IOa2",1) ->skip]; s1:=GetBit("IOs1")
*[s1=0 -> s1:=GetBit(''IOs1'')]
[PutBit(''IOa2'',0) ->skip]
x:=x-1

lx=O -> on:=false
]

51

Notice the peculiar replacements of the send actions over the IO-channels. The
reason why these are replaced by a selection statement is that the x-formalism does
not allow the use of separate functions outside a expression unless the function returns
a boolean. If a function returns a boolean, the function can be used as a guard. In
this case, the salution was to create a PutBit function with a boolean as return
value. This return value now functions as a guard in the selection statement. The
function can now be used separately without the need to assign the return value to
a variable.

The program above can be compiled by the x-compiler. It is compiled together
with an interface file that connects the function eaUs above to the IQ-drivers of a
specific interface system, the InterBus-S System in this research. A description of
the IO-drivers can be found in Appendix B, together with the souree code of these
drivers.

Substituting Arrays[l] for Arrays[O] using Sed.exe and Sedf2

As is mentioned, arrays of length zero cannot be compiled by the Visual c++ 4.2
compiler. To create a compilable file for the Visual c++ 4.2 compiler, the file created

52 Chapter 5. Interfacing x with Hardware

by the x-compiler is checked for empty arrays due to the usage of selective waiting
statements. These are then replaced by arrays of length one. The program that is
used is Sed. exe in combination with Sedf2. The file Sedf2 is printed below.

s/bDltGuard\[0\]/bDltGuard\[1\]/g
s/iDltCounter\[0\]/iDltCounter\[1\]/g
s/cDelta\[0\]/cDelta\[1\]/g

The arrays in question, being bDl tGuard [0], iDl tCounter [0] and eDel ta [0] are
replaced by bDl tGuard [1], iDl tCounter [1] and eDel ta [1] respectively.

Linking Chi Functions with other Library Functions

It has been explained in the previous chapter, how the 10-channels in the specification
of the model are replaced by functions. Now, these functions must be linked to
functions described in the libraries with the driver routines. To do so, an interface
file is used as described by [Nau96].

In this file, the functions in the x-specification are translated to library functions.
The interface file that is used is given below.

Program name: IBSCHI.l
Author Jasper van Rosmalen
Datum 7-10-1997

Description This is the interface file for the IBS-system

func PutBit(string, int)
func GetBit(string)

-> bool = BitWrite
-> int = BitRaad

The interface file states the name of the function in the x-specification together
with its parameters. This function is then linked to another function defined in the
libraries with the driver routines. From these functions, the return value is given.
Important is that both functions have the same number and type of parameters. As
is shown, these functions need not have the same name.

5.2. The Experiment, IO-communication in x 53

5.2.3 lnitialization and Shut-Down Procedure of the Inter­
face System

Befare communication can take place, the interface system must be initialized. When
a program is terminated, the interface system must be shut-down in a controlled man­
ner. These two action depend on the interface system that is used. The initialization
and the shut-down of the interface system are therefore implementation dependent.
Because of this, it is not correct to include them into the x-model of a control sys­
tem. When this model is compiled into an executable for a specific interface system,
the relevant procedures for initialization and shut-down must be inserted into the
program text.

In the x-kemel, the compiled x-text of a model is inserted into a c++ main. This
program main is then compiled by a c++ compiler into an executable. The initial­
ization and shut-down of the system is inserted, invisibly for the modeler, in this
program. The main forthereal-time x-kemel is given below.

11 This is the main file of chi models
11 It uses the include file xper.h which
11 specifies the rest of the model.

#include ' 'xper. h' '
#include ''sched.h''

void main(int argc, char** argv){

char *pConfName;
int con;

if(argc<2){

}

cout << ''No contiguration was set.'' << endl;
cout << ''Set contiguration and try again.'' << endl;
return;

pConfName=argv[argc-1];
con=ReadConfig(pConfName);
if (con==O){
cout << ''Unable to read configuration.'' << endl;

}

54 Chapter 5. Interfacing x with Hardware

}

el se{
StartlBSO;

}

CScheduler cSched(argc-1, argv);
CXPer cX(&cSched);

cSched.Run();
StopiBS();

The program checks if a configuration is provided for the executable. If no config­
uration is detected the executable terminates with a message that no configuration
was set.

If a configuration is present, the program checks if the configuration that was set
is valid. If so, the interface system is initialized with the command StartiBS ().
When the executable terminates, the interface system is shut-down by the procedure
StopiBS().

Chapter 6

Using Real-Time x

In this chapter, the real-time kemel is presentedat user level. The underlying actions
that are taken when a new control program is generated are not explained. A detailed
description of the statements that are executed by the real-time x kemel is given in
Appendix B.

Consiclering the time and resources available for this research, it has not been possible
to adjust the kemel in such a way that all the possibilities of the current x formalism
are supported by the real-time version of the x-kemel. To be able to experiment
with the real-time kemel, some restrictions are defined for the real-time kemel when
making control systems in x. These must be a bidden by if one wants to use the
real-time kemel.

6.1 Restrictions to Reai-Time x

As mentioned before, the current version of real-time x does not support all the
possibilities of the current x formalism. Some restrictions are set to the use of reai­
time x to create a control program.

1. This research does not consider continuous communications. The control sys­
tem described with real-time x is notallowed to contain communication other
than discrete communications. The reasen for this is that the real-time ker­
nel is derived from the discrete Chi 0.3 kemel and only discrete interfaces are
considered.

2. The discrete communication with the environment is bitwise. Thus, the value
of the discrete signals is either high or low, or 0 or 1 respectively.

55

56 Chapter 6. Using Real-Time x

3. It has not been possible to implement areal-time variant of the ~-statement.
The use of this statement results in indeterministic program code. This is
caused by the fact that the ~-statement is connected to simulation time in­
stead of areal-time doek. What happens, is that this simulation time ascends
with the passing of statements, not time. Thus, this ~-statement yields dif­
ferent timing intervals depending on the number of statements that are to be
calculated in simulation time, the workload of the processor and the speed of
the processor the program is running on.

4. Due to the provisional way in which the real-time x-kernel operates, the IO­
channels must be defined in specific way. The first two characters of the name
of a IO-channel must always be the capitals IO. Also, the entire length of the
name is not allowed to exceed four characters. For example, /Os2 and /034
are correct names, but ios2 and ioa34 are not.

6.2 Creating a Control System with Reai-Time x

This section describes all the necessary steps to take if one wants to create an appli­
cation using the real-time x-kernel.

First, make sure that both Microsoft Visual c++ 4.2 and the driver software of the
InterBus-S system are installed on the PC. The InterBus-S software should be in­
stalled in a directory called IBSdriver, instead of the default directory IBS driver.
Both these programs are to be installed on the C drive of the PC. If components are
installed elsewhere, the conesponding paths in the batchfile chirt. bat should be
altered.

Second, set the real-time x environment by typing at the prompt the following com­
mand: setchirt.

Third, an application should be designed. This program can be compiled with the
command: chirt <filename>. This command yields an executable. This exe­
cutable needs a configuration to run correctly. The creation of a configuration file
is achieved by a small program called mkconfig. This executable is automatically
available when the real-time x environment is set. This utility program creates a
configuration file. The identifier the program asks for is the name of the IO-channel
that is used in the x-program. The word in data array corresponds with the word in
the data arrays that InterBus-S generates for its input and output. The bit position
in the word is the bit position at which the actuator or sensor is installed. When
an executable from an application is to be run, the name of the executable must be
called foliowed by a whitespace and the name of the configuration file.

6.3. Test Results with Real-Time x 57

6.3 Test Results with Reai-Time x

The real-time x-kemel designed for this research works. It is possible to create an
executable based on a x-model with a few simple steps. The only interface that can
currently be used is the InterBus-S system.

The realization of an executable is a cooperation of modeler and implementor. The
modeler must design the x-model. The implementor is not able to do this because he
has no knowledge of the desired functionality of the x-model. When simulation has
proven the model to be correct, the x-code must then be adjusted according to the
concept of 10-channels presented inSection 3.5. The modeler is not able to compile
this pre-made control system because he has no knowledge on the interface system
that will be used. The implementor compiles the x-code of the control system and
links the correct libraries for the interface system. The implementor must create the
configuration files. The modeler has no knowledge of the precise configuration of the
hardware on which the program is run.

The fact that a separate configuration file is used at the execution of the program
works well. It is possible to run the same program on machines with the same
function but a different configuration, assuming the same interface system is used.
One only needs to use a different configuration file.

58 Chapter 6. Using Real-Time x

Chapter 7

10-Communications Incorporated
in the x Kernel

If the x language is to incorporate the changes suggested in Section 3.5, the com­
piler must be adjusted. These adjustments must add new language objects, like the
suggested IO-channels, to the kemel and how to interpret these new items. In other
words, what functionality these new objects have. In the case of the IO-channels,
it is necessary to define the specific mechanism that is used when the control sys­
tem designed in x wants to communicate withits environment. The most common
mechanisms that are used to communicate with peripheral equipment are examined
first before a choice is made for a specific mechanism.

7.1 Commonly Used 10-Mechanisms

There are several ways in which a control processcan accuroulate data. This section
presents the communication mechanisms most commonly used. In these mechanisms
two different approaches can be distinguished.

The first possibility is to present data directly to the control process. This option
itself can be divided further in two other options. The decision to communicate can
be made by polling or an interrupt-driven approach.

The second possibility is to create an additional process that collects all communica­
tions. This process would then function as a sort of buffer in which IO-data is kept.
This buffer is often called a mailbox.

59

60 Chapter 7. IO-Communications Incorporated in the x Kernel

7.1.1 Polling

Polling is the most straightforward of communication techniques. The control process
runs its program. During execution, the control process constantly polls the appro­
priate addresses for data. The main problem with polling is the loss of valuable
CPU cycles. The control program spends a lot of time checking all signals. If the
physical system generates a lot of signals, as is the case in physical machines with
a multitude of sensors, the CPU time needed to poll each of these signals will also
increase. Eventually, this willlead to an unexceptably high load on the CPU due to
the polling.

7.1.2 Interrupt-driven IO

Another possibility is to use interrupts to inform the control process that commu­
nication is initiated by a peripheral device. The advantage of this approach is that
a control process never needs to wait for communications. The control process only
responds when communication is possible. The peripheral devices initiate the com­
munication.

The disadvantage is the following. Every time a significant change occurs in the state
of the physical system, an interrupt is generated. This is nota problem when these
changes are relatively rare. However, most communication in real-time control sys­
tems is generated by sensors that detect every change in the system. If these sensors
present their information with interrupts, the result is a extremely large amount of
interrupts of the control system. This will slow the execution of the control system
considerably and might even campromise the timing requirements set on the control
system. Interrupt-driven IO-communication is suitable for important messages but
assigning an interrupt with a high priority to each signal would create serious prob­
lems. The controlled system interrupts the main program for each message that is
received and truly important messages are stalled because messages with the same
priority but of less importance are handled first.

7.1.3 Mailbox

It is also possible to create a process outside the control process to act like a kind of
buffer that accumulates all IO-communications. Such a process is called a mailbox.
The control process can then access this mailbox at any time to check the data that
is needed. An advantage of this approach is that the design of this mailbox can
be made to support the types of communication that the control process wants to

7.2. Suggested 10-Mechanism for the x Kernel 61

receive. For instance, blocks of data can be transferred instead of separate items.
Two methods exist for a mailbox to buffer its data. It can use queues or pipes.

Queues

The queue is the easiest way to implement a buffer. Every data received is put in
a queue. This data waits in this queue before it is processed. This data can be
accessed using either LIFO or FIFO. The problem that can arise with this type of
buffer is when the control system is emptying the bufferlessoften than new data is
put in the buffer. The result is a growing queue that will stop growing only when
the processor runs out of resources.

Pip es

This buffer type is best defined by an analogy with a pipe (hence the name). Consider
a pipe in which marbles are dropped, each marbie representing a data object. When
data is received a marbie is dropped in the pipe. At the other end of the pipe this
data is occasionally picked up and used by an other system. The problem of the
growing buffer does not occur because the pipe has a specified length. After the pipe
is tilled with marbles, no marbles can be added to it. However, this also might lead
to errors as the marbles that are added to a full pipe drop to the ground, destroying
the data they carry. Alternatively, the oldest marbie is pushed through the pipe,
destroying the oldest data.

7.2 Suggested 10-Mechanism for the x Kernel

Before a salution is presented, consider once more the functionality of the IO­
communications in x. N ot consiclering the changes to the x language as presented in
the previous chapter, a mechanism is needed that presents or holds one or more, most
current, values of a specific input or output signal. The IO-channels that are to be
used for IO-communications only establish communication between the environment
and the control system. The IO-channels do notbuffer input nor output. The values
of the IO-signals must, therefore, be contained by a process outside the system.

The fact that a process, external to the control system defined in x, is used for
the values of IO-communications suggests that a mailbox must be used. For every
address monitored, a mailbox must be created. This mailbox is large enough to hold
one instanee of the data type it is used for to store. The data that is put in this

62 Chapter 7. 10-Communications Incorporated in the x Kernel

mailbox is derived from either sensors, in case of input, or from the control system,
in case of output. When new data is presented to this mailbox, the old data is
overwritten. The value of this mailbox is adjusted or tested by the control system.

Chapter 8

Real-Time Aspects of x

The previous chapters have dealt with the problems of how to incorporate the means
for IO-communications in X· If the x formalismis to produce real-time applications
there are several other problems to take into consideration. In this chapter, the
problems that need solving are presented. To most of the questions that are posed
in this chapter no specific answers are given. The reason for this, is that for most
questions to be answered, a very specific knowledge is needed that would surpass
the extent of this paper. Nonetheless, the directionsin which the answers should be
searched are presented.

8.1 Time and Timing in Reai-Time x

Consider the concept of time. In a simulation environment, simulation time is used.
In most cases, this simulation time is not related to real time. The simulation time
is simply increased after a set of actions has been calculated by the computer. It is
initialized to zero when the model is started and is increased during the execution of
the model. The x formalismis no different. Using this simulation time, the model
is able to time the various actions it makes. Time-outs used in the model are also
calculated using the simulation time.

If a program is run in an environment, it is essential that the program and its
environment operate using the same time scale. If this is not the case, major errors
can occur due to miscommunication generated by the different concepts of time used
by the program and the environment. When a model, designed in x, is implemented,
the simulation time used in the model must be connected in some way to the 'real'
time, in this respect the time of the environment in which the implementation is run.

63

64 Chapter 8. Real-Time Aspects of x

The decisions that must be made for this problem, lie on a very low level. The
answers this question yields are therefore not considered to he part of this partienlar
research. The fact that a coupling must he made between the simulation time and
the environment time is an important one however.

8.2 Error Handling in x

A diffi.cult problem in the control of real-time systems is the handling of errors in the
controlled system. Errors can occur due to deterioration of the controlled system.
This is caused by wear and aging. Also, components have their tolerances and moving
parts suffer from imprecise positioning. The ability to handle these errors is vitalto
areal-time control program. Control programs eperating under error-free conditions
are usually many times smaller and less complex than those programs that have to
deal with errors.

If real-time machine control systems are to be generated using x, a method to handle
errors must be incorporated into the x-formalism. The method that is introduced to
do this must be consistent with the current x syntax and semantics and at the same
time contain as few new elements as possible. Two things must be kept in mind.
First, the detection of errors must he done in one single place as much as possible.
This is done to ensure a clear program text by avoiding repetitive declarations of
the testing of the eenstraint monitors throughout the program. Secondly, if an
error is detected, this must he immediately propagated to other parts of the model.
The x-formalism has a structure of processes working concurrently. If one of these
processes detects an error this must be reported to the other processes in the model.
This cannot he achieved by declaring the error detection global, as x does not know
the concept of global variables.

An important concept when dealing with error handling in a structured way, is the
concept of exception. Using this concept, [Bee96] presents a method that incorpo­
rates exception handling in the formalism X· To this method, [Bee96] adds a new
mechanism based on constraints and eenstraint monitors. This new mechanism is
then used to facilitate the use of exceptions. If the x-formalism is to be used to
create real-time machine control systems, the suggested method of exception han­
dling should be studied. If found useful, the changes suggested by [Bee96] can he
incorporated into the x-formalism in such a way that they are consistent with the
suggested changes for 10-communications.

8.3. Concurrency in x 65

8.3 Concurrency in x

In the x formalism, all processes are theoretically operating concurrently. If a x
model is implemented to run as areal-time application, how much of this concurrency
is preserved in the functionality of the control program?

Consiclering the execution requirements of the control system it is very unlikely that
all the processes that were distinguished in the x model, must run concurrently in
the application. Most of the processes in x are only theoretically running concurrent
while actually these processes are always waiting for some confirmation from another
process. In practice, therefore, they are running sequentially. The same goes for
the various parts of a control system in most industrial applications. Some parts
of this control system must run concurrently while others are allowed to function
sequentially.

Therefore, the x formalism should not lose its concurrent character completely when
an implementation is made of a x model. The most ideal situation is when an
implementor would be able to allocate the processes of the system into subsets of
processes. All the processes in one of these subsets must run concurrently to all the
processes in one or more of the other subsets, while allowing the processes within
each subset to run sequentially after each other.

When the above is implemented in the x formalism, another problem arises. When
executing processes concurrently some of these processes will be more vital to the
correct execution of the program than others. For example, when resources are low,
it is more important that the processes run that deal with the monitoring of the
emergency break, than that the processes run that make up the screen output for
the user. So, if this mechanism is implemented into the x formalism it will also be
necessary to assign to each subset of processes a priority. This priority is then used
to define the thread level at which the subset operates.

The problem of the preservation of concurrency is a very complex problem. It is
likely that the answers to this problem can be found only after an extensive research.
This research is left for others to pursue.

66 Cbapter 8. Real-Time Aspects of x

Chapter 9

Conclusions and Recommendations

9.1 Conclusions

If a control system wants to communicate with its environment, three things are
needed.

1. Signa!. There must be a communication signal. Whether this is an input
or an output signal is irrelevant. The value of this signal is determined
by the control system (in case of an output signa!) or the environment (in
case of an input).

2. Timing. The communication signal is sent at a certain point in time.
This point in time can depend on decisions made by the control system
when an output signal is considered. If an input signal is considered, the
timing of the signalis defined by theevents in the environment.

3. Location. The control system needs a location at which it can commu­
nicate.

The current x-kemel does not support IO-communications. The x-kemel meets
the requirements mentioned above in a simulation environment. In a real machine
control environment, the x-kemel does not have the means necessary to define a
certain hardware location. It is possible to design a control layer in which the x
code generated by the kemel is coupled to IQ-routines specific fora certain interface
system. By using this controllayer the control system is able to communicate withits
environment. The control layer is created by an implementor, because the creation
of this control layer requires knowledge of the interface system that is used in the
controL

67

68 Chapter 9. Conclusions and Recommendations

The current x-kemel does not truely support real-time IO-communications. A reai­
time program can be generated using the adjusted x-kemel as developped during
this project. However, with this adjusted kemel it is not possible to incorporate
timing requirements into a control system. If the x-kemel is to be used as a means
to create real-time control systems, the simulation time used in the models of the
control system must be coupled to the real time.

During this research it has become apparent that the curriculum foliowed by a student
at the faculty Mechanica! Engineering does notprepare him for research in the field
of machine controL Knowledge on programming languages, interfacing, sensors and
actuators is little and non-specific.

9.2 Recommendations

If a real-time x-kemel is designed, the following should be examined (as described
in Chapter 8):

• The coupling of the simulation time with real time.

• Error detection and error handling in x.

• Concurrency and priority in the resulting executable.

To be able to fully examine areal-time x-kemel, the x-kemel must be made to run
on areal-time platform. The platforms used in this research, DOS and Windows95,
do not qualify as such.

The only interface system that is, as yet, been used to create machine control system
is the InterBus-S system. If the validity of the suggested changes in x is to be
checked, libraries must be created for other interface systems. These libraries can
then be used to confirm the correctnessof the current real-time x-kemel.

The current x-formalism has a very limited Man-Machine-Interface (MMI). In ma­
chine control, a MMI is very important for the interaction between the control system
an the operator. It should be examined if the current possibilities of the x-formalism
suffice to create an MMI. If a MMI is created, should this be specified by the rnad­
eler in the x-model, or should an implementor design the MMI according to specific
needs.

The V -operator should be made to work on discrete channels, as suggested in Section
3.4.

Bibliography

[Bee96] D.A. van Beek and J.E. Rooda, A New Mechanism for Exception HandZing
in Concurrent Control Systems, European Joumal of Control, nr. 2, pp.
88-100, 1996.

[Ben94] S. Bennet, Real- Time Computer Control, Prentice Hall International (UK)
Ltd., Hertfordshire, United Kingdom, 1994.

[Hor85] M.F. Hordeski, Design of Microprocessor, Sensor & Control Systems, Reston
Publishing Company Inc., Reston, Virginia, United Statesof America, 1985.

[IBS93] Phoenix Contact, InterBus-S, User Manual, Phoenix Contact GmbH & Co.,
Blomberg, Germany, 1993.

[Nau96] G. Naumoski, Real-Time Systems Control with x (draft version), internal
memo, University of Technology Eindhoven, Faculty Mechanica! Engineer­
ing, Section Systems Engineering, the Netherlands, 1996.

[Lei92] J.R. Leigh, Applied Digital Control, Prentice Hall International (UK) Ltd.,
Hertfordshire, United Kingdom, 1992.

Further Reading

[Ban91] B.R. Bannister and D.G. Whitehead, Instrumentation: Transducers and
Interfacing, Chapman and Hall, London, United Kingdom, 1991.

[Bra89] U. Brasche and Ph. Sonntag, Intelligent Sensors, VDI/VDE Technologiezen­
trum Informationstechnik GmbH., Berlin, Germany, 1989.

[Bri94] J. Brignell and N. White, Intelligent Sensor Systems, Institute of Physics
Publishing, Bristol, United Kingdom, 1994.

69

70 Bibliography

[Roo96] J.E. Rooda, The ModelZing of Industrial Systems, Lecture Notes Number
4746, University of Technology Eindhoven, Faculty Mechanica! Engineering,
Section Systems Engineering, 1996.

[Sch93] A.W. van Schadewijk et.al., Sensoren en Actuatoren, Stichting Centrum voor
Micro-Elektronica, Delft, the Netherlands, 1993.

[Sol94] S. Soloman, Sensors and Control Systems in Manufacturing, McGraw-Hill
Inc., United Statesof America, 1994.

Appendix A

Introduetion to the InterBus-S
System

This chapter brie:fl.y explains the InterBus-S system. The system itself is presented, as
well as its data transmission protocol, its hardware topology and its data addressing.
The last two items are important if one wants to use the software created for this
project. This software allows a model made with the x formalism to be compiled in
such a way that a machine control system is created.

Fora complete review of the InterBus-S system, see [IBS93].

A.l The InterBus-S System

InterBus-S is a bus system that transmits data between different types of control
systems (e.g. programmabie logic controllers, personal computers, robot controls,
etc.) and inputjoutput units to which sensors and actuators are connected. This
data is transmitted by means of a serial transmission method.

InterBus connects sensor/actuator signals to the control or computer system (in
genera!: host). InterBus fulfills two important tasks:

• The cyclic transmission of process states that change rapidly.

• The tailored transmission of parameter data for complex I/0 modules and
specialized process devices that are to be parameterized during operation (e.g.
frequency inverters, robots, etc.).

71

72 Appendix A. Introduetion to the InterBus-S System

A.l.l General Structure and Metbod of Operation of Inter­
Bus

The InterBus system is designed as a ring structure. The central controller for
this data ring is the controller board. It exchanges data transmitted serially within
the data ring with the higher-level control or computer system and the lower-level
InterBus devices. The exchange of data is carried out simultaneously and cyclically
in both directions (full-duplex). This means that the system reads input from and
sends output to the InterBus devices at the same time.

The InterBus system differentiates between two cycle types:

• The identification cycle (ID cycle) that is run to initialize the InterBus
system or on request. In the ID cycle, all the ID registers of all the InterBus
devices connected to the ring structure are read. This information is used to
define the configuration of the system. If this identification has succeeded, all
the devices are switched to data registers and only data cycles are transmitted.

• The data cycle that is responsible for data transmission. During a data cycle,
the controller board updates the input and output of all the connected InterBus
devices at the same time.

The InterBus system has several methods to check the data transmission for cor­
rectness. These will not be discussed here. The input on the controller board and
the outputto the devices only become valid when the data cycle has proven to have
been executed without error. If an error occurs, the faulty data cycle is ignored, as
the correction of the corrupted data requires more time than the execution of a new
data cycle.

A.1.2 InterBus Protocol Sequence

1. Starting with a loopback word, the controller board clocks the output data into
the InterBus data ring. At the same time, the controller board receives input
data transmitted through the data ring by the InterBus devices.

2. The loopback word runs between the input and the output data through the
entire data ring. When the controller board receives the loopback word, all
output data has arrived at the corresponding InterBus devices and all input
data at the controller board.

A.2. Process and Parameter Data 73

3. The controller board checks if the data transmission has been executed without
errors.

4. If the loopback word has been received properly and the transmission carried
out without errors, the output data becomes valid and the devices put the
data to their output registers. At the same time, the controller board passes
the read input data it received from the devices to the controller or computer
system to be processed.

5. Afterwards, the controller board causes the devices to store the new input data
on the data ring before a new data cycle is started.

A.2 Process and Parameter Data

InterBus uses two different sorts of data. The first sort is called process data. This
is the simple input and output data that is transmitted during normal data cycles.
The second sort is called parameter data. This parameter data consists of complex
data records that are transmitted at the same time as the process data.

Parameter data is information:

• required by special devices to receive or process data, or

• configures or initializes special devices (e.g. parameterization of a frequency
in verter), or

• required by the controller board to acquire the state information of special
devices.

Devices that are able to process parameter data are called PCP devices. The Periph­
eral Communication Protocol (PCP) allows communication between these devices
and the controller board. PCP is part of the InterBus protocol.

A.2.1 IBS Data Format: Motorola versus Intel

The InterBus-S master processor works with data in Motorola format. The PC that is
used to control the InterBus-S system needs data in Intel format. This gives conflicts
if the communications between the IBS master and the PC are not translated.

The InterBus-S system contains several rnacros to ensure proper data translation.

74 Appendix A. Introduetion to the InterBus-S System

A.3 InterBus Topology and Data Addressing

This sectionis important if one wants to use the software presented with this paper.

A.3.1 InterBus Topology

This introduetion to the InterBus system does not describe all the different com­
ponents of the system. For this, the manual and the various catalogues that are
supplied with the InterBus system should be consulted. To be able to understand
the topology of the InterBus system, it is however necessary to have a rudimentary
understanding of the general layout of the system.

In general, InterBus consists of three system components:

• the InterBus controller board

• the InterBus devices

• the cabling that connects the devices with each other as well as with the con­
troller board.

The main branch of cabling that runs to and from the controller board is called the
remote bus. To this remote bus, InterBus devices are connected with a remote bus
branch line. This branch line allows branching into a next remote bus level. This
branch allows further I/0 stations as wellas deeper branching (see Figure A.l).

Owing to its structure, InterBus offers a segment/device-oriented functionality that
is used for switching segments on or off as well as comprehensive diagnostics for
the entire system. The device numbers define the exact position of a device in the
system. Using these numbers the switching and diagnostic processis able toperfarm
its function. The device number consists of its bus segment number and its position
in this bus segment (see Figure A.2).

A.3.2 InterBus Data Addressing

To ensure proper operatien of the InterBus system, the process data and the para­
meter data must be assigned to the correct positions in the memory of the connected
computer or control system. The InterBus system has two different addressing types
for this purpose.

A.3. InterBus Topology and Data Addressing 75

LeveiO

Level3

Level 15

Figure A.l: Remote Bus Tree Topology with 16 Levels

Physical addressing is used for a quick and simple start-up of the InterBus sys­
tem. It is a method that can be used providing that the system configuration does
not change for the time being and/or that the address location of individual data
must not be assigned freely. Physical addressing follows the settings automatically
predefined by the controller board.

User-oriented addressing is used when one aims at high fl.exibility with regard
to address assignment and changeability of the bus system. The address location
of the InterBus system is adapted to the needs of the user or the presetting and
requirements of a specific control system.

The decision which of these methods is used depends on individual requirements. The
method used in the software used to support the theory presented in this research is

76 Appendix A. Introduetion to the InterBus-S System

DEVICE NUMBER

851 Bus 5egment.Position

852

853

854

855

856

857

Figure A.2: Device Numbers of the Remote Bus

physical addressing. This method is the easiest to use and the system used for the
experiments is not so difficult that it warrants the use of user-oriented addressing.

Physical Addressing

With physical addressing, the data of the various InterBus devicesis stored in mem­
ory following an ascending order that depends on the physicallocation of the devices
within the InterBus ring. The input received, is stored in the input section of the
memory, and output is stored in the output section.

Starting with the controller board, there is a defi.ned order in which the input and
output is stored. The fi.rst device that the controller encounters is the fi.rst device to
be stored in the memory, the second occupies the next unassigned location, etc. (see
Figure A.3).

A.3. InterBus Topology and Data Addressing

~fi~ ~fi~ ~fi~ ~fi~ ~fi~
BK RB-T BOI16/4 AO 4/SF4 BOO 1613 AI4/SF4

IBS ST 24 IB ST 24 IB ST 24
BK RB-T BOO 16/3 BOl 16/4

IBST24
BOO 1613

IBST24
BOI16/4

IN data

OUT data

Figure A.3: Principle of Physical Addressing

77

Physical addressing can be generated automatically by the controller. Given the right
commands, the controller board will identify the configuration, process data length,
and type of all devices. According to this data, the controller board addresses the
complete bus configuration. Devices that the controller board was not able to identify
are ignored during addressing. The file that is created can he stored on the hard
disk.

After every power up of the control system or every individual reset of the controller
board, the controller board reads out the starting sequence and thus the configura­
tion of the physical addressing from the parameterization memory and executes it
automatically.

If the configuration of the system is changed (e.g. by ad ding or removing devices), it
requires modifications in the program due to the fact that input and output addresses

78 Appendix A. Introduetion to tbe InterBus-S System

will be shifted.

U ser-Oriented Addressing

User-oriented addressing is characterized by the fact that addressing of InterBus
devices and special InterBus registers can be freely assigned to the memory of the
controller board or the computer system independent of their physical order in the
bus system.

User-oriented addressing is applied to:

• optimize memory division in the control or computer system,

• exclude address shifting when extending the system,

• allow a configuration to be changed without affecting addressing or

• to optimize comprehensibility of the address assignment.

The fact that addresses can be assigned freely allows switching system parts off or on
within the bus configuration. In this way, when changing the system configuration,
only one address list is changed instead of the all the addresses in the application
program.

For devices with both input and output data, one can define the same address in the
corresponding input and output process image of the controller/computer system.

Also, it is possible to assign an odd byte addresses to devices using only one byte
address area. For devices to be addressed byte by byte during user-oriented address­
ing, 'byte gaps' produced during physical addressing can be filled without problems
or restrictions. Devices that are addressed word by word must still be assigned to
even byte addresses.

A.4 Working with InterBus-S

The InterBus-S manual is an extensive work on all the possibilities of the InterBus-S
system. This amount of information makes it very difficult to discern the basics of
the operation of the system. These basics are presented in this section.

A.4. Working with InterBus-S 79

A.4.1 Utilities for InterBus-S

With the InterBus-S manual, a disk is included called SOFTWARE EXAMPLEPROGRAMS.
On this disk some very useful, pre-made utility programs can be found, under the
path \ c \ common. The utility programs used to create the software for this research
are given below. Only the narnes of the programs are given, without parameters
or return types. For more specific information, see the souree code on the disk
mentioned above.

OpenHandles opens the nodes for the DTI (data interface) and the MXI (mailbox
interface). The nodes must be opened before communication can
take place.

CloseHandles doses the nodes for the DTI and the MXI. If the nodes are not
closed properly problems can arise when the program is restarted.
The reason for this is that the PCISA runs out of available node
handles.

RequestResponse sends a message to the MXI.
Confirmation!ndication receives a message from the MXI. (Is used by Wait-

ForMessage.)
Wai tForMessage polls for an expected message. (Is used by WaitForPosCnf.)
Wai tForPosCnf polls for a positive confirmation.
Wri teData_I2M writes process data to the DTI with Intel-Motorola conversion.
ReadData_M2I reads process data from the DTI with Motorola-Intel conversion.

A.4.2 Start-up of the Inter Bus-S System

The controller board of the InterBus-S system has three different states. These are
the states ready, active and run. Before the system is able to reach the state
act i ve it must first be ready. In the same way, the system must first be act i ve
before it can change its state to run. The different states are detailed below.

Ready

Active

Run

is the state in which the system starts. In this state, no data
transfers are made.
is the state that is achieved when a hardware configuration is de­
tected and activated. In this state, ID cycles are run sporadically.
In this state, the bus is ready for use. Cyclic data traffic on the
bus is possible.

80 Appendix A. Introduetion to the InterBus-S System

When one wants to work with the InterBus-S system, the system must fi.rst be put
in the desired state. To do so, one must communicate with the system through the
MXI (Mailbox Interface). Hexadecimal commands are sent to the MXI that are then
executed by the system. (Before this is done, makesure that the handles to the MXI
and the DTI are open by called the function OpenHandles mentioned in the previous
paragraph.)

The commands used in the souree code of the software written for this project are
explained below in the order in which they are executed inthestart-up sequence.

Ox1303

Ox0710

Ox0701

The service Alarm_Stop causes a long reset on the bus. No data
traffic is possible. Modules with process data set all their outputs
to 0. If a data cycle is run, the service is executed directly af­
ter completion of the cycle. After execution of this service, the
controller board is in the Ready state.
This service, called Create_Configuration, causes the controller
board to automatically generate a configuration from the currently
connected hardware and to activate this configuration. After exe­
cution of this service, the controller board is in the Act i ve state.
The service Start_Data_Transfer activates the cyclic data traffic
on the bus. On execution of this service, the controller board is in
the Run state.

Chosen is for an automatically generated configuration because this is an easy way
of dealing with different hardware configurations while still executing the same exe­
cutable.

When the controller board is in the Run state, data traffic is possible using the utility
programs Wri teData_I2M and ReadData_M2I detailed in the previous paragraph.

For a complete overview of all available services, consult the user manual of the
InterBus-S system.

A.4.3 Shut-Down of the InterBus-S System

To shut-down the InterBus-S system, the state of the controller board must be
changed from Run to Ready. Although this is possible by calling the service
Alarm_Stop immediately, it is more correct to use the cammand sequence explained
below.

A.5. InterBus-S Documentation 81

Ox0702

Ox1303

The service Stop__Data_Transfer stops the cyclic data traffic on
the bus. After execution of this service, the controller board is in
the Act i ve state.
The service Alarm_Stop causes a long reset on the bus. No data
traffic is possible. Modules with process data set all their outputs
to 0. If a data cycle is run, the service is executed directly af­
ter completion of the cycle. After execution of this service, the
controller board is in the Ready state.

Remember to close all node handles of the MXI and the DTI befare you power down
the system. This is clone by calling the utility program CloseHandles, as detailed
above. If this is not clone, subsequent use of the program might result in errors
because the PCISA runs out of available node handles.

A.5 InterBus-S Documentation

To ensure that the lnterBus-S documentation is complete at all times, a list of
contents is given. This lists gives every item that should be present, together with a
small description. The InterBus-S documentation should contain the following:

• Driver Software. Driver software, tools and example programs for the IBS PC
ISA SC board (3 disks).

• General Introduetion to the InterBus System. Fundamentals of InterBus tech­
nology, method of operation and definitions. (Order No.: 27.45.21.1)

• Quick Start Guide. Quick start-up of the controller board. (Order No.:
27.47.87.9)

• Description of the Driver Software. Structure and functions of the driver soft­
ware, method of operation and necessary settings. (Order No.: 27.45.17.2)

• Services and Error Messages of Firmware 4.x. Explanation of the G4
Firmware, library of all services and description of possible error messages.
(Order No.: 27.45.18.5)

• PCP. Peripherals Communication Protocol Data transmission methods of In­
terBus. (Order No.: 27.45.16.9)

82 Appendix A. Introduetion to the InterBus-S System

Appendix B

Library Text

When an executable is generated from a x model to be used as a control pro­
gram, several steps are taken as described in Chapter 6. During one of these
steps, implementation-dependent information is added to the program. This
implementation-dependent information describes the necessary knowledge of the in­
terface system used to control the controlled system.

The information of the interface is presented in the form of a static library. In this
paper, the InterBus-S interface system is used. For this interface system, a library is
created. During tests executed during the research, functions described in this library
are used to control the controlled system with the lnterBus-S interface system.

In this Appendix, the library created for the InterBus-S system is presented. The
library is written in c++ code. It is compiled using Visual c++ Version 4.2. Presented
here, is the full c++ code that has been added to the code of the InterBus-Sinterface
system. In the code remarks are incorporated on the use of the functions. No further
camment is given.

B.l Library Souree Code

B.l.l IBSCHI.H

I* Header file for IBS functions to be used with CHI *I

I* Definition of WIN95 vesion *I
#define IBS_WIN_95_VERSION

83

84

I* Standard include files *I
#include <windows.h>
#include <conio.h>
#include <stdlib.h>
#include <string>

I* IBS utilities include *I
#include <ibsutil.h>

I* InterBus-S include files *I
extern 11 C11

{

#include 11 ibddiw95.h11

#include 11 ddi_macr.h 11

#include 11 ibsg4uti.h 11

}

I* Deelaratien of buffers
static USIGN16 OutData[254];
static USIGN16 InData[254];
static USIGN16 buffer[1024] ;*I

I* Function declarations *I
IBDDIRET IBDDIFUNC StartiBS();
IBDDIRET IBDDIFUNC StopiBS();
bool BitWrite(string cName, INT16 BitValue);
INT16 BitRead(string cName);

B.1.2 IBSCHI.CPP

Appendix B. Library Text

1**1
I* This is the souree-code for a Static Library created to *I
I* implement IO-communications into CHI using the InterBus-S *I
I* system. *I
I* *I
I* This library is intended for use with Windows95 *I
I* *I
I* File name: ibschi.cpp *I
I* Editor: Jasper van Rosmalen *I
I* First release: 06-01-1998 *I

B.l. Library Souree Code 85

1**1

#include <assert.h>
#include 11 ibschi.h 11

I* Buffer definitions. All have been initialized at maximum size. *I
extern USIGN16 InData[];
extern USIGN16 OutData[];
extern USIGN16 buffer[];

I* Definition of power of 2 *I
static USIGN16 pow2[]={1,2,4,8,16,32,64,128,256,512,1024,\

2048,4096,8192,16384,32768};

I* Oefintion of Handles *I
static IBDDIHND DTI_Handle;
static IBDDIHND MXI_Handle;

I* Command definitions *I
I* The commands are hexadecimal numbers that are sent to the MXI. *I
static USIGN16 AlarmStop[]={Ox1303, OxOOOO};
static USIGN16 CreateConfig[]={Ox0710, Ox0001, Ox0001};
static USIGN16 StartData[]={Ox0701, OxOOOO};
static USIGN16 StopData[]={Ox0702, Ox0001, OxOOOO};
static USIGN16 ConfirmDiag[]={Ox0760, OxOOOO};

1**1
I* StartiBS is a function that creates a setup of the IBS-system. *I
I* This is a generic startup. It does not foresee in specific *I
I* configurations. *I
I* *I
I* In: Node Handles for the DTI and the MXI *I
I* Out: ERR_OK or ERROR *I
1**1

IBDDIRET IBDDIFUNC StartiBS()
{

IBDDIRET IBDDIFUNC ret;
IBDDIHND IBDDIFUNC ret1;

I* Initialization of OutData *I

86

INT16 i;

for (i=O; i<254; i++){
OutData[i]=O;
}

I* Open Handles *I

Appendix B. Library Text

ret1=0penHandles(1, 1, &DTI_Handle, &MXI_Handle);

if(ret1!=ERR_OK){
ret=ERROR;
printf(11 0penHandles unsuccesfull. \n 11

);

printf (!'Error code: Ox%x\n 11 ,ret1);
}

I* Reseting the IBS-system *I
RequestResponse(MXI_Handle, AlarmStop);
ret1=WaitForPosCnf(MXI_Handle, Ox9303, 5, buffer);
if (ret1!=ERR_OK){
ret=ERROR;
printf(11 Unsuccesfull AlarmStop\n 11

);

printf(11 Error code: Ox%x\n11 ,ret1);
}

I* Creating system contiguration *I
RequestResponse(MXI_Handle, CreateConfig);
ret1=WaitForPosCnf(MXI_Handle, Ox8710, 5, buffer);
if (ret1!=ERR_OK){
ret=ERROR;
printf(11 Unsuccesfull CreateConfig\n 11

);

printf(11 Error code: Ox%x\n 11 ,ret1);
}

I* Start IBS data transmission *I
RequestResponse(MXI_Handle, StartData);
ret1=WaitForPosCnf(MXI_Handle, Ox8701, 5, buffer);
if (ret1!=ERR_OK){
ret=ERROR;
printf(11Unsuccesfull StartData\n11

);

printf(11 Error code: Ox%x\n 11 ,ret1);
}

B.l. Library Souree Code

I* Reseting all OutData *I
WriteData_I2M(DTI_Handle, 0, 254, OutData);

return(ret);
}

87

1**1
I* StopiBS stops the IBS-application. It leaves the system in a *I
I* safe state. It also closes the node handles. *I
I* *I
I* In: Node handles for the DTI and the MXI *I
I* Out: ERR_OK or ERROR *I
1**1

IBDDIRET IBDDIFUNC StopiBS()
{

IBDDIRET IBDDIFUNC ret;
IBDDIRET IBDDIFUNC ret1;

I* Stop data transmission *I
RequestResponse(MXI_Handle, StopData);
ret1=WaitForPosCnf(MXI_Handle, Ox8702, 5, buffer);
if (ret1!=ERR_OK){
ret=ERROR;
printf(11 Unsuccesfull StopData\n 11

);

printf(11 Error code: Ox%x\n11 ,ret1);
}

I* Reset the IBS system *I
RequestResponse(MXI_Handle, AlarmStop);
ret1=WaitForPosCnf(MXI_Handle, Ox9303, 5, buffer);
if (ret1!=ERR_OK){
ret=ERROR;
printf(11Unsuccesfull AlarmStop\n");
printf(11 Error code: Ox%x\n 11 ,ret1);
}

I* Close Node Handles *I
ret1=CloseHandles(DTI_Handle, MXI_Handle);

88

if (ret1!=ERR_OK){
ret=ERROR;

printf(11 Unsuccesfull CloseHandles\n 11
);

printf(11 Error code: Ox%x\n 11 ,ret1);
}

return(ret);
}

Appendix B. Library Text

1**1
I* BitWrite writes to a bit nominated by the ID of the channel. *I
I* *I
I* In: DTI Handle, ID and bit value *I
I* Out: void *I
1**1

void BitWrite(string cName, INT16 BitValue)
{

USIGN16 Data;
USIGN16 NewData;
LinkedList *pid;

pid=Searchid(cName.c_str());
assert(p!d);

Data=OutData[pid->Word];
if (!Bi tValue) {
if ((Data & pow2[pid->BitPos])==O){
}

el se{
NewData=Data - pow2[pid->BitPos];
}

}

if (BitValue){
if ((Data & pow2[pid->BitPos])!=O){
}

el se{
NewData=Data + pow2[pid->BitPos];
}

B.l. Library Souree Code

}

OutData[pid->Word] = NewData;
WriteData_I2M(DTI_Handle, 0, 254, OutData);
}

89

1**1
I* BitRead evaluates the value of a bit at a designated position. *I
I* *I
I* In: DTI handle, ID *I
I* Out: Bit value *I
1**1

INT16 BitRead(string cName)
{

USIGN16 Data;
INT16 BitValue;
LinkedList *pid;

pid = Searchid(cName.c_str());
assert(pid);

ReadData_M2I(DTI_Handle, 0, 254, InData);
Data = InData[pid->Word];

if((Data & (pow2[pid->BitPos]))!=O){
BitValue = 1;
}

el se{
BitValue = 0;
}

return(BitValue);
}

90 Appendix B. Library Text

B.2 Additional U tilities

Some additional utilities are needed for the software written for the tests conducted
during the project. A linked list is used to store the information the bit locations of
different IO-positions. These IO-positions are defined by an identifier, a word in the
data arrays of InterBus and a bit position in such a data array. How this linked list
is created is explained.

The utilities also include functions for saving the linked list mentioned above to file
or how to read a configuration file and create a linked list from this information.

B.2.1 Ibsutil.h

I* Ibsutil.h
*I
extern "C"
{

#include "stdtypes.h"
}

#ifndef H_LinkedList
#define H_LinkedList

struct LinkedListStr {
struct LinkedListStr *pNext;

I* Identifier for IO-communication *I
eh ar Id [6]; I* Identifier *I
INT16 Word; I* Word in OutData *I
INT16 BitPos; I* Bit position in Word

};

typedef struct LinkedListStr LinkedList;

void Init_LinkedList();
void DeleteAll();

*I

void New!Oid(char *pName, INT16 iWord, INT16 iBitPos);

int ReadConfig(char *Filename);

B.2. Additional Utilities

void CreateConfiguration(void);
void SaveConfig(void);

LinkedList *Searchid(const char *cName);

#endif

B.2.2 lbsutil.cpp

1**1
I* Ibsutil.cpp holds several utility functions *I
I* to be used with the real-time CHI kernel. *I
I* The functions are written for the IBS-system.*l

1**1

I* Include directories *I
#include "Ibsutil.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <iostream>
#include <conio.h>

I* Definition of variables and types *I
static LinkedList *pHead;
FILE *stream;
char cNameTemp[6], cWordTemp[6], cBitPosTemp[6];
int iWordTemp, iBitPosTemp, i, eh;

1**1
I* Init_LinkedList initializes a linked list. *I
I* *I
I* Input: void *I
I* Output: void *I
1**1
void Init_LinkedList() {
pHead = 0;

91

92 Appendix B. Library Text

}

1**1
I* NewiOid creates a new member of the linked *I
I* list. *I
I* *I
I* Input: Identifier of IO-position *I
I* Word in the memory array of IBS *I
I* Bit position in memory word *I
I* Output: void *I
1**1
void NewiOid(char *pName, INT16 iWord, INT16 iBitPos) {
LinkedList *pLl;

pLl =(LinkedList*) malloc(sizeof(LinkedList));
assert(pLl);
strncpy(pLl->Id,pName,4); pLl->Id[4]='\0';
pLl->Word = iWord;
pLl->BitPos = iBitPos;

pLl->pNext = pHead;
pHead = pLl;
}

1**1
I* DeletaAll empties an existing linked list. *I
I* *I
I* Input: void *I
I* Output: void *I
1**1

void DeleteAll() {
LinkedList *pLl;

while (pHead) {
pLl = pHead->pNext;
free(pHead);
pHead = pLl;
}

B.2. Additional Utilities

}

1**1
I* Searchid searches the linked list for an ID. *I
I* If this ID is found, a pointer to the *I
I* structure is returned. *I
I* *I
I* Input: ID that is searched *I
I* Ouput: pointer to ID *I
1**1
LinkedList *Searchid(const char *cName) {
LinkedList *pLl;

for(pLl=pHead;pLl;pLl=pLl->pNext)
if(!strcmp(cName,pLl->Id))

break;

return pLl;
}

1***1
I* ReadConfig reads a data file containing a *I
I* contiguration declaration for an IBS-system. *I
I* The Contiguration is put in a Linked List. *I
I* *I
I* Input: FileName *I
I* Output: 0 - insuccesfull termination *I
I* 1 - succesfull termination *I
1***1

int ReadConfig(char *FileName){
if ((stream=fopen(FileName, 11 r 11

))==NULL){
cout << 11 File does not exist 11 << endl;
exit(O);
}

else{
I* initializing Linked List *I
Init_LinkedList();
DeleteAll 0 ;

93

94

I* reading and interpreting file *I
eh=fgete(stream);
while (eh!=EOF){
if (eh=='<'){
eh=fgete(stream);
i=O;
while (eh!=','){
eNameTemp[i]=(ehar)eh;
i++;
eh=fgete(stream);
}

eh=fgete(stream);
i=O;
while (eh!=','){
eWordTemp[i]=(ehar)eh;
i++;
eh=fgete(stream);
}

eh=fgete(stream);
i=O;
while (eh!='>'){
eBitPosTemp[i]=(ehar)eh;
i++;
eh=fgete(stream);
}

iWordTemp=atoi(eWordTemp);
iBitPosTemp=atoi(eBitPosTemp);

I* ereating Linked List *I
NewiOid(&eNameTemp[O], iWordTemp, iBitPosTemp);
}

eh=fgete(stream);
}

felose(stream);
}

Appendix B. Library Text

B.2. Additional Utilities

return(1);
}

1***1
I* CreateConfig creates a contiguration which is *I
I* then stared in a LinkedList. This List is saved *I
I* when CreateConfig is terminated. *I
I* *I
1***1

void CreateConfiguration(void){
char Id[9];
char cWord[8];
char cBitPos[7];
LinkedList *pLl;

INT16 Word;
INT16 BitPos;

eh ar eh [6] ;
eh ar con [6];

eh [2] =' 1';
con [2] =' N' ;

Init_LinkedList();
DeleteAll();

while (ch[2] !='2'){
cout << endl << "SYSTEM CREATION (bitwise)" << endl;
cout << "1 - Define new IO-position" << endl;
cout << "2 - Save and Quit" << endl;
cout << "Make your choice: 11 << endl;
ch[O]=sizeof(ch)-1-2;
cgets(ch);

if (ch[2]=='1'){
cout << endl <<"Type identifier of IO-position (max. 4 char.): ";
Id[O]=sizeof(Id)-1-2;
cgets(Id);

95

96

pLl=Searchid(Id+2);
if (pLl! =O){

Appendix B. Library Text

cout << 11 This identifier already exists! 11 << endl;
cout << 11 Continue? (YIN) 11 << endl;
con[O]=sizeof(con)-1-2;
cgets(con);
}

if (con[2]=='Y'. 11 con[2]=='y' 11 pLl==O){
cout << endl << 11 Type Word in Outdata array: 11

;

cWord[O]=sizeof(cWord)-1-2;
cgets(cWord);
Word=atoi(cWord+2);

cout << endl << 11 Type bit position in word: 11
;

cBitPos[O]=sizeof(cBitPos)-1-2;
cgets(cBitPos);
BitPos=atoi(cBitPos+2);
NewiOid(Id+2, Word, BitPos);
con [2] = 'N' ;
}

}

}

SaveConf ig () ;
}

1***1
I* SaveContig saves the current contiguration to *I
I* file. *I
1***1

void SaveConfig(){
LinkedList *pLl;
FILE *stream;

char cName[11];

cout << endl << 11 Give name of contiguration file (max 8 char.): 11
;

cName[O]=sizeof(cName)-1-2;

B.2. Additional Utilities 97

cgets(cName);
if ((stream=fopen(&cName[2] , 11 w11))==NULL)
cout << 11 File \'11 '<< &cName[2] << 11

\
11 could not be opened 11 << endl;

el se{
for(pLl=pHead;pLl;pLl=pLl->pNext){
fputs(11 <11

, stream);
fputs(pLl->Id, stream);
fputs(11

,
11

, stream);
fprintf(stream, 11 %i 11

, pLl->Word);
fputs(11

,
11

, stream);
fprintf(stream, 11 %i 11

, pLl->BitPos);
fputs(11 >\n 11

, stream);
}

fclose(stream);
}
}

