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Summary 

This report presents three control methods to realize vibration reduction for a harmonically excited non- 
linear beam system. This systemconsists of a beam with a one-sided spring attached to the middle, which 
is harmonically excited in the middle. At the used excitation frequency this system has a stable solution 
with high vibration amplitude and an unstable solution with low vibration amplitude. The goal is to force 
the beam system into the unstable solution. The model of the nonlinear beam system has 3-degrees of 
freedom (DOFs) and one input. The system is a so-called underactuated system, because it  has less in- 
puts than DOFs. 

The control methods that are compared in this report are: Partial Feedback Linearization (PFL), Com- 
puted Desired Computed Torque Control (CDCTC), and Computed Reference Computed Torque Control 
(CRCTC). These methods make it  possible to control the passive DOFs besides the active DOFs, leaving 
much more freedom in choosing the controlled DOFs. The main difference between PFL and CDCTC/ 
CRCTC is the usage of a desired/ reference trajectories by CDCTC/ CRCTC enabling feedback of the 
uncontrolled DOFs along the feedback of the controlled DOFs. The feedback of the error of the uncon- 
trolled DOFs results in an extra contribution to the input that influences the controlled system behavior. 
Beforehand, i t  was expected that the extra input contribution could be used to improve the performance 
in realizing vibration reduction for the nonlinear beam system. It turned out, however, to be impossible 
to use the extra input contribution to improve the performance due to the lack of understanding its possi- 
bilities 

A cart-pole system is controlled with the three methods to gain insight in the use of the methods. By 
investigating the zero dynamics of the closed loop system with PFL, information is obtained about the 
behavior of the uncontrolled DOFs when the controlled DOF has reached its desired trajectory. The best 
performance for the cart-pole that is found is realized with CRCTC. Despite the fact that the performance 
can be improved with the extra input contribution, its influence remains unpredictable, because a change 
of the initial conditions can change the influence of the extra input contribution. The relation between the 
influence of the extra input contribution, and the control gains and initial conditions remains unclear. 

The nonlinear beam system is controlled to realize vibration reduction. By proving that the unstable har- 
monic solution is a globally asymptotic stable solution of the zero dynamics of the closed loop system, it 
can be guaranteed that all DOFs reach that solution. The best performance is realized with PFL. This is 
caused by the fact that the feedback of the errors with CDCTC and CRCTC is partly determined by the 
system matrices. Furthermore, no set of gains for CDCTC and CRCTC is found that resulted in an extra 
input contribution that improved the system behavior. 

The main conclusion of this report is that the system behavior can be influenced with the extra input contri- 
bution created by CDCTC and CRCTC in comparison with PFL. However, the lack of understanding into 
the relation between the extra input contribution and the controlled system behavior makes the influence 
of this force unpredictable. 
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Chapter 1 

Introduction 

The subject of this study is the vibration reduction of harmonically excited nonlinear systems. Examples 
of such systems are: suspension bridges excited by the wind, or ships at quay sides excited by the water. 
A characteristic of harmonically excited systems is the occurrence of vibrations with large amplitudes, 
which are generally undesired since they cause wear and are responsible for high levels of noise. To re- 
duce these vibrations, investigation in the steady state behavior of harmonically excited systems with local 
nonlinearities has been done [2]. The steady-state response of such systemexhibits two or more coexisting 
solutions of the system for certain frequency ranges. When the system is forced into the natural solution 
with lowest vibration amplitude the wear and noise levels will drop. The advantage of forcing the system 
into a natural solution is that, when the system reaches this solution, the control force will become zero; 
this only holds under perfect modeling conditions, i.e. no disturbances, model errors etc. 

An example of a harmonically excited nonlinear systemis the nonlinear beam system that is used in earlier 
studies to verify theoretical results. This system consists of a beam with a one-sided spring attached to 
the middle. The beam is harmonically excited in the middle by means of a rotating mass unbalance. The 
steady state response consists of at least two coexisting solutions namely, a stable i subharmonic solution 
of high amplitude and an unstable harmonic solution of low amplitude, Without control the system can 
vibrate in the stable i subharmonic solution. The control objective is to force the system into the unstable 
harmonic solution. In this way, wear and noise levels will drop, while the control effort remains small due 
to the fact that a natural solution of the systemis used. 

The nonlinear beam system has, in principle, an infinite number of degrees of freedom (DOFs). In prac- 
tice, when a model of the beam system is used, the number of DOFs will be reduced, but in general there 
will still be more DOFs than inputs. System that have more DOFs than inputs are called underactuated 
systems. Other examples of underactuated systems are robots with flexible joints and links, space robots 
and mobile robots. The DOFs of an underactuated system can be divided in two parts: the active DOFs, 
which can be influenced directly by the inputs, and the passive DOFs. The beam system, used in this 
study, exhibits only one input, applied at a quarter of the beam while the model used is based on 3-DOFs. 

Vibration reduction for this beam system has been accomplished earlier with Computed Torque Control 
(CTC) and Sliding Computed Torque Control (SCTC), in simulations by Kant [5] and experimentally by 
Heertjes et al. [3]. Both control techniques are developed to control nonlinear systems and are discussed 
by Slotine and Li [7]. With (S)CTC i t  is only possible to control the active DOFs. So the active DOFs 
can be forced into the unstable harmonic solution. These control methods, however, do not take into ac- 
count the passive DOFs. So we want to use control methods, to reduce the vibration of the beam, which 
guarantee that all DOFs are forced into the unstable harmonic solution, Besides this we want to see if i t  is 
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CHAPTER 1, INTRODUCTION 2 

possible to control the passive DOFs instead of the active DOFs in order to improve control performance 
for the total system. 

Two control methods for underactuated systems are considered, namely: Partial Feedback Lineanzahon 
(PE, Spong [SI) and Computed Reference Computed Torque Control (CRCTC, Lammerts [4]). Both 
methods make it possible to 'say' something about the behavior of the uncontrolled DOFs. They are also 
capable of controlling passive DOFs through the active DOFs. In this study PFT. and CRCTC are used to 
accanplish vibration reduction for the nonlinear beam system. CRCTC has been used earlier by Kant [5] 
who investigated the method in comparison with CTC. This study, however, omits a proper treatment of 
CRCTC. There are also doubts about the way that CRCTC has been compared to CTC, which influences 
the conclusions. Therefore CRCTC is investigated again. The goals of this study can be summarized as: 
gain more understanding of the pelSormance of both methods within our class of underactuated systems. 

During the research it  turned out that the two methods PFT. and CRCTC could not be compared with each 
other in a fair way. This would result in the fact that no conclusions could be drawn regarding the ba- 
sic difference between the two methods, To prevent this, Computed Desired Computed Torque Control 
(CDCTC) by Lammerts [4] has been used to control the beam system. This method is basically the same 
as CRCTC but can be compared with PFL in a fair way. The introduction of CDCTC is also used for 
gaining insight into the basics of CRCTC. Furthermore, i t  was expected that CRCTC and CDCTC, in 
contradiction to PFL, were able to influence the uncontrolled DOFs and so to perform better than PE. 
The outcome, however, of this study did not support this expectation, because the extra input contribution 
created with CRCTC and CDCTC, could no be related clearly to the gains, the initial condition, and the 
system dynamics which made the performance unpredictable. 

This report is set up as follows. In Chapter 2 the theoretical foundations of PFL, CDCTC and CRCTC will 
be discussed, Chapter 3 will present a case study of a cart-pole, to gain more insight in the applicability 
of the control methods. Simulation results of the nonlinear beam system with PFL, CDCTC and CRCTC 
will be presented in Chapter 4, followed by a discussion of the differences between the control methods. 
Finally in Chapter 5 conclusions and suggestions for further research will be given. 



Chapter 2 

Control Methods for Underactuated 
Systems 

2.1 Introduction 

Before turning our attention to the control methods, we start with a description of underactuated systems. 
Underactuated systems are systems which possess fewer actuators than DOFs. A simple example of an 
underactuated system is the mass-damper-spring systemin Figure 2.1. This systemhas two DOFs, i.e. the 
positions XI and xz of the masses ml and mz. Furthermore, this system has one input u working on mass 
ml. Underactuation implies that only one of the masses can be controlled in a direct way. Another exam- 
ple of an underactuated systems is a lightweight robot, where the flexibility in links and/or joints cannot 
be ignored. The nonlinear beam used in this study is a particular example of an underactuated system. 

Figure 2.1: A mass-damper-spring system with one input. 

The DOFs q E Y t n  of an underactuated systemcan be divided in two sets: a set of actuated or active DOFs 
qa E 8’ and a set of unactuated or passive DOFs qp E Em. The active DOFs represent that part of the 
DOFs that can be directly influenced by the inputs. In the example of the mass-damper-spring system 
(Figure 2.1), the active DOF is represented by xl and the passive DOF is represented by x2. Besides this 
division, the DOFs can be divided in controlled DOFs qc (as many as there are inputs), and uncontrolled 
DOFs qu. We want the choice of qc to be independent from the system configuration. Using, however, a 
specific control method, restricts the possibilities for the choice for qc. When for example CTC (Slotine 
and Li [7])  is used to control the mass-damper-spring system, only the active DOF xl can be chosen as qc. 

The control methods PFL (Spong [SI), CDCTC and CRCTC (Lammerts [4]), are especially developed 
to control underactuated system. The advantages of these methods compared with (S)CTC are the fol- 
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CHAPTER 2. CONTROL METHODS FOR UNDERACTUATED SYSTEMS 4 

lowing. Firstly, it is possible to 'say' something about the behavior of the uncontrolled DOFs, without 
explicit simulation of the system behavior. Secondly, i t  is possible to control passive DOFs instead of ac- 
tive DOFs. This freedom, however, is restricted, to some extent, by the possibilities of the used method. 

In case of vibration reduction of a harmonically excited beam system, we want to accomplish a reduction 
for all DOFs and not only for the controlledDOFs. This is where the difference between PFL and CDCTC/ 
CRCTC appears. In earlier studies a coupling between the controlled DOFs and the uncontrolled DOFs 
har heen noticed; the behavior of the controlled DOFs influences the behavior of the uncontrolled DOFs. 
It is our intention to influence the behavior of the uncontrolled DOFs by using the controlled DOFs. At the 
cost of decreasing performance for the controlled DOFs, the total performance of the system is expected 
to improve. Furthermore, it is expected that this is directly possible with CDCTC and CRCTC, due to 
the fact that CDCTC and CRCTC use an on-line calculated desired trajectory for the uncontrolled DOFs 
which means that the error feedback for all DOFs becomes possible. 

The outline of this chapter is as follows: a description of PFL will be given together with restrictions on 
the choice of qc followed by CDCTC and CRCTC. This chapter will conclude with a comparison between 
the three control methods. 

2.2 Partial Feedback Linearization (PFL) 

Feedback linearization (Slotine and Li 171) is a nonlinear control technique that guarantees desired track- 
ing behavior for the whole state, when applied to a fully actuated system, satisfying the proper conditions. 
If the system is not fully actuated, only a part of the state can be controlled using feedback linearization. 
This case is often referred to as PFL. PFL has been used by Spong [SI to control an acrobot; a robot with 
two joints and only one actuator. 

Before using PFL for control, two preparing steps have to be carried out. The first step deals with the 
choice of the controlled DOFs qc. When the controlled DOFs are equal to the active DOFs (qc = qa) 
we have the so-called collocated case, In that case PFL, is the same as CTC used by Kant [SI . We will, 
however, exploit the knowledge of the zero dynamics in order to investigate the behavior of the passive 
DOFs qp beforehand. Another possible choice for qc is qc = q p ,  which is often referred to as the non- 
collocated case. This choice is only possible when the passive DOFs are inertially coupled with the active 
DOFs and the number of DûFs in qp is equal to or iess than the number of iiipts; c ~ ~ p l i n g  is needed tg 
pass energy from the inputs to qp ,  Looking at the earlier given example of the mass-damper-spring system, 
there is no inertial coupling (the mass matrix is diagonal) between the two DOFs and so i t  is not possible 
to use PFL to control x2. The case where an arbitrary selection of the active and passive DOFs is chosen 
as the controlled DOFs, is not investigated in this study. The second step is to write the underactuated 
system in a general form: 

With M,, Map, Mpa and M,, representing the sub-matrices of the inertiamatrix M = M ( q ) ,  ha = hu (4, q)  
and h, = h, (4, q )  represent the Coriolis and centrifugal terms, and u are the inputs. fa = f a  (4, q, t )  and 
f p  = f , ( i ,  q, t )  represent forces like gravity, damping, spring, and external forces. 

M = [  MPP "-1. 
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The collocated case 

In the collocated case the controlled DOFs are equal to the active DOFs (qc = qa). The systemis partially 
feedback linearized with respect to qa. To make this possible, equation (2.2) is used to substitute GP in 
Eq. (2.1). For this purpose, Eq. (2.2) is solved for qp,  resulting in: 

q p --M-l - p p  ( M p u i a  + h p  + f p ) ?  (2.3) 

which requires MPp to be invertliie. Substituting Cq. (2.3) in Eq. (2.1) ïzsU!ts in: 

A proper choice for the input u is: 

where u is an additional control input yet to be defined. The systemequations (2.1) and (2.2) are rewritten 
using u as defined in Eq. (2.5), which results in: 

The systemis partially feedback linearized by the choice of u, resulting in a linear set of double integrators, 
Eq. (2.6) with a new control input u, and a passive part, also called the internal dynamics described by 
Eq. (2.7), which will be nonlinear in general. u can be chosen such that qu will asymptotically tend to the 
desired trajectory qad. A possible choice for u is: 

where kp and kd are I x I gain matrices. Eq. (2.8) combined with Eq. (2.6) gives an asymptotically stable 
differential equation leading to the desired trajectory for the controlled DOFs qc. 

The remaining question is how the uncontrolled DOFs in the collocated case, q p ,  behave. This can be 
investigated by looking at the internal dyrizüics G€ the systeir,, represerited by Eq. (2.7). F r ~ m  Eq. (2.7) 
follows that the internal dynamics depends on the input u, and is therefore difficult to interpret. To make 
this easier the following state variables are defined: z1 = qad - qa, 22 = ia, - ia, ql = q p  and q2 = qp .  
The closed loop system Eq. (2.6), Eq. (2.7) and Eq. (2.8) can now be written as: 

where z ,  7,  A and w(7, z, t )  are given by: 
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z is the controlled variable in this new system description. The surface z = O in state space defines an 
invariant manifold for the system; the manifold is called invariant because at the manifold the state remains 
at the manifold as time increases. On this manifold, the behavior of the system dynamics is described by: 

Spong [8] calls this the zero dynamics of the system. But by Slotine and Li [7, Chapter 6.11 the zero dy- 
namics is defined as: the internal dynamics of the system when the system output i s  kept zero by the input. 
This means that Spong redefines the output as y = z instead of y = qc. With Eq. (2.11) we investigate 
the zero dynamics with respect to the new defined output z ,  the zero dynamics of the closed loop system. 

The zero dynamics of the closed loop system Eq. (2.1 1) is independent of the gain matrices kp and kd .  

These gains, however, together with the initial condition, completely determine the position where the 
system enters the zero dynamics of the closed loop system and, thus, which particular trajectories the 
uncontrolled DOFs follow. 

The non-collocated case 

In the non-collocated case the controlled DOFs are equal to the passive DOFs (qc = qp) .  As mentioned 
earlier, this is only possible when there is inertial coupling between qa and q p  i.e. the inverse of Mpa 
exists. This can be understood physically by the fact that this coupling is needed to pass energy from 
the actuated DOFs to the unactuated DOFs. (However, energy can also be passed throughout the system 
using springs and dampers. This will be the basis for the derivation of CDCTC in the next subsection.) 
The system is locally inertially coupled if: 

rank(Mp,(q)) = m for all q E B, 

where B is a neighborhood of the origin. When this coupling is global this means that its holds for all 
q E V. There is another restriction for the non-collocated case: the number of passive DOFs, m has to 
be less than or equal to the number of inputs 1 (m  5 I ) .  

The system equations (2.1) and (2.2) can now be partially feedback linearized with respect to qp. Eq. 
(2.2) is used to substitute qa in Eq. (2.1) (instead of q p  as in the collocated case). Solving Eq. (2.2) for 
qa leads LO: 

The next step, substimuting Eq. (2.12) in Eq. (2.1), results in: 

A proper choice for u is: 

where u is an additional control input. As in the collocated case, but now with respect to the passive DOFs, 
the system equations can be written as: 

q* = v, (2.15) 

Mpa qa + Mpp + hp + f p  = O. (2.16) 
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The goal is letting qp  follow a desired trajectory qpd. For this purpose the structure of u is chosen similar 
to the collocated case Eq. (2.8), leading to: 

(2.17) 

where kp and kd are 1 x 1 gain matrices. 

The behavior of the uncontrolled DOFs (in this case qa) as again determined by the internal dynamics. 
To make the investigation of the internal dynamics easier, we again (as in the collocated case) look at the 
closed loop system. Therefore the following state variables are defined: z1 = qPd - qp,  zz = qpd - qp, 
q1 = qa and q2 = ia. The closed loop system can now be written in the same form as in the collocated 
case, resulting in: 

i = A Z ,  (2.18) 

The zero dynamics with respect to the output z can be given by: 

As in the collocated case Eq. (2.20) will be referred to as the zero dynamics of the closed loop system. 

2.3 Computed Desired Computed Torque Control (CDCTC) 

The second control technique used in this study is CDCTC. For a complete survey on CDCTC the reader is 
referred to Lammerts [4]. CDCTC is developed for the control of flexible manipulators and is used in this 
study to obtain insight in the actual difference between CRCTC (which will be explained in Subsection 
2.4) and PFL. This is due to the possibility to compare CDCTC in a fair way with PFL (which we shall 
see is not the case for CRCTC). The main difference between CDCTC and PFL which we shall discuss 
is the possibility of using errors of the uncontrolled DOFs for feedback. Besides this the introduction of 
CDCTC will explain the structure of CRCTC in a more plain manner. 

Using the coupling between <he passive and active DOR, the idea of CDCTC I s  to coritrol WI umctuiratec! 
DOF, by translating the desired trajectory for this DOF to a pseudo desired trajectory for the actuated DOF. 
Next, an input is computed which assures that the actuated DOF follows the pseudo desired trajectory, 
and so makes sure that the unactuated DOF follows the desired trajectory. The trajectory for the actuated 
DOF is computed by solving the differential equation of the passive part. To understand this idea we look 
again at the earlier used example of the inass-damper-spring system (Figure 2. i) with the following system 
equations: 

As mentioned earlierxl represents the active DOF and x~ represents thepassiveDOF. To controlxz (which 
is not possible with PFL because there is no inertial coupling) the desired trajectory for x2 has to be trans- 
lated to a pseudo desired trajectory for XI. This is done by using Eq. (2.22) where the desired trajectory 
xzd is substituted: 
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Solving Eq. (2.23) leads to a pseudo desired trajectory for xl, namely xld. Next an input is chosen in such 
a way that XI tracks the pseudo desired trajectory, or: 

u = m1u + b(X1 - Xz) + k ( q  - xz), (2.24) 

with the new input u chosen as: 

u =x1, + k d ( i l  -21,) + k , ( X l  -x1J (2.25) 

The desired result is only obtained when the initial state of the system is equal to the desired state at to 
and when there are no disturbances working on the system. 

In general, this idea has to be adapted, such that the passive DOFs follow their desired trajectories when 
the initial condition are not the same as the desired ones, and in case of disturbances. This addition of 
robustness results in CDCTC as presented below. 

To present CDCTC, the following system description is used: 

M e  + cq + Bq + Kq + f n  = H u ,  (2.26) 

where M = M(q)  is the symmetric, positive definite inertia matrix, C = C ( i ,  q)  is the matrix which ac- 
counts for the Coriolis and centrifugal terms, B is the symmetric (semi-) positive definite damping ma- 
trix, K is the symmetric (semi-) positive definite stiffness matrix, and f n  = f n ( q ,  q, t )  represents forces 
like gravity, nonlinear damping, nonlinear stiffness, and external forces. H is called a distribution matrix, 
where rank(H) = 1 with 1 the number of inputs. 

The DOFs are divided in two parts: the controlled DOFs, qc E E', where 1 is the number of inputs and 
the uncontrolled DOFs, qu E Em. Both sets can exhibit active and passive DOFs. This division can be 
written as: 

(2.27) q = L c q c f L , q u ,  

where L, and L, are permutation matrices. The only restriction on the choice of this division is that is has 
to be possible to compute a bounded desired trajectory for qu. 

The control goal can be formulated as to determine a bounded input u so that the DOFs qc track their 
desired trajectories asymptotically, under the strict condition that the DOFs qu remain bounded. When 
the tracking error is defined as: e, = qcd - qc, the control goal can be specified as follows: determine 
a bounded u such that e, and its derivative é, converge to zero asymptotically, while qu and iu remain 
bounded. 

For now we assume that i t  is possible to compute a bounded desired trajectory for qu (qud), as with the 
pseudo desired trajectory in the example of the mass-damper-spring system. How qud is computed will 
be shown in a later stage. It is now possible to present the desired trajectories as follows: 

e = q d - q =  L,eCd+L,eud. (2.29) 

The control goal is achieved if a bounded input can be found such that é + O and e -+ O for t + 00. To 
realize this Lammerts [4] has chosen H u  as: 
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where Kd and Kp are positive definite gain matrices. This choice combined with Eq. (2.26) results in the 
following error equations: 

M ë  + (C + B + Kd)i + ( K  + K p ) e  = O. (2.3 i) 

With the second method of Lyapunov, i t  can be shown that e = O is an asymptotically stable equilibrium 
point of the error equation (2.31). So with Eq. (2.30) as input of Eq. (2.26) it is guaranteed that qc will 
asymptotically converge to qcd . Furthermore, with the assumption that it is possible to compute a bounded 
solution for qud, it is also guaranteed that qu remains bounded. The remaining problem is to compute a 
bounded qud. Eq. (2.30) is a set of n equation and there are only i equation necessary to compute 1 inputs. 
The idea is to use the remaining m equation to compute qud. So Eq. (2.30) is split in two parts. An active 
part to determine the inputs and a passive part for calculating qud. Because the passive part depends on 
the actual state of the system, it has to be solved on-line. To split Eq. (2.30) into a part to compute u, and 
a part to compute a bounded qud, a new matrix N E R z x m  is introduced such that N T H  = O. With this 
new matrix N ,  Eq. (2.30) can be written as: 

(2.32) 

Whether i t  is possible to compute a bounded qud, strongly depends on the properties of Eq. (2.33). When 
Eq. (2.33) is a stable differential equation for qud, a bounded desired trajectory can be computed on-line. 
For the computation of qud we also need an initial choice for iud ( t o )  and qud ( to) .  A possible, and often 
used, choice is dud ( to) = iu (to) and qud (to) = qu(to). The desired trajectory for qu computed in this way, 
not only depends on q,., but also depends on the actual state of all DOFs, which is caused by the introduc- 
tion of the feedback of errors of all DOFs. This results in the error equation (2.3 1) which guarantees the 
desired trajectory for the controlled DOFs to be globally asymptotically stable. So i t  is possible to obtain 
a desired trajectory for qc (where qc is an arbitrary choice of q) with CDCTC, if and only if it is possible 
to compute a bounded desired trajectory for the uncontrolled DOFs. 

2.4 Computed Reference Computed Torque Control (CRCTC) 

The third and last control technique used in this study is CRCTC [4]. CRCTC is strongly related to CD- 
CTC. i t  has been üsed tci ~ciïitil01 seveïd nonlinear flexible maniplators in simdatixs E(! experiments. 
The main difference between CRCTC and CDCTC is the usage of reference trajectories instead of de- 
sired trajectories which enables the use of adaptive control. CRCTC has been used earlier by Kant [5] to 
control the nonlinear beam, however, questions concerning the applicability of the method remained. The 
influence of the reference trajectories on the control performance remained unknown. Furthermore, there 
were doubts about the validity of the comparison between CRCTC and CTC. 

The idea behind CRCTC is the same as with CDCTC. However, instead of a desired trajectory a reference 
trajectory is introduced, defined by: 

with A, a positive definite gain matrix. The introduction of the reference trajectory is a notation manipula- 
tion which makes the extension to adaptive control possible in order to account for parametric uncertainty. 
The control goal can now be reformulated with a reference error defined by: ecr = qcr - qr. The tracking 
requirements are guaranteed if eer -+ O for t + 00. When qr is needed, it has to be computed by integrat- 
ing de,. An initial value for qcr can be chosen freely, a trivial choice is q,, ( to )  = qc ( to) .  
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The input must also guarantee that q, and 4, remain bounded. Assuming that it is possible to compute a 
bounded desired trajectory qud, a reference trajectory can also be defined for 4,: 

with positive definite matrix A, and a suitable initial value. A possible choice suggested by Lammerts 
141 is qur ( t o )  = q, ( to )  and i,, ( t o )  = & ( t o ) .  q,, will be determined in a same way as qud when CDCTC 
is used. The total reference trajectory and reference error are given as: 

In order to realize the control objectives, Hu is chosen in a similar way as with CDCTC, resulting in: 

where Kr is a positive definite gain matrix. Substitution in Eq. (2.26) results in the following reference 
error equation: 

Mer + (C + B + Kr) i ,  + Ke, = O. (2.39) 

It is not possible to show with the second method of Lyapunov, that e, = O is a stable equilibrium point. 
This is caused by the fact that K is semi-positive definite. It can be shown, however, that becomes zero 
for t -+ 00 and that e, is bounded. This fact combined with the definition of e, is enough to guarantee 
that qc tends towards qcd while q,, remains bounded. 

Again the remaining problemis computing 4,. This is done in the same way as with CDCTC. Eq. (2.38) is 
split into an active and passive part using a matrix N E %lxrn .  N is chosen such that N T H  = O. The set 
of equations can be written as: 

Whether it is possible to compute a bounded q,, on-line, depends on the properties of Eq. (2.41). 

2.5 Discussion 

The three outlined control methods are developed to control underactuated systems. The advantage is that 
the user is given much more freedom in choosing the controlled DOFs, and the ability to 'say' something 
about the behavior of the uncontrolled DOFs without using explicit simulation of the system behavior. 
The three control methods have their own restriction on the choice of controlled DOFs, and the way the 
behavior of the uncontrolled DOFs is investigated. 

The first control method of this chapter was P E .  Using PFL, two cases are distinguished: the collocated 
case where the active DOFs are controlled, and the non-collocated case, where the passive DOFs are con- 
trolled. In the collocated case PFL results in the same behavior as CTC. Control of the passive DOFs is 
only possibleunder strict conditions; there has to be inertial coupling. Furthermore, the number of passive 
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DOFs has to be less than or equal to the number of inputs. The examination of the behavior of uncontrolled 
DOFs is in both cases the same, and is done with the usage of the zero dynamics of the closed loop system. 
This gives a reduction in computational effort due to the fact that the order of the zero dynamics is less 
than the order of the model under investigation. 

The second controlmethod of this chapter was CDCTC. This method can exploit not only the inertial cou- 
pling (as in case of P K )  but all possibleforms of coupling such as coupling created by dampers or springs. 
??;e chûice of the cmtro!!ed DGFs with CDCTC is nnly restricted to the possibility to compute bounded 
pseudo desired trajectories on-line. These computed pseudo desired trajectories guarantee, together with 
the chosen input, that the controlled DOFs will track the desired trajectories and that the uncontrolled 
DOFs remain bounded. It is, however, difficult to interpret the path of these computed pseudo desired tra- 
jectories physically. The computed pseudo desired trajectories enable to the possibility to use errors of all 
DOFs for feedback. It is expected that this improves the performance of CDCTC compared to PFL in for 
example vibration reduction for the harmonically excited beam system. The computation of the pseudo 
desired trajectories can certainly become a problem when the differential equations are difficult to solve, 
which limits the applicability of the hardware. 

The last control method of this chapter was CRCTC, that is stronglyrelated to CDCTC. The difference is 
that instead of the pseudo desired trajectories, reference trajectories are used. The advantage is that this 
method can be extended to adaptive control. But, it is even harder to interpret the physical meaning of 
the computed reference trajectories in comparison with the pseudo desired trajectories of CDCTC. The 
controlled DOFs can be chosen freely as long as it is possible to compute the bounded reference trajecto- 
ries. The computed reference trajectories guarantee, together with the input, that the uncontrolled DOFs 
remain bounded. The computation of the reference trajectories put, as the pseudo desired trajectories of 
CDCTC, high demands on the hardware when the differential equations are difficult to solve. 



Chapter 3 

Cart-Pole System; a Case Study 

3.1 Introduction 

To gain more insight in the usability of the three control methods, discussed in the previous chapter, the 
so called cart-pole system, an underactuated system, is used as an example (see Figure 3.1). The cart-pole 
system has been used earlier by Slotine and Li ( [7 ] )  and Spong ([8]). The advantage of the cart-pole is 
that i t  is a nonlinear system of which the behavior can be relatively easy understood. When, for example, 
the goal is to control the pole from $ = O [rad] to $ = z ,  it can be imagined, that the cart has to be pulled 
to the left before pushing i t  to the right to achieve this desired behavior. 

Figure 3.1 : The cart-pole system. 

The cart-pole system has two DOFs, the position of the cart x and the angle of the pole @. Furthermore, 
the system has one input u, the driving force on the cart. So the cart-pole has less inputs than DOFs and 
is therefore an underactuated system. The position of the cart is the DOF that can be influenced directly 
by the input and is the active DOF qa. Opposite to this, the angle is the passive DOF qp. Besides this the 
DOFs can be divided in a controlled DOF qc and an uncontrolled DOF qua There are two possible choices 
for this division. The fìrst choice is to control the position of the cart-pole (the active DOF). According 
to Section 2.3 this is called the collocated case. The second choice is to control the angle of the pole (the 
passive DOF) and is called the non-collocated case. 

In the collocated case a possible control goal can be formulated as: controlling the cart from an arbitrar- 
ily start position to a desired position within a pre-defined time interval. The difference between PFL and 

12 
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CDCTC/ CRCTC, however, appears when requirements are put on the uncontrolled DOFs. Therefore, the 
control goal used in this study for the cart-pole is: controlling the cart from an arbitrarily start position 
to a desired position, where the pole is aimed downwards, within a pre-defined time interval. In addition, 
we want to make this time interval as short as possible. In the non-collocated case, where the angle is 
controlled, the control goal is defined as: controlling the pole from an arbitrarily start angle to a desired 
angle within a pre-defined time interval. In this case the control goal is not expanded with requirements 
for the uncontrolled DOF. 

In this chapter, we will first discuss briefly the model of the cart-pole system, followed by simulations 
with the cart-pole using PFL. Also simulation of the cart-pole system using CDCTC and CRCTC will be 
presented. These simulations will be followed by a discussion on the three control methods in relation to 
each other, when controlling the cart-pole. 

3.2 Model of a Cart-Pole System 

The model of the cart-pole system can be described with the following equations of motion: 

(m, + m,) x + m, I cos 4 li) - m, 4’ sin 4 = u, 

rn, 1 cos4 i + rnp L’$ + b 4 - m, l g  sin4 = O, 

(3.1) 

(3.2) 

where m, is the mass of the cart, b a damping constant representing friction in the joint of the pole and g 
represents the acceleration due to gravity. The mass of the pole is assumed to be concentrated in a point 
mass, m,, at a distance 1 of the joint. For simplicity constants will be set at the value 1, except b and g. 
The value of b will be used as a tuning parameter and g is fixed at 9.81 [ $1, The equations of motion 
(3.1) and (3.2) can be written as: 

2x  + cos4 Q; - $’sin+ = u, (3.3) 

cos 4 X + $ + b $ - 9.81 sin 4 = O. (3.4) 

3.3 Simulations with Partial Feedback Linearization 

In order to enable simulations with PFL, the equations (3.3) and (3.4) have to be translated to the descrip- 
tion used in Section 2.2. This results in the following relations: 

M,=2 ha = -$2 sin4 f a  = 0 

M,, = 1. 
Map = Mpa = cos 4 h, = O  f p  = b 4  -9.81 sin. 

Controlling the position; the collocated case 

To show that it is possible to gain insight in the behavior of the uncontrolled DOF before explicit simula- 
tion of the controlled system behavior, we first investigate the zero dynamics of the closed loop system. 
Therefore, the system values are substituted in Eq. 2.1 1. This results in the following equation describing 
the zero dynamics of the closed loop system of the cart-pole . 

$ = -b 6 + 9.81 sin4 - cos($)&. (3.5) 
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The desired position Xd is chosen as Xd = o, xd = 0 and i d  = o. With this choice the zero dynamics of 
the closed loop system can be rewritten as: 

?J = -b$ + 9.81 sin@, (3.6) 

where b is still variable. To show the use of phase portraits in a situation like this, Eq. (3.6) is examined 
at two values of b, namely b = O [m] and b = 0.1 [E]. The phase portraits of the two situation are 
displayed in Figure 3.2. 
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Figure 3.2: Phase portraits of the zero dynamics of the closed loop system when controlling the position. 

For the situation that b = O [E], i t  is possible to distinguish two different types of trajectories for the 
pole, when the cart has reached the desired position. The first type, is presented by centers in the phase 
plane. The pole swings between two angles of the same absolute magnitude. When the pole follows the 
second trajectory type it  will turn around, giving a continuous increase or decrease of the angle 4. When 
following such a trajectory, the behavior of the pole is strictly speaking unstabie. But, as we will see, it is 
still possible to control the position of the cart. So the in- or decrease of the angle does not lead to unde- 
sired system behavior and therefore the behavior of the pole can be called limited stable. Which path the 
pole follows in the phase plane will be determined by the starting point and the control gains. The desired 
angle is in this situation not stable when the cart is in rest. Therefore i t  will not be possible to satisfy the 
part of the control goal concerning the uncontrolled DOF, when b = O [%I, except for the case when 
the zero dynamics is entered exactly on Q) = O and @ = n + n2n and n E Z. 

For the situation that b = O. 1 [ 1, an infinite number of stable foci occur. The pole will always end with 
the top aimed downwards, for the angle @ = n + n2n and n E 2, satisfying the part of the control goal 
that concerns the uncontrolled DOF. The pole will usually turn round a few times before it  starts swinging 
and finally ends in a stable end position. The behavior of the pole depends on where the system enters 
the phase plane which is determined by the control gains and the initial condition. How smaller the angle 
speed for the same angle is, at the time that the controlled DOF has reached its objective, how faster the 
pole will damp out. 
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After examining the zero dynamics of the closed loop system, simulations are carried out to realize the 
control goal. The input for these simulations is determined with Eq. (2.5). Substituting the values of the 
cart-pole, the following equation is obtained: 

where u is a new input. This new input is chosen similar to Eq. (2.8), and results in: 

where kd and kp are the control gains for the error feedback. Furthermore, an initial condition for the cart- 
pole has to be chosen. We choose the following initial values for the state variables: xo = 2 [m], $0 = O 
[rad], i 0  = O [:] and $0 = O [e]. 
The simulation results of two sets of control gains (kd = 20, kp = 100 and kd = 100, kp = loo) are pre- 
sented in Figure 3.3. This choice seems rather arbitrary, but leads to insight in the influences of the param- 
eter choice. The first interesting thing is the behavior of the controlled DOF which is the same regardless 
the value of damping. This is caused by the fact that the input compensates for the behavior of the pole. 
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(b) b = 0.1. (a) b = O. 

Figure 3.3: The behavior of x and 4 for different damping values, where the solidline represents (kd = 20, 
kp = 100 and the dash-dotted line represents kd = 100, kp = 100). 

For both values of b, we see the behavior of the pole as expected after the investigation of the zero dy- 
namics of the closed loop system. When x = Xd the input only compensated for the influence of q5 OR x, 
to keep x = Xd. The behavior of q5 is determined by the system properties which are described by the zero 
dynamics of the closed loop system. The zero dynamics of the closed loop system can, therefore, be used 
to investigate the behavior of the uncontrolled DOE It provides information whether the control goal for 
the uncontrolled DOF can be realized. For the situation that b = O [ m] it is shown that it is not possible 
to satisfy the control goal for the uncontrolled DOF except for the case when the zero dynamics is entered 
exactly on 6 = O and $J = n + n 2n and n E 2, because otherwise the movement of the pole goes on ’for 
ever’, as a result of the lack of damping in the joint of the pole. In the remaining of this chapter we will 
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only use the situation where b = 0.1 [E]. For that situation, the control goal for the uncontrolled DOF 
can be realized, as follows from the investigation of the zero dynamics of the closed loop system. 

Now we return to the influence of the control gains on the behavior of the DOFs. Compa&g the two 
sets of control gains we see that if the desired position is reached fast, i t  takes a long time for the pole to 
reach its rest position( kd = 20 and kp = 100). This in contrast to a slow behavior of the cart (kd = 100 
and kp  = 100). Informally speaking, i t  can be said that good performance for one DOF results in bad 
pefc~:mmce fer the other DOF. By looking at the poles of the error equation the choice for the control 
gain can be related to the behavior of the system. The error equation is given by: 

ë, i- kdè ,  i- kpe, = O. (3.9) 

Poles of Eq. (3.9) placed far in the left-half plane represents a relatively fast convergence of e, to zero, 
resulting in a fast moving cart. The cart passes this movement to the pole, resulting in a fast moving pole. 
This behavior corresponds with the control gains, kd = 20 and kp = 100 and the following poles -10 and 
-10. The control gains kd = 100 and kp  = 100 with the poles -98.99 and -1.01 lead to a longer period for 
the cart to reach the desired position which results in a slower moving pole. 

Controlling the angle; the non-collocated case 

Before the zero dynamics of the closed loop systemis examined, we check if the systemis locally inertially 
coupled. Only if this condition is satisfied, it is possible to control the passive DOF (the angle of the pole) 
with P E .  The inertial coupling requires that M,, has full rank. This leads to the following restriction for 
f& 

Mpa = cos q5 # o. 

If + is restricted to -in < $ < in, Mpa has full rank which satisfies the inertial coupling condition. The 
restriction that the number of passive DOFs have to be equal or smaller to the numbers of inputs is also 
satisfied, because there is one passive DOF and one input. So the control of the angle is possible when 
the range of 4 is restricted. 

To investigate the behavior of the position, when the pole has reached the desired angle, the zero dynamics 
of the ciosed loop systel?i is exarined. To mdke this exaz~inatio~ possible, Eo,. (2.20) is used, resulting 
in: 

(3.10) 

Choosing the desired angle as fpd = 0, & = O and Jd = 0, while combined with Eq. @.lo), results in the 
following equation describing the zero dynamics of the closed loop system when the pole is controlled: 

i = gtan$d = O. (3.11) 

The phase portrait of Eq. (3.1 1) is shown in Figure 3.4. 

Looking at the phase portrait, we see that when the pole reaches the desired angle, the position of the cart 
will keep increasing or decreasing with a constant speed. This behavior is strictly speaking not stable, but 
doesn’t leads to unacceptable system behavior, Therefore, the behavior is called limited stable. 
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Figure 3.4: Phase portrait of the zero dynamics of the closed loop system when controlling the angle. 

Eq. (2.14) is used to determine the input for simulation, The control input u becomes: 

n n L L 
u = (cos+ - - ) u  - 42 sin+ - - (4 - 9.81 sin+), 

cos + cos + (3.12) 

where u is a new input, To guarantee asymptotically stable tracking, the input u is chosen similar to Eq. 
(2.17), resulting in: 

The control gains are chosen rather arbitrary as: kd = 20 and kp = 100. This is done, because the only 
interest in this situation is to see if it is possible to control the angle from the initial angle, $0 = [rad], 
to the desired angle, +d = 0 [rad]. The system behavior with these control gains is presented in Figure 
3.5. The increasing position of the cart causes no problems, because x does not appear in the input and 
therefore does not lead to an increasing input. 
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Figure 3.5: The system behavior when controlling the angle. 
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3.4 Simulations with Computed Desired Computed Torque Control 

To be able to simulate with CDCTC, the cart-pole system as described by Eq. (3.3) and (3.4), has to be 
translated to the system description as used in Section 2.3. This results in the following matrices: 

It is possible with CDCTC to determine the equations for computing the input and the desired trajectory for 
the uncontrolled DOF, before deciding which DOF is controlled. This is done by substituting the system 
values in Eq. (2.32) and (2.33). When the control gains K d  and Kp are chosen as diagonal matrices, this 
results in: 

U = 2.& f COS @($d - Q) Q)d sin# + kd, 2, kPr e,, (3.14) 

(3.15) 0 = cos@& + $d + b$d - g Sin@ $- kd$ e@ + kp4  e@, 

where kdx, k d 4 ,  kpx and kd6 are the diagonal elements of K d  and K p  and the errors are defined as: 

e, = x d  - x, e@ = $d - @. (3.16) 

Eq. (3.14) is used to compute the control input while Eq. (3.15) is used compute the desired trajectory 
for the uncontrolled DOF. 

Controlling the position; the collocated case 

Whether the position can be controlled with CDCTC depends on the ability to calculate a bounded desired 
trajectory for the angle using Eq. (3.15). Rewriting this equation results in: 

$d + (b + k d , ) $ d  + kp4 @d = COS@& f g  Sin@ f kd+ Q)  + kp4 @. (3.17) 

The system values together with the control gains result in a stable differential equation for @ d ,  which 
makes i t  is possible to compute the bounded desired trajectory on-line. 

To compare CDCTC in a later stage with PFL, the initial condition and the desired trajectory for the posi- 
tion have to be the same as for PFL. The cart is again controlled from 2 [m] to O [m] and is initially at rest. 
Besides the initial condition also initial values for @do and $do have to be chosen. These values are (as 
mentioned in Section 2.3) chosen the same as the corresponding values for the initial condition, namely 
#do = 0 [rad] and &do = 0 [+l. 
Before doing simulations with CDCTC, four control gains have to be chosen. Two, concerning the feed- 
back of position errors (kd, and kpJ,  and two for the feedback of angle errors (kd$ and k p + ) .  To compare 
the simulation results in a later stage in a fair way with P E ,  the choice for kd, and kpx is constrained. We 
want that the choice results in the same feedback for i, and e, as with PFL. In that way the difference be- 
tween CDCTC and P E ,  the extra contribution to the input caused by the feedback of e@, appears. To find 
values for kd, and kpx that accomplish the same feedback, the error equation (2.39) is used and rewritten 
as : 
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By comparing Eq. (3.18) with Eq. (3.9), it follows that to realize the same feedback for e, and e,, the 
control gains for the position have to be chosen as: 

set 3 and set 4 

(3.20) 2 
kd, = (2 - COS2 $ ) k d ,  kpx = (2  - COS $ ) k p .  

Eq. (3.20) can only be satisfied with time varying control gains. So, with constant values the same feed- 
back of e, and e, cannot be realized. To compare CDCTC with PFL as good as possïlie, 2 - cos2 $ in 
Eq. (3.20) ir replaced by its minimum value I. This results in the following relations between the gains: 
kdx = kd and kpx = kp (for the values of kd and kp see previous section). Besides this, the gains for the 
angle feedback have to be chosen, We use the same two sets of values as used for the feedback of the 
position. With this choice we expect, as in Section 3.3, to gain insight. Combining the choices for k d p ,  

kp4 with those for kd,, kp , ,  leads to four sets of gains given below. Simulation results with these sets are 
presented in Figure 3.6. 

Set 1 : kd, = 20, kpx = 100, kd4 = 20, kpp = 100. 
Set 2 : kd,  = 20, kpx = 100, kd4 = 100, kpp  = 100. 
set 3 : kd, = 100, kpx = 100, kdp = 20, kpp = 100. 
set 4 : kd, = 100, kpx = 100, kd4 = 100, kpp 100. 
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(a) Set I and set 2. (b) Set 3 and set 4. 

Figure 3.6: The behavior of x and Q) for different control gains; the solid line represents set 1 and set 3 
and the dash-dotted line represents set 2 and set 4. 

When x = Xd the input compensates for the influence of $ to make sure that x remains equal to Xd. Look- 
ing at the influence of kd, and kpx , we see that again fast control of the position leads to the pole reaching 
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u 

the rest position slowly (set 1 and set 2), in contrast to slow control for the position where the angle comes 
quicker to rest ( set 3 and set 4). The influence of the gains on the feedback of the angle is not so clear. 
Looking at set 1 and set 2 we notice that the performance of the angle can be improved a little with set 2. 
This set results also in a slower convergence of e4 to zero, It is expected that the extra input contribution, 
as a result of the feedback of the angle error, effects the system longer and has a positive effect on the 
behavior for a longer period of time. Looking at set 3 and set 4 we notice the same behavior regardless 
the choice for the angle feedback. A probable explanation is that the feedback of the angle errors is too 
xxA t~ ir,f.mxce the hehavim 

-101 

To see if the improvement of the performance can be enlarged, the feedback of the angle errors is in- 
creased. This can be realized with the following choice for the gain matrices (in contrast with the earlier 
used diagonal matrices). 

(3.21) 

where one element is chosen zero. Through examining the influence of kd, and kpe for set 2 and set 4, 
the influence of the extra gains is examined for fast and slow control of the position and those gains for 
the angle feedback that can result in better performance. Simulations with several values of kd, and kPe 
resulted in the conclusion that these gains can be chosen negative, but the absolute magnitude of these 
gains cannot be chosen freely. When the absolute magnitude is too large the system behavior becomes 
unstable. The values that are used for the simulations presented in Figure 3.7 are roughly the largest that 
still lead to desired system behavior. 
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(a) kd, = 20, k ,  = 100, kd4 = 100 and k ,  = 100 (set 2). (b) kd, = 100, k ,  = 100, kd# = 100 and k ,  = 100 (set4) 

Figure 3.7: The behavior of n and 4 for different gains, where the solid line represents kde = O and kPe = 
0, the dotted line represents kd, = 100 and kPe = 1000 and the dash-dotted line represents kd, = -100 
kpe  = -1000. 

In Figure 3.7a can be seen that a smart choice, kd, = -100 and kpe = -1000, can improve the behavior 
of the pole, where the other set of extra gains has a negative effect on the performance. Furthermore, it 
is notices that the improvement of the behavior of the pole implies a decreasing performance of the cart. 
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The extra input contribution caused by the feedback of the angle errors with kd, = - 100 and kpe = - 1000 
leads to better performance for the pole. In Figure 3.7b can be seen that extra feedback of the angle errors 
does not result in a chance in the behavior. 
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Controlling the angle; the non-collocated case 

Whether it is possible to use CDCTC to control @, depends on the possibility to compute a bounded desired 
trajectory for x. To see if this is possible we rewrite Eq. (3.24) which results in: 

e- \ 
0.2 - 

0.1 - 

0- 

O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
-0.1 

cos#.& -@d - b $ d  sin@ - kd@ 6, - kp4 e@. (3.22) 

It is possible to compute xd, and by numerical integration, x d  and X d ,  as long as cos @ # o. This condition 
is satisfied when the angle is restricted to -$T < 4 < $T. So with this restriction for the angle it is 
possible to use CDCTC to control the pole. Simulation also show that control of the pole leads to the 
desired behavior for the pole as the angle is restricted (see Figure 3.8). 
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Figure 3.8: The system behavior when controlling the angle using CDCTC, where kdx = 100, kd4 = 20, 
kdx = 100, ?&E:! k d  = 190. a 

3.5 Simulations with Computed Reference Computed Torque Control 

As we have seen in the previous chapter, CRCTC is strongly related to CDCTC. The only difference is 
the usage of a reference trajectory instead of a desired trajectory. 

As with CDCTC it  is possible to determine the equations for computing the input, and a reference trajec- 
tory, before we choose which of the two DOFs is controlled. Therefore, the system values are substituted 
in Eq. (2.40) and (2.41). With Kr chosen diagonal for simplicity, this results in: 

(3.23) 
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where kr, and k ,  are the diagonal elements of K,, and the reference trajectories are defined as: 

(3.25) 

Whether Eq. (3.24) is used to compute X ,  or $, depends on which DOF is controlled. 

Contrilling the position; the collocated case 

As with CDCTC the first step is to see if i t  is possible to control the position with CRCTC. Qr, is it  possible 
to compute a bounded reference trajectory for the angle? To answer this question, Eq. (3.24) is rewritten 
as : 

;Pr + (b + k T + ) 4 ,  =cos#& +g sin@ + kr+ 4. (3.26) 

Whether a bounded reference trajectory can be computed with Eq. (3.26) depends on the system values 
together with the control gains. The system values and control gains used in this study result in a stable 
differential equation for @d, which makes i t  is possible to compute the trajectory on-line and, thus, to use 
CRCTC to control the position of the cart-pole system. 

For a good comparison between PFL and CRCTC, the initial conditions and the desired position are cho- 
sen the same as in earlier simulations. The cart is at rest at t=O [sec] and the goal is to control i t  from 
2 [m] to O [m]. Furthermore, the initial conditions for the reference trajectories have to be chosen. These 
conditions are, as mentioned in Section 2.4, chosen the same as the corresponding values for the initial 
conditions for the cart and the pole, namely: xr0 = 2 [m], qjr0 = O [radl and &o = O [e]. 
The behavior of the cart-pole with CRCTC can be influenced, at first sight, by four control gains. Two 
for the feedback of the position k,, and A,, and two for the feedback of the angle kr+ and Ad. However, 
the reference trajectory for the angle is computed with Eq. (3.26) instead of Eq. (3.25) and so Ad is not 
used to compute the reference trajectory for the angle. This results in the fact that the choice for Ad does 
not influence the reference trajectory for the angle and so the system behavior cannot be influenced with 
A@. This leaves three control gains that can influence the behavior. As with CDCTC, k,, and A, cannot 
be chosen freely. To compare CRCTC with PFL in a later stage, the feedback of i, and e, is chosen the 
sa%e as with PFL. Tv find a relatieon f ~ r  the control gains, the reference error equation is given by: 

(3.27) 

(3.28) 

Substituting the definitions for ë,, and i,, in Eq. (3.27) and comparing it with Eq. (3.9), results in the 
following equations for kr, and A,. 

It is not possible to realize the same feedback for i, and e, , with constant values for the control gains. 
To make a comparison possible, 2 - cos2 @ is replaced in Eq. (3.29), as was the case for CDCTC, by 1. 
Solving the new equations for the two sets of gains used in Section 3.3 leads to the following two sets: 
krx = 10, A, = 10, and k,, = 99, A, = 1. The last control gain, yet to be chosen is kr+ . To get insight in 
the influence of this control gain, a small value k,+ = 0.1, and a larger one kr# = 20 is used, for both sets of 
k,, and Ax. The simulations are displayed in Figure 3.9. Besides the already given initial condition, also 
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Figure 3.9: The behavior of x and 6 for different control gains and initial conditions, where the solid line 
represents the situation where kr6 = 0.1 and the dash-dotted line represents the situation where kr+ = 20. 

a simulation is presented with the initial position 40 [m] instead of 2 [m], to show the complete influence 
of the control gains. 

Looking at the simulations, fast control of the cart implies slow control of the pole whereas slow control 
of the cart implies fast control of the pole. Again we notice that when x = Xd the system can no longer be 
influenced by the input as is has to compensate exactly for the uncontrolled DOF in order to keep x equal 
to &f. Gm mur, kterest is the i~~fliience of kr+ on the performance. For the simulations where the initid 
condition xo = 2 [m] (see Figure 3.9) we see that a small value for k,+ , causes i,r to converge slowly to 
zero, resulting in a better performance for the pole. This improvement for the behavior of the pole results 
in a decreasing performance of the cart, Again, as with CDCTC, the extra input contribution, caused by 
the feedback of the angle errors, influences the behavior in a positive way. However, the influence of this 
extra input contïibution caa chaage when the initial conditioes change (for example xo = 40 [m] instead 
of xo = 2 [m]). A possible explanation for this is that the extra input contribution, caused by the feedback 
of the angle errors, cannot really be influenced. 

To see if the improvement of the behavior can be enlarged using extra feedback on the angle errors (when 
xo = 2 [m]), K, is chosen as: 

K , = [  2 1. (3.30) 

Through simulations for several values for kre , the same behavior as with CDCTC is noticed. Negative 
values improve the behavior of the pole and positive values decreasing the performance of the pole. Fur- 
thermore, the system behavior becomes unstable when the absolute magnitude of kre is too large. The 
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simulations presented in Figure 3.10, are carried out with the initial condition xo = 2 [m] while for the 
control gains (except kre), the set is used that performs the best for fast control of x (Figure 3.9), and the 
set that performs the best for slow control of x (Figure 3.9). This results in the following two sets of values 
for the gains: kr, = 10, kr+ = 0.1, A, = 10, and kr, = 99, kr4 = 0.1, A, = 1. For kre a value is chosen 
that gives best performance. 
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(a) k, = 10, kr4 = 0.1 and A, = 10. (b) krx = 99, kr$ = 0.1 and A, = 1. 

Figure 3.10: The behavior of x and 4 for different extra gains, where for the solid line kre = O and for the 
dash-dotted line on the lefthand side kre = -10 and on the righthand side kr, = -100. 

The pole reaches in both situations the desired position father using the extra feedback of kre. Looking at 
Figure 3.10a we notice that the gains kr, = 10, A, = 10 kr4 = 0.1 and Krc,lo result in a cart that is no 
longer controlled fast. But this goes together with a very good performance for the pole (even better than 
kr, = 99, A, = 1 krm = 0.1 and kre = -100). 

Controlling the angle; the nQn-CdQCated case 

Whether it is possible to use CRCTC to control q5 depends on the possibility to compute a bounded @r.  

To see i€ this is p~ssible we rewrite Eg. (3.24), resulting in: 

This equation shows similarities with Eq. (3.22) when using CDCTC. To be able to compute a bounded 
$ r ,  the angle has to be restricted to -in < @ < Zn. With these restrictions it is possible to use CRCTC 
to control the pole. Simulations show that control of the pole with CRCTC leads to the desired behavior 
for the pole (see Figure 3.11). 
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Figure 3.1 1: The system behavior when controlling the angle using CRCTC, where k7; = 0.1, kr4 = 10 
and A4 = 10. 

3.6 Discussion 

In this chapter three control methods have been used to control the cart-pole system. Only in the collo- 
cated case, when the position is controlled, the difference between PFL and CDCTCI CRCTC appears. 
Therefore, the discussion is restricted to the collocated case, where the control goal is to get the cart from 
an initial position to the desired position, and to get the pole in the rest position as fast as possible. To 
make a comparison between the three methods possible, the two sets of PFL are printed together with 
the corresponding best sets of CDCTC, and CRCTC, in other words the sets that lead to almost the same 
feedback for the position errors. 

The first control method that is used is PFL. To get insight in the behavior of the uncontrolled DOF the 
zero dynamics of the closed loop system is examined. When the behavior of the uncontrolled DOF is 
known, the conditions for good performance for the uncontrolled DOF can be derived. Simulations with 
P K  tiimed out that the recpirements for the position and the pole were contradicting. Quick control of 
the cart resulted in slow control of the pole and the other way round. 

The Second control method that is used is CDCTC. CDCTC not only uses e, for feedback, as with PFL 
but also eb, which results in an extra input contribution to influence the system behavior. To investigate 
the influence of this ex&z i q i i t  contribution, CDCTC has to be compared with PFL when the feedback for 
e, is chosen equivalent. This is not possiblefor the cart-pole system, However, the gains for the feedback 
of e, are chosen in such a way that the feedback is close to that with PFL. In Figure 3.12a we see that the 
performance of the pole with CDCTC is slightly better than with PFL. In Section 3.3 is shown that extra 
feedback on e4 (when Kd and Kp are not diagonal), results in a larger extra input contribution, and can 
improve the behavior of CDCTC. So, i t  is reasonable to assume that the improvement of CDCTC in com- 
parison to PFL is caused by this extra input contribution. Whereas, the performance of CDCTC in Figure 
3.12b is the same as that of PFL, there is no set of gains found that realized an extra input contribution that 
could change the behavior of the cart-pole. This is caused by the fact that the influence of the gains on 
the desired trajectory for the angle, and so the influence on the extra input contribution, remain unclear. 
It is only possible to influence the speed in which eb converges to zero, and to some extent to enlarge the 
extra input contribution by extra feedback. However, we are not able to manipulate the form, and so the 
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(a) PFL -+ kd = 20, kp = 100. 
CDCTC -+ kd, = 20, k ,  = 100, kd, = -100, 

(b) PFL + kd = 100, kp = 100. 
CDCTC + kd, = 100, k ,  = 100, kd, = O, 

kpe = -1000, k+ = 100, kp+ = 100. k ,  O, kd+ = 100, kp4 = 100. 
CRCTC -+ krx = 10, kre = -10, kr# = 0.1 A, = 10. CRCTC -+ k, = 99, k,, = -100, kr+ = 0.1, A, = 1. 

Figure 3.12: The behavior of x and 4 for the different control methods, where the solid line represents 
PFL, the dotted line represents CDCTC, and the dash-dotted line represents CRCTC. 

influence, of the extra input contribution. 

The last control method that is used is CRCTC. CRCTC uses, as with CDCTC, both the feedback of po- 
sition errors and the feedback of the angle errors. In comparison to CDCTC, however, i t  uses & instead 
of ed. It is not possible to compare CRCTC in a fair way with PFL because i t  is not possible to realize 
the same error feedback for e, with both control methods. The same approach, as with CDCTC in find- 
ing a smart relation between the gains of CRCTC concerning the feedback of the position and the gains 
of PFL, is used, making a sort of comparison possible. Looking at Figure 3.12a CRCTC performs much 
better than PFL, and CDCTC. As with CDCTC, the extra feed'oack on e,, (when .U, is not &;2g0~21) can 
improve the behavior, and it is reasonable to assume that this improvement is caused by the extra input 
contribution. In Figure 3.12b is found that again the behavior is improved with CRCTC in comparison 
to PFL. But, this improvement is less then in Figure 3.12a. However, it is not possible to guarantee that 
there are no other sets of gains that perform better. This is caused by the fact that the influence of the extra 
input contribution is not understood. In Section 3.5 is found that for the same gains, a change of the ini- 
tial condition resulted in a different extra input contribution. The reason for this is the fact that the extra 
input contribution cannot be influenced with the control gains in a structural way, so it  is not possible to 
influence the system behavior in a user desired way. 

Summarizing can be said that the best performance for the cart-pole is realized with CRCTC. There is no 
guarantee, however, that there are no sets for CDCTC and CRCTC that result in better performance. The 
lack of predictability of the influence of the extra input contribution makes it hard to find the best perfor- 
mance for the cart-pole. The unpredictability of the extra input contribution is a result of the dependency 
of the control gains and the initial conditions that influence in an unclear manner the extra input contri- 
bution. Furthermore, the extra input contribution cannot be understood physically because the desired/ 
reference trajectory is not physically interpretable. 



Chapter 4 

Control of the Beam with One-Sided 
Spring 

4.1 Introduction 

In the previous chapter we have seen how to control the cart-pole system with P E ,  CDCTC and CRCTC, 
considering the influence of the control gains on the system behavior. Applying that knowledge the three 
control methods are used to realize vibration reduction for a nonlinear beam system. A description of 
the nonlinear beam system will be given in the next section. Here it is mentioned that the beam system 
has a one-sided spring attached to the middle where it is harmonically excited. From earlier studies i t  is 
known that the steady-state response has at least two natural solutions; a stable i subharmonic solution 
of high vibration amplitude and an unstable harmonic solution of low vibration amplitude. Furthermore, 
the beam system has in principle an infinite amount of DOFs. From a computational point of view, this 
amount has to be reduced. Nevertheless, there still will be more DOFs than inputs, so we still have to deal 
with an underactuated system. 

Trying to realize vibration reduction for the nonlinear beam system, the control goal is defined as: forc- 
ing the nonlinear beam system from a stable i subharmonic solution into an unstable harmonic solution 
in a pre-defined time interval. We want to realize this vibration reduction for the entire beam, thus, for all 
DOFs. In the case that there are requirements for all DOFs, it is expected that CDCTC and CRCTC can 
perform better than PFL due to tne possi'oiiity of error feedback for $1 the Unconircl!ed DOB. Besides 
this we want to see if it is possible, with the control methods under study, to guarantee that all DOFs will 
follow the unstable harmonic solution of the beam. Up till now this was only possible for the controlled 
DOF, using (S)CTC, while i t  was assumed for the uncontrolled DOFs. 

In this chapter we will derive a model of the noníinear beam system, which will be followed Sy siaula- 
tions with PFL to search for that set of gains that results in the best performance for the nonlinear beam 
system. After that, simulations with CDCTC will be given in order to improve the performance of PFL. 
The same will be done for CRCTC. These simulations will be followed by a discussion where the results 
of this chapter will be summarized. Furthermore, these results will be related to the cart-pole example of 
Chapter 3. 

4.2 Model of the Beam with One-sided Spring 

In this section a short derivation of the model of the beam with one-sided spring is given. For more infor- 
mation concerning the beam and the derivation of the model the reader is referred to Fey [2]. The beam 

27 
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,one-sided 
leaf spring x, spring 

with one-sided spring is schematically presented in Figure 4.1. The system consists of a beam (L=1.3 
[m], W=O.Ol [m] , H= 0.09 [m]) with a one-sided spring attached to the middle of the beam, When the 
displacement of the beam in the middle is positive, the one-sided spring results in an extra force acting on 
the system. The beam is harmonically excited in the middle. This excitation force is caused by a rotating 
mass unbalance. The control force can be applied with an actuator placed at a quarter of the beam. 

?.--ieaf spring 

1 
r I 
I 650 [mm] 
I 1300 [m] I 
r i 

Figure 4.1: A schematical view of the nonlinear beam system. 

As mentioned earlier, the beam has an infinitive amount of DOFs. To derive a model that can be used for 
simulations the number of DOFs has to be reduced. With the use of DIANA [I 1, a finite element package, a 
model of the beam is obtained. The linear beam is modeled with 86 finite elements resulting in 87 nodes, or 
DOFs. This amount of DOFs is still too large with respect to the calculation effort needed for the nonlinear 
analysis. The amount of DOFs is reduced with a component mode synthesismethod (Vorst [9]). Damping 
is added to the reduced model by means of modal damping <, which is chosen equal for every mode (< = 
0.02). For practical reasons a %DOF model is obtained. The column q = q(t) ,  of the %DOF model, is 
defined as qT = [quat) qm(t) { ( t ) ] ,  where quat) is corresponding with the interface node for the control 
force, qm (t) is corresponding with the interface node for the one-sided spring and the excitation force, and 
<(tj is a vk:d DOF, cm-espending with the first interface eigenmode of the reduced linear system. qu 
is the active DOF while both qm and $ are passive DOFs. The %DOF model of the beam with one-sided 
spring, can be written as: 

where M is the mass matrix, B the damping matrix, K the stiffness matrix and H l ,  H2, H3 the so-called 
1 x 3 transition matrices. M ,  B, and K are symmetric positive definite matrices. For the values of the 
matrices see Appendix A. Fnz (4)  represents the one-sided spring and is defined as: 

with knl the stiffness of the one-sided spring, k,l = 1.65 lo5 [:l. The harmonic excitation force is given 
by: 
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f e  is the excitation frequency and me is a rotating point mass at radius re, inere is chosen as 
0.984 [kgm]. 

From earlier studies it  follows that this 3-DOF model describes the frequency behavior of the beam ac- 
curate up to an excitation frequency of 100 [Hz]. At the excitation frequency of 37 [Hz] two coexisting 
solutions exist. A stable i subharmonic solution with a high amplitude and an unstable harmonic solu- 
tion with a low amplitude. As mention in the introduction of this chapter the control goal is to control 
the system h m  the utdde i s’?hhamonic solution to the unstable harmonic solution to obtain vibration 
reduction. An advantage of stabilizing the unstable harmonic response lies in the fact that i t  is a natu- 
ral solution, which means that no control effort is needed once stabilized. With DIANA it is possible to 
calculate this unstable solution which represents the desired trajectory needed for control. The desired 
trajectory qd is approximated using a truncated Fourier series. This enables easy derivation of the desired 
displacement, velocity, and acceleration during simulations. The Fourier coefficients needed for the ap- 
proximation are given in Appendix A. 

4.3 Simulation with Bastial Feedback Linearization 

The first control method that is used to realize vibration reduction for the beam system is PFL. The model 
of the beam system (Eq. (4.1)) has to be related to the system description used with PFL (Eq. (2.1) and 
(2.2)). This gives the following relations: 

where the values for the system matrices are given in Appendix A. The DOFs have to be divided in con- 
trolled and uncontrolled DOFs. With PFL two cases can be distinguished. The ñrst case, where the active 
DOF is the controlled DOF and the passive DOFs are the uncontrolled DOFs, is called the collocated 
case. In the second case the passive DOFs are chosen as the controlled DOFs. This case is called the 
non-collocated case. 

coniroi O f  the aetucitûï DOF; the co!!cczted case 

Before PFL is used to realize vibration reduction in simulations, the zero dynamics of the closed loop 
system is examined. This is done to gain insight in the behavior of the uncontrolled DOFs, and to see if 
the uncontrolled DOFs will reach there desired trajectories (the unstable harmonic response of the beam 
system). To investigate the zero dynamics of the closed loop system, the values of the beam system have 
to be substituted in Eq. 2.1 1. This results in the following equation: 

Simulation of the zero dynamics of the closed loop system for several initial condition of qp always re- 
sulted in the fact that qp converged to the desired trajectory qpd,  which made it reasonable to assume 
globally asymptotically stable behavior for qp.  Moreover, Sanders [6] showed, that this assumption can 
be justified from a theoretical point of view, by applying Popov’s criterion (Slotine and li 171). 

To control qa with P E ,  the input u has to be determined. This results, using Eq. (2.5), in: 

(4.5) 
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This input introduces a new input u that is chosen similar to Eq. (2.8), resulting in: 

with two control gains kd >. O and k, > O to influence the system behavior. To simulate the system behav- 
ior the initial conditions have to be chosen. For the initial condition the beam is set at rest at t = O [sec]. 
The fist second no control is applied (u = O for t < 1 [sec]). This enables the beam to reach the stable i 
subharmonic response with large vibration amplitude. At t = 1 [sec] the control is started so the beam is 
forced towards the unstable harmonic response, reducing vibration amplitude. 

To find the gains that result in the best performance under the conditions as given above, a usable definition 
for the performance has to be derived. To quantify the performance, the time is used, needed for all DOFs 
to reach the desired unstable harmonic response. In practice it is not possible to find that time exactly due 
to numerical errors in the approximation of q d .  Therefore, the following definition is used: the largest 
period ti needed for  the error; abs(ei) = (qid - qi), to become smaller than eim and remain smaller. i 
represents one of the three DOFs. The value for ei,,mx is chosen at a 5% level of max(qi,) - min(qid). 

In order to stress out the influence of the gains, the error equation of the beam system, using PFL, is written 
as : 

e, + kd e, + kp e, = O, (4.7) 

where kd and kp  are chosen as : 

-A and -q represent the poles of the error equation (4.7). The choice of the values for the gains is re- 
stricted to positive reals. When the poles are placed far in the left-half plane, qud is reached fast. The 
influence of the gains on the behavior of the uncontrolled DOFs is not that obvious. It is obvious that qp 
reaches its desired trajectory qpd always at a later time than q,, due to the flexibility that connects qp with 
q,; in case of a rigid body qPd is reached at the same time as qud, Furthermore, when qa reaches quad the 
input only compensates for the behavior of qp to keep q, at qad. The behavior of qp  is completely deter- 
mined by the system properties and will converge to qPd. How long it  takes to reach qPd is determined by 
the values of qp at the time that qa reaches qud, in cther words the state in which the zero dynamics of the 
closed loop system is entered. Applying numerical studies, it was noticed that when q, was controlled 
fast, this resulted in a bad entrance into the zero dynamics of the closed loop system, resulting in a long 
time needed for q p  to reach qpd . This long time is caused by the excitation of the higher modes due to the 
fast control of the beam. However, controlling q, slowly resulted in a longer period for 4,. This lead to 
the conclusion that there should exist a set of g a k  tha: would result in ti minimal time seeded for control. 

To find the optimal set of control gains, ti is plotted for each of the three DOFs as a function of the two 
control gains, resulting in the 3-D plots as shown in Figure 4.2. Looking at this figure, the behavior that is 
mentioned before can be noticed. For large gains, q,, is reached fast while qpd is reached slowly. Whereas 
for small gains, qud is reached slowly while qpd is reached shortly after q,,. The best performance is 
accomplished with h = 30 and q = 30 (kd = 60 and k ,  = 900). These gains result in the following end 
times: tued = 1.24 [sec], tmed = 1.76 [sec] and tted = 1.96 [sec]. The system behavior of the DOFs 
during simulations is presented in Figure 4.3. 
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Figure 4.3: The behavior of the nonlinear beam system when controlled using PFL with the optimal set 
of gains: kd = 60 and kp = 900. 
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Control of the passive DOFs; the non-collocated case 

The first thing that is done in the non-collocated case is checking if the conditions, to make control with 
PFL possible, are satisfied (see Section 2.2). First, the systemhas to be locally inertially coupled; as Mpa 
has full rank the condition for coupling is satisfied. Second, the number of qp has to be less than or equal 
to the numbers of inputs; as the number of qp = 2 and there is only one input, the second condition is not 
satisfied and control with PFL is not possible. 

Nevertheless, there are some possibilities to make control of q p  possibie with EL Tne i%st optrun is to 
use the fact that the two desired trajectories for qp (qmd and $d) are not independent. They are both part of 
the unstable solution of the uncontrolled beam system. The second option is to adapt PFL in such a way 
that control of a part of qp becomes possible, For example trying to control qm instead of both passive 
DOFs. Both option are not investigatedfurther in this study because it is expected that the systemexhibits 
non-minimum phase behavior when controlling qm. If the system exhibits non-minimum phase behavior 
control with PFL is not possible. In Slotine and Li [7], i t  is showed that non-minimum phase systems 
cannot be controlled with control methods that achieve perfect or asymptotic convergent tracking. PFL is 
such a method. 

To find out if a system has non-minimum phase behavior the following definition by Slotine and Li [7] for 
a minimum phase system is used: The nonlinear system is said to be asymptotically minimum phase ifthe 
zerodynamics i s  asymptotically stable. Reversely can be said that a nonlinear system is non-minimum 
phase if the zero dynamics is unstable. To verify if the beam systemis a non-minimum phase system when 
qm is controlled, we have to investigate the zero dynamics of the beam system where qm is considered as 
the output. This results in the following equation describing the zero dynamics: 

The output qm is assumed to be zero (see the definition of the zero dynamics in Section 2.2) and qu is 
represented by the uncontrolled DOFs [qa $1'. By the fact that qm is zero, the force of the one-side spring 
is zero, resulting in a linear differential equation (4.9) describing the zero dynamics. Assuming that the 
right side of Eq. (4.9) is zero, the resulting differential equation is unstable; the poles of the remaining 
linear equation are: 1.6 lo3, -1.5 lo3 and -7.25 3.6 lo2 i. With this knowledge, i t  is reasonable to assume 
that Eq. (4.9) is unstable and that the nonlinear beam system is a non-minimum phase system, when con- 
troiiing qm. 

The fact that the beam system has non-minimum phase behavior when controlling qm can be made rea- 
sonable in another way. It is know that non-minimum phase systems show a typical behavior when a step 
in the input is applied on the system. The output will move in the opposite direction expected from the 
input before moving in the expected direction. To see if the bearn system shows this behavior we sim- 
ulate the behavior of the system with a positive step as input on qa whereas the behavior of the output 
qm is observed. qm shows the typical behavior of a non-minimum phase system (see Figure 4.4). This 
non-minimum phase behavior can be understood physically, by the fact that the third eigenmode of the 
linear beam plays an important role. At the actuator position the influence of this mode is in the opposite 
direction compared to the influence of this mode at the middle of the beam. 

4.4 Simulation with Computed Desired Computed Torque Control 

The second control technique that is used to realize vibration reduction for the nonlinear beam system is 
CDCTC. The model description of the beam system Eq. (4.1) has to be related to the one used with CD- 
CTC, see Eq. (2.26). The system matrices M ,  B, K are the same for both descriptions, for the values we 
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Figure 4.4: The response of qm when a step in the input is applied on the system. 

refer to Appendix A, while C = O due to the absence of Coriolis and centrifugal forces. For the remaining 
matrices of CDCTC the following relations are given: [ O o 1. H = H 3 = [ 8 1 ;  N = [ i  O 0  i ] .  

f n  = Fn1 - Fe 

As in Section 3.4 i t  is possible to give the equations for computing the input and the pseudo desired trajec- 
tories for the uncontrolled DOFs, before deciding which DOF is controlled. This results, using Eq. (2.32) 
and (2.33), in the following equations: 

u = M1,1:3@ú + B1,1:34ú + K1,1:3qd + fn, + Kdl ,~ :3  e + Kpi,J:3e? 

0 = MZ:3,1:3& + B2:3,1:3& + &:3,1:3qd + fn,, + K&3,1:3 e + Kp2:3,1:3e, 

(4.10) 

(4.1 1) 

where Kd and Kp are gain matrices. Eq. (4.10) is used to compute the input and Eq. (4.11) is used to 
compute the pseudo desired trajectories for the uncontrolled DOFs. These pseudo desired trajectories 
are not the same as the desired trajectories computed with DIANA that represents the unstable harmonic 
response. 'To separate the desired trajectories from the pseudo desired tïâjectûries, the subscri~t E is wed 
when referred to the pseudo desired trajectories. The division between the controlled and the uncontrolled 
DOFs is written as: 

4 = Le qc  + L qu,  (4.12) 

depend on which DOF is controlled. With Eq. (4.12) the column qd used where the values of Le and 
in Eq. (4.10) and (4.11) is written as: 

qd = LC q C d  + &A q u D .  (4.13) 

Since there is one input, one DOF can be controlled. As there are three DOFs, three cases can be dis- 
tinguished. In the first case the active DOF qa is controlled. This case is called, according to PFL, the 
collocated case. In the second case qm is chosen as the controlled DOF. Despite the fact that in this case 
not all passive DOFs are controlled, this case is called, in agreement with PFL, the non-collocated case. 
In the third case the virtual DOF i j  is chosen as the controlled DOF. However, this case is not investigated 
in this study because i j  represents no physical DOF, which means that error feedback in practice becomes 
more difficult due to the fact that i j  cannot be measured. Whether the chosen DOF can be controlled in 
the three cases depends on the possibility of computing a bounded quD . 
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Control of the actuator DOF; the collocated case 

In the collocated case qa is chosen as the controlled DOF. The values for L, and L, can be given as: 

The h-st thing tû du is :o &;e& .,:.lether U beiindec! psecdo desired trajectory for qu can be computed. 
Therefore, Eq. (4.11) is written as: 

where: 

Whether Eq. (4.14) can be used to compute a bounded solution for quo depends on the system values. 
The nonlinear beam matrices result in a stable differential equation for qun, This makes i t  possible to 
compute bounded pseudo desired trajectories for the passive DOFs and, thus, satisfying the condition for 
using CDCTC. To make sure that vibration reduction is realized for the entire beam, all DOFs have to 
become equal to the unstable harmonic response, eventually. This is not possible with CDCTC, it can 
only be guaranteed that qu remains bounded. However, CDCTC does guarantee that qc becomes equal 
to qcd . In Section 4.3 is shown that the behavior of qu can then be described by the zero dynamics of the 
closed loop system. To make sure that vibration reduction is realized for the whole beam, again i t  has to be 
shown that qud is a globally asymptotically stable solution of the zero dynamics of the closed loop system. 

To find out which control method performs best, PFL or CDCTC, a comparison has to be made for the 
same simulation conditions. The initial conditions are the values of q and 4 at t = 1 [sec]. Furthermore, 
the initial conditions for quD and &, have to be chosen. As in Section 3.4 these conditions are chosen the 
same as the initial values for qu and qu at t = 1 [sec]. To quantify the performance of the control methods, 
the same definition as in Section 4.3 is used, Since we are not interested in the time the system needs to 
reach the psexdc desired tsjertcz-ies, the e ~ o r  e* instead of e is used$, because we are interested in the time 
the system needs to reach the unstable harmonic response; e* is defined as e* = qd - q and q; represents 
the unstable harmonic response. 

Trying to find the set of control gains that performs better than P E ,  a control gain study has been carried 
out. Initially, only diagonal gain matrices were used tc restrict the number of gains that had to be chosen. 
The influence of the gains on the performance, however, is very complex because the extra input contri- 
bution cannot be predicted. This extra input contribution is a result of the feedback of the uncontrolled 
DOFs. Carrying out various simulations revealed no possibility to improve the performance compared to 
that with PFL. Using gain matrices with non-diagonal elements could not change this. An explanation 
can be given when looking at the error equation of CDCTC: 

2 f M-' ( B  f Kd) + M-' ( K  + K p )  e = o. (4.15) 

In this equation i t  can be seen that the feedback of errors is partly determined by the systemmatrices. This 
makes the error feedback coupled with the system dynamics which means that i t  is not possible to go be- 
yond the error reduction determined by the system dynamics. Especially large values of K cause large 
imaginary parts of poles, or poles that are placed far in the left half plane. To illustrate the coupling of the 
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feedback with the system dynamics, simulations are presented in Figure 4.5, where the gain matrices are 
being kept zero. In Figure 4.5b not e, = quo - qu but e: = qud - qu is displayed, as we are interested in 
the time when the system reaches the unstable harmonic response. 

1 
0 5  1 1 5  2 25 9 - 0 4 1 1  0 5  1 5  2 5  3 

x IO-' 

t [sec] t [sec] 

Figure 4.5: Simulations of the beam where the dotted line represents CDCTC (Kd = O, Kp = O )  and 
the end times of CDCTC are marked with x. The solid line represents the behavior with PFL (kd = 15, 
kp = 1.9 10') and the end times of PFL are marked with *. 

To illustrate the influence of the extra input contribution a comparison of simulations with CDCTC and 
P E  has been made. To do this in a fair way the influence of the feedback of i, and e, has to be the same 
for both control techniques. This results in the following relations between the control gains: 

When the control gains satisfy Eq. (4.16), the extra input contribution is the only difference between the 
two control methods. By comparing simulations, it can be seen that the extra input contribution of CDCTC 
diiays has a neg2t:ve i r f~ence  o11 the performance. To show this a simulation (kd = 15, kp = 1.9 lo5) 
with PFL together with a simulation (& = O, Kp = O )  with CDCTC is displayed in Figure 4.5. A lack 
of explanation for the negative influence of the extra input contribution on the performance is due to the 
fact that the influence of the gains on this extra input contribution remains unclear. Furthermore, the ex- 
tra input contribution is determined by the pseudo desired trajectory, which is not related to the unstable 
harmonic response. 

To see if it is possible to realize the same performance with CDCTC as with PFL we change the input. 
This is done in such a way that the feedback can be chosen without a coupling to the system dynamics. 
The new input is: 

Hu = Mqd + B q  + K q  + &i + Kp e + fn, (4.17) 

where Kd and Kp are constant diagonal gain matrices. This new input results in the following error equa- 
tion: 
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The error equation shows that with this new input the error feedback is no longer determined by the system 
matrices and can be chosen as desired. This new input will be referred to as CDCTC*. To use CDCTC* 
in the collocated case it  has to be possible to compute a bounded quD, To compute quo, the passive part 
of Eq. (4.17) is written as: 

MUqUD + Kd, 4 U D  f Kpu q U D  = qcd f Kd, q C d  + K p c  qcd + N T f n  (4.19) 
+(Bu - K i u > 4 u  + (Be - Kdc)ec + ( K u  - K p , ) q u  + (Kc - Kpc)qc) .  

(4.19) is a stable differential equation for quD which makes the on-line computation of a bounded quo pos- 
sible. 

As we want to realize the same performance as with P E ,  the initial conditions have to be chosen similar. 
Within the simulations the gain matrices Kd and K p  are chosen as: 

The error equation can be written as: 

ë + Kd 6 + K i  e = O. (4.21) 

In the case that the gain matrices are chosen diagonal, the extra input contribution becomes zero, resulting 
in the same performance as with PFL. In the case that the gain matrices are not diagonal, the extra input 
contribution has, as with CDCTC, a negative influence on the performance. 

Control of the DOF at the middle of the beam; the non-collocated case 

The controlled DOF in the non-collocated case is qm. In Section 4.3 was shown that when qm is con- 
trolled, non-minimum phase behavior occurred. Non-minimum phase behavior makes is impossible to 
use control methods that achieve prefect or asymptotic convergent tracking errors (Slotine and Li, [71). 
CDCTC is a control method that achieves asymptotic convergent tracking errors and, therefore, control 
with CDCTC in the non-collocated case is not possible. 

4.5 Simuiation with Computed Refeïernce Comp~ted TQIX~W C ~ n t d  

The third and last technique that is used to control the beam system is CRCTC. The system description 
used for CRCTC is the same as the one used for CDCTC. 

It is possible with CRCTC, jusc as i t  is with CDCTC, to give the equations for the computation of the input 
u and the reference trajectories qr, before it is clear which DOF is controlled. These equations are given 
by (See Section 2.4): 

0 = M2:3,1:3qr + B2:3,1:34r + K2:3,1:3qr + fn23 + Kr23,1:3 6 - 7  (4.23) 

where Kr is a gain matrix, and the reference trajectories are defined as: 

(4.24) 
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The active part (Eq. (4.22)) is used to compute the input and the passive part (Eq. (4.23)) is used to com- 
pute qur. In the definition of &,, iu, is used to make a distinction between the pseudo desired trajectory 
ill, and the unstable harmonic response represented by qud. However, as Liu, is computed with Eq. (4.23) 
the value of SU,  remains unknown. 

As with CDCTC it is possible to distinguish three cases when selecting the controlled DOF. With CRCTC 
only the collocated case, where qG is controlled, is investigated. The two other possible cases are omitted 
due to different reasms. ??le case where is controlled i s  omitted because control with CRCTC is im- 
possible as a result of non-minimum phase behavior (See the non-collocated case in Section 4.3 and 4.4). 
The case where < is controlled is omitted because in practice the displacements and velocities cannot be 
measured. 

Control of the actuator DOF; the collocated case 

Using CRCTC in the collocated case means that the active DOF qa is controlled. This only leads to the 
desired behavior when i t  is possible to compute a bounded qUr. Therefore Eq. (4.23) is written as: 

(4.25) 

with: 

K,,, = NTK, Lu K,, = NTK,L,. 

For the remaining system matrices and the values for L, and L, the reader is referred to the collocated case 
of Section 4.4. The system values of the nonlinear beam system together with the control gains result in 
a stable differential equation for qu,, which enables the computation of bounded reference trajectories. It 
is not possible to guarantee that all DOFs will reach the unstable harmonic response. CRCTC only guar- 
antees that qu remains bounded while q, reaches qcd, Again the zero dynamics of the closed loop system 
describes the system behavior when q, = qcd. The only way to be sure that all DOFs reach there desired 
trajectories, is by showing that qud is a globally asymptotically stable solution of the zero dynamics of the 
closed loop system (see Section 4.3). 

Simiihations with CRCTC are carried out under the same conditions as used earlier with PFL and CDCTC. 
For CRCTC the initial conditions of qr and &, are chosen the same as the corresponding values for q and 
iu at t = 1 [sec]. The control per€ormance is determined with the same definition as used in Section 4.3. 
Again e* is used instead of e, where e* = q: - q, and q: is the column that represents the unstable har- 
monic response of the beam system. 

An extensive control gain study has been carried out to find a set of gains that makes CRCTC perform 
better than PFL Just like the other two control techniques, the input of CRCTC compensates only for the 
behavior of qu on q, when q, = qcd . The system behavior is insensitive for changes in the control gains. 
Furthermore, the little influence that is noticed when changing the gains is very difficult to interpret due 
to the extra input contribution, caused by the feedback of i,, The best performance that is found with 
CRCTC is realized with K, = O and A, = 10 and is shown in Figure 4.6. For this set of gains the end 
times are la,& = 1.25 [sec], tmed = 1.95 [sec], and t ~ , ~  = 2.17 [sec] which are slower than the end times 
that can be realized with PFL. 

To explain the system behavior using CRCTC, the error equation is given as: 

(4.26) 
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Figure 4.6: The behavior of the nonlinear beam system when controlled with CRCTC, with the following 
set of gains:K, = O and A, = 10. 

Using the definition for e,, Eq. (4.26) is written as: 

M e +  ( M A  + B + &)e + ( ( B  + K,)A + K ) e  + KA e = O .  (4.27) s 
This error equation shows that the feedback is partly determined by the system matrices. The feedback, 
as a result of the system matrices, is a possible explanation for the insensitivity of the performance for 
changes in the gains. The coupling of error feedback with the system dynamics makes i t  impossible to 
go beyond the error reduction determined by the system dynamics. It, however, only partly explains the 
decreasing performance with CRCTC in relation to PFL. 

CRCTC cannot be compared with PFL in a fair way in order to find orit what the infiue~ce is of the extrô 
input contribution due to the integral action. It remains unclear if the difference in performance is caused 
by this integral action or by the extra input contribution resulting from the error feedback of the uncon- 
trolled DOFs. The influence of the control gains on the reference trajectories remain unclear, and as the 
extra input contribution is determined by the reference trajectories the influence of the gains on that con- 
tribution remain unclear. Furthermore, the reference trajectories, and so the extra input contribution, are 
not related to the desired trajectories for the beam. 

The input of CRCTC can be adapted in such a way that the integral action disappears from the error equa- 
tion. Furthermore, the input can be chosen such that there is no longer a coupling between the feedback 
and the system dynamics. However, this adaptation has not been implemented because, as shown with 
CDCTC, no knowledge on the influence of the extra input contribution could be gained by doing so. 

4.6 Discussion 

In this chapter three control methods were used to control the nonlinear beam system. The objective was to 
realize vibration reduction for the entire beam by controlling one DOF to its unstable harmonic response. 
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For P E  two cases have been distinguished: control of the active DOF (the collocated case) or control of 
the passive DOFs (the non-collocated case). In the first case the usefulness of the zero dynamics of the 
closed loop system has been shown, By proving that the desired trajectories for the uncontrolled DOFs 
are a globally asymptotically stable solution of the zero dynamics of the closed loop system, vibration 
reduction for the entire beam could be guaranteed. The total performance was determined by the poles 
of the error equation of the controlled DOF and the values of the uncontrolled DOFs when entering the 
zero dynarrics of the closed lnep system. Control in the second case, the non-collocated case, was not 
possible because there were m-ore DOFs than inputs. 

For CDCTC also two cases have been distinguished. First, the collocated case where the active DOF is 
controlled. Second, the non-collocated case where the middle of the beam is chosen as controlled DOF. 
With CDCTC it can only be guaranteed that the uncontrolledDOFs remain bounded. To guarantee that the 
uncontrolled DOFs approach the unstable harmonic response, this response has to be a globally asymp- 
totically stable solution of the zero dynamics of the closed loop system. In the collocated case no set of 
gains was found that resulted in better performance compared to PFL. In contrast to the position control 
of the cart-pole, where the extra input contribution, created by the feedback of the angle errors, influences 
the behavior in a positive way no positive influence was determined for the beam system. The main rea- 
sons are: feedback is partly determined by the system matrices and so by the system dynamics, and the 
influence of the gains on the extra input contribution remain unclear. Furthermore, the pseudo desired 
trajectories are not related to the unstable harmonic response of the beam system. Control of the beam 
in the non-collocated case is not possible with CDCTC. This is a result of non-minimum phase behavior 
that the beam system exhibits when the DOF in the middle of the beam is controlled. 

For CRCTC only the collocated case, where the active DOF is controlled, is considered. Control of the 
DOFin the middle of the beam is not possible due to non-minimumphase behavior. To guarantee vibration 
reduction for the entire beam system the zero dynamics of the closed loop system has to be investigated, 
because CRCTC only guarantees that the uncontrolled DOFs remain bounded. The control performance 
of the beam system cannot be improved with CRCTC in comparison to PFL. The reason for the disability 
to improve control performance are the same as given for CDCTC. 

Summarizing it can be said that the extra input contributioncreated by CDCTC and CRCTC in comparison 
with PFT, cm inhence the system-behavior. However, the lack of understanding into the relation between 
the extra input contribution and the controlled system behavior made i t  impossible to use the extra input 
contribution in such a way that it had a positive influence on the controlled system behavior. 



Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

Three control methods have been presented for the control of underactuated systems, namely: Partial 
Feedback Linearization (PFL), Computed Desired Computed Torque Control (CDCTC), and Computed 
Reference Computed Torque Control (CRCTC). CDCTC and CRCTC can be used more generally than 
PFL because the restrictions for applying CDCTC and CRCTC are less constrained. However, the com- 
putational efforts are much higher for CDCTC and CRCTC than for PFL as a result of the computation 
of the pseudo desired trajectory and the reference trajectory. 

When the nonlinear beam system is controlled to realize vibration reduction by stabilizing the unstable 
harmonic response, the best control performance is realized with PFL. This in contrast to the control of 
the cart-pole system where CRCTC performs best. There are two main reasons for this difference in the 
controlled behavior. The first reason is that the feedback of CDCTC/ CRCTC is partly determined by the 
system matrices, therefore it  is not possible to go beyond the error reduction determined by the system 
dynamics. This is more dominant for the nonlinear beam system as the system values are larger. The sec- 
ond reason is that the influence of the extra contribution to the input with CDCTC/ CRCTC, is not clear 
due to the difficulty in relating the effects of the gains, the initial conditions, and the pseudo desired or the 
reference trajectory to the controlled system behavior. 

By proving that the desired trajectories of the iiricontrolled 30Fs  are a globally asyr;rptcticdly s t&k 
solution of the zero dynamics of the closed loop system, it can be guaranteed that all DOFs will eventu- 
ally converge towards the unstable harmonic response, ones the controlled DOF has reached its desired 
trajectory. This results in a vibration amplitude reduction for the entire beam while reducing control ef- 
fort simultaneously. Furthermore, the zero dynamics of the closed loop system can be investigated to get 
insight into the behavior of the uncontrolled DBFs, ones the controlled DOF has reached its desired tra- 
jectory. 

With CDCTC and CRCTC it is not possible to guarantee that the vibration reduction is realized for all 
DOFs, because it  is only guaranteed that the uncontrolled DOFs remain bounded. However, with the use 
of the zero dynamics of the closed loop system such a guarantee can be given. 

The DOF in the middle of the beam cannot be controlled with methods that achieve perfect or asymptotic 
convergent tracking. This is a result of the non-minimum phase behavior that occurs when this DOF is 
controlled in the way that is described in this report. 

40 
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5.2 Recommendations 

Until now PFL only controls the active or the passive DOFs. To gain more freedom in the control design, 
P K  could be adapted in such a way that an arbitrary combination between active and passive DOFs be- 
comes possible, as long as the number of controlled DOFs is less than or equal to the number of inputs. 
This would enable the non-collocated case for the 3-DOF beam system, because the passive DOF qn or 

could be chosen to be the controlled DOF, 

A control technique that uses the behavior of all DOFs has to be developed. This can be realized by chang- 
ing the entire controlled error system, i.e. by adding damping and stiffness by means of the controller. The 
addition of stiffness changes the occurrence of nonlinear phenomena at certain frequencies while the ad- 
dition of damping always has a positive influence in suppressing nonlinear phenomena, however, at the 
cost of control effort. 

Furthermore, investigation into the possibility to implement the unstable harmonic response instead of a 
pseudo desired or a reference trajectory within the concepts of CDCTC and CRCTC has to be done. This 
could certainly improve the control performance because in this way knowledge of the desired system 
behavior is used directly within the control design. 
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Appendix A 

Model matrices 

In this appendix the values for the system matrices are given. M is the mass matrix [kg], B the damping 
matrix [%]and K the stiffness matrix [E]. 

2.5515 , 1 2.4917 -7.3935 lo-' -1.0067 lo-' 
M =  [ -7.3935 10-1 4.7021 

-1.0067 2.5515 lov2 2.7818 

3.6559 10' -2.1872101 -1.2497 lo-' 

-1.2497 lo-' 1.4174 10-1 4.3570 lop3 
B = [  -2.1872 10' 2.9214 10' 1.4174 10-1 

2.1059 lo5 4.3181 lo-' . 1 3.8290 lo5 -2.5939 lo5 -8.8920 lo-'' 
K = [  -2.5939 lo5 

-8.8920 lo-'' 4.3181 lo-' 6.1075 101 

Furthermore, the transition matrices Hl , Hz and H3 are given as: 

For completeness the values of the remaining constants are given: 

k,l = 1.65 lo5 [$I, 
mere = 0.984 [kgm]. 
f e =  37 [Hzl, 
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The Fourier coefficients that are used to calculate the desired trajectory for the DOFs, are given as: 

C =  

- -8.1875 lop5 

5.7446 lop6 
-1.9966 

-3.6939 

-7.9815 lo-* 
4.0062 lo-* 

-3.2456 10-7 

-7.4595 10-9 
-3.9495 10-9 

4.1021 lov9 
-1.2171 

3.4368 
-2.5355 10-7 
-9.5507 lo-* 

1.0486 
1.4640 lo-* 

- 8 . ~ 2  10-9 

-1.084s 10-9 

1.8470 
8.9210 

3.6931 10-l' 

-1.2086 
-2.3765 

2.3506 
2.5900 
6.4545 10-~  
2.5695 10-7 

-1.7511 
4.0194 lo-* 

-2.8659 lo-* 
2.4671 lo-* 

9.2615 10-9 
5.4166 

-2.6000 loV7 
3.0718 

-1.6763 
-3.3549 lo-* 

2.8158 lo-* 
-8.0187 lo-' 
-4.4542 loe9 

6.3227 lop9 
-2.4182 

7.1974 . 

5.1919 
-6.7768 lou4 
-9.4666 

1.9710 
-4.3080 
-2.5659 

-9.3022 
-2.7199 lo-' 
-1.0019 
-3.7700 

2.7147 

-3.4184 
9.0408 
4.8554 

-6.6659 
2.4929 - 

-4.7595 10-3 

-3.1538 10-5 

2.9203 

4.6428 

The unstable harmonic response is approximated as: 

n n 
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