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Abstract 

In m a ~ y  mechanica! systems dynamk loads cause vibrations. Especially Vibrations with 
large ampiitudes are iindesirable, became they can cause stretching, stresses, excessive 
sound production, etcetera. These vibrations might cause damage to the system, thus 
justifying research into methods to eliminate or suppress them. 

The results described in this report are part of a research into vibration reduction in 
non-linear multi-DOF' systems, using active control. The considered system is an under- 
actuated beam with a local non-linearity, i.e. a one-sided spring. In certain frequency 
ranges, the behaviour of the non-linear system makes it possible to eficiently suppress the 
amplitude of vibrations in the system, i.e. using coexisting solutions. The suppression 
can be realized with relatively little effort of one or more actuators, resulting in a long life 
of the actuator(s). In this project, one actuator has been used. In order to accomplish 
the vibration reduction in the system, only one DOF, i.e. the actuator DOF, is actually 
controlled. However, the efficiency of the vibration reduction is also determined by the 
behaviour of the uncontrolled DOFs. 

This report describes the results of a research into the determination of an optimal actuator 
position with regard to the behaviour of the uncontrolled DOFs. The optimization problem 
has been addressed by means of an analysis of the zero dynamics of the beam system. The 
stability of the zero dynamics provides an interesting basis for an actuator positioning 
criterion, defining optimality of the actuator position with regard to the uncontrolled 
DOFs. Yet, it has proved to be difficult to adequately quantify this stability for the 
non-linear beam system. During the research, bifurcations in the behaviour of the zero 
dynamics have emerged as a research inviting property of the non-linear zero dynamics. 

Besides an optimal actuator position, the quality of the transfer between the calculated 
control effort u and the control force Fact that is actually applied (by means of a shaker), 
is also very important for the optimal functioning of the controller in an experimental 
environment. As there was room for improvement of the quality of this transfer, a combined 
amplifier/actuator model has also been given some attention in this report. Its parameters 
have been estimated and the performance has been evaluated by means of two tests, one 
of which is a control experiment, showing the active control based vibration reduction in 
practice. 

'DOF = degree of freedom 



A reality, completely independent of the spirit 
that conceives it, sees it or feels it, 

is an impossibility. 
A world so external as that, even if it existed, 

would be forever inaccessible to us. 

- Henri Poincaré - 
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Chapter 1 

Introduction 

In many mechanical systems dynamic loads cause vibrations. Especially vibrations with 
large amplitudes are undesirable, because they can cause stretching, stresses, excessive 
sound production, etcetera. Our objective is to reduce these undesired vibrations using 
active control. More specifically, we will try to reduce the vibration amplitude of such 
systems by actuating at a suitable position. 

In this report vibration reduction of a beam system with a local non-linearity is studied. 
The word ‘local’ expresses that the nonlinearity occurs at a discrete position on the sys- 
tem. Figure 1.1 shows an overview of the experimental set-up that represents the system 
of our interest. 

Figure 1.1: AutoCAD model of the experimental set-up of the non-linear beam system. 

Due to its local non-linearity, i.e. the one-sided spring, the vibrating beam with one-sided 
spring shown in figure 1.1 provides us with a convenient non-linear system that incorpo- 
rates possibilities for very eficient vibration reduction. It’s a convenient system as it can 
be modelled relatively easily and yet is expected to provide insight into ways to achieve 
efficient vibration reduction for more complex systems like complete drive lines, satellite 
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solar panels, traffic bridges, etcetera. 

In order to allow both effective and efficient reduction of vibrations, the system is to be 
controlled using an actuator force Fact, supplied by an actuator. This actuator has been 
implemented by means of a shaker. The actuator force Fact should resemble a desired 
control effort u, calculated with a PC. It can be applied to the beam system at several po- 
sitions. In figure 1.1 the actuator has been placed in the spotlight, as this report describes 
the results of a research focussed on the following problems related to the actuator: 

1. Finding the best position to a,pply the actfiator force te the beam. 

2. Obtaining an adequate description of the transfer between the desired control effort 
u calculated by the PC and the actually applied actuator force Fact. 

In the next section both the system itself and its dynamic behaviour will be described, 
hopefully providing the reader with sufficient information to understand both the relevance 
of the research itself and its objectives described at the end of this chapter. 

I. P System description 

In this report only those aspects about the system description will be mentioned that are 
considered relevant for the modelling of the system and/or for the understanding of the 
experiment al set-up. 

1.1.1 Orientations and origin location 

Figure 1.2 shows two pictures of the beam in the case that one actuator is used at position 
2,. For the sake of clarity, a top view of the experimental set-up is shown in figure 1.2(a). 
In figure 1.2(b), the same view is shown in a schematic equivalent. Also, some important 
dimensions and the used definitions for positive directions of the positions and forces are 
indicated there. The z = O coordinate of the origin O of the coordinate system is located 
at the z coordinate of the middle of a cross-section of the beam. 

1.1.2 System components 

The beam system consists of the following components: 

o Beam. To provide the reader with a notion of the dimensions of the experimental 
set-up, the dimensions of the beam are mentioned here: I x w x h = 1330 x 10 x 90 
[mm3]. Due to its small width, the beam is quite flexible in the y-direction. As shown 
in figure 1.2, the beam is attached to the world by means of 2 leaf springs near each 
end of the beam. These leaf springs possess great stiffness in the y-direction but 
are not very resistant to z-axis rotations. Thus, they provide maximum freedom of 
movement for the beam whilst still properly connecting it to the world. Both the 
beam and the leaf springs are made of steel. 

l 
i 

o Mass  unbalance. As is shown in figure 1.2 and in more detail in figure 1.3, the mass 
unbalance provides the excitation force Fe,, applied to the middle of the beam in 
order to cause vibrations in the beam system. The horizontal component of the 
centrifugal force, caused by rotation of the eccentrically placed masses, is useful to 
generate a sine-shaped force Fez, provided that little or no energy is absorbed by the 
bearings and that the rotation speed of the shaft is constant. In order to achieve this, 
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(a) top view of the experimental beam system. 

(b) schematic top view of the beam with one actuator. 

Figure 1.2: top views of the beam with one actuator, including some definitions. 
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the shaft is connected to the mass unbalance by means of a flexible coupling. The 
constant speed is guaranteed by a tacho-controlled motor. The excitation frequency 
fe can be chosen freely within a certain frequency range (with steps of 0.5 [Hz]). The 
result is a sine-shaped excitation force, represented by the following equation: 

Fe, = rnerew2 cos (ut) with w = 2nfe. (1.1) 
In this equation me is the effective mass of the total eccentrically placed mass, 
regarded as concentrated at effective radius Te .  In the models m e T e  = 0.984. 
[kgm] has been used. 
l h e  long shaft, connecting the motor with the mass unbalance, has foam bearings 
at three points as can be seen in figures 1.2(a) and 1.3. These bearings are used 
to suppress vibrations in the shaft which can reduce the quality of the generated 
excitation force. 

r-7- 

Figure 1.3: more detailed view of the shaker, mass-unbalance and one-sided spring. 

0 One-sided spring. Figure 1.3 shows the one-sided spring/damper, also located at the 
middle of the beam. The one-sided spring has been implemented using a steel butt- 
strip, clenched between a profile and a steel strip on both ends. Contact with the 
beam is provided by a bolt of which the position can be adjusted. In the models, the 
one-sided spring is presumed to have a linear characteristic, represented by stiffness 
k .  The behaviour of the one-sided spring can be denoted as a non-linear stiffr,ess 
k,~, resulting in: 

(1 + sign(y,,,)) - - { k if ym > O, 
O if ym 5 O. 2 

k,l = kint 
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The one-sided damper has been implemented by means of some damping material 
attached to an additional steel profile. This material (not visible in figure 1.3) 
effectively suppresses undesired vibrations of the one-sided spring between collisions 
with the beam. 

Actuator. The calculated desired control effort u, required to reduce the vibration 
amplitude of the beam, is applied to the beam by means of an actuator, i.e. a 
shaker. This actuator, shown in detail in figure 1.3, provides a force Fact which 
under ideal circumstances equals the desired control effort u. In controi simulations, 
this presumption applies. However, in experiments this presumption has turned out 
not to apply. It has therefore been given some attention in this report. 

Sensors and amplifiers. During experiments, 6 measurements are carried out at each 
sample moment: two LVDTS' , two piezoelectric accelerometers and two piezoelec- 
tric force transducers are used for measuring respectively displacements ya and ym, 
accelerations ija and ym and forces Fe, and Fact at the mass unbalance position and 
at the actuator position. An overview of these measurements is shown in table 1.1. 

Ym 

Table 1.1: measured quantities and corresponding units. 

Personal computer (PC). The 133 [MHz] Intel Pentium based PC calculates the 
required control effort u. Calculations for both experiments and simulations have 
been performed using Borland C2, GNU C++ (Unix) and the TCE3-toolbox V1.2p. 
The latter has been ported to ANSI for the occasion. 

Connecting hardware. This hardware links the PC to the measurements and the 
actuator. The latter link will be discussed in more detail in chapter 3. The hardware 
consists of 

1. 12 bit IO-board, manufactured by Data Translation, type DT2831-G. 
2. Voltage divider for the output voltage (to prevent loss of resolution). 

3. Output amplifier. 
4. Wiring for the 6 input signals (AD) and the output signal (DA). 

1.1.3 System behaviour 

As the beam is a distributed-parameter system, a model of the beam requires an infinite 
number of DOFs4 if it is to describe the beam perfectly. Compromising between accu- 
racy and available calculation time, the model is reduced to a limited number of DOFs, 

'LVDT = Linear Variable Differential Transformer 
2V1.01 in DOS, V5.0 in Windows NT. 
3TCE = Tools for Control Experiments, see [5, 61. 
4DOF = Degree Of Freedom 
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accounting for the influence of all DOFs with limited, yet sufficient accuracy. This is 
achieved using the CMS5 method implemented in the FEM' package Diana. 

In simulations based on these models several interesting features have emerged, like sub- 
harmonic and chaotic behaviour (see [8, 231). As it's desirable to verify whether these 
numerical results can also be reproduced in experiments, the experimental beam system 
has been constructed. After several experiments and design changes, much of the simu- 
lated stable behaviour has been reproduced using the experimental set-up shown in figure 
i.i without the actuator (see [2, E ] ) .  After these promising resuits had been achieved, the 
veriñcation was taken one step further and it was decided that tile existeoce of an unstable 
harmonic solution was to be verified. 

As shown in figure 1.4, it had been found in simulations that, when the beam is excited (in 
the middle) with a sine-shaped excitation force with an excitation frequency fe of 37 [Hz], 
an unstable harmonic solution coexists with a stable i subharmonic solution (see [14]). 
This behaviour is caused by the local non-linearity and provides us with a possibility to 
ef ic ient ly  suppress vibrations, as the amplitude of the unstable harmonic solution for each 
DOF is much smaller than the amplitude of the corresponding stable i subharmonic so- 
lution, especially when the system is excited with a frequency fe of 37 [Hz]. 

I O "  : 

1 12 

........ .... --..... 
..... 

10 15 20 25 30 35 40 45 50 55 60 65 70 75 f, 

Figure 1.4: maxima of the absolute values of the steady-state response of the middle of the beam 
as a 'function' of the excitation frequency f e  (8 DOF model). 

At least one actuator is required to force the system into the harmonic solution. However, 
due to the fact that the harmonic solution is a natural solution of the system when excited 
with a frequency fe of 37 [Hz] (even though unstable), theoretically no control effort is re- 
quired once all of the system's DOFs behave according to the stabilized unstable harmonic 
solution. Provided that the control effort required to force the system to the harmonic 
solution is relatively small, a relatively cheap and light actuator can be used. 

As the beam system (even the reduced system) in general has a number of DOFs larger 
than the number of actuators, the system belongs to 'under-actuated' class of systems. 
Therefore, there's no way to force such a system to just any arbitrary state. However, 
since the state the system is to be driven to is a natural solution of the system, it was 
presumed that the uncontrolled DOFs will go to their corresponding harmonic solutions, 

'CMS = Component Mode Synthesis 
'FEM = Finite Element Method 



1.2 Objectives 7 

once the controlled DOF has been brought into the harmonic solution. 

Several controller concepts to stabilize the harmonic solution have been devised and tested 
in simulations, e.g. CRCTC7 and SCTC8 (see [23, 141). Simulation results have shown 
that the other DOFs do indeed start to track their corresponding harmonic solutions, once 
the controlled DOF has reached the state corresponding to the harmonic solution. Contin- 
uing research has shown that, as far as the behaviour of the controlled DOF is concerned, 
the best position to control the system from a localg controllability point of view, is the 
middle of the beam (see [i4]). A shaker has been added to the experimental set-up as an 
actuator, i.e. to apply the control force (see [24]j. Eventuaily, continuing the wDrk of De 
Vries [24], the existence of an unstable harmonic solution in the experimental set-up was 
shown using SCTC (see [19]). 

1.2 Objectives 

When this part of the research project was to begin, there were several problems and un- 
answered questions left as a result of prior research into the system behaviour, as described 
in subsection 1.1.3. To name two of them: 

1. As local controllability had turned out not to be a real problem as long as the actuator 
was not placed too close to a leaf spring, there was no justification for the fact that 
the beam was controlled at position 2, = 32 [cm], other than that it had turned 
out to work satisfactorily so far. When the behaviour of the other DOFs is taken 
into account, it’s interesting to find out if there are positions where the controller 
performs better and, if so, why it performs better. 

2. In experiments it had been noticed that the applied actuator force Fact did not even 
nearly resemble the calculated desired control effort u. Apparently, there was room 
for improvement of the amplifier/actuator model and/or its parameters. 

It was decided that research into these issues was to be considered the main objective of 
the research described in this report: 

o Several criteria for optimal actuator positioning will briefly be discussed in chapter 
2. Based on the behaviour of the so-called zero dynamics, a new criterion for the 
best actuator position for the vibrating beam with one-sided spring is proposed and 
evaluated. 

o In chapter 3, a combined actuator/amplifier model is evaluated; its parameters are 
estimated and its overall performance is tested and evaluated. 

o Finally, in chapter 4, conclusions will be drawn from the results and recommendations 
will be done for future research and/or enhancements. 

7CRCTC = Computed Reference Computed Torque Control 
8SCTC = Sliding Computed Torque Control 
i.e. in the neighbourhood of the unstable harmonic solution 9. 





Chapter 2 

Zero dynamics based actuator 
positioning 

In this research we are dealing with a locally non-linear multi-DOF beam system of which 
only one DOF ya is controlled. As the total number of DOFs n in the system model is 
larger than the number of controlled DOFs, the beam system is so-called ‘under-actuated’. 
The system is controlled by means of an actuator that can be placed at several positions 
2,. Which position za is the best, is to be determined by means of a suitable criterion. 
In this report a quantitative measure for the stability of the so-called zero dynamics will 
be proposed as a new actuator positioning criterion for the considered beam system. The 
criterion is expected to be suitable for other under-actuated systems as well, provided that 
their zero dynamics is stable. 

In order to be able to evaluate the merits of the zero dynamics based actuator positioning 
criterion for the beam with one-sided spring, first some aspects of the system model and 
the controller will have to be discussed, as will be done in sections 2.2 and 2.3. Then 
the concept of zero dynamics, the basis for the criterion, will be explained in section 
2.4, resulting in the proposal of the stability of the zero dynamics as a new criterion for 
actuator positioning. Next, in section 2.5 a quantitative measure for the stability of the 
zero dynamics will be proposed. Using this measure, the criterion will be evaluated for the 
beam with one-sided spring. First it will be applied to the linear subsystem, i.e. the beam 
without the one-sided spring, because the powerful analysis techniques available for linear 
systems can then be applied and because the analysis of the linear subsystem provides us 
with a reference for the effects of the addition of the local non-linearity. Then the one-sided 
spring will be included, resulting in the complete non-linear beam system. This non-linear 
system will be evaluated as well. Finally, in section 2.6 conclusions will be drawn. First 
however, in the next section the actuator positioning issue will be introduced in more detail 
by discussing some commonly used criteria to determine an optimal actuator position in 
control experiments and comparing them to the new criterion. 

2.1 Introduction to the actuator positioning issue 

In control experiments a control effort is used to control the system to a defined objective. 
Such a control effort is applied to the system using at least one actuator. In multi-DOF 
systems, such as the beam with one-sided spring discussed in this report, there are usually 
several positions where the control effort can be applied to the system. In order to find an 
optimal position, it is essential to find an optimality criterion that expresses the suitability 
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of a certain actuator position 2,. The control objective itself provides a good basis for 
such a criterion. In servo problems, in general the following aspects are relevant for the 
elimination of some error, defined in the control objective: 

1. Eliminate the tracking error(s) in as little time as possible (speed). 

2. Achieve this with a control effort u as small as possible (eflort). 

3. Achieve this with maximum accuracy (accuracy). 

in  general these aspects lead to compromising criteria regarding the choice of controller 
type and controller parameters, resulting in an optimization problem. One of the para- 
meters is the actuator position 2,. 

2.1.1 

In relevant technical literature amongst others the following optimality criteria regarding 
optimal actuator positioning are described: 

Evaluation of some commonly used criteria 

1. 

2. 

3. 

4. 

5 .  

Maximize controllability and observability of the system (see [lo, 11, 141). The 
eigenvalues of the controllability gramians y,  and/or observability gramians W,  
are used to quantify the required control effort (see [li, 14]), providing us with an 
actuator positioning criterion. In the case of an actuator that is collocated' with one 
or more sensors, in general the selected actuator position is a compromise between 
the position with the best controllability and the position with the best observability. 

Minimize control and/or observation spillover, caused by the unjust attribution of 
unmodelled modes to (a combination of) modelled modes (see [3, 4, lo]). Spillover 
can be suppressed by placing the actuator at a position that is a zero or is close 
to being a zero, preferably in all, but at least in many of the mode shapes of the 
unmodelled modes. This provides us with an actuator positioning criterion. For 
further information on this criterion, the reader is referred to [3]. 

Minimize the total energy consumed by the controller or maximize the energy dissi- 
pated from the system by the controller (see [i]). For servo problems this criterion 
can be regarded as an error-energy criterion, as the objective need not be a state 
with a constant energy level. 

Minimize the acceleration magnitude lij1 integrated over the beam span, i.e. 

using decomposition in modes (see [17]). 

Minimize a weighted combination of the time integrated square control effort u and 
the time integrated square error e of the controlled DOF (see [is]). 

1 

O 
1ijI2dz, 

The usability of the controllability/observability criterion for the beam with one-sided 
spring system has already been investigated in the past, see [14]. The research has lead 
to the conclusion that, when one actuator is used to control the vibrating beam with one- 
sided spring towards the unstable harmonic solution, the controlled actuator DOF can 
be contïokd tûx2ïds the Unstable harmonic Solution with less effort when the actuator 
is placed closer to the middle of the beam. As the controllability/observability based 
criterion's focus is the behaviour of the controlled DOF Y,, the criterion is unsuitable to 

'collocated = placed at the same position. 
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optimize the actuator position x, with regard to the behaviour of the uncontrolled DOFs, 
whereas their behaviour is part of the control objective as well. Furthermore, the criterion’s 
focus is the egort aspect of the control objective; the speed and accuracy aspects are not 
explicitly accounted for. 

The spillover effect based criterion is unsuitable for two main reasons. The first is that 
the spillover effect has already been minimized for the linear subsystem, as the interface 
DOFs y, and ym are used to model residual flexibility modes of the linear subsystem. The 
second reason is that in generai the mode concept does not apply for non-linear systems. 

Problem with the criterion based on the minimization of the total energy consumed by 
the controller or on the maximization of the controller-induced dissipation energy is that 
in this non-linear system n o  obvious quantitative relation exists between this energy level 
and the stability of the so-called zero dynamics, defined by the uncontrolled DOFs. 

The acceleration criterion is applicable only to linear systems, as mode decomposition can 
not be applied to non-linear systems. 

The final criterion, discussed here, is the weighted combination of the time integrated 
square tracking error of the controlled DOF eYa and the time integrated square control 
effort u. In this criterion both the effort aspect and the accuracy aspect of the control 
objective are accounted for. Through the control effort, the influence of the uncontrolled 
DOFs can also be accounted for. However, in this case a new problem emerges, i.e. the 
necessity to find an appropriate choice for the weighting factors for the different parts of 
the criterion. Furthermore, the criterion does not explicitly account for the speed aspect 
of the control objective. 

Except for the last criterion, none of the criteria discussed above can cope with the influence 
of the uncontrolled DOFs properly while being applicable to non-linear systems. And, 
although the last criterion can be used, it is interesting to have a criterion that can account 
for the behaviour of the uncontrolled DOFs only, as then the behaviour of the controlled 
DOF and the uncontrolled DOFs can be evaluated separately. 

2.1.2 Merits and demerits of the new criterion 

Therefore, at least one additional criterion is required to account for the behaviour of the 
uncontrolled DOFs. The zero dynamics stability based criterion proposed in this chapter 
can provide this criterion. In fact, the zero dynamics stability based criterion alone may 
be quite sufficient to determine an optimal actuator position x,, as it has been shown in 
the past (see [14]) that the stabilization of the actuator DOF 9, is not a big issue as long 
as the actuator is not located too close to one of the leaf springs. Because much more time 
is required for the uncontrolled DOFs to damp out towards the harmonic solution than 
the time required to control the actuator DOF to the harmonic solution, the behaviour 
of the uncontrolled DOFs should receive much more attention than they have received so 
far. This happens in the next sections. 

Using the zero dynamics stability based criterion, we can attempt to find an optimal 
actuator position x, with regard to the damping behaviour of the uncontrolled DOFs. In 
general this position is different from the one found with a criterion based on the behaviour 
of the controlled DOF. We can then decide to use a combination of both criteria, resulting 
in a compromise between the optimal actuator positions x,, or to just use the actuator 
position found using the zero dynamics stability based criterion. 
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2.2 System model for the beam with one-sided spring 

In this section the mathematical model of the beam with one-sided spring is discussed very 
briefly for the case that a single actuator is used at position za.  Compromising between 
accuracy and available calculation time, a FEM model of the beam with a large number 
of DOFs m is reduced to a model with a much smaller number of DOFs n, accounting 
for the (low frequency) influence of all m DOFs with limited, yet sufficient accuracy. This 
is achieved using the Component Mode Synthesis (CMS) method implementation of the 
FEM package Diana. For more details on the determination of such a model, the reader 
is r.eferred to Fey [8]. 

The resulting n DOF model has interface DOFs ya and ym and n - 2 virtual DOFs ti, 
stored in a vector column q: - 

gT = [Ya Ym ti . . .  tn-21. 

The interface DOFs ya and Ym are used to describe residual flexibility modes of 
the linear beam system and can be used to apply external loads to the linear beam 
system. ya represents the displacement of the beam at position za,  i.e. the position 
where the calculated control effort u is applied to the beam by means of an actuator 
force Fact, generated by an actuator. ym represents the displacement of the middle 
of the beam, i.e. the position where the excitation force Fez and the force originating 
from the one-sided spring are applied to the beam. 

Other DOFs [i are so-called virtual DOFs, representing virtual displacements. They 
describe eigenmodes of the linear beam system and can not directly be interpreted as 
a displacement at a certain position. In experiments the values of the virtual DOFs 

are determined by means of state reconstruction, because their values can not be 
measured (see [19]). 

In comparison to the model according to Kant [14], the following changes have been made 
(see also figure 2.1): 

64 nodes (32 in the left half, 32 in the right half) have been inserted in the beam 
representation in order to allow the system dynamics to be evaluated for more differ- 
ent actuator positions za. As is shown in figure 2.1, the actuator can effectively be 
evaluated at 64 node positions2: nodes 3-66. Because of the symmetry in the beam 
system, it is not necessary to investigate actuator positions za on the other half of 
the beam. 

The linear damper in the middle of the beam has been removed from the model, as 
it suppresses the non-linear effects and is unrealistic: just like the one-sided spring, 
a realistic damper would be a one-sided damper, as shown in figure 2.1 (in gray). 
However, such a damper has not been implemented. 

Unless stated otherwise, the modal damping ratio for component mode synthesis 
has been chosen to be 0.001 for all modes, as non-linear effects become visible more 
cieariy for low damping settings. 

The resulting Diana data file can be found in appendix D. 

'2, = 0.01 x (node - 2) [m]. 
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I 

Figme 2.1: lek, half of the b e 2 ~  with me-sided spring a d  some essential node nUmbeïs. 

The equations of motion of the model of the beam with one-sided spring are: 

o The n x n matrices M ,  B and K have been obtained using the CMS method imple- 
mentation of the FEM package Diana. 

o H ,  is a n x 1 distribution vector column which is used to apply the influence of 
the one-sided spring and the excitation force Fez. As these forces are applied to the 
beam at the 2nd DOF y,, we find: 

HT,= [O 1 O . . . O ] .  (2.3) 

0 The term with knl accounts for the influence of the one-sided spring: 

0 The excitation force Fe, is applied to  the beam at the 2nd DOF: 

(2.5) 
2 Fe, = mereu COS (ut) ,  with w = 2xfe. 

In this equation me is the effective mass of the total eccentric mass, regarded as 
concentrated at effective radius re. fe represents the excitation frequency. 

0 H a  is a n x 1 distribution vector column for the scalar control effort u. This effort 
is applied to the beam at position za of the lSt DOF ya. Therefore: 

8: = [i o o . .  . O ] .  (2.6) 

2.3 The controller 

2.3.1 Control objective 

The control objective for this system is to bring the entire system, i.e. all DOFs, in the 
unstable harmonic solution. This objective has been translated to a desired trajectory qd, i  
for each defined DOF qi, resulting in a servo problem. Each of these desired trajectories 
qd , i  describes the trajectory that is followed by the corresponding DOF when the system 
behaves according to the unstable harmonic solution. They have been determined using 
the FEM package Diana and have each been approximated by means of a truncated Fourier 
series existing of 10 harmonics, because this facilitates continuous time evaluation of the 
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desired trajectory and its derivatives and requires less memory resources than for instance 
a time series. The Fourier coefficients have been stored in a matrix Q. The approximations 
will be indicated by q d , i :  

10 

q d , i  = ~ ( i ,  1) + ( ~ ( i , j  + 1) cos(j2~fet)  + c(i,j + 11) s i n ( j 2 ~ f ~ t ) )  . (2.7) 
j=i 

For the ith DOF we define the tracking error ei as the difference between the actual 
displacement qi and its desired displacement q d , i .  The actual tracking errors of the DOFs 
are stored together in a vector column g: 

e = q - q  - -d .  (2.8) 

Similarly, we define the estimated tracking error êi as the difference between the actual 
displacement qi and its approximated desired displacement &i.  They are stored together 
in a vector column ij: 

,. ,. 
e = q - q  - -d .  (2-9) 

As only one DOF, i.e. the actuator DOF ga, actually is controlled in this research, it is 
convenient to think of the control objective as split up into two parts, each of which must 
eventually be satisfied: 

o Part i: Control the actuator DOF ga towards the unstable harmonic solution. 

o Part 2 Let other DOFs damp towards their corresponding harmonic solutions. 

It has been presumed that the second part will be satisfied automatically, once the first 
part has been satisfied. After all, the harmonic solution is a natural solution of the system. 
This presumption will receive some attention in section 2.4. 

2.3.2 The control algorithm 

As explained before, only the actuator DOF ga is controlled. A computed torque controller 
(CTC) with additional PD-term is used to satisfy the previously defined first part of the 
control objective. The controller will be based on a 3 DOF model, i.e. n = 3,  because this 
model is used in the experiments. As the same method can be applied to n DOF models 
with n > 3 ,  i.e. with more than just one virtual DOF (, this means no loss of generality. 

To eliminate the tracking error e1 of the first DOF ga, a control effort u is required. From 
the system of equations 2.2, it follows that: 

-k B1,i ... 3 y  f KI,, ... 3g- 

Therefore, if u is chosen to be 

it yields: 

ijl = u@). 

(2.10) 

(2.11) 

(2.12) 
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Provided that an appropriate choice for v( t )  is made, the first equation of the system 
of equations 2.2 has been linearized by feedback. This method is called partial feedback 
linearization (PFL). In robotics this method is often referred to as computed torque control 
(CTC). The reason it’s called partial feedback linearization is that the other equations of 
2.2 have not been linearized by this choice for the control effort u. 
The choice has now been moved to v( t ) .  A sensible choice for v ( t )  is the desired acceleration 
qd,J in combination with two terms proportional to respectively the tracking error el and 
its derivative 131: 

c.(L\ U \ L J  - - gd, l  .. - Kpel - K D e 1 .  (2.i3j 

Substitution of equation 2.13 in 2.12 then results in the following error equation: 

ei + K D 6 1  + Kpel = o. (2.14) 

If we introduce control parameters q and X and choose Kp=qX and K D = ~  + A, the poles 
of equation 2.14 are located at -q and -A for {X ,q}  E R. As long as {X ,q}  E IR+, the 
tracking error e1 will eventually disappear, as e1 = O then is an asymptotically stable 
equilibrium point of equation 2.14. This results in the following control law: 

( ~ g  + ~g + ~ , (k , zym - peZ))), +&,i - (q  + ~ ) g i  - qXei 

v( t )  

(2.15) 

In the past, it has been shown both in simulations and in experiments that the first part 
of the control objective can indeed be satisfied using this control law. Like in the past 
(see [14]), values q = 100 and X = 100 have been used for the controller parameters in the 
simulations described in this report. 

U =  (Pea)  1 

2.4 Zero dynamics 

In the previous subsection it has been shown how the first part of the control objective 
can be satisfied, i.e. the controlled DOF behaves as desired. In this section, it will be 
proved that the presumption that the second part of the control objective will be satisfied 
automatically once the first part has been satisfied, is theoretically allowed. To achieve 
this, it is necessary to investigate the dynamics of the uncontrolled DOFs ym and E ,  past 
the point that the first part of the control objective has been satisfied. 

If we look at the equations of motion, like stated in equation 2.2 and have a look again at 
the 3 DOF case, the system description can be written as follows: 

(2.16) 

As the desired trajectories, stored in vector column gd, are a solution of the system, no 
further control effort is required once both the first and the second part of the control ob- 
jective have been satisfied, i.e. all DOFs behave according to their corresponding unstable 
harmonic solutions: 

(2.17) 

L J 
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When we subtract equation 2.17 from equation 2.16, the following system of error equations 
is obtained, using the definition of the error vector column g according to equation 2.8: 

Now, let’s take one step back: when only the first part of the control objective has been 
satisfied, so eya + 0: the damping of the control effort is determined by the following part 
of the first error equation of the system of equations defined by equation 2.18: 

(2.19) 

This means that, once the first part of the control objective has been satisfied, the control 
effort u only compensates for the influence of the internal dynamics of the system on 
the tracking error eYa of the controlled DOF. This internal dynamics is caused by the 
uncontrolled DOFs and is called zero dynamics: the zero dynamics describes the internal 
behaviour of the system when inputs are chosen in such a way that the output is kept at 
zero (see [21]). Here, the tracking error eYa of the actuator DOF is considered to be the 
output. The control effort u is the input of the system. 

After the first part of the control objective has been satisfied, i.e. eYa + O, the course 
of the zero dynamics (and therefore the course of the control effort u)  is determined by 
the tracking errors eYm and e t ,  as is shown by equation 2.19. Only after these errors have 
damped out completely, the second part of the control objective has been satisfied. Then 
and only then, the control effort u has also become O. The course of the tracking errors of 
the uncontrolled DOFs therefore depends on the following two factors: 

1. Stability of the zero dynamics. 

2. The spot in phase space of the zero dynamics (error space) where the DOFs are 
located at the moment the first part of the control objective is satisfied, i.e. eya -+ O. 
By this spot the values of the errors of the uncontrolled DOFs are described at the 
moment the controller no longer influences the system other than to compensate for 
the disturbances in the controlled DOF ya caused by the other DOFs. This moment 
will be referred to as the moment at which the zero dynamics have been ‘reached’. 

It is therefore essential to have a zero dynamics as stable as possible and to ‘reach’ the zero 
dynamics at a convenient spot in the error space. The first aspect is explicitly discussed 
in this report, the second aspect is the subject of other studies. Here, in particular is 
examined whether the stability of the zero dynamics can provide a useful criterion for the 
determination of the best actuator position 2,. 

From equation 2.18 it follows that the zero dynamics of the system for a 3 DOF model is 
described by the following system of non-linear equations: 

(2.20) 

L J 



2.4 Zero d.ynamics 17 

In equation 2.20 the influence of the non-linearity is represented by the scalar q5(eym). 
The mass, damping and stiffness matrices, Af,, B, and K ,  are a function of the actuator 
position xu. Thus, the actuator position xu can be used as a tool to influence the stabil- 
ity of the zero dynamics. Vice versa, a quantitative measure for the stability of the zero 
dynamics can be used as a criterion for actuator positioning. 
Stability of the zero dynamics means that the two uncontrolled DOFs have an asymptoti- 
cally stable equilibrium point in respectively eym = O and eg‘ = O. Proving that these points 
are asymptotically stable also proves that the second part of the control objective will auto- 
matically be satisfied, once the first part of the control objective has been satisfied. This 
proof can be given using Popov’s criterion, which is based on the Kalman-Yacubovitch 
theorem (see appendix A). 

2.4.1 

In appendix A, it is shown that Popov’s criterion may be used to test global asymptotic 
stability if the following necessary and sufficient (NAS) conditions are satisfied: 

Proof for asymptotic stability of the zero dynamics 

0 system matrix A is Hurwitz, 

o the pair (A,B) is controllable, 

o the pair (C, A) is observable, 

o the non-linearity q5 belongs to the sector (O, k ) .  

Popov’s criterion (see equation A.20) implies that global asymptotic stability of the zero 
dynamics is guaranteed if a straight line through the point (-&O) with slope > O can 
be found that satisfies the condition that the Popov plot stays to the right of this line 
b’w E R. The matrix and the vector columns which define the (scalar) transfer function 
F ( j w ) ,  required to produce a Popov plot, are given by: 

(2.21) 

The matrices M,, B, and K ,  are defined by the zero dynamics (see equation 2.20). 

To illustrate that a line through point (-i, O) with such a slope exists for each actuator 
position for the system of the beam with one-sided spring, the values of T have been 
evaluated for the actuator, positioned at 64 different nodes 3 - 66 as indicated in figure 
2.1. For the one-sided spring, a stiffness of respectively k = 82.5, k = 165 and k = 330 
[kN/m] has been used. The required system models have been determined using the FEM 
package Diana with a modal damping ratio of 0.001 for each mode. 

Whether the NAS conditions, allowing the use of Popov’s criterion, are satisfied, has been 
tested. The tests indicate that Popov’s criterion may be applied, as all conditions are 
satisfied: 

0 The eigenvalues of A for the 64 different actuator positions z, can be found in 
appendix C.2 for the case that k = 165 [kN/m]. As they all have negative real parts, 
- A is Hurwitz for all 64 actuator positions 2,. The value of the stiffness k of the 
one-sided spring has no effect on the eigenvalues of A. Therefore, the same holds for 
other values of the stiffness k .  
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0 The pair (A,B) is controllable due to the fact that the 4 x 4 controllability matrix 

- P =  [b  ~b ~ 2 b  -61 (2.22) 

has rank 4 for all 64 actuator positions, for all values of k .  

e The same holds for the observability matrix 

- Q = [c ( g T í g  (cTA2y (GTA3)7jT.  (2.23) 

Thris, the observability condition for the pair (C, A) is also satisfied. 

0 The non-linearity 4(eym), originating from the one-sided spring, is described in equa- 
tion 2.20. Table 2.1 shows that it satisfies the sector condition. 

k I 

Table 2.1: proof that the sector condition is satisfied for the beam with one-sided spring. 

In figure 2.2 some results are shown for different actuator positions. Figure 2.2(a) shows 
an example Popov plot for the case that the actuator is located at node 38, with k = 165 
[kN/m] as stiffness of the one-sided spring. The point (--i, O) is marked with an asterisk. 
The transfer function F ( j w )  remains right of a straight line through the point (-i, O) with 
slope for values of T 2 0.30. The critical values of T for all examined actuator positions 
are visualized in figure 2.2(b) for the different stiffness cases. The numerical values for 
case k = 165 [kN/m] can be found in appendix C.3. 

Thus, the zero dynamics has been proved to be globally asymptotically stable for the 64 
examined positions and therefore it has also been proved for these positions that theo- 
retically the second part of the control objective will be satisfied automatically once the 
first part of the control objective has been satisfied. When we look at the course of T as 
a function of the actuator position 2, shown in figure 2.2(b), there’s no reason to suspect 
that actuator positions x, exist where a valid value of T can not be found, except for the 
leaf spring positions. Therefore, this proof is assumed to apply for all possible actuator 
positions x, except for the leaf spring positions. 
An interesting point is the notion that the stiffness of the one-sided spring k can be chosen 
arbitrarily large. This can be seen in the Popov plot, figure 2.2(a). For increasing values 
of k ,  the point (-i, O) moves towards (0,O). It is, however, always possible to find a value 
for T > O which satisfies equation A.20. 

2.4.2 Stability of the zero dynamics as an actuator positioning criterion 

In the previous subsection it has been proved that the zero dynamics is stable for all 
examined actuator positions xu. Therefore, a quantitative measure for the stability of the 
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(a) Popov plot for node 38, ik = 165 [kN/m]. (b) values of T .  Actuator at nodes 3-66. 

Figure 2.2: stability analysis using Popov’s criterion. 

zero dynamics is a sensible actuator positioning criterion with regard to the second part of 
the control objective. However, one needs to be aware that the first part of the objective 
can not be accounted for when using such a measure. The stability criterion, defining 
optimality with regard to the second part of the control objective, should therefore be 
used in conjunction with a criterion that defines optimality with regard to the first part 
of the control objective. 

Unfortunately the value of itself is not suitable to be used as such a measure, as no clear 
relation exists between the value of r and the performance of the zero dynamics, i.e. the 
damping rate of the tracking errors of the uncontrolled DOFs. The fact that valid values 
I exist, shows only that the zero dynamics is stable, but the values do not necessarily 
indicate how stable it is in a quantitative way, as Popov’s criterion provides a sufficient 
but not essentially necessary condition. 

In the next section, we will attempt to find an appropriate quantitative measure for the 
criterion. 

2.5 Quantification of the stability of the zero dynamics 

Because the control effort u for the zero dynamics depends on the tracking errors eym and 
eg only as can be seen in equation 2.19, it is sufficient to use only (the absolute value 
of) the control effort u to quantify the stability of the zero dynamics. In this section 
the stability of the zero dynamics will be quantified using a measure in which all control 
effort values are weighted evenly. The quantitative measure will first be evaluated for the 
linear subsystem of the beam with one-sided spring, i.e. the beam without the one-sided 
spring, because the powerful analysis techniques available for linear systems can then be 
applied and because the analysis of the linear subsystem provides us with a reference for 
the effects of the addition of the local non-linearity. Then the one-sided spring will be 
included, resulting in the non-linear beam system. The measure will be evaluated for the 
non-linear system as well and its results will be compared to the results for the linear 
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subsystem. 

2.5.1 The linear subsystem 

If the one-sided spring is removed from the system, i.e. k = O [kN/m], the resulting 
subsystem is linear. The system of error equations 2.20 describing the behaviour of the 
zero dynamics then simplifies to the following: 

M z  Bz Kz - - 
‘ 2 2 2  ~ d 2 3 1  [ëyml ‘ B 2 2  u 2 3  R i r -  eym i r~~~ ~~~i r, i rni 

LM32 M ~ ~ J  I ë5 1 + LB32 B ~ ~ ]  [ e5 ] + [ K ~ ~  ~~~1 1 “1 = [i] . (2.24) 

Let A1 and A2 be the eigenvalues of equation 2.24 and let U, and g2 be the corresponding 
eigenvectors. Then, past the point in time where the first part of the control objective has 
been satisfied, the course of the tracking errors of the uncontrolled DOFs can be described 
by a linear combination of the two eigenvectors, indicated by the complex coefficients ai: 

(2.25) 

In this equation n - 1 represents the number of uncontrolled DOFs. The values of ai, 
indicating which combination of the eigenvectors occurs, depend on the state of the system 
at the point in time where the first part of the control objective is satisfied, i.e. the ‘initial 
conditions’ of the zero dynamics. 
For the linear subsystem, the quantitative stability of the zero dynamics is determined by 
the negativity of the real parts of the eigenvalues A1 and X2. These real parts represent the 
damping in the system which is caused by the internal damping of the beam, represented 
by the damping matrix B,. In figure 2.3 the negative real parts of the eigenvalues of the 
subsystem are shown (as positive values). 
Now, suppose that the system can be controlled to any arbitrary state. In that case, the 
best damping of the tracking errors g can be achieved at the position where either of the 
eigenvalues has the most negative value. Then, actuator position 2, = 0.47 [m] (node 49) 
would be the best choice for the actuator position 2, as far as the linear subsystem is 
concerned. Equation 2.25 and figure 2.3 show that this requires that the zero dynamics 
is reached in a state that matches the eigenvector corresponding to eigenvalue A2 with 
the largest negative real part, so that the other eigenvectors have coefficients lail = O. 
Unfortunately, the current control algorithm can not force the system into such a state, 
as the system is under-actuated. As a result, the real parts of the eigenvalues alone can 
not be used to quantify the stability of the zero dynamics. However, they do indicate the 
following: 

1. The linear subsystem theoretically can benefit from an actuator position other than 
that as close to the middle of the beam as possible, as suggested earlier with regard 
to the first part of the control objective (see [14]). 

2. They show the limits with regard to the maximum damping rate that can theoreti- 
caiiy be achieved €or the linear subsystem. 

As the real parts of the eigenvalues can not be used to quantitatively predict the stability of 
the zero dynamics that occurs during an experiment (especially for the non-linear system), 
a different approach has to be used. 
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Figure 2.3: negative real parts of the eigenvalues of the linear subsystem versus the node at which 
the actuator is positioned. 

Proposition for a quantitative measure 

Using some of the new simulators described in appendix B, an exponential function uenvelope 
enveloping the control effort u has been determined using data from the moment when 
the first part of the control objective êya + O has (approximately) been satisfied. This 
function can be regarded as a measure for the damping of the control effort u as a result 
of the internal dynamics. It is therefore a measure for the stability of the zero dynamics. 
One could suggest that a more appropriate description of the damping behaviour of the 
linear subsystem would be a linear combination of two exponential functions with (%?[&It) 
as exponents, as follows from equation 2.25. However, such a measure would not be useful 
for the non-linear system, because then the system's behaviour can not be decomposed 
into eigenmodes. The envelope is therefore described by a single exponential function with 
2 parameters, e1 and c2: 

(2.26) 

Equation 2.19 shows that the coefficient c1 in equation 2.26 is both a measure for the 
control effort u and a measure for the combined tracking errors of the uncontrolled DOFs, 
at the point in time where the first part of the control objective is satisfied. Similarly, the 
coefficient c2 is both a measure for the damping rate of the control effort u and a measure 
for the combined damping of the tracking errors of the uncontrolled DOFs. & is a measure 
for the settling time: higher values of the damping coefficient c2 imply a shorter settling 
time of the uncontrolled DOFs. Thus, using the measure defined by equation 2.26 we can 
account for all of the aspects of the (second part of the) control objective (speed, effort 
and accuracy), mentioned in section 2.1. 
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Simulation results 

The behaviour of the beam has been simulated twice at the 64 actuator positions 3-66 
shown in figure 2.1. The first series has been produced using the discrete time controller, 
running for 3 [SI. The second series has been produced using the continuous time controller, 
running for 25 [SI. For details on the operating conditions, the reader is referred to appendix 
B.1. The course of the control effort u and the course of the estimated tracking error of the 
actuator DOF êya have been determined and stored for both series. With these results, the 
vaiues of the parameters e1 and cg have been determined in MATLAB using the procedure 
described in appendix E.2.2. 

Figure 2.4 shows examples of the determination of this function for the case that the 
actuator is located at node 38, for both the continuous time controller simulator and the 
discrete time controller simulator. The upper graphs of both plots show the control effort 
u and the fitted envelope. As can be seen in figure 2.4, the fitted envelope is quite adequate 
in both cases. Both lower graphs show the estimated tracking error êya of the actuator 
DOF. The point in time at which the first part of the control objective is found to be 
satisfied by the fit procedure, is indicated with an asterisk. The graphs also show that 
the first part of the control objective is satisfied very fast with the values for the control 
parameters that have been mentioned in section 2.3 and that much more time is required 
to satisfy the second part of the control objective than the time required to  satisfy the 
first part, because some control effort still remains required a long time after the first part 
of the control objective has been satisfied. 

The fit procedure has been used for all 64 actuator positions. The resulting numerical 
values of the coefficients e1 and c2 can be found in appendix C.1. Figure 2.5 shows 
the visualization of the coefficients c1 and c2 as a function of the actuator position 2, 
in respectively the upper and the lower graph. The lower graph of figure 2.5 and the 
relevant table in appendix C.l show that good actuator positions would be respectively 
node 58 for the discrete time controller and node 64 for the continuous time controller. In 
the experimental set-up this leads to problems, as the dimensions of the mass unbalance 
prevent the usability of these positions. If this is taken into account, node 39 would be a 
good choice for the discrete time controller and as close to node 64 as possible would be a 
good choice for the continuous time controller. 
Not only do the different controller types exhibit different optimal positions, but the 
damping behaviour of the control effort u is also quite different. Apparently the time 
discretization of the control effort u, which effectively filters it, has a positive influence on 
the stability of the zero dynamics. Time discretization has, however, little influence on 
the values of coefficient c1, as can be seen in the upper graph of figure 2.5. The positive 
effect of filtering the control effort u on the stability of the zero dynamics has already been 
noticed in the past (see [14, 23]), but no clear explanation has been found so far. Such 
an explanation will not be pursued here either, as it seems to go beyond the objectives of 
this research. 

Damping coefficients c2 versus negative real parts of the eigenvalues 

As expected, a comparison of the damping coefficients c2 for the continuous time controller 
case, shown in the lower graph of figure 2.5 and the negative real parts of the eigenvalues of 
the zero dynamics, shown in figure 2.3, indicates that in the simulations a combination of 
the eigenvectors has occurred: the range of the damping coefficients c2 corresponds to the 
range of the negative real parts of the eigenvalues. As a result of the previously explained 
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filter effect, the discrete time controller exhibits much higher damping rates. 

2.5.2 The complete non-linear system 

The two simulators have also been applied to the complete non-linear system, i.e. including 
the one-sided spring. As IC = 165 [kN/m] corresponds to the value for the stiffness of the 
one-sided spring used in the experiments, this value has also been used in the simulations 
for the complete non-linear system. 

Simulation results 

The behaviour of the beam has been simulated for the 64 actuator positions 3-66, shown 
in figure 2.1. Again, the course of the control effort u and the course of the tracking 
error of the actuator DOF eya were determined and stored. In the discrete time case 
the simulation has run for 2 [SI. In the continuous time case the simulation has run 
for 25 [SI. After finishing the simulations, an enveloping exponential function has been 
determined in the same way as for the linear subsystem. Figure 2.6 shows two examples 
of the determination of the envelope for the case that the actuator (again) is positioned 
at node 38 for both the discrete time controller and the continuous time controller. The 
upper graphs of both plots show the control effort u and the fitted envelope. Both lower 
graphs show the estimated tracking error êYa of the actuator DOF. The point in time at 
which the first part of the control objective is found to be satisfied by the fit procedure, 
is indicated by an asterisk. Obviously, the controller does not work properly for this 
actuator position: 

In the discrete time controller case the actuator DOF ga itself is not even properly 
controlled towards the approximated harmonic solution and kept there. This 
behaviour must be attributed to the time discretization of the control effort u. Con- 
sidering the relatively high sample frequency f s  of 9990 [Hz], that is quite remarkable. 
As expected, the amplitude of the remaining estimated tracking error êYa becomes 
smaller in simulations with higher sample frequencies f s  (not shown). 

In the continuous time case the tracking error of the controlled DOF êya rapidly 
disappears (< lopJ4!), but the other DOFs don’t start to track the trajectories 
corresponding to the harmonic solution. 

Also, the envelope fit procedure obviously fails for this actuator position, resulting in a 
very small (right graph) or even negative damping factor c2 (left graph). 

Figure 2.7 shows a graphical representation of the values of the coefficients CJ and c2 that 
have been found for each of the 64 actuator positions. The lower graph of figure 2.7 and 
the relevant table in appendix C.l show that good actuator positions would be respectively 
node 58 for the discrete time controller and node 31 for the continuous time controller. The 
lower graphs of figure 2.8 show the damping behaviour for the continuous time controller 
for the case that the actuator is positioned at node 31. The upper graphs show that the 
estimated tracking errors of the uncontrolled DOFs damp out (which they are supposed 
to do). 
However, several other actuator positions exhibit very small or even negative damping 
factors c2, indicating that there’s a problem with the stability there (as can best be noticed 
from tables C.3 and (3.4 in appendix C.1). This would be in contradiction with the stability 
proof of subsection 2.4.1. 
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Analysis of the discordant behaviour 

This behaviour of the non-linear system does not mean that the stability proof is incorrect. 
The problem is caused by the way the desired trajectories for the DOFs are described: 
as the desired trajectory for each DOF is approximated by a truncated Fourier series, 
the system is controlled to the approximated harmonic solution, represented by desired 
trajectories P ,  instead of the real desired trajectories gd. 
The stability proof is based on the assumption that the first part of the control objective 
has been satisfied. Using the approximated desired trajectories 2,: this is not exactly true, 
as is shown in figure 2.9 where the calculated desired trajectory is shown. The left hand 
side graphs show both the solution for the actuator DOF ya, calculated in Diana (with 
a relative accuracy of lop1') and the corresponding approximations using the truncated 
Fourier series of 10 and 20 harmonics respectively. The right hand side graphs show the 
difference between the two values for both the 10 harmonics (solid) and the 20 harmonics 
(dotted) case. The absolute difference becomes relatively large for the higher time deriva- 
tives. The graphs also show that the benefit from the use of a larger number of harmonics 
in the approximation of the harmonic solution is rather limited. Despite the significant ad- 
ditional calculation effort that is required as a result of the increased number of harmonics 
that represent the approximation, there's only little improvement in the accuracy of the 
approximation. In control simulations the effect of the use of more (than 10) harmonics in 
the approximation of the desired trajectory has turned out to be negligible (not shown). 

Using the equations of motion described by equation 2.17, the effects of the limited ac- 
curacy of the approximation can be translated to a vector column of disturbance forces 
E r e s :  

O 

M i d  + Bid + Kgd + 1 k$m,d - E r e s -  (2.27) 1 -  int f i+sign(ym,d)) - F~~ 
( 2 )  

O 1 - 

Figure 2.10 shows the residues Fres,i during one excitation period. 
Figure 2.10(a) shows the residues for the 3 DOF case for approximations gd based on 10 
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and 20 harmonics. Figure 2.10(b) shows the residues for the 4 DOF case for approxima- 
tions ijd based on 10 harmonics. The residue in the 2nd equation is dominant in both 
cases. This must be attributed to the influence of the local non-linearity. When the left 
hand side plots and the right hand side plots are compared, it shows that the residue in 
the 2nd equation appears to be insensitive to the number of DOFs in the model. Another 
interesting notion (not shown) is that the residue in the 2nd equation appears to be very 
constant for the different models for the different actuator positions za.  Apparently there’s 
virtually no difference in the combined effects of the approximated solution for each DOF 
for the different models for the different actuator positions za.  
The residues can be regarded as a disturbance source. This disturbance source can have 
a high impact on the system behaviour for some actuator positions za under certain con- 
ditions. As a result of this disturbance the control effort u will never become exactly zero 
and apparently the uncontrolled DOFs may even be prevented from tracking the harmonic 
solution qd, i  under certain conditions. Instead of attracting the uncontrolled DOFs to the 
constant solution 0 of the zero dynamics, the non-linear zero dynamics may exhibit bifur- 
cations and other kinds of non-linear behaviour, when excited by the disturbance. 

The occurrence of such behaviour will be illustrated by means of two examples. Figure 
2.11 shows the steady-state course of the estimated tracking errors êYm and êc during 6 
excitation periods for the case that the actuator is located at node 38 and the continuous 
time controller is used. The tracking errors of the uncontrolled DOFs don’t damp out 
towards O, but behave harmonically, i.e. with the same period as the excitation force Fe, 
that causes the vibrations. Because the errors shown in figure 2.11 are a solution of the 
approximated zero dynamics, i.e. the zero dynamics based on i j d ,  this illustrates that the 
disturbance, caused by the approximation of the desired trajectories, sometimes forces the 
zero dynamics to a solution other than the constant 0. In fact, many other solutions may 
coexist. 
A second example illustrates that other behaviour of the uncontrolled DOFs, like subhar- 
monic and chaotic behaviour, is to be expected as well under some circumstances. Figure 
2.12 shows the steady-state course of the estimated tracking errors êYm and êc during 6 
excitation periods for the case that the actuator is located at node 4 and the continuous 
time controller is used. The uncontrolled DOFs are attracted to a subharmonic solution: 
during 6 excitation periods the solution exhibits 2 periods. 

Similar behaviour occurs for other positions where small or negative damping factors e2 

are found. When using different initial conditions, problems may occur at different po- 
sitions. As such behaviour severely restricts the applicability of the proposed criterion, 
the background of this behaviour, i.e. the zero dynamics, must be studied in more detail. 
Therefore a sensitivity analysis has been performed. 

Sensitivity analysis 

The sensitivity of the system behaviour for these approximation errors depends on the 
initial state of the system when the controller is started and on the actuator position 

System parameters also influence the sensitivity. Therefore the effects of variation of the 
following system parameters have been investigated: 

za,  because problems occur for some actuator positions for some initial states [go T go]  T T  . 

o Internal (modal) damping in the system. 

0 Linear stiffness k of the one-sided spring. 
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0 Model size, i.e. the number of (virtual) DOFs in the model. 

Only the continuous time controller has been used for this analysis, as then there will not 
be any unpredictable influence of time discretization of the control effort u. 

The internal damping of the system can be adjusted in the models by means of the modal 
damping. The modal damping ratio has been changed from 0.001 to respectively 0.01, 
0.02, 0.03 and 0.04 (for all modes) and new models and corresponding desired trajectories 
have been deterzined. The values for the coeEcients c1 and e2 have been determined 
with the ïesidts of sim~!atians with these models. T h e  envelope fit procedure has tl;ïned 
out to be unable to calculate accurate coefficients e1 and e2 for systems with high internal 
damping due to the fact that the (least squares) fit is unweighted. Therefore only a table 
that represents the stability problems in a qualitative way has been composed. 

damnine node 
1 2 3 4 5 6 

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6  
0.001 0 . 0 0 .  * O .  0 . 0 0  0 0 0 0 . 0  

0.01 0 0 0 0 * . O  

0.02 0 O .  

0.03 0 0 

0.04 

Table 2.2: indication (o) of actuator positions with stability problems for different damping set- 
tings. 

In table 2.2 the positions where problems with the stability of the zero dynamics occur, 
are marked with a bullet (o) (also applies to tables 2.3 and 2.4). Table 2.2 shows that 
stability problems are suppressed in systems with higher internal damping. This was to 
be expected, as higher damping settings suppress non-linear effects. 

To test the influence of the stiffness k of the one-sided spring, the value of IC has been 
varied. Using values of respectively k = O, k = 82.5, k = 165 and k = 330 [kN/m], new 
models and corresponding desired trajectories have been determined. The values for the 
coefficients c1 and e2 that have been determined with the results of simulations with these 
models, are shown in figure 2.13. Figure 2.13 shows that more stability problems occur in 
systems with higher stiffnesses k of the one-sided spring. No problems occur in the linear 
case, i.e. k = O [kN/m]. This was to be expected, as the non-linear effects caused by the 
one-sided spring become more dominant for higher stiffness settings. Furthermore, in the 
linear case only one solution of the zero dynamics exists. In table 2.3 the same effects are 
shown in a qualitative way. 

k W / m l  node 
1 2 3 4 5 6 

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6  
O 

82.5 0 0 0 0  0 0 

165 0 0 0 0 0  0 .  0 0 0 e  0 0 o.. 
330 0 0 0 0 0 0 0  0 0  0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0  0 

Table 2.3: indication (o) of actuator positions with stability problems for different stiffnesses. 

To test the influence of the model size, i.e. the total number of DOFs n, the number of 
virtual DOFs <i in the model has been varied. Using respectively n = 3, n = 4, n = 5 
and n = 8 DOFs, models and corresponding desired trajectories have been determined. 
The values for the coefficients c1 and c2 that have been determined with the results of 
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Figure 2.13: behaviour for different stiffness settings as a function of the actuator node (modal 
damping ratio set to 0.001 for all modes). 

simulations with these models, are shown in figure 2.14. 
Table 2.4 shows the stability problems in a qualitative way. 

DOFs node 
1 2 3 4 5 6 

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6  ............. . . . . . .  . . . . . . . .  . ..... . . . . . . . . .  .... 
8 0. . . . . . . . .  ..... ...... 

Table 2.4: indication (e) of actuator positions with stability problems for different model sizes. 

Increasing the number of DOFs in the model, implies a better model representation of the 
physical properties of the beam system. However, there is no obvious relation between the 
quality of the model in terms of physical correctness and the sensitivity of the system for 
disturbances in the desired trajectories describing the harmonic solution. Such a relation 
is not expected to be found and is not expressed by figure 2.14 and table 2.4 either. 
The sensitivity for disturbances in the harmonic solution is determined by the region of 
attraction of the solution rather than by the correctness of the physical properties described 
by the model. An explanation for the damping behaviour displayed in figure 2.14 and table 
2.4 would therefore require additional research into the behaviour of the zero dynamics. 
More specifically, (the region of attraction of) coexisting solutions of the zero dynamics 
should then be investigated. Equation 2.20 shows that the zero dynamics is described by 
a non-linear system of equations with two non-linearities. The evaluation of this system 
is therefore far from trivial and would require additional research beyond the scope of the 
actuator positioning issue alone. 
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Figure 2.14: behaviour for different model sizes as a function of the actuator node (modal damp- 
ing ratio set to 0.001 for all modes, stiffness k set to 165 [kN/m]). 

2.5.3 Behaviour comparison 

When the damping coefficients c2 that have been found for the linear subsystem and for 
the complete non-linear beam system are compared, the following can be noticed: 

o Node 58 is the best actuator position with regard to the second part of the control 
objective for the discrete time controllers in both cases. 

0 The continuous time controller yields no consistent best actuator position with regard 
to the second part of the control objective. 

o The course of the damping behaviour as a function of the actuator position is quite 
different for the linear case and the non-linear case. 

Another remarkable notion in a comparison between the linear subsystem and the complete 
non-linear beam system is the location of the damped ‘eigenfrequencies’. Even though one 
can’t speak of eigenfrequencies in the non-linear case, we can still look for similar peak 
resonances in the FFTs of the response of the non-linear system. Figure 2.15 shows the 
lower peak resonances that have been found using results obtained with the zero dynamics 
simulat or. 
There’s relatively little shift in the peak response frequency as a result of an increased 
stiffness k of the one-sided spring. Near node 38 the system’s lower peak resonance appears 
to be ‘locked’ at the excitation frequency j e  = 37 [Hz]. This must be attributed to 
the coexisting harmonic solution of the zero dynamics. The number of nodes where this 
‘locking’ appears, becomes larger for larger values of the stiffness k of the one-sided spring. 
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Figure 2.15: lower peak resonances in the zero dynamics of the non-linear system versus the 
actuator node. for different stiffnesses IC.  

2.6 Conclusions 

From the results of the research into zero dynamics based actuator positioning, the fol- 
lowing conclusions can be drawn: 

The stability of the zero dynamics is an interesting measure regarding the evaluation 
of actuator positions as it can be used to quantify the (damping) behaviour of the 
uncontrolled DOFs. 

It has, however, proved to be extremely difficult to find a good quantitative measure 
for the stability, especially for the non-linear system. The currently used measure is 
too dependent on operating conditions such as sample frequency and initial state of 
the system while their influence can not properly be accounted for. 

Based on the simulation results for the discrete time controller, which is used in 
practice, node 58 would be a good actuator position. As, considering the geometry 
of the experimental set-up, this position is difficult to use, the current position (node 
34) is not all that bad after all. Simulations with the continuous time controller have 
not yielded a consistent good actuator position yet. 

As a result of several disturbance sources such as in the measurements, the generated 
excitation force Fe,, the generated actuator force Fact, in the description of the 
desired trajectories, etcetera, it is very unlikely that it will ever be possible to achieve 
that the system's control effort u will disappear completely. 
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Amplifier and actuator dynamics 

3.1 Introduction 

Besides the choice of the best position of the actuator, the quality of the transfer between 
the computed control effort u and the actual actuator force Faet is also very important 
for the optimal functioning of the controller in an experimental environment. In the ideal 
case, the actuator force Fact provided by the actuator equals the computed control effort 
u. However, as mentioned in section 1.2, this transfer had appeared to be far from ideal 
in practice. 

In the past, the actuator dynamics has been modelled with a second order model (see [24, 
191). The used mass-spring-damper actuator model with its current parameter values has 
turned out to be unsuitable to adequately describe the dynamics of the amplifier/actuator 
combination (both electronically and mechanically). This observation is the reason for 
the research into the dynamics of the components that convert the control effort u to an 
actual actuator force Fact. The results of this research are described in this chapter. 

Figure 3.1 describes both the components that are used to generate the actuator force Fact 
and their connectivity. 

VDAC Vin vout Fact ~ DAC voltage divider amplifier actuator 
Ubit 1 pc I [bit]] 

Figure 3.1: block-diagram of the generation of the actuator force Fact. 

The PC calculates the required control effort u [NI and presents it to the DA converter 
(DAC) as a bit value Ubit using a (chosen) resolution of 25/2048=0.012 [N/bit]. 

The DAC converts the bit value Ubit to the voltage uDAC using a fixed resolution of 
10/2048 [V/bit]. 

To prevent unnecessary loss of resolution in the total transfer as a result of the fixed 
resolution of the DAC, a voltage divider has been inserted. Thus, an amplification 
factor can be set through the voltage divider which is based on a potentiometer with 
maxiElfin resistance E,,, = 10 [kol. 
The amplifier, represented by the fourth block, allows a maximum input voltage of 
approximately 2.1 [VI only. The amplifier has a knob to set the amplification factor. 
As the only reproducible settings are ‘off’ and ‘max’, the setting ‘max’ is used. 
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amplifier V i n  

o Finally, as represented by the fifth block, the output voltage vOut is translated to the 
actuator force Faet by the actuator, i.e. a shaker. 

vout actuator 

More details will be provided in the next section. 

3.2 The experimental identification set-up 

In order to determine the dynamics of the generation of the actuator force Fact, an ex- 
perimental set-up was constructed with the components that are held responsible for the 
poor quality of the generated actuator force. These components and their signals are rep- 
resented in figure 3.2. The left out components (see figure 3.1) are presumed to be linear 
and are not held responsible for the poor quality of the actuator force generation. This 
means that e.g. the possibility of a frequency dependency of the voltage divider could be 
investigated separately. 

I I I I 

Figure 3.2: block-diagram of components that supposedly reduce the quality of the actuator force. 

Thus, the set of components shown in figure 3.2 is presumed to determine the quality of 
the actuator force generation. It consists of the following interface signals and components: 

1. 

2. 

3. 

4. 

Input signal. This is the voltage uin, normally generated by the DA-converter of 
the IO-board. In the experiments described below the signal generated by the PC 
together with the 12 bit DA-converter and the voltage divider, has been replaced by 
a signal that is generated by the measuring system DIFA (see [7]). 

Amplifier. The input voltage uin is amplified to an output voltage u,,t. For the 
reason explained in the introduction, the amplification factor has been set to ‘max’ 
during the experiments. 

Actuator. By means of this device, in this case a shaker, the actuator force Fact is 
generated, based on the current i that runs through a coil as a result of the output 
voltage uout of the amplifier. As a result of the coil being placed in a permanent 
magnetic field, a Lorentz force is produced, which is used to generate the actuator 
force Fact. 

Output signal. This is the generated actuator force Fact. 

A set-up was constructed by means of which the actuator and amplifier dynamics could 
be determined. This set-up is shown in figure 3.3(a). The set-up is supposed to provide a 
good approximation of a fixed connection to the world. For parts of the experiments, the 
connection between the force transducer and the ‘world’ has been replaced by a connection 
with a known mass mzi. Using the sensors indicated in figure 3.3(a), frame accelerations 
and the actual actuator force Fact are measured. 

Besides the just mentioned mechanical quantities, the following electrical quantities are 
also measured: voltage vin, voltage vo,t and current i. Figure 3.3(b) shows the way 
these measurements have been carried out. The current i through the actuator has been 
measured on the grounded side of the actuator, using a 1 [O] resistor. The resistive part of 
the impedance of the actuator is approximately 6,4 [O]. This means that the voltage drop 
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(a) physical design and construction of the set-up. 
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(b) measurement set-up for 
electrical quantities. 

Figure 3.3: experimental set-up for the determination of amplifier/actuator dynamics. 

over the measurement-resistor is not negligible. One needs to take this into account when 
determining a model structure. The reason that this method of measuring the current i 
is used anyway, is the fact that the measuring system DIFA can only measure voltages. 
Because the minus pole of each connector of DIFA is grounded, the current i through 
the actuator can only be measured on the grounded side. This is also the reason why 
the voltage drop over the actuator alone could not be determined directly: one will then 
have to measure both the voltage before the actuator, relative to the ground and the 
voltage after the actuator, relative to the ground, followed by a subtraction. In table 3.1 
a summary of all measured quantities is shown. 

Table 3.1: summary of the measurements. 

In order to be able to determine the dynamic behaviour of the amplifier and the actuator, 
the described set-up has been used to acquire measurements in three load cases. The 
reason for using three load cases is that some parameters can be estimated only in specific 
load cases. The used load cases are: 

1. Actuator connected to the ‘fixed world’. 

2. Actuator connected to a mass m,, of 664.4 [g]. 

3 .  Actuator connected to a mass m,, of 1003.6 [g]: 

The masses include a mass of 14.0 [g] for the accelerometer. The influence on the dynamics 
of part of the mass of both the force transducer and the wiring has been presumed to be 
negligible. 
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With the help of the measuring system DIFA a zero mean white noise (ZMWN) signal has 
been provided to the system as an input voltage win. By means of this signal, transfer 
functions have been determined under the following circumstances: 

o The input voltage win (channel 3) has been used as a reference signal. 

- The reference voltage of 1 [VI, internally generated by the D-TAC 200 (DIFA), is 
internally amplified with -5 [dB], resulting in the required input voltage win.  The 
rewm why this leve! has been chosen is that the (small) measureme&-resister 
(literally) gees r?p in smoke or at, kast, the resistance value ~f the resister fuctii- 
ates too much as a result of temperature fluctuations when larger amplification 
factors are used, as the measurement-resistor can consume only approximately 

- For the measurements with the small mass m,, and with the large mass msn a 
voltage offset of respectively -0,2 [VI and -0,3 [VI has been added to the input 
signal win in order to keep the actuator core from reaching its movement limits 
under the influence of gravity. 

- The upper limit of the frequency spectrum of the generated ZMWN has been 
set to the sample frequency f s  during each experiment. 

1 [Wl. 

0 Only alternating current (AC) components have been measured. 

o The frequency response functions (FRFs) have been determined with the help of 

In the FRF plots in this chapter, the index y in gy>(f) indicates the output channel 
number. The index z indicates the input channel number. 

0 64 realizations of 16384 samples each have been used for the estimation of the transfer 
functions. 

o For the determination of the FFTs no use has been made of windows. 

o Measurements have been carried out twice: at sample frequencies f s  of 3.2 [kHz] and 
of 25.6 [kHz]. 

o The accelerometer has been screwed on a small plate which in turn has been glued 
to the frame, as a magnetic fixation had proved to be unreliable when the system is 
excited with frequencies higher than approximately 1 [kHz] . 

3.3 Dynamics 

In this section, models for the dynamics of respectively the amplifier and the actuator will 
be discussed and their parameters will be estimated. 

3.3.1 The amplifier 

In the past [24, 191 it has always been assumed that the used amplifier (TPO 25, manufac- 
tured by Ling Dynamic Systems) can be regarded as a so-called voltage-current transactor. 
That is a controlled current source together with its controller, regarded as one component 
(see [20]). An example of such a transactor is a voltage-current amplifier. The magnitude 
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of the current i that is generated by the current source then depends on the input voltage 
win only. For an ideal voltage-current amplifier, the current i that is to be generated at 
the output side, can be prescribed regardless of the load and regardless of the frequency 
spectrum of the input signal win. The transfer between the input voltage win on the input 
side and the current i on the output side can then be described by a constant. Behaviour 
of the amplifier like a voltage-current amplifier is desirable when a linear relation exists 
between the generated actuator force Fact and the current i through the coil of the actu- 
ator. 

Concerning the transfer K43 between the input voltage win and the output voltage v,,t 
and the transfer H53 between the input voltage win and the current i through the actuator, 
experiments lead to comparable results in different realizations. In figure 3.4 the transfers 
H43 and H53 are shown for the three different load cases. The experiments have been 
carried out using a sample frequency fs of 3.2 [kHz]. 

R 10' 

.f, 10" 

10-1 

2 1 , , , , , , , ,  , , < , < , , , (  , , < , , , , , ,  :_il,,] 
- -case2 

ioo 1 O] 1 0 2  i o  

4.5 ' ' " " "  ' ' " " ' 4  ' ' " " " '  ' ' " " "  

100 1 o1 102 1 o' 
frequency rHZ1 

(a) transfer H43, i.e. from vin to v,,t. 

1 0 d  ' " " " '  ' ' " " " '  ' ' ' " " "  ' ' ' ' , . . . I  
1 O0 10' 1 O2 1 0' 

(b) transfer H53, i.e. from vin to i. 

Figure 3.4: transfers from input voltage uin t o  respectively output voltage wout and current i. 

Figure 3.4 shows that the transfer H53 between the input voltage win of the amplifier and 
the actuator current i is quite frequency dependent and therefore load dependent, whereas 
the transfer H43 to the output voltage wout of the amplifier is nearly constant. Also, in the 
voltage-current transfer the influence of the mechanical dynamics can be clearly noticed: 
in load cases 2 and 3 a dip in the response occurs in the neighbourhood of 7 [Hz], ap- 
parently as a result of the unsuppressed movements of the actuator core, as this dip does 
not occur in load case 1. The influence of these movements appears in the nett current i 
through the back EMF'. This means that the amplifier should rather be considered to be 
a voltage-voltage amplifier than a voltage-current amplifier. 

As a consequence of the fact that the amplifier should be regarded as a voltage-voltage 
amplifier, the actuator force Fact is not proportional to the input voltage win, even if the 
force would be proportional to the current i .  This is part of the explanation for the poor 
resemblance between the actuator force Fact and the desired control effort u in the exper- 
iments that have been carried out in the past. A model of sufficient quality will therefore 
have to be determined in order to adequately describe the voltage-current transfer of the 

'EMF = Electro Motorial Force. 
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actuator. Only then, the input voltage uin can be made proportional to the actuator force 
Fact. As the output voltage u,,t is sufficiently close to proportional to the input voltage 
uin, the total transfer between the input voltage uin and the resulting actuator force FUct 
will then be proportional as well. 
As appears in figure 3.4(a), the voltage-voltage amplifier is not ideal. Therefore, based 
on the transfer for load case 1, a frequency averaged amplification factor Hump has been 
determined. This factor Hump is approximately 15.94 [-l. 

3.3.2 The actzatm 

The actuator used is a shaker, an electro-mechanical device that generates a force Fact as a 
result of a current i through the actuator. The generated force is the Lorentz force, caused 
by the current i through a coil, that has been winded on the actuator core and resides in a 
permanent magnetic field, caused by a permanent magnet with magnetic induction B [TI. 
In order to apply the resulting actuator force F,,t to the load, the core is connected to the 
load as shown in figure 1.3. To restrict the freedom of movement of the core, it is hung 
up in a package of springs (see [24]). The influence on the generated actuator force Fact 
of the mass of the core and the springs can not be neglected. A model for the actuator 
can therefore be divided into an electrical submodel and a mechanical submodel. These 
are discussed below. 

Electrical submodel 

A consequence of the use of a voltage-voltage amplifier is that the electrical components 
of the actuator determine which model is to be used to describe the current i through the 
actuator. In the past a model has been proposed (see [24]), represented by equation 3.1. 
As, at that time, the amplifier had been presumed to be a voltage-current amplifier, the 
quality of the model has not been evaluated. Therefore, the suitability of this model for 
the description of the electrical part of the actuator dynamics is tested here. 

di 
dt 

?,lout = iRt,t + L- - BI,&, 

The first term of equation 3.1 accounts for the resistive part of the impedance of the 
actuator Ruct as well as for the measurement-resistor R,,,,.. The second term accounts 
for the electrical behaviour of the actuator coil. L [HI represents the self-induction of the 
coil. The third term accounts for the influence of the back EMF. B [TI is the magnetic 
induction of the permanent magnetic field, I [m] is the effective length of the coil windings. 
i, is the speed at which the coil on the core (and therefore the core itself) moves through 
the magnetic field. The minus sign in front of the term is a result of the orientation of the 
coil windings in the magnetic field. 

To suppress the influence of the back EMF, a transfer function is determined for load case 
1, i.e. with the actuator fixed to the ‘world’. There is hardly any influence of the back 
EMF, as the connection between the actuator and the world eliminates the possibility for 
movement as much as possible. The transfer function has been determined by dividing 
the data representing the complex transfer functions respectively of the current i through 
the actuator as a result of the input voltage uin and the output voltage uo,t as a result of 
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In figure 3.5 the transfer H54 between the output voltage v,,t and the current i through 
the actuator is represented by a solid line. The sample frequency fs has been set to 12.8 
[kHz] during this experiment. 
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Figure 3.5: transfer from output voltage u,,t to current i ,  actuator fixed to the ‘world’. 

After Laplace transformation of equation 3.1 without the term representing the back EMF, 
the following lSt order model is found: 

In figure 3.5 a dotted line represents an attempt to fit this model to the data for frequencies 
up to 100 [Hz], as it appeared that a reasonable fit to this lSt order model is possible for 
frequencies of up to approximately 200 [Hz]. 
For the fitting procedure, the MATLAB-function invfreqs has been used. The used rou- 
tine, based on this function, can be found in appendix E.2.3. For this fit, quadratic 
weighting has been used with the minimum weight set at 100 [Hz]. The fit resulted in the 
following values for the model parameters: Rt0t=7.1 [O] and L = 3.1 . [HI. 
A measurement of the resistive part of the impedance R,,t of the actuator has indicated 
that this value is approximately 6.4 [RI, whereas the value is 6.1 [O] according to the fit 
pmcedcre, BS R,,,,. = 1 [O]. 

Because of this difference and because the assumed lSt order behaviour of the electrical 
part of the actuator has not become apparent in the data representing the ‘measured’ 
transfer function, the quality of the chosen model should be considered to be insufficient 
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for frequencies above 200 [Hz]. The model structure itself is the main cause for this: it 
appears to provide a physically incorrect description of the electro-dynamics. The transfer 
function shown in figure 3.5,  is comparable to figure 3.4(b), as the difference between uin 
and u0,t is just the constant factor Hamp. When this comparison is made with the transfer 
functions produced by load cases 2 and 3 where the fixation has been replaced by a known 
mass, it shows that the approximation of the fixation to the world using the steel profiles 
is adequate. Therefore, that is no t  to be considered the cause of this behaviour. 
Anyway, up to frequencies of approximately 200 [Hz], the description of the dynamics, 
using this model, can be considered sufficient. However, if the model is accepted, it should 
be viewed as a ist order black-box modei: the values of the parameters are influenced by 
unmodelled (electro-)dynamics and apparently do not just represent the electrical compo- 
nents defined in the model. 

Four 

1. 

2. 

3.  

4. 

ways to deal with the modelling problem are: 

Replace the voltage-voltage amplifier by a high performance voltage-current ampli- 
fier. When such an amplifier is used, the use of a (more) complicated model becomes 
superfluous. This, however, would be an expensive work-around. 

Ignore the influence of the back EMF and the influence of the coil and use only the 
resistive part of the impedance of the actuator to determine a transfer factor instead 
of a dynamic transfer function. As a matter of fact, that’s what has happened so far 
by assuming that the amplifier is a voltage-current amplifier. 

Accept the physical incorrectness of the model that provides a good description for 
frequencies up to 200 [Hz] and use it as a black-box model. Of course, that is expected 
to limit the adequate description of the dynamic behaviour of the total transfer to a 
frequency of approximately 200 [Hz] at most. 

Fit a higher order black-box model. When using this approach, the parameters for 
such a model can not be attributed to properties of physical components. As a 
result, it will be difficult to devise a suitable parameter identification experiment, 
because compensation for operating conditions, such as for example the influence of 
an identification mass mZi, will be non-trivial. 

Mechanical submodel 

The actuator force Fact should be proportional to the actuator current i under ideal cir- 
cumstances. In that case, the actuator force is also known, if the model that translates the 
input voltage vin to the current i through the actuator is adequate. However, as indicated 
before, the effects of the mechanical components on the realized actuator force Fact can 
not be neglected when using this actuator. Therefore, the following mechanical model is 
used, as proposed by De Vries [24]: 

Faet = -iBl - maia - b,Za - kaz,. (3.4) 

The minus sign in front of the first term is a result of the orientation in the magnetic field 
of the current i through the coil windings. In equation 3.4, ma, b, and ka account for 
respectively the effective mass, the mechanical damping and the mechanical stiffness of 
the actuator. z, is the displacement of the actuator core, i.e. of the connection between 
the mass and the actuator. The reader should note that, when used in conjunction with 
the beam with one-sided spring, the displacements are in the y-direction, as the actuator 
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then is oriented differently. 

In order to determine the value of the product BI, load case 1 is used again. In equation 
3.4 the terms in i, and 2, can be neglected, i.e. z, is a constant, if the amplitude of the 
input signal is not too high, resulting in: 

FUct e -iB1 - kaza. (3.5) 

The term k,z, itself does introduce a static offset, but this offset does not influence the 
estimation of the product BI, as only AC components have been measured. Figure 3.6 
shows the transfer between the current i through the actuator and the actuator force Fact. 
The data-set has been produced using a sample frequency fs of 3.2 [kHz]. The figure also 
shows an unweighted Oth order fit, based on the frequency transfer function data up to  100 
[Hz]. The fit is represented by means of a dotted line. 

fit for f 4 0 0  [Hz]) 

'"4 
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Figure 3.6: transfer from i to Fa,,-, actuator fixed to the 'world'. 

This behaviour appears to match the behaviour described by equation 3.5 very well. The 
value of the product BI is estimated at 19.5 [N/A]. 

For the determination of the parameters mu, b, and IC,  the fixation to the world is replaced 
by a connection to a known mass mZi, so that Fact = mZi2,, as shown in figure 3.7. 
Substitution of Fact = mzi2, in equation 3.4, followed by Laplace transformation, results 
in the following description for the transfer between the current i through the actuator 
and the position z,: 

However, the acceleration 2, is measured, not the position z,. Then applies: 

(mu + mZi)s2 + bus + IC,  ' 

S 2 W )  - -Bls2 H .  .. - - a t z a  - ~ 

I ( s )  (3.7) 
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Figure 3.7: representation of the mechanical submodel for load cases 2 and 3. 

Thus, the Hi+?, data that have been acquired with DIFA can be transformed to Hi+zu by 
dividing the data of Hi+?, by s2. In principle, this operation is desirable, because the used 
fit procedure invfreqs does not allow to fit polynomials with constraints for the values 
of certain coefficients, e.g. a polynomial of degree 2 with its Oth and lSt coefficient set to 
zero. 

By using the measurements for load cases 2 and 3, i.e. with a connection to a known 
additional mass m,, , mx2 respectively, the (other) model parameters can be estimated. 
This can be done in two ways: 

1. 

2. 

Both 

The value of the product BI is known already, based on load case 1. If this value 
is used, the other parameters can be estimated directly, based on the data of either 
load case 2 OT load case 3. Fits based on these data sets should produce similar 
parameter values. 

Based on the data of both load cases 2 and 3. Once measurements have been 
acquired using the 2 different known masses, the mass ma and the product BI can 
be estimated. Then, b, and ka are also known. Of course, the value of the product 
BI that is found using these measurements, should equal the value that has been 
determined using load case 1. 

methods have been applied in the following. In order to determine the model pa- 
rameters, a fit has been made in two ways: 

1. Fit a numerator polynomial of degree O, i.e. no, together with a denominator poly- 
nomial of degree 2, i.e. dos2 + dis + d2: 

In the fit procedure, do is scaled to 1, which results in: 

BI 
m u  BI + m x ;  = ( ~ ) ~ + m , = - -  " O i  m x i .  (3.9) 

2. Fit a numerator polynomial of degree 2, i.e. nos2 + n i s  + 722, together with a 
denominator polynomial of degree 2, i.e. dos2 + d i s  + d2> to the original transfer 
function and set coefficients n1 en n2 to O afterwards: 

(3.10) 
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In the fit procedure, do is scaled to 1, which results in: 

( m x n 0 ) 2  - (mzn0)1  = +ma = 
BI 

ma + m x i  no1 - n o 2  
(3.11) 

The minus sign that is present in equation 3.7, has been omitted in these models. This is 
allowed as the accelerometer indicates an acceleration in positive z-direction as a negative 
acceleration if the accelerometer is oriented as indicated in figure 3.3(a). 

In table 3.2 the values of the coefficients no are indicated for the fits with the different 
data sets. The data describing the transfer function up to a frequency of 100 [EZ]  are 
used. Lower frequencies have been weighted quadratically higher than the higher frequen- 
cies with the minimum weight set at 100 [Hz]. In the first column, the load case and the 
sample frequency f s  have been indicated. The second column shows the value of a0 for 
the originally determined transfer Hitzn. The third column shows the value of no based 

Table 3.2: values of fitted no for untransformed and transformed transfer. 

It needs to be remarked that the coefficients found on the basis of the transformed transfer 
(3rd column) are very sensitive to the various settings, like for instance the sample fre- 
quency. Most likely, the small amplitude of the vibrations is the cause for this behaviour. 
Therefore, the second method to determine the polynomial coefficients was selected, i.e. 
to fit a transfer function with both the numerator and the denominator polynomials of 
degree 2 to the original data for Hi,;a, ignoring the results for the values of n1 and 7x2 

aft erwards. 

If we use the previously found value of the product BI (method 1), then the different data 
sets yield different values for the effective mass ma of the actuator: 0.107 and 0.127 [kg]. 
This suggests that the previously determined value of BI is not correct. If we use both 
sets to estimate all parameters (method 2), the following model parameters are found: 

Table 3.3: found parameter values for the mechanical submodel. 

Thus, the undamped eigenfrequency of the mechanical submodel of the actuator is ap- 
proximately 23 [Hz]. It’s remarkable that the value for BI indeed is different than the one 
determined befûre. %wever, it needs to b e  said that the parameters are very sensitive to 
small variations in the fitting procedure and the quantity of data to be fitted. 

Figures 3.8(a) and 3.8(b) show both the transfer functions based on the measure- 
ments and the fitted transfer functions for respectively load case 2 and load case 3. It can 
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Figure 3.8: transfers from i to 2, (solid) and the fitted models (dotted). 
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be concluded that with the values of the model parameters listed in table 3.3 a fit has been 
found that provides an adequate description for frequencies up to approximately 200 [Hz]. 
Ignoring coefficients n1 and n2 therefore seems reasonable and the parameters estimated 
with method 2 are acceptable. 

3.3.3 Total transfer function 

Now that the parameters for both submodels have been estimated, we can determine the 
performance of the electrical submodel and the mechanical submodel combined. Substi- 
tution of the transfer function describing the transfer between the output voltage vout of 
the amplifier and the current i through the actuator, given by equation 3.1, in equation 
3.4 yields after some reorganization: 

The damping has become frequency dependent. This is caused by the back EMF. 

If we look at the situation that the actuator is connected to the known mass mZi and 
remember that Hamp = vo,t /~in defines the amplification factor of the amplifier, the total 
transfer function can be described by the following 3'd order model: 

-BI H~~~ s2 
. (3.12) S 2 Z a ( S )  - - 

Hv,,+& = ~ KdS) ( R t o t  + S L )  ((ma + m,,)s2 + (b,  + *)S + k a )  

Figures 3.9(a) and 3.10(a) show the transfer functions between the input voltage vin and 
the acceleration Za for respectively load case 2 and load case 3, i.e. the situation that the 
force transducer has been connected with respectively a mass m,, or a mass mZ2. The 
description provided by the models is even adequate up to frequencies of approximately 
500 [Hz] and is still quite acceptable for higher frequencies. The resonance peaks above 
1000 [Hz] were caused by the eigenfrequencies of the screw-thread connections, e.g. the 
connection between the mass and the force transducer. 

Thus, it is possible to find a fairly reasonable description for the dynamics of the ampli- 
fier/actuator combination. However, in comparison with the previously used description, 
this description requires additional calculations as a result of the influence of the coil and 
of the back EMF. 

In figure 3.9(b) and 3.10(b) is displayed what the transfer Hvin+?, looks like if the influ- 
ence of the back EMF is not accounted for, for respectively load case 2 and load case 3. In 
that case, only the resistor and the coil are modelled. If these figures are compared with 
figure 3.9(a) and 3.10(a), it becomes apparent that the influence of the back EMF should 
not be ignored. As expected, it improves the transfer description in the low frequency 
range. 

In figure 3.9(c) and 3.10(c) is indicated what the transfer HVintza looks like if the entire 
electro-dynamics are left out, for respectively load case 2 and load case 3. In that case, 
only the value of the resistor is used. This is what has happened in the past by assuming 
that the amplifier was a voltage-current amplifier. As has been observed in practice, this 
description is not adequate. If these figures are compared with figure 3.9(b) and 3.10(b), 
it becomes apparent that the coil improves the transfer description in the higher frequency 
range. 
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Figure 3.9: total transfer from win to 2,; connection with mass m,, (load case 2). (fit=dotted) 
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Figure 3.10: total transfer from vi, to 2,; connection with mass mzz (load case 3). (fit=dotted) 
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3.4 Implementation for the beam with one-sided spring 

The discussed model, together with its parameters, has been implemented in the experi- 
mental environment of the beam with one-sided spring. 

The PC is used to calculate the desired control effort u. Using the inverse of the total 
transfer function, the desired control effort u is compensated for the combined ampli- 
fier/actuator dynamics. This results in a compensated control effort ucomp which is sent 
to the DAC instead of the desired control effort u itseiÎ. Figure 3.11 shows the same block 
diagram as figure 3.1 with some of the transfer factors substituted. 

Figure 3.11: block-diagram of the generation of the actuator force; some transfers substituted. 

The factor Rdiv/Rmux requires some additional explanation. This factor is introduced by 
the voltage divider which is based on a 10 [kO] potentiometer. Therefore, R,,, = 10 [kO]. 
By means of the resistance &iv the user can change the part of the voltage drop that is 
supplied to the amplifier as input voltage uin. 

As we want the actuator force Fact to match the desired control effort u, it fo!lows that: 

Fact = u = -iBI - (muyu + bayu + kayu).  (3.13) 

The current i through the actuator required for this actuator force is therefore: 

. u + mayu + buyu + kuyu 
BI 

z = -  (3.14) 

Substitution in equation 3.1 yields the following 3Td order model for the required output 
voltage vout: 

- Blya. 

(3.15) 

From the block diagram described by figure 3.11 it follows that Fact equals the desired 
control effort u if the control effort u is compensated to ucomp as follows: 

) d ( u + m u y u  + buYu + -uyu 

BI 
R+L- - 

u + m a y ,  + buy, + kuya 
BI d t  Vout = - 

R,,, 2048 25 
x - x -  x - [NI. Ucomp Vout X - 

1 
Hamp Rdiv 10 2048 

(3.16) 

This result has been implemented in the C++ code for the beam controller using a simple 
Euler differentiation scheme to perform the differentiation, required for the evaluation of 
equation 3.15. 

The value for Rdiv that must be used during experiments, follows from substitution of the 
parameter values in the block diagram shown in figure 3.11. If a constant control effort u 
is to be applied, the dynamics can be left out, provided that the actuator core does not 
move. In that case (apart from the s i p )  the control effort u should equal ucoGp due to 
the absence of dynamics that would otherwise require compensation, resulting in: 

= 520 [O]. 
1 2048 25 

x Rm,, x - x ~ 
&iv = - X ~ 

R 
BI Hump 10 2048 
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excitation force Fe, the measurements were started. The controller was started after an 
additional second had elapsed. Figure 3.13 shows the results of the controller experiment. 

(a) response of lS t  DOF, ga. (b) response of 2nd DOF, ym. (c) measured actuator force. 

Figure 3.13: results of a controller experiment, fs = 500 [Hz]. 

Figures 3.13(a) and 3.13(b) show that the controller adequately forces the beam system 
from the i subharmonic solution into the harmonic solution. The top graphs show the 
course of the tracking errors of the interface DOFs. The lower graphs show both the re- 
sponse of the DOF (solid) and their corresponding desired trajectories (dotted). 
The required control effort shown in figure 3.13(c) becomes smaller, but quite some effort 
remains required as a result of several disturbance sources, such as measuring errors, time 
discretization errors, quantization errors and model errors. 
During the lSt second of the experiment, i.e. before the controller is started, the actu- 
ator only compensates for its own influence on the beam dynamics. As can be seen in 
figure 3.13(c) the compensation based on the model without compensation for the electro 
dynamics is not ideal, as the resulting measured actuator force is not 0 [NI. 

3.5 

e 

e 

e 

e 

e 

Conclusions 

Using a Znd order model, it is possible to provide an adequate description of the 
mechanical part of the transfer of the actuator for frequencies up to approximately 
200 [Hz]. 

Using a resistor-coil-back-EMF model for the transfer between voltage and current 
in combination with a standard 2nd order mass-spring-damper model for the transfer 
between the current i and the actuator force Fact, the total transfer can be adequately 
described for frequencies up to approximately 500 [Hz]. 

So far, it has not been possible to find a physically interpretable model of the be- 
haviour of the electrical part of the actuator. 

The 3rd order model requires some additional CPU power to perform numerical 
differentiation in a real-time environment. The 133 [MHz] Pentium based PC can 
handle this adequately. However, the Euler differentiation scheme, used to perform 
rrUmeïica1 diflerentiation in the real-time environment, has proved to be unable to 
perform the required differentiation adequately. 

Using the new model parameters and synchronization routines, the performance of 
the controller experiment improves significantly. 
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Concluding remarks ami 
recornmendat ions 

Concluding this report, it is appropriate to evaluate the results and the research itself. 

Conclusions: 

Regarding the actuator positioning issue: 

The optimality of an actuator position for the beam with one-sided spring is dom- 
inated by the behaviour of the zero dynamics. Therefore, the stability of the zero 
dynamics can theoretically provide a good basis for an actuator positioning criterion. 

Quantification of this stability has proved to be rather difficult due to the non- 
linear nature of the considered system. As a measure to quantify the stability of the 
zero dynamics, an enveloping exponential function has proved to be too sensitive 
to operating conditions, such as sample frequency fs and initial conditions. The 
occurrence of bifurcations and other non-linear effects in the behaviour of the zero 
dynamics, when excited with a (small) disturbance, further restricts the applicability 
of the measure. 

Considering the non-linear nature of the system, it is unlikely that an exact (prefer- 
ably analytical) actuator positioning measure, independent of operating conditions 
such as initial state and sample frequency fs, can be found at all. 

For the continuous time controller case, the research has not yielded a consistent 
optimal actuator position 2, with regard to the stability of the zero dynamics yet. 
For the discrete time controller case, the current actuator position (node 34) has 
turned out to be not such a bad choice after all, since it exhibits good damping 
behaviour of the uncontrolled DOFs. The best position would be node 58, but that 
position is not available as a result of the dimensions of the mass unbalance. 

The behaviour of the zero dynamics shown in this report indicates that the controller 
is not robust after all and contradicts the robustness of the controller claimed by Van 
De Vorst [23]. 

Regarding the performance of the amplifier/actuator combination: 

o The combined actuator/amplifier model can theoretically provide an adequate de- 
scription of the actuator/amplifier dynamics for frequencies up to 500 [Hz]. In prac- 
tice the poor quality of some of the signals (especially the acceleration signals) sig- 
nificantly restrict the usability of the models. 
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o A new controller experiment has shown that the performance of the controller already 
benefits greatly from the new model parameters and synchronization routines, i.e. 
even without compensation for the electro-dynamics. Even though the actuator force 
Fact still does not disappear, it no longer keeps clipping to its minimum/maximum. 

Furthermore, the following recommendations can be made: 

Recommendations 

o Research into the background of the performance improvement as a result of the 
filter effect, as caused by time discretization of the control effort u. 

o Further research into the stability of the zero dynamics. The occurrence of bifurca- 
tions and other non-linear behaviour are research inviting features of the non-linear 
zero dynamics. 

e Research into the benefit of multiple actuators. The system is expected to benefit 
greatly from the use of multiple actuators for two reasons: 

- More DOFs can be controlled towards their approximated desired trajectories 
ij., corresponding to the harmonic solution of the beam with one-sided spring. 
Thus the region of attraction of solutions of the zero dynamics other than 0 is 
expected to be reduced. 

- The controller will have more influence on the spot in phase space where the 
zero dynamics will be ‘reached’. 

o Control performance is expected to benefit greatly from a better physical repre- 
sentation of the linear one-sided spring in the experimental set-up. Currently, the 
controller is especially (over-)sensitive to the setting of the bolt. 

o It would be useful to replace the voltage-voltage amplifier of the experimental set-up 
with a real voltage-current amplifier. If a description, better than up to 500 [Hz] is 
required, it is recommendable to replace the entire amplifier/actuator combination 
by a combination that does not require modelling or can be modelled more easily. 
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Appendix A 

Conditions for asymptotic stability- 
of the zero dynamics 

Consider the following linear, time-invariant system with the same number of inputs in 9 
as the number of outputs in y: - 

The transfer matrix H ( j w )  can be written as: 

The Kalman-Yacubovitch theorem (see [9 ,21 ,  221) states that, under the assumptions that 

o H ( j w )  is so-called positive real (i.e. even the real part of the smallest eigenvalue of 
Hermitian matrix [ H ( j w )  + E ( j w ) ]  is positive), 

o A is Hurwitz (i.e. has all its eigenvalues in the left half-plane), 

o the pair (A,B) is controllable, 

o the pair @,A) is observable, 

a symmetric positive definite matrix I', matrices - Q and 
satisfying (see [22]): 

and a scalar E > O exist, 

Assuming that there are 2 n  state equations (n  DOFs) and m < 2 n  inputs and outputs, 
the dimensions of 0, - Q and are respectively 2 n  x 2 n ,  m x 2 n  and m x m. 

The usefulness of this theorem can be demonstrated using a non-linear SISO system. As 
displayed in figure A.l ,  the system's transfer function H ( j w )  can be split into a positive 
real transfer function F ( j w )  and a non-linearity 4 with a transfer function 40, producing 
output value 4(y). 
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Figure A.l:  split up non-linear system (Lur'e problem). 

The SISO system can be described as 

where A is Hurwitz, (A, b)  is controllable and ( g T ,  A) is observable. 
The scalar transfer function F ( j w )  is defined as: 

F ( j w )  = G T ( j W L  - &lb. (A.5) 

Application of the Kalman-Yacubovitch theorem yields the following conditions: 

- ATP+= = - E P -  qqT, -- E > O and = Pd. (A@ 

The non-linearity 4 is supposed to be sector-bounded, which means that it lies in the first 
and third quadrants of the (y, 4(y)) plot, or: 

Choosing as a candidate Lyapunov function 

yields 

This means that for a non-linear system with a sector-bounded non-linearity and a positive- 
real transfer function, global asymptotic stability can be proved. However, systems with 
positive-real linear subsystems are seldom met in practice. In other words, the Nyquist 
diagram seldom remains to the right of the imaginary axis. However, it does often remain 
right of a vertical line located at R[F(jw)]  = -i in the left hal€-plane. If this is the case, a 
transformed positive-real transfer function Ft ( ju )  can be created via a summatioiì known 
as loop transformation: 

(A.lO) 
1 
k 

Ft( jw)  = F ( j w )  + -. 
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(a) block diagram. (b) resulting sector condition for $(y). 

Figure A.2: loop transformation. 

The resulting transformed non-linearity 4t again has to belong to the sector [O, co). Figure 
A.2(a) shows that 4t()  can be written as 

(A.ll) 

where the non-linearity 4 has to satisfy the following sector condition, see figure A.2(b): 

(A.12) 

Thus, a sufficient condition for the stability of the non-linear system is obtained when the 
Nyquist diagram of the linear part remains to the right of the vertical line through (-i, O). 
A drawback of this method is that its applicability is very limited, as it requires that the 
imaginary part of the complex transfer function is O at the frequency where the minimum 
real part occurs and this need not be the case. Popov’s criterion can be used to overcome 
this problem. It states: 

o Suppose A is Hurwitz, 

o the pair (@) is controllable, 

o the pair (C,A) is observable, 

0 the non-linearity 4 belongs to the sector ( O p a ) ,  

then the system (equation A.4) is globally asymptotically stable if there exist a number 
r > O such that: 

vw 2 o, %[(1 + j r w ) F ( j w ) ]  2 E ,  E > o. (A.13) 

The proof of this theorem can be obtained using the Kalman-Yacubovitch theorem, see 
also [22]. Equation A.13 can be written as: 
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where: 

G ( j w )  = (1 + j r w ) F ( j w )  

= (1 + j?"w)cT(jwl.  - A)-lb 
= C ( J w l . - A ) -  b + T C  (Jwl-A+A)(jwL-A)-lb 
= C T ( j W L  - A)-lb+ T C T ( j W L  - A)(jwL - A)-lb + TCT14( jWL - A)-lb 
= c T ( j w 1  - ~ ) - l b  + rCTb + rgTA(jwl  - ~ > - l b  
= rcTb + C ~ ( L  + rA)(jwr -  lb. 

T .  1 T .  

(A. 15) 

Applying the Kalman-Yacubovitch theorem for the transfer function G ( j w )  yields: 

- ATP + PA = -CE - qqT, -I 

T b p + wqT = C T ( l  + TA), 
2 T w = 2 r ~  b. 

Choose the following candidate Lyapunov function: 

V(Z) = IT& + 2Ts,(Y), 

(A.16) 

(A.17) 

with: 
Y 

NY) = J'4(4do, $(Y) 2 0- (A.18) 
O 

The derivative of V ( g )  can then be written as: 

V ( g )  = gT& + ZTEg + 2r4(y)$ 

= (AZ - b4(Y))T& + 
= gT(ATp + PA)? - 24(y)bT& + 2T4(7J)CTAZ - 2rCTb42(y) 

= -EZTEZ - Z 44 I- IC - 2 4 ( Y ) ( C  ( L  + TA) - wg )Z + 2T4(Y)CTAZ - 2rCTb42(Y) 

= - E I T &  - Z 44 -- Z + 2w4(Y)gTz - 2TC b4 (Y) - 24(Y)CT Î. 

= -EZ E Z  - Z 44 I- Z + 2W4(Y)YTZ - W24(Yl2 - 24(Y)Y 

- b 4 M )  + 2T4(Y)CT(AZ - b4(Y)) 

T T  T T 

T T  T 2  

T T T  

= -EZT& - ((LTS- - w4(Y)>2 - 24(Y)Y, (A.19) 

which is negative definite. A more constrained version of Popov's criterion for the usage 
of sector-bounded non-linearities with an upper-bound, can be given by: 

1 
k -  

(A.20) 

where the non-linear element 4 has to belong to the sector (O$). The proof for this 
criterion can be obtained in the same way as the proof obtained with the former version, 
described by equation A.13. This can be seen when equation A.20 is transformed by means 
of a loop transformation: 

vw 2 o, X[(l + j r w ) F ( j w ) ]  + - > E,  E > o, 

vw 2 o, %[(i + j r w ) F t ( j w ) ]  2 E ,  & > o. (A.21) 

The non-linear element 4 has to belong to the sector (O ,k ) ,  see equations A.lO, A. l l  and 
A.12. The graphical representation of Popov's criterion is known as the Popov plot, i.e. a 
plot in which the real part of F ( j w )  versus w times the imaginary part of F ( j w )  is drawn. 
Equation A.20 implies that the plot should stay to the right of a straight line through the 
point (-i, O) with slope :. 
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Description of the new simulators 

Three simulators have been developed in order to find a quantitative measure for the 
stability of the zero dynamics in a control experiment: 

1. A discrete time controller simulator. 

2. A continuous time controller simulator. 

3. A zero dynamics simulator. 

Each simulator has been implemented in C++ using the TCE toolbox (see [5] and [6]). 
This toolbox has been developed within the Systems and Control section and is used more 
and more, because of the following features: 

o Simulations run faster in the C++ environment than in the native MATLAB V4.z 
environment. 

o The toolbox provides extensive and fast matrix manipulations that can even be used 
in a real-time (experimental) environment. 

o It can provide output in MATLAB format. This facilitates post processing of the 
data. 

o If written properly, the discrete time simulator can be used in conjunction with the 
real-time interface without any additional programming. 

o It has a very good built-in integration routine, based on the Runge Kutta integration 
scheme with variable stepsize and combined with a discontinuity handler. Needless 
to say that these features have been very useful for the beam with one-sided spring. 

o It has been ported to ANSI (TCE Vi.2p) for the occasion. As a result, it also runs 
on the (usually faster) Unix boxes and on Windows NT. 

Using the previously developed simulator as a basis (see [19]), the three mentioned sim- 
ulators have been developed. Technical details behind the development of the simulators 
are left out; only aspects that are directly relevant for the results will be discussed briefly. 

The following adaptations have been made to the original simulator (see [i9]>: 

o The simulators provide the full state of the system. One ought to realize that this 
is not possible in an experimental set-up, as virtual DOFs can not be measured. 
Even though it’s possible to reconstruct the full system state, the state is exported 
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by the simulator to the controller as if it were possible to measure it, in order to 
eliminate the influence of reconstruction errors. As a result, the new simulators can 
not directly be used in the experimental set-up. 

o The absolute value of the control effort u is no longer clipped to a maximum force 
of 20 [NI. 

o In the continuous time implementation the sample frequency f s  is used only to 
determine the poi& in time where the state, input, etcetera are to be reported. 
The c ~ n t r d e r  fmce is evaluated as if an analog (i.e. continous time) controller has 
been used. The controller source code has therefore been moved to the simulator 
source code in the continuous time case. 

o In the zero dynamics simulator the sample frequency fs is used to determine the 
frequency range for the FFTs. The number of recorded samples determines the 
‘resolution’ of the frequency axis of the FFTs. The state vector column g is defined 
by the tracking errors and their time derivates instead of by the DOFs themselves. 
As follows from equation 2.20, the system exhibits two discontinuities in this case, 
one of which is state independent and depends only on the time t ,  as it is caused by 
the sign of the desired trajectory Ym,d.  

In order to reduce the length of this report, the source code for the simulators has not 
been included. 

B.l  Operating conditions 

o Unless stated otherwise, the controller is started immediately, at t = O [s]. 

o When using the discrete time controller or the continuous time controller, the system 
starts from its resting position. This means that the initial conditions of the system 
are set to go = &, = 0. 

o When the discrete time controller is used, a sample frequency f s  is required. It has 
been set to fs = 9990 [Hz], because 9990 = 270 x fe. This allows the use of time 
series for the desired trajectories without additional interpolation. 
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- 
vaiue tables si numerical 

C.1 Coefficients e1 and e2 

results 

node c1 c2 node c1 c2 

3 5.01 0.4964 35 2.494 1.667 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

4.651 
4.313 
4.086 
3.883 
3.725 
3.584 
3.468 
3.385 
3.311 
3.175 
3.116 
3.062 
3. OOI 
2.874 
2.897 
2.869 
2.712 
2.728 
2.719 
2.653 
2.686 
2.686 
2.596 
2.625 
2.62 
2.602 
2.591 
2.58 
2.562 
2.53 
2.498 

O. 7783 
O. 8721 
O. 9436 
O. 9829 
I e 027 
I. 059 
1.094 
1.141 
I. 181 
1.179 
1.212 
1.25 
1.276 
1.265 
I. 333 
1.37 
I. 339 
I. 392 
1.433 
1.441 
I. 502 
I. 539 
1.521 
1.57 
1.6 
1.614 
1.637 
1.655 
I. 658 
1.663 
1.661 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

2.548 1.707 
2.507 1.683 
2.575 1.727 
2.629 1.743 
2.604 1.704 
2.667 1.703 
2.661 1.635 
2.619 1.536 
2.559 1.416 
2.419 1.262 
2.221 1.12 
1.941 1.021 
1.53 1.017 
1.114 1.133 
1.693 0.9998 
2.084 1.071 
2.369 1.241 
2.581 1.475 
2.711 1.718 
2.72 1.892 
2.699 2.021 
2.606 2.07 
2.513 2.081 
2.399 2.061 
2.301 2.037 
2.145 1.966 
2.089 1.918 
1.945 1.793 
1.642 1.549 
1.156 1.218 
0.7173 1.134 

Table C.l:  coefficients c1 and c2 for k = O [kN/m], discrete time controller. 
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3 
4 
5 
6 
7 
8 
9 
10 
I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

node e1 e2 node c1 c2 
4.953 0.09575 35 2.328 0.1957 
4.454 0.108 
4.096 0.1119 
3.844 0.1148 
3.648 0.1171 
3.49 0.1192 
3.361 0.1214 
3.25 0.1234 
3.139 0.1247 
3.081 0.1281 
3.014 0.1305 
2.959 0.1331 
2.907 0.1356 
2.863 0.1382 
2.817 0.1405 
2.779 0.1431 
2.746 0.1457 
2.714 0.1483 
2.687 0.1511 
2.651 0.1534 
2.637 0.1569 
2.611 0.1597 
2.587 0.1626 
2.565 0.1656 
2.543 0.1687 
2.521 0.1719 
2.498 0.1751 
2.475 0.1785 
2.446 0.1815 
2.418 0.185 
2.392 0.1887 
2.362 0.1922 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

2.294 0.1995 
2.245 0.2028 
2.208 0.2067 
2.157 0.2103 
2.101 0.2138 
2.041 0.2173 
1.971 0.2204 
1.889 0.2231 
1.801 0.2257 
1.694 0.2273 
1.566 0.2277 
1.415 0.227 
1.245 0.2251 
1.159 0.2277 
1.28 0.2423 
1.45 0.2596 
1.612 0.2758 
1.754 0.2907 
1.886 0.3048 
2.01 0.3188 
2.134 0.3328 
2.256 0.3473 
2.37 0.3622 
2.498 0.3791 
2.631 0.3967 
2.775 0.4157 
2.931 0.4353 
3.099 0.4532 
3.268 0.4635 
3.337 0.4526 
3.349 0.4323 

Table C.2: coefficients c1 and ca for k = O [kN/m], continuous time controller. 
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node c1 c2 node c1 c2 

3 6.606 1.057 35 4.405 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

6.029 0.0755 
4.449 -0.3819 
5.192 0.6852 
5.088 0.9201 
5.03 1.02 
4.869 0.9759 
4.69 1.045 
4.751 1.079 
4.781 1.096 
4.848 1.099 
4.627 -0.1015 
4.422 -0.08793 
4.999 1.438 
5.633 1.442 
5.331 1.561 
4.902 1.505 
4.901 1.356 
4.611 1.417 
4.559 1.422 
4.537 1.413 
4.634 1.46 
4.624 1.494 
4.636 1.545 
4.619 1.611 
4.719 1.634 
4.73 1.619 
4.768 1.618 
5.056 1.723 
5.021 1.384 
5.043 1.58 
4.411 1.078 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61  
62 
63 
64 
65 
66 

4.694 
4.485 
4.388 
4.215 
3.679 
4.059 
3.904 
3.945 
3.871 
3.766 
3.705 
3.501 
3.509 
3.38 
3.306 
3.208 
3.233 
3.313 
3.392 
3.231 
3.087 
2.972 
2.924 
2.562 
2 .4  
2.078 
I .  255 
i. 628 
1.15 
o.  9375 

1.048 
I .  262 
-0.5316 
-0.9179 
-0.6178 
-0.3023 
1.114 
I .  037 
1.124 
1.11 
1.05 
I .  083 
o .  999 
1.104 
I .  083 
1.109 
i. 117 
1.255 
I .  235 
1.588 
I .  543 
1.555 
I .  618 
I .  748 
1.551 
I.  536 
1.411 
I .  I08 
I.  276 
O .  9847 
O .  8803 

0.3 O .  5679 

Table C.3: coefficients c1 and c2 for k = 165 [kN/m], discrete time controller 
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node c1 c2 node c1 c2 
3 6.589 0.07422 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

5.837 
5.15 
4.826 
4.916 
5.051 
4.758 
4.801 
4.725 
4.899 
4.814 
4.529 
4.572 
4.984 
6.039 
4.686 
4.403 
4.62 
4.607 
4.557 
4.572 
4.547 
4.713 
4.588 
4.639 
4.115 
4.678 
4.707 
4.896 
5.358 
4.792 

O .  0002517 
O .  002899 
O .  02368 
O .  06341 
O .  000704 
O .  09754 

O .  1062 
O .  1106 
O .  001278 
O .  000366 
O .  1342 
O .  1511 
O .  001503 
O .  006734 
O .  00648 
O .  0006822 
O .  1517 
O .  1569 
O .  1636 
O .  1736 
O .  1715 
O .  1953 
O .  2046 
-0.001629 
o .  2122 
o .  2122 
O .  2156 
O .  04536 
o * 2002 

-0.0005021 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

4.389 
4.672 
6.626 
5.598 
4.972 
4.137 
3.939 
3.894 
3.814 
3.749 
3.665 
3.54 
3.379 
3.245 
3.059 
2.871 
2.575 
2.734 
2.399 
I .  734 
2.107 
1.93 
I .  791 
I .  683 
1.571 
1.49 
1.441 
I .452 
1.421 
I .  494 
I .  623 

O .  I639 
O .  1712 
-0.006156 
O .  002304 
O .  000205 
O .  1647 
O .  1953 
o .  199 
0.2011 
O .  2038 
O .  205 
O .  2053 
O .  2037 
o .  2012 
O .  1966 
O .  I916 
O .  1842 
O .  1883 
O .  179 
O .  1594 
O .  1701 
O .  1626 
O .  1542 
0.1514 
o .  1457 
O .  1421 
O .  1374 
O .  1359 
O .  1352 
O .  1385 
O .  1447 

3.863 0.04211 .. 1.757 0.1508 

Table C.4: coefficients c1 and c2 for k = 165 [kN/m], continuous time controller. 
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C.2 Eigenvalues of matrix A 
node eigenvalues of A node eigenvalues of A 

3 -0.09 f 118.953 -0.80 f 803.303 35 -0.16 f 204.173’ -0.66 f 703.793 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

-0.10 f 129.463 
-0.10 f 133.163 
-0.10 f 135.493 
-0.10 f 137.413 
-0.11 f 139.203 
-o.:? f 140.943 
-0.11 f 142.683 
-0.11 f 144.443 
-0.11 f 146.233 
-0.11 f 148.053 
-0.11 f 149.923 
-0.11 f 151.833 
-0.12 f 153.803 
-0.12 f 155.813 
-0.12 f 157.883 
-0.12 f 160.013 
-0.12 f 162.203 
-0.12 f 164.453 
-0.13 f 166.763 
-0.13 f 169.15j 
-0.13 f 171.603 
-0.13 f 174.123 
-0.13 f 176.723 
-0.14 f 179.403 
-0.14 f 182.163 
-0.14 f 185.013 
-0.15 f 187.953 
-0.15 f 190.983 
-0.15 f 194.113 
-0.15 f 197.353 
-0.16 it 200.70i 

-0.77 f 776.033 
-0.75 f 763.203 
-0.74 f 754.613 
-0.73 f 747.403 
-0.73 3z 740.743 
-0.72 f 734.343 
-0.71 f 728.123 
-0.70 f 722.063 
-0.69 it 716.153 
-0.69 f 710.433 
-0.68 f 704.943 
-0.67 f 699.703 
-0.67 f 694.773 
-0.66 f 690.173 
-0.65 f 685.953 
-0.65 f 682.153 
-0.64 f 678.813 
-0.64 f 675.963 
-0.64 f 673.643 
-0.63 f 671.883 
-0.63 f 670.713 
-0.63 f 670.173 
-0.63 f 670.283 
-0.63 f 671.083 
-0.63 f 672.583 
-0.63 f 674.803 
-0.63 f 677.763 
-0.64 f 681.473 
-0.64 f 685.933 
-0.65 f 691.153 
-0.66 f 697.111 

36 -0.16 f 207.763 -0.67 f 711,143 
37 -0.17 f 211.493 -0.68 & 119.113 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51  
52 
53 
54 
55 
56 
57 
58 
59 
60 
61  
62 
63 
64 
65 

-0.17 f 215.353 
-0.18 f 219.363’ 
-0.18 f 223.543 
-!2.18 f 227.88j 
-0.19 f 232.403 
-0.19 f 237.123’ 
-0.20 f 242.053 
-0.20 f 247.20j 
-0.21 f 252.583’ 
-0.21 f 258.233 
-0.22 f 264.153 
-0.23 f 270.373 
-0.23 f 276.913 
-0.24 f 283.803 
-0.25 f 291.063 
-0.26 f 298.723 
-0.27 f 306.813 
-0.27 f 315.373 
-0.28 f 324.423 
-0.29 f 334.023 
-0.31 f 344.183 
-0.32 f 354.953 
-0.33 f 366.343 
-0.35 f 378.353 
-0.36 f 390.933 
-0.38 f 403.963 
-0.40 f 417.133 
-0.42 f 429.753 

-0.69 f 727.633 
-0.71 f 736.583 
-0.72 f 745.853 
-0.73 1755.253 
-0.75 f 764.593 
-0.76 f 773.643 
-0.77 k 782.113 
-0.78 f 789.713 
-0.79 f 796.113 
-0.80 f 800.96j 
-0.80 f 803.953 
-0.80 it 804.783 
-0.80 f 803.193 
-0.80 + 799.033 
-0.79 f 792.223 
-0.77 it 782.783 
-0.75 f 770.853 
-0.73 it 756.653 
-0.71 f 740.493 
-0.68 & 722.713 
-0.65 f 703.723 
-0.62 f 683.893 
-0.59 f 663.653 
-0.56 f 643.383 
-0.54 + 623.503 
-0.51 f 604.492 
-0.48 f 586.963 
-0.45 & 571.863 

66 -0.44 f 440.483 -0.43 f 560.813 

Table C.5: node numbers and corresponding eigenvalues for matrix A; k = 165 [kN/m]. 
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C.3 Values of r 

node 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

r node 
1.5435 35 
1.3229 36 
1.2493 37 
1.2041 38 
1.1680 39 
1.1349 40 

1.0724 42 
1.0418 43 
1.0114 44 
0.9811 45 
0.9507 46 
0.9204 47 
0.8901 48 
0.8600 49 
0.8298 50 
0.7997 51 
0.7696 52 
0.7399 53 
0.7102 54 
0.6808 55 
0.6516 56 
0.6227 57 
0.5942 58 
0.5660 59 
0.5383 60 
0.5110 61  
0.4843 62 
0.4581 63 
0.4324 64 
0.4074 65 
0.3830 66 

1.1031 4i 

r 
O. 3593 
O.  3363 
O ~ 3140 
O.  2924 
O.  2716 
O.  2515 
O.  2322 
O.  2136 
O.  1958 
O.  1789 
O.  1627 
O.  1473 
O.  1327 
O.  1189 
O.  1058 
O.  0936 
O.  0822 
O.  0716 
O.  0617 
O.  0527 
O .  0444 
O.  0369 
O.  0301 
O.  0241 
O. 0188 
O.  0143 
O.  0104 
O.  0071 
O. 0044 
o. 0021 
o. 0002 
o. O000 

Table C.6: node numbers and corresponding values for r ;  IC = 165 [kN/m]. 
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Diana data file 

:EXPERIMENT Balk m e t  enkelzijdige veer 
UNITS: N, m, kg 
’COORDI’ 
i 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
SO 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

-1.50000E-02 
0.00000E+00 
1.00000E-02 
2.00000E-02 
3.00000E-02 
4.00000E-02 
5.00000E-02 
6.00000E-02 
7.00000E-02 
8.00000E-02 
9.00000E-02 
1.00000E-01 
1.10000E-01 
1.20000E-01 
1.30000E-O1 
1.40000E-01 
1.50000E-01 
1.60000E-01 
1.70000E-01 
1.80000E-01 
1.90000E-01 
2.00000E-01 
2.10000E-01 
2.20000E-01 
2.30000E-01 
2.40000E-01 
2.50000E-01 
2.60000E-01 
2.70000E-01 
2.80000E-01 
2.90000E-01 
3.00000E-01 
3.10000E-01 
3.20000E-01 
3.30000E-01 
3.40000E-01 
3.50000E-01 
3.60000E-01 
3.70000E-01 
3.80000E-01 
3.90000E-01 
4.OOOOOE-O1 
4.10000E-01 
4.20000E-01 
4.30000E-01 
4.40000E-01 
4.50000E-01 
4.60000E-01 
4.70000E-01 
4.80000E-01 
4.90000E-01 
5.00000E-01 
5.10000E-01 
5.20000E-01 
5.30000E-01 
5.40000E-01 
5.50000E-01 
5.60000E-01 
5.70000E-01 
5.80000E-01 
5.90000E-01 
6.00000E-01 
6.10000E-01 
6.20000E-01 
6.30OOOE-01 
6.4OOOOE-O1 

0.00000Et00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+O0 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000Et00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000E+O0 
0.00000E+O0 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000Et00 
0.00000Et00 
0.00000Et00 
0.00000Et00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000Et00 
0.00000Et00 

0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000Et00 
0.00000Et00 
0.00000Et00 
0.00000Et00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000Et00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000E+00 
0.00000Et00 
0.0000OE+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+O0 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
0.00000E+00 
0.0000OE+00 

67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

6.50000E-01 
6.60000E-01 
6.70000E-01 
6.80000E-01 
6.90000E-01 
7.00000E-01 
7.10000E-01 
7.20000E-01 
7.30000E-01 
7.4000OE-01 
7.50000E-01 
7.50000E-01 
7.70000E-01 
7.80000E-01 
7.90000E-01 
8.00000E-01 
8.10000E-01 
8.20000E-01 
8.30000E-01 
8.40000E-01 
8.50000E-01 
8.60000E-01 
8.70000E-01 
8.80000E-01 
8.90000E-01 
9.00000E-01 
9.10000E-01 
9.20000E-01 
9.30000E-01 
9.40000E-O1 
9.50000E-01 
9.60000E-01 
9.7OOOOE-O1 
9.80000E-01 
9.90000E-01 
1.00000E+OO 
1.0100OE+00 
1.02000E+00 
1.03000E+00 
1.04000E+00 
1.05000E+00 
1.06000Et00 
1.07000Et00 
1.08000E+00 
1.09000Et00 
1.10000E+00 
1.11000E+00 
1.12000E+00 
1.13000E+00 
1.14000E+00 
1.15000E+00 
1.16000E+00 
1.17000E+00 
1.18000E+00 
1.19000E+00 
1.20000E+00 
1.21OOOEt00 
1.22000E+00 
1.23000E+00 
1.24000E+00 
1.25000Et00 
1.26000E+00 
1.27000E+00 
1.28000E+00 
1.29000E+00 
1.30000E+00 
1.31500E+00 
6.50000E-01 
O. OOOOOE+OO 

0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+OO 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000Et00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
O.OOOOOEtOO 
0.00000Et00 
0.00000Et00 
0.00000Et00 
0.00000E+00 
0.000OOEt00 
0.00000Et00 
0.00000E+00 
0.00000E+OO 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
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136 0.00000E+00 
137 0.00000E+00 
138 O.OOOOOE+OO 
139 0.00000E+00 
140 O.  00000E+00 
141 O. 00000E+00 
142 0.00000Et00 
143 0.00000E+00 
144 1.30000Et00 
145 1.30000E+00 
146 1.30000E+00 
147 1.30000Et00 
148 1.30000Et00 
149 1.30000E+00 
150 í.30000E+00 
151 1.30000E+00 
€52 í.30000E+00 
153 3.20000E-01 
'ELEMEN' 
CONNEC 

2.00000E-02 
3.00000E-02 
4.00000E-02 
5.00000E-02 
6.00000E-02 
7.00000E-02 
8.00000E-02 
9.20000E-02 
1.00000E-01 
2.0000OE-02 
3.00000E-02 
4.00000E-02 
5.00000E-02 
6.00000E-02 
7.0OOOOE-02 
8.00000E-02 
9.2000OE-02 

-1.00000Et00 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

LGBEN 1 2 
LGBEN 2 3 
L6BEN 3 4 
LGBEN 4 5 
LGBEN 5 6 
LGBEN 6 7 
LGBEN 7 8 
LGBEN 8 9 
LGBEN 9 10 
LGBEN 10 I1 
LGBEN 11 12 
L6BEN 12 13 
L6BEN 13 14 
L6BEN 14 15 
L6BEN 15 16 
LBBEN 16 17 
L6BEN 17 18 
LGBEN 18 19 
L6BEN 19 20 
LGBEN 20 21 
L6BEN 21 22 
LGBEN 22 23 
LGBEN 23 24 
LGBEN 24 25 
L6BEN 25 26 
LBBEN 26 27 
LGBEN 27 28 
LGBEN 28 29 
L6BEN 29 30 
L6BEN 30 31 
L6BEN 31 32 
L6BEN 32 33 
L6BEN 33 34 
L6BEN 34 35 
LGBEN 35 36 
L6BEN 36 37 
L6BEN 37 38 
LGBEN 38 39 
L6BEN 39 40 
LGBEN 40 41 
LBBEN 41 42 
LBBEN 42 43 
LBBEN 43 44 
LBBEN 44 45 
LGBEN 45 46 
L6BEN 46 47 
L6BEN 47 48 
LGBEN 48 49 
L6BEN 49 50 
LGBEN 50 51 
LGBEN 51 52 
LGBEN 52 53 
LGBEN 53 54 
L6BEN 54 55 
LGBEN 55 56 
L68EN 56 57 
L6BEN 57 58 
L6BEN 58 59 
L6BEN 59 60 
L6BEN 60 61 
L6BEN 61 62 
LGBEN 62 63 
LGBEN 63 64 
LGBEN 64 65 
LGBEN 65 66 
L6BEN 66 67 
LGBEN 67 68 
LGBEN 68 69 
L6BEN 69 70 
LGBEN 70 71 
L6BEN 71 72 
L6BEN 72 73 
L6BEN 73 74 
L6BEN 74 75 
L6BEN 75 76 

0.00000E+00 
0.00000Et00 
0.00000E+00 
0.00000Et00 
0.00000E+00 
0.00000Et00 
0.00000Et00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000Et00 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
50 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 

L6BEN 76 77 
LGBEN 77 78 
LGBEN 78 79 
LBBEN 79 80 
L6BEN 80 81 
L6BEN 81 82 
LGBEN 82 83 
L6BEN 83 84 
LBBEN 84 85 
LGBEN 85 86 
LGBEN 86 87 
LGBEN 87 88 
L6BEN 88 89 
LGBEN 89 90 
LGBEN 90 91 
LGBEN 91 92 
L6BEN 82 93 
L6BEN 93 94 
L6BEN 94 95 
LGBEN 95 56 
LGBEN 96 97 
L6BEN 97 98 
L6BEN 98 99 
LGBEN 99 100 
L6BEN 100 I01 
LGBEN 101 102 
L6BEN 102 103 
LBBEN 103 104 
L6BEN 104 105 
LBBEN 105 106 
LBBEN 106 107 
LGBEN 107 108 
LGBEN I08 109 
LGBEN 109 110 
LGBEN 110 111 
LGBEN 111 112 
LGBEN 112 113 
LGBEN 113 114 
L6BEN 114 115 
L6BEN 115 116 
L6BEN 116 117 
L6BEN 117 118 
L6BEN 118 119 
L6BEN 119 120 
LGBEN 120 121 
LGBEN 121 122 
L6BEN 122 123 
L6BEN 123 124 
LGBEN 124 125 
LGBEN 125 126 
L6BEN 126 127 
LBBEN 127 128 
LGBEN 128 129 
LGBEN 129 130 
LGBEN 130 131 
LGBEN 131 132 
L6BEN 132 133 
sp2tr  67 134 
sp2tr  134 67 
LGBEN 2 135 
LGBEN 135 136 
LGBEN 136 137 
LGBEN 137 138 
LGBEN 138 139 
LGBEN 139 140 
LGBEN 140 141 
L6BEN 141 142 
LGBEN 142 143 
LGBEN 132 144 
L6BEN 144 145 
L6BEN 145 146 
LOBEN 146 147 
L6BEN 147 148 
LGBEN 148 149 
LBBEN 149 150 
LGBEN 150 151 
LGBEN 151 152 
p t 3 t  67 
pt3t 34 
sp2tr  34 153 

MATERI 
/ 1-132 / 1 
/ 135-152 / 2 
153 5 
154 6 
155 7 
133 8 
134 9 

/ 1-132 / 1 
/ 135-152 / 2 

I densi t  7746.3 

GEOMET 

'MATERI 

young 2 . l e l l  
poison 0.3 
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2 densit 7713.3 
young 2.1ell 
poison 0.3 

5 mass 0.446 
6 mass 0.0 
7 damp 0.0 

spring 0.0 
8 damp 0.0 

11.6250 ('eenzijdige demping ! !  0 
spring 0 . 0  

9 spring 0.0 
'de sign ' 
:eenzijdige veerstijfheid 
3 165e3 
2 
5 
8 
10 
21 
22 
23 
24 
25 
30 
31 
32 
33 
34 
36 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
56 
57 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
97 
100 

37 
0.984e-3 
i. e16 
1.0 
le-4 
150.0 
37 
0.984e-3 
0.1 
0.0 
200.0 
0.0 
200.0 
0.0 
200.0 
0.0 
0.0 
0.0 
O. 
O. 
100.0 
1.0 
50.0 
5.e-I 
l.*2 
1.d 
l.el 
0.0 
1.e3 
1.oeo 
0.e-O 
1.e-5 
0.00 
2.0 
1.0 
0.0 
1.0 
100.0 
0.5 
100.0 
1.0 
20.0 
200. o 
200.0 
20000. o 
1.0 
0.0 
0.0 

101 10.0 
102 10.0 
103 10.0 
104 10.0 
105 10.0 
106 10.0 
107 10.0 
108 10.0 
109 10.0 
110 10.0 
111 0.1 
112 0.0 
113 0.0 
114 0.0 
i15 0.0 
116 0.0 
11: 0.0 
118 0.0 
119 0.0 
120 0.0 
121 1.0 
122 0.0 
123 5.0 
124 4.0 
125 0.0 
126 0.0 
127 1.0 
128 1.e-12 
140 0.0 
141 0.0 
'geomet 
:afmetingen balk 

0.0 0.0 1.0 1 zaxis 
crosse 9.OE-4 
inerti 7.51-9 

crosse 7.58-5 
inerti 6.25E-12 

0.0 0.0 1.0 2 zaxis 

'directions' 
I 1.0 0.0 0.0 
2 0.0 1.0 0.0 
3 0.0 0.0 1.0 
'supports' 
/ 1-133 / tr 1 tr 3 ro 1 ro 2 
/ 143 152 / tr 1 tr 2 tr 3 ro 1 ro 2 ro 3 
1 134 153 / tr 1 t r  2 tr 3 ro 1 ro 2 
'loads' 
case 1 
nodal 

'inivar' 
67 f 2 1.0 

displa 1 

veloci 1 
67 t 2 0.0 

67 t 2 0.0 
'genelm' 
1 type balkzonderactuator 

elemen 1-132 135-143 144-152 153 154 155 
ifcnod / 31 67 / tr 2 
cms NOFLEX 
frequb 350.0 

'end' 



Appendix E 

Source code 

E. l  New C++ source for the control experiment 

E.l . l  Main program 

This is an adapted version of b e a m . ~ ~ ~ .  It compensates 
for the influence of the actuator/amplifier dynamics. 

Optional use of a data-set for desired trajectories 
(instead of destra) has also been added 
(enable through a define "destra-from-mat") . 

Expects file BEAM-IN.MAT with: 
(l*l) sf - sample frequency [Hzl 
(i*i) n - number of samples to go [-I 
(1*1) n-start - number of samples before start 
(1*1) f-e - excitation frequency [Hz] 
(1*1) lambda - sliding mode parameter [Hzl 
(1*1) eta - sliding mode parameter [m/s"2] 
(i*i) sigma - sliding mode parameter [m/s] 
(3*3) M - mass matrix 
(21tl) C - truncated Fourier series (desired trajectory) 

(3*3) K - stifness matrix 
(3*3) B - damping matrix 
(6*4) G - (stationary) optimal Kalman filter (4 measurements) 
(i*i) k - spring stifness [N/ml 
(1*1) me - lumped excenter mass [kg] 
(i*i) re - lumped mass radial distance [ml 
(1*1) fco-22 - cut-off frequency ya-ddot [Hz] 
(i*i) fco-z3 - cut-off frequency ym-ddot [Hz] 
(1*1) control-node - node number of actuator DOF [-I 

OR (1*3) xd - desired trajectory (requires define and sf/f-e samples) 

Creates MATLAB Result file BEAM-OUT.MAT: 
name size meaning 

z n*exp-nz-max measurements 
u n*exp-nu commands as applied 
wait 3*l wait count info vector 

--------------- 

Remark: exp-nz-max is defined for the specific experiment. 
Remark: when running a real experiment, wait will hold 
minimum wait count 
maximum wait count 
average wait count 
in function exp-get; see exp.doc for details; 
when running a simulator, wait will hold 
Total clock time used 
# integrator steps with progression 
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# integrator steps without progression 
see sim.doc for details. 
*/ 

#include <tce.h> 
#include <conio.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include Cexp-b.def> 
#define sgn(x) ((x>O)?i:((x<O)?-i:O)) 
#define dmin(x,y) ((x<y)?x:y) 
#define ämax(x,yj ((x>yj?x:yj 

#define nu-max 1 
#define nz-max 7 

int n,/* Number of cycles to run */ 
n-start,/* Samples before start */ 
j , /* Current sample */ 
nu = nu-max,/* Actual number of commands */ 
nz = nz-max,/* Actual number of measurements */ 
control-node; /* Node number of actuator DOF */ 
double sf; /* Sample frequency CHzl */ 

double t [i],/* Time */ 
u [nu-maxl,/* Commands (as requested) */ 
z Cnz-maxl,/* Measurements */ 
wait C31: 

ivec subl,sub2; 
double dt; 
double saturation,lambda,s,sigma,eta,f_e,w,edot,e,k,me,re; 
mat M,M_inv,K,B,G(6,4) ,A(6,6) ,fos(3,3) ,Fex(6,1) ,xdot(6,l) ; 
double xdC31 ,CC211 ,z-previous[7] ; 
double z~filtered[2],fco~z2,fco~z3,m~unbalance=0.446; 
double H_versterker=15.94,R=6.1,B1=18.4,v~uit,R_sp=522,R_tot=10.06e3; 
double didt-desired, i-desired, i-previous,phase ,udCl] ; 
double L=3.le-3,m-a=0.065,b_a=35,k_a=1.35e3; 
//double L=O,m-a=O,b-a=O,k-a=O; 
//double m-a=0.15,b-a=95,k-a=1200,L=O; 
mat xhat (6,l) ; 

#include " c ompens a. cpp " 
#include "syncs. cpp" 
#include "calib. cpp" 

void epilog(void) { 
printf ("\nSaving data in MAT-f ile. . . \n") ; 
ml-open("beam-out", 1) ; 
ts-save-aii(i); 
ml-put-scalar(phase, "phase-shift") ; 
rnï_put_vec(wait,3,"wait"); 
printf ("Finished. . . \n") ; 
1 

void prolog(void) { 
exp-dim(&nu,&nz); /* Ask actual nu and nz */ 

ml_open("beam-in",O) ; 
#ifdef destra-from-mat 
printf("Decired trajectory 'xd' will NOT be approximated ... \n"); 
ts-load0 (xd, 3, "xd") ; 
#else 
if (rnl_get_vec(C,21 ,"C")==O) tce-error("not available in inputfile") ; 
#endif 
sf = ml_get-scalar("sf",O); 
n = (int)ml_get_scalar("n",O); 
n-start = (int)rnl-get-scalar("n_start",O); 
f-e = ml-get-scalar("f-e",O); 
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sigma = ml_get_scalar("sigma",O) ; 
eta = ml-get-scalar("eta",O) ; 
lambda = rnl_get-scalar("lambda",O) ; 
k = ml-get-scalar("k",O); 
me = ml_get-ccalar("me",O); 
re = ml-get-scalar("re",O) ; 
fco-z2 = ml_get_scalar("fco_z2",0); 
fco-z3 = ml-get-scalar("fco-z3",0) ; 
control-node = (int)ml-get-scalar("control-node",O); 
if ( sf<=O ) tce-error("sf must be > O " ) ;  
if ( (me==O)l I(re==O)l I(f-e==O)l I(n==O) II(sigma==O) I I(lambda==O)Il 
(eta==O)l I(control-node==O) ) 
tce-error("one or more paramerers invaiicii!'j ; 
if (k==O) printf("WARN1NG: one-sided spring disabled (k=O)!\n"); 
M= ml-get-mat ("M") ; 
K= ml-get-mat ('IK") ; 
B= ml-get-mat ("B") ; 
/ /  G= ml-get-mat("G") ; 
M-inv=inv(M); 
w=2*M-PI*f-e; 
printf("Mat1ab parameters have been loaded succesfully ... \n"); 
printf ("Actuator positioned at node %i. . . \n" , control-node) ; 
calibration-check(); 
if ( !n-start==O ) {printf ("Controller starts after %d samples!\n",n-start) ;> 
printf ("Sample frequency: %€ [Hzl \n",sf ; 
printf ("Samples to record: %d\n",n) ; 
subl=ilist(l,3); 
sub2=ilist(4,3); 
A. ssa(sub1, sub2,eye(3)) ; 
A.ssa(sub2,sub2,-M-inv*B); 
/* 
The statement for xhat is nasty, but nevertheless it seems to work: 
matrix xhat is interpreted as an array of doubles which is required 
for this function to work properly. 
*/ 
/ /  t~-initO(xd,3,n,"xd"); /* Initialize time series for xd */ 
/ /  ts-initO(t,l,n,"t"); /* Initialize time series for t */ 
ts-initO(z,nz,n,"z"); /* Initialize time series for z */ 
tc_initO(ud,nu,n,"ud"); /* Initialize time series for ud */ 
ts_inito(u,nu,n,"u"); /* Initialize time series f o r  u */ 
1 

void new-destra(int calc-dofs,int order) { 

This function 'destra' has been adapted so that it provides desired 
trajectories for a requested number of DOFs. These trajectories are 
sorted by DOF number (inner) and then by derivative order (outer) 
for maximum state sorting compatibility 
*/ 
int i,j,k,harmonics=lO; 
/ /  printf ("Controller excitation force phase: %f [rad] \n-\n",w*t COl+phase- 
. . . floor((w*t [O]+phase)/2/M-PI)*2*M-P1) ; 
€or (i=O;i<=order;i++) { 

/* 

for (j=O; jccalc-dofs; j++) { 
xd[j+i*calc-dof SI=( (i==O)?C [j*(2*harmonics+l)] :O. O) ; 
for (k=l;k<=harmonics;k++) { 
xd[j+i*calc-dof s] +=pow(k*w , i)*( 
cos(k*(w*t[0]+phase)+M~PI/2*i~*C~k+j*~2*harmonics+l~~+ 
sin(k* (w*t [O] +phace)+M-P1/2*i)*C [k+harmonics+j*(2*harmonics+l)l) ; 

3 
1 

3 
3 

void simple-state-reconstruction(void) 

xhat . p [O] =z [ O ]  ; 
xhat . p [i] =z Cl1 ; 
z-filtered[O]=(z-previous [2]+2*M-PI*fco-z2/sf*z[2] )/(1+2*M_PI*f co-z2/sf) ; 
z~filtered[1]=(z~previous[3]+2*M~PI*fco~z3/sf*z[3])/(l+2*M~PI*fco~z3/sf~; 

c 
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xhat .pC31=(zC0I-z~previousCOI)*sf+z~previous[2l/2/sf; 
xhat .pC41=(zCll-z-previous Cl1 )*sf+z-previous [31/2/sf; 
fos .ssa(2,2,k*floor(sgn(xhat .pc11 )+1)/2); 
A.ssa(sub2,subl,-M-inv*(K+fos)); 
Fex.p[31=u[O] ; 
Fex .p Cel =z 141 +m-unbalance*z C31 ; 
Fex . p C51 =O ; 
Fex.ssa(sub2,l,M~inv*Fex(sub2,1)); 

/* berekening schatting yv (3 dof model) 
Voorbeeld van wijze waarop een matrix-index in C++ is gedefinieerd: 

1 2 3 4 5 6  
1 C O 6 12 18 24 30 1 
2 C 1 7 13 19 25 31 1 
3 C 2 8 14 20 26 32 1 
4 C 3 9 15 21 27 33 1 
5 [ 4 10 16 22 28 34 3 
6 [ 5 11 17 23 29 35 1 
*/ 

xhat .pC21=1/(A.pE153 /A.p C331 -A.p cl61 /A .pc341 )* 
( 
~zC2l-Fex.pC3~-~A.pC31*zCOI+A.p~9l*z~ll+A.pC2ll*xhat .pC31+A.p[27I*xhat .pC41))/A.p[331- 
~zC31-Fex.p~41-~A.pC4l*z~O~+A.p~lOl*z~ll+A.p~22~*xhat.p~3l+A.pC28l*xhat .pC41))/A.p[343 
) ;  

( 
~zC21-Fex.pC31-~A.pC3~*z~O~~A.p~9l*zC11+A.p~2ll*xha~.pC3l~A.p[27l*xhat .pc41 ))/A.p[15]- 
~~C31-Fex.p~4l-~A.pC41*zCO~+A.p~lOl*z~ll+A.pC221*xhat .pC31+A.p[281*xhat .pi41 ))/A.pCIGI 
1; 

xhat .p[51 =i/ (A .pc331 /A .p 1151 -A .p E341 /A .p[161) * 

z-previous CO3 =z CO] ; 
z-previous Cil =z Cil; 
z-previous [21 =z-f ilteredC01; 
z-previous [3I=z-f ilteredcll ; 
1 

double sweep(void) // linear frequency sweep 
< double f-sweep,f-max-sweep=lOO; 
f-sweep=f-max-sweep*t[Ol/(n/sf); 
printf ("f-sweep=%f CHzl \r" ,f-sweep) ; 
return 10*sin(2*M-PI*f -sweep*t CO1 1 ; 
1 

void control(void) 
c 
/* First "reconstruct" the full state of the system */ 
simple-state-reconstruction(); 

/* Then calculate the control-force, based on the estimated state */ 
fos. ssa(2,2,k*floor(sgn(xhat .pc11 )+1)/2) ; 
A.~sa(sub2,subl,-M-inv*(K+fos)); 
Fex .p C3l =O; 
Fex .p C41 =z C41 +m-unbalance*z [SI; 
Fex . p C51 =O ; 
Fex.ssa(sub2,1,M~in~*Fex(sub2,1)); 
xdot=A*xhat+Fex; //needs full state. 
/ /  printf ("t=%f, xd=%f, %f, %f (diana)\n",t CO1 ,xdCOl ,xdCll ,xdC21) ; 
#ifndef destra-from-mat 
new_destra(l,2); 
// printf ("t=%f , xd=%f, %f, %f (destra)\n",t [O1 ,xdCOl ,xdClI ,xd[2l) ; 
#endif 
e=xhat . p CO1 -xd CO1 ; 
edot=xhat .p C31 -xd 111; 
s=lambda*e+edot; 
if (fabs(s/sigma)>=l.O) 
c 
saturation=sgn(s/sigma); 
1 
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else 
c 
saturation=s/sigma; 
> 
if (j>=n-start) 
c 
// PD-regeling: (CTC+PD) 
ud[O]=(-xdot .p[3] +xd[2] -(eta+lambda)*edot-eta*lambda*e)/M-inv.p [O] ; 
// Schakelvlakregeling: SCTC 
// ud[O]=(-xdot .p[31+xdC2] -lambda*edot-eta*saturation)/M-inv .p [O] ; 
> 
else 
i 
ud [O] =O ; 

/ /  ud[O]=lO*cin(2*M-P1*37*t [O]); 
/ /  udCOI=sweep~) ; 
ud [O] =O ; 
/ /  xhat.p[31=0; 
u[o] =compensate-act2 0 ; 
// u[O]=compensate-actlO ; 
u[O]=sgn(u[O1 )*dmin(fabs(u[O]) ,25); 

1 

void runcvoid) i 
/* 
Timing for data in the time series, in MATLAB notation, is: 
- z(k,:) contains the measurements at time t = (k-l)*dT, where 
dT = l/sf; so the first sample is at time t = O. 

- u(k , : )  are the commands issued at time t = (k-l)*dT; with 
Zero Order Hold characteristic they apply between time 
t = (k-l)*dT and k*dT. So, measurements z(k,:) do not 
depend on commands uck,:). 

*/ 
tCOl=O.O; 
dt=l.O/sf; 
exp-init(z,nz,u,dt,wait); 
phase=sync3() ; 
j=i; 
// printf ('I*** Start run\n") ; 
while ( j<=n ) C 
#ifdef destra-from-mat 
ts-get-all(); // fetch desired trajectory+derivatives 
#endif 
control0 ; 
exp-put(); // apply actuator-force 
ts-put-all(); / /  dump current data to buffer 
exp-get(); // fetch new measurements 
t CO1 +=dt ; 
j++; 
> 
printf ('I*** End run\n") ; 
exp-f ini () ; 
> 
void main(void)C 

printf ("Initializing beam controller.. .\n") ; 
printf("\nspecific features:\n==================\n"); 
printf ("- Simple state reconstruction\n") ; 
printf ("- Compensation for actuator dynamics\n\n") ; 
prolog0 ; 
run(); 
epilog0 ; 
> 
/* end of beam.cpp */ 
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E. 1.2 Calibration check 
int calibration-check(void1 C 
printf("You may check the calibration now (switch off exciter) ... \n"); 
printf ("Press any key to end calibration check.. .\n"); 

int i,j,m = 1; 
int refresh_rate=2; 
extern int ana-buf Cl61 ; 
double sum-z Cnz-max] ; 
long sum-anaCnz-maxl ; 

.-l. w l l l l r  ; 7 - ( m*refresh-rate<100 ) m *= 2; 

exp-init ( z  ,nz ,u, 1 .O/ (m*refresh-rate) ,wait) ; 
printf ("  ya Cmml ym [mml, bit values\n"); 

while ( 1 ) { 

for ( j=O; j<nz; j++ ) { 
sum-zCj] = O; 
sum-anaCj] = O; 
3 

for ( i=O; i<m; i++ ) C 
exp-get 0 ; 
for ( j=O; j<nz; j++ C 
s~m_zIjI += zIjl; 
sum-anaCjl += ana-buf Cjl; 
33 

for ( j=O; j<nz; j++ ) C 
sum-zIjl /= m; 
sum-anaCj1 /= m; 
3 

printf ( "%7.41f %7.41f, %51d %51d\r", 
1000*sum-z col, 1ooo*sum~zc11 , 
sum-ana CO] , sum-ana Cil) ; 
if ( kbhit0 break; 
3 

exp-f ini (1 ; 

getch0 ; 
printf ("\n") ; 
printf("(Re)start exciter. Press any key to start experiment.. .\n"); 
while ( kbhit0 > ;  
getch0 ; 
return O; 
1 

E.1.3 Actuator dynamics 
double compensate-actl(void) { 
return -(ud[Ol+m-a*xdot .p[S]+b-a*xhat .pC3l+k_a*xhat .PLO]) ; 
3 

double compensate-act2(void) C 
double u-compensated; 
i-desired=- Cud CO1 +m-a*xdot .p C3l +b-a*xhat . p E31 +k-a*xhat .p [O] ) /B1; 
didt-desired=(i-desired-i-previous)*sf;// Simple euler differentiation 
i-previous=i-desired; 
u-compensated=(i-desiïed*R+L*didt-desired-Bl*xhat.pC3]) // alle model kennis 
/ /  u-compensated=(i-desired*R+L*didt-desired) //geen tegen EMK compensatie 
// u-compensated=(i-desired*R-Bl*xhat.pC31) / /  geen spoel 
/ /  u-compensated=i-desired*R //oude model 
/H~versterker/(R~cp/R~tot)*2O48/lO*exp~uO~res; 
return u-compensated; 
3 
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E.1.4 Synchronization functions 

The controller can only function adequately if the quality of the synchronization of the 
desired trajectories and the excitation force Fe, is appropriate. Three different synchro- 
nization functions are implemented: 

1. 

2. 

3. 

External trigger signal on channel 7. This signal can only be used for fs = 500 [Hz] 
and has been used in the past (see [19]). 

This function determines the phase shift by means of the argument of the sine shaped 
excitation force Fex: 

phase-shift = arccos (”) , IFexl merew 2 . 
IFex I 

To achieve adequate accuracy in the determination of the required phase shift, it is 
essential that the amplitude of the excitation force is correct. Therefore, rather than 
using the value of merew2 used for the models, the value is determined by numerical 
real-time integration (using the trapezium rule) of the absolute value JFe,I of the 
measured excitation force during p (sync-periods in the source code) excitation 
periods: 

P 

“ 
calculated 

Locates the zero transition of the excitation force Fez. To prevent a fake transition 
as a result of (measurement) noise to be selected, a candidate transition is monitored 
for a number of samples horizon. Accordingly, the required phase shift is returned 
through the variable phase-shif t. 

Note that functions 2 and 3 require that the excitation force measurement is compensated 
for the inertia of the mass-unbalance. 

double syncl(void) c 
/* 

Begin van de synchronisatie tussen de gemeten en de gesimuleerde 
excit at iekracht 

*/ 
/ /  printf (“Synchronizing.. .\n”); 
while ( zC61 <= 0.45 ) c 
exp-get(); // fetch new measurements 
> 
return O; 

double sync2(void) { 

Synchronisatie tussen de gemeten excitatiekracht en de gewenste 
trajectorie. Meet werkelijke F-ex gedurende \>e\’en periode en 
bepaalt vervolgens de amplitude en de fase van de kracht ten 
opzichte van de referentie F-ex. Hiermee wordt de fase van 
de gewenste trajectorie aangepast aan de werkelijke fase van 
de excitatiekracht. De gemeten kracht moet uiteraard in de 
berekeningen worden gebruikt, niet de referentie F-ex. 

double phase-shift=O,sync-int=O,amp-estimate=O, 

/* 

*/ 
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F-ex-final,dt-final; 
int i,usefu1=0,sync~periods=200,max~to~be~used=200, 

// printf ("sync-size=%i\n",sync-size) ; 
mat ref-set(sync_size,l),sync-set(sync-size,l); 
// printf("Synchr0nizing during %i excitation periods ... \n",sync-periods); 
for ( i=O;i<sync-size-i;i++ ) i / /  sync-size-1 steps 
ref-set .p [i] =cos (u* (i+l)/sf) ; 
exp-get(); / /  fetch new measurements 
sync-set .p [il=z [41 +m-unbalance*z 131 ; 
/ /  printf ("measured=%f, reference=%f\n",sync-set .p[il/me/re/pow(w,2) ,ref-set .p[il); 
/ /  Calculate the area here in order to reduce peak CPU load: 
sync-inti=fabs(sync-set.?[il;~~t~ 
/ /  printf ("%i ïntegrai=%f, current=%f\n",i+i, sync-int , sync-set .p [i] ) ; 
1 
/* 

sync-size=(int)floor(sync-periods*sf/f-e)+l; 

Compensate for the over-estimated contribution of the first 
interval and the but last interval 
(i has become equal to sync-size-1, so there's only one element 
left to fill) 
*/ 
sync~int-=fabs(sync~set.p[0])/2*dt+fabs(sync~set.p[i-ll)/2*dt; 
/* 
Add the contribution of the final interval: 
*/ 
ref-set.p[il=i; // 
exp-get(); / /  fetch new measurements 
sync-set .p[il=z[41 -m-unbalance*z[3] ; 
F~ex~final=sync~set.p~i-l]+(sync_set.p[i]-sync~set.p[i-l])*(sync~periods*s~/f~e-i); 
dt-final=(sync-periods*sf/f-e-i)*dt; 
/ /  printf("F_ex-final=%f,dt-final=%f\n",F-ex-final,dt-final); 
sync-int+=(fabs(sync-set .p [i-i] )+fabs(F-ex-f inal) )/2*dt-f inal; 

Scale the synchronization data to amplitude 1, using a numerical 
area calculation based on the synchronization data. The area 
defined by the time integral is: 
int(abs(A*cos(w*t)).t=O..w/2/pi*sync~periods~=2/Pi/f~e*A*sync~periods. 
Thus the amplitude A can be estimated using the numerical 
approximation of this area. A reasonable (1st order) estimate 
of the area is (calculated above): 
l/sf*(F-O+F-n+2*sum(F-i,i=l ... n-1))/2=( . . . .  ) .  
Therefore, a reasonable estimate for the amplitude A is: 
A=Pi*f-e/2*( .... )/sync-periods. 
*/ 
amp-estimate=M-PI*f-e/2*sync-int/sync-periods; 
/ /  amp_ectimate=me*re*pow(w,2); 
printf ("Estimated amplitude F-ex: %f [NI \n" ,amp-estimate) ; 
sync-set=sync-set/amp-estimate; 
/* 
Determine average phase shift based on subset of data 
subset used to avoid negative effects of phase transitions 
(when the sign changes; when this occurs, the product of 

/* 

the two derivatives is negative) : 
*/ 
for ( i=l;i<sync-size;i++ ) i 
if ( ((ref-set.p[il-ref-set.p[i-il)* 

(fabs(sync_set.p[il)<l) & 
(useful<max-to-be-used) ) 

(sync-set .pril-sync-set .p[i-ll)>O) & 

useful+=l; 
// printf ("i=%i, argl=%f, arg2=%f, difference=%f\n",i,acos(sync-set .p[i]), 
. . . acos (ref -set. p [i1 ) , acos (sync-set . p [i1 ) -acos (ref -set. p Lil 1) ; 
phase-shift=(phase-shift*(useful-l)+ 
fabs(acos(sync-set.p[i])-acos(ref-set.p[i]))) 
/useful; 
1 
3 
if (useful<=l) phase-shift=M-PI; 

// printf ("Estimated required phase shift: %f [rad] (based on %i useful samples)\n", 
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/ /  phase-shift,useful); 
// printf ("Starting experiment.. . \n") ; 
return phase-shift; 
3 

double sync3(void) { 
/* 
Synchronisatie tussen de gemeten excitatiekracht en de gewenste 
trajectorie. Meet nuldoorgangen van positief naar negatief 
van F-ex en bepaalt op basis hiervan de fase van de 
excitatiekracht tijdens de huidige run. Na een nuldoorgang 
wordt gedurende 'tests' samples bekeken of de candidaat 
nrldoorgzng ketrcuwbaar is door te kijken of de füactie 
monotoon daalt gedurende de testperiode. 

double phase-chift=O,F-exc; 
// double di; 
int i=0,horizon=~int)floor~sf/f~e/8),candidate=O,tests=horizon; 
// printf ("Synchronizing.. .\n"); 
while ( tests ) { 
i+=l ; 
/ /  printf("tests=%i, candidate=%i\n",tests,candidate); 
exp-get(); / /  fetch new measurements 
F-exc=z E41 +m-unbalance*z [31 ; 
if ( candidate ) C 
if ( F-exc>z-previous[4] ) 
Ccandidate=O;> // candidate dismissed 
else 
{tests-=I;> // candidate still valid 
3 
else C 
if ( (F-exc<=O) & (z_previous[41>=0) ) C 
/* di=-z-previous [41/ (F-exc-z-previous [4] ) ; 
printf ("di=%f \n" ,di) ; 
printf ("F-ex=%f\n" ,F-exc) ; 
printf ("z-previous [4l=%f\n" ,z-previous C41) ; 
*/ 
candidate=l; 
tests=horizon; 
3 
3 
z-previous E41 =F-exc ; 
> 
phase-shift=M-P1/2+w/sf*horizon; 
// printf ("Estimated required phase shift: %f [radl\n", 
/ /  phase-shift); 
/ /  printf ("Starting experiment.. .\n") ; 
return phase-shift; 
3 

*/ 

E.2 MATLAB files 

E.2.1 Routine for the determination of T (Popov's criterion) 
function results=det-r(ca1c-nodes) 
%Procedure: 
"/--------- 
%i) locate a value of ReCF3 where ReCF]<-l/k on the outer "loop", 
% e.g. min(ReCF1) 
%2) locate a value on the outer "loop" of Re(F> where Re{F>>-l/k 
%3) find a dReC>/dCIrn> so that Re~F>+dRe~>/dIm~~*Im~F>=-l/k 
%stiffness='165k'; 
stiffness='82k5'; 
mod-damp='0.001:; 
%data-path=['/users/sg3/borre/cpp/data/' stiffness]; 
data-path= I'd: \borre\cpp\data\ ' mod-damp ' \  ' st if fness] ; 
tex-path=['./tex/' stiffness]; 

if -exist('calc-nodes') 
plots=l; 
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disp(’USAGE: det-r([nodesl)’); 

resuïts=Cl; 
for j=i:length(calc-nodes) 

else 

close all 
disp([>Initializing run with actuator at node ’ num2str(calc-nodes(j)) ’...’I) 
return-path=pwd; 
cd (data-path) 
filename=[>node-’ num2str(calc-nodes(j))1; 
if -exist ( [filename ’ .m’l) 

disp([’No system data available for actuator ’... 
’positioned at node ’ num2str(calc_nodes(j)) ’!’I) 
cd (rezurn-pazh) 

evai (f ilename) 
cd (return-path) 
A=[zeros(2,2) eye(2,2) ; -inv(M(2: 3,2 :3) )*K(2: 3,2 :3) -inv(M(2 :3,2 :3) )*B(2:3,2 :3)1; 
b= [ [O O] ’ ; inv (M(2 : 3,2 : 3) * Cl 01 ’1 ; 
c=eye(4,1); 

clear w x y 
counter=l; 
w(counter)=O; 
F=c>*inv(ii*w(counter)*eye(size(A))-A)*b; 
x( counter)=real(F) ;y (counter)=w (counter) *imag(F) ; 
counter=counter+l; 
w(counter)=w(counter-i)+0.1; 
F=c’*inv(li*w(counter)*eye(size(A))-A)*b; 
x (counter)=real (F) ; y (counter) =w ( counter) *imag (F) ; 
while -( x(counter)>x(counter-1) & y(counter)>y(counter-i) ) 

else 

% step 1: 

counter=counter+l; 
reduction=O; 
w(counter)=w(counter-l)*2~(1/(2’reduction)); 
F=c’*inv(ii*w(counter)*eye(size(A))-A)*b; 
x(counter)=real(F) ; y(counter)=w(counter)*imag(F) ; 
% Adjust ’w’ if Idy/dxl too large in one step: 
while ( sqrt((x(counter)-x(counter-i))^2+ ... 

(y(counter)-y(counter-i))-2)>ie-7 h ... 
reduction(l2 

reduction=reduction+i; 
w(counter)=w(counter-i)*2~(i/(2~reduction)); 
F=c’*inv(ii*w(counter)*eye(size(A))-A)*b; 
x(counter)=reai(F) ; y(counter)=w(counter)*imag(F) ; 

end 
end 
if (plots) 

figure 
plot (x(i:max(size(x))-i) ,y(i:max(size(y))-i) ,x(counter-1) ,y(counter-i) , ’*’ ,-i/k,O, ’r*’) ; 
set(gca,’FontName’,’Timec’) 
title(C’Partia1 Popov plot, actuator at node ’ num2str(control~node)I, ... 

xlabel(’Re(F)’,’Fontname’,’Times’); 
ylabel(’w*Im(F)’,’FontName’,’Times’) 
hold on 

’FontName’,>Times’) 

end 
w-lower=w(counter-i) 

clear w x y; 
counter=l; 
w(counter)=w-lower; 
F=c’*inv(ii*w(counter)*eye(size(A))-A)*b; 
x (counter) =real (F) ;y (count er) =w(counter) *imag(F) ; 
while ( x(counter)<-i/k 

counter=counter+i; 
reduction=O; 
w(counter)=w(counter-i)*2~(1/(2~reduction)); 
F=c>*inv(li*w(counter)*eye(size(A))-A)*b; 
x( counter)=real (F) ;y (counter)=w(counter) *imag(F) ; 
% Adjust ’w> if Idy/dxl too large in one step: 
while ( sqrt((x(counter)-x(counter-l))-2+ ... 

% step 2: 
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(y(counter)-y(counter-1))-2)>le-8 & . . . 
reduction<lô ) 

reduction=reduction+l; 
w(counter)=w(counter-l)*2~(l/(2*reduction)); 
F=c’*inv(li*w(counter)*eye(size(A))-A)*b; 
x(counter)=real(F);y(counter)=w(counter)*imag(F); 

end 
end 
if ( plots ) 

w~addon=logspace(logIO(w(counter)),5,500~; 
for counter2=l:max(size(w-addon)) 

F=c’*inv(li*w_addon(counterZ)*eye(size(A))-A)*b; 
x(countertcounter2j=real~F);y~counter+counter~j=w~addon(counter2~*imag~~); 

end 
plot(x,y) ; 

end 
w-upper=w(counter) 

if (w-upper==w-lower) 
dxdy=O ; 
x-test=x(counter); 

counter=2; 
dxdy=(x(counter)-x(counter-l))/(y(counter)-y(counter-l)); 
x-test=x(counter)+dxdy*(O-y(counter)); 

end 
while ( (x-test<-l/k)&(counter(length(w)) ) 

% step 3: 

else 

counter=counter+l; 
dxdy=(x(counter)-x(counter-l))/(y(counter)-y(counter-~)~; 
x-test=x(counter)+dxdy*(O-y (counter)) ; 

end 
if ( plots 

axis([min(-l/k,l.l*x(counter)) -l.l*x(counter) l.l*y(counter) 01) 
plot( Ex-test x(counter)+y(counter)*dxdyl ’ , [O Z*y(counter)I ’ , ’g’) 
hold off 
print popov. eps -deps 
eval([’!mv popov.eps ’ tex-path ’/popov-’ numZctr(calc_nodes(j)) ’.eps’l); 

end 
results=[results;control-node dxdy w(counter) abs(x-test*k+l)l ; 
% Note: r=dx/dy, w(counter)=w where dxdy occurs! 
% abs((x-test*k+l)) is an indication for the relative error of the linear approximation 
evaï([’save r-> stiffness ’ results’l) 

end 
end 

end 

E.2.2 Routine for envelope determination 

This routine is used to determine the coefficients c1 and c2, as defined in equation 2.26. 

After the maxima of the absolute value of the control effort u have been selected from the 
data past the point that the first part of the control objective has been satisfied, a horizon 
of 4 samples is used to filter the maxima in order to prevent local maxima from reducing 
the quality of the fit. The control effort u has not been windowed/clipped. The resulting 
envelope has been determined using an unweighted least squares fit. 

Discrete time controller 
global C f-e 
f f t s=o ; 
clip-force=O; 
load beam-in 
load beam-out 
off set=O; 
%off set=sf +3 
error-flag=O; 
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close all 
if -exist(’horizon’) horizon=4, end; 
if ( clip-force ) 

if -exist(’min-force’) min_force=-80, end; 
if -exist ( ’ma-f orce’) max-f orce=80, end; 

end 
useful-samples=Cl; 
t=[O:l/sf :(length(u)-l)/sf]’; 
if exist(’xd>) xd-cpp=xd; clear xd; end; 
xd=destra(3,l,t); 
error=z(:,l)-xd(:,l); 
zero-candidates=find(abs(error)<=le-5); 
%Found that ie-5 provides reasonabie resuits 

%First time that the error matches the criterium: 

% Welcome to the zero dynamics, part I 

if -(isempty(zero-candidates)) 
zerodyn-start=zero-candidates(1); 

%Convergence test: abs(edot)<le-7 for reasonable results 
%le-7 changed to Se-7 (november 1996) 
zero~candidate2=zero~candidates(find(abs(z(zero~candidates,4) ... 

-xd(zero-candidates ,4))<5e-7)) ; 
end r---------------------------------------------------------- 
% Welcome to the zero dynamics, part I1 r---------------------------------------------------------- 
if (isempty(zer0-candidatez) lisempty(zer0-candidates)) 

disp(>WARNING: Unable to locate valid subset for zerodynamics analysis...’) 
disp( [’ Skipping analysis for actuator at node ’ ... 

numistr(control-node) ’ ! ’I ) 
else 

if ( clip-force ) 

else 

end 

zerodyn-start=zero-candidates(zero-candidate2(1)) 

subset=find(u>min-force&u<max-force); 

subset=l:length(u); 

subsetZ=find(subset>zerodyn-start); 
subset=subset(subset2); 

clear zero-candidates zero-candidate2 subset2 
%The relevant dataset has now been extracted from the original data. 
%We want to find the maxima within a certain horizon now... 
uabs=abs(u); 
for i=Z:length(subset)-1 

if uabs(subset(i+l))-uabs(subset(i))<O&uabs(subset(i))-uabs(subset(i-l))>=O 
% This is a (local) maximum: 
useful~samples=[useful~samples;subset(i)I; 

end ; 
end ; 
% useful-samples now contains all maxima of abs(u). 
% The largest value within each horizon is assumed to be a useful datapoint. 
% So let’s find these maxima within each horizon: 
subset=[] ; 
for i=l:1:floor(length(useful-samples)/horizon) 

local-max=max(uabs (useful-samples (horizon* (i-l)+ [i :horizon] ) ) ) ; 
subset=[subset;find(abs(uabs-local~max)<=le-14)]; 

end 
useful-samples=subset; 
% useful-samples now contains all maxima of abs(u) within each horizon. 
clear subset 
A= [ones(length(useful-samples) ,l) -t (useful-samples)] ; 
b=log(uabs(useful-samples)); 
parameters=A\b 
figure 
subplot (2111, 

set(gca,’FontName’,’Times’) 
plot(t ,u, ’w’) 
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hold on 
plot(t(zerodyn-start+offset:length(t)), ... 
exp(parameters(l))*exp(-parameters(2)*t(zerodyn~start:length(t))),’r’) 
%plot(t(useful~samples),uabs(useful~samples),’b+’) 
plot(t(zerodyn-start+offset:length(t)), ... 
-exp(parameters(l))*exp(-parameters(2)*t(zerodyn-start:length(t))),’r’) 
ylabel(’u [N]’),title([’actuator at node ’ num2str(control_node) ’, damping=’ ... 

if ( clip-force 

end 
hold off 
grià 
subplot (212), 
plot (t ,error) 
hold on 
% A green mark for zerodyn-start: 
plot (t(zerodyn-start) ,error(zerodyn-start), ’*g’) 
hold off 
grid 
xlabel(’t [sec]’,’Fontname’,’Times’); 
ylabel(>e-y-a [m]’,’FontName’,’Times>) 
set(gca,’FontName’,’Times’) 
print force.eps -deps 
%figure 
%subplot (Ill) 
%plot (t (useful-samples) ,uabs (useful-samples) ) 
%hold on 
%piot (t (useful-samples (1) : lengthct)) ,u(useful-samples (1) :length(t)), ’r’ 
%hold off 
fft~size=2~floor(log(length(z)-zerodyn~start-offset)/log(2)~; 
if ff ts==l 

num2str(parameters(2))l,’FontName’,’Times’) 

axis( [o n/sf min-force max-force]); 

disp([’Calculating FFTs based on ’ num2str(fft_size) ’ samples’]) 
max-freq=sf; 
max_freq=I50; 
max-sample=f loor (fft-size*max-freq/sf) ; 
freq~domain=sf/fft~size*~O:max~sample-l~; 
t~domain=offset+zerodyn~start+[O:fft~size-l]; 
fft-e-O=fft(z(t-domain,2)-xd(t-domain.2)); 
fft-e-xi=fft (z(t-domain,3)-xd(t-domain,3)) ; 
figure 
semilogy(freq~domain,abs(fft~e~0(1:max~sample))) 
set(gca,’FontName’,’Times’) 
title([’actuator at node ’ num2str(control_node) ’, ’ ... 

xlabel(’f [Hzl’, ’Fontname’, >Times>); 
ylabel( ’fft (e-y-m) ’ , ’FontName>, ’Times’) 
print fftl.eps -deps 
semilogy(freq-domain(l:max-sample), . . . 

set(gca,’FontName’,’Times’) 
title([’actuator at node ’ num2str(control-node) ’, ’ ... 

xlabel(’f [Hzl’, ’Fontname>,’Times’); 
ylabel(’fft(e-y-xi)’,’FontName’,’Times’) 
print fft2.eps -àeps 
clear freq-domain ffts 

num2str(sf/fft_size) ’ CHz/samplel’1,’FontName’,’Times’) 

abs (fft-e-xi(1 :max-sample)) 

num2ctr(sf/fft_size) ’ [Hz/samplel ’1, ’FontName’, ’Times>) 

end 
end 

Continuous time controller 
global C f-e 
f f t s=o ; 
clip-force=O; 
load beam-in 
load beam-out 
offset=sf*3 
error-flag=O; 
close all 
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if -exist(’horizon’) horizon=4, end; 
if ( clip-force 

if -exist(’min-force’) min-force=-lOO, end; 
if -exist(’max-force’) max_force=lOO, end; 

end 
useful-samples=[] ; 
t=CO:i/sf:(iength(z(:,7))-l)/sfl~; 
if exist(’xd’) xd-cpp=xd; clear xd; end; 
xd=destra(3,l,t); 
error=z(:,l)-xd(:,l); 
zero-candidatesf ind(abs (error)<=le-lO) ; 
%Found that le-10 provides reasonable results 

%First time that the error matches the criterium: r---------------------------------------------------------- 
% Welcome to the zero dynamics, part I 

if -(isempty(zero-candidates)) 
zerodyn-start=zero-candidates(l); 

%Convergence test: abs(edot)<le-10 for reasonable results 
zero~candidate2=zero~candidates(find(abs(z(zero~candidates,4) 

-xd(zero-candidates,4))<le-10)); 
end 

% Welcome to the zero dynamics, part I1 

if (isempty(zero-candidate2) lisempty(zero-candidates)) 
y---------------------------------------------------------- 

disp(’#ARNING: Unable to locate valid subset for zerooynamics analysis...’? 
dispc [’ Skipping analysis for actuator at node ’ ... 

numZstr(control-node) ’ ! ’1) 
else 

if ( clip-force ) 

else 

end 

zerodyn-start=zero-candidates(zero-candidateZ(l)) 

subset=find(z(: ,7)>min-force&z(: ,7)<max_force) ; 

subset=l:length(z); 

subset2=find(subset>zerodyn~start+offset~; 
subset=subset(subset2); 

clear zero-candidates zero-candidate2 subset2 
%The relevant dataset has now been extracted from the original data. 
%We want to find the maxima within a certain horizon now... 
uabs=abs(z(:,7)); 
for i=i:length(subset)-l 

if uabs(subset(i+l))-uabs(subset(i))<O&uabs(subset(i))-uabs(subset~i-l~~>=O 
% This is a (local) maximum: 
useful~samples=[useful~samples;subset(i)1; 

end; 
end; 
% useful-samples now contains all maxima of abs(u) . 
% The largest value within each horizon is assumed to be a useful datapoint. 
% So let’s find these maxima within each horizon: 
subset=[] ; 
for i=l:1:floor(length(useful-samples)/horizon) 

local~max=max(uabs(useful~samples~horizon*(i-1)+[1:horizonl~~~; 
subset=[subset;find(abs(uabs-local~max)<=le-14)]; 

end 
useful-samples=subset; 
% useful-samples now contains all maxima of abs(u) within each horizon. 
clear subset 
A=[ones(length(useful-samples) ,l) -t (useful-samples)] ; 
b=log(uabs(useful-samples)); 
parameters=A\b 
figure 
subplot(211), 

set(gca,>FontName’,’Times’) 
hold on 
plot(t(zerodyn-start+offset :length(t)), . . . 

plot(t ,z(: ,7), >w>) 



86 Amendix  E: Source code 

exp(parameters(l))*exp(-parameters(2)*t(zerodyn~start+offset:length(t))),’r’) 
%plot(t(useful~samples),uabs(useful~samples),~b+’) 
plot(t(zerodyn-start+offset:length(t)), ... 
-exp(parameters(l))*exp(-parameters(2)*t(zerodyn-start+offset:length(t))),’r’) 
ylabel(>u [N]>),title([’actuator at node ’ num2str(control-node) > ,  damping=’ ... 
num2ctr(parameters(2))1, ’FontName’, ’Times’) 
if ( clip-force ) 

end 
hold off 
grid 
subplot (2121, 
plor (t ,errorj 
hold on 
% A green mark for zerodyn-start: 
plot (t (zerodyn-start) ,error(zerodyn-start) ,’*g’) 
hold off 
grid 
xlabel(’t [sec] ’, ’Fontname’,’Times’); 
ylabel(’e-y-a [m]’, >FontName’,’Times’) 
set(gca,’FontName>,’Times’) 
print force.eps -depc 
figure 
subplot(2ll), 
plot(t,z(:,2)-xd(:,2)) 
hold on 
% A green mark for zerodyn-start: 
plot (t (zerodyn-start) ,z (zerodyn-start ,2) -xd(zerodyn-start ,2) , ’*g’ ) 
hold off 
grid 
ylabel(’e-y-m [ml ’,’FontName’,’Times’) 
set(gca,’FontName’,’Times’) 
subplot(212), 
plot(t,z(:,3)-xd(:,3)) 
hold on 
% A green mark f o r  zerodyn-start: 
plot(t(zerodyn-start) ,z(zerodyn-start ,3)-xd(zerodyn_start,3), ’*g’) 
hold off 
grid 
xlabel(>t [sec]’,’Fontname’,’Times’); 
ylabel(’e-xi [m]’,’FontName>,’Times’) 
set(gca,’FontName’,’Times’) 
print errors.eps -depc 
%figure 
%subplot (111) 
%plot(t(useful_samples),uabs(useful-samples)) 
%hold on 
%piot (t (useful-samples(1) :iength(t) ) ,z(useful-samples (1) : length(t) ,7), ’r’) 
%hold off 
fft~size=2~floor(log(length~z~-zerodyn~start-offset)/log(2)); 

axis ( [O n/sf min-f orce max-f orcel) ; 

if ff ts==l 
disp( [’Calculating FFTs based on ’ num2str(fft_size) ’ samples’]) 
max-freq=sf; 
max_freq=150; 
max-sampïe=fïoor(fft-size*max-freq/sf) ; 
freq~domain=sf/fft~size*[O:max_sample-l]; 
t-domain=offset+zerodyn-start+[O:fft-size-1]; 
fft-e-O=fft(z(t-domain,2)-xd(t-domain.2)); 
fft-e-xi=fft(z(t-domain,3)-xd(t-domain,3)); 
figure 
semilogy(freq-dornain,abs(fft-e-O(l:max-sample))) 
set(gca, ’FontName’, >Times’) 
title([’actuator at node ’ num2str(control-node) ’, ’ ... 
num2str(sf/fft-size) ’ CHz/samplel’I, ’FontName’, ’Times’) 
xlabel(’f [Hz] ’,’Fontname’,’Times’); 
ylabel( ’fft(e-y-m) ’ , ’FontName’, ’Times’) 
print fftl.eps -deps 
semilogy(freq-domain(1:max-sample), ... 

set(gca,’FontName’,’Times’) 
abs(fft-e-xi(1 :max-sample))) 
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title( [’actuator at node ’ num2str(control-node) ’, ’ . . . 
num2str(sf/fft-size) [Hz/sample] ’I, ’FontName’,’Times’) 
xlabelc’f [Hzl ’, ’Fontname’, >Times’); 
ylabel(’fft(e-y-xi)’,’FontName’,’Times’) 
print fft2.eps -deps 
clear freq-domain ffts 

end 
end 

E.2.3 Routine foor FRF-fit 
% frf-fit . . . . . . . . . . . . . . . . . . . . . . . . .  
% F [NI (kanaal 1) 
% a [m/s”21 (kanaal 2) 
% v-in [VI (kanaal 3) 
% v-uit [VI (kanaal 4) 
% i-act CAI (kanaal 5 )  

%load frf-800 
%close all 
global channel2 
f-max-data=ceil(frf-indep(length(frf-indep))); 
%if -strcmp(channel2,>adapted’) 
% frf_hl(2:length(frf_indep) ,2)=frf-hl(2:length(frf-indep) ,2) . /  . . . 
(2i*pi.*frf_indep(2:length(frf_indep))).-2; 
% channel2=’adapted’; 
% oisp(>NOTIFICATION: changed FRF of channel 2 to F/x-a ! ’ )  
%end 
clear H freqdomain 
f-max=input ( [>Afbreekfrequentie f -max ( < = I  num2str(ceil(frf -indep(length(f rf -indep)) )) 
if isempty(f_max),f-max=ceil(frf-indep(length(frf-indep))),end; 
min-weeg=input([’frequentie minimale weging (default=none)? ’I); 
disp(’ F [NI (kanaal I)’) 
if strcmp(channel2,’adapted’) 

’) [Hz] ? ’1 ) ; 

disp(> x [m] (kanaal 2) (getransformeerde versnelling)’) 
else 

end 
dispc’ v-in [VI (kanaal 3)’) 
disp(’ v-uit CV1 (kanaal 4)’) 
disp(’ i-act [Al (kanaal 5 ) ’ )  
ch-in=input([’Input kanaal (default=3)? 
if icempty(ch_in);ch_in=3;end; 
ch-out=input([’Output kanaal (default=l 
if isempty(ch-out);ch-out=l;end; 
o-num=input(’Graad teller (default=2)? 
if isempty(o-num);o-num=2;end; 
o-den=input(’Graad noemer (default=2)? 
if isempty(o-den);o-den=I;end; 
subset=f ind(f rf -indep<=f -max) ; 
subset=subset (2:length(subset)) ; 

disp(’ a [m/s”21 (kanaal 2)’) 

if f -max>frf -indep(subset (lengthcsubset) ) )+I 
f-max=ceil(frf-indep(subset(length(subset)))); 
disp([’WARNING: changed f-max to ’ num2ctr(f_max) ’ [Hzl ...’ 1) 

end 
if isempty(min-weeg) 

[num,denl=invfreqs(frf~hl(subset,ch_out)./ ... 
frf~hl(subset,ch~in),frf_indep(subset~*2*pi,o~num,o~den,Cl,16,le-6~; 

if min-weeg>f-max; 
min-weeg=f-max; 
disp([’WARNING: changed min-weeg to ’ num2str(min_weeg) ’ [Hzl ... ’  1) 

else 

end 
~num,den]=invfreqs(frf~hl(subset,ch_out)./frf~hl(subset,ch~in),frf~indep(subset)*2*pi, ... 

o-num,o-den,abs(min-weeg-frf-indep(subset)) .-2,16,le-6) ; 
end 
y--- o nette methode: --- 
max-size=max(o-num, o-den) +I ; 
for i=l:max-size; 
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freqdomain(:,i)=(2i*pi*([1:f_max_datal’)).^(max_size-i); 
end ; 
H=(freqdomain(:,max_size-o_num:max_size)*num’).’./ ... 

clear freqdomain 
figure 
subplot (2111, 
loglog(l:f_max,abs(H(1:f_max)),frf_indep(subset),abc(frf_hl(subset,ch_out)./frf_hl(subset,ch_in))) 
cet(gca,’FontName’,’Timec’) 
ylabel( [’abs(H_’ num2str(ch_out) numlstr(ch_in) ’)’I, ’FontName’,’Times’), 
%title([’overdrachtfunctie H-’ numlstr(ch_out) num2str(ch_in) ’(f) (gefit v o o r  f<’ ... 
num2etr(f_max) [Hz])’] ,’FontName’,’Times’) 
subpior; (2123, 
semilogx(l:f_max,angle(H(1:f_max)),frf_indep(subset),angle(frf_hl(subset,ch_out).’ ... 

set(gca,>FontName’,’Times’) 
xlabel(’frequency [Hz)>,’FontName’,’Times’), 
ylabel( [’phase(H-’ num2str(ch_out) numlstr(ch-in) ’1 Cradl ’I, ’FontName’, >Times’) 

%use data to match decades: 
f-max-decade=lO-floor(loglO(f-rnax-data)) 
decade_set=find(frf_indep>=l&frf_indep<=f-max_decade); 

(freqdomain(:,max-size-o-den:max-size)*den’).’; 

./frf_hl(subset,ch-in).’)) 

figure 
subplot (211), 
loglog(l:f_max_decade,abs(H(l:f_max_decade)),’:w’,frf_indep(decade_set), ... 

set(gca,’FontName>,’Times’) 
ylabel([’abs(H_’ num2str(ch_out) num2str(ch_in) ’)’].’FontNams’,’Times’), 
title([’fit for f<’ num2ctr(f_max) ’ [Hzl)’l,’FontName’,’Times’) 
subplot (212), 
semilogx( 1 :f _max_decade,angle(H(l :f -max-decade)), ’ :w’ ,frf -indep(decade-set), 

set(gca,’FontName’,’Times’) 
xlabel(’frequency [Hz]’,’FontName’,’Times’), 
ylabel([’phase(H-’ num2etr(ch_out) numlstr(ch_in) ’1 [rad]’],>FontName’,>Times>) 
max_index=find(abs(max(abs(frf_hl(:,ch_out)./frf_hl(:,ch_in)))-abs(frf_hl(:,ch_out)./ .. 
frf -hl( : , ch-in) ))<le-12) ; 

f-Hmax=frf-indep(max-index) 
Hmax=frf_hl(max_index,ch_out)./frf_hl(max_index,ch_in) 

abs(frf_hl(decade-set,ch-out) ./frf-hl(decade-set,ch_in)), ’ -w’ )  

. . . 
angle(frf_hl(decade_set,ch_out).’./frf_hl(decade_set,ch_in).’),’-w’) 
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Hardware specifications 

F. l  Sensors 

chan- quan- unit sensor serial sensitivity 
nel tity number 

O ya [m] LVDT Lucas-Schaevitz DC-E250 11886 0.6047 [mm/V] 
1 ym [m] LVDT Lucas-Schaevitz DC-E250 11747 0.6074 [mm/V] 
2 
3 cm [m/s2] Bruel-Kjaer 4367 
4 Fe, [NI Kiag Swiss 9311A 100817 3.93 [pC/N] 
5 Fact [NI Kiag Swiss 9301A 132296 3.64 [pC/N] 

ca [m/s2] Bruel-Kjaer 4367 1074096 2.45 [pCs2/m] 
805972 2.00 [pCs2/m] 

Table F.l: specifications of the used sensors. 

F. 2 Amplifiers 

chan- quan- unit amplifier serial cut-off conversion 
nel tity number frequency factor 

O Y a  [ml - 
1 Ym [ml - ca [m/s2] Kistler 5007 265826 [i kHz] 50 [m/s2/V] 
3 ym [m/s2] Kistler 5007 43578 [i kHz] 20 [m/s2/V] 
2 

4 Fe, [NI Kistler 5007 52901 180 [kHz] 50 [N/V] 
5 Fact [NI Kistler 5007 52900 180 [kHz] 20 [N/V] 

- - - 

- 

out - [VI TPO 25 ([V]+[V]) 745 - max 

Table F.2: specifications of the used amplifiers. 
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