
 Eindhoven University of Technology

MASTER

Experimental determination of rolling element bearing stiffness

Knaapen, R.J.W.

Award date:
1999

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8d67bcf5-a404-4742-9764-91b904194485


EXPERIMENTAL DETERMINATION OF ROLLING 
ELEMENT BEARING STIFFNESS 

R.J.W. KNAAPEN 

WFW-REPORT 97.017 

Graduation report 

Eindhoven University of Technology 
Faculty of Mechanical Engineering 

Department of Engineering Dynamics 

Supervised by: 
Ir. L. Kodde 

Dr. ir. A. de Kraker 

Examination committee: 
Prof. dr. ir. D.H. van Campen 

Prof. dr. ir. J.W. Verheij 
Dr. ir. A. de Kraker 

Ir. L. Kodde 

Eindhoven 
March 18,1997 



Experimental Determination of Rolling Element Bearing 
St ifhess 

R. J.W. Knaapen 

March 18, 1997 



Abstract 

To predict the vibration in rotating mechanical equipment, the role of bearings as a dynamic 
coupler between the shaft and casing must be completely understood. In 1990, Lim and Singh 
have presented a bearing stiffness model with three translational and three rotational degrees 
of freedom, to replace previous models, which, in general, neglect flexural or out-of-plane type 
vibrations. This model is characterized graphically in order to enhance the understanding of 
the influence of the contact angle and preloads. Earlier attempts to measure all stiffnesses 
of a bearing for comparison with the model partly failed, because the experimental setup 
had some special shortcomings. The use of more complex identification methods could not 
overcome the problems. A modified experimental setup is presented, which is capable of 
yielding reproducible measurements. Estimating a complete stiffness matrix directly from 
the measured transfer matrix appeared to be unfeasible. Therefore, single-degree-of-freedom 
fits on the measurements are compared with fits on the model. However, the so-called coupling 
terms cannot be compared using SDOF fit procedures. Nevertheless, these results appear to 
be very promising and applicable in practice, but future research is needed to investigate 
the difference between the measured stiffnesses and the model stiffnesses. In addition to 
stiffnesses, the fit procedures yield damping values as well, which unjustify the use of Rayleigh 
damping. Finally, matters such as hysteresis, reproducibility and reciprocity are investigated. 



Samenvatting 

Het voorspellen van trillingen in machines met draaiende elementen vereist een grondige 
kennis van lagers als dynamische koppeling tussen de as en de behuizing. Daartoe hebben 
Lim en Singh in 1990 een lagermodel geïntroduceerd met drie translatie- en drie rotatievrij- 
heidsgraden, in plaats van voorgaande modellen, die over het algemeen de buigtrillingen van 
de as of de transversale trillingen van de behuizing buiten beschouwing laten. Een aantal 
modelkarakteristieken wordt beschouwd ten behoeve van het inzicht in verschijnselen zoals 
contacthoeken en voorspanningen. Voorheen is het niet volledig gelukt om de stijfheden 
van een lager te meten en te vergelijken met het model, vanwege een aantal gebreken in de 
proefopstelling. Het gebruik van complexere identificatiemethoden kon hieraan niets bijdra- 
gen. Daarom is een gewijzigde opstelling gerealiseerd die reproduceerbare meetgegevens kan 
leveren. Het schatten van een complete stijfheidsmatrix bleek echter ondoenlijk. Daarom 
zijn er een-graad-van-vrijheid fits uitgevoerd op de gemeten overdrachtsfuncties en het mo- 
del, welke nadien met elkaar worden vergeleken. De zogenaamde kruistermen echter, zijn op 
deze manier niet te vergelijken. Desalniettemin lijken deze resultaten veelbelovend en in de 
praktijk toepasbaar, maar er is nog onderzoek nodig om het verschil tussen het model en 
de experimenten te kunnen verklaren. Buiten stijfheden leveren de fit-procedures ook dem- 
pingsresultaten, die het gebruik van Rayleigh-demping in het model afkeuren. Tenslotte is er 
gekeken naar verschijnselen zoals hysterese, reproduceerbaarheid en reciprociteit. 



Science is built up of facts, as a house is built of stones, but an accumulation 
of facts is no more a science than a heap of stones is a house. 

Jules-Henri Poincaré, Science and Hypothesis 
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Chapter 1 

Introduction 

Noise and vibration generated by rotating mechanical equipment have always been a problem 
in the implementation of new technology in automobiles, rotorcrafts and industrial machines. 
Recently, the need for reliable vibration prediction methods have been found to be crucial 
as faster and lighter machines are being designed. In most of these rotating systems, the 
vibration transmission through bearings, which support the rotating shafts on flexible or 
rigid casings, is dominant. Hence, in order to obtain a reliable mathematical model of the 
overall dynamic system, a complete understanding of the vibration transmission mechanism 
through bearings, and the role of bearings as a dynamic coupler between the shaft and casing, 
is essential. 

In the past, bearing models were able to describe only purely in-plane type motions. In 
subsequent research however, experimental results have shown that the case plate motion is 
primarily flexural or out-of-plane type. In 1990, Lim and Singh have presented a bearing 
stiffness model in which three translational and three rotational degrees of freedom are used 
[i]. This model is improved for roller bearings by Van Roosmalen in 1994 by taking a non- 
uniform load distribution on the line contact between the inner race, roller and outer race of 
the bearing [4]. 

The model, which consists of a set of non-linear equations, can be numerically solved 
using the computer program Lager, which results in a theoretical bearing stiffness matrix [5 ] .  
In previous research, attempts are made to experimentally determine the bearing stiffness 
matrix. Well designed experimental setups [3] and identification algorithms [2] could not 
yet sufficiently overcome the non-reproducibility of the measurements and the inaccuracy in 
the torque stiffnesses. Applying higher preloads was thought to be the best solution to this 
problem, as in practice no rolling element is allowed to come loose. 

The purpose of this research is to develop an experimental setup by which a total bearing 
stiffness matrix can be measured, without the occurrence of non-reproducibility and with high 
accuracy in the rotational stiffnesses. Subsequently, the experimentally determined stiffness 
can be compared to the theoretical model which gives a decisive answer to the question 
whether the model is suitable for the accurate prediction of rolling element bearing stiffnesses, 
used for vibration prediction purposes. 
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Chapter 2 

The Bearing Model 

Often, rotor dynamic models describe rolling element bearings as purely translational stiffness 
elements. This approach, however, will be inadequate in the explanation of the vibration 
transmission from the shaft to the casing. Such models can only predict purely in-plane-type 
motion on the flexible casing plate given only the bending motion on the shaft. However, 
experimental results have shown that the casing plate motion is primarily flexural or out- 
of-plane type. Therefore, Lim et. al. developed an extended bearing model in which both 
the translational and rotational degrees of freedom are taken into account. As this results 
in six degrees of freedom, the bearing stiffness will be expressed by means of a 6x6 stiffness 
matrix. The presented model determines stiffness matrices of deep groove ball bearings as 
well as angular contact ball bearings, straight roller bearings and taper roller bearings under 
the following assumptions. 

2.1 Assumptions 

o Ball bearings have elliptical contacts and roller types have rectangular contacts between 
the inner race, rolling elements and outer race when loaded. 

o The loaded contact angles aj of the ball types may change, but aj in the roller type 
remains relatively constant. 

o Each bearing is characterized by its kinematic and design parameters, such as: 

- the unloaded contact angle ao, 
- the radial clearance TL, 

- the effective stiffness coefficient Kn for inner ring-single rolling element-outer ring 
contacts, 

- preloads, 

- radius of inner raceway groove curvature centre for ball type and bearing pitch 
radius for roller type. 

o The mean bearing displacements as shown in Figure 2.1 are given by the relative rigid 
body motions between the inner and outer rings. 
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inner ring raceway - 
Figure-2.1: Rolling element bearing kinematics and coordinate system 

o The vibrations initiated by the rotation of the shaft are neglected with respect to the 
steady state deflection of the bearing. Applying high preloads will justik this assump- 
tion as well as the non-rotating shaft in the experimental setup. 

o The basic load-deflection relation for each elastic rolling element is defined by Hertzian 
contact stress theory, and the load experienced by each rolling element is described by 
its relative location in the bearing raceway. 

o Due to the cages, the position of each rolling element relative to one another is always 
maintained. 

o Secondary effects such as centrifugal forces and gyroscopic moments on the bearing are 
ignored as these effects only evolve at extremely high rotational speeds. 

o Tribological issues are not taken into account. Damping is assumed to be proportional 
to the stiffness, thus Rayleigh damping is used in the bearing motion simulations. 

o It is obvious that rotations in z-direction will have zero stiffness. Consequently, the 
resulting stiffness matrix will contain 5 x 5 effective elements. 

2.2 Bearing load-displacement relat ions 

In this section, the relation between the bearing forces { Fxbm Fybm Fzbm } and moments 
{ M x h  &î&m } transmitted through the rolling element bearing, and the bearing displace- 
ments {q}bm as given in Figure 2.1 will be outlined. 

The bearing displacements {q}bm are used to derive the resultant elastic deformation S ( Q j )  

of the j- th rolling element located at angle Q j  from the x-axis. From the elastic deformation 
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of the ball bearing in Figure 2.2, S ( Q j )  is 

A(Qj) = d m  
(S*),j = Ao sin a0 + (S),j 

(S*),j = A0 COS a 0  + (&j 

where A0 and A are the unloaded and loaded relative distances between the inner ai and 
outer a, raceway groove curvatures centres. In Equation 2.1, the effective j-th rolling element 
displacements in the axial (S),j and radial (S),j directions are given in Figure 2.3 in terms of 
the bearing displacements {q}bm. 

(S )z j  = Szm + ~j (Pxm sin(Qj) - Pym cos(Qj)) (2-5) 
(S),j = Sxm  COS(^^) + S y m  sin(Qj) - r~ (2-6) 

where rj is the radial distance of the inner raceway groove curvature centre. The load- 
deflection relationship for a single rolling element according to the Hertzian contact stress 
principle can be stated as 

Qj = K,SY (2-7) 

where Qj  is the resultant normal load on the rolling element. In the case of elliptical contacts 
the exponent n is equal to g, for roller type bearings with rectangular contacts n is equal to 
7. The loaded contact angle aj may alter in the ball bearing case. The sign convention is 
such that aj is positive when measured from the bearing x-y plane towards the axial z-axis, 
and negative otherwise. For the ball bearing of Figure 2.2 the loaded contact angle aj is 

A0 sin ao + (S),j tan(aj) = 
A0 COS + (&j 

To determine the total stiffness matrix, the effects of all z rolling element stiffnesses given 
by Sj > O have to be combined. First, the bearing mean load vector {f}b, has to be related 
to the bearing displacement vector {q}bm through vectorial sums of Qj in Equation 2.7 for 
all of the loaded rolling elements, which leads to the following bearing moments {Mwbm} and 
forces { F w h } .  

{ 
Fzbm 

cos aj cos Q j  

= cQj { cosajsinQj } 
j sin aj 

(2.9) 

(2.10) 

Finally, a symmetric bearing stiffness matrix of dimension 6x6 can be defined as follows: 
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Bearing center line z 

Figure-2.2: Elastic deformation of rolling element for non-constant contact angle 
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Figure-2.3: The effective deformations in terms of the mean bearing displacements {qjbrn 
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Figure-2.4: Influence of the contact angle on the radial and axial stiffness 

U 

; w,i = x, y,z (2.11) 

CQIbrn 

Here each stiffness coefficient must be evaluated at the mean point {q}bm. The symmetry is 
not obvious but follows after working out Equation 2.11. The explicit terms of this symmetric 
matrix are mentioned extensively in [i]. The numeric calculations can be done using the 
program Lager [5] for several bearing load situations. 

2.3 Model Characteristics 

In this paragraph some characteristics of the model are sketched. Two bearings are considered, 
a normal NSK 6208 deep groove ball bearing and a fictitious NSK 6208 bearing with a0 = 40", 
which shows the effect of the contact angle. Both, a deep groove ball bearing and an angular 
contact bearing are considered here, since the same is done in Chapter 5. 

The stiffness matrix of a purely axial preloaded bearing is shown in Figure 2.6 in which 
only the upper triangle is printed because of the symmetry of the matrix. The diagonal terms 
show that applying a contact angle decreases the radial stiffnesses and increases the axial and 
rotational stiffnesses. This is accounted for in Figure 2.4, which shows that, in case of an 
axial preload, an angular contact bearing has higher stiffness in axial direction and a deep 
groove ball bearing has higher stiffness in radial direction. Considerations on the rotational 
stiffness are similar to the ones on axial stiffness, however, in the rotational case not all rolling 
elements are loaded equally. This is outlined in Figure 2.5 in which the dark rolling elements 
are loaded by the inner ring. 

In Figure 2.6, the only existing coupling terms (i.e. H,ey, Hye,, Hoyz and .&&y) are 
determined by the contact angle of the bearing, for a radial excitation is converted to a 
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Figure-2.5: In case of a rotational load, a single rolling element ‘feels’ an axial load which is 
different for each element 

momentum with resulting rotation, because of the contact angle. (See also Figure 5.5). The 
smaller the contact angle, the smaller is the effect of the mentioned coupling terms. 

In Figure 2.7 the stiffness matrix for an increasing radial preload in y-direction combined 
with a constant axial preload of 800 [NI is sketched. Compared to the purely axial preloaded 
case, four extra terms evolve, Hyz, Hzex, Hzy and Hexz. This is caused by the fact that the 
bearing position is no longer axi-symmetrical. This is sketched in Figure 5.11 and discussed 
in Section 5.3. Another difference is that some stifkesses no longer increase or decrease 
monotonously. Apparently, in this case the stiffness is determined by more than one effect, 
in which the dominant one is determined by the combination of preloads. 

The white graphs are the result of a simulation using a non-symmetric rolling element 
distribution. When the rolling elements were distributed symmetrically with regard to the 
y-z-plane, a radial preload in y-direction would not have any effect in the lc-direction, and 
thus the white graphs would be zero. The effect of the deep groove ball bearing in the white 
graphs is negligible with respect to the angular contact bearing because a contact angle is 
needed to turn a particular load into another direction. 

A very important phenomenon in the simulations is the fact that a tiny preload or distur- 
bance can cause some matrix components to increase enormously, whereas usually they would 
be zero. Therefore, in practice the excitations must be exactly aimed in the right direction. 

14 



A Y z 

O 
O 1000 2000 

I 
O 1000 2000 

O,OE+O 

-5,OE+5 

-1,OE+6 o ::::E:: 
-2,5E+6 

-3.OE+6 
-3,5E+6 

O O 1000 2000 1000 2000 

Symmetic 

2.5~+a 

1 , 5 ~ + a  

2,OE+8 

O 1,0E+8 

5,0E+7 

O,OE+O 
O 1000 2000 

o 1000 

Deep groove ball bearing, NSK 6208 
Fictitious angular contact bearing, NSK 6208 with a, = 40" 

Axial preload @] 
I 

O 

O 
2000 

6,OE+4 , e- 
4.OE.4 

2.OE+4 

O.OE+O 

I ; 

1,OE+5 

a  OE+^ 

O 1000 2000 

I 

Figure-2.6: The stiffness matrix K b m  in case of an axial preload 

15 



X Y Z 

I I 

2 OE+8 

- -- 
o OEiO 

o 1000 2000 

3,OE+8 5.OEt6 3.OEffi 
2,5E+6 O.OE+O 2.5Effi 

O 2.OEffi 2,OEt8 -5,OE+6 
1.5Effi 
1,OEffi 

i,SE+8 
i,oE+8 
%OE17 -1,5E+7 5,OE+5 
O,OE+O -2.OE+7 O,OE+O 

O.OE+O -i,OE+7 

O 1000 2000 -2.58+7 

2.OE+8 O,OE+O 

1.5E+8 6.0E+5 

-i,OE+6 

-1,5E+S 

1,OE+8 

5,OE+7 

O,OE+O 
O 1000 2000 -2,OE+6 

Symmetric 
8,OE+4 

6.OE+4 

4.OE+4 

2,OE+4 

O,OE+O 
O I000 2000 -3.OE13' 

- Deep groove ball bearing, NSK 6208 
Fictitious angular contact bearing, NSK 6208 with ao = 40" 

Radial preload m] 
O.OE+O 

o i000 2000 

I 

Figure-2.7: The stiffness matrix Kbm in case of an increasing radial preload in y-direction 
combined with a constant axial preload of 800 [NI 

16 



Chapter 3 

The Experimental Setup 

An experimental setup for the determination of a complete stiffness matrix is designed by 
Heuvelmans [3] in 1993 but measurements could not approve the theoretical bearing model, 
for the experimental setup suffered from non-reproducibility (see Figure 3.1). In 1995, Staps 
[a] performed a new set of measurements and used a Least Squares and Instrumental Vari- 
ables method to identify the bearing stiffness from a transfer function. These identification 
algorithms were appropriate in deriving a stiffness matrix but the resulting matrix could not 
be matched with the theoretical model. Whether this is due to model imperfections or an 
experimental mismatch could not be found out. In this section a redesigned experimental 
setup will be presented. 

3.1 Potential Problems 

The new experimental setup will be dynamically excited by an excitation hammer or shaker 
to determine the complex transfer matrix of the bearing. However, the setup has to be in 
complete agreement with the assumptions stated in the previous chapter. Here, a ‘stock- 
taking’ of problems with matching solutions is presented. 

One problem is the contact between the inner raceway, the rolling element and the outer 
raceway. In the bearing model rolling elements are allowed to come loose by neglecting their 
contribution to the stiffness. In practice however, the behaviour of unloaded rolling elements 
is hard to predict. Applying high preloads is a solution to this problem since it will force 
the rolling elements to make contact. Another problem is the fact that the measurements 

! /-., j 
i ic : 
L 

........ ~ 

Figure-3.1: Experimental setup by Heuvelmans 
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Figure-3.2: Several concepts for an experimental setup 

are performed on a non-rotating shaft. Therefore, the measured transfer function could be 
dependent on the position of the rolling elements. 

The bearing lubrication will initiate a significant and unknown amount of damping, which 
is, beside of the stiffness, another unknown property in the identification problem. On the 
other hand, the lubrication reduces the effect of unloaded rolling elements. When the shaft is 
excited by a shaker or excitation hammer, all parts of the experimental setup will be excited. 
Several eigenfrequencies will be measured which do not result from the stiffness contribution 
of the bearing such as vibrations in the string and the shaft itself. These effects have to be 
suppressed or incorporated. 

3.2 The Redesign 

Several considerations can be made on a new experimental setup. In Figure 3.2 a few con- 
cepts are outlined. The first is based on the original setup used by Staps and Heuvelmans. 
Advantages are the simplicity and the fact that a part of the setup already exists. The simple 
modelling leads to an adequate identification process, since a minimum of parameters has to 
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Figure"3.3: Experimental setup 

be estimated. However, the existing bearing is rather big, which leads to the requirement of 
high preloads. A smaller bearing could be content with smaller preloads which are easier to 

In the second setup a somewhat realistic approach is created by putting the bearing in a 
flexible plate. In this case, high preloads cannot be applied as the plate will deform. A Finite 
Element Method will be needed to model the plate which will handicap the identification 
process. Besides, the boundary conditions in the experimental setup have to be similar to the 
ones in the FEM. 

The last alternative is based on (71 which describes measurements on a rotating shaft. A 
disturbance such as the bending vibration of the shaft is suppressed because of its thickness. 
One bearing can be preloaded with regard to the other bearing, thus no strings are required. 
However, it is impossible to measure the rotational stiffness of a bearing, for the shaft cannot 
rotate about its z or y-axis. 

The first alternative was chosen because of the simple modelling and the existing setup 
parts. The second alternative requires an extensive modelling and identification which will 
complicate the research, while the third alternative cannot yield rotational stiffness results, 
although this was one of the prominent demands. In Figure 3.3 the setup is sketched to 
scale. The preloads are applied using a threaded shaft and a long string, which will initiate 
a negligible amount of stiffness. This stiffness can be calculated through 

apply. 

which is much smaller than the expected axial stiffness of the bearing, which order of mag- 
nitude is 5 - lo7 [N/rn]. Hence, the so called 'dead mass' supported by a relatively slender 
construction, used by Heuvelmans, is eliminated. 

A vibrating string, caused by the excitation, although the effect is hardly noticeable, can 
effectively be damped by putting pieces of foam around the string. The vibration frequency of 
the string is dependent on the preload. Therefore, the preload can be measured by determining 
the vibration frequency, if the vibration length is known and kept constant. Details are 
available in Appendix B. 

During the actual measurements, the preload is measured using a tensile strip, which 
was already available in the threaded shaft used in [15]. In Figure 3.4 the calibration and 
measurement of the strain, used for deriving the preload, is shown. Details on the calibration 
are available in Appendix C. 

The complex transfer measurement is done using DIFA, which is schematically drawn in 
Figure 3.5. The shaft is excited by one or two shakers controlled by DIFA, depending on the 
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Figure-3.4: The calibration of the tensile strip 

Acceleration r+ 

Figure-3.5: The measurement procedure of the transfer function 

load situation. Both, the actual applied force and the resulting acceleration are measured 
and passed to the DIFA system. In a radial excitation only the two shakers marked with ‘R’, 
will be used. Likewise, in an axial excitation, only the ‘A’ marked shaker will be used. After 
a measurement, the data is converted to Matlab, which is used for calculating the average’ 
shaft acceleration and subsequently a particular transfer function component with matching 
coherence function. 

During a measurement using the ‘R’ marked shakers, the shaft will bend under the ex- 
citation load. When the bending stiffness has the same order of magnitude as the bearing 
stiffness, then precautions have to be taken in the bearing stiffness estimation. In that case, 
also the estimated mass will differ from the actual shaft mass, because while in bending vi- 
bration, the shaft is not in rigid motion. This shaft deformation is sketched in Figure 3.6. 
The equation of motion for the bending vibration of a shaft according to Bernoulli2, is 

‘The transfer function components and coherence functions are determined using the average of ten 

‘Daniel Bernoulli, Professor of applied mathematics, born on Februari 2nd, 1700 in Groningen, died on 
measurements. 

March 17th, 1782. 
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Figure-3.6: Shaft deformation under excitation load 

Using separation of variables 
W ( G )  = y(+(t) (3.3) 

in which y(z) describes the shape of the shaft in the outmost position and s ( t )  the motion of 
one material point of the shaft, Equation 3.2 can be transformed to 

mS(t) + h ( t )  = F (3.4) 

with 

shaft 

This is equivalent to a single degree of freedom mass-spring system. Hence an equivalent mass 
and stiffness can be calculated by evaluating Equation 3.5 and 3.6, by assuming 

y(x) = cos (y) (3.7) 

for the first eigenmode, with 1 = 0.20. This yields m e q  = 1.013 [kg]  and kshuft = 1.176 . lo8 
[N/m],  which indicates that the effective mass is less than the actual shaft mass and that the 
bending stiffness of the shaft has the same order of magnitude as the bearing stiffness. The 
bending stiffness of the shaft can also be calculated statically, using the standard equation 
for a bending situation as sketched in Figure 3.7. 

~ 1 3  
W E -  

48EI 
or 

Hence, kstat = 1.159 . lo8 [N/m],  which justifies the dynamic result. In the actual measure- 
ments the shaft will be excited at a certain distance from both ends. These rigid vibrating 
ends are not taken into account in the calculation of the mass. Therefore, the shaft mass as 
calculated in Equation 3.5 must be completed with this extra mass. Eventually, the estimated 
effective mass is 1.3 [kg]. 
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Figure-3.7: Equivalent expressions for a bending beam 

Figure-3.8: Combined stiffness of the shaft and the bearing 

In case of an angular contact bearing, the force will not affect the shaft in the middle 
because of the contact angle. As a result of the shifted force vector, the shaft will bend 
according to 

48EI 
312x - 4x3 F =  w = JCstatW 

Therefore, in case of an angular contact bearing, -shaft = 1.2902. lo8 [N/m]. 
In practice however, the motion of the shaft is determined by both the bending stiffness and 

the bearing stiffness. This situation is simplified in Figure 3.8. In the actual measurements 
the combined stijffness will be measured, which will equal 

1 
Ktot  = 1 +- 

Kshaft  Kbearing 

when measured in radial direction. Therefore, after the measurements and data fits the actual 
radial bearing stiffness needs to be calculated using Equation 3.8. In the case of rotational 
stiffnesses, this effect can be neglected, since the rotational stiffness of the bearing is much 
smaller than the bending stiffness of the shaft. Obviously, in the axial direction no bending 
occurs. 
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Chapter 4 

The Identification Process 

In this chapter a brief outline will be given of the used identification algorithms. The Least 
Squares and Instrumental Variables Method were investigated and augmented with weighting 
factors in [2]. The third method, Amplitude Fitting [6], will be discussed and subsequently 
used for deriving new weighting factors, which will unjustify the previous factors used in [2]. 

4.1 Identification Algorithms 

In Appendix D, the Least Squares and Instrumental Variables identification algorithms are 
outlined in brief. These algorithms are capable of performing multiple-degree-of-freedom 
(MDOF) fits on mechanical systems like 

The Least Squares algorithm minimizes the fit error by solving 

- AT& I s - -  -ATE 

in which A and E contain the model characteristics and the experimental data. & contains 
the unknown parameters of Equation 4.1. The Instrumental Variables algorithm minimizes 
the difference between the measurements and the model by solving 

- VT&. -"V =VTE (4.3) 

iteratively. The matrix E contains the so-called instrumental variables output which can be 
considered as an estimate of the noise-free system. 

4.2 Amplitude Fitting 

Amplitude fitting [6] is appropriate if the amplitude of a measured transfer function is more 
accurate than the phase. Unlike the Least Squares and Instrumental Variables method, this 
is a single-degree-of-freedom fit procedure. A well separated peak in the transfer function can 
be approximated by a single mode response of 

+ 2n,<,y + ~ g y  = p,ejwt (4.4) 
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in which fik and & are the structural frequency and damping for the particular mode k .  Pk 
is the participation factor for the mode and is obviously equal to the reciprocal of the modal 
mass. At a given frequency wi,  the steady state amplitude of the response is given by 

which can be written as 
AiDi - Pk = O 

Scaling of Equation 4.6 with the amplitude Ai results in 
(4.6) 

Solving Equation 4.7 by means of least squares will lead to a considerably more accurate 
result than solving Equation 4.6 in a similar way. 

Equation 4.5 cannot be exact due to errors in the experimental data, therefore it may be 
written as 

n 

i=l 
which indicates that the minimized error is (~ iDi ) ' ,  using least squares. Conspicuous is 

the 'weighting factor' Di, which is minimum at resonance. This means that sample points 
near resonance are given a lower weighting factor than those away from the peak. This is 
usually undesirable since points farther away from the peak are contaminated by residues 
from adjacent modes and suffer from a worse signal-noise ratio than points in the peak. 

Equation 4.7 with errors can be written as 

(Ai + (A, +&i) - p k  (4.10) 
Di 

or 

Simplifying Equation 4.11 using Equation 4.8 and neglecting the second order error terms, 
yields 

&?Di - AiPk = -Eipk (4.12) 
n 

i=l 
which shows that, when the problem is scaled, the minimized error is since p ,  is a 

const ant. 

4.3 Weighting Factors 

A similar operating procedure can be applied on the Least Squares and Instrumental Variables 
method. Like in the previous section the measured transfer can be divided into a theoretical 
and a noisy part. 

- = &(Ui> +dui) (4.13) 
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Therefore, Equation D.7 can be written as 

- Zt(Wi) @(Ui) - E(%))  - I = 0 (4.14) 

Then, the error (Equation D.8) is 

which demonstrates that in the Least Squares method, the minimized error is 
n 

(zt(Wi)E(Wi))T (Zt(Wi)E(~i)) 
i=l 

(4.15) 

(4.16) 

Like in the unscaled amplitude fit, the minimized error contains a weighting factor which is 
minimum at resonance, which, in this case, is Zt(wi).  Now, the same argumentation as used in 
the previous section can be used to scale Equation D.8 with the experimental transfer - He(wi) 

or the Instrumental Variables output - &(ui). The weighting factors used in [2] underlie a 
complete other argumentation, in which the peaks are weighed low and the ‘valleys’ weighed 
high, which is, according to this theory, incorrect. 

4.4 Numerical Evaluation 

On behalf of the numerical evaluation of the identification processes, a three degree of free- 
dom mass-spring-damper model is used, which will be contaminated with several amounts 
of normally distributed noise. Since the Amplitude Fit procedure is only suitable for SDOF 
estimations, only the Least Squares and Instrumental Variables algorithms are considered 
here. The system, depicted in Figure 4.1, can be described, using 

- Mq+l3q+Kq= F (4.17) 

with k = 1 [N/m],  b = 0.1 [Ns/m],  ml = 1 [kg],  m2 = 2 [kg] and mg = 3 [kg] resulting in 

1 0.2 -0.1 
-0.1 0.2 -0.1 

-0.1 0.2 

2 -1 
- K = [ -1 -i -i] 

The amount of noise can be defined as 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

in which cnoise is the standard deviation of the normal distributed noise component and 
max ( /HI )  is the maximum of the undisturbed transfer function. The used noise levels are 
printed in Table 4.1. The estimation errors are calculated by adding all least squares errors: 
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Figure-4.1: A three-degree-of-freedom mass-spring-damper system 

r 1 I 1.1 I 

I 4 I 4.3 I 
~ 

Table 4.1: Noise levels 

& = ~ ~ ( X - z ) T ( X - 2 )  (4.22) 
i j  

The mass matrix is assumed to be known and the stiffness and damping matrix are assumed 
to be symmetrical. The identification results are shown in tables 4.2 and 4.3. 

The identification process is repeated 100 times. Then, the mean fit results are calculated 
as well as the mean error and the variance of the error. Adding more noise obviously increases 
the estimation error as well as the variance. The Instrumental Variables procedure always 
yields smaller error values but the effect is stronger in case of higher noise amounts. However, 
the used procedure fails when much higher noise amounts are used, since, in that case, the 
Instrumental Variables initial estimate (i.e. the Least Squares estimate) is useless. 

The used programs are printed in Appendix F. The application of weighting factors 
appeared not to be useful in the Least Squares and Instrumental Variables method, for the 
total estimation error could not be systematically decreased. Besides, in a single-degree-of- 
freedom environment, the concept of weighing is easy to understand, unlike in a multiple- 
degree-of-freedom environment where the use of a filled weighting matrix is indistinct. 
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Noise level - B - K Mean error Variance 

0.19 -0.09 -0.01 
0.18 -0.09 I 0.19 

2.03 -1.04 2.78 - 1.81 low4 1 1.99 -0.98 -0.02 

2.08 

2.10 -1.13 2.45 * 10-1 1.15 1 1.97 -0.93 -0.07 

2.31 

0.16 -0.07 -0.01 
0.14 -0.06 

0.15 
2 

2.20 -1.24 7.58 . 10-1 1.14 10-1 1 1.92 -0.86 -0.12 

2.59 

0.14 -0.05 -0.01 
0.10 -0.03 

0.12 
3 

1.96 -0.79 -0.21 
2.27 -1.30 

2.86 

0.12 -0.03 -0.02 
0.07 -0.02 

0.08 
4 1.48 * 10' 3.40. 10-1 

Table 4.2: Least Squares identification 

Noise level - B - K Mean error Variance 

1 

2 

3 

0.20 -0.10 0.00 
0.20 -0.10 i 0.21 

0.21 -0.10 0.00 
0.21 -0.10 [ 0.19 

0.21 -0.11 0.01 
0.22 -0.12 

0.24 

0.25 -0.09 -0.03 
0.21 -0.11 

0.21 
4 

2.00 -1.00 0.00 
2.00 -1.00 

2.00 

2.02 -1.01 0.00 
2.01 -1.00 

I 
[ 2.00 

2.02 -1.03 0.01 
2.02 -1.00 

2.00 

2.05 -1.02 0.00 
2.02 -1.01 

2.02 

1.47.10-2 7.54.10-5 

5.96. 1.48 - 

1.56 IO-' 1.08. IO-2 

2.06. lo-' 1.02 - 

Table 4.3: Instrumental Variables identification 
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Chapter 5 

Experimental Results 

The Matlab function spectrum was used to calculate all components of the transfer function. 
Results are available in Appendix F.3. The attempt to estimate the entire stiffness and 
damping matrices failed. This is probably caused by the complexity of the total transfer 
function and the fact that, in some transfer components, the coherence is very bad for some 
eigenfrequencies. On the matrix diagonal, the coherences are better. Since a multiple-degree- 
of-freedom (MDOF) fit could not lead to any result, several peaks have to be estimated 
separately using a single-degree-of-freedom (SDOF) procedure, for which the basic theory 
remains the same. The results of a SDOF fit however, cannot be compared to elements of the 
theoretical stiffness matrix without ‘conversion’. Therefore, these results will be compared to 
the corresponding SDOF fit on the theoretical transfer function. For the actual SDOF fits, 
the Instrumental Variables procedure is used. 

5.1 SDOF Stiffness and Damping Results 

In case of a purely axial preload the radial stiffnesses in x and y-direction are equal, since 
changing the position of the rolling elements appeared to be a negligible effect in the resulting 
stiffness. This also applies to the rotational stiffnesses about the x and y-axis. Therefore, 
in theory, only three eigenfrequencies evolve. The stiffness and damping results for the deep 
groove ball bearing NSK 6802 are printed in Figure 5.2, 5.3 and 5.4. 

The theoretical model shows the same trends as the experimental results but seems to 
need a multiplication to match with the experimental data, which could indicate an incorrect 
stiffness parameter K,. The modelled stiffnesses are all smaller than the experimental data, 
but a multiplication factor would not be equal in all directions. 

Using the SDOF procedure, only the diagonal components can be studied. The so-called 
coupling t e rms  can only be analyzed visually by comparing the measured and theoretical 
transfer functions, which are printed in Appendix F.3. Real similarities are hard to see and 
effects such as shaft flexibility in the radial direction cannot be traced. The symmetry of the 
model and the experiments is discussed in the topic on reciprocity. 

The main goal of this research is focussed on the bearing stiffness rather than bearing 
damping. However, the measured transfer functions yield both stiffness and damping values. 
Therefore, also the damping results are presented. In Lim’s theory the damping is assumed to 
be Rayleigh damping, which is proportional to the stiffness. The axial and rotational damping 
results show an increasing trend, like the Rayleigh case. However, the radial damping results 
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Figure-5.1: Comparison of the experimental SDOF fit with the theoretical SDOF fit 
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Figure-5.2: Left: The measured and theoretical radial stiffness. Right: The measured radial 
damping compared with the used Rayleigh damping. (Deep groove ball bearing NSK 6208) 
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Figure-5.3: Left: The measured and theoretical axial stiffness. Right: The measured azzal 
damping compared with the used Rayleigh damping. (Deep groove ball bearing NSK 6208) 
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Figure-5.4: Left: The measured and theoretical rotational stiffness. Right: The measured 
rotational damping compared with the used Rayleigh damping. (Deep groove ball bearing 
NSK 6208) 

30 



Figure-5.5: The point of rotation in a bearing setup with resulting momentum 
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Figure-5.6: Left: The measured and theoretical radial stiffness. Right: The measured radial 
damping compared with the used Rayleigh damping. (Angular contact bearing RPF 7208) 

show that the damping decreases in case of an increasing preload. Therefore, the assumption 
to use Rayleigh damping is not justified. In [9] several damping models are discussed and 
some experimental radial damping results are presented. These results show a decrease in the 
radial damping when applying higher preloads, as well, in case of a non-rotating shaft. The 
results in [9] also show that the damping differs when the shaft rotates at a particular speed. 
At certain speeds, the damping will be determined by elasto-hydrodynamic lubrication which 
is a combination of elastic deformation of the bearing elements and a supportive effect of the 
oil film, which will complicate the damping prediction. 

In the case of a deep groove ball bearing, the effect of the loaded contact angle is very 
small, since the rotation point is approximately in the centre of the bearing (Figure 5.5). For 
example, the application of a radial excitation in y-direction should lead to a small rotation 
about the z-axis, because the tiny loaded contact angle yields a small momentum about the 
x-axis. For better insight, measurements were carried out on an angular contact bearing, 
since these bearings exhibit a greater contact angle. 

Like in the deep groove ball bearing case, all modelled stiffnesses are smaller than the 
experimentally determined data. The stiffness trends however, are described well. The dif- 
ference can be caused by the fact that the bearing behaviour is not well separated from the 
actual measured data or by the difference between the statical nature of the model and the 
dynamical nature of the measurements. Statical bearing stiffness measurements can give 
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Figure-5.7: Left: The measured and theoretical axial stiffness. Right: The measured axial 
damping compared with the used Rayleigh damping. (Angular contact bearing RPF 7208) 
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Figure-5.8: Left: The measured and theoretical rotational stiffness. Right: The measured 
rotational damping compared with the used Rayleigh damping. (Angular contact bearing 
RPF 7208) 
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Figure-5.9: Measured radial stiffness, during increasing and decreasing preload. (Deep groove 
ball bearing NSK 6208) 

clarification on this matter. 
Unlike in the deep groove ball bearing case, the measured angular contact damping values 

all decrease with increasing preloads. Apparently, the contact angle of a bearing influences 
the amount of damping. 

Because of the contact angle, one could expect a smaller radial stiffness and a higher 
axial stiffness in the angular contact bearing case, like in Figure 2.4. However, in general, 
an angular contact bearing has more rolling elements than an equally sized deep groove 
ball bearing. Therefore, the radial stiffness of the angular contact bearing is not significantly 
smaller. The axial stiffness is higher because of both the contact angle and the higher number 
of rolling elements. 

5.2 Hysteresis and Reproducibility 

Applying a higher axial preload and subsequently releasing the preload, shows the effect of 
hysteresis in a bearing. This is shown in Figure 5.9. Apparently, there is no hysteresis. 

The repeatedly performing of the measurements proved that the experimental setup is 
capable of producing the same results under the same circumstances later on. However, the 
hysteresis experiment stiffnesses, printed in Figure 5.10 together with the previous acquired 
radial stiffness results, are higher than the previous measured results. In the period between 
the hysteresis measurements and the actual stiffness measurements, a constant preload was 
applied on the bearing, which always kept the same position. From the figure the supposition 
can be drawn that the rolling elements are ‘pulled through’ the oil film or damaged under the 
high preload, especially because of the last experimental stiffness, which seems to be out of 
proportion. Performing the same measurements after creating a new oil film by rotating the 
shaft manually or putting the bearing in another position yielded the same stiffness values 
as obtained in the hysteresis experiment. Therefore, the influence of time has yet to be 
investigated. 
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Figure-5.10: Hysteresis results compared with previous radial stiffness results 

Figure-5.11: The influence of radial preloads 
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5.3 Coupling Terms and Reciprocity 

Using a purely axial preload will cause the coupling terms concerning the axial motion to 
be zero. This is clarified in Figure 5.11. An excitation in the axial direction will cause the 
shaft to move only in the axial direction, because all rolling elements have the same contact 
angle and identical stifhesses. Applying radial preloads as well, causes the contact angles to 
change and to load some rolling elements more than others, resulting in higher stiffnesses in 
the concerning elements. Eence, the situation is no longer symmetrical and an excitation will 
as well cause the shaft to move in other directions, related to the preloads. In this research, 
the preload was meant to be purely axial, but the weight of the shaft yields a tiny radial 
preload in the y-direction. This preload cannot be neglected since the effect is rather strong. 
The theoretical stiffness matrices and therefore the theoretical transfer functions still have 
some zero components, unlike the measured transfer functions. The disturbing factors which 
cause these ‘zero terms’ to be non-zero are the flexibility of the shaft and the fact that an 
excitation is not always exactly performed the right direction, which suits with Figure 2.7 
and accompanying theory. 

The model always yields a symmetric matrix, that is, the model is reciprocal. The ex- 
perimental matrix should be symmetrical, according to the model. In this consideration, all 
‘zero terms’ in the experimental results will not be considered, since these terms are observed 
as the result of some experimental imperfections. In Figure 5.12 the deep groove ball bearing 
transfer functions Hxey, Hegx, Hyz,  Hzy,  HZe, and Hezz are drawn. Hzey and Heyx show a 
great resemblance. The other terms however have less similarity, which could be explained 
by the fact that the responsible radial preload, i.e. the proper weight of the shaft, is low. In 
the low preload region, the stiffness matrix terms are not well determined, like mentioned in 
Chapter 2. Besides, the radial excitation load is in the same order of magnitude as this radial 
preload. The comparison for an angular contact bearing appeared to be unfeasible since the 
frequency scale of Heyx is not sufficient, because smaller frequency steps were needed in the 
rotational measurements. Nevertheless, the symmetry of the model seems to be supported 
by the experiments. 
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Figure-5.12: Verification of the transfer matrix symmetry. (Deep groove ball bearing NSK 
6208, axial preload = 427 [NI) 
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Chapter 6 

Conclusions and Recommendat ions 

6.1 Conclusions 

o Combined preloads result in non-monotonously increasing or decreasing stiffness matrix 
terms. 

o Tiny preloads or excitation disturbances cause some matrix coupling terms to increase 
enormously, whereas they would be zero. 

o The experimental setup is capable of providing reproducible measurements with accept- 
able coherence, especially on the main diagonal of the transfer matrix. However, the 
stiffness values from the hysteresis experiment appeared to be higher than the actual 
stiffnesses. This is probably caused by the long period of axial preload on the bearing. 

o In the actual experiments a well directed excitation is hard to establish, resulting in 
non-zero transfer matrix terms which should be zero. 

o The concept of weighing, according to the amplitude fit algorithm, in a multiple-degree- 
of-freedom identification algorithm was not able to systematically reduce estimation 
errors. 

o The estimation of an entire stiffness matrix appeared to be unfeasible. Apparently, the 
measured transfer function differed too much from a theoretical model for proper iden- 
tification results. Therefore single-degree-of-freedom fits were used to estimate direct 
stiffnesses, i.e. fits on the diagonal components of the transfer function. 

o Single-degree-of-freedom fits cannot be applied on the transfer coupling terms, hence 
they have to be compared visually to the model. 

o Hysteresis in the bearing stiffness could not be found. 

o All experimental stiffnesses are higher than the accompanying theoretical stiffnesses. 
However, the model is able to describe the stiffness trends. Hence, if the bearing be- 
haviour is well separated from the experimental data, the model is only suitable for 
qualitative predictions in stead of quantitative predictions. Another possibility is the 
difference between the dynamical nature of measurements and the statical nature of the 
model. For certainty, statical measurement could be performed on the bearings. 
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Figure-6.1: Proposal for a new experimental setup 

o The bearing damping cannot be described using Rayleigh damping, which is propor- 
tional to the stiffness. On the contrary, the radial bearing damping tends to decrease 
for increasing axial preload in the deep groove ball bearing case. In the angular contact 
bearing case all damping values decrease for increasing axial preload. 

o The experiments seem to support the model’s symmetry. 

6.2 Recommendations 

o The shaft construction is not recommendable for future measurements. The shaft in this 
construction bends under a radial excitation which influences all radial related transfer 
matrix terms. Besides, the use of two radial shakers will hamper the rotation about the 
radial excitation axis. Therefore, another construction has to be developed, e.g. like 
shown in Figure 6.1. 

o Experiments with combined preloads have yet to be performed. 

o Statical measurements on the bearing can give clearness on the difference aspects on 
dynamical and statical measurements and eventually could justify the bearing model 
quantitatively. 

o Measurements on a rotating shaft are more realistic. 

o The effect of time on the bearing stiffness has yet to be investigated, especially in 
high-preload cases without shaft rotation. This is probably related to the lubrication 
matter. 

o Research on lubrication and damping matters are an obvious next step in this project, 
since damping can decrease noise radiation. 

38 



Appendix A 

Experimental Setup Parts 

In this Appendix, some characteristics of the experimental setup including measurement tools 
are printed.’ 

String 
Young’s modulus 
Poisson’s modulus 
Diameter 
Length 
Density 
Axial stiffness 
Longitudinal wave speed 

Transversal wave speed 
Longitudinal eigenfrequency 
Transversal eigenfrequency 

Shaft 
Young’s modulus 
Poisson’s modulus 
Length 
Density 
Mass 
Radial inertia 
Axial inertia 
Longitudinal eigenfrequency 
Transversal eigenfrequency 

E = 2.1.10’1 [N/m2] 
p = 0.33 [-I 
I = 0.26 [WA] 

p = 7850 [kg/m3] 

J,  = Jy = 1.24. 
J, = 6.88 - [kg/m2] 

m = 2.45 [kg] 

fL = 11990 [Hz] 

[kg/m2] 

fT = 5999 [Hz] 

‘Details can be found in [2]. 
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Measurement tools 
Amplifier HBM AE 3407A 
Force sensor 
Tensile strip TUE 
Acceleration sensor 
Acceleration sensor 
Acceleration sensor 
Force sensor 
Force sensor 
Charge amplifier 
Charge amplifier 
Signal amplifier LDS TP025 
Shaker LDS V201 
Shaker LDS V201 
DIFA (Hardware) 
DIFA (Software) 

Automation Industries TD 0500 S/N 700 

PCB 303A02 S/N 18443 
PCB 303A02 S/N 18444 
PCB 303A03 S/N 20353 
Kistler 9301A S/N 13223 
Kistler 9301A S/N 150391 
Kistler 5007 S/N 200732 
Kistler 5007 S/N 52900 

Dynamic Signal Analyzer 220-12 S/N 93952106 
DIFA D - TAC200 Version 3.31D 

NSK 6208 Deep Groove Ball Bearing 
Number of rolling elements Z = 9  
Rolling element load-deflection stiffness constant 
Unloaded groove curvature centres distance 
Unload contact angle 

Kn = 1.10 * lolo 

a0 = oo 
rj = 3.01488. 

= 5.953.10-4 

Radial distance to inner raceway groove curvature centre [m] 

RPF 7208 BE Angular Contact Bearing 
Number of rolling elements 
Rolling element load-deflection stiffness constant 
Unloaded groove curvature centres distance A0 = 5.571 [m] 
Unload contact angle 
Radial distance to inner raceway groove curvature centre [m] 

z =  12 
Kn = 6.262 * lo9 

a0 = 40" 
rj = 3.012 - 
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Appendix B 

Alternative Preload Measurement 

The equation of motion for the vibrating string of Figure B.l is 

or 

with 

aZw(x, t )  @w(x,t) 
a t 2  

= Pl ax2 

c = E  

where pl is the density per unit length of the string. The vibration frequencies are 

ncr nc 
fn.=2;;1=- 21 

Therefore the relationship between the preload P and the fundamental frequency, i.e. n = 1, 
is 

P = pA (2Zf)2 03.5)  
using pl = pA, in which p is the density of the string and A the cross sectional area (see 
Appendix A). The experimental results are plotted in Figure B.2. 

Displacement 

Figure-B.l: Alternative preload measurement using a vibrating string 
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Figure-B.2: Frequency measurement and the model 

Equation B.5 can be written as 
P = a . f 2  

in which a can be obtained by a curve fit. The model in Figure B.2 is calculated using a fit 
on a second order polynomial without the zero and first order term, resulting in 

P 0.009189 - f2 
with an R-squared value of R2 = 0.9986. 
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Appendix C 

Calibration of the Tensile Strip 

In Figure C.l the calibration curve of the tensile strip is printed in which, for a number of 
preloads, the resulting signal from the tensile strip are drawn. Subsequently, a straight line 
is fitted through the data points. The equation of the fitted line is 

F = 207.9 - S + 0.0092 

with an R-squared value of R2 = 0.9985 which indicates that the measured strain values are 
very well linearly dependent on the imposed preload. The fitted offset term is negligible with 
respect to the proportional term. 

(C.1) 
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Figure-C.l: The calibration curve which transforms the measured strain signal in the tensile 
strip (in Volt) into the applied preload (in Newton) 
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Appendix D 

Identification Met hods 

In this appendix, the Least Squares and Instrumental Variables identification are outlined. 

D.l Least Squares Identification 

The motion of a mechanical system can be described with 

- Mq+Bq+Kq=f 

In this equation the mass matrix M, damping matrix B a m  stiffness matrix 
estimated. Using harmonic excitation 

have to be 

Equation D.l can be written as 

( -w2&+jwB+K)  $= f (D-4) 

or 
- Zt(w)C= f 03-51 

in which Zt is the dynamic stiffness. The transfer function matrix Ht(w)  is defined as - - 

Therefore, in theory 
- Zt(U)&(W) = I (D.7) 

Now, the theoretical model, represented by Zt(w) ,  has to be matched with the experimen- 
tal transfer matrix - H,(wi). The symbol i indicates the sample number. Therefore, i = 1 . . . n 
for n samples in one measurement. Clearly, in general - -  Zt(wi)He(wi) #L. The error to be 
minimized is 

= %(Wi)H, (Wi )  - I (D.8) 

- S i=A,X- I  (D-9) 
By writing Equation D.8 as 
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with 

the unknown parameters are isolated. Now, the error in the total measured domain is 

- S=&-E (D.12) 

with 

(D.13) 

(D.14) 

(D.15) 

The overall error can be minimized by solving the normal equations for &: 
- ATAX,, = A T E (D.16) 

Here, 2, contains the Least Squares estimates Af, B. and z. A considerable accuracy 
improvement can be achieved by splitting Equation D.12 into a real and an imaginary part, 
causing the total matrices 5, A and E to become twice as long. Other improvements can be 
achieved by assuming all matrices symmetric and removing a from the identification process 
using an a priori calculated mass estimate. 

h 

h h  

D.2 Instrumental Variables Identification 

When a measured signal contains a relatively great amount of noise, the Least Squares es- 
timates will be intolerably inaccurate. The Instrumental Variables method gets around this 
problem because of its insensitiveness to noise. A priori, little needs to be known about the 
statistical properties of the noisy signal. In the Instrumental Variables method Equation D.12 
will be premultiplied with an instrumental variables matrix Y.  

VTs = VTAX - VTE - (D.17) 

This matrix y is chosen to be highly correlated with the unobserved noise-free process vari- 
ables, but totally uncorrelated with the various additive noise components that corrupt these 
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signals. In literature many propositions are made concerning the choice of the matrix x. 
Here, Young’s [13] proposition will be used. The matrix y will be built of the undisturbed 
system output, however, this output is yet unknown. An auxiliary model, with the same 
properties as the estimated model, is used to produce an estimated undisturbed system out- 
put. The total identification algorithm will be iterative and uses an initial parameter estimate 
(e.g. Least Squares estimate) because of the auxiliary model. In each iteration step the new 
parameter estimates can be calculated by solving 

- VT&. -au =VTE (D.18) 

for using the following auxiliary model: 

- v, = { - W 2 H , ( W i )  j W H , ( W i )  &(Ui) } (D.19) 

+ (D.20) 

in which - &(ui) can be considered as the estimate of the theoretical transfer function - &(ui). 
Then, the new parameters are used to build a new instrumental variables matrix using the 
auxiliary model, which in turn can be used to calculate a new instrumental variable estimate. 
Like the Least Squares method, the Instrumental Variables method can be improved by 
splitting up the real and imaginary parts of the error equation. Also, the h symmetry of the 
matrices can be taken into account as well as the known mass matrix &. Details can be 
found in [2], [13] and [14]. 
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Appendix E 

Matlab Programs 

function [omega-O, xi, PI = Amplifit(H, omega); 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Function AMF’LIFIT calculates the eigenfrequency and damping factor from 
the amplitude of a transfer function. 

Input : 
H: Transfer function (complex) 
omega: Frequency scale 

Output : 
X: Vector containing the eigenfrequency and damping factor 

By R . J . W .  Knaapen, 1996 

H-abs = abs(H); 
[len, dim] = size(H); 
n = leddim; 

A = [ I ;  
B = [ I ;  
for i = l:n, 

A = [A; H-abs(i)-3 H_abs(i)̂ 3*omega(i)̂ 2 -H-abs(i)l; 
B = [B; -H-abs (i) -3*omega(i) -41 ; 

end ; 

X = inv(AJ*A)*Ay*B; 

omega-0 = X(1)-(1/4) ; 
xi = sqrt (X(2) / (4*omega-0̂ 2) + O. 5) ; 
P = sqrt (X(3) 1 ; 
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function C = TransMat (dim) ; 

% Function TransMat calculates a transformation matrix C such that: 
% 
% X = C x  
% 
% with: X = [all a12 ... aldim, a21 a22 ... a2dim, . . .  adimdim] 
% x = Call a12 ... aldim, a22 a23 ... a2dim, . . .  adimdim] 

% Matrix x contains the upper triangle of a symmetric matrix. 

% By R.J.W. Knaapen, 1996 

% 

% 

1 = CountSum(dim) ; % 1 + 2 + 3 + ... + dim 
C = zeros(dim-2 ,i) ; 
for i = l:dim, 
for j = l:dim, 
if j<i, 

else , 

end; 
C((i-l)*dim+j, p) = 1; 

p = (j -i) *dim+i-Countsum( j-i) ; 

p = (i-l)*dim+j-CountSum(i-1) ; 

end; 
end; 
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function [X, A,E, Cl = LSquare(H, omega, M) ; 

% 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

% 
% 
% 
% 
% 

Function LSquare fits Stiffness, Damping and matrices on a . . .  
measured transfer function.. 
Transfer function: ACCELERANCE! 

Input : 
H Matrix H contains all transfer functions as a functicn of omega. 
omega Vector omega contains the frequencies. 
M The known mass matrix 

output : 
X Matrix X contains the stiffness, damping and mass matrices. 
A Least Squares matrix (the system) 
E Least Squares matrix (the vector) 
C Transformation matrix for conversion between symmetric . . .  
(efficiently stored) and full matrices. 

MASS IS KNOWN! 
ASSUMPTION: K and B ARE SYMMETRIC! 

By R.J.W. Knaapen, 1996 

[len, dim] = size (H) ; 
n = leddim; 

A = El; 
E = [I; 
I = eye(dim) ; 
%disp( [’Counting to ’ num2str(n)] ) ; 
for i = l:n, 
% disp(i); 
Hhulp = H (  (i-l)*dim+l:i*dim, : 1; 
Z = zeros (2*dim*dim, dim*dim) ; 
Y = [I; 
f o r  E = l:dim, 

Z((m-l)*2*dim+l:(m-l)*2*dim+dim, (m-l)*dim+l: (m-l)*dim+dim) = . . . 

Z((m-l)*2*dim+dim+l:(m-l)*2*dim+2*dim, (m-l)*dim+l:(m-l)*dim+dim) = ... 

z( (m-i) *2*dim+l: (m-1) *2*dim+dim, dim^2+(m-l)*dim+l:dim^2+(m-l)*dim+dim) = ... 

Z((m-i)*2*dim+dim+i:(m-l)*2*dim+2*dim, dim~2+(m-l)*dim+l:dim”2+(m-l)*dim+dim) = . . .  

y = [y; I(: ,m)-real(Hhulp)*M(: ,m>; -imag(Hhulp)*M(: ,ml]; 

i /omega (i * imag (Hhulp) ; 
-l/omega(i)*real (Hhulp) ; 

-i/omega( i) ̂ 2*real (Hhulp) ; 

- i /omega ( i 1 2* imag (Hhulp) ; 

end; 
A = [A; 21; 
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E = [E; Y]; 
end ; 

% Construction of the transformation matrix: 
%disp(’Building transformation matrix’); 
C-k = TransMat(dim); 
C = [C-k y zeros (dim-2 y CountSum(dim) ; zeros (dim-2 y CountSum(dim) ) y C-kl ; 

% Calculation of the Least Squares Approximation 
%disp(’ Calculating Least Squares Approximation’ ) ; 
A = A*C; 
X = inv(A. ’*A)*A. ’*E; 
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funct ion [X, Xleast ,  Hh] = IVar(H, omega, MI; 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Function IVar ca lcu la tes  damping and s t i f f n e s s  matrices from t h e  
t r a n s f e r  matrix H using the  Instrumental Variable method. Assumption: M i s  known 
and matrices B and K are symmetric. 

WARNING: Transfer matrix H i s  the  ACCELERANCE! 

Input : 
H: Transfer matrices as a function of omega 
omega: Frequencies 
M: The known mass matrix 

output : 
X: Damping and s t i f f n e s s  matrices by means of I V  
Xleast: Damping and s t i f f n e s s  matrices calculated by means of Least Squares 
Hh: Modelled I V  Transfer matrix 

By R . J . W .  Knaapen, 1996 

i t e r  = 1; 
count = O ;  
maxiter = 25; 
conv = O ;  
e r r  = 1E-4; 

eltime = cputime; 

% Star tva lues  using the  Least Squares method: 
[ X s t  ,A,E,  C] = LSquare3(H, omega, M) ; 
Xleast = X s t ;  
[ len,  dim] = s i z e  (H) ; 
n = l e d d i m ;  

count = count + i; 
disp(count1 ; 

% Extract t h e  matrices from the estimation X s t :  
X l s  = C * X s t ;  
B s t  = [ I ;  
K s t  = [ I ;  
f o r  i = l:dim, 

B s t  = [ B s t ;  Xls((i-l)*dim+l: (i-l)*dim+dim) '1 ; 
K s t  = [ K s t  ; X l s  (dimA2+(i-1) *dim+l : dimA2+(i-l) *dim+dim) '1 ; 

end; 
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% Calculation of IV Output Hh and construction of matrix V: 

Hh = [ I ;  
for i = l:n, 

v = [ I ;  

Hhi = inv(M-j/omega(i) *Bst-l/(omega(i) -2) *Kst) ; 
Hh = [Hh; Hhil; 
Z = zeros (2+dim*dim, dirn*dirn) ; 
for m = l:dim, 

Z((m-l)*2*dim+l:(m-l)*2*dim+dim, (m-l)*dim+l:(m-l)*dim+dim) = ... 

Z((m-l)*2*dim+dim+1:(m-l)*2*dim+2*dimy (m-l)*dim+l:(m-l)*dim+dim) = . . .  

Z( (m-l)*2*dim+l: (m-1)*2*dim+dimy dim^2+(m-l)*dim+l:dim~2+(m-l)*dim+dim) = . 

Z((m-i)*2*dim+dim+l:(m-l)*2*dim+2*dirny dim^2+(m-l)*dim+l:dim~2+(m-l)*dim+dim) = . 

l/omega (i) *imag (Hhi) ; 

-l/omega(i)*real(Hhi); 

-l/omega(i) "2*reaï(Hhi) ; 

-i/omega(i)^2*imag(Hhi); 
end ; 
v =  [V; 21; 

end; 

if count==l, 
Hls=Hh; 

end; 

% Convergence test (wether iteration has proceeded sufficiently) 
if count>l , 
x = Xst; 
dx = abs(max(max(Xst-Xprev)))/abs(max(max(Xprev))) ; 
if dx < err, 
conv = 1; 
rnessage=[>Matrices converged. Error: ' num2str(dx)l; 

end; 
dH = abs (max (max (Hh-H) ) ) /abs (max (max (H) 
if dH < err, 
conv = i; 
message= [ 'Transf ermatrix converged. Error : ' num2str (dH)] ; 

; 

end; 
if count > maxiter, 
iter = O; 
message=>Maximum number of iterations reached.'; 

end ; 
end ; 

% New estimation: 
Xprev = Xst; 
v = v*c; 
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Xiv = inv(V. '*A)*V. '*E; 
Xst = Xiv; 

end ; 

eltime = cputime - eltime; 

disi) (message) ; 
disp( ['Number of iterations: ' num2str(count-l) in ' num2str(eltime) ' seconds. ' I ) ;  
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Appendix F 

- 0.2125 - lo9 O O O -0.1087 - lo7 O 
O 0.2125 lo9 0.4339 . lo6 0.1087. lo7 O O 
O 0.4339 . lo6 0.1654 . 10' 0.4656 lo4 O O 
O 0.1087. lo7 0.4656 lo4 0.7517. lo4 O O 

- O O O O O O 
-0.1087 - lo7 O O O 0.7516. lo4 O 

Numerical Results 

- 0.2388 - lo9 O O O -0.1381. l o 7  O 
O 0.2388. lo9 0.3740 - lo6 0.1381 lo7 O O 
O 0.3740 - lo6 0.2386. 10' 0.4601 . lo4 O O 
O 0.1381 - lo7 0.4601 - lo4 0.1084 - lo5 O O 

- O O O O O O 
-0.1381 . lo7 O O O 0.1084.105 O 

F. l  Theoretical Stiffness Matrices 

- 0.2811. lo9 O O O -0.1936. lo7  O 
O 0.2811 - lo9 0.2985 - lo6 0.1936 lo7 O O 
O 0.2985 lo6 0.4014~10' 0.4497. lo4 O O 
O 0.1936 - lo7 0.4497. lo4 0.1824. lo5 O O 

- O O O O O O 
-0.1936 lo7 O O O 0.1824.105 O 
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- 0.2935 lo9 O O O -0.2118. lo7 O 
O 0.2935 - lo9 0.2799 - lo6 0.2118. lo7 O O 
O 0.2799. lo6 0.4616. 10' 0.4462. lo4 O O 
O 0.2118. lo7 0.4462 . lo4 0.2098. lo5 O O 

-0.2118. lo7 O O O 0.2098.105 O 

RPF 7208 angular contact bearing, Axial preload = 852 [NI: 

- 0.9512 * 10' O O O -0.2449 - lo7 O 
O 0.9533. 10' -0.1283. lo6 0.2453. lo7 O O 
O -0.1283 - lo6 0.1451 - lo9 0.6613. lo5 O O 
O 0.2453 lo7 0.6613 . lo5 0.6587 - lo5 O O 

-0.2449 lo7 O O O 0.6573- lo5 O 
- O O O O O O 

0.8386 - 10' O O O -0.2149 - lo7 O 
O 0.8438 . 10' -0.1444 lo6 0.2161 - lo7 O O 
O -0.1444 - lo6 0.1259 - lo9 0.8519. lo5 O O 
O 0.2161 . lo7 0.8519 lo5 0.5727 lo5 O O 

-0.2149. lo7 O O O 0.5693. lo5 O 
O O O O O O 

- 0.1046. lo9 O O O -0.2702 - lo7 O 
O 0.1047. lo9 -0.1180 - lo6 0.2704 - lo7 O O 
O -0.1180 lo6 0.1620 * lo9 0.5438. lo5 O O 
O 0.2704 - lo7 0.5438 lo5 0.7353 - lo5 O o 

-0.2702 - lo7 O O O 0.7346. lo5 O 
- O O O O O O 

F.2 Theoretical Transfer Functions 

This appendix contains all modelled transfer functions in the axial preloaded case combined 
with the proper weight of the shaft as radial preload in y-direction. 
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F.3 Measured Transfer Functions 

In this appendix, all measured transfer matrices (straight lines) are printed together with the 
modelled transfer functions (dotted lines). The preload, in each case, is a combination of the 
applied axial preload combined with the proper weight of the shaft. 
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NSK 6208, Axial preload = 1422 [NI 
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