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bummary 

In the field of gas- and oil well drilling often use is made of drillstrings made out of thin-walled 
pipe sections screwed to one another. The drillstring is exerted by an electric motor connected by 
a gear system to the drillstring. The lower sections of this drillpipe have a larger wall thickness to 
provide sufficient pressure, without buckling, on the drilling bit that is connected to the string at 
the very bottom end. As of the combination of this heavy thick-walled section referred to as the 
Bottom Hole Assembly (BHA) and the drillstring possessing finite torsional stiffness, a torsional 
vibration system can be identified. Generally, this vibration system is poorly damped and due to 
a non-linear nature of the friction at the BHA and drilling bit the system undergoes self-excited 
oscillations preferably ocurring around the fundamental mode. 

These self-excited vibrations are driven by the difference between the friction coefficient at near- 
zero bit speed and average speeds, respectively. This difference is referred to as the backlash 
torque. In particular, the friction at near-zero bit speed is considerably higher than at average 
bit speed settlings. Due to this non-linearity, a disturbance at the bit can bring it to a temporary 
standstill (stiction) alternated with periods of large acceleration and deceleration in the bit speed 
(slip). The behaviour can be compared with the textbook example of a rigid mass on a running 
conveyer-belt where the mass is connected to a wall by a spring. oscillations. For drilling systems it 
is very detrimental and ways to avoid or kill these self-excited vibrations could result in significant 
cost savings. 

A commercially available control system, the Soft Torque Rotary System, developed to control 
the drillstring vibrations has proved to be successful in many field implementations. The STRS 
is an example of a damped dynamic vibration csbsorber possessing limited performance. In this 
report a controller based on linear 31, -control techniques is designed to improve 1) the handling 
ef stick-slip oscillations and 2) Vit speed settling behavioiir, and 3) prevent a specific problem 
induced by the STRS. This specific problem is associated with the electric motor having a limited 
torque output. The total momentum in the rotating non-controlled system is often high enough 
to overcome stiction torques that are temporarily higher than the maximum motor torque. Due 
to  the damping nature of the STRS it substracts too much momentum out of the drilling system 
such that such high friction loads can not be overcome. 

From simulation results it becomes clear that the designed X m  -controller is able to  handle back- 
lash torques almost twice as high as the STRS. The settling behaviour is significantly improved 
and the specific problem is not ocurring anymore. The controller is robustly stable and shows 
robust performance in the face of parameter- and higher order model uncertainities. Preliminary 
lab-scale experiments support a few of these reported improvements. 
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Introduction 

A linear torsional-dynamics model of common drilling equipment for the prepa- 
ration of wells for oil and gas production is derived. Furthermore, the stick-slip 
phenomenon, as observed in such drilling systems, is discussed together with 
a more specific problem. A framework is presented in which to design a con- 
troller to eliminate stick-slip oscillations, and finally the outline of the report 
is presented 

1.1 Rotary Drilling System 

To produce oil and gas out of the fossil fuel reservoirs (far) beneath the earth surface, often use 
is made of rotary drilling systems held by a hoisting in the rig. Along the lines of the sequel 
the reader is directed to Figure 1.1. Starting at the top end of the complete system, a heavy 
weight disc-shaped mass called the rotary table is driven by an electronic or hydraulic motor. The 
rotary table acts as a flywheel to approximately maintain a constant speed of the subsequent 
system elements. These elements can be identified as the drillstring, the Bottom Hole Assembly 
(BHA) and finally at the very bottom end of the structure a cutting tool called the drilling bit. 
The drillstring consists of relatively thin-walled steel pipes screwed to one another making up 
the required hole length. The connection of the drillstring to the rotary table is made by an 
interface element called the kelly. This tetragonally or hexagonally shaped rod connected to the 
drillstring enables the axial movement of the drillstring as this kelly can slide through the similarly 
shaped center of the axially beared rotary table. The thin walled drillstring can not put sufficient 
load on the bit without buckling. Therefore a set of thick walled pipes called the drill collars 
are inserted. These drill collars do not buckle under their own weight. As the drilling process 
progresses the drillstring is constantly put under axial tension by holding up the drillstring/BHA 
combination with a certain force. The transition between tension and pressure of the structure is 
put somewhere along the length of the drill collars. The axial force, called Weight On Bit (WOB), 
that is necessary to drill through the rock formation can then be obtained from (a fraction of) the 
heavy weight drill collars. 

In this report, only the elements of the drilling process important for this research are discussed. 
The interested reader is referred to the many drilling handbooks that are available on drilling 
systems, e.g. [26], [31]. 

Attention is now focused on the dynamic model of the drilling system. Here, the difficulties 
that arise in the torsional direction are discussed. Consequently, only the torsional dynamics are 
incorporated in the model. The main parts of this model are presented in such a way that they 
can be translated in standard linear dynamic components, i.e. inertias, springs and dampers. 
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Figure 1.1: Drilling equipment 

See Figure 1.2 and 1.3 for a schematic view of the model. 

An electric motor assumed to possess linear dynamics drives the damped -by ca- rotary table 
inertia Jrot. The drillstring is simply modelled as a single linear torsional spring with stiffness k .  
Finally, the BHA, that is the drill collars together with the bit, is modelled as a damped -by 
cl- inertia Ji. The friction at the bit, which is better known as the Torque On Bit (TOB),  can 
be modelled to be of any appropriate shape always working in the opposite bit speed direction. 
The inertia of the motor and the rotary table can be combined as Jz  = Jrot + n2J,. The motor 
constant K ,  is combined with the gear ratio as K = nK,. The rotary speed and the bit speed 
are defined as Q2 and Q1, respectively, and finally the twist of the drillstring ( p z  - pi) is defined 
as 4. 
The model of the electric motor pertains to a standard separately excited DC motor, and therefore 
contains an induction L and a resistance RI which are electro-mechanically coupled in series with 
the rotor inertia J,. The electro-mechanical coupling is considered as a linear relationship between 
a load voltage, better known as the back-electro-motive force (back-emf), and the speed of the rotor. 
This linear relationship is characterized by the motor constant K,. The rotor speed is n times 
the rotary table speed Q2 if the gear box is considered to be infinitely stiff. The motor is fed 
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- A- 

Figure 1.2: Rotary drilling system isolated from the rig 

by an external voltage V,. The rotary table and motor inertia, combined in 5 2 ,  are driven by 
a torque T2 from the gear box, which is the product of the motor current I and the combined 
motor constant li'. Furthermore, the motion is considered to be damped by bearings and other 
rotor-dynamical parts in the motor, gear box and at the rotary table. This damping is lumped into 
the damping coefficient ca. The drillstring is modelled as a single torsional spring with stiffness k .  
The numerical value of k as a model parameter can be obtained as an equivalent system property 
of the drillstring calculated by the virtual work approach, see [21]. If a constant speed source is 
mai!ab!e-b&er known as the dynamically clamped condition- the system- param-eters J1 and c1 
are determined as follows. The lumped inertia 51 at the bit is estimated from that of the BHA 
and one third of the distributed drillstring inertia ([SI). The same goes for the lumped damping 
c1 calculated as the damping at the bit and one third of the damping along the drill shaft. An 
error is made in the consistency of the model components 51, c1, J2, and ca if the rotary table 
is considered not to rotate at a constant speed. Therefore, a more consistent approach such as 
the finite element method or transmission line modelling should be applied if arbitrary speed 
fluctuations of the rotary table-either by controlling or by disturbances-are considered. A more 
in-depth discussion of these modelling approaches together with the relative errors in the method 
used here can be found in appendix B of this report. In the sequel, the modelling assumptions 
made in the foregoing are used to build a set of differential equations. The differential equations 
can be readily derived along the simple linear description of the drilling system (Figure 1.3), i.e. 
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Figure 1.3: Modelling in standard linear components 

1.2 Stick-Slip in Drilling Systems 

Having the model of the drilling system, the problem of stick-slip occurring at the bit is briefly 
discussed in this section, and forms the basis of the discussions to come. 

Here, stick-slip can be viewed as a marginally stable oscillation of the bit due to a characteristic 
nonlinear friction behavior at near zero speed of the bit. There are many models available for this 
TOB characteristic, either for simulation or analysis (see [i], [24] and [16]). All of them describe a 
more or less increasing friction force at mar zero speeds, at, least seen from. higher to lower speeds 
(also see left part of Figure 1.4). This implies that low bit speeds will even get lower, possibly 
down till zero. At this moment a period of clamping - stiction - of the bit occurs while the 
rotary table continues rotating. Consequently, the drillstring receives nearly all the torque from 
the rotary table without being able to dissipate it at the bit as slip-friction heat. Instead, the 
potential energy in the drillstring is being built up as it behaves like a torsional spring. This 
goes on until the maximum friction torque that “clamps” the bit is exceeded. At that moment 
the bit is released from its stiction and the potential energy in the drillstring is transformed into 
kinetic energy of the bit as its speed increases rapidly to a peak value far above the nominal rotary 
table speed. After that, the bit speed decreases rapidly again as the kinetic energy is dissipated 
by the slipping of the bit. Lacking sufficient damping, the bit speed becomes zero again and 
the cycle starts all over. A few of such stick-slip cycles can be seen in the right part of Figure 
1.4. In this diagram field measurements are presented in case of a reference speed of 50 RPM 
(5.24 rad/sec). The curve labeled ‘surface) describes the rotary table speed and the curve labeled 
‘downhole’ describes the rotary speed of the bit. The figure illustrates that in practice the stick- 
slip oscillations indeed occur in a consistent manner and that rotary table speed is hardly affected 
by these oscillations (the reference speed of 50 RPM is approximately maintained by the rotary 
table). 

The stick-slips cycle only occur under certain circumstances. As already mentioned, the friction at 
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Figure 1.4: left: T O B  as a function of the bit speed RI. right: typical sticlc-slip behavior measured in the field 

near zero speeds must be higher than at normal reference speed. The drillstring/BHA combination 
must have a low first eigen frequency, which comes down to long drillstrings (low stiffness k )  
combined with the heavy weight BHA (high inertia J1).  The reference speed of the rotary table 
is below a certain threshold at which the stick-slip vibrations may be initialized, and finally, the 
damping down-hole is relatively low; at least not high enough to eliminate the stick-sip vibrations. 

At unchanged conditions, the oscillation continues to exist. Therefore, it is also called a self-excited 
vibration. Hence, this oscillation can be labeled as marginally stable, although by itself it never 
becomes unstable since the overall energy is dissipated at the slipping intervals. More detailed 
discussions on this phenomenon and its interesting properties (in an academic sense) can be found 
in Appendix C. Here, the notion of stick-slip and general characteristics of the T O B  is enough to 
proceed with the solution to counteract these oscillations. This is of major importance because 
they can give considerable wear to the bit, BHA and the drillstring, which can even suffer from 
a twist-off. Moreover, the rate-of-penetration decreases and the diameter, shape and direction of 
the bore-hole is poorly controllable. 

1.3 Specific Problems and Objectives 

During the eighties until today, one has become aware of the torsional stick-slip vibrations in 
relationship to system properties (see [4] [5 ] ,  [7], [18] [25] and [32] ). A lot of effort has been 
put into the solution of this problem. The most practical solution up till now is probably the 
introduction of damping at the top end of the structure. In [22] a combination of a damper 
and a spring between the drive and rotary table was introduced to dampen the vibrations in 
the drillstring. This spring/damper behaviour is electronically mimicked by a feedback circuit 
measuring the motor current I and controlling the speed input voltage V,. This configuration has 
been proved to be a successful way to kill the stick-slip vibrations in the field, and is commercially 
available as the “Soft Torque Rotary System” (STRS). 

Nevertheless, problems - which did not occur before - arose in case of high peak T O B  loads. The 
motor constantly puts energy into the rotary table, which acts as a flywheel delivering its torque 
to the mechanical structure below. This structure is affected by the (heavy) T O B  fluctuations 
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and other dissipative processes. These loads have to be overcome by the combination of motor 
torque and the instantaneous momentum of the rotary table, drillstring and BHA. Because of the 
limited power of the electronic motor-drive, loads beyond this power limit can only be overcome 
if the total kinetic energy in the drilling structure is sufficient at any moment. Such high peak 
loads may be, for example, the torque that clamps the bit at zero speed. Without any additional 
control systems such as the spring/damper combination explained above, the kinetic energy is in 
nlost  cases siiR.cieicient8 to release the sticking bit. On the other hand, applying a damping system 
such as the STRS introduces extra dissipation of kinetic energy in the total structure, especially 
the rotary table. At the high peak loads this can reduce the kinetic energy to such extent that 
too less buffered energy is left to overcome the difference between the very high T O B  and the 
maximum motor torque. In those situations, the bit comes to a complete stand-still, better known 
as stalling. 

Leaving the STRS there, a new control concept is developed in this report to control the vibrations 
keeping the high peak load problem in mind. The control method applied to this system is the 
?im control theory as one of the solutions to the robust control problem ( [as] ) .  
For the following, the reader is directed to the left part of Figure 1.4. In this figure, TOBdyn 
stands for the friction torque at normal speed levels, that is at a fully dynamic bit speed situation. 
The torque indicated by TOB,,, represents the maxzmum friction torque that the bit/formation- 
interaction can generate after which it decreases rapidly to TOBd,, implying that the bit is 
released from stiction. The difference TOB,,, - TOBd,, is labeled as the backlash torque. From 
now on, these definitions will be used throughout the report, without further reference. A list of 
global requirements/restrictions, not yet specified in numerical or analytical measures, have to be 
defined by way of a reference framework in which an 31, controller has to be designed, i.e. 

o Because of the aggressive environmental conditions in practice, neither torque- nor speed- 
measurements are performed at the rotary table. Instead, measurements and control actions 
have to be performed in terms of motor signals, that is the motor current and the motor 
input voltage V, . 

o The ability of the system itself to overcome peak loads higher than the maximum motor 
torque should not be violated by adding a control system of any kind. The ability to overcome 
the indicated extreme load situations should preferably be improved by the control system. 

o Up to a threshold in stepwise changes of the TO&,, as high as possible the control system 
sho~!d he  able to prever,$ the bit from initializing a stickslip oscillation. Moreover, up to 
an even higher threshold of the backlash torque, the closed loop system should be able to 
eliminate stick-slip oscillations. 

o Above requirements have to be met in the presence of uncertainty in the system model, of 
external disturbances and of disturbances in measurements. For obvious reasons, the rotary 
table speed is restricted, which should be considered in the controller design. The to-be- 
synthesized controller should result in a robust closed loop- and controller stability in the face 
of model uncertainties and/or unmodelled system dynamics. Moreover the bit speed must be 
controlled resulting in a smoothening behaviour. This comes down to limited settling times 
and overshoot after step- or impulse- like TOB or Q-,f changes. The commonly defined 
restriction, that the closed loop performance should be met with minimal control actuation 
power, is dropped here to be able to account for the highly fluctuating T O B  disturbances. 

1.4 Outline 

The report is organized as follows. Chapter 1 to 5 hold the core discussion about the design 
and implementation of a linear ?im controller to control the torsional drillstring vibrations. The 
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subsequent appendices have a supplementary purpose. They present some topics that have no 
direct connection with the controller design, though are interesting in an academic sense. 

Chapter 2 presents some preliminaries on the ?i, control setup. It discusses the choices of the 
weighting functions reflecting performance requirements and TOB input characteristics. Further- 
more, attention is given to the interconnection structure of the the generalized plant with which a 
controller is computed. 

Chapter 3 gives a comprehensive analysis of both the frequency- and time-domain performance 
of the closed loop system. Directions for improvements are discussed aiong the perÎormance- and 
stability analysis in the time domain. 

Chapter 4 presents a method to implement the controller in terms of motor quantities. Aspects 
of stability and influence of measurement imperfections are discussed. Time-domain simulation 
results show that this implementation does not degrade the performance. The implementation 
has been tested in a lab-scale drilling system simulator of which the the results are shown. 

Chapter 5 summarizes the preceding chapters and lists a number of conclusions with respect to 
the results obtained. Moreover, it discusses directions for future research. 

Appendix A gives an overview of important theorems in the field of 'Hm control. 

Appendix B presents a few model concepts for the drillstring dynamics. 

Appendix C discusses the T O B  non-linearity and its implication in a one-mode model for the 
drillstring. 

Finally, Appendix D closes this report, presenting a general approach to the state space solution 
of 3, control problems. The method comprises the solution to both linear system models and a 
class of non-linear system models. 
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Design of an 7& Drillstring 
Controller 

This chapter discusses the application of the 31, control concept to control 
torsional drillstring vibrations of any kind. The control theory is applied in a 
linear sense. Consequently, a linear control model of the system wall be defined 
that explicitly accounts for  the TOB disturbance and performance specifications 
by dynamically weighting the relevant in- and output signals along the frequency 
axis. The chapter is closed presenting computational aspects. 

2.1 Preliminaries on linear 3-1, control 

A MIMO linear 31, controller tries to minimize the interaction between exogenous inputs, e.g. 
disturbancesfreference signals, and outputs, e.g. objectives, of a closed loop transfer function 
matrix (TFM) by minimizing the infinity norm 1 1  . I(, of this TFM. The infinity norm of a TFM 
can be computed as IITFMII, := supwEx F(TFM(jw)), where a(.) denotes the maximum singular 
value operator to an arbitrarily dimensioned TFM (see [15]). In the 31, setup, the control problem 

Figure 2.1: Standard 31, controller design setup 

can be generally presented as depicted in Figure 2.1, where s represents the complex frequency 
j w  in the Laplace domain, and where all systems indicated by a block are proper, linear, time- 
invariant transfer function matrices. In this figure w is a set of reference/disturbance inputs, z a 
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set of to-be-controlled variables (objectives), y are the measurements, u is the control input, q is 
the input to the uncertainty block A(s) and finally TI is a disturbance input to the plant generated 
by A(s). P ( s )  and G(s) are both denoted as the plant model, and K ( s )  is the dynamic controller. 

P ( s )  is defined as the nominal plant model. The meaning of G(s)  will become clear later on. As 
mentioned above, A(s) is a TFM representing the dynamic uncertainties in the model of the plant. 
Hence, the combination of the plant and the uncertainty forms the exact plant dynamics (which 
are not known). The controiier N(sj is to be designed for this reai piant by using the piant model, 
i.e. P ( s )  or G(s) .  The controlled plant model (closed loop p h t  model) is defined by W ( s )  arid is 
indicated by the dashed frame-box in Figure 2.1. 

In this setup, no restrictions concerning magnitude or structure are put on the uncertainties in 
A(s) yet. However, in the 31, design the magnitude of the uncertainty block is assumed to be 
restricted such that IIA(s)lloo 5 1. This, and restricting A(s) to be internally stable, implies 
that closing the upper loop will never introduce instability by  itself as it does not magnify the 
signal q to v. Instability can then only be introduced by the closed loop plant. A very simple, 
though illustrative example of this is envisaged by the following block diagram. If the 1 1  . llm- 

W 

Figure 2.2: Simple example of closed loop stability notion 

norm of the closed loop plant H ( s )  is equal to 2 and the system H ( s )  is already a (nominally) 
stabilized system, then a sufficient (but not necessary) condition to guarantee stability of the 
perturbed closed loop plant is that the 11 . Il,-norm of A(s) should be smaller than i (provided 
that A(s) is internally stable). In the 31, theory there is consensus about defining the restriction 
IIA(s)llm 5 1. Hence, a sufficient restriction to guarantee stability is to force the perturbed closed 
loop system having llH(s)llm < 1 (at least if H ( s )  was already stable) for all stable perturbations 
A(s) : IIA(s)llm 5 1. In many cases this restriction is too heavy and less demanding assumptions 
would guarantee stability for the perturbed plant as well. On the other hand, the restriction to 
H ( s )  made here provides a safe upper bound which is exactly the goal in the design of a robust 
closed loop. The restriction put on the uncertainty block can be manipulated by augmenting the 
nominal plant with dynamic weighting functions. Note that in the simple example above, this 
consensus can be achieved by weighting H ( s )  by 4. In fact these weighting functions reflect the 
amount of uncertainty the closed loop system eventually can handle along the frequency axis such 
that it remains stable in the normed sense explained above and can therefore be labeled as design 
functions. 

An augmented version of the block diagram in Figure 2.1 would also close z to w by a fictitious 
uncertainty block A, ( s ) .  This block represents the uncertainties in the model in case they could be 
described as a feedback TFM between z and w. The reason why such a block is also considered is to 
be able to measure both robustness of the closed loop stability (q-w feedback) and robustness of the 
closed loop performance (z-w feedback) in the same way. Aspects of these kind will be discussed 
in Chapter 3. Again, the unity restriction on the infinity norm of A,(s) would be necessary to 
hold and again this could be achieved by the use of weighting functions. In the controller design 
discussed in this report most attention is paid to the weighting functions associated with the 
performance as the system does not have to be stabilized. 

Assuming that the appropriate weighting functions are incorporated, the resulting augmented 
version of the nominal plant is defined as the generalized plant G(s), which in the standard setup 
of Figure 2.1 replaces the nominal plant P(s) .  To design an appropriate controller, this generalized 
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plant will be thought of as the to-be-controlled plant The robust control problem can then be 
defined as to find a controller K ( s )  such that 

o the generalized closed loop system H ( s )  is nominally stable, and 

Although it seems that twc separate specifications have to be w-et, in fact the second specifica- 
tion implies the first one. This will be argued later on in this section. The second requirement 
can be generalized by demanding that the closed loop infinity norm should be smaller than an 
arbitrary number y. There exists a y = yo such that IIHIIm = yo is the optimal solution to the 
X, control problem. This optimal solution represents the controller K ( s )  = Ko(s )  for which the 
closed loop infinity norm has reached a global minimum. For a general non-square MIMO TFM 
this optimum is hard to find. A more practical solution can be found by defining a sub-optimal 
version of the 31, control problem. In this case IIHIIm must be simply smaller than y : yo 5 y 5 1. 

In this report, the famous state-space solution presented in [14] and [lo] to the linear %, control 
problem, as one of the many possibilities (loopshaping, nyquist criteria, pole-placement, Quantita- 
tive Feedback Theory, Model-Matching Equivalence, etc) to achieve the two conditions, is applied. 
The state-space method results in a sub-optimal solution of the ?lm controller in a sense that it 
explicitly uses a provided y. An iterative procedure of alternately computing the controller (meet- 
ing the stability and norm requirements) and adjusting y can be used to search for a y arbitrarily 
close to the optimal value yo. 

The state-space synthesis is based on the ‘size’ of quantities (states, outputs, inputs) rather than 
the ‘size’ of transfer functions. In the following it will be shown that the 31, problem formulation 
can be presented in such quantities. 

The closed loop system H ( s )  maps the disturbance inputs w into the objectives z ,  i.e. 

z = H w  (2.1) 

Generally, z represents objective signals that have to be minimized. Examples of such signals are 
tracking errors, positioning errors, etc. On the other hand, it may represent any other quantity 
for which certain performance requirements are defined. The goal is to get the infinity norm of 
H ( s )  smaller than some value for y. Regarding (2.1), achieving such a infinity norm for H ( s )  will 
reduce the influence (in a normed sense) of the disturbances w on the objectives z down to a level 
less than y. Note that this choice of the control problem does not explicitly account for desired 
(time domain) solutions for the objectives z .  Such desired solutions have to be reflected by the 
already mentioned weighting functions, which in most cases is not a straightforward procedure as 
the system model may generally be MIMO and of high order. 

In order to use the state-space method for H ( s ) ,  the two goals (robustly stabilizing it and minimiz- 
ing its co-norm) must be formulated in the time domain. It can be be verified that the following 
property holds (see: [13]) 

where 1 1  . 112 is the 2-norm defined as Ila(-t)ll2 = ,/- and L2 is the set of all functions 
that have a finite 2-norm. In fact (2.2) is the definition of the infinity-norm. In words it says that 
there exists a bounded (in La sense) exogenous input w(t) such that the transfer from w to z is 
maximal. 
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At this stage, a time domain representation of the XW problem is available. The sub-optimal 
solution to the Xm problem can be formulated as: 

where “stab K” denotes (‘for all stabilizing controllers K”. The last inequality in (2.3) can be 
viewed as a cost integral function reminiscent of the LQG-control problem formulation. Therefore, 
the solution to  the LQG-control problem (or ‘h!~ control problem) and the 31, control problem 
have great similarities which are discussed profoundly in [lo]. 

The state-space method to find the optimal or sub-optimal solution of the ‘A!, optimization 
problem (2.3) resulting in a static state feedback law assumes that the complete state 2 is available. 
The measurement vector y generally has a lower dimension than the dimension of the state vector 
2. This implies that not all state components are measured (due to physical limitations or cost 
aspects, etc). Hence, it is necessary to reconstruct the remaining components of the state out 
of the measurements y in some way. Assuming that this can be performed appropriately, the 
reconstructed state can be used to determine the static feedback function. It appears that the 
reconstruction problem can be treated as a dual of the feedback control problem. The feedback 
control synthesis tries to make the output of the actual system follow the output of the model 
system in the face of external input disturbances to the actual system. Reversely, the filter 
synthesis tries to make the input to the model system follow the control input to the actual 
system in the face of output disturbances to the actual system (measurement errors and/or noise) , 
[28]. Due to this duality, the setup of- and solution to the reconstruction problem can be performed 
in an equivalent manner as the state feedback control problem. ‘Assembling’ of the two separate 
structures results in a controller in the form of a linear dynamic system with input y and output 
u. The computation of the optimum according to inequality in (2.3) involves solving two Matrix 
Riccati equations: one for the (robust) static feedback law and one for the (robust) reconstruction 
of the state by the measurements in y. The state-space solution is presented in Appendix D within 
a more general, non-linear framework where the linear solution forms a subset, either by working 
out the problem for a linear system model or finding local solutions for the non-linear system 
model using local linearizations. 

First, a proper nominal model and weighting functions have to be available in order to force the 
performance specifications for the closed loop, which are defined in Chapter 1 to be met. This is 
the subject of the next two sections. 

2.2 Control Synthesis Model 

Already implicitly indicated in the previous section, the resulting ‘Hm controller derived here 
will be one of the observer-based controller type. This implies that the controller in itself will 
also be a dynamic system, typically having the model order. The controller system consists of 
a reconstruction part, in order to reconstruct the systems’ state “as good as possible,” and of a 
static feedback part that is applied to the reconstructed state. This is also known as the separation 
structure of a dynamic controller. The separation of the reconstruction and control part enables the 
use of the 31, approach as a stand-alone procedure for either filter- or full state feedback control 
problems, respectively. Hence, combinations with other control or reconstruction techniques are 
possible issues if the state-space approach is followed, [34]. 

A suitable control model of the plant for both the reconstruction and computation of the feedback 
law will be presented in order to derive a satisfying robust controller. 

‘Although an 31, controller is derived here as o n e  of the solutions to a r o b u s t  c o n t r o l  problem,  that controller 
is interchangeably denoted as both a robust- and ‘Hm controller. 
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2.2.1 the nominal plant 

In the previous chapter, a typical simulation model was derived. This model is not very useful 
for the design of a dynamic controller for several reasons. Firstly, the dynamics of the motor are 
at least an order of magnitude faster than those of the drilling system. Secondly, the dynamics 
of the drilling system and motor are only slightly coupled (see [al]). This implies that including 
the motor dynamics would result in an unnecessarily higher order of the nominal model and 
consequently the dynamic controller. Moreover, the motor dynamics can be controlled separately 
from the main drillstring control problem, provided that the bandwidth of the controlled motor 
is sufficiently high to prevent instability, when combined with the drillstring controller. If a more 
sophisticated plant model is desired it is better to emphasize on higher order drillstring dynamics 
rather than including the motor dynamics. Topics on higher order modelling of the drillstring are 
discussed Appendix B. 

Considering above assumptions, a simpler, linear, time-invariant state-space control model de- 
scription can be defined as: 

-c1 k 

T O B  
Q 2  - -  

J 2  J 2  J2  

in shorthand 
5(t)  = A x ( t )  + B 1 W ( t )  + 3 2  ~ ( t ) ,  x(to) = ZO 

Hence, the state is defined as x = [RI 4 aalT, the external reference signals/disturbances w = 
[Q,,, TOBIT and finally the control input u is the torque T2 exerted to the rotary table. Compared 
to ( l . l ) ,  the only new variable in this description is the reference speed setting QT,f to be used by 
the controller as a reference signal. Moreover, it can be seen in equations (2.4) that the damping at 
the rotary table c2  is accounted for by feed-forwarding the reference speed ar,f with this damping 
coefficient. Note that by equations (2.4) not the complete state of the system model-topologically 
mimicked in Figure 1.3-is described. The two degrees of freedom p1 and (p2 are combined in the 
twist 4 = p 2  - p l .  Even though for control purpose these two DOF’S defined as separate state 
variables are not required, they could not be reconstructed with model (2.4) anyway as the initial 
condition at t = t o  of pi and p 2  are not prescribed in 20.  The nominal plant description (2.4) 
forms the basis for the generalized plant described next. 

2.2.2 the generalized plant 

In this paragraph, the generalized plant G(s) denoted in the premise is defined in terms of an 
interconnection structure in which the weighting functions are inserted. Interconnection structures 
describe a model in terms of causal block diagrams, where blocks hold transfer functions or TFM’s 
and arrows indicate signals or columns of signals. Omitting the perturbation interaction of A(s), 
in Figure 2.1 two types of inputs and outputs can be identified. The inputs are separated as the 
referenceldisturbance inputs w and control inputs u, respectively, and the outputs are specified as 
to be the objective outputs z and measured outputs y, respectively. A general controller canonical 
state-space representation of the necessarily proper generalized plant will therefore be partitioned 
as (the time argument is dropped for convenience): 
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The state-space solution of the controller will eventually be formulated in terms of the time domain 
matrices in (2.5) ’. On the other hand, the performance and stability specifications reflected by the 
weighting functions first have to be specified in the frequency domain after which they are converted 
into the time domain. In principle, the time domain specifications could be directly incorporated 
in the state-space representation (2.5). Unfortunately, this appears not to be a straightforward 
procedure as the solutions of the state z in time are given in transcendental formulae, typically 
cûmbir,atims ~f enpenentia! and trigonometric fmxtionc [E],  in which specifications cannot he 
inserted easily. Therefore, the frequency domain is preferred as the design space because in this 
space the relation between signals are given in terms of straightforward complex-valued polynomial 
(algebraic) functions. 

In equations (2.5) it is assumed that the model is time-invariant. On the other hand, the real 
plant depends on time as the drillstring length increases during the proceeding drilling process. 
The equivalent drillstring stiffness IC will decrease while the lumped inertia Ji will increase. In 
the controller design discussed in this report only one nominal configuration of the drillstring is 
considered and the robustness towards variations (e.g. longer drillstring or higher order simulation 
model) of this nominal design will be considered in Chapter 3. 

2.2.3 interconnection structure 

The state 2, disturbances/references w and control input u for the drillstring control problem are 
already defined. Regarding (2.5), the remaining quantities to be defined are the objectives z and 
the measurements y, i.e. 

Hence, the remaining matrices left in equations (2.5) are: 

Cl = [ -1 o o 0 o 0 1 ;  D i l = [ ;  o ] ;  D 1 2 = [ ; ] ;  

(2.7) 

The component WTOB in D21 will be explained further on. The first performance objective in z is 
defined as the difference between the reference-or desired speed-and the actual bit speed. Thus, 
this is a typical error signal objective. The second objective is the control input u. It is assumed 
that by the to-be-designed weighting functions the control input-or equivalently the controller 
K(s)-can be manipulated along the frequency axis such that the limited output of the motor is 
accounted for. This is the reason why the control input is chosen as an objective signal, although 
it is not a typical error signal of which one desires it to be zero in the ideal case. 

In the measurement vector y, the first measurement is the difference of the reference speed and 
the rotary table speed. The second measurement is the twist 4. In fact this quantity cannot be 
measured in practice. On the other hand, it represents the torque that the drillstring exerts to 
the rotary table, that is k 4 for the one-mode model under consideration, scaled by the lumped 
drillstring stiffness IC. Thus, y2 = b 4/IC = 4. In more practical approaches-in which the simple 
modelling by a single torsional spring is less appropriate-this measurement would simply be the 
scaled torque that the rotary table “feels” from the drillstring. In the model under consideration 

2The required formulation in state-space matrices demands for the generalized plant to be proper, otherwise a 
description such as in (2.5) can not be formed. 
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the twist 4 is defined as this scaled drillstring torque. It is assumed that the measurements are 
not corrupted by error signals such as noise and offsets. Later on, during the synthesis of an 
implementation version of the controller for experimental purpose, above measurement aspects 
will be given attention. 

Having the definitions of states, inputs and outputs, the interconnection structure of the control 
desigri setup in Figure 2.1 is unfolded into the block diagrarr, of Figure 2.3, where the V- and 

U 

Figure 2.3: Interconnection structure with shaping filters 

W -  functions are dynamic weighting functions dependent of the frequency w .  The effect of these 
weighting functions will be discussed in the next paragraph. In Figure 2.3, the nominal plant 
described in state-space quantities by equations (2.4) and (2.6) is indicated as P and the controller 
is denoted as IC. In this figure, the second measurement y2 is defined as the discussed scaled 
drillstring torque summed with a weighted version of the TOB disturbance. The state-space 
method, [14], demands for D21 in (2.5) to have full row rank as will be discussed further on. 
Consequently, the method expects that the w2 is also measured in some sense although this is 
not possible in practice. Imposing a very small weight WTOB (e.g. on the fictive T O B  
measurement will suffice for the state-space method to compute a controller without considerably 
changing the nominal model description in which the TOB is/can not measured. 

2.2.4 weighting functions 

The discussion of Figure 2.3 is completed by specifying the weighting functions Kef ,  VTOB, W, 
and Wu. Restricting the order of controller, the weighting functions are limited to be at most 
second order stable, proper transfer functions. Note that the “V-functions” denote the input 
weightings and the “W-functions” are the output weightings. Also note that by imposing the 
weighting functions, w and z are transformed into weighted versions of their former definitions. 
To avoid yet new symbol definitions, the naming of w and z is maintained without loss of generality. 

The augmented plant G(s )  can be represented by the following open-loop map of plant inputs to 
plant outputs: 
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For the system under consideration this is expanded to: 

where p l ( s )  = J1s2 + q s  + k ,  p2(s) = J2s2 + C ~ S  + k and d(s)  = pl(s)p2(s) - le2. The fractions of 
G in (2.8) can be readily identified in (2.9). Hence, closing G(s) by K ( s )  gives rise to the closed 
loop TFM H ( s ) ,  which can be represented as a so-called lower Linear Fractional Transformation 
(LFT) of G(s) and K ( s ) :  

H ( s )  = Ei(G(s), K ( s ) )  Gii(s) + G12(~)1{(~)(1 - Gzz(s )K(s ) ) -~Gz~(s ) ,  (2.10) 

yielding 

(2.11) 

If H*(s)  E Fl(P(s),  K( s ) ) ,  the nominal closed loop, is defined then the following holds for the 
relation between the generalized and nominal closed loop 

(2.12) 

The way the controller interacts with the system is implicitly envisaged by the LFT in (2.10) and 
therefore implicitly shows the limitations in the solution of a controller. One of these limitations is 
the poor direct influence of the controller K ( s )  on the feed-through of w to z ,  that is the fraction 
GlI(s). In fact the combination of G21Ií7(I - G22K)-’G21 preferably must have the same order 
of magnitude, though with opposite sign, as that of Gil  at every frequency to keep the magnitude 
of the closed loop system H ( s )  small for every frequency. This implies that K ( s )  must regulate 
the four other TFM’s and stabilize the closed loop, which can only compromisingly be achieved. 

As mentioned earlier, the weighting functions Wp(s) ,  Wu(s) V,,f and VTOB, which have to be 
specified in the frequency domain, are design functions in order to obtain a satisfactory time 
domain performance under the stability restriction. Generally, the W-functions refiect the desired 
closed loop character of the underlying signal, while the V-functions reflect important a priori 
knowledge of the disturbance input. The mechanisms of the weighting functions influencing the 
transfer design have simple principles, although the exact (numerical) characterization of these 
weighting functions is not always straightforward, especially in multi-variable and/or high order 
systems. The simple principles of the weighting function mechanism is best explained by an 
illustrating example. Suppose it is required to shape (and minimize) a closed loop transfer Hi* along 
the frequency axis by a controller Ki. The closed loop transfer has a generalized representation 
by the use of weighting functions: WiH:L$ with which to establish this shaping. For clarity, it 
is assumed that the closed loop is SISO and the weighting functions are scalar functions. As 
already mentioned in Section 2.1, the controller design is based on this weighted closed loop in 
the sense that it tries to reduce its gain to a level lower than y (under the stability restriction), 
that is 

]Wi(S)Hi*(S)K(S)J < y vw E 3 (2.13) 

where y is as small as possible. Equivalently, this minimization can be written as 

(2.14) 
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An ‘optimal’ controller design can in principle be established by shaping the magnitude of Hi* (s)  
to the right-hand side of (2.14) as close as possible. This implies that IH:(s)l can be large (small) 
where l/lWi(s)K(s)I is large (small). If, for example, at some frequency interval of interest 
l/lWi(s)x(s)l is chosen small to reflect a certain specification then lWi(s)&(s)l is large and IH:l 
has to be ‘pushed down’ in that interval in order to ensure inequality (2.13) to hold. 

It is clear that the shaping principles sketched in above example indeed provide the possibilities to 
insert design specifications and a priori knowledge of the disturbances into the generaiized piant 
concept and hence into the controller synthesis. In the next section the choices of the weighting 
functions will be discussed given a number of design specifications. 

2.3 Closed loop design 

Recalling the rough design specifications and restrictions in Section 1.3, the weighting functions 
have to be designed such that the following refined design specifications will be met: 

1. The bit speed response to a 5 rad/sec step in the reference speed should lie within a 1% error 
band around the reference speed after T d  seconds, where T d  denotes the period time of the 
eigen frequency wd of the drillstring/BHA combination: wd = fi. This is a settling time 
specification towards steps in the reference speed ‘disturbance input’ 

2. The final accuracy of the bit speed to a 5 rad/sec step in the reference speed must be better 
than 0.5 rad/sec. 

3. At a reference speed of 10 rad/sec, the magnitude of the closed loop transfer between the T O B  
disturbance input (wa) and the bit speed error ( 2 1 )  at the eigen frequency must be equal 
or smaller than the magnitude of the non-controlled transfer function between w2 and 21 

in case the damping c1 in this transfer function is just high enough to result in a marginal 
stick-slip oscillation for the case the backlash torque is set at 5 kNm. A marginal stick- 
slip oscillation occurs if the conditions are such that the system just sustains the stick-slip 
oscillation. Provided a certain reference speed and persistent backlash torque, every slight 
increase of c1 would make the stick-slip oscillation damp out. Assuming that the plant has 
no damping at the BHA, i.e c1 = 0, this specification is defined to ensure sufficient damping 
at the eigen frequency in order to kill stick-slip oscillations at least up to 5 kNm in the 
backlash torque for fit,,f = 10 rad/sec. 

4. The closed loop system must at least sustain stick-slip oscillations instead of complete stalling 
for TOB loads which are temporarily 10% higher than the maximum available motor torque. 
This comes down io 55 kNm (e.g. TOB,,, in severe stick-slip situations) for the system 
under consideration. 

Note that in above specifications no attention is paid to the settling behaviour of the bit speed to 
(step-wise) T O B  disturbances. On the other hand, it is assumed that satisfying settling behaviour 
is obtained whenever spec 1. and 2. are met. Moreover, if the ‘substitute damping’ to kill the 
stick-slip oscillations indicated in spec 3. is performing well it can also be expected that the settling 
behaviour of the bit speed after step-wise TOB changes (without inducing stick-slip) is satisfying. 
These aspects will be investigated in the comprehensive time-domain analysis of Chapter 3. 

In the three subsections to come the weighting functions W,, VTOB and W, wil1 be successively 
designed given the four specifications listed above. The reference speed weighting function is set 
V,,f = 1 because the reference speed-which is usually set somewhere between O and 15 rad/sec- 
does not necessarily have to be scaled or normalized. 
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2.3.1 the  weighting W, 

This weighting function W, must penalize the transfer function H;, and H;2 in equation (2.12). 
To design W,, attention is only paid to H;, and is assumed that Hr2 can be properly shaped by 
V-OB as will be discussed in the next subsection. Preferably, there must hold: 

where-according to design inequality (2.14)-y is set to 1 and V,,f = 1 as already mentioned. 
In [42] similar specifications as 1. and 2. were translated into the associated weighting W,. Here, 
the same procedure will be followed. The specification is written in the form: 

(2.16) s + ai - - K-. 
1 

W,(S) s + a a  

In case no overshoot is assumed, the settling time specification 1. is met if a2 2 - ln(O.Ol/tc)/Td, 
where the factor '0.01' denotes the 1% error band. For the case under consideration K = 100 is 
chosen, which implies together with Td = 5.6 rad/sec that a2 > 1.65 should be chosen. As the 
system will most likely show overshoot a higher parameter a2 = 5 is chosen to account for the 
oscillatory behaviour of the bit speed before it remains within the 1% error band. The parameter 
a1 determines the final accuracy or equivalently the steady-state error. If al is set to zero then it is 
specified that steady-state errors are not allowed. Here, a less restrictive specification is demanded 
namely that the steady state error must be less than 0.5 rad/sec for step-wise changes in the 
reference speed of 5 rad/sec (spec 2.). In this case there must hold a1 < ( 0 . 5 . a 2 ) / ( 5 . ~ )  = 5.0.10-3. 
Here, a1 = 2.5. is chosen to ensure the specification to be met. Resumably, the weighting 
W, becomes: 

s + 5  
Wp(s)  = 100s + 0.25' 

(2.17) 

2.3.2 the  weighting VTOB 

The specification 3. determines the weighting VTOB. Utilizing spec 3.,  the appropriate transfer 
function to penalize is HT2 as this transfer function describes the dynamic relation between TOB 
inputs and the bit speed (-error) response. Preferably there most hold: 

(2.18) 

In [2l] an analysis is performed resulting in an approximate expression for the threshold reference 
speed as a function of the damping e1 and the backlash torque TOB,,, - TOBd,, for which the 
drilling system will operate showing a marginal stick-slip oscillation. The approximation is given 
as 

(2.19) 

where C = C1/2J lwd.  For a fixed c1 and backlash torque the expression (2.19) gives the minimal 
reference speed above which stick-slip will just damp out. The expression can also be used reversely, 

30vershoot will not occur if the damping e1 2 2 J l w d  = 750, which is an unrealisticly high damping coefficient. 
In fact, stick-slip would vanish immediately at such a high dampingat the BHA. From field experience, such smooth 
behaviour is not reported at  a regular basis. Hence, a damping c1 high enough to  circumvent overshoot is not likely 
to occur. 
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that is, determining the threshold damping for a fixed reference speed and backlash torque. For 
Q,,f = 10 rad/sec and TOB,,, - TOBd,, = 5 kNm given in spec 3., the threshold damping of 
e1 = 50 Nms/rad can be found. Now, the goal is to match the right-hand side of inequality (2.18) 
with the uncontrolled transfer function between (S2,,f - S21) and TOB at the eigen frequency in 
case the damping is set at e1 = 50 Nms/rad. It is assumed that the matching is only necessary 
around the eigen frequency of the drilling system as the stick-slip oscillations preferably occur in 
this frequency region (see Chapter i) 

Regardless of whateveï dynamic function will Se chosen for VTOB it wil  always be scaled by 
a factor 50 . lo3.  This factor equals the maximum avai!able motor torque and determines an 
appropriate scaling of the TOB-disturbance because higher TOB’s can not be handled properly 
anyway. Note that TOB’s higher than the maximum available motor torque will be accounted for 
by means of the weighting function W,, which will be discussed in the next subsection. 

The following structure for VTOB is chosen: 

s 2 + s + w ;  

S 2 + Q S + W &  
= 50 .  io3  (2.20) 

This structure enables the magnitude of VTOB to maintain the scaling of 50 . lo3  at frequencies 
lower and higher than w,. The parameter cy causes IVTOBI to have a local maximum at w = w, 
if a < 1 and a local minimum at w = w, if a! > 1. To reflect the problematic system’s eigen 
frequency, the frequency w, in the VTOB structure could be chosen equal to this eigen frequency 
wd. On the other hand, from simulations it has become clear that if w, is slightly shifted to a 
lower frequency better results are obtained both in settling behaviour as well as stick-slip handling. 
In the nominal plant upon which the controller design is based, the eigen frequency is w d  = 1.125 
rad/sec and w, is chosen to be 0.9 rad/sec. The only parameter left to design is a. If Q = 40 
then the discussed match is achieved, hence rise is given to the following function for VTOB: 

s2 + s + 0.8 
s2 + 40s + 0.8’ 

v ~ ~ ~ ( ~ )  = 50 .  io3 (2.21) 

2.3.3 t he  weighting W, 

The appropriate transfer function to account for the fourth specification is H;2 as it describes the 
transfer between the TOB disturbance and the control input u. Preferably there must hold: 

(2.22) 

Although it is required that the controller gain must remain sufficiently high at frequencies around 
the eigen frequency, that is at frequencies were stick-slip is likely to occur, the bandwidth of the 
controller must remain limited. This restriction is made to avoid high frequency components in 
u, which can occur for step-wise changes in the disturbance vector 20, unmodelled higher order 
dynamics, and/or possible high frequency noise components in the measurements y. For the 
inverse of W, , the following structure is chosen 

1 s + P  -- 
WU(S) -[- S 

(2.23) 

In this structure j3 specifies the frequency above which the control input u must be penalized. 
Here, b = 25 rad/sec is chosen which is well above the eigen frequency (1.125 rad/sec) while input 
signals with a frequency above 25 rad/sec should be filtered out by the controller. The parameter 
5 determines the final controller gain and is merely based on trial and error. Meeting spec 4. 
it is considered that the situation at the eigen frequency is again most important. The control 
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input is expected to resemble the TOB disturbance if the left-hand side in (2.22) equals 1. On 
the other hand, to meet specification 4. the control input should be higher than the T O B  to 
force the motor into its saturation whenever extreme TOB loads occur. This can be established if 
the combined weight at  the right-hand side of inequality (2.22) is chosen to be greater than 1 at 
least around the problematic eigen frequency. This gives the transfer H& room to locally enable 
a larger transfer gain from TOB disturbances to control input which could result in meeting spec 
4. In thzt czse E mwt at !east he chosen greater than 50. Out of a trial-and-errir procedure hy 
alternately computing a controller and verifying the time domain performance, E = 500 appears 
to be the appropriate choice to meet spec 4. (without violating the other specs). Hence, the 
weighting W, becomes: 

S 

500(s + 25) WU(.) = (2.24) 

This completes the discussion about designing the weighting functions and in the next section com- 
putation aspects of the X, controller using the weighted plant (generalized plant) as a controller 
model will be the topic. 

2.4 Computing the 7-Lw controller 

As explained in Section 2.1 the goal is to find a controller K ( s )  which, firstly (robustly) stabilizes 
the closed loop system, and, secondly minimizes the 'H, norm of the closed loop TFM H ( s )  from 
w to z .  It was shown for the sub-optimal approach that in the time domain this comes down to 
finding a stabilizing controller K ( s )  such that the inequality (2.3) holds. The computation of this 
problem involves the solution of two Riccati equations which explicitly make use of the system 
matrices of (2.5) and a user-defined value for y. The computation can be extended to iteratively 
lowering the given y and computing the X, controller until a solution ceases to exist due to not 
conforming to the closed loop (robust) stability restriction. For satisfying solutions though, y can 
be iterated arbitrarily close to the optimal yo, i.e. that y for which the norm (2.3) reaches a global 
minimum. 

In [lo] the computation of an 31, controller using the state-space method is discussed for a number 
of standard configurations of (2.5). Moreover, conditions for the computation of a stabilizing 
controller are presented for each case. The most important conditions are summarized here: 

i The pair (A ,  Bz) is stabilizable and the pair (C2, A) is detectable, which is required for the 
exzstence of a stabilizing controller; 

2 Dl2 has full column rank and D21 has full row rank, which ensures the controllers to be proper 
(not valid in all cases); 

A - j W r  B2 ] has full column rank for all w;  [ Cl Dl2 

A - jW' Bi ] has full row rank for all w .  [ C2 Dzi 

The block of system matrices in condition 3 are associated with the state-space system affected 
by the control input u. The block of system matrices in condition 4 are associated with the state- 
space system affected by the exogenous disturbance input w. It appears in the state-space solution 
of the X, control that both the 'best' control input u as well as the 'worst' disturbance w (which 
replaces the concept of worst perturbations A(s) in case the state-space solution is considered) 
affect the system by full state feedback. The assumptions 3 and 4 ensure that the Xfls-control 
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problem (LQG-control problem) solution of the two subsystems result in asymptotically stable 
closed loops. This appears to be appropriate for the solution of the 31, control problem as well. 

The discussion about the interconnection structure of the generalized plant in paragraph 2.2.3 
already anticipated for the second restriction in which was stated that D21 must have full row 
rank. This was achieved by inserting a weighted TOB disturbance to the second measurement. 
The fact that D21 should have full row rank indicates the necessity to observe a sufficient number 
of disturbances in the column w in order to be abie to reconstruct the compiete state 2 out of 
the measurements y. The condition on D21 can therefore be interpreted as a state-observability 
condition in the presence of disturbances/unknown inputs. Given the generalized plant G(s)  
as partitioned in (2.8), above requirements for the computation of the 31, controller all hold, 
consequently no further assumptions on G(s) have to be made and the 31, optimization can be 
performed using G(s)  as it is. 

The synthesis of the controller is executed utilizing the ,u-Analysis and Synthesis TOOLBOX, oper- 
ating in the MATLAB environment, [2]. With the resulting controllers the system should achieve 
Robust Performance in the sense that the system remains stable and meets the performance spec- 
ifications in the presence of uncertainties. In the next chapter Robust Performance and other 
robustness notions will be discussed profoundly. In the face of stability robustness, no explicit 
attention is paid to uncertainties in the modelling of the nominal plant P ( s ) ,  e.g. by weighting 
functions. Therefore, analysis of the closed loop system in both the time and frequency domain 
has to determine what stability robustness-level is attained. The robustness towards model uncer- 
tainties can be extended by the use of a so called D-K iteration, also provided by the  TOOLB BOX 
. This iteration assumes that the uncertainty matrix block A(s) in Figure 2.1 is structured in 
the sense that its sub-blocks Ai(s) form the set of uncertainties restricted to A(s) = diag{Ai(s)}. 
For such structured perturbations a structured singular wdue p a  ( H )  is defined for the closed loop 
H ( s )  in the face of uncertainties A(s) of the denoted kind. The exact definition of ,Y is not given 
here but will be a topic in Appendix A. A loose interpretation of p ,  though, is that it defines the 
smallest structured uncertainty A(s) for which the controlled system closed by this A(s) (such as 
in Figure 2.2) will make the perturbed closed loop unstable. By its definition p must be as small 
as possible to attain a robustness towards structured model uncertainties as large as possible. 

Leaving the papproach for the moment, attention is focussed on the resulting Xm controller in 
case only use is made of the y iteration towards a sub-optimal design. The controller K ( s )  for the 
defined open loop generalized plant G(s )  is computed as: 

(2.25) 

I T  1.82~6 + 2.36.102~5 + 1.01.104~4 + ~ 4 6 . 1 0 5 ~ 3  + 3.67.105~2 + 7.52.105~ - 2.64.103 & [ -1.52. 103s6 - 9.50. 104s5 - 1.27. 106s4 + 4.15. 106s3 + 5.77. 106s2 + 1.19. 106s + 2.94. lo3 

d ~ ( s )  = s7 + 1.06. 102s6 + 2.98. 103s5 + 8.39. 103s4 + 1.28. 104s3 + 8.85. 103s2 + 2.51. 103s + 6.22 

The gains and phases as a function of the frequency of the controller fractions in equation (2.25) 
are depicted in Figure 2.4. In this figure, the gain fraction IK11 feeds back the measurement y1 ,  

that is the rotary table speed error. It is clear that this gain is maintained up to about the system’s 
eigen frequency wd = 1.125 rad/sec. The gain IK21 feeds back the measurement y2, the scaled 
drillstring torque. This gain shows a local maximum around wd to account for the severe stick-slip 
oscillations preferably ocurring around this frequency. 

As defined earlier in Section 2.1, under the stability condition the robust control problem is solved 
successfully if ~ ~ H ( s ) ~ ~ ,  5 1. In case of the computed controller (2.25), the closed loop achieves 
an infinity-norm of 0.88, hence sufficient robustness according to the definition is indeed reached. 
Analysis has to show out if the time domain performance is satisfactory too, that is, the closed 
loop should satisfy the four specifications listed in Section 2.3. This will be investigated in the 
next chapter. Comparison of differences in the time domain performance as a result of different 
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Figure 2.4: Gains and phases of controller fractions Ki ,  i = 1, 2 

realizations of the weighting functions, and consequently the controller, will also be discussed 
there. 

The stability of the generalized closed loop with this controller is of course guaranteed, otherwise 
the iteration would not have found the presented K ( s ) .  To what extent the stability is guaranteed 
has to be analyzed considering perturbations A(s) of the closed loop. In the next chapter an 
extended analysis of the closed loop robustness in the Stability- and performance sense is performed. 



Analysis of the Closed Loop 
Properties 

In this chapter, an extensive closed loop analysis of the linear X, controlled 
system is performed. In the first section, the frequency domain performance 
properties are investigated. In analogy, the second section discusses the time 
domain performance. The last section contributes to the (stability-) robustness 
of the closed loop in the face of model uncertainties/perturbations 

3.1 Frequency domain Performance 

The frequency domain robustness properties of the closed loop drilling system can be divided 
into two parts, i.e. Nominal Performance and Robust Stability. The combination of the two 
notions is often called Robust Performance and holds the complete notion of robustness of (multi- 
variable) linear, time-invariant closed loop systems towards model uncertainties that might result 
in instability or lack of performance of a specified type. For clarity, three definitions commonly 
applied as quantitative measures for above notified robustness properties are presented next, [ll]. 

Consider the right perturbed dosed loop block diagram of Figure 3.1. In the block diagrams of 
Figure 3.1 the definitions are the same as in Figure 2.1. Furthermore, the fictitious perturba- 
tion block Af(.s) is introduced, which closes the controlled plant from the objectives z to the 
disturbancelreference inputs w. 
Consecutively, the definitions of the robustness notions are: 

Nominal Performance is achieved if in the absence of A(s), and the presence of A,(s) for the 
closed loop system H ( s )  holds that: H ( s )  is nominally stable, and l l H ( ~ ) 1 1 ~  < 1 for all 
fictitious perturbations A,(s) with IlA,(s)IJco 5 1. 

Robust Stabilityis achieved if in the absence of A,(s), and the presence of A(s) for the closed loop 
system H ( s )  holds that H ( s )  is nominally stable, and llH(s)11, < 1 for all perturbations 
A(s) with IIA(s)llrn 5 1. 

Robust Performance is achieved if in the presence of both A,(s) and A(s) the closed loop system 
H ( s )  is nominally stable, and llH(s)llm < 1 for all perturbations A,(s) and A(s) with 
IlA,(s)lt, 5 1 and IIA(s)llrn 5 1, respectively. 

In the sequel of this section, only the first notion will be investigated for the closed loop drilling 
system. The last two notions will be given attention in Section 3.3. Hence, only use is made of the 
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Figure 3.1: Standard block diagram to clarify X, robustness notion 

fictitious perturbation A,(s). A,(s) does not hold uncertainties of the nominal plant that can be 
physically described in terms of equations or parameter perturbations. It is only there to be able 
to measure the nominal performance in the same way as the stability robustness towards physical 
model uncertainties, casted into A(s), is measured. This is the reason why A,(s) is denoted as 
‘fictitious’. 

3.1.1 quantifying A, ( s )  

As already discussed in Chapter 2, computing an 3c, controller with the weighting functions 
designed in subsections 2.3.1 to 2.3.3 results in an X, norm of 0.88 achieved at 1.24 rad/s for the 
generalized plant G(s) ,  and 1.84 achieved at 0.72 rad/s for the nominal plant P ( s ) .  Performance 
notions are generally said to be met if the restrictions listed above hold in the face of the generalized 
plant G(s)  closed by I l ( s ) .  Hence, the closed loop H ( s )  in question is formed by the iower LFT 

For this H ( s )  the Nominal Performance notion can be identified by closing the performance objec- 
tives z to w by the fictitious perturbation block A,(s) and determining the maximally allowable 
norm of A,(s) for which the perturbed loop gain remains bounded, i.e. ~ ~ H ( s ) A ~ ( s ) ~ ~ ,  5 1 (recall 
Section 2.1). The infinity-norm from w to z of the generalized closed loop was 0.88, implying that 
the robustness of the nominal performance reaches up to perturbations IlA,(s)11, 5 &jj = 1.136. 
What exactly the absolute perturbations of the closed loop H ( s )  may be, depends on the defini- 
tion of the perturbed plant. Here, two most commonly used definitions are presented. Within the 
robustness notion discussed here, these uncertainties are viewed as perturbations to the nominal 
plant and it is to be analyzed up to what extent the controller can handle such perturbations in 
a robust sense, that is llH(s)Aj(s)\l, 5 1 must hold. The terms perturbations and plant uncer- 
tainties are used interchangeably without confusion as long as robustness properties are analysed. 
The exact closed loop H p  (perturbed closed loop) is considered to be described by either of the 
two forms: 

4(G(s) ,  Ic(s)) .  
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where Ai(s) is the input multiplicative perturbation applied at the plant input, and Ao(s) is the 
output multiplicative perturbation applied at  the plant output. Either of the perturbation forms 
can equal the fictitious perturbation A, (s). Conceivably, there holds: 

(3.3) 
(3.4) 

for the two perturbatiori Miodels (3.1) and (3.21, respectively. Hence, for the compted  c!osed 
loop, the norm (or 'size') of the absolute perturbation llHp - HIIm may be at most 113.6 % of the 
nominal IIHllco to satisfy the Nominal Performance notion. 

3.1.2 refined performance analysis 

The Nominal Performance notion is a rather rigorous way to characterize the performance qualities 
as it ranges the complete frequency domain and the multi-variable properties into one number. 
Therefore, it provides more insight if the frequency dependency of the generalized transfer functions 
defined in equality (2.11) are contemplated. Even more insight is obtained if all transformation 
fractions in the nominal closed loop are observed which are related the generalized functions 
through equality (2.12). By the weighting functions W, and W, performance requirements of 
R,,, - RI and u = T2 respectively, are forced along the frequency axis. The input weighting VTOB 
was defined to model some characteristics and order of magnitude of the TOB. Note that the 
input weighting Kef to Q r e f  was set to 1 (it will not be mentioned anymore for that reason). H;, 
defines the transformation from the reference speed to the bit speed error, which in fact can be 
interpreted as a relative bit speed error. Weighting function W, was chosen to reflect performance 
requirements of this transfer. Hr2 defines the transformation from T O B  disturbances to the 
absolute bit speed error. For this sensitivity] the combined weighting W, VTOB was introduced. 
HS1 defines the transformation from the reference speed to the control input u. The weighting 
function most appropriate for this relation is W, . Finally, HS2 defines the transformation from the 
T O B  to the control input. The weighting for this relation is the combined weighting W U V ~ o ~ .  The 
performance specifications reflected in the weighting functions are met in  the frequency domain if 
holds that: 

for all w E 3. This test is graphically illustrated in Figure 3.2. In this figure the gains of the 
subsequent closed loop transfer functions as well as the specification functions at the right- 
hand sides of inequalities (3.5) to (3.8). In the upper left and right plots also a third gain is 
depicted] that is, P11 and P 1 2  respectively. These resemble the uncontrolled response functions, 
of reference speed inputs and T O B  disturbances to the bit speed error, respectively. Such gains 
are not displayed for the lower two plots as they do not exist (note the two zero entries in the 
matrix (2.9)). Considering Figure 3.2, several interesting conclusions can be drawn. First of all, 
it is obvious that the performance specifications are met for all fractions except for HT2. This 
fraction lies above rad/s. For such low frequencies though, this 
will not degrade the closed loop performance substantially as most specifications are concerned 
with the problematic eigen frequency at wd = 1.125 rad/sec. Secondly, the closed loop behaviour 

for O < - w < 4 .  
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Figure 3.2: TFM fractions and inverse weighting functions 

of the transmissions H;, and HI2 is improved remarkably around the eigen frequency of the 
drilling system. This can be seen more precisely in the two plots of Figure 3.3. In this figure, the 
transmission gains of the H;, and H;, closed loop fractions are compared with their respective 
non-controlled versions. For completeness, the associated inverse weighting functions are also 
displayed. The left plot shows that the resonance peak of the transmission from reference speeds 
to the bit speed error has decreased by a factor 4 (=12 dB). In analogy, the right plot shows that 
the resonance peak of the transmission gain from TOB inputs to bit speed errors is decreased by 
u. fxt,or 12 (=ai UB) and is slightly shifted to I rad/s. This ana!ysis shows that the damping 
of oscillations around the eigen frequency is considerably increased, possibly contributing to a 
satisfying stick-slip handling. This is investigated in the time-domain simulations of next section. 

Thirdly, note the anti-resonance dip exactly at the system’s eigen frequency and consequently the 
two peaks at  either side of the dip in the closed loop fraction HS,, that is the transfer between 
Q,f and T2. The two peaks force the control input T2 to actuate at a dominating frequency 
which is slightly shifted to a lower or higher frequency than the problematic eigen frequency. 
In the time-domain analysis of the next section it will be shown that the torsional oscillations 
preferably occurring at the eigen frequency of the ‘drillstring/BHA-oscillator’ will be attracted to 
these slightly shifted control frequencies. This process will disturb the drillstring/BHA-oscillator’s 
eigen mode which apparently will phase-out the oscillations at a relatively fast rate. The genesis 
of attractors and there dynamic phenomena are beyond the scope of this report and the reader is 
directed to the extensive amount of literature available on this subject. 

Finally, it can be seen in Figure 3.2 that the performance specifications defined by the weighting 
functions are met with moderate optimality at least around the eigen frequency. This can be 
clarified if one observes the area between the specifications (weighting functions) and the closed 

‘The term ‘optimality’ is used here as direct opponent of ‘conservativeness’, a commonly used term to denote 
the ‘tameness’ of a controller design 
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Figure 3.3: Details H11, H12, Pi l ,  P12 and inverse weighting functions 

loop gain within the small interval of interest, say 0.1 - 10 rad/s. It is obvious that especially for 
HT2 and the specifications are 'tracked' almost perfectly, which is a direct notion of optimality 
of the design at least in this (most important) frequency region. 

For completeness, the two singular values and the two principal gains of the generalized closed loop 
are depicted in the plot of Figure 3.4. In this plot ü and 0 are the maximal and minimal principal 
gain, respectively. 1x1 I and 1x2 I are the maximal and minimal characteristic gains, respectively. 
The principal gains, mathematically defined as the singular values, of H ( s )  always "sandwich" 
the characteristic gains, mathematically defined as the absolute eigenvalues of H ( s ) ,  see [as]. The 
plot clearly illustrates this property. The ñ!, norm of H ( s ) ,  i.e. supwEaF(H(s)), can be easily 
identified in this plot, measuring approximately 0.9 at 1.2 rad/s. This was indeed the result for 
the X, controller computed for this problem (recall: 0.88 at 1.24 rad/sec). 

Wi!kinsm, [O3] ,  argues thst the sensitivity of the eigenvalues of a matrix to pertiirbations of its 
elements is minimized if the matrix is ortho-normal. If a matrix i s  ortho-normal then there holds: 

In the case here, the matrix H ( s )  shows near-ortho-normality within a small interval around the 
systems' eigen frequency and for frequencies higher than 500 rad/s since the associated principal- 
and characteristic gains lie very close to each other there. Consequently, the low sensitivity of the 
closed loop eigen values to parameter variations/uncertainties at the problematic eigen frequency 
sure is an attendant advantage. Moreover, the same can be said about the high frequency range 
as higher order dynamics, which could as well be modelled by chosing different system parameters 
at these frequencies, will have minimal influence to the closed loop properties. This completes the 
Nominal Performance analysis. 

3.2 Time domain performance 

In this section, time domain simulations are presented from which the performance is analyzed. It 
is shown whether the specifications listed in Section 2.3 are met. The performance of the ñ!, and 
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Figure 3.4: Principal- and characteristic gains of generalized closed loop 

the conventional STR-controller are compared. Moreover, the influence of adjusting VSOB to 
the stick-slip handling will be shown. In the simulations to come, no use is made of actuator 
and measurement dynamics. Directions to the implementation of the controller using the motor 
(-dynamics) to  generate the control torque T2 are discussed in the next chapter. 

All simulations are based on the same nominal drilling system configuration as used in Chapter 
2. For clarity, the configuration data is repeated here. The drilling system consists of a rotary 
table where J2 = 2122 Nms2 and ca = 424.5 Nms/rad, a 2000 m drillstring lumped into a single 
torsional stiffness L = 473 Nm/rad, and finally the BHA with one third of the drillstring inertia 
lumped into i t ,  leading to 51 = 374 Nms2 while the damping at the BHA is set to its worst case 
value of e1 = O Nms/rad. 

Moreover, the nonlinear relation between the T O B  and the bit speed sZ1 is modelled by the 
function: 

(3.10) 

in which ai, i = 1,2 ,3  are real positive constants characterizing the shape of the non-linearity 
within the proposed transcendental structure. In Appendix C, this non-linear T O B  functionality 
is envisaged and the influences of the parameters ai to its shape are discussed. In the simulations of 
this section, the parameters are set to a1 = 9.5, a2 = 2.2 and o3 = 35.0 which makes TOB,,, = 
2 . TOBd,, . 

3.2.1 specifications 

In this subsection it is investigated if the time domain requirements enumerated in Section 2.3 are 
met simply by doing the associated time-domain simulations with the nominal model closed by 
the 'H, controller (2.25) 

The time simulation associated with the first and second specification is depicted in Figure 3.5. 
In this figure, the response of the bit speed to a step-wise increase of Q,.,j from 5 rad/sec to 10 
rad/sec, which occurs at t = 50 sec, is plotted. The period time of the eigen frequency T d  is 
indicated by the interval marked by the short vertical lines. The 1% error band around the final 
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Figure 3.5: Response of the bit speed to 5 rad/sec step-wise change of Rref  

reference speed is formed by the area between the two dotted horizontal lines. From this graph it 
is clear that spec 1. is just met as after Td seconds the response just remains within the 1% error 
band. The second spec is also met because the final accuracy after the 5 rad/sec step in Rr,j is 
clearly smaller than 0.5 radjsec (note that the error band indicates 0.1 rad/sec error a t  either side 
of the final steady-state bit speed). 

In Figure 3.6 the response of the bit speed and rotary table speed to a step-wise change of the 
TOB form O kNm to 5 kNm is plotted. In Figure 3.7, the control torque T2 is plotted together 
with the changes in the TOB due to its step-wise increase from O kNm to 5 kNm at  t = 60 sec and 
step-wise decrease from 10 kNm (= TOB,,,) to 5 kNm (= TOB&,,) at the moment the bit is 
released from its stiction which approximately occurs at t = 63 sec. It is interesting to  follow the 
stick-slip mechanism in these two plots. At t = 60 sec, the step-wise increase in the TOB causes 
the bit speed to decrease rapidly to a zero speed at which a period of stiction starts. At that 
moment the TOB-which first shows impulse-like changes due to the relatively large deceleration 
of R1 at the moment the bit falls into stiction-increases almost linearly with time maintaining 
a static equilibrium of forces (increasing drillstring torque vs. TOB) at the bit. This increase 
persists until TOB,,, is reached beyond which the TOB finds no way to keep the bit in stiction. 
Hence, the bit is released from its zero speed and rapidly increases consuming the potential energy 
that was accUmulated in the drillstring during the stick-period. As the Sit is abruptly slipping 
again, the TOB is decreased almost perfectly step-wise from TOB,,, to TOBd,,. 

Clearly, the induced stick-slip oscillation is damped out immediately after the first period of 
stiction. Although spec 3 .  was defined in the frequency domain, its underlying purpose was to 
force stick-slip oscillations (in the time-domain) to die out for Q.,f = 10 rad/sec and a backlash 
torque of 5 kNm. Regarding the results in Figure 3.6 and 3.7, this requirement is indeed met. It 
can be verified that stick-slip oscillations induced at Q r e j  = 10 rad/sec by a backlash torque even 
slightly higher than 6 kNm can be phased out by the closed loop. In the next two paragraphs it 
will be argued to what extent this performance is an improvement compared to the non-controlled 
and STR-controlled drilling system. 

A few other remarks can be made about the simulation envisaged in Figures 3.6 and 3.7. Although 
the settling specifications 1. and 2 .  were defined for the transfer between Rr,f-inputs and the 
bit speed error, the response of the bit speed to TOB-inputs appears to have satisfying settling 
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Figure 3.6: Response of the bit speed to 5 kNm step-wise change of T O B  

Figure 3.7: Response of the control input to 5 kNm step-wise change of T O B  

behaviour as well. Considering the last step-wise change in the T O B  at t M 63 sec, the bit speed 
has restored again to Q,,f = 10 rad/sec without persisting oscillatory behaviour approximately 
2 . T d  after the step. The rotary table speed remains within its operating area, that is between O 
and 20 rad/sec. The control torque inpiit T2 shows large excursions, i.e. changes iri T2 are about 
two times as high as the changes in TOB. This was expected as of the way the weighting W, 
was designed. On the other hand, the frequency of the oscillations in Tz are rather low (< w d )  

regarding the high frequency-components that might have been induced by the step-wise changes 
in the TOB. This is advantageous in the face of the implementation using the electro-motor 
having its main dynamics an order of magnitude above the dynamics that are required to phase 
out the oscillations (Figure 3.7). 

3.2.2 comparison with the STRS 

In this subsection a comparative time domain simulation is performed to illustrate the performance 
improvements of the %, controlled drilling system over the conventional STRS-controlled drilling 
system. See Figure 3.8 to 3.10 for the simulation results in which the bit speed, rotary table speed 
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and control torque are subsequently plotted for both closed loops. The reference speed is set at i0  
rad/sec, the backlash torque is 2 kNm and the worst case damping e1 = O Nms/rad is applied. Up 
to 50 sec the controllers are disabled in both cases (thus, in both cases the non-controlled drilling 
system) and a phase of persistent stick-slip oscillations dominate the dynamic behaviour driven 
by the mentioned backlash torque. At t = 50 sec both controllers are switched on and in both 
cases the stick-slip vanishes. The bit speed settling behaviour (Figure 3.8) of the 31, controller 

oscillatory behaviour and the bit speed has just become in a 10% error band around the steady- 
state speed while the X, controlled bit speed is almost completely damped out there lying within 
a 1% error band. From Figure 3.9 it is clear that in case of the X, controller, the excursions of 
the rotary table speed are larger just after the switching-on. On the other hand, they decrease 
more rapidly to much lower oscillations than the tamely decreasing STR-controlled rotary table 
speed oscillations. The same can be said about the control input torque T2 in Figure 3.10. 

Interestingly, at the moment the controllers are switched on, they both show the same 'strategy' 
to kill the stick-slip. Except for a difference in magnitude the curves coincide between 50 and 
approximately 60 sec. Within this interval, the bit is not returning into a new period of stiction, 
hence the non-linear stick-slip dynamics are not influencing the behaviour anymore (TOB remains 
TOBdYn). This implies that after t M 60 sec the bit speed shows 'normal' transient settling 
behaviour in both cases, which makes the differences between the 31, and STR-controller very 
transparent. The key to clarify these differences can be found in the rationale behind the design 
of the STR-system and will be discussed next. 

Already briefly notified in Chapter 1, the STR-system comprises a (mechanically) parallel com- 
bination of a damper and spring behaviour. They are thought to be placed between the rotary 
table and a reference speed source of infinite bandwidth. In the actual implementation, they 
are electronically mimicked in terms of the motor quantities 1 and V,. The tuning of the two 
STR-components is based on the two single-mode vibration systems that arise from this imple- 
mentation. The first one holds the torsional spring modelling the leading vibration mode of the 
drillstring when combined with the lumped BHA/drillstring inertia. The second system comprises 
the spring/damper combination of the STR coupled with the rotary table inertia. In [39] it is 
shown that the drillstring vibration mode, and the STR-vibration mode, maximally exchange 
energy if all poles of the two systems coincide. In fact, the combination of the two subsystems 
exchange energy at  a faster rate than if the subsystems are isolated. The maximal energy ex- 
change is the resulting phenomenon of the original design criterion, which was to make the two 
subsystems equally important. In that case the poorest damping should be maximized. This is 
referred to as the Maximized Minimum Damping criterion. At some point in the tuning-when 
the poles coincide-the damping of the two systems become equal, meaning that above criterion is 
met. Using this criterion, very simple formulae for the tuning of the spring/damper components in 
the STR can be derived. For the damping and spring coefficients in the STR-system according to 
the Maximized Minimum Damping criterion the following expressions can be found, respectively: 

is clea.,rly silperior to t,he STR--ront,roller, -At. f = 7.5 sec the C;TR"-contro]!ed system shows 

CSTR = 2m (3.11) 

(3.12) 

The coinciding poles, or equivalently, maximal exchange of energy, imply that-without change of 
the dominating (eigen) frequency-the phase shift between fl1 and Cl2 is 90" in case of oscillations. 
On the other hand, the 31, controller excites the system such that it slightly disturbs the eigen 
frequency as was already notified in the previous section. This can be explained best by Figure 
3.10. In this figure, from t M 60 sec, the frequency of the oscillating control input T2 in case of 
the 31, controller is slightly higher than that of the STR-controller (this can best be seen by the 
maxima and minima of the 31, control input which are slightly more shifted after every period). 
This will attract the transient behaviour of the drillstring oscillations, or better: the free undamped 
eigen mode, towards the slightly higher frequency. This disturbance of eigen frequency apparently 
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I 

31, : Q2 - - 
STR: Q2 - * * - 

- 

- 

... _ . _  

has an important positive effect on the settling behaviour of the bit speed-, and consequently all 
other occurring oscillations. This property of the 31, controller is definitely the mayor advantage 
over the STR-controller. In fact, the 31, controller can be said to possess servo- capabilities 
rather than the total-system-damping capabilities of the STR-system. 
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Figure 3.8: Comparison of the bit speed response for ?iw and STR-controller 

[rad/sec] 

14 

13 

12 

11 

10 

9 

8 

7 

6 
30 40 50 60 70 80 90 

time [sec] 

Figure 3.9: Comparison of the rotary table speed response for ñ!, and STR-controller 

3.2.3 stick-slip handling 

In this paragraph, the influence of adjusting the weighting functions to the stick-slip handling 
performance will be discussed. More specifically, the second parameter in the denominator of 
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Figure 3.10: Comparison of the control input for X, and STR-controller 

VTOB will be adjusted. By doing so, it will become clear that this forms an excellent way to 
manipulate the handling performance of stick-slip oscillations. “Handling of stick-slip” is simply 
decided by the ability of the system to kill the stick-slip oscillations (or: force the stick-slip limit 
cycle to die out) after which the reference speed setting is achieved again within a finite time 
interval. VTOB is written again as: 

s2 + s + 0.8 
s2 + as + 0.8 vTOB = 50.  i o 3  (3.13) 

In the Table 3.1 the influence of the a parameter is listed. This table is the result of simulations 
using a T O B  vs. 81 functionality in equation (3.10). 1.4. For the peak value in this function holds 
TOB,,, = 2 TOBd,, , hence the backlash torque can be derived as TOB,,, -TûBd,, = TOBd,, . 

a 
0.1 
0.5 

0 . X  
1.0 
2.5 
5.0 

10.0 
25.0 
50.0 

100.0 
250.0 
500.0 

1000.0 

backlash torque [kNm] 
11.0 
12.0 
11.2 
10.3 
7.8 
7.2 
6.5 
6.3 
6.4 
6.7 
6.6 
4.7 
4.6 

maximally achievable TOB,,, BNm] 
50.0 
52.0 
53.6 
55.2 
56.0 
56.0 
56.0 
56.0 
56.0 
56.2 
57.0 
58.0 
60.0 

Table 3.1: Stick-slip handling performance as a function of a 

?im norm 
60.9 
44.9 
36.3 
29.8 
13.5 
6.9 
3.5 
1.4 

0.69 
0.35 
0.16 
0.12 
0.11 

The maximally achievable TOB is the maximum value of TOB,,, that the controlled drilling 
system can overcome in the face of the motor saturation. The maximally available motor torque is 
50 kNm. The system will not be able to kill stick-slip at such high TOB,,,’s, but is at least able to 
sustain it instead of falling into a complete standstill (better known as stalling). For completeness, 
the ?i, norm of the Nominal Performance notion is also included. The reference speed is kept 
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constant at  S2,.,f = 10 rad/s. The rotary table speed is not allowed to become negative or higher 
than 20 rad/s. The presented results have little meaning when not compared with, for example, 
the STR-system and the non-controlled drilling system. The maximum backlash torque that still 
can be handled by the STR-system in the presented configuration is 3.5 kNm. The maximally 
achievable T O B  is 50 kNm (just the maximally available motor torque). The non-controlled 
system can handle backlash torques up till 2.5 kNm and the maximally achievable T O B  is 56.0 
kNm. It is obvious that nearly for all presented values of a the ZE controlled system achieves 
a higher stick-slip handling than the STR-controlled system. For values of a greater than 100.0, 
the maximally achievable TOB,,, is greater than 56.0 kNm implying that the controlled system 
performs as well or even better than the non-controlled system as far as the stalling problem 
is concerned . A very important recommendation already stated here, is that the maximally 
achievable TOB,,, can be increased even more if the (lumped) damping ca at the rotary table is 
decreased, for example by better construction techniques, lubricants and bearings in the motor, 
gear box and rotary table. Simulations assuming these improvements are not shown, though it is 
quite trivial that if less momentum at the rotary table has to be ‘spilled’ on dissipative processes, 
the net momentum left to overcome TOB,,, will increase. 

From Table 3.1 it can be concluded that the best compromise between stick-slip handling, maxi- 
mally achievable T O B  and an acceptable Y, norm, i.e. close to 1, is obtained for 2.5 < Q < 250.0. 
Within this interval, the threshold backlash torque beyond which stick-slip will not vanish 5 about 
two times as high as the STR-controller can handle. Moreover, spec 3. in Section 2.3 is met more 
than strictly necessary. The maximally achievable TOB,,, within this interval all meet spec 4. 
Finally, above performance measures are met with a closed loop infinity-norm relatively close to 
1. For all analyses to come, the controller computed for a = 100 will be used (instead of Q = 40 
used throughout the premise) as the ‘optimal’ design. 

. 

3.3 Robustness 

In this section the stability- and performance robustness towards model uncertainties are analyzed. 
In Section 3.1, a general treatment of the Robust Stability notion was implied by computing the 
infinity norm of the closed loop in the face of stable perturbations A(s) having an infinity norm 
smaller than 1. At first glance, it is not clear what physically identifiable signals the columns q 
and v in Figure 3.1 may hold in order to get a perturbation structure A(s) that makes sense. 
For that reason, it is better to investigate up to what extent to closed loop keeps meeting the 
listed specifications and/or remains stable in the face of parameter perturbations or structured 
higher order perturbations. The item “and/or” divides the robustness analysis in the treatment 
of the Robust Performance (and) and Robust Stability (or) notions, though in a different sense 
than defined in Section 3.1. If above perturbations are considered than q ,  v and A(s) can almost 
automatically be identified. 

3.3.1 parameter perturbations 

An important shortcoming of the modelling assumptions made in Chapter 1 is that the model 
is time-invariant. On the other hand, the real drilling system is far from time-invariant. As 
the drilling process proceeds, the drillstring length is extended continuously by screwing new 
pipe-segments at  the top-end of the string. Consequently, the dynamic properties of the system 
change as the total inertia increases and the (lumped) stiffness decreases. Hence, to investigate 
the robustness of the closed loop towards perturbations in the drillstring length, J i  and k are 
the appropriate parameters to utilize. The damping at the rotary table ca, was assumed to be a 
fixed value. On the other hand, as it holds the lumping of many different complicated dissipative 
processes (see Chapter l), it most likely will be time-variant and non-linear (e.g. as a function of 
the rotary speed). For this reason, the damping parameter c2 will also be perturbed for robustness 
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analysis. The damping at the BHA c1, can be given the same interpretation, though, because a 
worst-case analysis is performed, this damping is kept at O Nms/rad. Larger damping will make 
the system only 'more stable' because the associated system poles will lie further into the left-half 
complex plane. The BHA-inertia JBHA (see Figure 1.3) and the rotary table inertia are fixed and 
well-known parameters and will therefore not be perturbed. 

Resumably, rise is given to the perturbed nominal system description: 

1 
O 

Ji + AJi 
O O 

O c2 + Ac2 I J 2  

in shorthand: 

[ % ] +  
O 

(3.14) 

and the outputs: 

(3.15) 

where C1, C2, D11,D12, D21 and 0 2 2  as inequations (2.7). The parameters k+Ak and J l+AJ i  are 
coupled through the drillstring length L d s ,  which reduces the number of perturbation parameters 
to be one less. If the computed dynamic controller K ( s )  (with a = 100) is written in the state- 
space controller canonical form: 

(3.16) 

where X K  is the internal state-vector of the controller, then the closed loop is described by 

] [ : K I + [  BhLgl]w X A + A A  B ~ C K  
[ X K ]  = [ B K C ~  AK 

z = [ ci D12CK ] [ 3c", ] +DllW (3.17) 

The augmented state x = [x .KIT is defined and the perturbed closed loop in equations (3.17) 
are written in shorthand as: 

(3.18) 

The perturbed closed loop transfer matrix H p ( s )  from the disturbances w to the output z is 
described in the Laplace domain by: 

Hp(s )  = C, (SI - A,)-' B, + D, E H * ( s ) ( I +  A(s)), (3.19) 
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1500 m 27.0 sec 0.09 rad/s 6.0 kNm 
2000 m 5.6 sec 0.04 rad/s 6.3 kNm 
2500 m 22.0 sec 0.05 rad/s 4.5 kNm 

where H * ( s )  = Fl(P(s) ,  K ( s ) ) ,  the nominal closed loop. The last equality in (3.19) is defined for 
the class of multipZicatiue perturbations (recall equations (3.1) and (3.2)). As H p ( s )  maps w(s) 
into z(s ) ,  it is easily shown that in the face of Figure 3.1 the choices 

54 kNm 
56 kNm 
60 kNm 

(3.20) 
(3.21) 

irideed estsblishes this map, that is, the to-be-controlled output becomes z = H* (w + w) = H p  w. 

Hp(s )  will become unstable if det(s1- A,) = O for some w or, equivalently, if for some eigenvalue 
X i  of A, holds that Re(&) > O. It is verified that the closed loop remains stable for at least the 
range: 

425 5 ca 5 5000 Nms/rad 
0 < L d s  5 3400 m (3.22) 

The range obtained for the drillstring length is quite satisfying if one recalls that the controller 
was designed for L d s  = 2000 m. On the other hand, the closed loop is never stable for c2 < 
425 Nms/rad, where this lower bound equals the value for the nominal controller design. From 
numerous other controller computations using different c2-values in the nominal design model, it 
appears that the closed loop is just stable for damping coefficients c2 equal or greater than the 
nominal design value. Therefore it is wise to compute a controller with a (nominal) c2 that is 
measured in the field as a lower bound. For damping coefficients ca and/or drillstring lengths 
L d s  outside the range (3.221, always one unstable real-valued pole is obtained. This pole lies 
relatively close to the imaginary axis in the right-half complex plane. This implies that the result 
of the possible instability will most likely not lead to destructive behaviour. It is verified by time- 
simulations that the unstable mode will gently increase the control input (without oscillations 
because the unstable pole is real-valued) towards its saturation. 

The performance specifications can not all be met if the nominally computed controller is applied 
to a perturbed model (provided it is closed loop stable). For example, the results for specs 1 
to 4 in case of a 500 m perturbed drillstring length (thus 2500 m or 1500 m instead of 2000 m) 
are listed in Table 3.2. In this table the performance of the two perturbed closed loop models 

for a drillstring length of 1500 and 2500 respectively are compared with the nominal simulation 
model, i.e. L d s  = 2000 m. The quantities associated with the four specifications comparatively 
determine the performance robustness of the '?Lm controller. In case of L d s  = 1500 m, the settling 
is with almost 5 times as high quite disappointing, while the state error is more than satisfying. 
The backlash torque still meets spec 3. more than necessary. The maximally achievable TOB,,, 
does not satisfy spec 4, although it is still better than the STR-system. For L d s  = 2500 m, the 
settling behaviour is with 4 times as high also quite disappointing. The steady state error meets 
spec 2. The backlash torque that still can be handled is only just 10% lower than required in spec 
3. The maximally achievable TOB,,, is considerably increased, implying that meeting spec 4. is 
also more than satisfying. The reason why higher TOB,,, can be reached is simply because the 
total inertia has increased implying that more momentum will be buffered during slipping phases, 
which will be used to overcome even higher TOB,,, during stiction. The opposite reasoning can 
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be applied for the 1500 m drillstring. An overall conclusion of this analysis is that perturbations 
of the drillstring length of 500 m about the nominal 2000 m length violates half the specifications 
although the obtained performance is still satisfying. An equivalent analysis for c2 is not presented 
here but it can be verified that merely spec 4. is violated considerably for damping coefficients 
higher than the nominal value (for lower values the system is unstable as shown before). This can 
be easily explained because for higher c2 rnore energy is dissipated and less will be left to overcome 
high peak TOR'S. 

3.3.2 higher order perturbations 

To illustrate the performance of the Zm controller in a more realistic setup, a higher order 
simulation model is built using the Finite Element Method (FEM). The drillstring is treated as 
a finite number of masses, springs and dampers, which are (mechanically) parallel- and partly 
cross-coupled. The BHA and rotary table are still modelled as rigid masses. Details of modelling 
the drillstring as such are presented in Appendix B. The N-mode drillstring model according to 
the FEM-concept can be presented by the following equations (see [48]) : 

1 
6 
2 
3 

- 
- 

... 

... 

O 
1 
6 

... 

... 

2 
3 
1 
6 

- 
- 

where li, is the drillstring element length, j t  is the torsional drillstring inertia per unit length, 
ct is the torsional drillstring damping per unit length, and kt is the torsional drillstring stiffness 
per unit length. The DOF's <pi and p 2  are the bit angle and rotary angle, respectively, and 
(Pdsi, i = 1, ..., N -  1 are the intermediate DOF's. JBWA is the inertia ofjust the BHA and CBHA 

is its damping coefficient. In the right hand part of the equation, the same inputs that have been 
used throughout, can be identified. 

Equations (3.23) can be written in shorthand as 

in which the new variable Q can be readily identified as well as the matrices J t ,  Ct, K t ,  F1 and F2. 
The implicit state-space form can easily be obtained, i.e. 

(3.25) 
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Figure 3.11: Partitioned drillstring model 

After defining the state vector xt = [& @IT , the explicit state-space form is derived: 

xt = A xt + BI w + B2 u ,  with (3.26) 

Jt 0 
-I o O I  

The state xt can be divided into the nominal state x in equation (2.4) and the state xh associated 
with the higher order modes. Proceeding like this the following partition of (3.26) is made: 

(3.27) 

in which the following definitions hold: Ai1 = A + AA, B I ,  = B I  + AB1 and Bzi = B2 + AB2,  
where A,  B1 and B2 as in equation (2.4). Applying the controller structure (3.16), the perturbed 
closed loop becomes 

In shorthand this is written as 

(3.28) 

(3.29) 

(3.30) 
(3.31) 
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Assuming the multiplicative perturbation model again, the perturbed closed loop can be described 
as 

H,*(s) = Cx+ (SI - Ax*)-’ Bx* + Dx* 5 H * ( s ) ( l +  A*(s)), (3.32) 

where H* is again the nominal closed loop. The perturbation model according to Figure 3.1 has 
the same form as (3.20) and (3.21): i.e. 

q z w  

v E A*(s) q 
(3.33) 
(3.34) 

It appears that-by ad hoc inserting more states x h  in the structure (3.28)-higher order per- 
turbations have no effect on the closed loop stability. Such stability tests are executed up to 100 
higher order states in the vector z h .  Hence, the nominal closed loop is robust (read: stable) for 
higher order perturbations of the form (3.28) derived from FEM-analysis at least up to 50 higher 
order modes. 

An example of higher order perturbed closed loop is discussed in case 5 modes are assumed. The 
partitioned drillstring in Figure 3.11 is illustrative for the DOF’S of the five-mode FEM model. In 
Figure 3.12, the transmissions H;, and Pi1 between the R,,j-input and the al-output are depicted 
in the left part and the transmissions H1*2 and P12 between the TOB input, and the Q1-output in 
the right part. Hfl and HT2 are the transmissions associated with the controlled five-mode system 
while PI1 and PI2 are those associated with the non-controlled five-mode model. The inverse 
weighting functions l/W, and l / W p V ~ ~ ~  are also plotted to show that Nominal Performance is 
still achieved everywhere in the frequency range of interest for which the curves are plotted in 
Figure 3.12. The five eigen modes are clearly visible in the right plot of Figure 3.12. The first 
eigen mode is perfectly damped, as expected, while all higher order modes show no improvements. 

Figure 3.12: Details Hf,, HT2, P I I ,  Pi2 and inverse weighting functions For the one-mode 
?ím controller closing a jive-mode drillstring model 

In Figure 3.13 the response to a 9.0 kNm step in the backlash torque is given for the closed loop 
five-mode model. If one reads out the entry for a = 100 in Table 3.1, then such a large step in the 
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time [sec] 

spec i. spec 2. spec 3. spec 4. 
5.6 sec 0.04 rad/s 6.3 kNm 56 kNm 
13.0 sec 0.05rad/s 9.ûkNm 55 kNm 

Figure 3.13: Response of Jive-mode model to a 9.0 kNm step in the backlash torque 

backlash torque could not be handled by the one-mode model. On the other hand, Figure 3.13 
implies that such high backlash torques can be handled better by the more realistic higher order 
plant model. Obviously, the higher order dynamics introduce disturbances to the persistently 
performing stick-slip oscillation in the first mode such that this can be killed more easily. This 
conclusion can also be drawn for the STR-system, although the denoted lower performance towards 
stick-slip handling still holds. 

In the step-response of Figure 3.13, the second eigen mode at about 5 rad/s (see right part of 
Figure 3.12) can be clearly identified in the low-amplitude vibration induced at the stick-slip 
cycle. Further fine-tuning of the controller by means of the weighting functions, could result in a 
satisfying handling performance of this frequency too. Most likely, the structures of the weighting 
functions have to be chosen considerably different than those used here, as these completely 
emphasize the stick-slip problems in relation with the first eigen mode. Such a procedure is not 
presented here and is left for further investigation. The time-domain performance ef the me-xode 
and five-mode model are compared and the results can be found in Table 3.3. Except for the first 

spec all other specs are met which makes the performance robustness in the face of higher order 
perturbations (here up to 5 modes) quite satisfying. 

This completes the time domain analysis. In the next chapter the implementations of the X, controller 
in the drive model and in an actual experimental setup are discussed. 



Chapter 4 

Experiments on a Lab-Scale 
Simulator 

In this chapter, the Y,, controller for ct = 100, designed and analyzed in the 
previous chapters, is tested on a lab-scale simulator. Prior to that, the control 
input is reformulated in terms of motor quantities I and V,. The simulator 
emulates the torsional dynamics of a vertical drilling system. Moreover, the 
non-linear TOB function (3.íO) can be applied in the setup, making comparison 
between different controller designs and with theory unambiguous 

4.1 Implement at ion issues 

In this section the 2-input/l-output controller structure (see Figure 2.3) is reformulated such that 
it evolves to a simple SISO feedback structure in terms of the motor quantities V, and I .  Stability 
conditions for the implementation of such a reformulated controller are discussed. Finally, some 
simulations will show that this implementation approximately results in the same time-domain 
responses when compared to the direct torque input assumption used throughout the foregoing. 

4.1.1 re-definition of the control input 

Figure 4.1 shows the rotary table inertia 52 with its damping c2, isolated from the drilling structure 
and the drive system. Instead, the interacting torques are thought to excite the rotary table 
externally. Because fluctuations on top of the (constant) reference speed are to be controlled, the 
rotary speed is redefined as h2 E CL2 - C L 2 , , f .  The associated control torque is labeled T2, and 
finally the torque-fluctuations exerted by the drilling structure is ?ds. Firstly, it is shown that the 
appropriate control action f "  can be derived by just measuring the rotary speed fluctuation 6 2 ,  

resulting in exactly the same synthesis. Secondly, this formulation will be used to implement the 
controller in terms of V, and I. 

Recalling equations (l.l), the equation of motion for the rotary table is repeated here in the speed 
fluctuation form, i.e. 

J262 + ~ 2 6 2  + k$ = ?2, 

( ~ 5 2  + ~ 2 ) f i 2 ( ~ )  + k&s) = ?2(s), 

(4.1) 

or in terms of Laplace transformed quantities (this will be maintained from now on): 

(4.2) 
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where s denotes the complex Laplace variable iw. Note that the same variables are used for 
both the time domain and the Laplace domain quantities. This is unusual, but it does not affect 
the oncoming derivations. The term k$(s) equals the load torque stemming from the drillstring- 

4 c2 

Figure 4.1: Rotary table with load- and control torques 

and BHA dynamics on top of the static load in case of the one-mode model. Generally, higher 
order modes apply to the drilling system and therefore it gains more insight if the load from the 
drillstring is denoted by T d s .  For the implementation, the details of the dynamics resulting in T d s  

are not important. The result of it is simply the torque ?ds , which, in principle, can be measured. 
As was already stated in Chapter 2, the one-mode model, resulting in ?ds = k.4, where 4 is the 
twist of torsional spring, may be an overly simplified representation of the drillstring. Using the 
more general notation T d s ,  any dynamic structure of the drilling system can be chosen to give the 
appropriate load at the rotary table. Provided that this is done, the control action is determined 
in terms of the new variables as: 

(4.3) 
L T l  

where ?ds is scaled by the lumped stiffness k .  Equating expressions (4.1) and (4.2) for the con- 
trol torque T2, substituting k$ = T d s  and rearranging the results gives the expression for the 
reconstructed load: 

Kl(S) + sJ2 + c2 - 
k. - K2(s) T d S ( S )  = -k  Q 2 .  

Substituting (4.4) into (4.3), the control torque becomes (after rearranging): 

(4.4) 

Equation (4.5) indeed shows that the appropriate control action can be completely expressed in 
terms of the rotary table speed. This is in fact the result of the straightforward relation between 

and ?ds by means of Newton's second law applied to the damped inertia J2. Equation (4.5) 
paves the way for using the implementation techniques in terms of motor quantities similar to 
those described in [22] and [39]. 

The total motor voltage V, determines the rotary speed C22 by the model equation of the motor 
(see Chapter i), i.e. 
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The total voltage can be divided into a reference voltage Vref ,  to maintain the reference speed 
and a control voltage Vfb, to deal with the vibrations on top of this reference speed. This leads 
to partitioning the motor voltage as V, = V,,f + v f b .  The subscript f b  denotes ‘feedback’. The 
electronic motors used in the field are ordinary separately excited DC motors with a very low 
impedance ( L s  + R). This implies that the input voltage can be directly related to  the rotary 
speed. Hence, the motor input V, in equation (4.6) approximately determines the ïotary speed 
a$  Vz N KQ2. Since if, inchdes the  feedfoïwaïd of the ïefereilce speea , A  A L , . , ~ ,  VTef shouid at ieast 

contain a term  KR,,^. vfb has to manipiilate ~2 on top ofQ,.,j, so v f b  = X ( R ~  - s,.,,) = ~ i i 2 ,  

where is implicitly given in equation (4.5). The relation between the total input torque Tz and 
the motor current (see equations (1.1)) is modelled by Tz = KI, were K if the motor constant. 
Hence, the motor current associated with fluctuations is implicitly defined as T~(s) = K I .  If 
equation (4.5) is written as ?2(s) = -Q(s)a2, and substituting the definitions of v f b  and Í into 
(4.5), then, after rearranging, the feedback voltage can be written as: 

K 2  - 1 
Q (SI Q 

vfb(s) = --I(s) = - K 2 p ( s ) i ( s ) ,  with F ( s )  = -. (4.7) 

Provided that 7 is available, equation (4.7) gives a very practical expression to implement the 
two fractions building the controller. The feedback current signal r” can be made available from 
the total motor armature current I .  The total motor current is defined as I = + I,,f, where 
the reference motor current Ire1 just has to overcome the lumped damping at the rotary table, 
ca, i.e. Irej  = c2Q,.,f/K. Hence, an appropriate choice for the reference voltage is Kef = 
I<fiT,f + RIref = Kfi,,f + Rc2firef /K.  Accordingly, the total motor voltage input eventually 
becomes 

4.1.2 stability 

Having the relationship for the motor control voltage in equation (4.8), the two input/two output 
port diagram of Figure 4.2 represents the feedback structure of the discussed implementation. 
Note that the original quantities Tds and Q2 are used again instead of their fluctuation forms. The 

I m I 

I I 

Figure 4.2: Block diagram of the drive system with current feedback 

forms T d s  and fids were only temporary variables to derive the modified controller structure. 

i 
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In this diagram the partitions Pij ( s )  are 

where D(s)  = (J2s + C Z ) ( L S  + R) + IC2. 

"E- I it: I I I ~ U C  :----L- vutpui relation between 'r& and f l2  respectively, is given by the SISO lower LFT (do 
not mix up FL(. ,  .) and F ( s ) ) :  

(4.10) 

The (internal) stability of this transmission is determined by the open loop P22(s)K2F(s) .  Ac- 
cording to the Nyquist criterion, above closed loop system is stable if and only if the number of 
counterclockwise encirclements of the Nyquist diagram about the -1 point is equal to the number 
of poles of P22(s)K2F(s) inside the right-half plane (open loop unstable poles). If P22(s)K2F(s) 
is open loop stable then the simplified Nyquist criterion holds. It says that the closed loop system 
is stable if and only if the polar plot of ?22(s)K2F(s) passes on the right side of the point -1 when 
moving along this plot in the direction of increasing w (see for both criteria [41]). The controller 
fractions II1 and K2 have a common denominator and can therefore be written as 

Hence. the feedback function becomes: 

Substituting the expressions for the open loop function then yields, 

(4.11) 

(4.12) 

(4.13) 

The stability of the implem-eritation is determined by the  location of the poles of (4.13) in combi- 
nation with one of the Nyquist criteria. Based on Q = 100, the open loop poles are given in Table 
4.1. Hence, for this controller design and implementation, the open loop is stable as all its poles 

open loop poles 
-99.9 
-25.0 
-1.1+13.23i 
-1.1-13.231 
-1.26+2.221 
-1.26-2.221 
-0.21+0.19i 
-0.21-0.19i 
-1.02.10-6 

Table 4.1: Poles of the open Zoop gain P,2(s)K2F(s) 

lie in the open left-half plane. The stable poles of the open Zoop imply that the simplified Nyquist 
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criterion can be applied to determine the stability of the closed loop. Figure 4.3 visualizes two 
important details of the open loop function in the complex plane. The frequency intervals of the 
details are marked by the frequency values attached at the curve-ends, indicating the direction of 
w along. The point -1 is marked by an asterix. Applying the simplified Nyquist criterion to this 
plot, it can be concluded that the feedback implementation is stable. It even achieves satisfying 
robustness if ene takes the gain- and phase margins ([41]) which are 2.2 and 34.5" respectively. it 
is generally found inai a gain margin of 3 or more, combined with a phase margin between 30" and 
60" resdt in 2 reascnab!e tradeoff betweeIi bandwidth and stability. The obtained gain margin 
does not completely satisfy this rule-of-thumb, although this should not substantially degrade the 
robustness in the actual implementation. 

50 

-1 
-1.2 -1 -0.8 -0.6 -0.4 -0.2 

Figure 4.3: Details of nyquist plot of the open loop gain P22(s)K2F(s)  

A demand arising from practice is that the closed loop system should also remain stable when 
the drillstring is completely decoupled from the rotary table. Relying on above stability analysis, 
this demand is certainly satisfied as the transfer between T d s  and f22 described by equation (4.10) 
is internally stable. For the linear time invariant (LTI) models used here, this implies that the 
closed loop drive-system is also input/output stable because both stability notions come down to 
the same conditions in case of LTI-systems. Sudden decoupling of the drillstring, that is setting 
T d s  to zero, will therefore just result in controlling the rotary table back to its ïefeïence speed. 
This is indeed verified by simulations which are not shown here for reasons of space. 

There is still one important stability issue open for discussion. Recall that in Section 3.2 the 
stability of the closed loop system in the absence of the implementation (actuator) dynamics were 
discussed. Here, the totally assembled system comprising the drillstring/BHA, the rotary table, 
the motor dynamics and finally the controller dynamics, has to be considered in the face of closed 
loop stability. 

The one-mode drillstring model is utilized to build the complete system. In the left block diagram 
of Figure 4.4 this complete system is depicted as a closed loop of the controlled rotary table/drive 
system IC, and the drilling system Ç. 

Recalling Figure 4.1, the output of the drilling system-or equivalently the input to the ro- 
tary/drive system-is defined as T d s  indeed. The opposite reasoning holds for the rotary table 
speed C22, which now serves as an input to the drilling system. The closed loop in Figure 4.4 can 
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---b 

r=O + 
4 

f l 2  
m 

2 d s  

Figure 4.4: Block diagram of the drillstring/BHA closed by drive/controller 

be viewed as the plant Ç controlled by the controller IC. On the other hand, that would imply 
that Tds is measured and processed into C22, which, in turn, is provided to the drillstring. But this 
is not what physically happens as a speed cannot be isolated to excite a system. The notation in 
terms of isolated speed and torque signals may be semanticly correct, they always come in power 
conjugated pairs. Hence, a single causality direction cannot be defined and the directions of the 
signals are pointed in either way at the same time. In fact, this can be viewed as the difference 
between ‘assembling’ of systems and ‘closing loops’ around systems. 

Fortunately, as LTI systems are considered, the stability of the closed loop does not depend on 
the direction of signals. It is even insensible for the definition of the input and output signals. 
Consequently, one can look at  the assembled system as if it were an ordinary closed loop system. 
The computation of the closed loop between any input/output pair available, will always involve 
the same denominator structure which determines the stability (either in terms of Nyquist or 
Routh-Hurwitz and of course when linear system descriptions are considered without ‘hidden’ 
poles). Hence, stability analysis with respect to the system depicted in 4.4 suffices to guarantee 
the overall stability of the assembled system. 

The input-output relation of the block diagram in Figure 4.4 is described by the transmission 

The system IC is given by Fl(P(s) ,  -K2F(s ) )  in equation (4.10) and can be expanded to 

(LS+R)(DOl(S) +NOl(S)) +li-4NF(s)  
D(s)  (Dol ( s )  + Nol ( s ) )  

K ( S )  = , 

(4.14) 

(4.15) 

where N F ( s )  denotes the numerator of the feedback function F ( s ) ,  while Nol(s) and Dol ( s )  are the 
numerator and denominator of P22(s)K2F(s) ,  respectively. If one considers the simple one-mode 
model for the drillstring then the system Ç evolves to 

(4.16) 

Using equations (4.15) and (4.16) the open loop C(s)IC(s) in equation (4.14) can be verified. The 
poles of the open loop system are listed in Table 4.2. Obviously, all poles lie in the left-hand 
complex plane implying that the simplified Nyquist criterion can be applied. In the polar plot 
of C ( s ) K ( s )  in Figure 4.5 the small arrow indicates the direction of increasing w .  According to 
this direction in the face of the simplified Nyquist criterion, X ( s )  is stable. Consequently, the 
assembled system is also stable. Moreover, the gain margin and the phase margin measure 5.0 
and 61.3’, respectively, obtaining satisfying robustness in both the closed loop bandwidth and 
st ability. 
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poles of Ç ( s ) K ( s )  

-46 .O+ 15.6; 
-46.0-15.6i 

-281.9 

-1.1 

-1.?+12.2Vi 
-1.1-13.231 
-0.63fl.12i 
-0.63-1.12i 
-0.02+1.12i 
-0.02-1.12i 
-0.29f.321 
-0.29- .32i 
-0.5. 

Table 4.2: Poles of the open loop of31(s) 

Figure 4.5: Open loop function Ç ( s ) K ( s )  in the complex plane 

4.1.3 measurements 

In Chapter 2 i t  was argued that in the 31, controller design, no explicit attention is paid to possible 
measurement errors and noise corruptions. It had to be investigated what influence measurement 
noise and -errors will have on the implementation. Suppose the measurement mr of the motor 
current I is corrupted by errors, i.e. 

(4.17) 

Furthermore, this measurement is fed back by - K 2 F ( s )  into v f b  according to equation (4.8), 
where I ( s )  is replaced by m ~ ( s ) .  The transmission of the corruptions &(t) to the rotary table 
speed can then be readily derived from Figure 4.4 if one computes the transmission from ITef to 
s t 2 ,  which is exactly the same as that of &(i) (except for the sign). Hence, the transmission, or 
better the sensitivity Wsens(s)  of the rotary table speed to measurement errors becomes 

(4.18) 
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The magnitude of this sensitivity is depicted in Figure 4.6 Form this figure it is clear that, as 

le0 1 I I I I I I I I I I 
le- 1 
le-2 
ie-3 
le-4 

IHsensI le-5 
le-6 
le-7 
le-8 
le-9 

I I I I I I I I I 

le-5 le-4 le-3 le-2 le-1 le0 l e l  le2 le3 le4 le5 
w [rad/sec] 

Figure 4.6: Magnitude of the sensitivity from measurement errors to the rotary table speed 

of the rapidly decreasing magnitude beyond 1 rad/sec, the influence of corruptions with high 
frequency components (such as measurement noise) are completely filtered out. On the other 
hand, corruptions with low frequency components (such as offsets) will have a larger influence 
on the rotary speed as the magnitude of the sensitivity increases there. Because offsets are of 
minor importance to the actual purpose of the control system, that is suppression of stick-slip 
oscillations, this is not considered harmful. 

4.1.4 simulation 

Closing this section, a time domain simulation is presented in Figure 4.7 and 4.8 In these figures, 

30 
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implementation - 
direct torque input - - . - 

50 55 60 65 70 75 80 85 90 95 100 
time [sec] 

Figure 4.1: Comparison between the direct torque input and the implementation: bit speed response 
to a 6 kNm step in the backlash torque 

the direct torque input case, assumed in the discussions before this section, is compared with the 
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Figure 4.8: Comparison between the direct torque input and the implementation: rotary speed 
response to a 6 kNm step in the backlash torque 

implemented controller. The bit- and rotary speed responses to a 6 kNm step in the backlash 
torque are plotted in these figures. Although, the implementation results in a slight time-delay 
compared to the direct torque input, the overall performance is even improved. The overshoot of 

is slightly smaller and the reference speed is achieved within a smaller time span. Obviously, 
the extra time constant L I R  = 0.5 sec, induced by the motor dynamics, introduces an extra phase 
lag which influences the damping of the vibration even more positively. 

4.2 Experimental setup 

The simulator setup is schematically depicted in Figure 4.9. In this figure, the mechanical part 
consists of a disc-shaped alum-inum inertia !abelecl “Rotary Sable” which, together with the Drive 
Motor inertia, represents the ‘real’ 5 2 .  The drillstring is constructed in the shape of a stainless 
steel string, with a diameter of 2 mm and which is 2 m in length. The “BHA is a disc-shaped 
aluminum inertia, measuring the appropriate scaled J i  , such that in combination with the torsional 
string-stiffness, one obtains approximately the same eigen frequency wd as in the field configuration 
that has been used throughout this report. The three “Spare Inertias’’ can be easily coupled and 
decoupled from the string, using a circular friction-wig connection. They are there to enable 
experiments with higher eigen modes. 

The Rotary Table is actuated by an electrical 400-W DC motor connected to a voltage driven am- 
plifier, generating the appropriate motor input voltage by means of a thyristor controlled rectifier. 
Below the BHA, a second motor is connected to the mechanical structure to generate arbitrary 
TOB models. This motor is a DC Direct Drive motor type and here, it operates as a generator 
instead of as an actuator. Hence, as it breaks the rotating ‘bit’ (to emulate the T O B )  it generates 
electric energy rather than consuming it. The Direct Drive Motor is connected to a servo-controller 
with an amplifier, generating a maximum torque output of 4 Nm. Measurement voltage signals 
can be tapped from the motor controllers, and actuator voltage signals can be provided to these 
controllers at the same time. 

The digital control system comprises the following elements. The measurement- and control signals 
are converted in a fast A/D and D/A unit, respectively. Digital signal processing is executed by 
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Figure 4.9: Simulator setup 

a Texas Instruments TMS320C31-40MHz DSP. The conversion- and process units are integrated 
in a single controller board (DS1102) manufactured by dSPACE GmbH [12], which can be placed 
in an IBM-PC/AT compatible host providing a 6.2” ISA 16-bit connector slot. The integrated 
controller board is accompanied with extensional development , controller and loader software, 
which can be stored an run on the PC/586 host-computer. The generation of the C language 
[19] real-time source code is performed by the Real-Time Workshop running under the SIMULINK 
environment [37], [33]. After an appropriate controller interconnection structure is graphically 
developed, SIMULINK can generate the according real-time code after which it automatically calls 
the TMS320 Floating-Point C compiler [40] to compile the source code into an object file which 
is then loaded into the DSP. Using a graphical user-interface development kit, also provided by 
CISPACE , the user can track and operate the controlled mechanical system on-line. Moreover, 
the measurement and control signals can be ported real-time to the host which can store it on 
block-devices or present it as graphical output. This setup makes the experiments very flexible 
and clearly supervisable. 

4.2.1 scaling the setup 

The implementation of the controller in terms of motor current and voltage was given by equation 
(4.8). Except for a conversion factor, this equation can be directly used in the experimental 
setup. Although, an extensive and precise calibration of the setup was not yet accurately done, 
the experiments could be performed with satisfactory results. 

To get an idea of the relative scales, in Table 4.1, the model parameters for the field-scale, used 
throughout, are listed together with those of the lab-scale version. The eigen frequency, wd = & 
of the lab-scale is 1.00 rad/sec, while that of the field measures 1.125 rad/sec. Obviously, a 
minor difference is reported which is caused by the extra inertia of the TOB emulator which 
was appended to the setup way after its initial design. Hence, at the time the BHA-disc was 
designed there could not yet be accounted for this extra inertia. The hyphen given for e1 in case 
of the lab-setup, indicates that the damping at the BHA can be given any arbitrary value as 
of the Direct Drive Motor. On the other hand, the Direct Drive Motor itself, appears to have 
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unit 
lab-scale 

field-scale 

Ji C 1  k Jz cz 
Nms2 Nms/rad Nm/rad Nms’ Nms/rad 

8.5. [-] 8.53. lo-’ 0.36 0.03 - 0.05 
374 O - 50 473 2122 424.5 

a non-linear damping characteristic, both in relation to speed and time. Compensation for this 
damping is at this moment based on a combination of feedforwarding a preliminary parameter 
model and manually adjusting of this model through time. Future research could focus on an 
adaptive parameter-estimation algorithm that continuously compensates for this damping. The 
same could be performed for c2, but in this case it should be kept at a constant level. The 
BHA damping coefficient is not fixed in the field either. There, it is prone to large fluctuations, 
caused by the merely unpredictable drilling situations and transformations from one rock layer to 
the other. Finally, the damping at the rotary table in the lab-setup is not fixed since accurate 
parameter estimation on this quantity also has not yet been done. Moreover, it is also non-linear. 
The relative damping ,5 = & at the rotary table measures the same order of magnitude for 
both scales, i.e. [Z,lab M 0.06 and < 2 , f i e l d  

The 3-1, controllers computed in the premise, were based on the field-scale. To implement them in 
the lab-scale, re-computation is not necessary as the relative system quantities are approximately 
the same. It was illustrated in Chapter 3, that the 3-1, controller was quite robust in the face 
of parameter variations concerning the eigen frequency and rotary table damping. Hence, the 
fact that relative system properties are not completely equal should have minor influence on the 
performance. For obvious reasons, the stability of the implementation is checked similarly to the 
procedure in Section 4.1 obtaining satisfying results. 

Resumably, scaling the controller by an appropriate multiplication factor suffices to convert from 
field-scale to lab-scale. The conversion factor is either based on the ratio between the string 
stiffness in both scales or that of the BHA inertias. If the eigen frequency of both scales was 
exactly the same, it would not matter which ratio is used. Rather arbitrarily, the ‘middle-of-the- 
road’ conversion factor: 

0.09. 

(4.19) 

is chosen. In this conversion F, , , ( s )  stands for the feedback function described by equation (4.12) 
in either the lab- or field-scale, J l , . . .  and k,,.  are the BHA inertias and lumped drillstring stiffness 
for either cases, respectively, and o is the conversion factor, readily defined. Computing this factor 
gives u = 5 . lo3. 

4.3 Experiments 

A number of experiments will be discussed. First the lab-setup is tested for its ability to per- 
form representative stick-slip oscillations. After that, the implementation of the 3-1, controller is 
compared to both simulation results and the STR-system. 

4.3.1 stick-slip experiment 

In this paragraph the experimental setup is tested for its stick-slip behaviour. In the TOB- 
emulator, a non-linear TUB model in the form of equation (3.10) is implemented such that results 



52 C H A P T E R  4. EXPERIMENTS ON A LAB-SCALE SIMULATOR 

10 

8 -  

6 -  

4 -  

2 -  

o 

of numerical stick-slip simulations using the same TOB-function can be compared. In the diagrams 
of Figure 4.10 the backlash torque is set at 0.6 Nm and the reference speed is set at 4.5 rad/sec. 
Comparing the numerical simulation to the experimental result, it can be concluded that both 
agree satisfactory. The response shapes, stick-slip cycle times, and the maximum bit speeds are 
similar. In order to get the best resemblance between experiment and numerical simulation, the 
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Figure 4.10: Stick-Slip behaviour at the bit: numerical simulation and experzment 

damping at the bit in the simulation had to be put at e1 = 0.025 Nms/rad. Obviously, the 
non-compensated damping of the TOB-emulator approximately measures this value. From this 
stick-slip experiment, it can be concluded that the lab-scale simulator setup forms a satisfying 
configuration to test the X, controller in case of ‘real’ stick-slip limit cycles. The results of this 
will be the subject of the next section. Comparison of simulations and experiments will be based 
on the best matching damping coefficient cl. 

4.3.2 results on stick-slip control 

In this subsection one X, controller based on Q = 100 will be tested. An experimerit is performed 
with the lab-scale simulator rotating at a nominal speed of Q2,,f = 5 rad/sec. At a certain time 
instance TOBd,, is raised step-wise from 0.1 Nm to 0.8 Nm. As TOB,,, = 2 . TûBd,,, the 
backlash torque becomes 0.8 Nm. This step results in a stiction-period. After that, the ‘bit’ 
releases and the ‘A!, controller circumvents a new stiction. 

In Figure 4.12, the experiment and numerical simulation with the 3t, controller are depicted. 
At t=45 sec, the TOBd,, is raised step-wise as indicated. Comparing it to the simulation, the 
bit speed in the experiment roughly shows the expected response. The settling of the bit speed 
in the experiment is somewhat disappointing. Moreover, the bit speed shows at about 75 sec an 
increasing oscillation. This is not due to an instability as it gradually vanishes (not depicted) but 
an occasional period of beating in the drive-system. The cause of this beating is not clear at this 
moment, though, it most likely has to be sought in the power controller of the rotary motor. 

Above experiment is also performed in case the STR-controller is implemented in the lab-setup. 
Before discussing these results, the STR- and X, controller are compared for their frequency do- 
main properties. According to the Maximized Minimum Damping criterion ([39]), the appropriate 
current-feedback STR controller for the lab-setup is described by 

S 
(4.20) 

FSTR(S)  = 0.35s + 0.44‘ 
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The current-feedback Xm controller, scaled such as defined in equation (4.19), is computed as 
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'Hm -controller gain - - 
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(4.2i) 

The abschte vahes and phases of both controllers are presented in Figure 4.11. A number of 

Figure 4.11: Absolute value (gain) and phase of the 'Hm and STR-controller 

conclusions can be drawn from these figures. Starting at low frequencies, it is clear that the 
steady-state error handling of the X, controller is considerably better than that of the STR 
controller. The 'H, controller gain maintains a high level at low frequencies, whilst the STR- 
controller gain has no capacity at low frequencies at all. Within the - 10' frequency range, 
the 'Hw controller introduces a highly phase-leading character. Phase-lead generally increases 
the stability margin of the closed loop. Apparently, (stick-slip) oscillations and disturbances are 
penalized in this frequency range by providing the close loop with stabilizing properties. The 
stability of the nominal is maintained sufficiently as the controller phase does not introduce large 
phase leads or lags from about wd towards the high frequency range. At the nominal eigen- 
frequency wd, both controllers have approximately the same gain and phase. In subsection 3.2.2. 
it was already argued that both controllers seemed to have the same strategy to kill an induced 
stick-slip cycle which generally occurs around wd. This makes the equivalent gain and phase less 
surprising. 
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Denoting the lower controller gain, the high frequency noise rejection of the 31, controller is some- 
what better than that of the STR-controller. Nevertheless, a low order low pass filter, properly 
filtering out the high frequency components in the measured motor current, improves the perfor- 
mance for both the STR and 31, controller. To assure stability, the cross-over frequency of this 
filter should be chosen sufficiently above that of the closed loop without such a filter. Following, a 
trial and error procedure, it appeared that a cross-over frequency at 100 rad/sec cf ZL second order 
filter r e s d t s  in B vatisfxisry perfûïmance. Mûïeûveï, it considerably reduces the 2ûûn radjsec 
(100 Hz or rectified 50 Hz) component in the motor current signa!. 

Considering Figure 4.13, it is clear that the STRS-controller results in a worse handling of an 
equivalently induced stick-slip oscillation for the 31, controller as depicted in Figure 4.12, Not 
until after five cycles, the stick-slip vanishes, probably caused by a disturbance as the simulation 
does not give rise to a termination of the stick-skip oscillation at all. Resumably, the better 
performance of the Ifl, controller towards stick-slip cycles obtained in numerical simulations is 
verified in physical experiments as well. 

Although these two comparative experiments are not decisive, important potentials to successfully 
implement and test an Ifl, controller on a field-scale drilling rig are illustrated. Prior to that, 
many more types of experiments should be performed on the lab-scale simulator, e.g. using the 
Spare Inertias for higher order dynamics. This is left for future research. 
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Figure 4.12: Bit speed response to Q 0.6 N m  TOB-step for the controlled system 
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Closure 

In the form of a discussion, conclusions and recommendations for future re- 
search, this chapter summarizes the design procedures and analysis results of the 
3-1, controller methodology as applied to control stick-slip vibrations in drilling 
systems applied in the field of oil-well preparation. 

5.1 Discussion 

Self-excited torsional drillstring vibrations due to the nonlinear character of the bit friction called 
T O B  at near-zero bit speed are a typical example of limit cycles ([17]). These oscillations are 
intensified as the drilling system comprises a long thin-walled drillstring, which, in combination 
with the poorly damped heavy thick walled inertia called the BHA at the drillstring-end, forms 
a torsional vibration system. That is, a torsional spring loaded by a rotational inertia. As a 
consequence, the non-linear behaviour of the bit friction excites the fundamental mode of the 
torsional pendulum in alternating periods of bit stiction (standstill of the bit) and bit slip (cutting 
rock formation). At stiction, the drillstring is wind up, buffering potential energy received from the 
driven rotary table at the top end, while at slip this energy is released again as kinetic (acceleration 
of the BHA) and dissipative eEergy (cutting, dip- 2nd darr,pir,g ‘he2t’). These stick-s!ii; oscillations 
are very detrimental to the drillstring and bit, and reducing them would result in significant cost 
savings. 

During the last few years, substantial reduction of the severe stick-slip oscillations has been 
achieved by the invention and implementation of the Soft Torque Rotary System ([al], [22] and 
[39]) in a great number of drill rigs. This system essentially comes down to a first order controller, 
which in combination with the rotary table acts as a damped dynamic vibration absorber ([y) in 
the face of torsional drillstring vibrations. The tuning of this controller is merely based on the 
assumption of equivalent importance of both the damped vibration absorber and the torsional 
vibration system. This controller has the advantage of being hyperstable, easy to adapt for the 
proceeding drilling process (longer drillstring) , practical and inexpensive to  install as it is simply 
implemented as a modification of the conventional motor control circuit. 

However, two shortcomings can be identified, the improvements of which has been the subject 
of the preceding chapters. Firstly, the maximum backlash torque that can be handled at a fixed 
reference speed setting is quite limited, and should preferably be raised. Secondly, the STRS 
dissipates too much vibration energy, resulting in a terminal standstill of the system whenever 
the T O B  reaches the maximum available motor torque. Normally, such high T O B  situations 
do not cause terminal standstills as the total momentum in the system (motor- and rotary table 
momentum, buffered drillstring torque and BHA momentum) is still sufficient to overcome T O B  
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situations that moderately exceed the maximum available motor torque. 

In this report, it has been attempted to design a robust controller based on the 31, control 
theory, first proposed back in the beginning of the eighties ([46]), which improves the denoted 
shortcomings. In general, a robust control problem is solved as the result of the following definition: 

;n ine robust con&rol o p ~ ~ n L . ~ z a ~ . ~ o n  p,ï~u;ob~e.ïïz the to-be-s.ynthesized contîolle, must: 

i) stabi2ize the plant af necessnry; 2) has to maintain closed loop stability and 
3) force the to-be-controlled variables to achieve prescribed performance speci- 
fications, in the face of plant uncertainties as ‘large’ as possible. 

The principle of 3t, control is based on this definition and provides both an interpretation of 
all items mentioned as well as methods to solve the problem. Although the initiate 31, problem 
definition is described mathematically equivalent, the solutions to it are ambiguous and is roughly 
divided in state-space solutions (e.g. [lo]) and frequency domain solutions (e.g. [46]). 

In the 31, setup the uncertainties are restricted to be a member of all uncertainties that have a 
feedback interaction with the nominal plant, and are bounded in the sense of the infinity norm 
1 1  11,. More specifically, the plant output q (either to-be-controlled variables and/or any other 
collection of signals) is fed back through the uncertainty to become the plant input w (disturbances 
to be rejected). The same is done for the measurements y being fed back through the controller 
into a control input u. Thus, around the nominal plant, there are two players trying to manipulate 
the plant output z (to-be-controlled variables, tracking errors, objectives or cost functions). On 
the one hand, there is the plant uncertainty trying to maximize the output z and on the other 
hand the controller, attempting to minimize the output z .  According to the general robustness 
problem defined above, here, the 31, controller design must result in a solution that optimally 
attenuates exogenous disturbances w to the objectives z ,  such that this input/output transmission 
has an infinity norm smaller than or equal to any desired level y. This notion makes it reasonable 
to insert weighting functions (design functions) in the nominal plant which emphasize problematic 
or interesting frequency ranges either or both from a stability Gnd performance point-of-view. Ap- 
propriate choices of such weighting functions can contribute to achieve above robustness definition 
‘as good as possible’ (sub-optimal approach). 

The application of the Xm setup to the drillstring vibration problems mentioned, can be made 
very fruitful because of its flexible design principles. The stick-slip behaviour just below the 
eigen frequency, which is treated as a disturbance input, can be accounted for by appropriate 
choice of an associated weighting function. Moreover, the property of the nominal system being 
able to overcome TOB’S lying moderately above the maximum available motor torque, can be 
maintained by the fact that the controller can be designed to put extra energy into the system 
whenever necessary, instead of extracting it (which the STR does). Finally, contrary to the STRS, 
a wide-spread range of desired step responses of the bit speed can in principle be manipulated by 
the weighting functions. 

The design of appropriate weighting functions, which will be reflected in the eventual controller 
synthesis, has been discussed in Chapter 2. For the computation of the controller achieving the 
robustness requirements, use is made of the well-known linear state space solution summarized in 
[14]. In Chapter 3 the results for both the frequency- and time domain were analyzed. Aspects on 
the stability- and performance robustness of the closed loop were also discussed. In Chapter 4, a 
method to implement the controller equivalently to the simple and practical method used for the 
STRS is also discussed and analyzed. Moreover, the results of implementation in a lab-scale setup 
emulating the torsional vibrations as found in real drilling systems are presented. With respect to 
the findings of these chapters a number of conclusions can be drawn. These are listed in the next 
section. 
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5.2 Conclusions 

Regarding the framework presented in Section 1.3, within which the X, controller had to be 
designed, it can be concluded that: 

e 

e 

e 

e 

e 

5.3 

The controller can be implemented successfully in terms of a simple current feedback control 
synthesized into a modification of the nominal (reference) motor voltage input. Although 
stability of the ciosed ioop in terms of the original measurements and control input (see 
Chapter 2) may be guaranteed, it should always be checked in the modified implementation. 

The choice of o = 100 leads to a satisfying compromise between the level of the stick-slip 
backlash torque that can be handled on the one hand, and stability/achievable TOB,,, on 
the other hand. The closed loop infinity-norm is with 0.35 more than satisfactory. Backlash 
torques up to about 7 kNm can be handled for Qr,j = 10 rad/sec (Table 3.1), whereas 
the STR system can handle backlash torques up to 3.5 kNm for the same situation. The 
maximally achievable TOB,,, measures more than 56 kNm for this speed, implying that 
the controller has not degraded the nominal system performance in this field. 

The closed loop system is robustly stable. It robustly attenuates T O B  disturbances in the 
face of plant uncertainties. This is obtained in both the frequency (robust performance) as 
the time domain (stability and performance). 

The settling of the bit speed after a disturbance in either the reference speed or the T O B  is 
illustrated to be significantly improved over the settling properties of the STRS-controlled 
system. The reason for this can be found in the servo-capabilities of the 31, controller, 
contrary to the pure damping properties of the STRS. 

An actual implementation in a lab-scale torsional drillstring dynamics emulator supports 
the above conclusions. Although the experimental conditions were not completely com- 
patible with the numerical simulations, broad resemblance has been observed in both test 
environments. 

Recommendations 

kiong the iines of the premise a number of recommendations were already made. They are 
recapitulated and extended here. 

e An structural procedure to obtain even more analytic-like weighting functions should be 
investigated. Such analytic weighting functions should hold typical system parameters such 
as the fundamental eigen frequency, reference speed in cornbination with the backlash torq.lie 
that one wants to handle. In general, such analytic weighting functions can be structurally 
applied in an adaptive Em controller scheme to deal with the time-varying drilling process. 

e A complete new analysis of the 31, control problem for the drilling system can be performed 
for the case that the reference speed is also defined as a feedback control input. It is 
interesting to find out if even better results can be obtained for this case. For example, 
the reference speed could automatically increase if the average T O B  has increased. This 
would possibly circumvent stick-slip oscillations as they are easier induced for a relatively 
high T O B  in comparison with the reference speed. 

e Concerning the lab-scale experimental setup, a structural adaptive parameter estimation 
algorithm together with an appropriate control scheme should be developed to suspend 
the intrinsic non-linear time-varying, damping in the TOB emulator and motor drive. This 
would make comparison between experiments and theory more valuable and non-ambiguous. 
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It is interesting to investigate the influence of building a simple dynamic attractor to phase 
out the oscillations in the drillstring’s eigen mode instead of the ‘damped dynamic vibration 
absorber’ (STRS) . 

0 A rather side-line discussion about solving the stalling problem is the following. Usually, 
the BHA together with the drill bit are dynamically coupled with the drillstring in the 
longitudinal direction. This dynamic coupling is performed by means of a. so called t h h y ~ t c -  
(see [20] and [38]) for more details). The main function of a thruster is to control the Force 
On Bit (FOB) ,  that is the axial force induced by the weight of the BHA and the hydraulic 
pressure force of the thruster. The term WOB used in Chapter 1 is somewhat differently 
defined as the FOB used here, in that the latter adds hydraulic forces to the W O B .  The 
FOB puts pressure on the bit and consequently on the formation such that it can be cut 
effectively by the bit. Hence, the FOB determines the TOB,  e.g. 

On the other hand, axial vibrations-which are quite often induced by the tree-cone- or roller 
cone bit shape (see [BI and [47])-can be reduced when the FOB is hydraulically controlled 
by the thruster. Actually, the thruster can be seen as a shock-absorber quite similar to 
those applied in automotive suspension systems. Mostly by hydraulic pressure dynamics, 
the dynamic FOB phases out the axial drillstring oscillations. Thus without using actively 
synthesized control effort. If, by any technical modification or redesign of the thruster, the 
hydraulic pressure can be actively synthesized then such a control setup could be coupled 
with the situation in the torsional direction. For example, when a complete stalling situation 
is about to occur, then this could be circumvented if the FOB is temporarily reduced by 
taking appropriate control action in the thruster. This also reduces the T O B  for example 
according to equation (5.1). The bit can be controlled towards its steady state reference 
speed after which the FOB can be gently increased again. Of course, such a mechanism can 
be used persistently in all situations where the torsional control system is not able to kill 
stick-slip oscillations. 
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Robustness Theorems 

Consider Figure A . l  where the closed loop H is partitioned according to the input/output vectors. 
A denotes a TFM stored with model uncertainties. A(s) is assumed to be a member of the set A(s) 
for which holds: A(s) E A(s) : [ A(s) = diag{Ai(s)), IlAi(s)I(, 5 1, dim(Ai(s)) 5 dim(A(s))]. 
The &/output relation w to z can be described by the =per LFT: 

Figure A . l :  Partitioned closed loop with uncertainty block 

&(H, A) = H22 + HziA ( I  - HiiA)-l Hi2 ( A 4  

From F, ( H ,  A) it is clear that the perturbation A destabilizes the system if and only if I - HllA 
becomes singular, i.e. 

det ( I  - Hll(jw)A(jw)) = O ,  ( A 4  

for some w and some A E A. This condition for destabilization provides the opening to the 
definition of the structured singular value ,u, i.e. 

1 
V W E 8  

:= minaEa{a(A(jw)) : det ( I -  Hll(jw)A(jw)) = O}' 

unless there can not be found any A E A that makes I -  HllA singular, in which case ,u(Hll) := O. 
The ,u-number can be interpreted as to be reciprocal of the maximum singular value of thát 
perturbation A E A for which the perturbed closed loop becomes unstable for the first time. In 
analogy of a,  norms, define 
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Although it seems to appear as one, 11 . is not a norm, since it does not satisfy the triangle 
inequality condition. This condition is one of the three conditions for norms to hold in an inner 
product space (see [45]). It says that for some quantities a and b and some norm definition, 
Ila + 611 5 Ilall + Ilbll. No such condition can be derived for the 1 1  . Ilp-number. 

Now, Doyle's Stability Robustness Theorem, Eg], states that 

...... 'Theorem 1 the system depacted in Figure A.1 remains stable for all A E A i f  and only i f  
IIBilIIp < 1. 

Proof: immediate from the definition of p O. 

If indeed A E A, then above theorem replaces the Robust Stability notion defined in Section 3.1. 
They come down to the same criterion if A A as will be shown as the proof of the following 
theorem: 

Theorem 2 If A(s) were a full complex-valued TFM then p(H11) = ü(H11). 

Proof: If Ü(A) < &, then F(H1lA) < 1, so I - H l l A  is nonsingular. Applying equation 
(3.16) implies p(H11) 5 z ( H 1 1 ) .  On the other hand, let q and v be unit vectors satisfying 
Hl lv  = F(Wll )q ,  and define A := LWU', where u' is the complex transposed (conjugate) of 
u. Taking Ti(.) of this defined A, shows that F ( A )  = & and I - H l l A  is obviously singular. 
Hence, p(H11) > - F(H11), which was not the starting point. Clearly, p(H11) = ü(Hl1) .  0 

Note that Theorem 2 essentially shows that if structured uncertainties of the denoted type are 
assumed, giving rise to the straightforward stability criterion (A.3), the stability bounds may be 
'larger' than if full-block uncertainties are considered. 

Now, consider the perturbed structure of Figure A.2, where z and w are also closed by the fictitious 
perturbation A f .  If a total perturbation of the structured form A,,, = diag{A, Af} is assumed 

o(Hi i )  

W l i  - I  z 

Figure A.2: Partitioned closed loop with uncertainty blocks 

than Doyle's Performance Robustness Theorem, [9], states that 

Theorem 3 IIFu(H,A)llm < 1 holds and llH1ll/p < 1, computed with respect to the structure of 
A,  is satisfied i f  and only if 
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computed with respect to the structure of diag{A, Af}, for  stable H .  

¢j detji - EilA] detjl - [H22 + Hala ( l  - HllA)-1H12]Afj > 0 
which miist hold for all A and A,. So, also for A = A, = O. This implies that the requirement 
det[l  - HAt,,t] > O holds iff det[l - HllA] > O and det[l - KllA]det[l  - [AZ:, + HzlA(1 - 
HllA)-1H12]Af] > O,  for all permissible A,  A,. This is respectively equivalent to 
IIHiiIIp < 1 and IIH22 + HziA(1- HllA)-lH1:,)lloo < 1 * IIFL(H, A)/[.. < 1. 0 
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Appendix A 

Modelling the Drillstring 

This appendix discusses two alternative concepts to model the drillstring. The 
Transmission line modelling, and the Finite Element Method as they can be 
applied to the drillstring modelling will be discussed in a general manner. 

B. 1 Transmission line modelling 

See for the following also [39] and references therein. Consider Figure B.l in which an infinitisimal 
section of the drillpipe is taken. The equivalent torsional dynamic properties are depicted in the 

dx 

c 
dx 

Figure B.l: Infinitisimal section of the long drill pzpe 

magnified section. In the transmission-line modelling, it is assumed that the drillpipe is built out 
of consecutive linear dynamic elements. The total drillstring inertia Jt (subscript stands for 
transmission) is divided in sections J t / l  dx, while the same is assumed for the external damping 
c, along the drillstring shaft. The total torsional drillstring stiffness kt and the internal damping 
ei are thought to be an infinit number of mechanically parallel connected torsional springs ktl/dx 
and dampers ciZ/dx, respectively. One such set is depicted in the magnification. 

The equations of motion for this infinitisimal section can be readily derived as follows. For the 
torque at the right end of the section holds 

dT(x,  t ,  dx T ( x  + dx, t )  = T ( z , t )  + 7 



64 APPENDIX B. MODELLING THE DRILLSTRING 

For the torque at  the left end there holds 

Applying Newton to the damped inertia yields 

Substituting (B.l) and (B.2) in (B.3) and rearranging the results in the following partial differential 
equation 

4 Using 2 = a ( x ,  t ) ,  applying Laplace transformations, and introducing the Laplace variable 
s finally yields after rearranging: at 

The parameter q has the dimension of length and can be interpreted as the complex wavelength 
of the propagation of torsional vibrations in the drillstring. As of the squared q,  both positive and 
negative signs can be assigned to the solution of equation (B.5), giving rise to the forward travel- 
ling shape e"/q and the backward travelling shape e - " / ? ,  which in combination form hyperbolic 
functions. It can readily be verified that for the rotational speed at the left and right of the rod 
section holds: 

T ( x = l ,  S )  - cosh(x/q) T(x=O, S) 
sinh (x / q )  Q(X=O,S) = d(S) ( 

where 

w = &------ s Jt + C e )  (sei + k t )  

Although (B.6) and (B.7) gives the general solution for every infinitisimal section dx along the 
drillstrill coordiante x, the general solution n(x,  s )  is not described in terms of boundary condi- 
tions, e.g. at x = O and x = 1. These boundary conditions are formed by at x = O: the damped 
BHA inertia, which is excited by the TOB and at x = E ,  the damped rotary table inertia excited 
by the motor torque T2. Since TOB and T, are no a priori decribed functions the general solution 
of n(x,  s) can not be given. 

On the other hand, using the transmission line modelling concept, local descritization of the 
continues drillstring can be given a consistent parameter values. Such a procedure is illustrated for 
the rather arbitrary descritization of the drillstring into a lossless inertia/torsional spring/inertia 
combination (see Figure B.2). 

The matching of the discrete model should be executed by equating an energetic or power balance 
between the two models to zero. On the other hand, the quantities defining the total system power 
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T ( z  = 1, s )  

h, Jt 

T ( z  = o, s)  

Figure B.2: 1eft:continuous drillstring, right:discrete drillstring model 

are formed by the power conjugated pair Q(z, s)  and T ( z ,  s) .  Assuming that the rotational speed 
at z = O and z = 1 are the same for both the model principles, the only quantity to macth is the 
torque T ( z ,  s). Rewriting (B.6) and (B.7) yields 

- Q(z=O, s)  R(z=l, s)  

29 tanh ( z /q )  29 sinh (z/q) T(z=O,s) = 

Q(z=O, s )  i2(z=11 s )  - 
d sinh (x/q) + d tanh ( z /q )  

T(z=l ,s)  = 

For the discrete model the equivalent equations are given by 

(B.9) 

(B.lO) 

(B.ll)  

(B.12) 

Notice that all velocities are defined as fluctuations around a reference speed, hence they are not 
the same as the velocity definitions used throughout the report which were absolute. Now define 
the error torques: 

E 1 ( S )  = T ( X = O , S )  - T I ( S )  

Q ( S )  = T(z=l, s) - T2(s). 

(B.13) 
(B.14) 

Recall that only the lossless case is considered here, implying ei = e, = O ,  hence q = - 
S 

1 
and 6 = - After multiplying (B.13) and (B.14) by z/qsinh (z/q) substituting Q(z=O, s) = 

Rl(s) ,  R(z=l,  s) = Q ~ ( s ) ,  and expanding q and d ,  the following equivalent error functions arise: 
m. 

zsJ tcosh  [ z s m  ) +JJ ;Tkl (k+s2j , i , ) r? inhj  z s m  ) 

1 + (B.15) 
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x s J t  - d m k s i n h  ("7) Jt / k t  

x s Jt cosh (''y) + ( I C  + s2 Jdz) x sinh 

i + 

Performing a Taylor expansion around s = O and for x = 1 yields 

(B.16) 

(B.17) 

(B.18) 

If the approximations up to the third order are equated to zero, and if the non-trivial solutions 
are obtained then the matching parameters of the discrete model are given as functions of R1 and 
Q2 as: 

kd = kt (B.19) 

(B.20) 

(B.21) 

The matching stiffness kd of the discrete model is always equal to the total transmission model 
stiffness k t .  The lumped masses Jdl and Jd, can be obtained from (B.20) whenever Q1 and $22 

are available. As mentioned before this is a boUndaïy ccr,dition sroblern and is determined by the 
excitated dynamics of the BHA and rotary table, respectively. 

The one-mode model used in part I can be readily verified from the obtained approximations. 
In Chapter 1 it was noticed that whenever the speed fluctuations of the rotary table were zero 
( f l 2  = O ) ,  then 1/3 of the total drillstring inertia should be added to the BHA inertia. Indeed, one 
obtains Jdl = $Jt for Q2 = O and for all al, or quite equivalently for f&>>f i2 .  The symmetric 
result Jdz = $Jt can be identified whenever Q1 = O,  or f l 2 > > f i 1 .  Another extreme solution is 
obtained for RI  = R 2 ,  that is the fluctuations at the top- and bottom end are equal. In such 
case Jdl = Jd2 = i J t .  All other solutions lie in between these extreme cases. The error of the 
simple one-mode model defined in Chapter 1 is small whenever Jt<:<JBHA, Jrot but is already 
considerable for the 2000 m drillstring used throughout. In that case the drillstring inertia Jt was 
already 9% of the rotary table inertia and 60% of the BHA inertia. Recalling the extreme cases 
for the velocity fluctuations it can readily be verified that the error in the inertia J1 (defined in 
Chapter 1) can rise up to 16.5% which implies a (maximum) error in the eigen frequency wd of 
40%! On the other hand, this relatively large error of the eigen frequency is obtained if Q ~ > > Q I ,  
that is the rotary table fluctuations are very much larger than those of the BHA. This is a very 
unlikely situation if one reminds that vibrations at the BHA (stick-slip) are always higher or tof 
the same order of magnitude than those of the rotary table even when the rotary table speed is 
fluctuating as of controller intervention. 
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B.2 The Finite Element Method applied to torsional drill- 
string dynamics 

In this section the Finite Element Method ([48]) to model the torsional drillstring dynamics is 
applied. The FEM model concepts are compared with the transmission line modelling. Consider 
t hc  U-D cmtinzvus body io Figlare E3 3 In this figure Z ( t )  is a vector of local coordinates, p is the 

Figure B.3: Forces and properties of ca 3 - 0  continuous body 

density of the body material, C is a viscous damping factor per unit density, a(t)  is the 3-D stress 
tensor, q ( t )  is a vector containing body forces per unit density, and finally f ( t )  is a vector with 
forces at body surface. According to Newton the equations of motion for such a 3-D body can be - 

written differential form as: 

p q t )  + p&) = O . a(t)  + p@) 

These equations can be written in an equivalent form, i.e 

G ($(i) + p<k(t)  - O. a(t)  - p;(t)) dV = O VG E Co, 

where Co denotes the collection of all continuous functions, an( G is (an ai 
weighting functions restricted to the continuous kind. Moreover there holds: 

-, 0. (a. G )  = (VGy : cr + G ' (O . .) 

G .  (V . u-) = 0 . (a . W )  - ( 0 W ) C  : a 
¢$ 

+ 

e 

(B.22) 

(B.23) 

itrary) vector of 

(B.24) 

(B.25) 

(B.26) 

Now, Gaussian's theorem of divergence states that application of the divergence operator O to 
the volume integral of a vector is equal to the area integral of that vector, i.e. 

(B.27) 
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where Z is the unity vector perpendicular to the outer surface A. Substituting (gauss) into (B.25), 
assuming geometric linearity, i.e. V(t) B YO, and applying the explicit form of Jv W .  (V.  o)dV in 
equation (B.22) finally yields 

+ 

J vo S . p l i d V o + ~ o a . p l l d V , + L ~ ( U ~ " ) r  :u(t)dVo = ~ o " p V ( l ) d V o + ~ ~ a . i ( l ) d A ~  Y6EC1,  

IR 952) 
\""" 

where $(t) = n' . o(t), and C1 the collection of all functions that are at  least once differentiable. 
Formulation (B.27) is called the "weak formulation" as it only holds for G E C1. Mapping (B.27) 
onto a physical 3-D coordinate system Z = [x, y, z]  the matrix notation becomes 

L o G T p 6  dVo + LoGTpcií d% L o ( V o G ) T g ( t )  dV, = lo W T p @ ( t )  dVo + / GTt( t )  dAo VG(2) E C', 
Ao 

(B.29) 

where (.) denotes a column and (.) denotes a matrix. Now the idea and problem of the dynamic 
FEM is to solve (B.28) over the volume VO and area A0 whenever these are discritizised into finite 
elements. The discritization into elements gives rise to element nodes and there displacements 
collected into columns ue. If the weighting functions G ( 2 )  are also given in these nodes as 'Lue, 
then the key idea of this discritization is to define interpolationfunctions &(Z) over each element 
such that 

(B.30) 
(B.31) 
(B.32) 
(B.33) 

Substituting (B.29)-(B.32) in (B.28) and defining the process of assembling by the operator degi 
it can be found that: 

Hence, 

(B.34) 

(B.35) 

can be a function of U or b. The latter can be interpreted as an external damping force, just 
like ce defined in Section 6.1. The internal damping coefficient c is equivalent with ci defined in 
Section 6.1. Generally, equation (B.34) is written in shorthand as: 

- MEi+fi,,(ií,G,t) = fext(b,Zi,t), (B.36) 

where 

(B.37) 
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(B.38) 

(B.39) 

If the lossless case is assumed (terms with U, are zero), and a linear elastic consitution for the 
internal forces, i.e. 

then for the one-dimensional drillstring case (B.35) can be written as: 

- J G ( 2 )  + K@(z)  = Lxt(t,x),  (B.41) 

where x is the coordinate along the drillpipe shaft, @ is the column of local rotational displacements, 
- J is a matrix having the same form as Ad, and finally K is the torsional stiffness, i.e. 

K =  Le B T H  BdV (B.42) 

The left-hand side of equation (B.40) is determined whenever a choice is made for the interpolation 
function N(x) .  Here, the most simple case choice for the interpolation function is applied, that is a 
linear description in the coordinate z, implying the application of linear finite elements. Consider 
Figure B.4, in which one linear element is taken with the associated node displacements (pi and 
pi+1 at the beginning and end of the element, respectively. For this element ei the interpolation 

a 

Figure B.4: Linear finite element 

of the displacement vector is described by (see equation (B.29)) 

where 

Hence, the matrix B becomes (see equation (B.32)): 

(B.43) 

(B.44) 

(B.45) 

(B.46) 
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For this element ei the consistent inertia-matrix can be verified by appropriately applying equation 
(B.36). For rotational problems, the inertia per unit length is defined by the density p multiplied 
by the polar moment of inertia Ip  of the drillstring. In general, this polar moment depends on the 
coordinate z, since the drillpipes have a varying diameter, but here it assumed that Ip is constant. 
Hence, Li for the element under consideration becomes: 

r l l Q  l ~ c i  

[ 1/6 1/3 1 f a  I- 1 - $ / 3  1 I / c >  I / V  1 [i - z/a  z/a]  p Ip a d(z/a) = p Ip a Li=]* [ z / a  -I 
(B.47) 

The linear stiffness model described by equation (B.41) can be expanded for the element ei if one 
considers that the linear torsional stifness is described by the product of the polar moment of 
inertia Ip and the shear moduls G. Hence, equation (B.41) evolves into: 

- i /a  L. = Lu [ ] GI ,  [-i/. i/.] dz = - U (B.48) 

If n e  of such consistent mass matrices and stiffness matrices are developed for the same amount 
of linear elements than this would give rise to n + 1 nodes and displacements (pi. The process of 
assembling by means of the operator drz1 has to be executed. This involves no computational 
machinery, but it rather can be interpreted as the appropriate allocation of displacement variables 
and there associated matrix elements in M and K .  Such an assembled set of FEM differential 
equations was already given by (3.43) in which the drillstring was discretized in 5 elements and 
6 displacement coordinates. There, the rotary table and BHA inertia were also accounted for by 
simply adding there concentrated inertias parameters to the drillstring inertia fraction associated 
with the upper and lower drillstring rotational coordinate, respectively. Moreover, damping along 
the drillshaft, at the rotary table and BHA was also modelled, which could also be performed in 
this discussion if the damping matrix c was defined as 

(B.49) 

where C is fixed to a constant factor. 

The resemblance of the FEM modelling and the transmission line modelling of the previous section 
is illustrated again for the simple one mode model as depicted in Figure B.2. In that case there 
is only one element in equation (B.41) for which the equations (B.47) and (B.48) with a = I form 

the ingredients. Defining G Ip/a = k t ,  p Ip a = Jt and fext = [--TI T#', replacing - = sli and 
applying Laplace transformations, equation (B.41) finally becomes 

dP  
dt 

1/3 1/6 
sJt [ 1/6 1/3 ] [ :: ] i- [ '1 1' ] [ :i ] = [ ;y ] (B.50) 

Equation (B.50) is indeed equivalent to the matching of transmission line approximation. This is 
clarified if one extracts from (B.20) and (B.21), respectively: 

(B.51) 

(B.52) 

and substitute this together with (B.19) into equations (B.ll)  and (B.12). Rearranging the results 
indeed evolves to the same set of equations as (B.50). Note that, although the modelling concept 
is consistent, the discrete inertias J d l  and J d 2  can not be physically defined. In [39] a more 
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elaborate analysis of the transmission line modelling shows that if one defines complex inertia 
fractions (or interpret them as amping terms or as “differential inertia”) in the discrete inertias, 
the discrete modelling can be given more insight, although it is still not phisically realisable. 
Also in [39] a structural methodology is derived that finds the consistent system paramters for 
any arbitrary descritizised transmission line model for the drillstring. Even branched structures 
(inertialspririgldamper sets in series) belong to the possibilities. The methoc! is based 01: the 
~ ~ a l ~ n A & ” l l  I l l a b l L  w A u  i i i d u p  uit: p w u  wiij ug;ai,eu pair curriprising torque and speed Îrom one 
phyisica! !ocation to the other. The method is very acciirate as all coeEcients arising frsm equaticg 
the Taylor expansion of the trasnmission model to the associated discrete elements are derived 
analytically. The method is labeled as working “in place” as it does not result in “re-assembling” , 
re-sizing or re-computation of the incorperated coefficient matrix. Hence, less computation and 
memory is required to get an arbitrary accuracy. Although, the commercially available FEM- 
packages also have efficient algorithms to store and compute the involved matrix coefficients, 
the structured consistent modelling method briefly discussed here, is advantagous in case of the 
one-dimensional structure of the torsional drillstring dynamics. 

c.. ----.--.-- -.--A-- _ _ _ _  .L.,L --_I A L -  ____-^I --..I L . 3  - - - -  ~~~~~~ ~~~ 
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, 



Stick-Slip Phenomena 

In this appendix a few properties, such as the stability, of the non-linear stick- 
slip behaviour in a one-mode drillstring are discussed. The non-linear Ql os. 
T O B  characteristic is recapitulated here and its validity as a non-linear friction 
curve in comparison with observations in the field is argued 

C.l Non-linear friction characteristic 

In this section, a concise analysis of the non-linear TOB friction curve, first presented in equation 
(2.26), is presented. The T O B  characteristic is recapitulated here, i.e. 

This function can be manipulated arbitrarily by the parameters ai, i = 1, 2, 3 to describe the 
appropriate friction characteristic. In Figure C. l  the negative version of function ((3.1) is plotted 
for a1 = 9.5, a2 = 2.2, a3 = 35.0 and TOBd,, is set to unity to stress the T O B  non-linearity 
rather than its absolute value. It is obvious that the constant TOBdyn value is reached for If21 I>>O.  
From IQ;[ = 3 towar& sma!!er ]f22;1, the T O B  starts increasing to its maximnm TOB,,,. The 
location of this maximu lies very close to fl1 = O,  hence the function is very steep from i21 = O to 
the speed at which ITOBI = TOB,,,. This makes it possible to keep the bit speed very small 
in this range as a slight increase would increase the TOB enormously, preventing the bit to gain 
speed. As the stiction seems to be a situation in which the bit is at static equilibrium, the steep 
functionality of the T O B  around 

The stick-slip functions used in [21], [24] and [16], are all ‘crisp-like’ relations. Whenever the bit 
speed drops below a certain threshold value, the bit speed is ‘un-physically’ put to zero and kept 
there until the T O B  reaches TOB,,,. To keep the bit speed to a zero value, in the denoted 
references, use has to be made of a semi-static model of the drilling system. More specifically, 
at zero bit speed, or static equilibrium of the bit, the drillstring torque is always equal to the 
stiction TOB. This drillstring torque increases as the rotary table approximately sustains its 
reference speed. If T O B  reaches TOB,,, the full dynamics drillstring model has to be used again 
as the bit starts rotating. This switching between static and dynamic models is definitely not 
what physically occurs. The switching between model types can also be explained as switching 
between the causality of torque and speed. In the dynamic model, the causality is pointed from 
torque (cause) to speed (consequence), while in the static model, the causality is pointed from 
speed (cause), which is put to zero, to torque (consequence). This type of modelling assumes an 
infinitely fast change of the T O B  and C21 which can not be expected in the real process. Although 

= O gives a practical approximation of this equilibrium. 
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Figure C.l: Non-linear T O B  characteristic as a function of RI 

[16] presents an improving modification to this switching in the form of a reset integrator, the 
whole idea of switching between models seems to be unsatisfying. 

This is the main reason, the continuous T O B  model, described in equation (C.l), is used through- 
out this report to induce the stick-slip phenomenon. Hence, by this function it is not tried to 
force stick-slip by artificial bit speed manipulation, but it presents a model for the friction torque 
as a function of the bit speed that is able to induce an equivalent type of ‘stick-slip’ limit cycles, 
although the bit is never really sticking (the model is always dynamic). This makes is possible 
to keep the T O B  at the right-hand side of the differential equation of the dynamics at the bit, 
which is both practicai and eíñcient for simuiation as wei1 as for non-linear controiier canonicai 
state space descriptions (e.g. to synthesize non-linear control techniques). The numerical inte- 
gration of the differential equation at the bit does not degrade in avarage speed, but appears to  
be even faster than the model swithching approach. This has been verified using an Adams-Gear 
integration scheme. The difference in integration speed is probably caused by the relatively slow 
I F .  . .THEN operations that have to be executed every integration-cycle to enable the appropriate 
switch. 

A disadvantage is that the continuous T O B  model is not straightforwardly tunable by means of 
the parameters ai. A fundamental mathematical analysis of the structure of the T O B  model 
might reveal a structural approach to the choice of ai’s. In this report, the tuning is still executed 
on a trial-and-error basis. In the present case, the parameters ai are manipulated such that 
TOB,,, = 2 . TOBd,,, and such that the interval of in which the T O B  decreases from 
TOB,,, back to TOBd,, (backlash torque interval) is kept relatively small. On the other hand, it 
seems quite reasonable to enlarge this interval as in practice the effect of it is repeatidly perceived. 
The effect of a relatively large backlash interval is that stick-slip oscillations can arise without 
change of anref,  TOB,,, or TOBd,,. This will be a subject in the next section. This section is 
concluded by stating that in virtue of the continuous T O B  function, a rich variety of non-linear bit 
friction characteristics can be chosen, it is easy to implement in simulations or non-linear control 
algorithms, and generates a fast integration of the differential equations involved. 
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C.2 Stick-slip limit cycles in the phase plane 
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In this section the stick-slip limit cycles, as they can be generated by the TOB function (C.l), 
are viewed in the phase plane. Four cases will be discussed. In all figures involved, the twist 
(6 is plotted versus the velocity difference i21 - Rz. Moving along the plots in the direction of 
increasing time implies that the curves should be Îoliowed anti-clockwise. In Figure C.2, two cases 

Figure C.2: Marginal stick-slip limit cycle and persistent stick-slip limit cycle 

are depicted for i2,,j = 5 rad/sec. The persistent stick-slip oscillation is a relatively heavy limit 
cycle. Considerable extra damping at the bit (or by controlling the rotary table) is necessary to 
kill the stick-slip cycle. Although it seems that only one cycle is depicted, in fact a few of them 
are plotted ‘under’ the dotted curve. As the conditions do not change, these cycles are persistent 
copies of one another and can therefore not be distinguished in the plot. The same holds for the 
marginal stick-slip curve envisaged by the solid line. This stick-slip limit cycle is very ‘light’ and 
adding a little more damping at the bit woiu!c! make it damp oilt. The conditions for m a r g i d  
stick-slip , which can in fact be seen as thresholds beyond which the stick-slip does not occur or 
sustain, can not be determined in a closed loop fashion for the T O B  function used here. In [21] 
[22] and [39] such thresholds are determined in case of a crisp TOB functionality. The thresholds 
derived there, are combinations of Q.,f and c1, below which -, and the backlash torque above 
which stick-slip in the un-controlled drilling system will sustain if induced. 

In Figure C.3, the time reponse with i2,,f = 5 rad/sec starts with a short period of stiction 
(Q1 - Q2=-5). After the bit starts rotating again, the oscillatory speed response does not induce 
a new period of stiction and the oscillation gradually dampens out to the equilibrium at 4 = 
(clR,.,f + TOBdyn)/k,  and RI = = sl,,j. Obviously, the damping at  the bit is high enough to 
circumvent a new stiction after which persistent stick-slip oscillations would definitely strike up 
again. Notice that the damping is rather low as the cycles tend slowly to the equilibrium, implying 
that only few energy is extracted from each oscillation cycle. 

In the last phase plane plot depicted in Figure C.4, the phenomenon of self-inducement of stick- 
slip oscillations at  unchanged conditions is illustrated. In Section 7.1 it was already argued that 
the relatively long backlash torque interval causes this self-inducement of stick-slip limit cycles. 
The condition for the self-inducing stick-slip oscillations is that the reference speed must lie some- 
where in the backlash interval, combined with a low damping coefficient. The combination of the 
TOB(R1) and the damping force q i 2 1  represents the total load torque at the bit. Hence, if the 
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bit speed (or reference speed) lies somewhere in the interval of TûB(S21) + q S 2 1  having a negative 
slope, then a slight disturbance in the bit speed ‘feels’ a negative (non-linear) damping causing 
a slight magnification of the velocity oscillation. This magnification proceeds in all subsequent 
oscillation cycles, and the speed ‘crawls’ itself into the non-linear TOB function. This goes on 
until the velocity amplitude has become high enough to self-induce a period of stiction at which 
a steady stick-slip oscillation is initiated. This process can be clearly identified in Figure C.4 
(recali that the curve proceeds anticlockwise). The small ~scillat~ionr at the center gradually gïûw 
until the first period of stiction induces the persistent stick-slip limit cycle described by the outer 
curves (indistinguishable). For this plot the TOB function (C.1) is used in which the parameters 
ai already given in Section 7.1 are substituted. The reference speed was set at Q r e f  = 3.0 rad/sec, 
and the damping c1 = O Nms/rad. Because the damping is set to zero the only load in question is 
the non-linear TOB From Figure C.l it is clear that s11 = 3.0 rad/sec just lies at the end of the 
interval with negative slope, which appeared to be enough to induce the steady stick-slip cycle. 

The rationale in above discussion is that continuous torque control of the drilling system is advis- 
able to provide sufficient damping or speed control, preventing the described self-induced stick-slip 
limit cycles. 

Although one can intuitively appreciate that the described TOB-load does not cause instabilities 
in itself (as i t  never generates power), the stability and uniqueness of the stick-slip limit cycle in 
a one-mode drilling model is derived in the next section using the functionality (C.1). 

-6 ’ I I I I I I I I I 
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Q 

Figure C.3: Damped out stick-slip limit cycle 
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Figure C.4: Stick-slap limit cycle induced by the large backlash torque interval 

C.3 Stability of the self excited stick-slip vibration 

The system 

belongs to the class of Lienard Systems. The physicist A. Lienard derived a number of conditions 
under which a system of the form 

performs an unique stable limit cycle (see [30]). The system (C.2) can indeed be written in the form 
(C.3) if the time derivative is taken whereafter rearranging and assuming Q2 = QTef =constant it 
follows: 

The variable x E S21 and x,,f E Q,.,j are defined. It can readily be seen that (C.4)-as an 
equivalent of (C.2)-is a member of the Lienard class. The functions f(x) and g(x) for the system 
under consideration are given by: 

The following functions will be used in the analysis to come and will therefore be defined first, i.e 
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Only positive values of the reference speed xref are considered as the problem is assumed symmetric 
around x = O implying that it is superfluous to consider negative x (for xref < O).  Hence, 1x1 is 
replaced by x. The functions F ( z )  and G ( x )  then become: 

Now, the following theorem (Lienard’s Theorem) describes the conditions under which the system 
(C.3) performs an unique stable limit cycle. 

Theorem 4 Under the assumptions that F ( x ) ,  g(x) E Cl(%), F ( x )  and g(x) are odd functions 

ofx ,  zg(x) > o for  x # o, F ( 0 )  = o, - dF(o) < O, F(x)  has a single positive zero at x = a ,  and 
F ( x )  increases monotonically to infinity for x 2 a as x -+ 00, at follows that the Lienard system 
(C.3) has exactly one limit cycle and it is stable 

dx 

Lienards theorem does not hold for the system (C.4), as the conditions: 9 < O and the single 
positive zero a for F(x)  are not met. On the other hand, there exists another complementary 
theorem stated and proved by the mathematician Zhang Zhifen: 

dx 

Theorem 5 Under the assumptions that a < O < b ,  F ( z ) ,  g(x) E C1(a ,  b ) ,  zg(x) > O for  x # O, 

G(x) -+ co as x -+ a z f a  = -co and G ( x )  -+ 00 as -+ b i f b  -+ co, - F ( z )  is monotonically 

increasing on ( a ,  O )  ü ( O ,  b )  and is not constant in any neighbourhood of x = O ,  it follows that the 
system (C.3) has a t  most one limit cycle in the region a < O < b and if it exists it is stable. 

4 x 1  

All assumptions of Zhang’s theorem will be subsequently discussed for the system (C.3) in which 
f ( x )  and g(z) as in equations (C.5) and (C.6) are substituted (omitting the absolute signs). First, 
the system is transformed by defining a new independent variable r by d r  = k(x - %ref )  dt. 

Moreover, the Lienard system (C.3) is written in the equivalent form: 
xJi 

dx 
d r  
- = y -  r;=(x); (C.10) 

(C. l i )  

where the subscript 
variable r. The transformed functions can be found to become 

indicates that the associated functions are based on the new independent 

1 
G7(x) = 2x2 

(C.12) 

(C.13) 

((3.14) 

The function f7  (x) is not presented as of its long and intricate expression. Moreover, it is unimpor- 
tant for the hypotheses in Zhang’s theorem. The function F(z)/g(x) in Zhang’s theorem is plotted 
in Figure C.5 for xref = 1.5 rad/sec and TOBd,, = 500 Nm. Considering this figure, defining 
any interval a < x < 6, where a < O < b ,  and recalling the functions described by (C.12)-(C.14) 
the hypotheses: 
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Figure C.5: Function 2 involved in Zhang’s theorem 

e F,(x), g7(x) E C1(a, 6 )  is satisfied. It even holds for all a < O < b; 

o xg7(z) = x2 > O for x # O is satisfied; 

e G,(x) = - +- co as x + a if a = -co is satisfied; 
X =  

2 

22 

2 
0 G7(x)  = - --+ co as x + b if b = co is satisfied; 

e- F7(z)  is monotone increasing on (a ,  O) ü (O,  b)  and is not constant in any neighbourhood of 
g7 
x = O .  This assumption is clearly satisfied if one observes Figure C.5; 

Hence, the limit cycles cawed by the non-linear TOB function for a given TOBd,, and Or,, are 
unique and stable. The system (C.10)-(C.11) can generate it in some interval a < 2 < b ,  although 
Zhang does not give any decisive answer to obtain this interval. 
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Appendix - -  U 

A Generalized State Space 
Solution to the 3-1, Control 
Problem 

In  this appendix, the state space solution to the Xm optimization problem is 
generalized for a class of non-linear systems. The linear approach applied in 
this reports will be shown to form a special case of the general solution. 

Non-linear Zoo control using La -gain approach 

Simular to the linear system description used to characterize the Xm control problem setup, here 
the general non-linear state space system is presented as 

where x denotes the state, the inputs u and w are the vectors with control inputs and exogenous 
inputs, respectively, y is the vector holding the measurements, and finally z are the to-be-controlled 
outputs. It is assumed that the system (D.l)  has a stable equilibrium at (z,y,z) = (zo,yo,zo).  
The optimal non-linear Xm control problem is to find a dynamic feedback compensator 

where is the compensator state, such that the closed loop system (D.l)-(D.2) has ,Cz -gain 
equal to the one lowest possible denoted by yo. See for the following also [35], [36] and references 
therein, especially [44] on the dissipative system concept that underlies the oncoming definitions 
and derivations. For general initial conditions xto and zto,  the optimal ,Cz -gain equal to yo > O is 
achieved if 

rT P T  

for all functions w ( t )  and all T 2 O .  In this formulation lla112 denotes the squared Euclidean norm 
of a vector a,  i.e. lla112 = a*a. Moreover, a vector a( t )  is said to be a member of the Cz -class of 
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T functions if the integral so ))a(t)))2dt < 00 for all T 2 O. The constant CO(zto, z to)  is an additional 
weight depending on the initial conditions of the state and the to-be-controlled system output. 
There holds Co(0, O) = O .  

Equality (D.3) can be interpreted as the optimal attenuation (level yo) of the Ca induced norm 
from exogenous inputs w(t) to the to-be-controlled system response z(t). Although, no explicit 
attention is paid to stabilization of the system (D.l), some sort of guaranteed asymptotic stability 
goes along with the assumption of finite C2 -gain, [44] As the optimal solution to the E ,  control 
probiem is in general hard to find, attention is only paid to the sub-optimal solution. In that case 
the sub-optimal solution io the X, control problem is to find a compensator (D.2) such that the 
closed loop (D.1)-(D.2) has Ca -gain less than or equal to y > yo > O in the sense 

The non-linear system (D.l)  is called dissipative with respect to the supply rate (!jy2)1w112- 
in the sense that there exists a solution V 2 O ,  referred to as the storage function, to the integral 
dissipation inequality: 

P . 5 )  
1 

If V(z) E C1 is a solution to (D.5) then V(z) is also a solution to 

which is called the differential dissipation inequality. 

There exists a worst case disturbance w with respect to (D.6), i.e. 

where VZ(x) denotes - "(') . Substituting this worst case disturbance into the differential dissi- 
pation inequality yields the Hamiltonian- Jacobi inequality: 

ax 

Now the system (D.l) has Ca -gain less than or equal to y if and only if there exists a solution 
V(z) > O to inequality (D.5). Inequality (D.5) only has a solution if (D.6) has a solution, while 
(D.6) has a solution if (D.8) has a solution. This is presented in a theorem in [35] 

Consider the general non-linear system (D.l) where g(z, W ,  u ,  t) = z (full state measurements) 
and z is affected by all available components in u. In the face of a finite C2 -gain, there has to be 
found a nonlinear static state feedback 

such that the closed loop (D.l), (D.9) (restricted to g = z and z fully affected by u)  has Ca -gain 
less than or equal to y from w to z .  
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The .Ca -gain of the closed loop (D.l), (D.9) is manipulated by both u and w. Recalling the original 
,& -gain property (D.4) of the closed loop, it is trivial to define the cost function (omitting the 
independent argument t )  : 

(D.lO) 

Achieving L2 -gain less oï e q d  than y is equivalent io minimization of the cost function in 
equation (D.lO). Although, adding the initia! condition weight CO(xto, zt,,) in (9.10) is more 
general as it accounts for the influence of a non-zero initial state as well, a minimal solution can 
also be obtained by dropping this weight. Note that the sub-optimal control problem defined 
in Chapter 2 as (2.3) can be readily identified again in the minimization of the cost in equation 
(D.lO) (if Co(xto, z to)  = O). 

The .C2 -gain sub-optimal control problem described by the minimization of the cost 3 can be 
viewed as a zero sum differential game where u is called the minimizing player whose goal is to 
minimize 3, while w is the maximizing player whose goal is to maximize this cost J- .  
As of the equivalence between (D.4) and (D.6) rise is given to the so called pre-Hamiltonian (all 
arguments are omitted): 

where p is defined as the co-state of IC (note that no assumptions are made yet for p ) .  Thus 
minimization of (D.lO) under the Ca -gain assumption of the closed loop is equivalent to obtaining 
minimizing and maximizing solutions u and w, respectively. Hence, there exists an unique saddle 
point with respect to u and w in the neighbourhood of the origin ( I C , ~ )  = (O, O ) ,  i.e 

(D.12) 

(D.13) 

where the extremizing solutions w* and u* satisfy the saddle point condition for II,: 

If w* and u* are substituted into (D.l l )  then this leads to the definition of the Hamiltonian 
function: 

The starting point of obtaining the Hamiltonian function defined above was that a solution V ( x )  2 
O to the inequality (D.6) had to be given. In the face of the definition of Hamiltonian functions, 
this is equivalent to finding a solution V ( x )  2 O for 

for which the maximizing worst case disturbance wWorst was already defined in equation (D.7). 
The minimizing best control input Ubest  is defined as 
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Hence, the solution of p must be a function of type Vz(x) (solutions to (D.8) implying a finite 
C2 -gain of the closed loop). 

Corresponding to H,(x, p )  the Hamiltonian vector EeZd X H ,  is considered to be given by 

The next defined matrix of derivatives map the points (x, p) on XH,  

(D.18) 

(D.19) 

(D.20) 

- -  a i  a i  a2H, a”-./ 

ax  d p  8x2 (?pax 
*[i] = [ - -  $; g ]  [;]e[ i ; ] =  [ -- a a2H, _ _ _  a a?2 H, 1 [ z], (D.21) 

in which the matrix with second derivatives of H, is a Hamiltonian matrix D H ~ .  In a Hamiltonian 
matrix there are always n eigenvalues in the open left complex plane and n mirrored eigenvalues 
in the open right complex plane, assuming that no eigenvalues are on the imaginary axis. This 

implies that the system [ i ] = DH, [ ] is inherently unstable. Since the pair (x,p) must 

be stabilized, a canonical projection, i.e. p = P(x)x, must be found which makes the solution 
of x invariant from that of p .  By this projection it is possible to stabilize the solution for 2 and 
consequently the solution for p .  If local solutions to the non-linear system (D.l) are considerd then 
DH, can be linearized in some point. As local solutions to the (stable) equilibrium are of interest 
the linearization should be executed in ( p ,  x) = (po,  ZO) = (O, O). If the projection p = P(O)x, with 

P(0) a constant matrix taken in the equilibrium is entered in the system [ ;] = D y [  I;] (by 
means of the equality P = Pi) then the following equality must hold for all x in order to obtain a 
stable solution for the pair (x,p) in some neighbourhood of (po,  xo for which the linearized solution 
is able to force the pair (zip) back to (x0,po): 

where H, (x , p) is taken in (ZO, po). This will be the case if for all such x holds 

(D.22) 

(D.23) 

which is better known as the Jacobi-Hamilton equation. 

The nonlinear 31, control static state feedback problem can be found to have exact local solutions 
in case the nonlinear system (D.l)  is of the form 

x = a(.) + b~(x)w + b z u ,  a(0) = O 

y = x  (D.24) 
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which describes a class of non-linear systems that are affine in both the disturbance 20 and control 
input u. It is easily shown that the extremizing solutions: 

ca11 he focnd fm (EX) mi! @.I21 ïcspectively. Using :oca: :iïîearizatiun ai ibe equilibrium 
(xo,po) ,  exploiting the Jacobi-Hamilton equation (D.23) will resdt in a local sslution far P and 
consequently p .  Hence, the non-linear control input and worst-case disturbance are known through 
(D.25) 

In this report, the solution to the 31, control problem is applied for a linear time-invariant system, 
a special case of (D.24). The solution for such a system is illustrated here for the linear system 
given below (which is slighlty more general than the linearization of (D.24)): 

2 = A x + B ~ ~ + B ~ u  
z = C X + D ~ W + D ~ U  
y = 2 (full state measurements) 

(D.26) 
(D.27) 
(D.28) 

with x E R", z E Rm, w E R4 and u E R p .  The pre-Hamiltonian, is then described by 

The worst case disturbance wworst can be found by 

leading to 

similady, the best control input, cctr, be femd by 

leading to 

(D.30) 

(D.31) 

(D.32) 

(DTD2) Ubest  = - (Bifp + DT(CX + DiW)) (D.33) 

T Since wwOrst and Ubest  must hold simultaneously the solution for the vector G7 = [Wworst  best] 
in terms of the state x and using p = Px can be obtained as 

G7 = -R-l ( B T P  + DTC) x := Fx, 

*'O2 1.  The matrix P can be *T 0 2  
with B = [BI B2], I )  = [Dl 0 2 3  and R = 

obtained by solving the aforementioned Jacobi-Hamilton equation using [w uIT = U,, i.e. 

P ( A  - BR-'DTC) + ( A -  BR-lDTC)TP - PBR-'BTP + CT(I  - DR-lDT)C = O (D.34) 
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Note that this is a standard stationary matrix Riccati equation familiar in linear state feedback 
control problems. A controller which satisfies C2 -gain < y is stabilizing if the solution P to 
above Ricatti equation is stabilizing, that is P = PT and A + B F  must have all its eigenvalues 
in the open left half plane. Note that both u and w work in this worst-case analysis as feedback 
quantities for the linear system considered here. This implies that indeed the worst-case closed 
loop system x = A x  + B1wWorst + B2ubest = ( A  + B F ) z  must be a stable system. Ir, the secpel, 
the fer.ihxk mztrin F is partitioned sccoïding to ii7 = [ q , , o r s t  iIbestj  = F z = iTr ~ T j x .  Eence, 
the controller feedback law becomes u = F ~ x .  

In above control synthesis it is assumed that the complete state x is known. In the general case 
only m* < n measurements of the state x are available. From these measurements an estimate has 
to be made for x .  This brings up the separation structure of the control solution. The separation 
structure says: 

1) Obtain an “optimal” estimate x of the state x and 2) Use this estimate 
as if it were an exact measurement to obtain the control law u = F2IC 

Equivalently to the control problem the estimation problem can be defined according to the linear 
system 

(D.35) 

It is assumed that 0 2  = [O 1IT and El = [O +which is always possible by suitable transformations- 
and E2 = O .  Applying the separation structure of the controller, consider a dynamic feedback 
controller of the form 

(D.36) 

The input U K  of the controller system equals the measured output y of the to-be-controlled 
system. Similarly, the output YK of the controller system equals the controller input u of the 
to-be-controlled system. The state X K  of the controller denotes the estimate IC. The derivation 
of the 3c, optimal observer gain is dual to that of the X, optimal control gain as shown before. 
Therfore, without describing any detailed derivations, it is stated here that a solution to the 
dual Riccati equation 

P(A - BIDTR-lC)T + ( A  - BIDTR-’C)P - PCTR- lCP+ B l ( 1 -  DTR-’D)BT = O, 

with 

defines the feedback gain-matrix for the estimation problem, i.e. 

(D.37) 
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Furthermore, if the following matrices are defined as 

then the sythesis of a 31, controller for the measured output system is described by the next 
theorem (Glover and Doyle, 1988) 

I )  A stabilizing controller exists, such that L2 -gain < y, iff 

b) there exists Riccati equation solutions P > O and 
p(P p )  < y2, wheras p(.) denotes the spectracradius. 

2) If a) and b) above are satisfied, then all (rational) stabilizing con- 
trollers K ,  for which .& -gain < y, are given by  K = FL(K,,@), f o r  
any rational @ ~ 3 1 ~  such that Il@llrn < y where Ka has the realization 

a) y > max(a.[D111, a121, qoT11, 0T2ll) 
2 O such that 

If the LFT FL(K,, @) is computed for K then the realization of such an stabilizing controller is 
of the form 

which exactly gives the matrices we tried to find. If y is the input and u is the output to this 
controller then in a block diagram the controlled system can be illustrated as follows 
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One of the solutions of these set of stabilizing controllers K is the one in which = O, which is 
known as the central or maximum-entropy controller (Glover and Doyle, 1988). In this case K is 
given by 

K :  (AK,BK,CK,DK) = (A,&, Cl, 611) 

This controller type is computed for the drillstring control problem throughout this report. 
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