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Abstract 

In order to improve the crashworthine s performance f ro d vehicles, safety 
measures, like airbags and seat belts, are developed. The coupling of an optimisation 
program with a crash simulation package, like MADYMO, can aid the designer in his 
search for the optimum safety measures design, using as few time expensive crash 
analyses as possible. 

A combined criterion of several injury parameters is formulated as the objective 
function, and the by law obliged maximum injury parameter values form the 
constraints. Injury parameters, and thus the objective function and constraints, show 
a noisy behaviour as a function of the design variables. Therefore, derivatives are 
unuseful and instead of an optimum point there is an optimum region where all points 
are considered equivalent. 

Within the general concept of sequential approximate optimisation, the midrange multi- 
point-path concept is chosen. With a movelimit strategy a subregion of the design 
space is defined. Herein several design points are selected and analysed. Using only 
function values, linear approximation models for objective function and constraints are 
built. The resulting approximate optimisation problem is solved by a simplex algorithm. 
Until a stopping criterion is reached, new optimisation cycles are carried out. 

After several tests, the first version of the developed method has been successfully 
applied to the optimisation of a full-scale off-set impact simulation, where six design 
variables were defined. Starting from an infeasible design, a strongly improved and 
feasible design resulted in only nine optimisation cycles. Possibly, the movelimit 
strategy and the plan points selection may be improved to yield a program that 
requires even less MADYMO analyses for the optimisation of the crashworthiness 
performance of road vehicles. 
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1 Introduction 

Road accidents are an important cause of fatal and severe injuries. Crash-safety 
research centres have successfully developed new safety measures, like airbags, seat 
belts and childseats. Additionally, injury parameters have been formulated to 
quantitatively describe severity of injuries. Governments nowadays impose restrictions 
on maximum injury parameter values for the crashworthiness petformance of road 
vehicles. They stimulate or oblige by law to apply newly developed safety measures. 

Historically, crashworthiness design optimisation was mainly based on trial and error. 
For every design change, physical tests had to give the decisive answer with regard 
to the improvement. Such physical tests are cost expensive as well as time expensive. 
To overcome these disadvantages, crash simulation software has been developed in 
order to replace physical tests by numerical tests. An important precondition for this 
replacement is that the mathematical models of both vehicle and occupant sufficiently 
describe the real physical behaviour. By using computer simulation tools, 
Crashworthiness design improvements can be systematically petformed. Although 
much cheaper than physical tests numerical experiments are still computationally 
expensive, even for relatively simple crashworthiness simulations. So the number of 
different designs that can be analysed is limited. Optimisation programs can aid the 
designer in his search for the optimum design using as few time expensive 
crashworthiness analyses as possible. 

In the last years several optimisation methods have been applied to crashworthiness 
design problems. Bennett & Park (1 991) compared a sequential linear programming 
(SLP) method with a method proposed by Vanderplaats (1 979). In the SLP method first 
order derivatives were obtained by using moderately large finite difference steps. 
Several crashworthiness design problems were optimised. Bosio & Lupker (1 991) used 
Taguchi’s design of experiments method to obtain a linear response surface model 
including interaction terms. A driver simulation with a seat belt and an airbag was 
optimised. Klink (1 991) constructed global response surface models (linear and 
quadratic), using a design of experiments method. An objective function, build from 
several neck injury parameters, was formulated to optimise a childseat. De Jager 
(1993) compared an algorithm developed by Nelder & Mead (1964), a midrange multi- 
point-path method developed by Toropov (1 989), and a midrange single-point-path 
method developed by Vanderplaats (1 979). Several tests on analytical functions and 
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crashworthiness design problems, among which Klink's problem, were carried out. He 
concluded that Vanderplaats' method períorms best. 

This report describes the development, implementation and application of a method for 
crashworthiness design optimisation. The crash simulation package MADYMO, to 
which the optimisation program is applied, is developed at TNO Crash-Safety Research 
Cer;:re (Delft, The Netherlafids). Ir: chapter 2, the seque~tia! apprcximzk optlmis~tion 
concept and more specifically the multipoint approximation concept is chosen for 
application to crashworthiness design optimisation problems. The development and 
implementation of a multipoint sequential linear programming method will be 
considered in chapter 3. Tests on several analytical design optimisation problems, 
known from the literature, are discussed in chapter 4, as well as the successful 
application to several crashworthiness design optimisation problems, known from 
practice. The developed multipoint approximation method is able to automatically 
handle problems with noise on the objective function and constraints. This and other 
conclusions, together with some recommendations, are presented in chapter 5. 
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2 Choice for the optimisation concept 

Crash simulation packages, and in fact structural analysis packages in general, are 
capable of analysing a user-supplied mechanical model, represented by a set of design 
variables. A design can be improved by manipulating the design variable values. It is 
necessary to formulate a criterion from which it can be concluded whether the design 
change is an improvement. In optimisation theory this criterion is called the objective 
function, which is a function of the design variables. The freedom of design is in 
general restricted by two types of constraints. The first type represents the restrictions 
with respect to the behaviour of the design (e.g. maximum value on stress in a truss). 
The behaviour is formulated in constraint functions, which are functions of the design 
variables (e.g. stress in a truss as a function of the cross section). The second type 
represents the lower and upper bound on the design variables. The design space is 
defined by these so-called design constraints. 

A general formulation of a structural optimisation problem is to find the set of design 

variables XE R " ,  that will minimise the objective function: 

subject to the constraints: 

j = 1,2, ..., m 

within the design space: 

/bi 25 I ubi i =  1,2, ..., n (2.3) 

If objective function and constraints are explicit functions of the design variables, the 
optimisation problem can be efficiently solved by a standard mathematical 
programming algorithm. In structural analysis, however, the relation between output 
response and design variables is, in general, only known implicitly. Generally, these 
implicit relations are very complex, resulting in computationally expensive analyses. 
Solving design problems with these properties, using a standard mathernatical 
programming algorithm, brings about two difficulties (Haftka & Gurdal, 1992). The first 
one is a programming problem. It is vary difficult to transform a complex analysis 
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package into a subroutine called by the optimisation program. The second one might 
be the high number of computationally expensive analyses these standard 
mathematical programming algorithms generally require, in case of nonlinear relations 
between output responses and design variables. 

There is an approach that solves both difficulties. In this approach a suitable 
approximation concept is used to inteifâce the s:ri;z:ural afialysis software and the 
optimisation program (Etman et al., 1994). This popular approach is called sequential 
approximate optimisation. 

Characteristic crashworthiness design optimisation problems, will be discussed in 
section 1. In section 2 all sub concepts within the sequential approximate optimisation 
concept will be briefly considered, whereafter their applicability in crashworthiness 
design optimisation will be decided about. Two popular multipoint approximation 
methods will be compared in section 3, whereafter it will be decided whether one of 
these two methods or a newly to develop multipoint method will be applied. 

2.1 Crashworthiness design optimisation problems 

Occupant responses in a crash event (e.g. accelerations, displacements and contact 
forces) are functions of time. It is very hard to judge injuries upon time signals. 
Therefore, time dependent occupant responses are replaced by injury parameter 
values, resulting from mathematical operations on the original time signals. 
Governments impose restrictions on maximum injury parameter values. These 
maximum values are the constraints in crashworthiness design optimisation. An overall 
improvement with respect to injury minimisation can be achieved by minimising a 
combined criterion of several injury parameters. 

In the functional behaviour of injury parameters as a function of the design variables 
discontinuities might occur, caused by design changes which lead to the appearance 
of contact situations. This is typical for crash problems. Injury parameter values result 
from mathematical operations on (a part of) the original time signals. For each 
simulation, the injury parameter values will generally be found between two different 
time points (another part of the original time signal). This is the cause for a second 
kind of discontinuities, due to the definitions of the injury parameters. In MADYMO the 
equations of motion are solved numerically. MADYMO simulations using the finite 
element module require a numerical method with a fixed integration time step. The 
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value of this fixed time step determines the accuracy of the solution. A second time 
step that has to be specified in MADYMO is the output time step. The response values 
at the output time points are used to calculate the injury parameter values. From 
appendix A, where several injury parameters are discussed in greater detail, it is 
concluded that, due to several causes injury parameters show a noisy behaviour as 
a function of the design variables. Therefore, derivative information is unuseful, 

optimisation problems which contain noise, is the fact that instead of an optimum point 
there is an optimum region, where all points are considered equal. The optimisation 
method to apply must be able to automatically handle problems, containing noise. 
Another aspect that has to be taken into account is that injury parameter values result 
from time expensive calculations. Therefore, the number of analyses in an optimisation 
process is limited. 

because this local informatior; does i7ûf represent the g!&2! DebaviCxJr. Typical for 

Application of optimisation software in crashworthiness design is initially sought in 
optimising occupant - safety measures interactions. Safety measures design variables 
are physical quantities, like diameters and thicknesses. In many optimisation problems 
the functional behaviour of objective function and constraints can be linearised by 
introducing so-called intermediate response variables (Barthelemy & Haftka, 1993). 
This can be explained by a simple crashworthiness example. The vent area of an 
airbag system has an important influence on head injuries. If instead of this area (A = 
nd2/4) its diameter d (the physical design variable), is defined as a design variable, an 
unnecessary square is introduced. Therefore, it is a more effective approach to 
approximate the occupant response as a function of A than as a function of d. 

In the introduction of this chapter it is stated that sequential approximate optimisation 
is a popular approach to deal with the optimisation of complex structures, like a vehicle 
- occupant combination. Within this concept an optimisation method will be sought for. 
There are several requirements this method will have to meet. Firstly, derivatives may 
not be required. Secondly, the number of necessary computationally expensive 
crashworthiness analyses should be limited. Thirdly, robustness should guarantee an 
optimum, satisfying all constraints and close to the global or close to a "good" local 
optimum. 
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2.2 Approximate optimisation for crashworthiness design 

The basic principle of sequential approximate optimisation is to generate explicit 
approximations of the objective function and constraints for a certain part of the design 
space, and to solve the optimum point for this approximate optimisation problem using 
a stanaara matnematicai programming algorithm (Etrnan ei al., i994). If the search 
subregion does not cover the complete design space, a new cycle of approximation 
and optimisation can be started at the optimum. This process is repeated until an 
acceptable optimum is achieved. A global, local, and midrange concept can be 
distinguished. The last concept can be subdivided in a single-point-path (SPP) and a 
multi-point-path (MPP) concept. All concepts will be briefly considered, whereafter their 
applicability in crashworthiness design optimisation will be discussed. 

Global 

The idea is to generate explicit approximation models of objective function and 
constraints for the entire design space or a large part of it. A successful approach is 
to build analytical response surfaces using function values from design points, carefully 
selected by some design of experiments method. A comprehensive work on 
experimental design and structural optimisation is given by Schoofs (1 987). The use 
of sensitivities is optional in global methods. Generally, objective function and 
constraints show a nonlinear behaviour as a function of the design variables. The 
relatively simple global approximations will then be quite coarse, generally resulting in 
an unsatisfying optimum design. However, this optimum can be used as a high quality 
start design for a next approximate optimisation in a subregion of the design space. 
Klink (1 991) optimised several crashworthiness design problems, and concluded that 
building global approximation models is a non-automated process, which demands a 
great deal ob understanding from the user. 

Local 

In local methods data of only a single design point is used. Therefore, local methods 
require at least function value and first order derivatives. The relatively simple 
approximations will only be valid for a small subregion of the design space. Within this 
region an optimum is located. The iterative process of approximation and optimisation 
is repeated until an acceptable optimum is achieved. The noisy functional behaviour 
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of objective function and constraints, resulting in unuseful derivatives, make the local 
concept unsuitable for crashworthiness design optimisation. 

Midrange 

Midrange methods gtternpt to combine the udvantsges of both iscal m d  g!oba! 
methods. The sequential character is the same as in local methods. ln each 
optimisation cycle, approximation models are constructed using data from more than 
one design point, as in global methods. As already mentioned, a single-point-path 
(SPP) and a multi-point-path (MPP) concept can be distinguished. 

0 Single-point-path 

In local methods all data from previous optima is discarded. If this data would be used 
to enhance the approximations, the search subregion could be enlarged. By doing so 
the neighbourhood of the optimum would be reached in fewer steps. All SPP methods, 
except for the method proposed by Vanderplaats (1 9791, use function values and first 
order derivatives to construct the explicit approximation models. Therefore, 
Vanderplaats’ method is the only applicable SPP method in crashworthiness design 
optimisation. 

Multi-point-path 

In the current search subregion some additional design points are analysed. This 
additional information is used to construct explicit approximation models, valid for a 
larger subregion than would be seen in local and SPP methods. If no derivatives are 
used, these approximations are relatively well capable of describing functions, which 
show a noisy behaviour. Therefore, it is concluded that MPP methods are applicable 
in crashworthiness design optimisation. 

Summary 

Based on the characteristic crashworthiness design optimisation problems, we 
conclude that midrange multi-point-path methods and Vanderplaats’ midrange single- 
point-path method are applicable in crashworthiness design optimisation in practice. 
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2.3 Mu Iti poi nt approxi mat ion concepts 

Both midrange multi-point-path methods and Vanderplaats' midrange single-point-path 
method use function values of more than one design point to construct explicit 
approximation models for a subregion of the design space. Therefore, both methods 
wiii be referred to as muiiipoini methods. A popuiar midrange muiti-point-path r-nethob 
is developed by Ysiopov et al. (1993). In this section, Toropov'c and Vanderplaats' 
methods will be discussed, whereafter it will be decided whether one of these two 
methods or a newly to develop method will be applied. 

Multipoint approximate optimisation as suggested by Toropov 

The start up procedure consists of choosing a start design, a search direction and 
movelimit factors, which defines the first search subregion. Herein plan points are 
chosen in the same way as in determination of finite difference derivatives. Explicit 
approximation models of objective function and constraints are built, using function 
values of start and plan points, and, if close to the current search subregion, some 
previous analysed design points. The resulting approximate optimisation problem is 
solved by a standard mathematical programming algorithm. After analysing the 
optimum design point, the maximum approximation error and maximum constraint 
violation are calculated. If the optimum is accepted, but no convergence has occurred 
yet, a new search subregion is defined, new plan points are chosen, and so on. 

Multipoint approximate optimisation as suggested by Vanderplaats 

At any point in the optimisation process a second order approximation is constructed 
about the current best design by fitting a full second order approximation using a least 
squares method to determine the "best" second order fit for the data (Bennett & Park, 
1991). The new optimum, calculated from the approximate problem, is added to the 
list of points and the process is continued until a stopping criterion is reached. In each 
search subregion this stopping criterion is based on the positions of last few optima. 
The process can be started with any number of points. If at any iteration, less than the 
number of points required for a full second order fit are available, a reduced 
approximaiion is constructed. Terms are added sequentially through the first order 
terms, the diagonal second order terms, and finally the off diagonal terms. As the 
design process converges only points close to the optimum are retained. 
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Discussion 

In Toropov’s method a large number of analyses is carried out in each optimisation 
cycle. However, for calculation of finite difference derivatives the same number of 
analyses is necessary. 

In Validerplaats’ method the desige; p ~ i i ì k  üsed to constr~ct the  approximation models 
will not be spread homogeneous over the search subregion. This is not favourable for 
the model accuracy. In the process of sequentially adding second order terms to the 
model, it is only known which term is important when a full quadratic model is 
available. Therefore, one can’t speak of convergence during this process of adding 
terms to the approximation model. 

De Jager (1993) compared Vanderplaats’ with Toropov’s method. For the latter only 
a simple movelimit strategy was implemented. Several tests were carried out on 
analytical functions and crashworthiness design problems, whereafter he concluded 
that Vanderplaats’ method performs best. Closer examination of the results teaches 
us that the main disadvantage of Toropov’s method is that many optimisation cycles 
are carried out in the last stage of the optimisation process. These cycles are of no 
use if the noisy functional behaviour of the injury parameters is taken into account. 
Considering this, there is only a small, negligible, difference between the two methods. 

We believe that with a more advanced movelimit strategy Toropov’s method will 
perform better than Vanderplaats’ method. Another improvement, which will extensively 
be discussed in the next chapter, is application of the experimental design theory 
instead of large finite difference steps. To summarise: based on Toropov’s method we 
will develop a new midrange multi-point-path method. 
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3 A multipoint sequential linear programming 
method 

The multipoint approximate optimisation process is visualised in Figure 1. By specifying 
a start design, among other things, the first search subregion is defined. Herein several 
extra design points are selected in order to construct the approximation models. In 
section 1 the choice for linear approximation models will be made and the plan points 
selection will be discussed. The linear approximation models for objective function and 
constraints are built using function values of the start and plan points. The resulting 
approximate optimisation problem is solved by a simplex algorithm, which will be 
considered in section 2. In the movelimit strategy module it is decided whether 
convergence has occurred. If not, a new search subregion is defined, starting from the 
approximate optimum (section 3). In section 4 the analysis module will be considered 
and in section 5 the implementation will be discussed. 

Figure 1 : Block diagram of a multipoint approximate optimisation process. 
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3.1 Linear approximation models and plan points selection 

In the literature it is concluded many times (e.g. Haftka & Gürdal, 1992, p.231 and 
Schittkowski et al., 1994) that sequential linear programming methods can be 
successfully applied to a wide range of optimisation problems. Bennett & Park (1991) 
and Be Jager (1993) conciuueu that hear  approximaiions, obtained by rising large 
finite difference steps, have smoothing properties with respect to noise and local non- 
linearities. More generally speaking, the large finite difference steps can be considered 
as an experimental design for linear models: a non-optimal experimental design, which 
can be enhanced by application of the experimental design theory. 

The experimental design theory has been developed for the planning of comprehensive 
physical experiments in order to reduce the number of required experiments, while 
preserving the amount of information which can be extracted from the experiments 
(Schoofs & Van Campen, 1991). This situation is very similar to that of structural 
optimisation, where the number of expensive numerical experiments has to be 
minimised (Schoofs, 1987). The general theory will be discussed, whereafter the D- 
optimal experimental design for linear approximation models will be briefly considered. 
At this point it should be noted that, for reasons of simplicity, we applied "finite 
difference experimental designs" in the first version of the impiemented method. 

Regression model 

Constructing approximation models is finding functions which describe the response 
quantities as a function of the set of n design variables x 

v, =v,(x) j =  1,2, ..., t 

In the sequel we will consider only one response y/ and for brevity we omit the index 
j. To find the relation py(x) we assume a mathematical model. Mostly a linear model 
will apply: 

where the k model coefficients of column b are unknown. The functions f,(x), ..., fJx) 
can be chosen linear and nonlinear. In most cases a polynomial is chosen. The 
variable e accounts for the stochastic and/or deterministic model error, inherent to 
every model assumption. 
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Model coefficients and response estimation 

To estimate the k model coefficients, using function values of N design points (Nrk), 
the following set of linear equations is defined: 

y = X E + e  (3.3) 

where Y(W is a vector sf function values, X(N,K) is a matrix of design variable values, b (k)  
is a vector of estimated model coefficients, and e(N) is a vector of differences between 
real and model response in the design points used to construct the approximation 
models. Note that if Nequals k, the model response is exact in these design points, 
and thus e is a zero-vector. 

The model coefficients can be estimated by minimising the residual sum of squares: 

RSS = e T e  = ( y - ~ b ) ' ( y - ~ h )  (3.4) 

This gives: 

b=(XTX)- 'XTy (3.5) 

For each set of design variables values, x, the model response can be estimated by: 

j 7 = f ' ( X ) b  (3.6) 

Accuracy of the estimates 

A measure for the accuracy of b is the variance-covariance matrix: 

V(b) = €((E-b)  (b-b)T) = (XTX)-Io2 (3.7) 

where o2 is the variance of the response y. If unknown it can be estimated from: 

- 2  1 o =-RSS 
N - k  

For the response estimator Y(x) the variance V(Y(x)) is used as a measure for its 
accuracy. From (3.6) and (3.7) follows: 

V(Y(X)) =f'(x)(XTX)-I f(x)02 (3.9) 
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Optimal experimental design 

In the optimal experimental design theory, the accuracy of the estimated model 
coefficients and/or the variance of the response estimator are used as criteria to 
search for optimal experimental designs. in both accuracy measures the term (X'x)-' 
occurs. For a particular approximation model (structure of X )  an experimental design 
(fiiíirîg of X )  can be determilied, vihich miiiimises this tem and thus the variances. T3 
judge the minimum of a matrix, a number of criteria been developed. The moat 
important ones are: D-optimality (minimise det(XTX)-'), G-optimality (minimise the 
maximum response variance), and V-optimality (minimise the average response 
variance) 

Optimal experimental design for linear models 

For linear approximations the number of model coefficients is equal to l+n and the 
model function vector is fT(x)=[l XI'. Using a MATLAB program (appendix B) the D- 
optimal experimental design for three design variables is determined. The result is 
visualised in Figure 2. For the "finite difference experimental design" det(XTX)-' = 64 
and for the D-optimal experimental design 0.0039. 

Figure 2: Finite difference and D-optimal experimental designs for three design variables. 

3.2 Building and solving an approximate optimisation problem 

In the midrange method suggested by Toropov et al. (1993) earlier analysed design 
points, close to the current search subregion, are added to the set of start and plan 
points, and weight factors are attributed to all points from this set. Coefficients of the 
approximation models of objective function and constraints are calculated by 
minimising the residual sum of squares, as considered in section 1. For reasons of 
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simplicity, we have chosen not to use already analysed design points and not to use 
weight factors in the first version of the implemented method. The number of start and 
plan points is therefore equal to the number of model coefficients and thus the model 
responses are exact in these design points (section 1). The resulting linear 
approximate optimisation problem is solved by a simplex algorithm, implemented by 
Press et al. (1992). 

In solving coefficients from a system of equations, round off errors can have a 
significant effect on the solution accuracy. Scaling design variable values is an effective 
counter-measure to avoid these problems (Kessels, 1994). The following strategy 
scales lower and upper bound to O and 1, respectively: 

X, - Slb, 
Subi - Sib, 

- - i =  1 72,...,n xi, scaled (3.1 O) 

where slb, and sub, are the unscaled search subregion lower and upper bounds on the 
i-th design variable. 

To avoid problems with a start search subregion which is completely in the infeasible 
region (no design that satisfies all constraints), an extra variable may be added to the 
set of design variables (Haftka & Gurdal, 1992). The model coefficients for this extra, 
so-called constraint relaxation variable should be chosen in such a way that an 
increasing value gives decreasing constraint values and a strongly increasing objective 
function value: 

where 

j =  1 ,..., m 

Xrelax o 7 brel,, obj ' o and 'reIax,gj o 

(3.1 1) 

(3.12) 

(3.13) 

By doing so, the approximate optimisation problem will always have a solution within 
the search subregion, satisfying all approximate constraints. The next search subregion 
will be moved towards the feasible region. 
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3.3 Movelimit strategy 

current search 
,- subregion 

next search 
subregion 

In case of linear approximations, the search subregions size is important for the 
convergence behaviour of the optimisation process (Etman et al., 1994). Large 
movelimits can cause the solution process to oscillate, while small movelimits slow 
down the convergence rate. For defining new search subregions, the moveiimit 
strategy for multipoint methods consists of determining a search direction, determinifig 
movelimit factors, and calculating the new bounds. 

. optimum 

Search direction 

Contrary to local and midrange SPP methods, in midrange MPF methods the 
approximate optimum design of the current cycle is chosen as a point in a corner of 
the search subregion of the next cycle. From this point, the new search direction points 
to the centre of the new search subregion. This search direction is determined by the 
position of the optimum with respect to the centre of the current search subregion: 

sub, + slbi 
i = I ,2, ... n (3.14) 

For two design variables, the "search direction strategy" is visualised in Figure 3. 

Movelimit factors 

For each optimum, approximate objective function and approximate constraint values 
can be compared with crash analysis values. The following relative errors give an idea 
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of the quality of the approximation models for the current search subregion: 

(3.15) 

(3.16) 

where a tilde denotes an approximate value and xopt is the optimum design computed 
from the approximate optimisation problem. 

The movelimit strategy as described and implemented by Etman et al. (1994) is used. 
It is presented in pseudo code in appendix C. An optimisation process is started with 
movelimits being 10 to 30 % of the design space. The movelimits are decreased or 
enlarged, depending on the calculated errors and on the convergence history. 
Herefore, eight user-defined levels on maximum approximation error and on maximum 
constraint violation were introduced: 

errmax 
9 errlrg: 
9 errsml: 

viomax 
violrg: 
viosml: 

9 objacc: 
9 vioacc: 

Maximum approximation error allowed during optimisation (40%) 
Approximation error considered as large during optimisation (25%) 
Approximation error considered as small during optimisation (1 0%) 
Maximum constraint violation allowed during optimisation (1 0%) 
Constraint violation considered as large during optimisation (7.5%) 
Constraint violation Considered as small during optimisation (5%) 
Desired accuracy objective function at final optimum design (O. 1 Yo) 
Maximum constraint violation allowed, and desired accuracy of the 
constraints at final optimum design (0.1%) 

During cycles with steady decrease of the objective function, the movelimit strategy 
tries to keep the errors between errsml and errlrg. Near the optimum, a higher 
accuracy is desired. The movelimits should be decreased whenever the convergence 
slows down or oscillations occur. An optimum design is rejected if the errors are too 
large (> errmax) or too high an infeasibility occurs (> viomax) starting from a feasible 
or nearly feasible design. Then a new cycle is started from the same starting design, 
with the same search direction, but with smaller movelimits. 

Clearly, optimal settings for the accuracy criteria are problem dependent. However, for 
several smooth problems Etman et al. (1994) obtained good results with the settings 
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between brackets. In case of noisy functional behaviour a calculated response value 
is only an estimate for the "real" value (Figure 4). Therefore the criteria should be less 
strict. To get an idea of the bandwidth of the noise, several design points close to one 
another could be analysed. The relation between the bandwidth of the noise and the 
movelimit strategy criteria is discussed in appendix D. 

Y ! ,  

calc 
real 

X 

Figure 4: Calculated and "real" responses. 

Ca/culafe search subregion bounds 

To give room for some extrapolation, start and plan points are not chosen in a vertex 
but a little (1 0%) inside the search subregion. If the search direction for the i-th design 
variable equals 1, search subregion bounds on that design variable are calculated by: 

slbi = x0, - extrp f * mvlim, (3.17) 

sub, = xO, + (1 - extrpf) * mv/imi (3.18) 

and if the search direction equals -1: 

slb, = xOi - (1 - extrpf) * mvlim, 

subi = xOi + exfrpf * mvlim, 

(3.19) 

(3.20) 

where exfrpf is the user-defined extrapolation factor, mvlim, = mvlimt; (ub,-lbJ is the 
movelimit on the i-th design variable. Parameter mvlimf(0 is the movelimit factor, and 
/bi and ubi are the design space bounds. An example is presented in Figure 5. If a 
calculated search subregion bound violates the design space bound, the search 
direction is reversed and new bounds are calculated. 
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mvlim( i) 

extrpf * mvlim(i) c 
I %o 

cIb(i) cub(i) 

Figure 5: Example of calculating search subregion bounds for two design variables. 

3.4 Analysis 

The system to be analysed is specified in a MADYMO data deck. Such a data deck 
consists, besides the design variables, also of quantities that depend on the design 
variables. For example, the node coordinates of an airbag depend on the airbag 
diameter. The optimisation program has to be able to automatically generate a 
MADYMO data deck for each set of design variable values. After the actual MADYMO 
analysis, the results have to be translated into objective function and constraint values. 

3.5 Implementation 

The multipoint approximate optimisation process can be automated by a control 
program which sequentially carries out the different tasks of the block diagram of 
Figure 1. In this block diagram, the movelimit strategy is subdivided in two modules 
and there are three analysis modules, which are actually similar. In order to minimise 
the operating system and analysis tool dependent parts, the analysis module is taken 
as the centre of an optimisation cycle. The different tasks can be rearranged in such 
a way that before and after each analysis a task has to be performed (Figure 6). Block 
diagrams of the different modules are presented in appendix E. 

Among other things, the start design and the accuracy settings for the movelimit 
strategy have to be specified in an input file for the optimisation program. To be able 
to automatically generate a MADYMO data deck (section 3.4) a parametrised data 
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deck has to be created. instead of design variable values and values of the quantities 
which depend on the design variables, it has to consist of unique parameter codes. 
The dependence of each parameter on the design variables has to be specified in a 
user-defined subroutine. For each design point and for each optimisation cycle a 
database file is created. In a history file, the numbers of the next task, the last 
analysed design point, and the current cycle are stored. 

In the before analysis 2 module the pararnetrised data deck is translated into a real 
data deck for the design point to analyse. The analysis results are translated into 
objective function and constraint values in the after analysis 2 module. After analysing 
an approximate optimum design, in the after analysis 1 module a new search 
subregion is defined. Within this region, plan points are selected in the before analysis 
1 module. A file with the pian points numbers is created, whereafter these points are 
sequentially analysed. In the after analysis 1 module the approximate optimisation 
problem is built and solved, whereafter the resulting approximate optimum design is 
analysed. Until convergence has occurred new optimisation cycles are carried out. 

initialisation 7 
before analysis 1 + 

I 

all points analysed? - PY 
before analysis 2 1 -  

after analysis 2 lp 
6 after analysis 1 

Figure 6: Biock-diagram of the multipoint sequential linear programming method, with the analysis 
as the centre of an optimisation cycle. 



Chapter 4: Tests and applications 23 

4 Tests and applications 

The multipoint sequential linear programming method is tested on three "two-design- 
variable" problems for which the optimum design is known in advance. The optimum 
of the analytical two-bar truss (section 1) is under-constrained. In other words, the 
optimum is defined by the curvature of a number of constraints, smaller than the 
number of design variables. The optimum of the analytical three-bar truss (section 2) 
is an example of a constrained optimum (number of active constraints equal to the 
number of design variables). For a certain crashworthiness design problem (section 3) 
a complete grid of design points has been analysed. The optimum of this problem is 
unconstrained (number of active constraints equal to zero). After these tests the 
program has been successfully applied to a crashworthiness design problem with six 
design variables, for which the optimum is not known in advance (section 4). 

4.1 Two-bar truss 

The two-bar truss (Figure 7) is a frequently used test problem (e.g. Toropov et al., 
1993 and Kessels, 1994). The structure is loaded by an external force P, with P, = 
24.8 kN and Py = 198.4 kN (P, = 8 Px , I PI = 200 kN). Two design variables are 
defined: x, (cm2) is the cross-section area of both bars, and x, (m) is half of the 
distance between nodes 1 and 2. The vertical coordinate of node 3 is fixed (1 m). 

Figure 7: Two-bar truss. 

The objective function is the weight of the structure and the constraints define stresses 
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in both bars, which must be less than 100 N/mm2: 

F = x 1 / X  

g, = O . I 2 4 \ / i q ( - ! - + L )  xi Xlx, - 1 I O 

The lower and upper bounds on the desdn space are /b1=0.2, /b2=0. I ,  ubl=d O and 
ub2=1 .6. A contour plot for this problem has been created by analysing a complete grid 
of design points (Figure 8). Note that the second constraint never becomes active, and 
that the optimum is defined by the curvature of the first constraint (under-constrained). 

xl 

Figure 8: Contour plot two-bar truss: optimum at x (1.41 , 0.38) with F=l.51, constraint 
bounds (-), iso-objective function lines (--I. 

To simulate 10% noise, in xl- and x,-direction a high frequency sinus (amplitude 0.025) 
is added to the objective function and constraints. Both smooth and noisy problems 
have been optimised, starting from &=(O5 , 0.25) and &=(2.5 , 1.0), and using start 
movelimits of 20%. For the smooth problem, Etman’s accuracy settings (section 3.3) 
are used, and for the noisy problem the calculated settings of appendix D. Objective 
function values and maximum constraint violations of the initial and optimum designs 
are presented in Table 1, together with the numbers of optimisation cycles and 
analyses. More results of the optimisation processes are included in appendix F. 
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optimum design 

Table 1: Two-bar truss optimisation results: problems 1 and 2 correspond with initial design 
xO=(0.5 , 0.25) and xO=(2.5 , l.O), respectively. 

For the smooth problems, the last stage of the convergence process elapses relatively 
slow (the difference between smooth 1 and 2 is considered accidental). In case of an 
under- or unconstrained optimum this is due to the inability of linear approximations to 
describe curvature, in combination with too large movelimits. For the problem with 
noise, however, the curvature of the first constraint does not define an optimum point 
but an optimum region. For the noisy problems convergence occurred before oscillating 
in this region. Therefore, it can be concluded that the relation between the bandwidth 
of the noise and the accuracy settings is well quantified. 

4.2 Three-bar truss 

The three-bar truss problem (Figure 9) is described by Etman & Van Wouten (1994). 
This structure is loaded by an external force P, with Px = Pv . The first design variable 
is the cross-section area of bars A and C. For reasons of symmetry these are chosen 
equal. The second design variable is the cross-section area of bar B. 

Figure 9: Three-bar truss. 

Note that in bars A and B tension and in bar C compression will occur. The bounds on 
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tensile stresses are o. and on compressive stresses 2/3 CT,. If the normalised design 
variables are defined as: 

* A  O0 , x 2 = -  A B 0 0  (4.4) 
P 

x, =- P 

the objective function and constraints can be formulated as: 

F=4x1 +x2 (4.5) 

g, =--I G A  =lfi(fiL+L)-l 5 o 
2 3x, x,+45 

0 0  

g2=% =2&--1 1 5 o 
%+4% 

0 0  

1 i 3x, X,+4& 

g3=---1 0, =-:@ -fi-+L)-l 5 0  
4 

0 0  

(4.7) 

The design space bounds are /b,=O.l, /b2=0.1, ubl=l .5 and ub2=1 .5. A contour plot for 
this problem is presented in Figure 10. Note that in the neighbourhood of the optimum 
point the bound on the first constraint is almost parallel to the iso-objective function 
lines. For the same problem with 10% noise added to the objective function and 
constraints, the region between the real optimum and the intersection of g, and g3 can 
therefore be considered as the optimum region. 

xi 

Figure 10: Contour plot three-bar truss: optimum at x (0.544 , 0.571) with F=2.747, constraint 
bounds (-), iso-objective function lines (--). 
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t= [kgl viol. [%] 
truss 

Both smooth and noisy problems have been optimised, starting from M=(1 .O , 1 .O) and 
xû=(0.2 , 0.2), using start movelimits of 20%. The same accuracy settings, as for the 
two-bar truss, are used. In table 2, objective function values and maximum constraint 
violations of the initial and optimum designs are presented, together with the numbers 
of cycles and analyses. More results are included in appendix G. 

cycl. anal. 
F tkgl viol. [%] 

Th ree-bar 1 initiai design i optimum design i num. num. 

1 -smooth 

1 -noisy 

2-smooth 

2-noisy 

5.000 -43.4 

5.039 -39.5 

1 .o00 183 

O. 978 181 

2.748 1.039e-2 

2.91 1 -2.968 

2.749 2.778e-2 

2.848 -2.334 

11 34 

4 13 

5 16 

3 10 

Table 2: Three-bar truss optimisation results: problems 1 and 2 correspond with initial designs 
XO=(l.O , 1 .O) and xû=(0.2 , 0.2), respectively. 

For a constrained problem the convergence behaviour depends on the quality of the 
linear approximations for the optimum point. Generally, in multipoint approximations 
small movelimits are required in order to accurately approximate the optimums 
derivatives. Accidently, for the second start design, the derivatives are accurately 
approximated for relatively large movelimits. As expected, for the noisy problem, the 
optimisation processes are stopped before oscillating in the optimum region. 

4.3 Full-scale frontal impact 

In a confidential TNO report the crashworthiness performance optimisation of a fuil- 
scale frontal impact simulation (Figure 11) is describea. The optimisation has been 
performed by analysing a complete grid of design points for two design variables of the 
airbag system. The resulting contour plot is presented in Figure 12. The first design 
variable is the vent diameter (0.01 I x, I 0.065 m) and the second is the airbag 
diameter (0.4 I x, I 0.8 m). By forcing the airbag gas through the vent, the occupants 
kinetic energy is dissipated. 

A combined criterion of two head injury parameters is formulated as the objective 
function ( F =  HIC + head 3MS). Both HIC (Head Injury Criterion) and head 3MS (head 
3 MilliSeconds criterion) values result from mathematical operations on the resultant 
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linear head acceleration. The by law obliged maximum injury parameter values form 
the constraints. In scaled form: g, = HIC/1000 - 1 I O and g, = head 3MS/75g - 1 I O. 

Figure 11 : Full-scale frontal impact simulation model. 

0.01 0.02 0.03 0.04 0.05 0.06 

X I  

Figure 12: Contour plot airbag system 1 : constraint bounds (-), iso-objective function lines (--), 
feasible region (//I). 

As mentioned in section 3.4, a MADYMO input deck may consist of quantities which 
depend on the design variables. In this problem the 1542 x- and y-coordinates of the 
airbag mesh depend on the airbag diameter. 

The following accuracy settings have been used: errmax=O.5, errkg=O.35, errsml=0.2, 
viomax=0.15, violrg=O.125, viosml=0.1 objacc=0.06 and vioacc=0.06. Starting from 
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initial design optimum design 

F [-I viol. [%I viol. [%I 

x0=(2.5e-2 , 0.5) and x0=(5.5e-2 , 0.5) optimisations have been performed, using start 
movelimits of 20%. In two contour plots the optimisation processes are visualised 
(Figure 13). Objective function values and maximum constraint violations of the initial 
and optimum designs are presented in Table 3, together with the numbers of cycles 
and MADYMO analyses. In appendix H, among other things, animations for the second 
initial design and the accompanying optimum design are presented. 

num. num. 
cycl. anal. 

cl 
X 

0.02 0.04 0.06 

c\1 x 

xl  XI 

Figure 13: The different search subregions during the optimisation processes, started from 
xû=(0.025 , 0.5) (left) and xO=(0.055 , 0.5) (right), approximate optima (x), plan points (o). 

run 1 

run 2 

2409 46.5 

3454 134 

1334 -10.2 

1348 -7.92 

4 13 

7 22 

Table 3: Airbag system 1 optimisation results: run 1 and 2 correspond with initial designs 
xû=(0.025 , 0.5) and xû=(0.055 , 0.5), respectively. 

From the first start design, the approximate optimum converges in only four cycles to 
a design in the optimum region. In the neighbourhood of the second start design, the 
HIC and head 3MS behaviour is very noisy and even the global behaviour is very 
sensitive for design changes. As a consequence, the first three approximate optima 
have been rejected, whereafter the optimum region is reached in only four cycles. Both 
optimal designs easily satisfy the by law obliged maximum injury parameter values 
(maximum constraint violation in the order of -10%). 



Chapter 4: Tests and applications 30 

4.4 Full-scale off-set impact 

In another confidential TNO report the investigation of a full-scale off-set impact 
sirnulation (Figure 14) is described. To optimise the crashworthiness performance, we 
defined six design variables. Because there is no idea about the position of the 
optimum, a large design space is defined: 

squared vent diameter (0.4e-3 I x, I 4.9e-3 m2) 
x-size of the airbag (0.2 I x2 I 0.45 m) 
y-size of the airbag (0.2 I x3 I 0.45 m) 
load limiter level (2.0e3 I x, I8.0e3 N) 
vent opening pressure (10.0e3 I x, I 50e3 N/m2) 

0 inflator gas macs (15.0 I x6 I 35.0 gram) 

A device in the belt system assures that the belt forces do not exceed a certain value, 
the so-called load limiter level. The airbag is inflated with nitrogen. The larger the gas 
mass, the harder the airbag. The vent is opened for a certain pressure in the airbag. 

Figure 14: Full-scale off-set impact simulation model. 

Four injury parameters strongly depend on the design variables: The chest 3MS (chest 
3 MilliSeconds criterion) which results from a mathematical operation on the resultant 
chest acceleration signal, the chest deflection which is measured at the sternum, and 
the in section 4.3 already mentioned Head Injury Criterion (HIC) and head 3 Milli- 
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initial 

optimum 

Seconds criterion (head 3MS). A combined criterion of these injury parameters is 
formulated as the objective function. The four injury parameters are considered of 
equal importance. Therefore, all parameters are weighed with their by law obliged 
maximum valuer 

2.290e-3 0.400 0.400 4520 26800 30.00 

3.748e-3 0.328 0.345 291 3 1 O000 35.00 

HIC + head 3MS + chest 3MS + chest def. 
1 O00 75 g 60g 3 *0.0254 

F = -  (4.9) 

Besides the four injury parameters, the distances head - steering wheel and chest - 
steering wheel are formulated as constraints. The bounds on the injury parameters are 
taken more strictly than the by law obliged maximum values: 

- 1  1 0  head 3MS 
g2= 400 

- 1  1 0  chest 3MS 
g4 = 346.2 

chest def. - o 
g5 = 0.0367525 

chest dis. 
O. 155 

g,=1- 

An optimisation is perFormed, starting with a iarge airbag (x, = x3 = 0.4 m) and a large 
quantity of gas (Xe = 30.0 gram). Because good results were obtained for the first 
crashworthiness problem, the same accuracy settings and start movelimits have been 
used: errmax=0.5, errlrg=0.35, errsml=0.2, viomax=O. 15, violrg=O. 125, viosml=O. 1, 
objacc=0.06, vioacc=0.06, and start movelimits of 20%. The design variable values of 
the initial and optimum designs are presented in Table 4. The progress of the objective 
function and maximum constraint violation is visualised in Figure 15. Nine optimisation 
cycles (64 analyses) have been carried out. One approximate optimum was rejected 
and is therefore not plotted. In appendix I, among other things, animations for the initial 
design and the accompanying optimum design are presented. 

I I x l  x2 x3 x4 x5 x6 I 

Table 4: Airbag system 2: design variable values of the initial and optimum design. 
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- 

- 
1.2 I I I 

maximum constraint violation [%I 20 I I I 

d 

O 2 4 6 8 

Figure 15: Airbag system 2: progress of the objective function value and maximum constraint 
violation during the optimisation process. 

At the optimum design, g6 is active (minimum distance chest - steering wheel zero), 
x6 is at the design space upper bound (full airbag), and x5 is at the design space lower 
bound (vent opens as quickly as possible). Therefore, it can be concluded that the 
deceleration of the occupant is optimally distributed. 

The optimum safety measures design is very effective for the average male in the 
correct driving position. However, if this average male is out of the correct position, the 
airbag might possibly react to "powerful". The same problem occurs for small people, 
and for tall people the airbag might possibly not react powerful enough. The solution 
to this problem is multi-model optimisation. 
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5 Conclusions and recommendations 

In crashworthiness design optimisation problems, the objective function and constraints 
often contain more than 10% noise. For such problems, the developed multipoint 
sequential linear programming method is well capable of converging in only a few 
optimisation cycles to an optimum, without oscillating in the bandwidth of the noise. For 
a full-scale off-set impact simulation with six design variables an optimum design, 
satisfying all by law obliged maximum injury parameter values, resulted after nine 
optimisation cycles. 

The linear approximation models for objective function and constraints, obtained by 
using large finite difference steps, are well capable of describing the global functional 
behaviour in a subregion of the design space. These finite difference experimental 
designs for linear models can be enhanced by application of the experimental design 
theory (section 3.1). Toropov et al. (1993) add some of the earlier analysed design 
points to the set of start and finite difference points, and attribute weight factors to all 
points from this set, in order to improve the accuracy of the linear approximation 
models. The effectiveness of this approach in combination with enhanced experimental 
designs should be investigated, whereafter implementation can be considered. Instead 
of one by one calculation of the model coefficients, they should then be calculated from 
a system of algebraic equations. 

The functional behaviour of objective function and constraints can be linearised by 
introducing inter-mediate response variables (section 2.1). If well defined by the user, 
movelimits can be enlarged, and as a result the optimum region will be reached in less 
opitmisation cycles. 

The sensitivities of objective function and constraints for small design changes are 
important quantities of the optimum. Often a design with a higher objective function 
value but low design sensitivities is preferred to a design with a lower objective function 
value but high design sensitivities. After the optimisation process has converged design 
sensitivities can be determined, using close to the optimum located design points. 

To be able to automatically calculate constraint approximation errors, bounds on "I- 
constraints" have to be scaled to 1 and on "&constraints" to -1. In the first version I- 
constraints can be handled, but for >-constraints the subroutine where approximation 
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errors are calculated becomes problem dependent. It is recommended to implement 
the possibility to automatically calculate the approxiamtion errors for both types of 
constraints. 

In sequential approximate optimisation, the movelimit strategy is decisive for the 
methods efficiency. The first version is very effective in finding an optimum for noisy 
probiems. iierwever, if an approximate ûptimum is ïejeckd, new plan pohts, with 
smaller finite difference steps, are selected and analysed. This is not very efficient, 
because many analyses are performed to find a next approximate optimum (e.g. run 
2 for the full-scale frontal impact simulation, section 4.3). Possibly, the efficiency can 
be improved with a flexible extrapolation factor. If a cycle is started with a large value, 
it can be decreased if the approximate optimum is rejected, whereafter a new 
approximate optimisation can be períormed, using the same start and plan points. Note 
that this is only useful if the approximate optimum is located in the extrapolation region. 
Another possible improvement is to accept all approximate optima (Toropov et al., 
1993). Both proposed solutions require further investigation. 

The relation between the accuracy settings for the movelimit strategy and the 
bandwidth of the noise is well quantified, as indicated by the two- and three-bar truss 
results. If for a certain problem, however, no proper estimate for the bandwidth of the 
noise is available, it is advised to overestimate this bandwidth. Depending on the 
results one can decide to consider the optimisation process converged or to decrease 
the settings and to start a new optimisation process from the optimum. 

For all optimisation problems good results were obtained with start movelimits, being 
20% of the design space. However, it can be reasoned that in case of a larger quantity 
of noise, the global functional behaviour will be described more accurately for a larger 
subregion. 

The solution to the problem that the optimum safety measures design is only optimally 
effective for the average male in the correct driving position (section 4.4) is multi-model 
optimisation. Constraint values for different dummies and dummy positions can be 
obtained by performing crashworthiness analyses for all combinations. As an objective 
function a combined criterion of injury parameters of all combinations can be 
formulated. If the number of constraints strongly increases it could be considered to 
apply a more advanced linear programming method. 
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Appendix A: Injury parameter calculations 

The problems in injury parameter calculations will be explained for two of the most 
important head injury parameters for frontal crashes: the Head Injury Criterion (HIC) 
and the head 3 MilliSeconds criterion (head 3MS). The following cases will be 
successively discussed: 1) solving the equations of motion, 2) calculating the injury 
parameter values, 3) possible errors, due to the numerical solution method, 4) possible 
discontinuities, due to the definition and the problem itaeif, and 5) results and 
discussion. 

Solve the equations of motion 

For MADYMO simulations using the finite element module only a fourth order Runge- 
Kutta integration method with a fixed integration time step is available. This fixed time 
step is user defined. 

After every integration time step the numerical solution will differ a little from the exact 
solution (local truncation error). These small errors are transmitted in the following 
integration steps, resulting in a global truncation error. 

Calculate injury parameter values 

The Head Injury Criterion (HIC) is given by: 

HIC = max 
TOS tl 2 t .1 TE 

where TO is the starting time of the simulation, TE is the end time of the simulation, 
R(t) is the resultant linear head acceleration in g’s (measured at the head’s centre of 
gravity) over the time interval ToltlTE, and tl and t2 are the initial and final time point 
of the interval during which the HIC attains a maximum value. The maximum interval 
is 36 milliseconds. 

The 3MS criterion is defined as the highest acceleration level with a duration of at least 
3 milliseconds. It is computed like the HIC, but with a 3 ms time window. 

Errors in the functional behaviour of injury parameters as a function of the design 
variables, caused by the numerical solution method 

The global truncation error in the acceleration signal causes an error in the Hi@ and 
3MS values. This error can be positive as well as negative. This may cause a noisy 
behaviour of the HIC and 3MS as a function of the design variables. 
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The size of the window for calculating an HIC-value is equal to a round number of 
times the output time step (TSOUT). This size will generally differ from the size with 
which the "real" HIC-value would be calculated. The calculated HIC-value will thus 
always be smaller than the "real" HIC-value. However, TSOUT is much smaller than 
the time window width. Its influence will therefore be small. 

Discontinuities in the functional behaviour of injury parameters as a function of the 
design variables, caused by definition and problem itself 

In HIC and 3MS behaviour as a function of the design variables two different kinds of 
discontinuities might be present. The first one is caused by the fact that after each 
simulation the HIC and 3MS value will generally be found between two different time 
points. The second one is caused by the fact that a (small) design change might result 
in a hard contact situation (e.g. occupant - steering wheel). 

Generally, discontinuities of the first kind will appear. Discontinuities of the second kind 
are characteristic for crash simulations and cannot be avoided. 

Results and discussion 

For the crashworthiness design problem described by Van Slagmaat (1 995) the vent 
diameter of the airbag system is varied between 10 mm and 65 mm with steps of 1 
mm. To show the importance of the influence of TS two series of simulations with the 
same TSOUTand different TS are compared. Vice versa for the influence of TSOUT. 

0 Influence of TS: 
1) 
2) 

TS = We-4, TSOUT= 2.0e-4. 
TS = 2.0e-4, TSOUT = 2.0e-4. 

Influence of TSQUT: 
3) 
4) 

TS = 0.2e-4, TSQUT = 0.2e-4. 
TS = 0.2e-4, TSOUT= 2.Oe-4. 

The results of the first and fourth series of simulations, which are the same, are 
obtained by a rerun of the injury parameter calculations, using the results of the third 
series of simulations. 

The results are presented in the figures below, where on the x-axes the vent diameter 
in mm. In the upper left and upper right figure the solid lines are the results of the first 
series of simulations and the dashed lines of the second. In the lower left and lower 
right figure the solid lines are the results of the third and the dashed [ines of the fourth 
series of simulations. 
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Obviously, the influence of TSûUTis negligible. As expected its influence on the head 
3MS is largest, because here a smaller time window is used. 

It is clear that TS has influence on both HIC and head 3MS values. However, the 
bandwidth of the noise does not differ so much for both levels, except for the head 
3MS behaviour for large vent diameters. Therefore we conclude that the discontinuities 
caused by the fact that after each simulation the HlC and head 3MS values will 
generally be found between two different time points are also important. 



Appendix B: DES0FEXP.M 

% MATLAB program for determining the D-optimal experimental design 
% for three design variables. 
% 
% J.M.T.A. Adriaens (March 26, 1995) 

% number of design variables 
ndv = 3; 

% number of levels of variation 
nlv = 2; 

% linear approximation model: 
% number of model coefficients = 1 + number of design variables 
nmc = 1 + ndv; 

xlmin = -1; xlmax = 1; 
x2min = -1; x2max = 1; 
x3min = -1; x3max = 1; 

xl = xlmin:(xlmax-xlmin)/(nlv-1):xlmax; 
x2 = x2min:(x2max-x2min)/(nlv-l):x2max; 
x3 = x3min:(x3max-x3min)/(nlv-l):x3max; 

% full factorial 
FF = [I; 
for k = 1:nlv 
for 1 = 1:nlv 
for m = 1:nlv 

end 
FF = [FF ; 1 xl(k) x2 (1) x3(m)] ; 

end 
end 

% design of experiments (fraction of the full factorial) 
x = [ I ;  
p = 1; 
FM = le25; 
R = [ I ;  
for k = 2:nlvAndv-nmc+2 
for 1 = k+l:nlvAndv-nmc+3 
for m = l+l:nlvAndv-nmc+4 
X = [FF(l,:) ; FF(k,:) ; FF(1,:) ; FF(m,:)I; 
MD = X'*X; 
if rank(MD) == 4 

F = det(inv(MD)); 
if F < FM-eps 

XM = x; 
FM = F; 
R = [P Fl; 

R = [R ; p F]; 
elseif F >= FM-eps & F <= FM+eps 

end 
end 
p = p+l; 

end 
end 

end 
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Appendix C: Movelimit strategy 

In pseudo code the applied movelimit strategy, developed by Etman et al. (1994). 

Check whether the approximate optimum will be accepted. 
if ( (error > errmax) or ((maxg > viomax) and (actrlx = no)) ) then 

do not accept optimum, start new cycle, use same starting design, same 
search direction, but smaller movelimit factors. 
f(i) = f(i) * 3/4 

accept optimmm, check convergence. 
if ( ( (Fchg < objacc) and (maxg < vioacc) 1 and 

else 

( (Faperr < objacc) and (gaperr < vioacc) ) ) then 
Convergence occurred, stop optimisation process. 

No convergence, determine new movelimit factors. 
for i = î:î:n 

else 

if ( (xdrchg(i) < O) and ( ( (Fdrchg < O) or (fchg < (4.0*objacc)) ) and 
(actrlx = no) ) ) then 
f(i) = f(i) / 2  

f(i) = f(i) * 3/4 

if ( (actmvi(i) = yes) and (actbnd(i) = no) ) then 

elseif ((Fopt > FO) and (actrlx = no)) then 

else 

if ( (error < errsml) and ((maxg < viosml) or (actrlx = yes)) ) then 

elseif ( (error > errlrg) or ((maxg > violrg) and (actrlx = no)) ) then 
f(i) = f(i) * 4/3 

f(i) = f(i) * 3/4 
end 

if ( 
f 

end 

else 

end 
end 

end 
end 

end 

(error > 
i) = f(i 

abbrevia ti ons : 

n : number of design variables 
actbnd(i) : indicator defining whether a design space bound is active or not 
actmvl(i) : indicator defining whether a movelimit is active or not 
actrlx : indicator defining whether constraint relaxation is active or not 
Faperr : objective function approximation error at the approximate optimum 
gaperr : maximum constraint approximation error at the approximate optimum 
error = max (Faperr, gaperr) 

Fopt : objective function value of the approximate optimum of the current cycle 
FO : objective function value of the start point of the current cycle 
Fprv : objective function value of the start point of the previous cycle 
dFcur = Fopt-FO 

dFprv = FO-Fprv 

Fdrchg = dFcur*dFprv 

Fchg = abs ( (Fopt-FO) /FO) 

maxg : maximum constraint violation at the approximate optimum 
xopt : design variable values of the approximate optimum of the current cycle 
xo : design variable values of the start point of the current cycle 
xprv : design variable values of the start point of the previous cycle 
dxcur = xopt(i)-xO(i) 

: maximum approximation error 

: objective function value change during current cycle 

: objective function value change during previous cycle 

: direction change in objective function value 

: objective function value change 

: design variable change during current cycle 
dxprv = x0 (i) -xprv(i) 

: desiqn variable chancre durincr previous cycle - - _  
xdrchg (i) = dxcur*dxprv 

f (i) : on entry: movelimit factors of the current cycle 
: direction change in design variable values 

on exit : movelimit factors of the next cycle 
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Appendix D: Noise and accuracy criteria 

In case of noisy functional behaviour the calculated response y is an estimate for the 
"real" response y,,,: 

where bwn is the bandwidth of 
bandwidth is a constant fraction 
bandwidth is denoted as hbwn. 

the noise. !n this appendix we suppose that this 
of the response value (a = bwn /y,) .  Half of the 

The first three criteria relate to the maximum approximation error, the second three to 
the maximum constraint violation, and the last two to the convergence. These three 
sets will be successively discussed. 

Maximum approximation error criteria 

A response aproximation error is calculated by: 

aey= - I IYl 
where the tilde denotes the approximate value. This calculated approximation error is 
an estimate for the real value: 

If the lower bound on the estimate is smaller than for example errsml it can be 
considered a small approximation error: 

Filling in of hbwn / y = d2 and working out gives: 

Note that the left hand side is the calculated approximation error. The same goes for 
errmax and errlrg. 

Maxium constraint violation criteria 

Because constraint bounds are scaled to one, the calculated response value minus 1 
is an estimate for the constraint violation. If the lower bound on the estimated response 
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y, -y,-1 

y,-1 
- 

minus 1 is smaller than for example viosml it can be considered a small constraint 
violation: 

y-hbwn-1 c viosml (D.6) 

< a  

Filling in of hbwn / y = d 2  and working out gives: 

y-1 < (viosml+a/2) 
1 -a/2 

Note that the left hand side is the calculated constraint violation The same Goes for 
viomax and violrg. 

Convergence criteria 

Convergence occurs if the relative change of the objective function is smaller than 
objacc in combination with a constraint violation smaller than vioacc, and the objective 
function approximation error smaller than objacc, and the maximum Constraint 
approximation error smaller than vioacc. 

In case of noise, two response values which only differ the bandwidth of the noise can 
be considered equivalent. Therefore, the criterion for the absolute change in the 
response value is: 

Filling in of bwn / y = a and working out gives: 

Note that the left hand side is the calculated relative change of the response. The 
objacc criterion is also used for the objective function approximation error at the final 
optimum design. However, the latter is smaller for each a. 

The setting of vioacc is also influenced by the noise. If we consider the maximum 
constraint approximation error the new setting would be: 

a vioacc +- ( 1 + vioacc) 
2 

Considering the maximum constraint violation the new setting would be: 

(vioacc+a/2) 
1 -a/2 

(0.10) 

(D.11) 

For each a the second setting is largest 
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Summary 

The settings in case of relative noise a, the "smooth" value and new value for a=0.1: 

errmax = errmax + d 2  (1 +errma) 
errlrg = errlrg + d 2  (1 +err/rg) 
errsml = errsml + d 2  (1 +errsml) 
viomax = (viomax+a/2) I (1 -d2 )  

* violrg = (violrg+a/2) / (1-a/2) 
viosml = (viosml+a/2) / (1 -d2) 

vioacc = (vioacc+d2) / (1 -d2 )  
Ob@CC = CI 

(0.4 -+ 0.47) 
(0.25 -+ 0.313) 
(0.1 -+ 0.155) 
(0.1 -+ 0.158) 
(0.075 -+ 0.132) 
(0.05 -+ 0.105) 
(0.801 + 0.1) 
(0.001 -+ 0.054) 



Appendix E: Program modules 

2 

In the upper left figure the before analysis 1, in the upper right the before analysis 2, 
in the lower left the after analysis 2, and in the lower right the after analysis 1 module. 

1 V 

plan points 
selection 

analysis results - 
objective function , and constraint values 

all points analysed ? 1 
Y I  I 

make a file indicating 
all points analysed 

+ gen e rat e analysis 
code input file 

(5l task 11 or 12? 

movelimit 
strategy i build and solve 

approximation 
problem 

1 
Inext task = 1 I 

o 



Appendix F: Two-bar truss results 

__c= 

- 

I I 

Two-bar truss, x0 = (0.5 , 0.25) 

2.5 I I I 

- 

- 

- 

- 

I I 

Table of objective function values, maximum constraint violations (%), maximum 
approximation errors (%), and design variable values for all optimisation cycles. 

0.2 I I I 

- 

- 

- 

-0.6 I I I 

cyc obj viol 

O 0.515 2.068e2 
1 O. 208e2 
2 1.112 0.372e2 
3 1.505 9.413e-1 
4 1.521 1.431e-1 
5 1.518 1.146e-1 
6 1.511 -9.536e-2 
7 1.509 3.388e-1 
8 1.508 2.258e-1 
9 1.510 -5.327e-2 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - -  
err xl x2 

0.500 0.250 
O .  424e2 
0.346e2 1.013 0.453 
1.128 1.380 0.436 
3.800e-1 1.388 0.448 
1.144e-1 1.390 O. 439 
1.002e-1 1.405 0.396 
3.830e-1 1.429 0.339 
2.875e-1 1.425 0.348 
5.329e-2 1.409 0.386 

Plots of the progress of: I )  objective function, 2) exact (-) and approximate (--) 
constraints, and 3) optimum design variables (-> and search subregion lower and upper 
bounds (--). On the x-axes the optimisation cycle number. 

ob'ective function 2r-----l 
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Plot of the different search subregions during the optimisation process. 
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Two-bar truss with noise, xû = (0.5 , 0.25) 

cyc ob j  viol err xl x2 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - _ - - -  
O 0 . 4 9 2  2 . 0 4 5 e 2  0 . 5 0 0  0 . 2 5 0  
1 O .  239e2  O .  364e2 
2 1 . 0 9 2  0 .352e2  0 .354e2  1 . 0 1 3  0 . 4 5 3  
3 1 . 5 2 6  3 . 3 6 9 e - 1  7 . 8 8 2 e - 1  1 . 3 9 4  0 . 4 3 6  
4 1 . 5 3 3  1 . 6 3 2  2 .505  1 . 3 8 8  0 . 4 4 4  

O 1 2 3 

2.5, lconstraint l I  , 

O 1 2 3 1 2 3 O 
-0.6 O 
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Two-bar truss, xû = (2.5 I 1 .O) 

O 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

3.536 -0.369e2 2.500 1.000 
2.248 -0.208e2 5.563 1.816 0.730 
1.622 -6.973 0.208e2 1.521 0.370 
1.495 1.445 4.381 1.420 0.330 
1.478 4.910 5.170 1.424 0.277 
1.575 5.597 0.282e2 1.542 0.206 

1.631 -9.669 0.319e2 1.631 0.166 
1.621 -5.480 0.154e2 1.552 0.300 
1.530 -7.625e-1 1.185 1.403 0.435 
1.509 2.618e-1 5.164e-1 1.394 0.415 
1.492 1.927 1.891 1.365 0.440 
1.497 1.047 1.036 1.384 0.413 
1.512 2.612e-1 4.537e-1 1.391 0.427 
1.511 1.401e-1 1.399e-1 1.395 0.417 
1.510 -6.510e-2 6.514e-2 1.415 0.372 
1.508 5.945e-2 1.564e-1 1.410 0.378 
1.509 1.198e-2 2.973e-2 1.412 0.375 

O. 147e2 O .733e2 

I 
O 5 10 15 20 

O. I 

O 

-0.1 

-0.2 

-0.3 
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Two-bar truss with noise, x0 = (2.5 , 1 .O) 

- 

- 

- 

- 

1.5 I I I 

cyc obj viol err xl x2 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - _ - - - - - - - - - - - - - - - -  
O 3.524 -0.381e2 2.500 1.000 
1 2.207 -0.249e2 0.209e2 1.816 0.730 
2 1.631 -4.408 0.111e2 1.471 0.460 
3 1.586 1.714 6.987 1.397 0.500 
4 1.621 2.368 3.516 1.420 0.480 

constraint i * 

3 

2.5 

2 

1.5 

1 

0.5 ' I I I I 
O 1 2 3 4 

-0.55 ' I 
I I 

O 1 2 3 4 
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I 
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- 
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2.5 I I 

Appendix G: Three-bar truss results 

I 

Three-bar truss, xû = (1 .O 1 .O) 

Table of objective function values, maximum constraint violations (Yo), maximum 
approximation errors (Yo), and design variable values for all optimisation cycles. 

cyc ob j  v i o l  err xl x2 

O 5.000 -0.434e2 1.000 1.000 
1 3.740 -0.244e2 2.881 0.748 0.748 
2 2.894 -1.650 9.134 0.580 0.574 
3 2.816 -4.529e-1 4.562 0.562 0.570 
4 2.709 1.666 4.397 0.524 0.612 
5 2.732 1.096 3.795 0.521 0.650 
6 2.723 1.189 1.407 0.525 0.622 
7 2.759 -8.826e-2 4.750e-1 0.531 0.636 
8 2.754 3.802e-2 7.000e-2 0.531 0.629 
9 2.755 -1.904e-1 3.590e-1 0.540 0.597 
10 2.746 9.574e-2 1.830e-1 0.543 0.573 
11 2.748 1.039e-2 2.299e-2 0.543 0.577 

_ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - -  

Plots of the progress of: 1) objective function, 2) exact (-) and approximate (--) 
constraints, and 3) optimum design variables (-) and subregion lower and upper 
bounds (--). On the x-axes the optimisation cycle number. 
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Plot of the different search subregions during the optimisation process. 
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Three-bar truss with noise, XO = (1 .O , 1 .O) 

cyc obj viol err xl x2 

O 5.039 -0.395e2 1.000 1.000 
1 3.758 -0.226e2 0.141e2 0.748 0.748 
2 2.990 -6.685 0.116e2 0.551 0.785 
3 2.875 -3.686 6.481 0.529 0.767 
4 2.678 -2.161 3 -754 0.509 0.683 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - -  

-0.1 

-0.2 

-0.3 

-0.4 

constraint 2 
I I I 

I I I 

constraint 2 
1 

O 1 2 3 4 

c0n51 lint 1 
I 

-0.5 1 

0 1 2 3 4 

0 

-0.2 

-0.4 

constraint 3 
1 I 

/ 
-0.6 

0 1 2 3 4 

design variable 1 1.2, I I I 
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Bhree-bar truss, x0 = (0.2 , 0.2) 

3 I I I 2 I I I 

- - 

- - 

- - 

I I I 

obj viol 

1.000 1.828e2 
O. 252e2 

1.945 0.454e2 
2.733 5.746e-1 
2.752 1.778e-1 
2.749 2.778e-2 

1.5 I I 

- 

- 

- 

-0.5 I I I 

err xl 
, - - - - - - - - - - - - - - - - - - 

o. 200 
O. 407e2 
O. 249e2 O. 389 
6.162 0.539 
4.277e-1 0.546 
7.178e-2 0.545 

x2 

0.200 

0.389 
0.578 
O. 569 
0.571 

design variable 2 0.8 I I I I 
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Three-bar truss with noise, XO = (0.2 , 0.2) 

cyc obj viol err xl x2 

O 0.978 1.807e2 0.200 0.200 
1 2.310 0.301e2 0.435e2 0.452 0.452 
2 2.898 7.808e-1 5.118 0.553 0.641 
3 2.848 -2.334 3.684 0.538 0.694 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - -  

2 

1.5 

1 

0.5 

o 
I I 

3 
-0.5 I 

O 1 2 

desi n variable 1 0.8 1 
___- - - -  

i_--- 

. ._ .  , ._.. . .  +<:.!.. .... 0 6 - . . . ... , . .  .. . ! .... ._  

n I i 

design variable 1 0.8 I I 

___- - - -  , 
i_--- 

. ._ .  , ._.. . .  +<:.!.. .... 0 6 - . . . ... , . .  .. . ! .... ._  

nl I i I 
"O 1 2 3 

constraint 1 2 ,  I I I 

-0.5 I l i I 
O 1 2 3 

constraint 3 

-0.5 I I 

o 1 2 3 

0.8 

0.6 

0.4 

0.2 

O 
O 1 2 3 
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Appendix H: Full-scale frontal impact results 

Full-scale frontal impact, xû = (0.025 , 0.5) 

Table of objective function values, maximum constraint violations (%), maximum 
approximation errors (%), and design variable values for all optimisation cycles. 

cyc ob j  v i o l  err xl x 2  
____________________-------------------------- 
O 2 4 0 9  0 . 4 6 5 e 2  2 .500e-2  0 . 5 0 0  
1 1 9 8 8  0 . 1 5 3 e 2  8 . 5 5 0  3 . 4 9 0 e - 2  0 . 5 7 2  
2 1385 - 8 . 2 1 6  0 . 2 6 3 e 2  4 . 8 1 0 e - 2  0 . 6 6 8  
3 1 4 1 9  - 7 . 8 9 0  0 . 2 8 4 e 2  4 . 6 6 3 e - 2  0 . 6 5 7  
4 1 3 3 4  - 0 . 1 0 2 e 2  5 . 9 7 2  4 . 7 3 7 e - 2  0 . 6 6 3  

Plot of the progress of: 1) objective function, 2) exact (-) and approximate (--) 
constraints, arid 3) optimum design variables (-) and search subregion lower and upper 
bounds (--). On the x-axes the optimisation cycle number. 



*.. / . .  
,' : .\ 

, : ,  
0 7 . . . . . . .  .i . . . . . . . . . . . .  .i ......,. : .... ...!... ... : .... . _  

., 
a ,:- , . -_  -. , . ._ , , 

0 6 - ... . . . . . . . . . .  .., !. . . . . .  ; . . . . . . .  2 

, .  . .  , 
. . .  - . . . . . . . . . . . . . .  . .  . <  . . . . . . . . . .  

I I I 

4 
0.02 ' 

O 1 2 3 

0 06 

x2: airbag diameter 0.8 I I I I 

- . . . . . . . .  :.. . . . . . . . . . . . .  ~. . . . . . . .  ...,.e?% . . . . . . . . . . .  , .  
I : .  , . .  , . .  . ,  

0.4 I I I I I 
O 1 2 3 4 



64 
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Full-scale frontal impact, xû = (0.055 0.5) 

cyc obj viol err xl x2 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - -  
O 3454 1.335e2 5.500e-2 0.500 
1 -1.108 2.235e2 
2 -2.807 2.991e2 
3 -4.913 2.501e2 
4 2551 0.508e2 4.991 5.546e-2 O. 530 
5 1493 -9.453 0.230e2 5.485e-2 0.571 
6 1405 -5.430 0.382e2 4.928e-2 0.611 
7 1348 -7.917 2.523 4.974e-2 O .  642 

objective function 

- 

- 

- 

1500 - 

1 O00 

- 

I I I 

O 1 2 3 4 

2: he 

0.4 . . .  

. . . . . . . .  . .  

. . . . . .  

i 3MS 

. . .  

- - - -_ 

-0.2 ' I 

O 1 2 3 4 O 1 2 3 4 

0.65 x2: I airbag I diameter I 

0.45 I I I I 

O 1 2 3 4 



65 

Animation with the initial safety measures design. 

Time : O. ms Time : 25. ms 

Time : 75. ms Time : 50. ms 

Y" / ti 
Time: 100. ms 

t--------/ 
Time: 125. ms 



Animation with the optimum safety measures design. 

Time : O. ms 

Time : 50. ms 

: Time: 100. ms 

Time : 25. ms 

Time : 75. ms 

t------- 
Time: 125. ms 



Appendix I: Full-scale off-set impact results 

Table of objective function values, maximum constraint violations (Yo), maximum 
approximation errors (Yo), and design variable values for all optimisation cycles. 

cyc obj viol err xl x2 x3 x4 x5 x6 

O 2.022 0.168e2 
1 1.888 2.025 
2 1.725 
3 1.581 5.478 
4 1.358 -3.535e-1 
5 1.338 -2.213e-1 
6 1.326 5.290e-1 
7 1.264 2.690e-1 
8 1.251 1.370 
9 1.264 8.529e-1 

O .  114e2 
O .  506e2 
O. 474e2 
O. 305e2 
O. 141e2 
8.544 
O. 104e2 
O. 107e2 
5.892 

2.230e-3 
2.993e-3 

3.600e-3 
3.550e-3 
3.575e-3 
3.689e-3 
3.841e-3 
3.818e-3 
3.748e-3 

0.400 0.400 4520 
0.355 0.405 4400 

0.319 0.360 3320 
0.322 0.338 3410 
0.320 0.332 3365 
0.321 0.329 3163 
0.326 0.332 2893 
0.327 0.347 2933 
0.328 0.345 2913 

26800 
26000 

18800 
13400 
12800 
12000 
10933 
10000 
10000 

30.00 
30.40 

30.80 
33.50 
33.80 
34.20 
34.73 
35.00 
35.00 

Plot of the progress of the objective function. On the x-axis the optimisation cycle 
number. 

objective function 
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Plot of the progress of the exact (-) and approximate (--) constraints. On the x-axes the 
optimisation cycle number. 
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Plot of the progress of the optimum design variables (-) and subregion lower and upper 
bounds (--). On the x-axes the optimisation cycle number. 
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Animation with the initial safety measures design. 

r/-----/ 
I 
Time : O. ms 

v_______J 

Time : 50. rns 

. 
Time: 100. ms 

/ / 
Time : 25 .  ms 

Time : 75. ms 

Time: 1 2 5 .  ms 



Animation with the optimum safety measures design. 

Time : O. ms 

Time : 50. ms 

i Time: 100. ms 
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Time: 125. ms 
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