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Samenvatting
Dit rapport vat het afstudeerwerk samen dat gedurende negen maanden verricht is in
opdracht van Mountside Software Development BV. In de eerste drie maanden van deze
periode is een haalbaarheidsstudie naar het recyclen van plastics uit een (huishoud)
afvalstroom uitgevoerd. Plastics zijn hoogwaardige materialen en het sorteren ervan met
de hand is erg onplezierig, onnauwkeurig, duur, en bovendien erg onhygienisch. Een
automatische sorteeroplossing moet daarom uitkomst bieden. Riervoor zijn twee
sorteerstappen gedefinieerd:
1. Sorteerstap 1- het onderscheiden van plastics en niet-plastics.
2. Sorteerstap II - het scheiden van plastics onderling.

Op het moment lijkt aIleen Sorteerstap II economisch haalbaar, en daarom wordt in het
tweede deel van dit werk onderzocht of het gebruik van nabije infrarood spectrometrie
(NIRIS) een goede identificatiemethode kan zijn. Ret haalbaarheidsonderzoek gaf
duidelijk aan dat NIRIS vele voordelen heeft ten opzichte van andere technieken. NIRIS
is een robuuste, goedkope, en niet-destructieve techniek met vele andere
toepassingsgebieden in de landbouw, farmaceutische industrie, en procesbeheersing. Met
NIRIS is het niet mogelijk om zwarte en transparante objecten te herkennen.

Dit rapport moet antwoord geven op de vraag of het mogelijk is plastics te sorteren in het
spectrale bereik van 950 - 1700nm. In dit bereik kan namelijk gebruik gemaakt worden
van een zeer snel meetinstrument.

Voordat we deze vraag konden beantwoorden, hebben we eerst aIle systeemvereisten op
papier gezet. Daarna is de meettechniek en de manier van dataverwerking bestudeerd.
Vervolgens is op basis van 'Principal Component Analysis (PCA)' de relevante
informatie uit de spectra gehaald. Tenslotte hebben we op basis van de vereisten, een
'Probabilistic Neural Network' geselecteerd als de beste oplossing. De oplossing voldoet
theoretisch gezien aan aIle vereisten, maar door tijdsgebrek is het niet mogelijk geweest
aIle eisen te toetsen aan de werkelijkheid. De gepresenteerde oplossing kan ten minste
zeven plastics (LiLDPE, HDPE, PVC, PP, ABS, Polyester, en PA4_6/ PA6) sorteren met
een nauwkeurigheid van 100%, waarbij ongeveer 78% van de plastics wordt herkend. Het
neurale netwerk is in staat nieuwe plastics te 1eren herkennen. De combinatie van PCA en
het neurale netwerk maakt het automatisch extraheren van relevante data mogelijk.

Helaas is het sorteersysteem niet in staat gemengde plastics te sorteren. Ret effect van
sorteerfouten op de kwaliteit van de plastics dient nog onderzocht te worden. Misschien
is het mogelijk door middel van kleine aanpassingen de kwaliteitseisen te halen. Maar
eerst zouden we een betere indruk van de sorteerkwaliteit moeten krijgen door meer
spectra te classificeren. Tenslotte zal het gebruik van een nog onder ontwikkeling zijnde
meetinstrument in het spectrale domein van 900 tot 2400nm onderzocht moeten worden.
Roogstwaarschijnlijk zullen dan aIle sorteerfouten worden opgelost.



Summary
This report summarises the work developed during a ninth month long Master Thesis
Trainee Ship at Mountside Software Development BV (The Netherlands).

In the first three months a feasibility study directed to the recycling of plastics from
(municipal) household waste streams has been completed. Plastics are a high-value
material, but sorting by hand is unpleasant, not accurate, expensive, and above all
unhygienic. Therefore, an automatic sorting concept is advocated. Two sorting steps have
been defined:
1. Sorting Step I - Discrimination between plastics and non-plastics
2. Sorting Step II - Discrimination between plastics mutually.

At the moment only Sorting Step II seems feasible in economical sense, and the second
part of the work must investigate the technical feasibility of the use of Near Infrared
Spectrometry (NIRIS) as an identification method. The feasibility study outlined the
many advantages of NIRIS compared to other techniques. NIRIS is a robust, a cheap, and
a non-destructive technique with many applications in other areas such as agriculture,
pharmacy, and process control. The main disadvantage of NIRIS are black and
transparent objects, they can not be identified.

The report must answer one main question, is it possible to identify plastics by means of
NIRIS with a fast measuring device in the spectral range from 950 - 1700nm?

Before we were able to answer this question, we put a list with requirements together. We
studied the near infrared measuring technique, and the way in which we should process
the spectral images to get all essential information. Thirdly, we extracted most relevant
features by means of principal component analysis (PCA). Finally, we selected the
Probabilistic Neural Network (PNN) as the most appropriate solution to meet all
requirements.

Theoretically, the solution meets all requisites, but due to lack of time not all of them
could be verified. The presented solution is able to classify at least seven plastic groups
(LILDPE, HDPE, PVC, PP, ABS, Polyester, and PA4_6/ PA6) with an accuracy of
approximately 100% and a recognition rate of 78%. The classifier recognises new yet
unknown plastics, and is able to learn them. The combination of the PCA algorithm and
the classifier allows optimal feature extraction. Unfortunately, the sorting system is not
able to classify mingled plastics correctly. The effect of misclassifications on quality
should be investigated more thoroughly. For instance, what quality is acceptable for
certain plastics, and is it possible to tune the classifier a little bit more to meet these
quality measures? Furthermore, more spectra should be measured to obtain more
statistical evidence on sorting accuracy. Finally, an identical device in the spectral region
from 900 to 2400nm will be available very soon, and its use will most likely alleviate the
problem of misclassifications.
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1 Introduction

1.1 Problem
Nowadays, public has become aware of the preservation of our environment. Natural
resources are becoming scarce, landfills are growing, and the green house effect is
frequently on the agenda of world top conferences. We now seem to understand that our
environment is highly related to our own lives and environmental measures have to be
taken quickly.

Reducing the amount of material for manufacturing processes is one of these measures.
Nevertheless, re-using and recycling materials seem to have a much larger impact. The
duration of our natural resources is simply extended. However, the re-use and recycling
of materials is not always beneficial. The environmental and energy costs associated with
collecting and transporting small amounts of materials to be recycled can exceed any
environmental benefits. Sorting jointly collected material into separated material stream
at one distribution point is therefore advocated [381.

Up till now the sorting of several material streams was too expensive, but new techniques
made the separation of (high-valuable) materials such as aluminium, iron, tin, etc. viable.
Also plastic is a high-valuable product massively used by consumers and industry.
Recycling and re-using them will have a great impact on our environment.

Plastics can be re-used and recycled in different ways. For instance, one can collect
plastics separately. High-value and easy to handle types of plastic products like PET
bottles - which are recollected and re-used in a collection system with deposit - are an
example of this. But as stated before, this is not an overall solution. Besides this example
of mechanical (material) recycling, also chemical recycling and energy recovery are
recycling methods.

Since large scale jointly collecting waste material is advocated, plastics have to be
isolated from this waste stream. Since sorting by hand is unpleasant, not accurate and
expensive, an automatic sorting concept is advocated. Besides the mechanical handling of
plastics, the identification should also take place by some alternative means. Near
Infrared Imaging Spectrometry (NIRIS) seems a very promising technique in technical
and economical sense.

1.2 Assignment
A three months long feasibility study outlined that the use of Near Infrared Imaging
Spectrometry (NIRIS) for the identification of plastics from municipal household waste is
technically very appealing. Unfortunately, a potential market in this area is not very
prospective. Namely, governmental policy advocates the combustion of waste to produce
energy in the form of electricity and heat. Large waste-to-energy plants have been built in
the last years and their depreciation terms are based on 25-year contracts with municipals.
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All the more, one should consider very carefully how to process the plastics once
extracted from the waste stream. The diversity of plastics is very large. A plastic type like
PVC exists of as many as six to eight different resins and thousands of different resin
grades, blends, additives, fillers, flame retardant, and composites. Mixing two apparently
similar plastics can lead to an inferior or even useless plastic for which no market exists.
Unfortunately, the market of recycled plastics is not well established yet and good quality
measures are not available nowadays.

Nevertheless, one clear conclusion can be drawn: in case that one really wants to get a
recycled plastic with the characteristics of its virgin counterpart, only chemical recycling
is the appropriate solution. In this process a homogenous plastic stream is turned into
monomers - the basic building blocks of plastics. Because this method is too expensive
these days, methods like NIRIS are much more appealing. The quality level as would be
obtained with chemical recycling methods is not obtained, but the price of the recycled
plastics is much lower and therefore more competitive in a potential market.

We distinguish two sorting steps:
3. Sorting Step I - Discrimination between plastics and non-plastics
4. Sorting Step II - Discrimination between plastics mutually.

The first sorting step is needed for (municipal) household waste streams, in which no
separation of plastics took place. Sorting Step II can readily performed on homogenous
waste streams from Sorting Step I, and of course waste stream from municipals and
industry in which Sorting Step I already took place. For example, in Germany, plastics
are collected separately by means of subsidiaries. The market of recycled plastics
becomes in this way much more interesting, since politics stimulates new recycling
methods.

Summarising, the market for Sorting Step II is more prospective than for Sorting Step I,
and NIRIS becomes an interesting recycling method for this market. Above all, the
technology and knowledge concerning NIRIS is also very suitable for the pharmaceutical,
agricultural and food processing industry. These reasons are the motivation of
investigating the feasibility of Sorting Step II in the succeeding six months of this Master
Trainee Ship.

1.3 Near Infra-Red Imaging Spectrometry (NIRIS)
Near Infrared Imaging Spectrometry (NIRIS) is a commonly used non-destructive
identification technique, which finds its merits in agricultural science, pharmaceutical
science, and process control [33]. NIRIS allows on-line monitoring structural and
molecular properties of several materials under investigation.

In the spectral range from 900 to 2500nm plastics absorb and reflect near infrared light
differently. Since every plastic has a unique spectrum, all plastics can be identified on
this 'fingerprint' by means of a classifier algorithm. Preliminary studies show that the
measured NIR spectra of a wide range of plastics are clearly different than those of non­
plastics. Distinguishing between plastics and non-plastics in Sorting Step I is therefore
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easy. Unfortunately, black and transparent plastics cannot be identified. Black plastics
absorb the whole spectrum and thus do not return a measurable spectrum. Also
transparent plastics cause difficulties. The spectrum of the conveyor belt is measured as
the optical near infrared signal passes through the object under measurement [55J,

Saml'"

"Spill'.. ,\lUll [pl~ell)

Figure i Recorded Spectral image from Three Samples

In Figure 1 a recorded spectral image from three different plastic samples is shown. In the
figure the spatial axis (horizontal) versus the spectrum information has been recorded.
The grey level represents the measured (near infrared) light intensity. We now want to
know what types of plastic are present there. This problem definition can be divided into
three basic blocks, which we will refer to throughout the report (Figure 2):
1. image Processing - This block retrieves the spectral information from the image.

The information is processed in such a way it hardly depends on changes in ambient
conditions like non-uniform lighting, noise, and spikes. But one could also think
about irregularities in the samples themselves, like for example the elimination of
baseline shift due to variation in sample thickness. Namely, we want to classify
plastics on type and not on the variations within the same type.

2. Feature Extraction - In this block the most important characteristics from the pre­
processed spectral information are extracted to allow optimal discrimination between
plastics. The classifier will compare these features with the characteristic features of
each plastics group. Namely, the classifier decides to which plastics group an
unknown sample belongs on similarities and dissimilarities between these features.

3. Classification - In the final block the decision to which plastics group a sample
should be categorised is made. One should keep in mind that classification is only
possible if the information of different plastic types is mutually exclusive. Hence, if
the information of two distinct plastics is similar, no classifier can do a correct
classification.

-----)0- Image Processing - - ~ FCalurc Extraction ---~ Classification PVC

Figure 2 Three Basic Blocks of the Identification Unit
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1.4 Requirements
For the identification unit the next requirements have been derived from previously
performed feasibility studies. Although not all requirements should and can be solved in
one particular block of the identification unit, we have categorised them for reasons of
simplicity.

Globally, the first five requirements must be dealt with in the image processing part:

1. The sorting system should be insensitive to environmental influences such as ambient
light and variations in temperature.

2. Insensitive to filler, fibers, colours, flame retardant, adhesives, dyes, pigments, and
other additives.

3. Insensitive to dust, paint, labels, food and drink residue and other surface defects.
4. Insensitive to plastic objects composed out of more than one plastic such as a soft

drink bottle composed of a bottom, a flake, and a cap. But also objects like milk
flakes consisting of a combination of cardboard and plastic foil (laminated
packaging).

5. Plastics with irregular dimensions and geometric should be handled.
6. Plastics with different weights and physical properties should be handled.
7. Black and transparent plastics should be excluded in this processing step. Namely,

other research groups encountered severe problems when trying to classify these
spectra [56].

For the feature extraction part the next requirement is important:
8. The features between distinct plastic groups should be as mutually exclusive as

possible. If they are not, no classification can take place.

For the classifier the next requirements are of interest:

9. The identification unit should be able to predict to which plastics group a new as yet
unseen sample belongs.

10. In case that this yet unseen sample does not belong to an existing group, a new
plastics group should be made. In other words, the sorting system should respond to a
new type of plastic, which may be introduced into the market in the future. Secondly,
within a plastics group the variety can be so large that subclasses must be made,
whereas one group does not represent the variety within the group.

11. Mingled plastics - composed out of more than one type of plastic - like for example
'Syntal' should not confuse the sorting system.

12. The sorting system should be insensitive to environmental influence such as ageing of
the measurement equipment. Also, as a result of continuous changes in (new)
manufacturing processes, legislation, and cost aspects, identification should be
flexible to slight changes in characteristics of samples within one particular plastics
group.

Finally, the following requirements deal with the economical aspects of the sorting
system:
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13. On-line identification and sorting should be done at very short time intervals to meet
market demands. Typically, 1.5 - 2.5 tons of plastic per hour should be processed.
Because this figure depends strongly on the mechanical configuration of the plastics
handling, and market demands, it is difficult to translate this number exactly into an
amount of identifications per second. Nevertheless, from previous investigations we
can derive a maximum identification time of 15 milliseconds per sample [57].

14. It should be possible to achieve sorting rates with an accuracy of more than 99% -
naturally depending on market demands.

15. The sorting system should operate fully automatic with little downtime.
16. Easy handling by unskilled people.
17. The sorting system should be economically interesting. As guidance, the complete

sorting system including the mechanical plastics handling should be available for less
than 195.000 DM in comparison with the equipment manufactured by Ti-Tech [52].

18. Because the measurement set-up with camera connected to a prism is the fastest,
cheapest, and most robust in comparison with other equipment, we will use this set­
up in our investigation. The camera set-up is fast and robust because it makes use of a
prism to disperse the incident (infrared) light into a continuous spectrum. Figure 3
shows this principle for one point. The disadvantage of the equipment lies in its
limited spectral range of 900 - l700nm. Other camera set-ups make use of an
Acoustic Optical Tuneable Filter (ATOF) or a fixed mechanical set-up of filters in the
range from 900 - 2500nm. In a nutshell the camera set-up with an AOTF works as
follows. Acoustic and optical waves move through a tellurium dioxide (Te02) crystal.
The crystal is cut in such a way that resonation takes place in response to the acoustic
waves. The resonation on its tum changes the refractive index of the crystal and the
wavelength changes accordingly. Due to its sweeping time across all frequencies, the
AOTF is quite slow compared with the prism.

----1_-_Pfi_Sffi_1<11II
Figure 3 Prism
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2 Near Infrared Imaging Spectrometry

2. 1 Introduction
Before we can start implementing solutions for our problem definition, we must get a
good understanding of the relationships between the plastic objects on the conveyor belt
and their recorded spectra. With this knowledge we can implement the image processing
and feature extraction part of the identification unit. But first we will discuss the basic
technique of near infrared imaging spectrometry in more detail. Secondly, we will
explain the choices we made in selecting a proper experimental set-up. In the next
chapter we will explain what experiments we did to get basic knowledge about the
characteristics of spectra.

2.2 Measurement Techniques
Generally speaking, two optical near infrared measurement methods are possible:
reflectance measurement and transmittance measurement. Both methods are
demonstrated in Figure 4.

I - Reflectance measurement

D e 0..- J

NtR Camera sel-up

Top-view

(plasllc) objects on conveyor belt

II - Transmittance measurement

light source

NIR Camera set-up

Side-view

Figure 4 Reflectance and Transmittance Measurement

The names of the methods refer to the way the light travels from the light source to the
camera. In case of reflectance measurement the light from the sample under investigation
is reflected into the camera, and in case of transmittance measurement the light is
transmitted through the sample into the camera.

Selecting the camera set-up for reflectance measurements has two great benefits:
1. Thin plastics that are lying flat on the conveyor belt are still measurable.
2. The plastics do not have to be queued in a single stream to pass the camera set-up,

resulting in higher processing speeds.

Although we only treat sorting step II (discrimination between plastics mutually), we
remark that the mechanical set-up of Sorting Step I should allow reflectance
measurements for the same reasons.
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Reflectance measurement is based on the interaction between the molecules of the sample
under investigation and the light radiated by the light source(s). Shortly, four types of
interaction between the incident light (photons) on the sample and its molecules are
possible (Figure 5):
1. Absorption - photons are completely absorbed by the molecules. The energy level

of the molecules rises. Typically, this interaction occurs with black opaque
samples. The energy of the incident light is converted into heat.

II. Nothing - the incident photons pass through the sample and no interaction with
the molecules takes place. Typically, transparent samples exhibit this behaviour.

ill. Reflection - the surface acts as a mirror and incident light is reflected.
IV. Scattering - photons interact with the molecules and are emitted (scattered) in

random directions.

I II III IV

Sample L- --'~-----'--'----'

Figure 5 Four Types of Interaction between a Sample and Incident Light

Identification of molecules is based on the scattered radiant energy - in chemistry
literature called overtones. For example, at the wavelength of 1145nm a typical CH­
overtone is present. By measuring these overtones and relating them to the molecules of
plastics, identification is possible. Generally, in the region between 1600 and 1800nm
methylene C-H stretches are found, and in the region between 2100 and 2500nm
combinations of C-H and O-H vibration bands [33J. With our choice of the camera in
combination with the prism we limited ourselves to the first region.

2.3 Experimental Set-up
In Figure 6 the experimental set-up is shown. The camera and light source are illustrated
with points. The measurement plane is a piece of conveyor belt that was black and made
of plastic. On top of this piece of conveyor belt we marked three locations in the
measurement plane. The spatial axis starts at the side of location 1 (x =0) and ends just
outside location 3 (x = l). At location 1 we put the sample under investigation, at location
2 we always put the same polypropylene (PP) sample, and at location 3 we always put a
standard reference sample. The reason for doing this will be explained later.

In reflectance measurement the intensity of light received from a sample
measured and expressed in proportion to the reference standard (Ireference):

I (
1) _ l",mple(A, x) - Idark(A, x)

aetllal /L, X - ---------
Irejmnce(A, x) - Idark(A, x)
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where the intensity of the light I(A,x) is expressed as a function of x and A. The matrix I
is a m x n pixel photodiode matrix in which each pixel intensity is stored as a grey level
of k bits. For these experiments a photodiode matrix with a size of 128 x 128 pixels, and a
grey level representation of 8 bits has been used. However, each recorded image
I.wmple(A,X) is the sum of the reflected light from the sample and the dark current llark(A,x).

This dark current is caused by the heat radiation of the photodiode matrix. Because the
dark current does not give useful information about the amount of light received from the
sample image, we subtract it from all subsequent images. After the calculation of
Equation 1 the light intensity of the sample IaclUal is related to the reference standard at a
linear scale between 0 and 1. In Figure 7 the sample image has a reflectance intensity of
40% compared with the standard reference.

Focal Point of Camera

Light Source
..........__ .

d h

Location 3

Location 2

Location 1

x

Figure 6 Experimental Set-up

Conveyor Belt
------::-----------:c---::--------"

Typically for infrared cameras, the dark current reduces the dynamic range of the detector
with about 20%, resulting in an actual grey level of 6 bits.

I 00% __ Reference

i
>-.......
.~ 40% _ Sample
2
t::......

c;:;
U 0% _ Dark Current
~

Electrical Signal Level ~

Figure 7 Actual Reflectance Intensity
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The dark current image and the white reference image have to be measured only once, ­
of course - unless the behaviour of the photodiode matrix is varying in time. The dark
current image is measured by simply closing the shutter of the camera and recording the
spectrum. The standard reference image is taken by placing the white reference on the
location where the actual sample would be measured as well.

In Figure I the intensity is represented as a grey colour map, the vertical axis is the
spectral wavelength region. The wavelength region is typically calibrated with a lamp
filled with Neon, Argon or Mercury gas. From each gas the relationship between spectral
peaks and their corresponding wavelengths are known. By finding these peaks in a
recorded image from the calibration lamp, we determine which pixels in the image are
related to particular peaks in the calibration gas. In the recorded image Figure 8 the (four)
highest peaks of these gasses correspond with the wavelengths 1014, 1129, 1357, and
1530nm.

WAV1: PROFILE

100 - '0 - - 0" - ••. __, .. - ,. ~ '0 __ ••0 '0 _ ~ __ 0'''' •..

'i.

:If::ill j - ,: I,:c :,1\1 : - : ~ : : : ~ :

40 . ,0 0:T (to - '1'1 .0 .; .. T ~i\' :- ;. -.. '; - .
20 r-::-'..~.~ --~ .. I::-~/~~~;. ~.t.,.~ .. ~~ ~ _:

,,
O-"--,..---i-----,.----.---+---+---+---;----+--,--

869 966 1063 1159 1256 1352 1449 1546 1642 1739

Wavelength [nm]

Figure 8 Spectrum from the Calibration Lamp

Because some spectral peaks are missing in this image, we conclude that the spectral
range of the image acquisition device does not range from 826 to 1790nm, but from 950
to 1700nm. So the prism does work in the spectral range 826 - 1790, but the camera does
not. This means that the first 17 x 128 pixels and the last 12 x 128 pixels of the
photodiode matrix do not contain meaningful information, and should be ignored.

x L.._..-..__..~.__.__.__.__.__.__.__._.._.-•.._.._.._..-..-..-"-_.__._-.--.--.--.--.-..- .
I'

··t p

,
'-e

d f ....:
~.. ~

Figure 9 Spatial Distance
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The image acquisition device scans a spatial line on the conveyor belt. The width of this
line (spatial distance x) is directly related to the focus of the lens f, the sensor size p, and
the distance d between the prism and the area of measurement as graphically illustrated in
Figure 9. Theoretically, the spatial distance x is calculated as follows:

d
x = p . - Equation 2

j
The sensor area consists of 128 x 128 pixels with a pitch of 60 11m in both directions.
This results in a sensor size p of 128 x 60 11m =7.68 mm. The focallengthj of the lens is
25 mm. The lens is mounted (d =) 46.5 cm above the conveyor belt. Hence, by
substituting all values in Equation 2 we find a spatial distance x of approximately 14.3cm.
This distance can also be found by applying a more practical method. The start and
endpoints of the spatial distance can be found by moving a white object under the camera
and watching the effect on a video screen at the same time.

2.4 Measurement conditions
All experiments took place in a special temperature controlled darkroom at constant room
temperature of typically 22°C and a humidity of 36%. The integration time of the camera
was 16ms.

By including the standard reference and PP sample in each measurement we are able to
monitor changes in the measurement conditions. Namely, the standard reference sample
gives information about changes in the light source intensity, and the PP sample about
changes in the wavelength region.

During the measurements the intensity level should not exceed the grey level of 230
(range 0-255, 8 bits), whereas the detector device does not behave linearly for higher
values. A standard reference sample of 75% has been chosen to increase the dynamic
range of the intensity level. The light source intensity was set in such a manner that the
value 230 was just reached with the reference sample of 75%. This intensity corresponds
with a light source power of about 95 watts. To have optimal forward infrared radiation a
halogen light source with pure gold plated coating has been used.

At the beginning of each experiment we measured a calibration image from the
calibration lamp, a dark current image, and standard reference images of all three
locations. Since we did not have a large reference sample we had to take these images by
placing the standard reference sample sequentially at location 1,2, and 3. Of each sample
three images were taken by moving the sample slightly between each measurement. Each
sample number has been written on the sample to allow identification afterwards. All
samples are listed in Appendix C.
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3 Image Processing

3.1 Introduction
Processing the raw image data must lead to spectra, which are not or only slightly
dependent on ambient (measurement) conditions. By doing experiments we want to gain
knowledge about the influence of ambient conditions on the spectra. We decided to split
the experiments into two groups to reduce the risk and cost related with this project. In
the first batch of experiments we want to find out what image processing must be done to
extract useful features. The second batch will consider real-world circumstances under
which the sorting concept must still meet our requirements.

The first and second batches contain 308 and 116 samples respectively. Generally
speaking, the more spectra are measured from distinct plastics and non-plastics, the more
accurate and consistent our knowledge will be.

Raw Image Cnrrcc\
Blackl

Transparent

No

Yes Not Classifiahlc

Processed Image NonnaJise L\lW-paSs Fihcr

Figure 10 Image Processing Part

In the next paragraphs we will shortly treat the processing steps that resulted from the
experiments. Figure 10 shows the chain of operations that must be performed on a raw
image. In the first process step, the raw image is corrected with the dark current image
I dark and divided by the standard white reference Ireference as described with Equation 1.
This correction is also very helpful in eliminating artefacts in the photodiode matrix.
Pixels that always represent a grey level of 255 or 0 are eliminated. In case division by
zero would take place in Equation 1, the actual pixel intensity is defined as zero.
Therefore, the value zero indicate pixels with an artefact. Those pixels do not contain any
information that could be useful for identification purposes.

3.2 Localising Samples

3.2.1 Problem

In the second process step of Figure 10 the relevant spectral regions must be localised in
the image. Only, from these regions we get spectral information of the plastics under
investigation. When two plastic objects are situated next to each other on the conveyor
belt, we want to be able to identify each object individually. In situations in which an
object on the conveyor belt is a composition of more than one type of plastic, we want to
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be able to identify the plastics separately, too. Of course, this completely depends on
market demands. For example, a milk bottle made of HDPE with a plastic cap of PP
could be considered as a useless recycled plastic. Eventually, the localised spectral
regions are used to eject the samples from the conveyor belt.

3.2.2 Solution

One way to find the relationship between the spectra and their locations on the conveyor
belt experimentally is using a triangle as illustrated in Figure 11. At the indicated
locations we recorded the spectral information along the y direction. By measuring the
distance of the recorded object and by looking at its corresponding pixels in the image,
we know location x exactly. Of course, instead of this triangle, individual samples of
different sizes can be used as well.

....
I

....
I

x

iii i
I Locations
~---

y-

Figure 11 Measurement ofLocations at Particular Intervals

The result of measuring three samples at the same time is shown in Figure 12. We did not
use the triangle here because we want to explain some more characteristics. The raw
image data is shown because the image could not be corrected with Equation 1. Namely,
the width of the standard reference sample was only 4cm. The width of the line array of
the camera is about l4.3cm for 128 pixels, resulting in a resolution of about 0.112
cm/pixel.

Although three samples were present at the measurement plane of Figure 12, only two are
visible here. The first peak between pixel 48 and pixel 80 is the response of the PP
sample was always present during the measurements. The second peak between pixel 106
and 127 is from the white standard reference. Between pixel 10 and 28 a black plastic
was present. Its spectrum is similar to the spectrum of the (black) conveyor belt (pixels
80 - 106). Apparently, the spectra of a black sample and the conveyor belt are identical.
This behaviour is also found for transparent plastics.

From the image we extracted a sample size of 3.58cm for the PP sample. This is in good
approximation with the 3.56cm found by measuring its size directly with a calliper rule.
The size of the standard reference is 2.90cm. This value is in good correspondence with
the 2.92cm found with a calliper rule. (Do not confuse the 'size' of the standard reference
with its real size of 4cm. In this image only about 75% of the reference standard had been
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recorded. The standard reference was located at the border of the line array as can be seen
in Figure 6).
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Figure 12 Horizontal slice ofa Raw Image

Let have a closer look at the black PP sample. After correcting the region in which the
black PP sample is located (Equation 1) the vertical slice at pixel 13 of Figure 12 is taken.
This spectrum has been corrected with Equation 1. In Figure 13 we see a spectrum with a
very low signal-to-noise ratio. The actual maximum intensity Iactual does not exceed the
ratio 0.06. Hence, the maximum amount of light received from the black sample is less
than 4.5% (0.06 x 75%). Verifying this ratio for 20 black and transparent plastics results
in a maximum intensity ratio of 0.10. Hence, the light intensity level never exceeds 7.5%
for black and transparent plastics.
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Figure 13 Vertical Slice of the Black PP Sample Region
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3.2.3 Conclusion and Recommendations

It is proven here that the size and location of the samples can be derived from the image
data by looking in the spatial direction. Black and transparent plastics cannot be located
because they are not distinguishable from the conveyor belt.

Because we were restricted in the amount of measurements, samples that are composed
of more than one type of plastics could not be measured. We recommend doing these
measurements in future. Also an algorithm to determine the location and size of each
sample could be implemented then. In these experiments we know the exact locations of
the samples because they were always put exactly at location 1.

The algorithm could for example detect changes in the slope in the spatial direction.
Probably, those slopes are also present for combinations of plastics. For instance, assume
that the PP sample and the standard reference sample in Figure 12 are located side by
side. A change in intensity is also present now. One should keep in mind that the artefacts
of the photodiodes in this uncorrected image might influence the effect of the algorithm
negatively. Namely, artefacts are masked with a zero and therefore result in sharp peaks
when the derivative is calculated. The intensity ratio of 0.10 could be very useful as a
threshold to alleviate calculating the derivative at pixels with an artefact.
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Figure 14 Wavelength Regions between Pixel 48 and 80 ofthe PP Sample

3.3 Selecting a Wavelength Region

3.3.1 Problem

After the location of the samples is found we want to select one particular wavelength
region that contains the spectral information of the sample. Basically, this is the same
procedure as used to slice Figure 12 in the vertical direction, but which wavelength
region would be the best selection?
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3.3.2 Solution
In Figure 14 all wavelength regions between pixel number 48 and 80 of the PP sample of
Figure 11 are plotted. The wavelength regions have been cropped to the region between
950 and 1700nm. Namely, in the calibration phase we found that the camera does not
have a spectral response outside this region. Although, all wavelength regions are taken
from the same sample - but at intervals about 0.1 cm away from each other -, they differ
slightly in intensity.

We could select one of the ten wavelength regions or take the average of all these
wavelength regions. In the latter case, we will have an average wavelength region of 98
pixels that will represent the whole set. The main advantage of using the average is
removing uncorrelated disturbances (additional noise) in pixels. In contrary, the random
selection of one wavelength region would considerably increase processing speed.

Vertical slice

l
0.25

~
.~

c

'"E 0.2
'0

'"
~
Ul

0.15

0.1

20 30 40 50 60
Wavelengths [pixels]

70 80 90

Figure 15 A PP Sample with a Spike at Pixel 35

3.3.3 Conclusion
We choose to average over the wavelength regions from pixel 48 to pixel 80, instead of
selecting arbitrarily one wavelength region. In this stage of the project we want to verify
the possibility to classify plastics, and we are less concerned about speed. In a latter stage
of this project more time could be spend in investigating what effect selecting one of the
ten wavelength regions would have had. If classification would still be possible, skipping
the average calculation will increase processing speed.

3.4 Low-Pass Filtering

3.4.1 Problem

Photodiodes with a not consistent (linear) behaviour, generate spikes in the spectra. For
instance, the PP sample in Figure 15 has a spike at pixel 35. Because these spikes might
have a negative contribution to the classification process we want to remove them
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beforehand. The information of the spectrum is not stored in these spikes or in the
additional noise around it. Low-pass filtering should preserve this information while
eliminating spikes and noise.

It appears that the spikes do not have a regular behaviour. Only samples with a higher
intensity than 0.17 (at pixel 35) exhibit this artefact. Since we averaged over the spatial
direction to obtain this spectrum, we have to conclude that this error is not related to one
pixel, but to all pixels over which averaging took place.

3.4.2 Solution
The simplest solution seems omitting this pixel (or better pixels), but examining more
spectra indicate that we are not only concerned with these pixels, but with approximately
20 pixels more. Above all, eliminating these pixel makes our image processing
completely dependent on the camera we used. Changing the camera would demand
revising all locations where spikes could occur. Also a pixel that starts malfunctioning
during operation will not be noticed, and in the worst case lead to classification errors.
Therefore, we eliminate the pixels by low-pass filtering.
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Figure 16 Moving Average Filter applied on the PP Sample

The moving average filter is a frequently used low-pass filter in image processing. The
output y of the filter at a certain pixel x is the average value of the pixels around it:

I f Equation 3
y[n] = Lix[n - m]

2M + I m=-M

where M indicates the amount of values taken from the 'past' and from the 'future'. In
Figure 16 the effect of moving average filtering with M =0, 1, 2, .. , 9 is shown. The
moving average filter not only reduces the size of the peak in pixel 35, but the whole
spectrum becomes flatter. When we look at the scale of the vertical axis we see that this
effect is not tremendously yet, but despite spectral information is lost.
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The conservation of information - with exception of pixel 35 - is calculated and plotted in
Figure 17. The data conservation is nothing more than subtracting the RMS error
introduced by filtering from the original data. The effect of reducing the spike with an M­
moving average filter is expressed as:

r =100 _ i(p) [%] Equation 4
(i(p -1) + i(p + 1)) /2

where the peak reduction ratio r is assumed to be optimal (i.e. 100%) in case the intensity
of the peak p is equal to the average of its neighbours.
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Figure 17 Effect ofapplying a M-Point Moving Average Filter

The optimum M-point moving average filter is a trade off between the reduction of the
spike p and the conservation of the original spectrum. For this example, a moving
average filter of 4 points would be most appropriate (Figure 17). Increasing the filter
range does not improve the peak reduction any more, and 97% of the original spectrum is
maintained. Performing this optimum search with 10 more spectra results in an average
of M =3.7. Hence, a 4-points moving average filter will be used.

3.4.3 Conclusions and Recommendations
The use of a 4-points moving average filter is a good trade off between conservation of
the spectrum and the reduction of spikes.

Eliminating the pixels from the spectrum that cause the spikes is not a good solution, it is
not flexible enough to be used under operation conditions. Of course, a feature extraction,
and classifier part which are both insensitive to these spikes would be the simplest
solution. Nevertheless, at this moment the moving average filter is a good alternative. In
the future more time could be spend investigating the effects of not using a moving
average filter. For now, noise and spikes have been removed to get a smooth and more
reliable spectrum.
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3.5 Normalisation

3.5.1 Problem
In Figure 18 the reflectance intensity of three polypropylene samples with thickness 1.70,
3.17 and 3.94mm versus the wavelength region (962 - 1692nm) are plotted. These spectra
have been processed according to the chain of process steps - except of the normalisation
process - in Figure 10. Although the plastics are made of the same material, their
intensity response is different. The feature and classification processes would be much
easier to implement, if the spectra of one plastics group would be more or less the same.

Superfluously, we mention here that the information of the spectrum that tells us what
type of plastic is examined, is more related to its general shape than its intensity level [33].

By normalising the spectra we could emphasise this characteristic. In this process the
intensity (or baseline) shift that is less related to the type of plastic will be eliminated and
the basic shape will be enhanced. The question is, how do we eliminate the shift that is
related to the variation in thickness?

3.5.2 Solution
In literature we found that the intensity of the spectra vary more or less in reverse
proportion with the material thickness [42]. Unfortunately, this relationship does not hold
exactly for the samples shown here. The discrepancy is clarified by dividing all recorded
samples into two sets. One set contains samples that are thinner than 0.5mm and the
second set consists of samples that are thicker than 0.5mm. It seems that the set of
samples with a thickness smaller than 0.5mm approximates this relationship, but the
samples of the other set do not.
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Figure 18 PP Samples with Thickness of1.70,3.17, and 3.94mm

Hence, we could use this reverse proportional relationship to normalise the set with thin
samples, but the set with thicker samples would not be normalised correctly.
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An alternative approach to eliminate the baseline shift is using a first derivative.
Differentiation would eliminate the base line shift, but small fluctuations in the spectra ­
that could not be removed with the low-pass filter - are blown up enormously. A
practical very useful technique is the calculation of the Standard Normal Variate (SNV).
The SNV normalises the spectrum in such a manner that the mean is 0 and the standard
deviation is 1. SNV is a combination of mean centring (correction for baseline shift), and
normalising the standard deviation (the standard deviation represents the surface under a
spectrum) [63].
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Figure 19 Result of the Normalisation Process

The result of the normalisation process for the three PP samples of Figure 18 is plotted in
Figure 19. The amplitudes are not unlimited as would be the case with the first derivative,
and the shapes of the three samples are more or less identical. Each of the samples could
now be used to represent the set of three PP samples. The process has been repeated with
25 samples, and proven to be successful.

3.5.3 Conclusion and Recommendation
The Standard Normal Variate is a good technique to eliminate the shift in intensity level
that is caused by variation in sample thickness. After all processing steps the spectra are
more or less the same within a plastics group. This will greatly simplify the feature
extraction and classification part.

Although not presented here, an experiment in which the light source intensity was varied
between 8 and 80 Watt leads to similar results. The relationship between the intensity and
the amount of light source power was linear, but the spectra became flatter when light
intensity dropped. This means that in future the use of the SNV could be very appropriate
to eliminate the effect of (small) changes in the intensity of the light source, too. Of
course, one should keep in mind that in case the light intensity becomes too small, the
spectral information of a plastic gets lost.
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3.6 Conclusions and Recommendations

3.6.1 Image Processing Part
In this chapter we have seen how the raw image data is processed to get a consistent
spectrum for each plastic sample within a particular plastics group. Figure 10 illustrates
all these process steps. First, the raw image data is corrected for consistent camera
artefacts and non-uniform lighting in the scene. Then the wavelength regions of the
interest are located in the image by looking at the slope. In this process black and
transparent plastics are automatically omitted, but it could be needed to help the process a
little bit with a threshold. After that the region of interest is selected (by averaging or
maybe by randomly selecting one), the wavelength region is filtered with a 4-points
moving average filter. This filter eliminates spikes that are present due to unstable (i.e.
defect) photodiodes. In future, the effect of not using this filter could be investigated to
maintain more spectral information and to speed up the image processing process.
Finally, the spectrum is normalised to get consistent representations of each type of
plastic. The normalisation process enhances the shapes meanwhile eliminating the
intensity (or baseline) shift due to variation in thickness and light source intensity.

In total, 480 spectra have been processed completely (Table 1). For the first seven classes
a spectrum has been plotted in Figure 20. From each sample three spectra were measured,
so actually, only one third of the spectra are really taken from different samples.
Therefore, we will only use one third of the first six classes (372/3 spectra) for
classification purposes. Only six classes have been selected, because performing statistics
on classes with only one or two samples is not well conditioned. Nevertheless, these
samples can be used to test the classifier for unknown classes. The classifier should be
able to detect that a yet unseen class is present at the input. The spectra from class 9 to
class 13 can be used to analyse the performance of the classifier in case a combination of
two or more types of plastic is measured.

Table 1 Spectra after Image Processing
Class number Label Amount

1 PVC 63
2 PP 63
3 POLY.EST. 63
4 ABS 63
5 PA4_6 60
6 HDPE 60
7 LILDPE 36
8 PA6 18
9 ABSIPA6 15
10 SMAJABS 12
11 SMAJABSIPMMA 9
12 SMAlPMMA 6
13 ABS/PMMA 6
14 TH.PLAST.ELAST 3
15 EPDM 3

Total 480
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3.6.2 Second Batch of Experiments
The extraction of features from the first batch of experiments seems to be successful. If
good classification results are achieved, it is strongly recommended to repeat the whole
process of image processing, feature extracting and classification with more realistic
measurement conditions. The next paragraphs could be useful in setting up the
experiments for this second batch.

3.6.2.1 Non-Plastics
Although Sorting Step II is meant for plastics only, this cannot be fully guaranteed .For
instance, according to information from the German DSD-system, it is proven that public
is simply not impeccable in sorting their household waste into separated waste streams [3).

Thus, accidentally also pieces of glass, metals, wood, textiles, paper, etc. will be on the
conveyor belt, and it makes sense to check their effect on the whole sorting process.
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Figure 20 Seven Spectra after the Image Processing Process

Because we do not know exactly what other materials than plastics are in a common
(municipal) household waste stream, we suggest measuring at least the items listed in
Appendix D. (Some already have been measured). At this point, the only thing we know
is that spectra from other materials than plastics are normally extremely flat [64).

3.6.2.2 Mixed Plastics
Products like 'Syntal' which are a composition of plastics belonging to distinct plastics
groups can lead to misclassifications. Namely, it is unclear to which plastics group they
should be categorised. We recommend investigating whether these plastics might confuse
the classifier. According to Table I we already have measured some of these samples.
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3.6.2.3 Compounds of Plastics and Non-Plastics
Some consumer products are compositions of plastics and non-plastics. Take for example
a milk flake composed of a combination of cardboard and plastic foil (laminated
packaging) or a soft drink bottle consisting of three parts: a bottom, flake and cap. We
recommend investigating what type of spectra we can expect from these materials. Do the
non-plastics or plastics have the upper hand in a single wavelength region or is the
recorded spectrum a mix of both? Theoretically, we have seen that it is possible to
distinguish different plastics in one single image, but what about compounds?
Summarising, a lot of questions still miss an answer.

3.6.2.4 Waterl Moisturel Dirt Conditions
Solid (municipal) household waste is normally stored outside. This means that the waste
is exposed to regional weather conditions. Typically, in the north of Europe this means
cold, water and moisture conditions and in the south sun and heat. Furthermore, plastics
are contaminated with dirt so that in a real application no pure plastic material is
measured. We recommend doing research on the quality of the spectra when the surface
conditions change.

Moisture conditions are typical for waste in which green material is included. By
sprinkling water - with a very fine nozzle -, moisture conditions could be imitated.

In case of wetness and heat, we can use other means to simulate these conditions. Water
can simply be sprinkled on the objects under investigation and temperature can be
increased with a fan. Since heating a surface is much easier than cooling it down, we
suggest assuming that in case of differences, this effect in the spectra can be generalised
for temperatures below room temperature.

Literature tells us that spectra in the (near) infrared region are independent of dirt
conditions (food and drink residue) at the surface layer [56]. But bottles, containers, and
other items with contents do not posses this advantage [41]. Which statement is true or
what makes the difference between them? Namely, both could have a tremendous effect
on the costs of our sorting concept. Imagine that the waste stream must be washed before
classification can proceed or that the waste stream has to be pulverised into small pieces~

3.6.2.5 Non-uniform Illumination (Shadow)
Non-uniform illumination leads to a variation in the actual light intensity as formulated in
Equation 1. Investigations of other research groups [62] tell us that spectra under shadow
conditions (cast shadow (umbra) and self-shadow (penumbra)) lead to severe
misclassifications.
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Equation 6

4 Feature Extraction

4.1 Introduction
Now the raw image data has been processed, we are ready to start analysing the spectral
information. If we want good classification results, we must have features that
discriminate between plastics mutually. Similarities in spectra do not distinguish plastics,
dissimilarities do. Two applications that rely on efficient data representation are pattern
recognition and data compression. In pattern recognition, a classifier decides to which
class an observed pattern belongs. The patterns within a class may vary considerably so
that matching the observation with some characteristic template may be an inefficient
classification procedure. Extracting measurements that are invariant or insensitive to the
variations within each class is therefore desirable. This process is called feature
extraction. We already have optimised the spectra in the image processing part, and now
want to find dissimilarities and similarities in the spectra. Features, which are constant
within a class but different between classes, make good classification possible. Typically,
the classifier follows the feature extractor in a classification set-up. Principal Components
Analysis (PCA) seems a very useful technique to emphasise dissimilarities meanwhile
suppressing similarities in data.

4.2 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is a classical technique for analysing the
covariance structure of multivariate statistical data. PCA derives the most important
linear features of the random observation vector x. PCA can be considered as a feature
extraction or as a data compression technique if many variables can be represented by a
few (principal) components. PCA is also closely related to least-squares techniques in
estimation theory, the Karhunen-Loeve (KL) transformation in time series and image
processing theory, and the singular value decomposition (SVD) in numerical analysis.
Also the Hotelling transform is frequently used as a synonym in literature [II].

Suppose that we have a population of M observations on n variables (XI, X2, X3, .. , xn)

each. Each observation is represented as a vector of the form (the superscript T denotes
transposition):

x k = (Xl X 2 X3 X4 x n ); Equation 5

Figure 21 illustrates an example of a population with two dimensions. A common way to
predict a variable is by its mean, and in case of a multivariable population with M vectors
we can calculate the mean vector as follows:

M

X =E{x}= [E{xJ .. E{xn}Y = it L xk
k=1

If we calculate the mean for both variables in Figure 21, we see that for both variables the
mean - in case of the original data - is a poor predictor. In contrary, if we rotate the data
about 45 clockwise we see that the observations on variable X2 do not deviate much from
its mean E{X2}. Hence, for this variable, the mean is a reasonable good predictor. In case
of data reduction we store this commonly shared mean instead of all individual variables.
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On the other hand, for classification purposes it would be better to select variables that
are very distinct. For example, if we would like to discriminate with one variable (Xl or
X2) all projected data, we should select variable Xl. Variable X2 would not contribute much
to the performance of the classifier, and omitting it would be advantageously for the
reduction in data overhead.
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Figure 21 Example ofa peA Analysis

Instead of looking at the observations on one particular variable solely, we can also look
at the relationships between variables. If we know the relationship between variable Xi

and Xj then we can predict Xi on the knowledge of Xj' Similarly, the reverse holds: if we
have knowledge of Xj we can predict Xi. Hence, for each pair of variables we calculate the
covarIance:

Cij=Eixi-xi)T(Xj-Xj)} l,)En Equation 7

If Xi is strongly correlated with Xj the covariance-coefficient Cij is one, and Xi can be
predicted exactly by Xj or Xj can be predicted exactly by Xi. Thus cij = Cji. On the other
hand, if the variables Xi and Xj are uncorrelated, their covariance is zero: cij = cji = O. For
the whole population we get the n X n covariance matrix ex:

[

Etxl - XI): (XI - Xl)} Et Xl - XI)T (X2 - X2)}.. Et Xl - Xl)T (X" - X")l

c = Et X2 - X2) (XI- XI)} .. .. ..
x

.. ..

Etx" - X,,)T (Xl - XI)} Etxn - Xn)T (X" - x,,)

Equation 8

Except for a given variable Xi predicted from a single variable Xj, the variable Xj can also
be predicted by a combination of some (or all other variables). Hence, reduction in data is
obtained by employing these relationships. PCA performs this reduction by seeking a
new orthonormal basis with a minimum number of p orthonormal vectors to describe the
original set of variables as accurate as possible, so that p << n. The transformation error
between both spaces should be kept as small as possible. If we have found this new
orthonormal basis every individual observation can be transformed to a lower dimension,
thereby keeping most of its essential information. The classifier would perform best, if
the PCA selects the data with the largest variances between classes. How this is
implemented with a PCA analysis, will be explained now.
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The knowledge of the relationships between the variables is present in the covariance
matrix CX' Creating a new space by finding a set of n orthonormal eigenvectors is always
possible [II]. Let ej and Aj, i =1, 2, .. , n be the eigenvectors and corresponding eigenvalues
of Cx(Cxei =Ajej), arranged in descend order so that Aj ~ Ai + 1 for j = 1,2, .. , n - 1. Let A
be a matrix in which the rows correspond with the eigenvectors of Cx, ordered so that the
first row of A is the eigenvector corresponding with the largest eigenvalue, and the last
row is the eigenvector corresponding with the lowest eigenvalue. Then the (Hotelling)
transformation from x to y is denoted as:

y =A(x - x) Equation 9

The mean of the y vectors resulting from this transformation are zero (E{y} =0), and the
covariance matrix of the y's can be obtained with Cy = ACxAT. Furthermore, Cy is a
diagonal matrix whose elements along the main diagonal are the eigenvalues of Cx:

Al 0 Equation 10

C =
A2

y

0 .. An

The off-diagonal elements of the covariance matrix are zero, thus the elements of the y
vectors are uncorrelated. Hence, the effect of the Hotelling transform is the establishment
of a new coordinate system whose origin is at the centroid of the population x, and whose
axes are in the directions of the eigenvalues of Cx> The first axes or principal components
reflect the variables with the largest value, and the last principal components, the
variance with the smallest variance. If the variance in the last n - p axes are zero, these
dimensions do not improve the performance of the classifier at all, and could be omitted.
The error made with the rejection of n - p dimensions, is calculated as follows. The root
mean square (RMS) error between vector x and its reconstructed vector x is expressed
as:

e
rms

=,j(x - ;OT (x - X) Equation 11

Because the rows of A are orthonormal vectors: A-I = AT, and the vector x can be
reconstructed from its corresponding vector y by using the relation:

x =AT Y+ x Equation 12

In case that we reduced the dimensionality of the space to K, the transformation matrix A
becomes of order K x n, where K corresponds with the K largest eigenvalues. The y
vector will also be a K-dimensional vector, and the reconstruction to vector x will no
longer be exact. The reconstructed vector x is:

X =Ary k + x Equation 13

It can be shown that the RMS error between x and x is given by [II]:
n K n Equation 14

erms =LA j - LA j = LA j
j=l j=1 j=K+1

which is zero when K =n. Because the Aj (i E 1,2, .. , n) decrease monotonically, the error
can be minimised by selecting the K eigenvectors with the largest eigenvalues.
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The transformation to the new space is based on the population x. The PCA analysis will
seek for dissimilarities and similarities for this population only. For this reason, an
unknown vector v can be transformed wrongly. Namely, the PCA analysis omitted some
dimensions that distinguish vector v from population x. Unfortunately, the opposite does
not hold. A vector v that is transformed correctly can be correlated with population x.
Hence, the PCA transformation does not always notice that a vector different than those
in the population is applied. All the more, the PCA analysis is not optimal for new
applied vectors of the latter case. In the first case, the vector v is detected and a new PCA
analysis could be performed. This vector can be added to population x, and after a new
PCA analysis the new decorrelated space will be optimal again. In Figure 22 the process
of verifying the transformation to the new space is illustrated.

The decision boundary between a good and bad projected vector is set by Error. If the
value of Error is too small, the PCA analysis is repeated for almost every new applied
vector. If the Error is set too large, the PCA analysis is not able to detect unknown
vectors, and the new space does not represent the population x very well.

VcclOr Y

-----.. Vector X

Error

EmIr < Error >---.

No

VcdorX

Yes ---1 ClasSIfy

Figure 22 Feature Extraction Part

4.3 Results
The PCA analysis has been performed on the fifteen types of plastics from Table 1. In
Figure 23 the features for the first two principal components are plotted. These two
principal components represent about 70% of the data. We see that not all classes can be
distinguished clearly with only these two components. A lot of classes overlap. Based on
these two principal components no good classification results will be achieved.
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In Figure 24 we see the effect of selecting more principal components. The data is very
similar for all classes: selecting more than 10 principal components will not improve the
ability to discriminate the data very much. These first 10 principal components represent
the data for about 99.75%.

10

'"'" 6"~

~: l
a
a 10 20 30 40 50 60 70 80 90 100

Principal components

rOO (
~ 80

~
0
l)

'" 60
1ii
Cl

E
" 40
l) a 10 20 30 40 50 60 70 80 90 100

Principal components

Figure 24 Results ofPCA Analysis

For a value of Error = 1%, the verification process of Figure 22 does not reject the
vectors from its own population anymore.

4.4 Conclusions and Recommendation
The amount of essential information that is present in the spectra is poor. With only 10
principal components it is possible to describe 99.75% of the original data (98
dimensions). Whether the spectra of different plastics can be separated on this
information has to be verified yet.
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By performing a back transformation, the PCA transformation to the new space can be
verified. In case that a spectrum was not transformed correctly, the PCA analysis has to
be repeated. This could be an indication of a vector of an yet unknown class, but it could
also be a vector correlated with population x. Since the reverse does not hold, it is
recommended to initialise the PCA analysis with at least some groups of plastics.
Namely, if a vector is a linear combination of the vectors in the population, the vector
will be transformed well. So no new PCA analysis will be performed. This is a
disadvantage in case that the vector belongs to an unknown class. We would like the PCA
analysis to emphasise differences between classes, but for such a vector it does not.
Hence, the PCA analysis is only optimal if we include all vectors that must be classified.
This might be a disadvantage if we want to classify new unknown spectra, but at this
stage of the project we are only interested in the quality of the spectra. Are we able to
classify them or not? Nevertheless, we suggest a solution to the problem. By using other
knowledge that is able to tell whether an unknown vector is present, we are able to
include this vector in the PCA analysis after classification took place.

For speed pUI;1i0ses the PCA analysis could be implemented in parallel hardware as found
in literature II]. We think that this would not be necessary. Namely, after a while
sufficient spectra will have been added to the PCA analysis, so that less PCA analyses
have to be repeated.
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5 Classification

5.1 Introduction
In this paragraph we repeat the main requirements upon which we must implement a
proper solution for the classification task. Moreover, we have to include the findings
from the image processing and feature extraction part.

The requirements from paragraph 1.4 are:

9. The identification unit should be able to predict to which plastics group a new as yet
unseen sample belongs.

10. In case that this yet unseen sample does not belong to an existing group, a new
plastics group should be made. In other words, the sorting system should respond to a
new type of plastic, which may be introduced into the market in the future. Secondly,
within a plastics group the variety can be so large that subclasses must be made,
whereas one group does not represent the variety within the group.

11. Mingled plastics - composed out of more than one type of plastic - like for example
'Syntal' should not confuse the sorting system.

12. The sorting system should be insensitive to environmental influence such as ageing of
the measurement equipment. Also, as a result of continuous changes in (new)
manufacturing processes, legislation, and cost aspects, identification should be
flexible to slight changes in characteristics of samples within one particular class.

x,

x,
Figure 25 Example ofLinearly Separable Data

Including the main economical aspects of the sorting system:

13. On-line identification and sorting should be done at very short time intervals to meet
market demands. Typically, 1.5 - 2.5 tons of plastic per hour should be processed.
Because this figure depends strongly on the mechanical configuration of the plastics
handling, and market demands, it is difficult to translate this number exactly into the
amount of identifications per second. Nevertheless, from previous investigations we
can derive a maximum identification time of 15 milliseconds per sample [63].
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14. It should be possible to achieve sorting rates with an accuracy of more than 99% ­
naturally depending on market demands.

15. The sorting system should operate fully automatic with little downtime.
16. Easy handling by unskilled people.

From the feature extraction part we derive the next requirements:
19. The classifier should be able to handle feature data with complex decision

boundaries. The classification of the feature data would be easy if the decision
regions would be linearly separable as illustrated in Figure 25. In this case it would be
simple to define rules on which decisions could be based. However, the decision
boundaries of the features are complex, and therefore we must find other alternatives
to 'describe' these spaces.

20. The classifier must be able to relearn a set of features after the feature extraction part
has been repeated. Namely, the PCA analysis will be repeated in case transforming a
vector x to the new p-dimensional space is inaccurate. Since the vector x is included
in this new PCA transformation, the generated features will be different now. The
decision boundaries should be redefined to map the new features.

21. The architecture of the classifier must be able to handle features of arbitrary
dimension. All spectra are now describable with 10 principal components, but by
adding new vectors this number could increase and decrease. The largest amount of
dimensions that could be reached is 98 (the maximum number of principal
components, so no data reduction is obtained).

22. We would like that the classifier is able to tell the PCA analysis algorithm to repeat
its procedure with the vector that was transformed correctly, but according to the
classifier does not belong to a yet known class. This would alleviate the problem that
the data is not decorrelated optimally in all cases.

i
x,

x, ~

Figure 26 Example of Complex Decision Boundaries

5.2 Solution
Although we are mainly concerned with the question whether we can classify the spectra,
we do base our classifier on all requirements.

The simplest view of the task of classification is that a specific pattern of observations is
associated with a specific class. This is the pattern recognition perspective [40]. If the
database was limited, each pattern could be stored in a table, and for a given pattern of
observations one would simply look up in the table the corresponding class that had
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previously been associated with it. Unfortunately, in our case the number of possible
combinations of samples is very huge, thus even the most systematic and long-term
record keeping is unlikely to cover all the possible combinations. Moreover, when the
database with samples is relatively small, there may always be new, as yet unknown
samples that will invalidate some of the defined rules of classification, and require their
revision. The goal of our system is prediction on new cases, and not solely discrimination
between existing samples of the database. We must build a classifier that is capable of
generalising new, as yet unseen cases. Unfortunately, complications arise because
classification and prediction tasks are often fraught with uncertainty. It is quite possible
that two similar or even identical samples of prior cases may fall into different classes ­
that is, there may be ambiguity within our sample set. If many of our samples are
ambiguous for a given set of features, we must conclude that these features have poor
predictive power, and no good solution to the classification problem may be possible with
them alone. For instance, classification that would only include the first two principal
components is an example of this ambiguity (Figure 21).

Heuristic methods like expert and fuzzy logic systems based on implemented decision
rules, and multivariate statistical data analyses such as LDA, and QDA are all useless.
We have to rely on methods, which are able to interpret the complex data for us. Making
use of Artificial Neural Networks (NN) seems very promising.

Neural Networks [59] store knowledge and use it to make decisions on new inputs. They
can generalise, giving the correct output despite of minor variations in the input vector.
NN acquire knowledge through training from a training set composed of actual
observations of the physical world, rather than being formed by human opinions used for
fuzzy-logic systems (or expert) systems. Neural networks have the great advantage that it
is not always necessary to define rules on how clustering and classification should take
place. Based on the type of network, relationships are created to map inputs (spectra) on
outputs (classes). How this mapping is done by the network structure is often unclear. In
other words, the neural network lets the data speak for itself.

Unfortunately, this can be a major disadvantage: the training set must be adequate to fully
represent the domain of interest, otherwise the neural network can make decisions in
areas where it has no experience. In both humans and machines this can lead to serious
errors. Because our sample database is relatively small, the chance that this will happen is
quite large. If we would be able to estimate the accuracy of classifications we could keep
track of performance, and alleviate this problem.

Above all, a measure of accuracy is very helpful in accomplishing market demands (for
example: only PVC of 99% purity). Also keeping track of the accuracy can help in
determining whether we should add a new class or not. For instance, if the classifier
indicates that a sample can not be categorised because no associated class is present, we
could implement an algorithm that automatically creates a new class for this sample.

The sorting system should operate fully automatic which means that no human
intervention is allowed. Unfortunately, we can already conclude in advance that this
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requirement cannot be met when we have to create new classes on-line. Namely, our
sample database is too limited to include all representations of plastics, and over a period
of time new yet unknown classes could be lying on the conveyor belt. Thus, regardless of
our ability to make a smart algorithm to add new plastics groups, we still need to label
these groups. Even if the classifier could automatically label the new classes with labels
like 'unknown_I', 'unknown_2', or 'probably_pp', 'probably_pvc', etc. we still have to
verify these labels manually. The classifier simply has not enough knowledge to tell what
plastic it really is. It can only tell it does not belong to any of the plastics it already
knows.

Summarising, the use of a neural network that is able to keep track of its performance is
advocated. In the next paragraphs we will select the NN that meets all requisites best. We
concluded that human intervention is always needed in areas where the classifier has no
knowledge.

5.3 Artificial Neural Networks

5.3.1 Basic Architecture

Basically, neural networks (NN) do nothing more than mapping input vectors into output
vectors. Since the way mapping takes place is often not known, neural networks are often
described as 'black boxes'. The basic construction of a NN consists of three building
blocks:
1. Architecture. Internal connections of signal paths.
2. Training or learning algorithm. Determining the weights of the connections.
3. Activationfunction. The behaviour of the neurons to an input activation.

5.3.2 Learning Methods
There are many learning methods for neural networks by now. Nobody knows exactly
how many. New ones (or at least variations of existing ones) are invented every week.
Globally, learning methods for NN can be classified into three basic types: supervised,
reinforcement, and unsupervised learning.

In supervised learning a teacher is assumed to be present during the learning process.
After that an input vector has been applied, the teacher compares the produced output
vector of the neural network with the correct output vector. The teacher calculates the
error between these vectors and the error is then used to change the weights of the neural
network and thereby improving its performance. Hence, supervised learning demands for
a sample database with their corresponding categories.

In reinforcement training, a teacher is also assumed to be present, but instead of
calculating the error rate and back-propagating it to adjust the weights, the network is
only told whether the output vector it computes is right or wrong. The neural network
must then use this information to improve its performance. Typically, the weights of
neurons, which give the right answer, are reinforced and the weight values on those
neurons giving the wrong answer are reduced.
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In unsupervised learning, the network has no feedback on the desired or correct output.
There is no teacher to present target vectors. Therefore, the system must learn by
discovering and adapting to structured features in the input vectors, that is, by adapting to
statistical regularities or clustering vectors from the input training samples. For instance,
the following structures might be discovered in the sample data:
1. Grouping or clusters of closely related patterns.
2. Frequencies of occurrence of groups or patterns.
3. Relative orderings (e.g. length) among the input vectors.
4. Correlation of the patterns (for example, the greatest variance among the variables

like in PCA)
5. Mapping which transforms input vectors to a lower dimensional space.

5.3.3 Performance Indication
Neural networks suffer from a lack of perceived reliability. They can provide useful
answers in the vast majority of cases, and then without any warning produce a totally
incorrect answer. This can usually be traced back to an inadequate training set. Still, there
is often no way to determine when the output will be incorrect. Even worse, it is usually
impossible to determine how an artificial neural network made an incorrect decision, so
that the problem can be corrected. This situation arises from the fundamental structure of
the network: knowledge distribution over the entire pattern of weights, thus a large
amount of knowledge may be involved with one decision. The only way to fully
characterise the response of the neural network is to apply all possible inputs, and see
what happens. Unfortunately, this is in many cases impossible due to the complexity of
the problem. With neural networks one must be satisfied with a probabilistic statement of
reliability. This is achieved by splitting the data into a training set and a test set and
evaluating its performance.

Fortunately, some neural networks - Probabilistic Neural Network (PNN), Radial Basis
Function Network (RBF), and General Regression Neural Network (GRNN) - provide an
indication of the correctness by means of probabilities. The selection of the PNN network
is easy: GRNN networks are meant for function approximation rather than on
classification tasks. RBF networks require a radial symmetric distributed feature space.
The latter does not hold in our application.

We will not discuss all types of network topologies here, since many of them are problem
related. Whereas the literature on the Back-Propagation neural network (BP) is
enormously we will discuss this topology as a reference. We only want to check whether
the PNN meets all requirements.

5.3.4 Back-Propagation Neural Network

Although the Back-Propagation topology is investigated most among the NN, this should
not imply that it is the best solution to all practical problems [591. Its primary use is to
perform supervised training on multi-layer networks. With suitable training it may be
used for either continuous mapping or classification. Back-propagation suffers from a
variety of ills. Maybe the worst of these is its very long training time. For this reason
various methods have been developed to increase learning speed. Despite that these
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solutions can reduce trammg time enormously, their performance is highly problem
dependent. Another problem results from the training method - gradient descent. In a
nutshell gradient descent means that in the training phase the error of classifications
descents to an optimum value by adjusting the network weights. After a long training
time the network can be trapped in a local minimum, thus, no (optimal) solution may be
obtained. Finally, back-propagation is subject to paralysis. Paralysis happens when a
neuron is saturated and its output cannot be changed. If this occurs, training virtually
stops and nothing else can be done then to repeat the training process with different initial
conditions. Many of the problems of BP can be avoided by using special training
procedures. However, most of them focus only on one particular problem.

5.3.5 Probabilistic Neural Network

5.3.6 Advantages
Compared with BP the Probabilistic Neural Network (PNN) offers the following major
advantages:
1. Rapid training. The PNN is as much as thousand times faster than BP. The days or

weeks of iterative training of a BP are replaced by simply reading in the training set
once. This is very useful when the PCA analysis has been repeated and the new
feature data has to be mapped into the PNN network.

2. With enough training data a PNN is guaranteed to converge to a Bayesian classifier
(the usual definition of optimality) [59]. This irrespective of the complexity of the data.
This cannot be guaranteed with BP. Long training times can terminate in a local
optimum that may be an unsatisfactory solution or even in the worst case no solution
can be obtained.

3. The PNN algorithm allows data to be added or deleted without lengthy retraining,
whereas any modification to a BP training set will require a repetition of the entire
training process. This characteristic of PNN makes it more compatible with many
real-world applications. As with human experience, network learning is often a
continuous process. Moreover, adding new input data during operation improves the
performance of the classifier.

4. The topology of a PNN is fixed and is thus independent of the problem that has to be
mapped into it. The number of layers and neurons in a BP depend completely on the
complexity of the data. Commonly, the topology of a BP is determined
experimentally. So an arbitrarily dimensional space can be mapped immediately.

5. The PNN provides an output indicating the amount of evidence, which is used to
make its decision. A BP does not give such a confidence indication. A BP will always
give an answer without telling how certain this answer really is.

6. Finally, a BP can give multiple answers. In case happens you cannot decide how a
sample should be classified without a confidence indication. A PNN estimates for all
classes the probability, and based on this information we can decide to categorise the
sample or to reject it. For instance, if a sample belongs 50% to class A, and belongs
50% to class B, it would be better to reject the sample. Rejection could also mean that
the samples are rejected from the conveyor belt for closer investigation (for instance
by hand).
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5.3.7 Common Characteristics
Summarising, the PNN overcomes many of the disadvantages of BP, and retains with it
the most important characteristics:
1. Learning. The network is capable of learning any arbitrarily complex relationship

between training data and their corresponding classes. Arbitrarily complex non-linear
(and linear) decision boundaries in a space of any dimension can be extracted without
human intervention.

2. Generalisation. The network is able to classify correctly input vectors that are similar,
but not identical to those that were in the training set. Erroneous, noisy, or incomplete
training sets do not have large effects on classification accuracy.

3. Concurrency. As with many NN, the structure of the algorithm allows efficient use of
multiprocessor systems. The 'classification time is almost exactly inversely
proportional to the number of processors. Speed improvements are obtained by
adding parallel hardware. Modular VLSI implementations provide systems with high
performance and an acceptable price [59].

5.3.8 Disadvantage
The main disadvantage of PNN is that the computational load is transferred from the
learning phase to the classification step. The basic PNN requires one node or neuron for
each training pattern. This means that training is extremely fast, but classifying a large
number of new patterns can be slow because the amount of computations is proportional
to the number of training vectors mapped in the network. The use of parallel hardware
alleviates this problem, and increases classification speed enormously. Secondly, by
clustering the training data less training patterns will be needed. A single or some more
cluster centres will represent each set of training patterns.

5.4 Conclusion
PNN uses supervised learning and trains virtually instantaneously. Training of a PNN is
much faster than BP. It is capable of learning arbitrarily complicated classification tasks
with an accuracy that approaches that of a Bayesian classifier (the standard of
optimality). The PNN algorithm allows data to be added or to be deleted from the training
set without lengthy retraining. Finally, PNN provides information on the evidence upon
which it makes a decision. It indicates how accurate it performs a classification task. The
PNN classifier is able to tell that no knowledge is present to perform a correct
classification. This indication could be used to add additional knowledge to the classifier
at any time.

Apparently, a practical problem of a PNN is its use of the entire training set for each
classification. This demands large storage capacity and lengthens classification times.
Fortunately, employing clustering techniques reduce the size of the training set, and
moreover, special purposed parallel hardware can be used to speed up the classification
process [59]. Summarising, the main disadvantage of PNN is solved with additional
hardware and smart programming, and therefore the PNN classifier turns out to meet our
requirements best.
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6 The Probabilistic Neural Network (PNN)

6.1 Introduction
The Probabilistic Neural Network (PNN) is actually nothing more than a Bayesian
classifier. It has been successfully used to solve a diverse group of classification
problems [7].

In a nutshell, the operation of Bayesian classifiers can be described as follows [35]. Let Y
be an n-dimensional input vector, characterising the features of a plastic sample, which
belongs to one of the k possible plastics groups. Let fly), h(Y), h(Y), .. , fk(Y) be
conditional probability density functions for the k-class population, and let pi, P2, .. , Pk be
the a priori probabilities that a feature vector y belongs to its corresponding class k. For
classification purposes we want to derive a decision function dey) =C i , i = 1, 2, .. , k, that
classifies y as belonging to class C i with minimal risk of incorrect classification. Let L i ,

L2, .. , Lk be loss (or cost) functions associated with making a wrong decision such that
loss L i is incurred whenever dey) = C i , i -::j:. j and y E Cj . The cost of loss of incorrect
decision is taken to be zero. The Bayes' decision rule for this classification problem
compares the product probabilities:

PILJI (y), P2L2f2 (y), .... , PkLkfk (y) Equation 15

and selects the class corresponding to the largest product value or probability. So if the
next relationship holds:

P,LJi(y) > PjLjfj(Y) ; for j= J, 2, '0' k; i -::j:. j Equation 16

the decision rule assigns y to class C i . In the calculation of the product values more
selection criteria can be introduced in the form of cost functions L to penalise the choice
of misclassifications.
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Figure 27 Estimate ofa fictive PVC

One of the main criticism of Bayes' classification rule is the lack of information about the
probability distributions fly) and Pi. The a priori probabilities Pi may be known or can
easily be estimated from a (representative) data set. In case of a representative data set we
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can simply derive the distribution by calculating the ratios between the number of
samples of one particular class and the total number of samples in the data set:

# samples in class C i k;
p. == ------------'--

I # total number of samples k

Equation 17

Generally, the probability density functions (pdf's)fi(Y) are more difficult to estimate. Of
course one could assume some form of distribution function (i.e. normal distribution) and
estimate the unknown parameters using standard statistics. But in our case the complexity
of the feature space must be estimated with other techniques. First, we will estimate a
(fictive) pdf for PVC to get a better understanding of its meaning.

Assuming that all PVC samples can be represented by a one-dimensional feature vector
consisting out of ten binary bits y = (h), h2, h3 , '0' hlO). For simplicity, let assume that the
bits are mutual exclusive. That is to say, in a feature vector only one bit can be a logical
one and all others are logical zeros. Over a large period of time (or from all feature
vectors from a sample database) we count the number of times that a bit of the feature
vector is a logical one. Figure 27 illustrates this procedure. For h} we counted three times
a logical one and for h2 five times, etc. The obtained histogram is then scaled by dividing
each bin with the total number of samples that has been examined, so that the area under
the pdf curve is unity. The result after smoothing and scaling this 'histogram' is the
fictive (discrete) pdf of PVc. The more samples we add to the histogram, the more
accurate the pdf will be.

Figure 28 Two-dimensional Pdf

The probability density function (pdf) can be used as follows. For example, if we want to
know with what probability a feature vector will have a logical one for the fourth, fifth,
and sixth component, we calculate this probability by integrating the area under the pdf
curve between bits h4 and h6•

In practice, we will have a feature vector with more than one dimension. So we must
repeat the previous method of histograms for each dimension. Because we cannot
visualise feature vectors of more than three dimensions we visualised a two-dimensional
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pdf to get some feeling for multi-dimensional pdf functions (Figure 28). In practice, the
method of histograms is very laboriously, and therefore estimation functions are used.
One of such functions is the Parzen window estimate.

6.1 .1 Parzen Windows
The Bayesian classifier requires a pdf fi(y) for each class Ci . In practice, it is often
difficult to determine the pdf with high accuracy. Namely, the sample data set may be
relatively small, incomplete or partially inaccurate. Fortunately, the method of Parzen
windows allows the derivation of good probability density functions from sparse sample
data [7].
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Figure 29 Illustration of Parzen Windows

Figure 29 illustrates the principle of Parzen windows. The horizontal axis represents the
numerical values of a one-dimensional feature vector. For each set of feature vectors ­
within one specific class - a unit area Gaussian curve is drawn centred at the numerical
value of each feature component. In Figure 29 this has been done for the first three
samples of class C j • All of the curves are then added to produce the composite curve in
the lowest box. Parzen showed that with a large number of samples and suitable scaling,
the composite curve approaches the true pdf very accurately [7]. Although, there is no
general method that indicates the number of samples required to estimate the pdf with a
certain degree of accuracy, good classification results are often obtained with a modest
number of samples [59].

The estimator often used for Parzen windows is:

f ( ) - SI*,[ (y - YiP)T (y - Yip) J
i Y - -.L.. exp - )

ki p=l 20"-
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which constructs the pdf for a n-dimensional feature space of training vectors. The vector
Yip is the /h training vector belonging to class C i and the (input) vector Y has to be
classified and is unknown. The coefficient (j is a smoothing parameter, which must be
determined experimentally. The scaling factor S scales the sum of multivariate Gaussian
distributions to unity:

Equation 19

In Figure 30 an unsealed one-dimensional estimated is plotted. The conditional
probability flY) will be larger as the distance between the unknown vector Y and the
training patterns Yp becomes smaller. Likewise, a high pdf output f;(y) indicates that the
vector y is highly associated with class C i .
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Figure 30 One-dimensional Parzen Window Estimate

With the smoothing parameter (j (the standard deviation of the Gaussian), the width of
the curve is adjusted. If (j is small «<1), each Gaussian is sharply peaked, and a large (j

will smooth the pdf. Generally speaking, a (j that approaches zero, approaches a nearest
neighbourhood classifier, and a (j that goes to infinity approaches decision boundaries in
the form of hyperplanes [7). In the latter the classifier is able to generalise outside the
decision boundaries which are defined by the training set. In case high accuracy is
needed, (j should be small. Nevertheless, real world experiments show that the choice of
the value (j is not very strict, but the data set should be representative.

6.1.2 The PI\JN Architecture
The PNN can be implemented easily in a neural network topology [59). We will show how
to derive the equations for the network structure. The decision rule for a multi-category
problem is defined by Equation 16. For simplicity let assume that the cost functions to
penalise a wrong decision are equivalent for all classes. Substituting Equation 18 in
Equation 16 gives the relationship:
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~ (y - Yip) T (y - Yip) J ~ (Y - Yjp ) T (y - Yjp ) J
L exp - 2 > L exp - 1

p=l 2a p=1 2a'

Equation 20

for j = 1,2, ..k, and i:f. j. For a two category problem the decision rule dey) = C, between
the classes C1 and C2 becomes:

'f~ [(y - Yip l (y - YIP)] ~ [(Y - Y2p l (y - Y2 P )]
1 L" exp - 2 > L" exp - 2 then YEel

p=l 20' p=l 20'

Equation 21

The architecture of Figure 31 implements this classification task. The unknown vector y
=(Yl Y2 .. Yn) is applied at the distribution layer, which merely distributes the input values
to the second layer and does not compute anything.
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Figure 31 Two Category Probabilistic Neural Network Architecture

The weights connected in the second (pattern) layer represent the values of each
component of the training vector Yip = (Ypl Yp2 .. Ypn). These vectors have been mapped in
the network during the training phase. Actually, the training phase is nothing more than
reading the training set: storing the vectors Yip into the weights of the pattern layer, and
making connections to the summation layers. The neurons in the pattern layer all
calculate the (Euclidean) distance between the training vectors and the unknown input
vector. In the next step the exponential function is applied, and their results are summed
in the summation layer. Now, the conditional probability functions fdY) and flY) have
been calculated, in the decision layer the largest probability is taken indicating the class
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with the highest probability of occurrence. The decision layer is often called a winner­
take-alI-circuit or competition layer.

Because we want to have an indication of the confidence by which a decision is made, we
must omit the decision layer and implement a slightly different equation in the network.
We want the network to generate the probabilities that vector y belongs to class Ci:

(
") p(yli)p; fi(Y)Pi

PlY = = ----'------'-
p(Y) p(Y)

Equation 22

Equation 23

where Pi is the probability of class C; occurring, and p(Y) the probability of an input
vector with value y. Substituting fi(y), which is approximated by the Parzen estimator
gIves:

( '1) PiS *' [(Y-Y;p)T(Y-YiP)~ PiS *'hiPlY = L exp - =---L
p(y)k j 1'=1 20'2 p(y)k; 1'=1 I'

where h/ is the output of the pattern layer neuron belonging to training vector Yip' The
probability Pi is estimated by its relative frequency in the training set as:

Equation 24

Applying Bayes' rule to calculate the conditional probability y for each class, and then
summing over all classes results in:

k, S k, k, .

p(y) = ~ p(y I i)Pi =k~~h~
Equation 25

where kc represents the total number of classes. By counting all hidden neuron outputs
hp

i
, the double summation sign is eliminated. Hence:

S k

P(Y)=k ~hi
Equation 26

, where hi is the sum layer output of class C i . Finally, the probability that vector y is in
class C; is obtained by substituting Equation 24, and Equation 26 in Equation 23:

k,

Ih~
( '1 ) p=lPlY =-k--

Ih i
i=1
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6.1.3 Classification Accuracy
In case that the number of training vectors is limited, we must avoid that the classifier
starts making decisions in regions where it has no knowledge. Such a region can be
detected by looking at the hidden neuron outputs (hp

i
). Assume the two-category problem

once more. For example, the classifier indicates that an unknown vector y belongs 40% to
class C" and belongs 60% to class C2 (Equation 21). It would not make sense to decide
that y belongs to class C2 in case that the hidden neuron outputs hi and h2 would be 4·10­
6, and 6.10-6

, respectively. The decision that y belongs more to class C2 than to class C i is
correct, but the information on which the decision is made, is insufficient. Clearly, the
decision boundaries are not well defined in the region where we want to classify y. As a
consequence, it would be better to indicate that the decision could not be made.

In this case the vector y is rejected and human intervention is needed to categorise y into
its proper class. The previously unknown vector could be used to extend the decision
boundaries of the classifier. In case the previously unknown vector does not belong to an
already existing class the pattern and a new class will have to be added to the network.
Provided that the class of the new training vector already exists, only the pattern and the
connections to that class have to be made.

The classifier can decide for a second reason not to classify vector y. Let us assume that
the vector y lies within the decision boundaries of the classifier, and the neuron outputs
for the two-category problem are hi = 0.90, and h2 = 0.95 respectively. The classifier
decides to classify vector y as belonging to class C2 (P( C21y) = 51.4%) although the
vector has an almost equal probability (P(C,ly) =48.6%) for class C,. This means that the
vector y is situated between the decision boundaries of class C i and C2 • Rejecting the
vector y would be better and could make the PCA analysis optimising the dissimilarities
and similarities between this vector and the training vectors.

Summarising, the classifier can decide to reject an unknown vector for two reasons:
1. The decision boundaries are not well defined.
2. The decision boundaries are defined, and the vector belongs to more than one class.

The first situation is detected by looking at the highest neuron output of the summation
layer:

if max(h;) > Td for Vi E k then y is 'known' Equation 28

The label 'known' means that the classifier has knowledge in this region. Td is the
threshold to reject a vector as 'unknown'. The relationship between the 'known' vectors
(rk) and the 'unknown' vectors (ru ) is defined as:

~, [%] + rk [%] =100 [%] Equation 29

In case the highest neuron output does not meet Equation 28, no training vector is related
to vector y.
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In the second situation two neuron outputs will indicate that the vector Y should be
categorised into their corresponding class. It might be useful updating the PCA analysis
with vector y. Namely, this might enhance the dissimilarities between vector y, and the
training vectors. Providing that the decision boundaries are representative. This condition
is formulated as:

if Td < p(ily) - p(jly) then yE C i (hi ~ h) Equation 30

The number of vectors that is rejected by this criteria, is indicated with the rejection rate
rj, the number of correct classifications with the recognition rate r c, and the number of
misclassification with the error rate reo The relationship between these rates is:

Equation 31

Since we must obtain very accurate sorting rates, we must optimise the accuracy (r{J of
the classifier:

Equation 32

which signifies that the error rate r e should be minimised.

In the PNN three parameters can be adjusted to meet this requirement:
1. (j - The smoothing parameter, which does not influence the performance of the

classifier in case the training set is representative [7].

2. Td - The threshold value to detect vectors lying outside the decision boundaries.
3. TI' - The threshold value to reject a vector as it is associated with more than one class.

The optimal smoothing parameter (j and the optimal threshold value Td can be estimated
by using the maximum likelihood that all patterns Yl'i belong to class C i [7]. The
conditional probability flY) should be maximum when a training vector Yl'j is applied. By
using the leave-one-out method we avoid fi(y) having an artificial maximum of (j = O.
Namely, fi(y) = 1 holds for Yl'i =Ypi as can be seen in Equation 18. So the best (j can be
found as the value that maximises the log likelihood (log LH):

10gLH =~ log~ 1 exp[- IIy pi -Y pjl12 J
LJ LJ(2 )n/2 n 2 2
p=1 j=] 1r (j (j

p#j

By substituting (j and calculating:
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Equation 34

the threshold value Td is found. This method is useful in case that a vector Y must be
classified into one class of interest versus everything else. Namely, it may be impractical
to get a sufficient number of training samples for 'everything else'. Unfortunately, for
this multi-category problem the training patterns will be frequently updated. Especially,
in case of a not representative training set this will lead to a lot of (unwanted) additional
computational load in the start up phase.

For this reason (and lack of time) the optimum between these parameters will be
determined on the basis of simulations, and the number of false-positive classifications
(rejections) one is able to tolerate. The simulations will clarify the effect of selecting a
certain parameter set (a, Td, Tp ).

6.1.4 Tracking and Pruning

After the PNN network classifies the vector y into class Ci the most associated pattern
vector Ypi is adjusted (tracked) into the direction of y. In this manner the classifier is less
sensitive to small changes in the equipment (and perhaps the samples) over a long period
of time. A simple updating algorithm for tracking the classifier could be:

Ypi.new =a . Ypi,old + (1- a) . Y Equation 35

where a avoids rapid changes. By reconstructing all patterns Ypi back to Xpi before a (new)
PCA analysis starts, the effect of tracking will also be taken into account in the PCA
analysis.

Till this point we only increased the network size by adding new training vectors and new
classes. Of course, the number of classes and training vectors can not grow continuously.
After a while hardware and/or software will reach their limit and one should prune the
network. By keeping for each pattern a record with the amount of classified vectors, the
training patterns lately not involve in decision making can be removed. The same can be
done for the classes. This record is also useful in estimating the conditional probability Pi
of Equation 17.

6.1.5 Training and Validation Phase

The PNN network is trained by mapping the training set into the weights of the pattern
layers and connecting these layers with the summation layers. Because the number of
training vectors is limited we apply the leave-one-out validation method. Sequentially we
leave one vector (test vector) out of the data set, and train the network with the rest of the
data set (training set). After validation the network with the test vector, this vector is put
back into the training set and a new vector is left out. Again the network is trained and
validated until all vectors have been left out once.
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Figure 32 Parameter Set (0.81, 0.10)

Furthermore, we must avoid the classifier is trained and tested with the same data. Since
each sample has been measured three times, the chance is high that a vector nearly
identical to the test vector is present in the training set. Therefore, we divide the six
largest classes into three subsets in which from each sample only one spectrum is present.
Now, three sets of 124 samples are available for training and testing. We verified the
network with one subset only because of lack of time. Furthermore, the spectra are more
or less the same in each subset.

6.2 Results

6.2.1 Classification Accuracy

Unfortunately, we could not evaluate all possible combinations of 0', Td, and Tp .

Therefore, we decided to optimise the parameter set (0', T d , Tp ) separately. In the first
simulation we optimise the error rate re by roughly estimating the values for 0' and Td.

The parameter Tp is set to zero, and Td must be selected in such a manner that no vectors
or a very few are outside the decision boundaries of the training set as defined by
Equation 20. Of course, this assumption is a little bit dangerous in case outliners are
introduced in the training data. But this can not be avoided, as outliners are difficult to
trace in a sparse data set.

In the next simulation we optimised the parameter Td, and finally the performance of the
classifier has been investigated for yet unknown classes.
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In Table 2 the selected parameters from the simulation listed in Appendix D have been
summarised. Although more than one set of parameters (cr, T d ) gives a minimum error
rate r e =0% we selected three sets only:
1. The parameter set (0.81, 0.10) with maximal accuracy r a , and maximal recognition

rate r e .

2. The situation (1.23, 0.06) for which the amount of 'unknown' vectors r u was
minimum, and the accuracy r a maximum. Superfluously, 'unknown' means outside
the decision boundaries.

3. The parameter set (1.11,0.07) is the best trade-off between the number of 'unknown'
vectors ruand the number of wrong decisions reo

Table 2 Simulation Tp =0%

Set (j T,J Tp ru rk r, r,. rJ r[/

I 0.81 0.10 0 16.94 83.06 0.00 83.06 0.00 100.00
II 1.23 0.06 0 0.00 100.00 4.84 95.16 0.00 95.16
III 1.11 0.07 0 2.42 97.58 3.23 94.35 0.00 96.69

Parameter set (1.23, 0.06) seems the best choice since it meets the requirement of
Equation 33 best. The decision boundaries must be clear, as each class exists of about 20
vectors and only 1 is left out for validation. On the other hand it also recognises vectors
wrongly, which could indicate outliners.

Since we want to optimise accuracy the parameter set (0.81, 0.10) is best. Hence, we
assume that the rejected vectors are probably outliners. Since 0.81 is relatively small we
call this a nearest neighbourhood classifier for simplicity.

What effect has the parameter Tp on these results? Introducing the threshold Tp :;; 0 in the
parameter set (0.81, 0.10) will never improve the accuracy of the classifier - its accuracy
is already maximal. Adjusting Td :;; 0 can only increase and decrease the rates rj and rC.
respectively. Figure 32 shows the latter for Tp > 90% (rough estimate since Tp = 0, 10,
20, .. , 100%). The rejection rate in the figures is defined as the sum of rj and ru. Clearly,
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the decision boundaries are very sharp defined. Few vectors are rejected because they
belong to more than one class (Appendix D).

What effect has Tp on the other parameter sets? In this situation the accuracy can be
increased by increasing Tp . Vectors belonging to more than one class will be rejected
more frequently (Equation 30). The effect is shown in Figure 33. For Tp = 60% the
highest accuracy and highest recognition is reached. Practically the same holds for
situation III. At Tp =70% the highest accuracy and highest recognition is reached as well.
The recognition rate of parameter set (1.11, 0.07) is even a slightly better than that of
situation II. But this should not be considered too carefully, as the step size of Tp is quite
large. The classifier with the largest smoothing parameter cr, and smallest threshold Td is
best in generalising vectors outside its decision boundaries. It does not reject vectors as
'unknown', but decides on basis of Td to reject a vector.

Table 3 Simulation Tp :;r0%

Set (J To Tp f u R. f. f c r; fa

I 0.81 0.10 0 16.94 83.06 0.00 83.06 0.00 100.00
II 1.23 0.06 60 0.00 100.00 0.00 85.48 14.52 100.00
III 1.11 0.07 70 2.42 97.58 0.00 87.10 10.48 100.00

6.2.2 Provision for an Unknown Class
Table 2 lists the new parameter settings of the second simulation. With these parameters
we investigated the behaviour of the classifier for the 'unknown' class LILDPE. The data
of LILDPE from all three subsets can be used together now, and the leave-one-out
method is not necessary as we do not train the network again.
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Figure 34 Parameter Set (1.11, 0.07)

We evaluated the effect of classifying the unknown vectors of LlLDPE in correlation
with the PCA analysis. Namely, the PCA analysis indicates vectors that could not be
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transformed correctly to the new space. Six vectors with a transformation error of about
1.8% (instead of the maximum of 1%) were rejected by the PCA analysis. The other 36
vectors were transformed to the new space with an average accuracy of 0.12 %. Figure 35
shows the rejected vectors. The PCA analysis rejects data, which is not correlated with
population x. The data which has been transformed correctly, is correlated with
population x. In the worst situation the not rejected data might even be similar to already
existing classes, and classification will never be possible.

Original Dataset (36)

:2~·: :.::~ :=~J
o 10 20 30 40 50 60 70 80 90 100
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:r: '~ :.:-' : ~ ~;J
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Figure 35 Rejected Vectors of the PCA Analysis

The next three situations were investigated:
1. The network classifies only not rejected vectors of the PCA analysis. This means that

the PCA analysis of the first simulation is used without any modification.
2. The second case investigated the same for the rejected data.
3. Thirdly, the PCA matrix had been updated with the rejected data included in

population x. The classification has been repeated with the rejected data. However,
the training set was not updated.

4. Finally, the previous simulation was repeated with the vectors that were not rejected.

Table 4 Situation I - Not Rejected Vectors and No PCA Modification

Set (J To Tp f u f, f. f c r, fa

I 0.81 0.10 0 96.67 3.33 3.33 0.00 0.00

II 1.23 0.06 60 0.00 100.00 10.00 0.00 90.00
III 1.11 0.07 70 0.00 100.00 13.33 0.00 86.67

In Table 4 the result of situation I is listed. Only the classifier with parameter set (0.81,
0.10) was able to reject most of the not rejected vectors as 'unknown'. The error rate is
approximately 3.33%. The classifiers with the other parameter sets could not reject the

48



unknown vectors as being outside the decision boundaries. They rejected most of the
vectors because they were belonging to more than one class. All classifiers were able to
reject the rejected data of the PCA analysis (Table 5).

Table 5 Situation II - Rejected Vectors and No PCA Modification

Set (J To Tp f" f. f. fc r; fa

I 0.81 0.10 0 100 0.00 0.00 0.00 0.00
II 1.23 0.06 60 100 0.00 0.00 0.00 0.00
III 1.11 0.07 70 100 0.00 0.00 0.00 0.00

Summarising, not all vectors could be recognised as 'unknown'. The nearest
neighbourhood classifier (0.81, 0.10) scored best in rejecting 96.67% of the vectors as
'unknown'.

Now, let us look at the effect of updating the PCA analysis without updating the training
set. All previously rejected vectors of the PCA analysis were rejected in the same way as
the situation in which no PCA modification took place. After including one rejected
vector in the training data all rejected vectors could be classified with 100% accuracy
(Table 6). Superfluously, the number of principal components in the new space decreased
from 10 to 9.

Table 6 Situation III - Rejected Vectors and PCA Modification

Set (J To Tp f" f. f. fc r; fa

I 0.81 0.10 0 0.00 100 0.00 100.00 0.00 100.00
II 1.23 0.06 60 0.00 100 0.00 100.00 0.00 100.00
III 1.11 0.07 70 0.00 100 0.00 100.00 0.00 100.00

The performance of the classifiers (1.23, 0.06) and (0.11, 0.07) for the not rejected
vectors does not change after the PCA modification (Table 7). The error rate of the
nearest neighbourhood classifier increases. Most likely, the decision boundaries are only
optimal for the PCA matrix, which had been calculated for the six classes. Apparently,
after the PCA analysis the decision boundaries have changed slightly. The procedure of
Equation 33 could be used to optimise the decision boundaries again, or a new optimum
can be found experimentally. The PCA analysis updated with a previously rejected vector
has no effect on the classification accuracy of the not rejected vectors.

Table 7 Situation IV - Not Rejected Vectors and PCA Modification

Set (J To Tp f" f. f. fc r; fa

I 0.81 0.10 0 73.32 26.27 26.67 0.00 0.00
II 1.23 0.06 60 0.00 100.00 10.00 0.00 90.00
III 1.11 0.07 70 0.00 100.00 13.33 0.00 86.66

Namely, the PCA analysis rejects vectors, because they were uncorrelated with the
vectors used to build the PCA matrix. The not rejected vectors had been transformed
correctly, and the high rejection rate rj indicates the correlation of these vectors with the
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training data in the PCA population x. Performing a PCA analysis will only enhance the
dissimilarities and similarities of the rejected data. The performance of the not rejected
data does not change.

Summarising:
• All classifiers were able to reject the rejected vectors of the PCA analysis. No

modification of the PCA matrix was needed for this purpose.
• Only the nearest neighbourhood classifier was able to detect most of the rejected

vectors as 'unknown'. Again a PCA modification was not needed.
• The other classifiers classified the 'unknown' vectors as a combination of training

vectors and rejected them for this reason.
• After modifying the PCA matrix and training set, all rejected vectors could be

classified with an accuracy of 100%.
• The performance of the classifier for the not rejected vectors did not change after the

PCA modification. Hence, the PCA modification only favours the rejected vectors.
• The error rate of the nearest neighbourhood classifier even increases after the PCA

modification. Probably its parameter set (0.81, 0.10) is only well defined for the
previous PCA matrix with six classes.

Table 8 Including an 'Unknown' Not Rejected Vector in the Training Set

Set 0 Ta Tp f u f. f. f, lj fa

No PCA modification 0.81 0.10 0 41.37 58.62 3.44 55.17 0.00 94.11
PCA modification 0.81 0.10 0 41.38 58.62 3.44 55.17 0.00 94.12

Till this point, we looked only at the overall performance of the classifier for a whole set
of LILDPE vectors. In contrary, in practice each vector arrives sequentially at the
classifier input. A vector that is recognised as 'unknown' could then immediately serve to
upgrade the decision boundaries of the network. Fewer vectors will be 'unknown' and the
decision boundaries will be extended. The question is what would happen in case we add
a not rejected LlLDPE vector to the training set? Probably, the rejection rates ru and rj
decrease, and the recognition rate rc increases.

But first, when do we have to add a test vector to the training set? Should we use ru or rj
as indicator? According to our definition of 'unknown', only the vectors that do not have
decision boundaries yet belong to this category. Vectors rejected by the threshold Tp are
correlated with more than one class. Hence, their decision boundaries already exist. We
select the nearest neighbourhood classifier because it is the only classifier, which is able
to detect not rejected vectors of a yet unknown class by means of ru•
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Figure 36 Classifier Performance for Seven Largest Classes

We selected arbitrarily one vector that was 'unknown' from the not rejected vectors, and
we used it to upgrade the network. After verifying the classifier with the other 29 vectors,
we see an immediately increase in accuracy (Table 8 versus Table 4). The error rate did
not decrease. Probably, the unknown vector we selected did not produce previously an
error. Those vectors that do are still in the test set. The recognition rate increased,
although the decision boundaries are still not well defined. LILDPE vectors are still
rejected as 'unknown'. Modifying the PCA matrix with the new training vector has no
effect (Table 8).

Furthermore, does this new trammg set effect the classification performance of the
previous six classes? We verified this situation by applying the leave-one-out validation
method, and found that the accuracy of the classifier was still 100% (Table 9). Hence, the
new vector does not have a negative contribution to the classifier performance.

Table 9 New Training Set with Leave-one-out Validation

Set

I

II
0.81

0.81
0.10
0.10

o
o

16.03
16.03

83.97
83.97

0.00
0.00

83.97
83.97

0.00 100.00
0.00 100.00

Before we start analysing the effect of new yet unknown classes on the classifier
performance, we update the PCA analysis for the seven largest classes. After
classification with the leave-one-out validation method we obtain Table 10.
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Table 10 Classification of the Seven Largest Classes (0.81,0.10)
To Tp f u f. f. f c Ii fa

0.81 0.10 a 12.50 87.50 0.63 86.88 0.00 99.29

0.81 0.10 10 12.50 87.50 0.63 86.88 0.00 99.29

0.81 0.10 20 12.50 87.50 0.63 86.25 0.63 99.28

0.81 0.10 30 12.50 87.50 0.63 86.25 0.63 99.28

0.81 0.10 40 12.50 87.50 0.63 85.63 1.25 99.28

0.81 0.10 50 12.50 87.50 0.63 85.63 1.25 99.28

0.81 0.10 60 12.50 87.50 0.63 85.00 1.88 99.27

0.81 0.10 70 12.50 87.50 0.63 85.00 1.88 99.27

0.81 0.10 80 12.50 87.50 0.63 85.00 1.88 99.27

0.81 0.10 90 12.50 87.50 0.63 84.38 2.50 99.26

0. 81
1

0.10 100 12.50 87.50 0.00 4.38 83.13 100.00

We repeat the search for an optimal parameter set (0', Td, Tp), since not all vectors belong
to the training set anymore. (ru = 12.50%). The parameter set (1.10, 0.005) turns out to be
optimal. No vectors are rejected because they would be outside the boundaries of the
training set. The error rate reaches zero for Tp = 80% and the recognition rate is about
78%. Provided that one would like to have higher throughput, selecting T p = 70% still
gives an acceptable accuracy of 99%, and about 80% of the plastics are recognisable.

Table 11 Classification of the Seven Largest Classes (1.10,0.005)

To Tp f u f. f. fc Ii fa

1.1 0.005 a 0.00 100.00 6.62 93.38 0.00 93.38

1.1 0.005 10 0.00 100.00 5.88 92.65 1.47 94.03

1.1 0.005 20 0.00 100.00 4.41 91.91 3.68 95.42

1.1 0.005 30 0.00 100.00 3.68 91.18 5.15 96.12

1.1 0.005 40 0.00 100.00 3.68 88.24 8.09 96.00

1.1 0.005 50 0.00 100.00 2.94 87.50 9.56 96.75

1.1 0.005 60 0.00 100.00 2.21 83.82 13.97 97.44

1.1 0.005 70 0.00 100.00 0.74 80.88 18.38 99.10
1.1 0.005 80 0.00 100.00 0.00 77.94 22.06 100.00

1.1 0.005 90 0.00 100.00 0.00 69.12 30.88 100.00

1.1 0.005 100 0.00 100.00 0.00 2.94 97.06 100.00

Finally, we simulated what effect the other yet unknown classes have on the performance
of the classifier. We merged all subsets of the seven largest classes together into one set
of 408 spectra. We did the same for the other classes and the simulation results have been
listed Table 12.

Table 12 Classification with Parameter Set (1.10, 0.005, 80)

Class bel f u f. f. f c Ii Decision

8 PA6 0.00 100.00 100.00 0.00 0.00 PM_6

9 ABSIPA6 0.00 100.00 0.00 0.00 100.00

10 SMA/ABS 0.00 100.00 25.00 0.00 75.00 POLY_EST

II SMAJABSIPMMA 0.00 100.00 33.33 0.00 66.67 POLY_EST

12 SMAJPMMA 50.00 50.00 50.00 0.00 0.00 POLY_EST

13 ABS/PMMA 50.00 50.00 50.00 0.00 0.00 POLY_EST

14 H.PLAST. 0.00 100.00 66.67 0.00 33.33 POLY_EST

15 PDM 0.00 100.00 0.00 0.00 100.00
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The plastic type PA6 is classified completely as PA4_6. If we compare the spectra of
both classes we must conclude that PA6 is identical to PA4_6. However, we can not say
whether these two plastics should be classified differently or not. If they should, we never
will be able to classify them correctly, as the spectral information is not sufficient.

The combination of ABSIPA6 is completely rejected, since it could be classified as ABS
and PA6 at the same time. Most likely, adding this class to the training set would make
identification possible. However, due to lack of time we are not able to verify this.
Furthermore, the statistical relevance of this simulation can be point of discussion. For
example, for the class EPDM only 3 spectra could be verified, and the relationship with
real world is not well conditioned.

Despite of this, if these spectra would represent real world, than the plastic type
POLY_EST would be contaminated with at least five other types of plastics. Whether this
is a negative or positive is not determinable without good knowledge of the recycling
market.

6.3 Conclusion and Recommendations
Classification rates of 100% accuracy with a recognition rate of 78% are feasible for
seven types of plastics. The plastic (polyester) will be contaminated with at least five
other types of plastics. More research is needed in the area of quality measures before we
can conclude what effect misclassifications have on quality. Above all, it is
recommended to repeat the simulations with more spectra, and to find out exactly why
particularly this plastic is contaminated and no other. Maybe defining a stricter decision
boundary for this plastic solves the problem. Furthermore, a new identical device in the
spectral range from 900 - 2400nm is under development. This device could allow us to
extract more relevant spectral information. In the region between 1600 and 1800nm
methylene C-H stretches are found, and in the region between 2100 and 2500nm
combinations of C-H and O-H vibration bands [33].

Nevertheless, with regard to the classifier solution in relation with the PCA analysis we
can conclude that the PCA analysis has to be updated only after the PCA analysis
rejected a vector. In case the PNN network rejects a vector, updating the PCA analysis
has little to no effect. The PCA analysis is not able to enhance the quality of the features
anymore, since it is already nearly optimal. The capability of classifying unknown classes
increases very rapidly after only adding one yet unknown class to the PNN structure.

Finally, although not all requirements have been verified, the PNN network meets most
of our requirements right now.
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7 Conclusion and Recommendations
Theoretically, our solution meets all requirements, but more investigation is needed in
practice. Especially, concerning classification speed. In the image processing part six out
of seven requirements could be met. The sorting system is insensitive to environmental
influences such as ambient light, but on the other hand the effect of temperature has to be
investigated yet. Generally, the spectra are insensitive to fillers, fibers, colours, flame
retardant, adhesives, dyes, pigments, and other additives. Since we do not know exactly
what the compounds of the plastics under investigation were, we can not fully guarantee
this for other samples. The effect of dust, paint, labels, food and drink residue, and other
surface defects has to be investigated yet. We recommend doing more real world
experiments. The recommendations in Chapter 3 might be very useful in setting up these
experiments. Plastic objects composed out of more than one plastic such as a soft drink
bottle composed of a bottom, a flake, and a cap, could be measured then. According to
our image analysis no troubles should be encountered, as the individual parts can be
identified separately. All kinds of plastics with irregular dimensions, different weights
can be handled. Finally, black and transparent plastics could not be identified. No reliable
spectra could be measured. The black and transparent plastics are not forwarded to the
feature and classifier part.

The classification part meets only two of the four requirements. Actually, three out of
four requirements are met. Namely, the identification unit is able to predict to which
plastics group a new as yet unseen sample belongs, and in case this yet unseen sample
does not belong to an existing group, a new plastics group can be made. But the classifier
can not tell exactly what plastic is classified here. Human intervention will always be
needed to label this new class. Although not verified in practice, the sorting system is
able to track small changes in equipment or samples over a period of time.

The main disadvantage of the sorting system is its incapability to sort mingled plastics
(compositions of more than one type of plastic). The mingled plastics in this research
were all classified as polyester. The other plastics (PVC, PP, ABS, PA6, PA4_6, and
LILDPE) were not contaminated, and could be sorted with an accuracy of 100%. No time
was left to investigate whether with some additional tuning the purity of polyester could
be increased. One should carefully keep in mind that the number of samples that could be
sorted with 100% accuracy is very limited. We strongly recommend verifying the
classification accuracy for more samples.

Finally, the economical aspects of the sorting system could not be evaluated. With regard
to speed we conclude that the sorting speed was limited by the speed of the camera. A
cheap low-resolution camera with an integration time of 16ms has been used. Secondly,
the speed of the PCA analysis and the classifier was limited by laboratory conditions. We
think the speed of the mechanical handling of the plastics and the camera integration time
will limit the speed of the sorting system in future. Namely, the PCA analysis can be
implemented in digital signal processors or like the classifier in special neural hardware.
The latter will profit from high speed parallel processing.
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Appendix A - Calibration Lamp

Mercury calibration spectrum
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Neon calibration spectrum
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Appendix B - Equipment

Light Source
Fabricator: Osram
Type: 64635 with pure gold plated coating.
Ratings: 150W/ 15V

Prism
This information is confidential.

Sensor
This information is confidential.
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Appendix C - Samples

File Format
The images have been stored in MATLAB-format (filename written by 8 characters).
Their filenames have been numbered to allow automatic data processing. The next code
has been used:

[E] ee [S] s XXX

The two characters after [E] indicate the experiment number. The first letter after [S]
indicates the number of measurement taken from the sample. The sample itself is
indicated by the last 3 numbers (X).

For example, the first measurement taken from sample 001 in experiment 1 is denoted
with EO 1S1001, the second measurement with EO 1S2001 etc. For experiment 2, the third
measurement on sample 345 is denoted with E02S3345.

In the image files also basic information about the sample (colour and material type) and
the measurement conditions (remarks) have been included. Each file can be extended
with information on the ways that processing of the image took place. For example, the
measurement of sample EO 1S1000 is stored in the MATLAB file EO 1S 1000.mat and has
the next structure:

£0151000 =
sample_data: [128x128 double]
label: 'PC/ABS'
colour: 'BLACK'
remarks: 'Surface is smooth. '
actions: [J

Samples
See next pages.
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EXPERIMENT 1- BLACK AND TRANSPARENT PLASTICS

Sam Ie NlImber MeoSl/rements Label ColOllr Remarks
EOISOOOO 3 PCIABS BLACK GLANCE
EOISOOOI 3 ABS BLACK GLANCE

EO IS0003 3 PP BLACK
EOISOOO4 3 PP LIGHT GREY
EOISOOO5 3 ABS/PA6 DARK GREY
EOISOOO6 3 PVC LIGHT BROWN
EOISOOO7 3 TH.ELAST BLACK SOIT
EOISOOO8 3 PP DARK BLUE
EO ISOOO9 3 PP LIGHT GREY
EOISOOIO 3 PP BLACK
EOISOOII 3 PP DARK BLUE
EOISOOl2 3 PP DARK BLUE
EOISOOII 3 PP DARK BLUE
E01SOOl2 3 PP DARK BLUE
E01SOOl3 3 PP DARK BLUE
EOISOOl4 3 PP DARK BLUE
E01SOOl5 3 PE LIGHT GREY GLANCE

EOISOO50 3 PC TR.ORANGE GLANCE
EOISOO51 3 PC TR. RED GLANCE
EOISOO52 3 PC TRANSPARENT
EOISOO53 3 ULDPE TRANSPARENT COTTON
E01SOO54 3 PC TRANSPARENT MILK
EOISOO55 3 PC TRANSPARENT MILK
EOISOO56 3 ULDPE TRANSPARENT BAG
EOISOO57 3 ULDPE TRANSPARENT BAG
EOISOO58 3 PP TRANSPARENT CHEWGUM
EOISOO59 3 PP TRANSPARENT CHEWGUM
EOISOO60 3 PET TRANSPARENT BOTTLE
EOISOO61 3 PET TRANSPARENT BOTTLE
E01S0062 3 PET TRANSPARENT BOTTLE

EXPERIMENT 2 - GEOMETRICAL RELATIONSHIPS

Sam >Ie NlImber Measurements Label Colollr Remarks
E02S0001 3 POLY ESTHER WHITE
E02S0002 3 POLYESTER WHITE
E02S0003 3 SMA! ABS WHITE

E02S0004 3 CARD BOARD LIGHT BROWN
E02S0005 3 TEXTILE WHITE Calibration different'
E02S0006 3 WOOD BROWN Calibration different'

E02S0007 3 PE WHITE Calibration different'
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EXPERIMENT 3 - VARIATION IN THICKNESS

Sam Ie Number Measurements Label Colour Remarks
E03S0001 3 PP WHITE 1.70mm
E03S0002 3 PP WHITE 3.17mm
E03S0003 3 PP WHITE 3.94mm

E03S0004 3 HDPE WHITE 1.15mm
E03S0005 3 HDPE WHITE 1.66mm
E03S0006 3 HDPE WHITE 1.75mm

E03S0007 3 HDPE WHITE 1.6mm
E03S0008 3 HDPE WHITE 3.2mm
E03S0009 3 HDPE WHITE 4.8mm
E03S0010 3 HDPE WHITE 6.54mm

E03S0011 3 ABS LIGHT GREY 2.0mm
E03S0012 3 ABS LIGHT GREY 4.0mm
E03S0013 3 ABS LIGHT GREY 6.0mm
E03S0014 3 ABS LIGHT GREY 8.4mm

E03S0015 3 PA4_6 WHITE/YELLOW I.Omm
E03S0016 3 PA4_6 WHITE/YELLOW 2.0mm
E03S0017 3 PA4_6 WHITE/YELLOW 3.0mm
E03S0018 3 PA4_6 WHITE/YELLOW 4.02mm

E03S0019 3 LDPE TRANSPARENT 10um
E03S0020 3 LDPE TRANSPARENT 20um
E03S0021 3 LDPE TRANSPARENT 30um
E03S0022 3 LDPE TRANSPARENT 40um
E03S0023 3 LDPE TRANSPARENT 50um
E03S0024 3 LDPE TRANSPARENT 60um
E03S0025 3 LDPE TRANSPARENT 80um

EXPERIMENT 4 - PLASTICS

Sam Ie Number
E04S0001
E04S0002
E04S0003
E04S0004
E04S0005
E04S0006
E04S0007
E04S0008
E04S0009
E04S0010
E04S00I I
E04S00I2
E04S0013
E04S0014
E04S0015
E04S0016
E04S0017
E04S0018
E04S0019
E04S0020

E04S0021
E04S0022
E04S0023
E04S0024
E04S0025

Measurements
3
3
3
3
3
3
3
3
3
3
3
3
o
o
o
o
o
o
o
o

3
3
3
3
3

Label
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE
ULDPE

HDPE
HDPE
HDPE
HDPE
HDPE
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Colour
LIGHT GREEN
LIGHT GREEN
GREEN
GREEN
WHITE
WHITE
WHITE
WHITE
WHITE
WHITE
WHITE
WHITE

WHITE
WHITE
WHITE
WHITE
WHITE

Remarks
Equal to sample 04S0002
Equal to sample 04S000 I
Equal to sample 04S0004
Equal to sample 04S0003

2 x thicker
2 x thicker



EXPERIMENT 4 - PLASTICS

Sam Ie Number Measurements Label Colour Remarks
E0450030 3 HOPE WHITE
E0450031 3 HOPE WHITE
E0450032 3 HOPE WHITE
E0450033 3 HOPE WHITE
E0450034 3 HOPE WHITE
E0450035 3 HOPE WHITE
E045OO26 3 HOPE WHITE
E0450027 3 HOPE WHITE
E0450028 3 HOPE WHITE
E0450029 3 HOPE WHITE

E045OO36 3 HOPE WHITE
E0450037 3 HOPE WHITE
E0450038 3 HOPE WHITE
E0450039 3 HOPE WHITE
E0450040 3 HOPE WHITE

E0450041 3 PP YELLOW
E0450042 3 PP YELLOW
E0450043 3 PP YELLOW
E0450044 3 PP YELLOW
E045OO45 3 PP YELLOW
E0450046 3 PP YELLOW
E0450047 3 PP YELLOW
E0450048 3 PP YELLOW
E0450049 3 PP BROWN
E045OO50 3 PP BROWN
E045OO51 3 PP REO
E0450052 3 PP REO
E0450053 3 PP REO
E0450054 3 PP REO
E0450055 3 PP REO
E0450056 3 PP REO
E0450057 3 PP REO
E045OO58 3 PP WHITE
E0450059 3 PP ORANGE
E0450060 3 PP ORANGE
E0450061 3 PP BLUE
E0450062 3 PVC BLUE Equal to sample 0450063
E045OO63 3 PVC BLUE Equal to sample 0450062. "Layer"
E0450064 3 PVC GREEN Equal to sample 0450065
E0450065 3 PVC GREEN Equal to sample 0450064. "Layer"
E0450066 3 PVC GREEN Equal to sample 0450067. "Layer"
E0450067 3 PVC GREEN Equal to sample 0450066.
E045OO68 3 PVC WHITE Equal to sample 04S0069.
E0450069 3 PVC WHITE Equal to sample 0450068. "Layer"
E0450070 3 PVC YELLOW Equal to sample 0450071. "Layer"
E0450071 3 PVC YELLOW Equal to sample 0450070.
E045OO72 3 PVC YELLOW Equal to sample 04S0073.
E0450073 3 PVC YELLOW Equal to sample 0450072. "Layer"
E0450074 3 PVC WHITE Equal to sample 0450075.
E0450075 3 PVC WHITE E ual to sam Ie 0450074.
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EXPERIMENT 4 - PLASTICS

Sam Ie Number Measurements Label Colour Remarks
E04S0076 3 PVC BROWN Equal to sample

04S0077. "Layer"
E04S0077 3 PVC BROWN Equal to sample

E04S0076.
E04S0078 3 PVC BLUE Equal to sample

04S0079. "Layer"
E04S0079 3 PVC BLUE Equal to sample

04S0080.
E04S0080 3 PVC WHITE
E04S0081 3 PVC WHITE
E04S0082 3 PVC WHITE

E04S0083 3 PA4_6 WHITE
E04S0084 3 PA4_6 WHITE
E04S0085 3 PA4_6 WHITE
E04S0086 3 PA4_6 WHITE
E04S0087 3 PA4_6 WHITE
E04S0088 3 PA4_6 WHITE
E04S0089 3 PA4_6 WHITE
E04S0090 3 PA4_6 WHITE
E04S0091 3 PA4_6 WHITE
E04S0092 3 PA4_6 WHITE
E04S0093 3 PA4_6 WHITE
E04S0094 3 PA4_6 WHITE
E04S0095 3 PA4_6 WHITE
E04S0096 3 PA4_6 WHITE
E04S0117 3 POLY. EST. WHITE
E04S0118 3 POLY. EST. WHITE
E04S0119 3 POLY. EST. WHITE
E04S0120 3 POLY. EST. WHITE
E04S0121 3 POLY. EST. WHITE
E04S0122 3 POLY. EST. WHITE
E04S0123 3 POLY. EST. WHITE
E04S0124 3 POLY. EST. WHITE

E04S0125 3 ABS WHITE
E04S0126 3 ABS WHITE
E04S0127 3 ABS WHITE
E04S0128 3 ABS WHITE
E04S0129 3 ABS WHITE
E04S0130 3 ABS WHITE
E04S0131 3 ABS WHITE
E04S0132 3 ABS BROWN
E04S0133 3 ABS BROWN
E04S0134 3 ABS WHITE
E04S0135 3 ABS WHITE
E04S0136 3 ABS WHITE
E04SOI37 3 ABS WHITE
E04SOI38 3 ABS WHITE
E04S0139 3 ABS WHITE
E04S0140 3 ABS WHITE
E04S0141 3 ABS WHITE
E04S0142 3 ABS WHITE
E04S0143 3 ABS GREY
E04S0144 3 ABS GREY
E04S0145 3 ABS BROWN

E04S0146 3 SMA/ABS WHITE
E04S0147 3 SMA/ABS WHITE
E04S0148 3 SMA/ABS WHITE
E04S0149 3 SMA/ABS WHITE

E04S0150 3 SMA/PMMA WHITE
E04S0151 3 SMA/PMMA WHITE

E04S0152 3 EPDM LIGHT GREY
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EXPERIMENT 4 - PLASTICS

Sam Ie Number Measurements Label Colour Remarks
E04S0153 3 SMA!ABS/PMMA WHITE
E04S0154 3 SMA!ABS/PMMA WHITE
E04S0I55 3 SMA!ABS/PMMA WHITE

E04S0I56 3 TH.PLAST. WHITE
ELASTO.

E04S0157 3 ABS/PA6 GREEN
E04S0158 3 ABS/PA6 WHITE
E04S0159 3 ABS/PA6 GREY
E04S0I60 3 ABS/PA6 WHITE
E04S0I61 3 ABS/PA6 WHITE

EXPERIMENT 6 - MIXED PLASTIC OBJECTS

Sam Ie Number Measurements Label Colour Remarks
E06S0000 3 PP BLUE DRINK CUP.

calibration
different!

E06S0001 3 PP ORANGE DRINK CUP.
calibration
different!

E06S0002 3 PP LIGHT DRINK CUP.
GREEN calibration

different'
E06S0003 3 PP DARK GREEN DRINK CUP.

calibration
different!

E06S0004 3 PP YELLOW DRINK CUP.
calibration
different'

E06S0006 3 PE LlGHTGREY Parker box.
calibration
different!

E06S0007 3 PET LIGHT BLUE Telephone card.
calibration
different'

E06S0008 3 PLASTIC> LIGHT BLUE Telephone card.
calibration
different'

E06S0009 3 METAUPLASTIC BLACK Razorblade
E06S0010 3 TEXTILE YELLOW
E06S0011 3 PAPER WHITE
E06S00I2 3 TEXTILE/PLASTIC WHITE Plaster up.
E06S00I3 3 SUGAR WHITE
E06S0014 3 METAL METAL Key
E06S0015 3 MEDICINE WHITE/ROSE Aspirin
E06S0016 3 MEDICINE/PLASTIC WHITE/ROSE Aspirin in package
E06S00I7 3 TEXTILE/PLASTIC WHITE Plaster down.

E06S0018 3 HDPE LIGHT Bottle
YELLOW

E06S0019 3 HDPE LIGHT Bottle with label
YELLOW

E06S0020 3 PP GREEN Tap and bottle
06s0018

E06S0021 3 PE RED bottle
E06S0022 3 PE RED bottle wi th label.
E06S0023 3 PP? RED Tap and bottle
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EXPERIMENT 6 - MIXED PLASTIC OBJECTS

Sam Ie Number Measurements Label Colmlr Remarks
E06S0024 3 PE PINK Bottle
E06S0025 3 PE PINK Bottle with label.
E06S0026 3 PP PINK Tap and bottle

06s0024

E06S0030 3 PE WHITE Bottle
E06S0031 3 PE WHITE Bottle with label.
E06S0032 3 PP WHITE Tap and bottle

06s0032

E06S0033 3 PE WHITE Bottle
E06S0034 3 PE WHITE Bottle with label.
E06S0035 3 PP WHITE Tap of bottle

06s0033

E06S0036 3 PE TRANSPARENT Bottle
E06S0037 3 PE TRANSPARENT Bottle with label.
E06S0038 3 PP WHITE Tap of bottle

06s0036
E06S0036 3 PE TRANSPARENT Bottle
E06S0037 3 PE TRANSPARENT Bottle with label.
E06S0038 3 PP WHITE Tap and bottle

06s0036
E06S0039 3 PP YELLOW Cup (butter)
E06S0040 3 PP YELLOW Tap of cup

06s0039.
E06S0041 0

E06S0042 3 PE PURPLE Bottle
E06S0043 3 PE PURPLE Bottle with label.
E06S0044 3 PP PURPLE Tap of bottle

06s0042

E06S0045 3 PET WHITE Bottle (deodorant
stick)

E06S0046 3 PET WHITE Bottle with label.
E06S0047 3 PP WHITE Tap of bottle

06s0045

E06S0048 3 PE BLUE Tap of bottle
(inside)

E06S0049 3 PP LIGHT BROWN With dirt (hand
creme)

E06S0050 3 PET RED VTT
E06S0051 3 PET RED VTT
E06S0052 3 PET DARK BLUE VTT
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EXPERIMENT 9 - VARIATION IN LIGHT SOURCE

Sam ,Ie Number Measurements Label Colour Remarks
E09SIOOI PP BLUE 10.0Y x 8.00A =80.0W
E09S2001 PP BLUE 8.99Y x 7.50A =77.5W
E09S3001 PP BLUE 8.00Y x 7.00A =56.0W
E09S4001 PP BLUE 6.90Y x 6.50A =45.5W
E09S5001 PP BLUE 6.00Y x 6.00A =36.0W

E09S1002 PP BLUE 1O.0Y x 8.00A =80.0W. Without ink.
E09S2002 PP BLUE 8.99Y x 7.50A =77.5W Without ink.
E09S3002 PP BLUE 8.00Y x 7.00A =56.0W Without ink.
E09S4002 PP BLUE 6.90Y x 6.50A =45.5W Without ink.
E09S5002 PP BLUE 6.00Y x 6.00A =36.0W Without ink.

E09SI003 PP YELLOW 1O.0Y x 8.00A =80.0W
E09S2003 PP YELLOW 8.99Y x 7.50A =77.5W
E09S3003 PP YELLOW 8.00Y x 7.00A =56.0W
E09S4003 PP YELLOW 6.90Y x 6.50A =45.5W
E09S5003 PP YELLOW 6.00Y x 6.00A =36.0W

E09SIOO4 PP YELLOW IO.OY x 8.00A =80.0W. Without ink.
E09S2004 PP YELLOW 8.99Y x 7.50A =77.5W Without ink.
E09S3004 PP YELLOW 8.00Y x 7.00A =56.0W Without ink.
E09S4004 PP YELLOW 6.90Y x 6.50A =45.5W Without ink.
E09S5004 PP YELLOW 6.00Y x 6.00A =36.0W Without ink.

EXPERIMENT 9 - VARIATION IN LIGHT SOURCE

Sam Ie Number Measurements Label Colour Remarks
E09SIOO5 PP WHITE IO.OY x 8.00A =80.0W
E09S2005 PP WHITE 8.99Y x 7.50A =77.5W
E09S3005 PP WHITE 8.00Y x 7.00A =56.0W
E09S4005 PP WHITE 6.90Y x 6.50A =45.5W
E09S5005 PP WHITE 6.00Y x 6.00A =36.0W

E09SIOO6 PP WHITE 1O.0Y x 8.00A =80.0W. Without ink.
E09S2006 PP WHITE 8.99Y x 7.50A =77.5W Without ink.
E09S3006 PP WHITE 8.00Y x 7.00A =56.0W Without ink.
E09S4006 PP WHITE 6.90Y x 6.50A =45.5W Without ink.
E09S5006 PP WHITE 6.00Y x 6.00A =36.0W Without ink.

E09SI007 PP RED 1O.0Y x 8.00A =80.0W
E09S2007 PP RED 8.99Y x 7.50A =77.5W
E09S3007 PP RED 8.00Y x 7.00A =56.0W
E09S4007 PP RED 6.90Y x 6.50A =45.5W
E09S5007 PP RED 6.00Y x 6.00A =36.0W

E09SIOO8 PP RED 1O.0Y x 8.00A =80.0W. Without ink.
E09S2008 PP RED 8.99Y x 7.50A =77.5W Without ink.
E09S3008 PP RED 8.00Y x 7.00A =56.0W Without ink.
E09S4008 PP RED 6.90Y x 6.50A =45.5W Without ink.
E09S5008 PP RED 6.00Y x 6.00A =36.0W Without ink.

E09SIOO9 PVC YELLOW 10.0Y x 8.00A =80W
E09S2009 PVC YELLOW 8.9Y x 7.50A =78W
E09S3009 PVC YELLOW 8.0Y x 7.00A =56W
E09S4009 PVC YELLOW 6.9Y x 6.50A =45W
E09S5009 PVC YELLOW 6.0Y x 6.00A =36W
E09S6009 PVC YELLOW 5.1 Y x 5.50A =28W
E09S7009 PVC YELLOW 4.3Y x 5.00A =22W
E09S8009 PVC YELLOW 3.6Y x 4.50A =16W
E09S9009 PVC YELLOW 2.8Y x 4.00A =IIW
E09S0009 PVC YELLOW 2.2Y x 3.50A =8W
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Appendix D - Simulation Results
Table 13 Simulation Tp = 0%

IJ Td Tp r!/ rk re rc rj T{/

0.81 0.09 0 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 0 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.11 0 18.55 81.45 0.00 81.45 0.00 100.00

0.81 0.12 0 18.55 81.45 0.00 81.45 0.00 100.00

0.75 0.05 0 19.35 80.65 0.00 80.65 0.00 100.00

0.81 0.13 0 19.35 80.65 0.00 80.65 0.00 100.00

0.81 0.14 0 20.16 79.84 0.00 79.84 0.00 100.00

0.75 0.06 0 20.97 79.03 0.00 79.03 0.00 100.00

0.81 0.15 0 20.97 79.03 0.00 79.03 0.00 100.00

0.75 0.07 0 21.77 78.23 0.00 78.23 0.00 100.00

0.75 0.08 0 21.77 78.23 0.00 78.23 0.00 100.00

0.75 0.09 0 22.58 77.42 0.00 77.42 0.00 100.00

0.75 0.10 0 23.39 76.61 0.00 76.61 0.00 100.00

0.75 0.11 0 23.39 76.61 0.00 76.61 0.00 100.00

0.75 0.12 0 23.39 76.61 0.00 76.61 0.00 100.00

0.75 0.13 0 23.39 76.61 0.00 76.61 0.00 100.00

0.75 0.14 0 23.39 76.61 0.00 76.61 0.00 100.00

0.75 0.15 0 23.39 76.61 0.00 76.61 0.00 100.00

1.05 0.05 0 4.84 95.16 0.81 94.35 0.00 99.15

1.05 0.06 0 4.84 95.16 0.81 94.35 0.00 99.15

1.05 0.07 0 4.84 95.16 0.81 94.35 0.00 99.15

1.05 0.08 0 5.65 94.35 0.81 93.55 0.00 99.15

1.05 0.09 0 5.65 94.35 0.81 93.55 0.00 99.15

0.99 0.05 0 6.45 93.55 0.81 92.74 0.00 99.14

1.05 0.10 0 6.45 93.55 0.81 92.74 0.00 99.14

1.05 0.11 0 6.45 93.55 0.81 92.74 000 99.14

1.05 0.12 0 6.45 93.55 081 92.74 0.00 99.14

0.99 006 0 726 92.74 0.81 91.94 0.00 99.13

0.99 0.07 0 7.26 92.74 0.81 91.94 0.00 99.13

0.99 0.08 0 7.26 92.74 0.81 91.94 0.00 99.13

1.05 0.13 0 7.26 92.74 0.81 91.94 0.00 99.13

1.05 0.14 0 7.26 92.74 0.81 91.94 0.00 99.13

1.05 0.15 0 7.26 92.74 0.81 91.94 0.00 99.13

0.99 0.09 0 8.06 9194 0.81 91.13 0.00 99.12

0.99 0.10 0 8.06 91.94 0.81 91.13 0.00 99.12

0.99 0.1 J 0 8.06 91.94 0.81 91.13 0.00 99.12

0.99 0.12 0 8.06 91.94 0.81 91.13 0.00 99.12

0.99 0.13 0 8.06 9194 0.81 91.13 0.00 99.12

0.87 0.05 0 8.87 91.13 0.81 90.32 0.00 99.12

0.87 0.06 0 8.87 91.13 0.81 90.32 0.00 99.12

0.87 0.07 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.05 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.06 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.07 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.08 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.09 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.10 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.11 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.12 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.13 0 8.87 91.13 0.81 90.32 0.00 99.12

0.93 0.14 0 8.87 91.13 0.81 90.32 0.00 99.12

0.99 0.14 0 8.87 91.13 0.81 90.32 0.00 99.12
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0.99 0.15 0 8.87 91.13 0.81 90.32 0.00 99.12

0.81 0.05 0 10.48 89.52 0.81 88.71 0.00 99.10

0.87 0.08 0 10.48 89.52 0.81 88.71 0.00 99.10

0.87 0.09 0 10.48 89.52 0.81 88.71 0.00 99.10

0.87 0.10 0 10.48 89.52 0.81 88.71 0.00 99.10

0.93 0.15 0 10.48 89.52 0.81 88.71 0.00 99.10

0.87 0.11 0 12.10 87.90 0.81 87.10 0.00 99.08

0.87 0.12 0 12.10 87.90 0.81 87.10 0.00 99.08

0.81 0.06 0 12.90 87.10 0.81 86.29 0.00 99.07

0.87 0.13 0 12.90 87.10 0.81 86.29 0.00 99.07

0.81 0.07 0 14.52 85.48 0.81 84.68 0.00 99.06

0.87 0.14 0 14.52 85.48 0.81 84.68 0.00 99.06

0.87 0.15 0 14.52 85.48 0.81 84.68 0.00 99.06

0.81 0.08 0 15.32 84.68 0.81 83.87 0.00 99.05

1.11 0.13 0 4.84 95.16 1.61 93.55 0.00 98.31

1.11 0.14 0 5.65 94.35 1.61 92.74 0.00 98.29

1.11 0.15 0 5.65 94.35 1.61 92.74 0.00 98.29

1.11 0.10 0 4.03 95.97 2.42 93.55 0.00 97.48

1.11 0.11 0 4.03 95.97 2.42 93.55 0.00 97.48

1.11 0.12 0 4.03 95.97 2.42 93.55 0.00 97.48

1.11 0.05 0 2.42 97.58 3.23 94.35 0.00 96.69

1.11 0.06 0 2.42 97.58 3.23 94.35 0.00 96.69

1.11 0.07 0 2.42 97.58 3.23 94.35 0.00 96.69

1.11 0.08 0 2.42 97.58 3.23 94.35 0.00 96.69

1.11 0.09 0 2.42 97.58 3.23 94.35 0.00 96.69

1.17 0.05 0 1.61 98.39 4.03 94.35 0.00 95.90

1.17 0.06 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.07 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.08 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.09 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.10 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.11 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.12 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.13 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.14 0 2.42 97.58 4.03 93.55 0.00 95.87

1.17 0.15 0 2.42 97.58 4.03 93.55 0.00 95.87

1.23 0.05 0 0.00 100.00 4.84 95.16 0.00 95.16

1.23 0.06 0 0.00 100.00 4.84 95.16 0.00 95.16

1.23 0.07 0 0.00 100.00 4.84 95.16 0.00 95.16

1.23 0.08 0 0.81 99.19 4.84 94.35 0.00 95.12

1.23 0.09 0 1.61 98.39 4.84 93.55 0.00 95.08

1.23 0.10 0 2.42 97.58 4.84 92.74 0.00 95.04

1.23 0.11 0 2.42 97.58 4.84 92.74 0.00 95.04

1.23 0.12 0 2.42 97.58 4.84 92.74 0.00 95.04

1.23 0.13 0 2.42 97.58 4.84 92.74 0.00 95.04

1.23 0.14 0 2.42 97.58 4.84 92.74 0.00 95.04

1.23 0.15 0 2.42 97.58 4.84 92.74 0.00 95.04

1.29 0.05 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.06 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.07 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.08 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.09 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.10 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.11 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.12 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.13 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.14 0 0.00 100.00 7.26 92.74 0.00 92.74
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1.35 0.05 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.06 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.07 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.08 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.09 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.10 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.11 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.12 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.13 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.14 0 0.00 100.00 7.26 92.74 0.00 92.74

1.35 0.15 0 0.00 100.00 7.26 92.74 0.00 92.74

1.29 0.15 0 0.81 99.19 7.26 91.94 0.00 92.68
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Table 14 Simulation (j= 0.81 and Td = 0.10
(J Td Tp ru rk re rc rj ra

0.81 0.10 100.00 16.94 83.06 0.00 1.61 81.45 100.00

0.81 0.10 0.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 10.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 20.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 30.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 40.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 50.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 60.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 70.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 80.00 16.94 83.06 0.00 83.06 0.00 100.00

0.81 0.10 90.00 16.94 83.06 0.00 83.06 0.00 100.00

Table 15 Simulation (j= 1.23 and Td = 0.06

(J Td Tp ru rk re rc rj ra

1.23 0.06 100.00 0.00 100.00 0.00 0.00 100.00

1.23 0.06 60.00 0.00 100.00 0.00 85.48 14.52 100.00

1.23 0.06 70.00 0.00 100.00 0.00 79.03 20.97 100.00

1.23 0.06 80.00 0.00 100.00 0.00 69.35 30.65 100.00

1.23 0.06 90.00 0.00 100.00 0.00 47.58 52.42 100.00

1.23 0.06 30.00 0.00 100.00 0.81 92.74 6.45 99.14

1.23 0.06 40.00 0.00 100.00 0.81 89.52 9.68 99.11

1.23 0.06 50.00 0.00 100.00 0.81 88.71 10.48 99.10

1.23 0.06 20.00 0.00 100.00 3.23 92.74 4.03 96.64

1.23 0.06 0.00 0.00 100.00 4.84 95.16 0.00 95.16

1.23 0.06 10.00 0.00 100.00 4.84 93.55 1.61 95.08

Table 16 Results (j= 1.11 and Td = 0.07

(J Td Tp ru rk re rc rj ra

1.11 0.07 100.00 2.42 97.58 0.00 0.81 96.77 100.00

1.11 0.07 90.00 2.42 97.58 0.00 73.39 24.19 100.00

1.11 0.07 80.00 2.42 97.58 0.00 84.68 12.90 100.00

1.11 0.07 70.00 2.42 97.58 0.00 87.10 10.48 100.00

1.11 0.07 40.00 2.42 97.58 0.81 91.13 5.65 99.12

1.11 0.07 50.00 2.42 97.58 0.81 89.52 7.26 99.11

1.11 0.07 60.00 2.42 97.58 0.81 88.71 8.06 99.10

1.11 0.07 20.00 2.42 97.58 1.61 92.74 3.23 98.29

1.11 0.07 30.00 2.42 97.58 1.61 91.94 4.03 98.28

1.11 0.07 10.00 2.42 97.58 2.42 93.55 1.61 97.48

1.11 0.07 0.00 2.42 97.58 3.23 94.35 0.00 96.69
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