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SUMMARY 

The increasing use of steel arches (example in 
figure l) has lead to a growing demand for 
design rules for arches. Since the Dutch codes 
lack a verification method to check arches, the 
research committee SGffC 8 of the 
Staalbouwkundig Genootschap, has initiated 
an investigation to develop a verification 
method for steel arches. The first part of the 
investigation has been executed by 
Verstappen(1996). Here attention was mainly 
focused on in-plane stability. The second part 
of the investigation is described in this report 
and it aimes at out-of-plane stability of arches. 

Figure 1 arch structure 

Several analytical models are known in the 
literature, which describe the out-of-plane 
stability of arches. The Euler buckling load 
for arches subjected to uniform compression 
or uniform bending can be determined with 
these models. Six different models have been 
considered in this investigation. 
The model of Timoshenko ( 1961) is based on 
straight beam theory and neglects the 
influence of warping. The model ofVlasov 
( 1961) is also based on straight beam theory 
but includes the warping effects. 
Yoo' s model (1982) is the third model which 
is based on straight beam theory, but the 
calculation method is not direct. Instead of 
using the equilibrium equations to obtain 

the Euler buckling load, the principle of 
virtual displacements is used. The model of 
Trahair ( 1987) is the first one which is based 
on curved beam theory. The models of 
Rajasekaran (1989) and Yang (1989) are also 
based on curved beam theory. The difference 
between the three models is due to different 
assumptions in the strain-displacement 
relations. 
The results of the different models are 
compared to each other for a range of arches. 
In figure 2 the Euler buckling loads, FE, are 
given for arches subjected to uniform 
compression and in figure 3 for arches 
subjected to uniform bending. Besides the 
analytical Euler buckling loads, numerical 
Euler buckling loads are given, which are 
obtained by a FEM analysis. 
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Figure 2 FE, uniform compression 
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Figure 3 FE , uniform bending 
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The model of Rajasekaran is used in further 

investigations to obtain the Euler buckling 

load. The results obtained by this model are 

reliable and the equations for the Euler 

buckling loads of the two loadcases concerned 

are rather simple. 

Non-linear Finite Element Method analyses 

were performed to obtain more information 

about the out-of-plane behaviour of the arch. 

They included geometrical and physical non­

linear behaviour. 

Most of the arches investigated have a 

positive post-buckling behaviour, which 
means that the arch can carry a larger load 

than the buckling load. In figure 4 this is 

indicated by line 2. There are also arches 
without a positive post-buckling behaviour. 

Their behaviour is shown in figure 4 by line 1. 

Out-of-plane displacement at top of 

Figure 4 Load-displacement diagram 

For arches without a positive post-buckling 

behaviour, the ultimate load is clearly defined, 

namely the top in the load-displacement 

curve: ultimate capacity. For arches with a 

positive post-buckling behaviour this is not 

the case. The arch can even resist a larger load 
than the Euler buckling load and deformations 

can be very large before the ultimate strength 

is reached. In this investigation a definition is 

suggested for the ultimate load which is valid 

for arches with and without positive post­

buckling behaviour. 

The ultimate load can be determined by the 

minimum slope in the load-displacement 

diagram, i.e. : 
. d(load) 

mml . I 
d(out-of-plane displacement) 

For an arch without a posistive post-buckling 

behaviour this is the top in the load­

displacement diagram and for an arch with a 

posistive post-buckling behaviour this is the 

point of contraflexure in the load­

displacement diagram. 

For two loadcases, uniform compression and 

uniform bending, a verification method is 

proposed. This method shows close 
comparison with non-linear FEM analyses. 

The stability check for uniform compression 
1s: 

Nc.s.d <] 

Ware h. out N c. u. d -

with: 

Nc,ct design value of the compressive force 

Neu d design plastic resistance to compression 

of the cross section 

Warch.out buckling factor for out-of-plane 
buckling of arches 

The stability check for uniform bending is: 

My.smax.d < l 
Warch.out My.u.d -

with: 

My maxs d design value of the bending moment 

My u d design plastic resistance to bending 
of the cross section 

Warchout buckling factor for out-of-plane 
buckling of arches 

The buckling factor for out-of-plane buckling 

of arches can be obtained from the column 
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buckling curves. Only the relative slenderness 
must be known, in order to obtain the 

buckling factor. 

The relative slenderness for the two loadcases 
,s: 

for uniform compression: Are,= 

for uniform bending: 

in which 

Nc.ud is the design plastic resistance to 
compression of the cross section 

Mc.ud is the design plastic resistance to 
bending of the cross section 

Fy E is the Euler buckling load for uniform 
compression based on the model by 

Rajasekaran 
ME is the Euler buckling load for uniform 

bending based on the model by 
Rajasekaran 

Mo b/a(a - It 
( 

2 ? ) 

FyE = ~red~ a + b 

ME = ~red M{- ~ -a~ + ✓ ( ~ + a~ J + l -a
2 J 

with: 
L, H, e and R according to figure 5 

L re Mo 
a= TC R b = P, L 

In which: 

Mo= ( 
rc

2 Eiw) 
P, GJ +---v-

H h 
~red = I for Les 0.25 

Hh Hh 
= 1.05 - 0.2 Le for Le > 0.25 

The reduction factor ~red is added tu the 
original formulae from Rajasekaran yielding 

Euler buckling loads that comply with 
numerical results. 

Cl 

Figure 5 Parameters of the arch 

The German code DIN I 8800 is the only code 
that includes a verification method for out-of­
plane stability of arches. In figure 6 the 

method proposed in this study is compared to 
DIN 18800. 

For arches subjected to uniform compression, 
DIN 18800 is more conservative than the 
proposed method. For arches subjected to 

uniform bending the proposed method is more 

conservative but DIN 18800 is not always 
safe. Since most arches have a positive post­
buckling behaviour this is not a big problem. 

.E.. 1 ~--ro...!-,--~-___._____.. .. c.i. ... 

]
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CS 

"' 
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a) Proposed method 
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1·· -,cgc~1 
1 Uk1rmte1oad 

c) Proposed method 

,, 
!.:u." 
F, 

- Buckhngcurve 

1 Uh11110teload 

70 m M ~ 50 M 

---+. ,-,,, 

b) DIN 18800 

1_1., 

'1, I 

I" 
I 

""! 
I 

i 

::1 :0 ~ d 

d) DIN 18800 

Figure 6 Comparison of methods 

It can be concluded that the proposed 
verification method provides a safe method to 
check the out-of-plane stability of arches 

subjected to uniform compression or uniform 
bending. 
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SAMENV ATTING 

De stijgende populariteit van het gebruik van 
bogen als constructief systeem, leidt tot een 
toenemende vraag naar toetsingsregels voor 
bogen. In afbeelding 1 is een voorbeeld van een 
boogconstructie te zien. Omdat er in de 
Nederlandse normen geen toetsingsregels voor 
bogen aanwezig zijn, heeft de commissie SG/fC 
8, een onderzoekscommissie van het 
Staalbouwkundig Genootschap, een onderzoek 
gei"nitieerd met als doel hanteerbare rekenregels 
voor stalen bogen te op te stellen. Het eerste 
deel van het onderzoek is uitgevoerd door 
Verstappen [ 1]. De aandacht in dit gedeelte is 
voornamelijk gericht op de stabiliteit in het vlak 
van de boog. Het tweede gedeelte van het 
onderzoek, is beschreven in dit rapport. Het 
beschrijft de stabiliteit uit het vlak van de boog. 

Atbeelding 1 Boogconstructie 

In de literatuur zijn verschillende modellen 
aanwezig die de stabiliteit uit het vlak van de 
boog beschrijven. Deze modellen zijn erop 
gericht de Eulerse kniklast voor bogen onder 
zuivere druk en onder zuivere buiging te 
bepalen. Zes verschillende modelen zijn in dit 
onderzoek beschouwd. 
Het model van Timoshenko ( 1961) is 
gebaseerd op de theorie van een rechte balk en 
de invloed van de welving wordt niet 
meegenomen in dit model. Het model van 
Vlasov (1961) is eveneens gebaseerd op de 
theorie van een rechte balk maar de invloed 

van de welving is wel verdisconteerd in het 
model. Het model van Yoo (1982) is het derde 
model wat gebaseerd is op de theorie van een 
rechte balk. De berekeningsmethode om de 
Eulerse kniklast te bepalen is echter niet gelijk 
aan de twee andere modellen. In plaats van de 
evenwichtsvergelijkingen te gebruiken, maakt 
<lit model gebruik van het principe van 
virtuele arbeid. Het model van Trahair (1987) 
is het eerste model wat gebaseerd is op de 
theorie van een ggebogen staaf. De modellen 
van Rajasekaran (1989) en Yang (1989) zijn 
eveneens gebaseerd op deze theorie. Dat de 
modellen verschillende resultaten opleveren 
wordt veroorzaakt door de verschillend 
aangenomen rekverplaatsingsvergelijkingen. 
In afbeelding 2 is voor een reeks bogen de 
Eulerse kniklast voor het belastingsgeval 
"zuivere druk" te zien volgens de verschil­
lende modellen. In afbeelding 3 zijn de 
resultaten voor het belastingsgeval "constante 
buiging" te zien. 
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In afbeelding 2 en 3 zijn naast de analytische 

resultaten ook numerieke resultaten gegeven 

die verkregen zijn door een EEM berekening. 

Het blijkt dat de resultaten volgens het model 

van Rajasekaran betrouwbaar zijn en de 

vergelijkingen voor de Eulerse kniklasten zijn 

relatief eenvoudig. Daarom wordt dit model in 

het verdere onderzoek gebruikt om analytisch 

de Eulerse kniklast te bepalen. 

Niet-lineaire eindige elementen berekeningen 

zijn uitgevoerd om meer informatie over het 

gedrag van de boog (uit het vlak) te krijgen. 

Bijna alle onderzochte bogen hebben een 

positief na-kritisch gedrag, wat betekent dat 

de boog een grotere belasting dan de Eulerse 

kniklast kan dragen. In afbeelding 4 is dit 

gedrag aangegeven met lijn 2. Er zijn ook 

bogen waarvoor de kniklast de maximale 

belasting is, <lit is weergegeven met lijn I in 

afbeelding 4. 
F II.. . ..... . 

,, 
J 
1 

Verplaabing uit het \'lak 

Afbeelding 4 belasting-verplaatsings diagram 

Voor bogen die geen positief na-kritisch 

gedrag bezitten is het duidelijk wat de uiterste 

draagkracht is. Voor bogen die wel een 

positief na-kritisch gedrag bezitten is dat niet 

zo duidelijk. De boog kan in dat geval een 

belasting verdragen die zelfs grater is dan de 

Eulerse kniklast. De vervormingen die 

gepaard gaan met het bereiken van de uiterste 

sterkte kunnen echter onacceptabel groat zijn, 

zodat <lit niet als uiterste draagkracht gezien 
kan warden. Daarom is in dit onderzoek een 

definitie voor de uiterste draagkracht afgeleid 

die geldig is voor bogen met en zonder 

positief na-kritisch gedrag. 

De uiterste draagkracht kan m.b. v. de 

volgende formule warden bepaald: 
. 

1 
d(belasting) 

mm d(verplaatsing uit het vlak) 1 

Voor een boog zonder positief na-kritisch 

gedrag is dit de top in het last-verplaatsings­

diagram. Voor een boog met een positief na­

kritisch gedrag is dit het buigpunt. 

Voor de twee belastingsgevallen zuivere druk 

en zuivere buiging zijn twee toetsingsregels 

voorgesteld en succesvol geverifieerd met 

behulp van niet lineaire EEM analyses. 

De toetsingsregel voor bogen onder zuivere 

druk luidt: 

Nc.s<l < l 
COtioog Nc.u <l -

met: 

Nc.s.J rekenwaarde van de normaaldrukkracht 

t.g.v. de belasting 

Nc.u.ct rekenwaarde van de normaaldrukkracht 

m.b.t. de capaciteit in de uiterste 

grenstoestand 

COtioog knikfactor voor knik uit het vlak 

De toetsingsregel voor bogen onder zuivere 

buiging luidt: 

My.s.max.<l < ) 
COtioog My u J -

met: 

Mymaxsd rekenwaarde van het buigend 
moment t.g.v. de belasting 

Myu<l rekenwaarde van het buigend 

moment m.b.t. de capaciteit in de 

uiterste grenstoestand 

COtioog knikfactor voor knik uit het vlak 

De knikfactor voor knik uit het vlak kan 

verkregen warden m.b.v. de kolom-
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knikcurven. Orn deze te gebruiken moet de 
relatieve slankheid van de boog bekend zijn. 
De relative slankheid voor de twee 
belastingsgevallen is als volgt: 

1 -~c.u.d zuiver druk: '"rel - F 
y.E 

zuiver buiging: Arel=~ 

waann 
Fy E is de Eulerse kniklast voor een boog 

onder zuivere druk, gebaseerd op het 
model van Rajasekaran 

ME is de Eulerse kniklast voor een boog 
onder zuivere buiging, gebaseerd op het 
model van Rajasekaran 

Mo b/a(a - 1) 
( 

2 2) 
FyE = ~rectR7 a + b 

met: 
L, H, l en R volgens afbeelding 5. 

L 
a=-

1tR 

( 
n

2 Eiw) Mo = P, GJ + -----i:::-

~red = l 
H h 

als Le ::; 0.25 

Hh Hh 
= 1.05 - 0.2 Le als Le > 0.25 

De reductiefactor ~red is ten opzichte van het 
origineel door Rajasekaran gepresenteerde 
werk toegevoegd om Eulerse kniklasten te 
verkrijgen die overeenkomen met numerieke 
resultaten. 

I 

~ 
( 

Atbeelding 5 Parameters van de boog 

De Duitse norm DIN 18800 is het meest 
uitgebreid wat betreft toetsing van bogen. 
In afbeelding 6 is de voorgestelde toetsing 
vergeleken met die van DIN 18800. Voor 
bogen onder zuivere druk is DIN 18800 
conservatiever dan de voorgestelde toetsing. 
Voor bogen onder zuivere buiging is de 
voorgestelde methode conservatiever dan die 
van DIN 18800, maar deze is niet altijd veilig. 
Omdat de meeste bogen een positief na­
kritisch gedrag hebben hoeft <lit echter niet 
altijd gevaar op te leveren. 

•· Buckl1ngcurve 

t Ulllmateload 

Buckhngcurve 

• Ult1mateload 

a) Voorgestelde toetsing b) DIN 18800 
" ,o 

. • ....... M.• 

f, I 
~c Eloc"""'~'l -L• UIIIITTieload _ f ~-! 

I~ 
~ 

c) Voorgestelde toetsing d) DIN 18800 

Atbeelding 6 Toetsings methodes 

Geconcludeerd kan warden dat de 
voorgestelde methode een veilige toetsing 
oplevert voor bogen onder zuivere druk of 
zuivere buiging. 
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GENERAL NOTATION 

Cross sectional area 

LhtR 

1tMo/P,L 

Design value (subscript) 

Modulus of elasticity 

Force 

Ultimate load 

Strength 

Shear modulus of elasticity 

Crown height of arch 

Height of cross section 

Second moment of area about the weak-axis 

Second moment of area about the strong-axis 

Warping section constant 

Torsion section constant 

Arch length 
Span of arch 

Buckling length 

Moment in general 

Euler buckling moment 

1t2 EI 
P, (GJ + w) 

L 

Design value of maximum bending moment 

Design plastic resistance to bending of the cross section 

Axial force 

Design value of compressive force 

Design plastic resistance to compression of the cross section 
1t2 EI, 
----v-
Uniformly distributed radially directed force 

Euler buckling load 

Arch radius 

Radius of gyration 

Thickness 

Shear centre deflection out-of-plane 

Shear centre deflection in-plane 

Elastic section modulus 

Plastic section modulus 

Shear centre deflection in longitudinal direction 

Longitudinal axis through centroid 

Principal centroidal axes 
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1. INTRODUCTION 

Arch structures are more and more used in constructions. The architectural value combined with the 
efficient shape is the cause of their increasing popularity. Especially for structures with a large span 
it is efficient to use arches, because of the reduction of bending moments in the structure. In 
structures like coverings, roofs with a large span, bridges and art objects, arches are frequently found. 
Figure 1.1 shows examples of this kind of arch structures. 

The increasing use of arches leads to a growing demand for a verification for arches. Since the Dutch 
codes lack a verification method to check arches, SG/TC 8 initiated an investigation to develop a 
verification method for steel arches. SG/TC 8 is a committee of the Dutch Steel Society 
(Staalbouwkundig Genootschap ), which is active on the subject of stability of steel constructions. 
The first part of the investigation has been executed by Verstappen [1]. Here attention was mainly 
focused on the in-plane stability of steel arches. The study resulted in a proposal for the verification 
of the in-plane stability of circular arches. The second part of the investigation is described in this 
report. Attention is mainly paid to the out-of-plane stability of steel arches. The objective of this 
investigation is to provide a proposal for a verification method for out-of-plane stability of steel 
arches. 

a) TGV station, Charles De Gaulle 

Airport, Paris 

c) Merchants Bridge, Castlefield, 

Manchester 

Figure 1.1 Arch structures 

b) The Cable & Wireless College, 

Coventry 

d) Old Street Roundabout, London 



Page TUE-Report 

2 February 98 CO/98.05 

This report has been arranged as follows. 
Chapter two starts with a short review of research on the subject stability and a review of provisions 
in international codes concerning arches. 
Chapter three deals with the Euler buckling load, which is an useful tool to study the out-of-plane 
stability of arches. First some analytical models are considered and compared to each other. Next the 
Euler buckling load is determined numerically. The chapter finishes with a comparison between the 
analytical and numerical models. 
In chapter four the "real" behaviour of arches is simulated with non-linear Finite Element Method 
analyses. The information obtained from these analyses is used in chapter five to determine a 
verification method for the out-of-plane stability of arches. Additional FEM analyses are performed 
to check the proposed verification. 
Chapter six contains the general conclusions and the recommendations of this research. 



2. OUT-OF-PLANE STABILITY OF ARCHES 

The stability of arches is limited by different types of buckling. An important type is out-of-plane 
buckling. The cross-section of the arch is in this case submitted to a rotation and a translation. 
For the out-of-plane buckling of straight beams a distinction is made between flexural-torsional 
buckling and lateral-torsional buckling. Buckling of a column under compression is called flexural­
torsional buckling and buckling of a beam under bending is called lateral-torsional buckling (see 
Figure 2.1 ). Here two different cases are concerned, with each their own behaviour. An arch on the 
other hand behaves under compression and under bending in the same way; a deformation out-of­
plane and a rotation around the longitudinal axis. Nevertheless the terms flexural-torsional buckling 
and lateral-torsional buckling are used for arches in literature. To avoid confusion, in this 
investigation the term out-of-plane buckling is used, whether the arch is under compression, bending 
or a combination of the two. 

2.1 Review of research on stability 

Research on stability started in 1759 when Euler presented an analytical method to predict the 
buckling load of a slender column. His theory was fundamental and is still the basis of modern 
stability analysis. Another important step forward in the theory of torsional buckling was made by 
Saint-Venant. In 1855 he investigated the twisting response of members subjected to uniform 
torsion. In the beginning of the 20th century, Timoshenko was the one who extended this work with 
respect to the effects of warping torsion. 

Figure 2.1 Lateral-torsional buckling 

Many researchers studied the topic of flexural­
torsional buckling and lateral-torsional buckling. 
Especially the 1960s show an increase in published 
work. This is mainly caused by the introduction of 
the computer. Extensive calculations by hand were 
no longer necessary. One was no longer limited to 
isolated members, but the influence of different 
restraints and the continuity with other members 
could be investigated. Later, with the introduction of 
the Finite Element Method in combination with 
increased computer performance, nearly every 
situation could be analysed. The new publications are 
mainly extensions of previously accepted analytical 
theories, based on differential equations or the 
energy equation of buckling. 

One of these extensions is the out-of-plane buckling 
of arches. In the 1960s, Timoshenko and Vlasov 
were among the first who paid attention to this 
stability problem. In the 1980s some investigators 
came with an improvement of the earlier model. 
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The existence of the numerous extensions on the buckling theory gives not always a better 
understanding of the subject. Not all published theories are commonly accepted and some contradict 
each other. In the 1980s an attempt was made to develop a general theory on flexural-torsional and 
lateral-torsional buckling. For straight beams this worked out, but for arches fundamentally different 
models on out-of-plane stability still exist. 

2.2 Codes 

In the previous section, attention was paid to the theoretical side of the out-of-plane stability of 
arches. But what happens in practice? We know that the Romans already made arches, without ever 
having heard of the term out-of-plane buckling. Their arches were very wide and stocky, so it is 
obvious they had no stability problems (see Figure 2.2a). When we look at the arches in the Gothic 
period, the slenderness already increased significantly. Nowadays architects go for the ultimate, by 
making the arch as slender as possible (see Figure 2.2b). It is no longer obvious that the arch will not 
buckle, so attention must be paid to its stability. Questions arise about how this is done and about the 
availability of codes concerning this kind of instability. 

a) Roman aqueduct 

Figure 2.2 Arch structures 

2.2.1 International comparison 

~'.· ,:·· 

···~ 

b) Merchants Bridge, Castlefield, Manchester 

In 1991 a study of over 100 specifications and codes on stability design of metal structures was 
made[2]. One of the topics addressed by this study is the stability of arches. Code provisions were 
studied, for four geographical regions. Afterwards the codes were compared with each other and 
some comment was given. 
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The four regions with their specifications are: 

• East Europe [editor: Kollar] 
In the Czech and former East-German codes, an effective buckling length is used to describe 
out-of-plane buckling. In this effective buckling length, two factors are used to introduce 
different features of an arch. The first one considers the behaviour of the load during buckling. 
The second one considers the variation of the moment of inertia and the rise to span ratio of the 
arch. Other codes in this region give no provisions for out-of-plane buckling of arches. 

• Asia [editor: Kuranishi ] 
In Japan, the specification for out-of-plane buckling in the JRA 89, is related to the allowable 

axial compressive stress in the following way: 
H 
Ag < 0.850-ca 

in which: 
H is the horizontal thrust (axial compression in a member) of the arch rib 
Ag is the mean value of cross sectional area of a single arch member along its length 
O"ca is the allowable axial compressive stress 

• North America [editor: Vinnakota I 
The AASHTO 89, Standard Specifications for Highway Bridges, does not cover lateral buckling 
of individual ribs, or spatial stability of the system. The majority of arch bridges constructed in 
the USA are composed of box section ribs, widely spaced and braced by lateral members. 
Therefore, in general lateral stability is not considered to be critical. Studies confirming this 
assumption are not available. Also other codes in North America do not cover the topic stability 
of arches. 

• West Europe [editor: Kuranishi] 

5 

Germany is the only country in West Europe with specifications for arches. The buckling strength 
is verified by the column strength formula in DIN 18 800. The used slenderness parameter 
represents the features of the arches. Specifications are given for parabolic and circular arches, 
for braced and unbraced arches. 

Due to the complexity of out-of-plane buckling, it is very difficult to cover all aspects of system 
stability of arches in terms of code provisions. In Table 2.1, a comparison is made between the codes 
for the four before mentioned regions. A review is given of the aspects which are included in the 
codes. 
Table 2.1 shows that of the investigated codes, DIN 18 800 Part 2 ( 1986) provides the most complete 
description for the out-of-plane stability of arches. It gives provisions which can deal with a wide 
range of variables. It provides values mainly according to the results of an elastic analysis and 
effective length concept. The specifications of other countries seem to be too conservative and do 
not reflect the results obtained in recent research. 
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Table 2.1 Comparison of codes w.r.t out-of-plane stability of arches 

Region East-Europe Asia North West 

America Europe 

Country Czechoslo- Hungary former Japan USA Germany 

vakia DDR 

Code CSN73 MSZ TGL JRA 89 i\ASHT089 DIN 18 800 
1401 84 15024/1 85 13503/01 82 Part2 86 

I a Application of column X X X X 
strength formula 

I b Effective buckling length X X X X 

I c Effect of the inclination of X X X X 
hangers or posts during buckling 

Id Effect of bracing systems X 

I e Effect of end portal frames X 

2a Effect of load combination X 

2.2.2 DIN 18 800 
As mentioned before, the German code DIN 18 800 is the most extensive code on out-of-plane 
stability of arches. Therefore this code is looked upon more closely. 
The verifications for out-of-plane stability of arches in this code, are all based on the verification of 
the stability of columns. The same unity check as for columns is used to verify the stability of 

N 
arches: -- :::; I 

KNpLd 

By introducing an adapted slenderness, the features of the arch are taken into account. The effect of 
variation of the shape, the load and the restraints of the arch are included in it. From the slenderness, 
the buckling factor K can be determined. For the extensive verification the reader is referred to 
appendix A. I. Below, arches with their characteristics are given, for which verifications are present 
in DIN 18 800. The numbers refer to the corresponding articles in the code. 

• Article 6.1.2 Arches under compression 
Article 6.1.2.1 Arches without bracing 
Two methods are given to determine the slenderness of an arch. One for a parabolic arch and 
one for a circular arch. 
Article 6.1.2.2 Arches with braces and end frame 

• Article 6.2.2 Arches under compression and bending 
Article 6.2.2.1 General 
Article 6.2.2.2 Arches loaded in the crown of the arch, with invariable rectangular or I­
shaped cross section. 
Article 6.2.2.3 Circular arch with I-shaped cross section and pin-ended supports 

• Article 6.3 Spatial loaded arches 
No stability check is given, it is just mentioned how to determine the load carrying capacity 
according to the elastic theory and how to introduce imperfections. 



3. EULER BUCKLING 

One of the characteristics of an arch, is the first order elastic out-of-plane buckling load. This is a 
critical loading for a perfect arch, with elastic behaviour and without the influence of deformations. 
In practice, an arch is never perfect and does not deform fully elastically. Therefor it will not 
collapse at this load. This load however, is a useful tool to study the out-of-plane stability of an arch. 
The term Euler buckling load is used in this report for the first order elastic buckling load. In the 
literature different terms are found for this load. Elastic critical load, bifurcation point, eigenvalue 
and buckling load are also used to describe the first order elastic buckling load. 

In this chapter two calculation methods will be considered to determine the Euler buckling load of an 
arch. In paragraph 3.1 some analytical methods are discussed. In paragraph 3.2, a numerical method 
to determine the Euler buckling load for an arch is given. Finally the results of the two calculation 
methods are compared in paragraph 3.3. 

3.1 Analytical models 

In this paragraph, the theories developed by several researchers will be discussed. In spite of the 
same approach to the problem, performing an eigenvalue analysis, they found different solutions. 
To make a better comparison afterwards between the different theories, the models will be compared 
to each other, based on a standard arch. 

All researchers used their own co-ordinate system, which is confusing for a proper comparison. For 
this investigation a standard co-ordinate system is defined. In Figure 3.1 a, the directions of the local 
axes of the standard arch that is used in this investigation, are shown. The standard arch is a part of a 
circle and has a double symmetric cross section. The dimensions are defined by the radius Rand the 
length Las given in Figure 3.1 b. The boundary conditions are defined as pin-ended for one support, 
which means: the ends are able to rotate freely around the principal axes and the translations are 
fixed in three directions. The other support has the same conditions with one exception: the 
translation in radial direction is not fixed, to obtain uniform compression and uniform bending in the 
arch. To prevent the arch from turning on its side, an extra boundary condition is created: a restraint 
against rotation around the tangential axis of the arch. 
The Euler buckling load is determined for two different loadcases. The first one consists of a load q, 
which is uniformly distributed along the centre line of the arch and radial directed. This results in a 
case of uniform compression in the arch (see Figure 3.2a). The second case is uniform bending along 
the length of the arch, two equal end moments are applied around the y-axis(see Figure 3.2b). 
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a) Principal axes of the curved beam 

Figure 3.1 Axes of the standard arch 

Loadcase I 

a) Uniform compression 

Figure 3.2 Two loadcases 

3.1.1 The models 

3.1.1.1 Timoshenko and Gere (1961) 
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R 

b) Axes in the plane of the arch 

M M 
Loadcase 2 

b) Uniform bending 

Timoshenko and Gere[3] were among the first who investigated the stability of curved beams. They 
investigated a circular arch with rectangular cross section. By solving the equilibrium for a straight 
beam directly, they obtained the equilibrium equations. These equations were adapted for a curved 
beam by replacing the equations for the curvatures and twist of a straight beam for the ones of a 
curved beam. For more details the reader is referred to appendix B.2. 
Timoshenko did not take into account the influence of warping. For closed rectangular cross 
sections, which he used, this influence is negligible. Therefore this neglection does not have a large 
effect on the results of his investigation. The disadvantage of this model is the limited applicability. 

Euler buckling load for curved beams under uniform compression 
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Euler buckling load for curved beams under uniform bending 

EI,+ GJ 
2R + (

EI, - GJ )
2 

EI, GJ n2 

2R + L-

3.1.1.2 Vlasov (1961) 

9 

Like Timoshenko, Vlasov [ 4] used straight beam theory as starting-point to derive the equilibrium 
equations for curved beams. He extended the model in such a way, that his model is also valid for 
double symmetric I-sections. For this kind of cross sections, warping is no longer negligible. Vlasov 

took this into account, which can explain the presence of the rigidity of warping in the solution. A 
drawback of this model is again its limitation. Only the Euler buckling loads of double symmetric 

cross sections can be calculated with this model. See appendix B.3 for the derivation. 

Euler buckling load for curved beams under uniform compression 

Euler buckling load for curved beams under uniform bending 

with: 

3.1.1.3 

L 
a=-

1tR 

Yoo (1982) 

1t
2 EI, 

p z = L2 

Like Timoshenko and Vlasov, Yoo also uses an analogy between straight and curved beams (see [5, 
6] ). Instead of solving the equilibrium equations directly, Yoo starts with the total potential energy. 

The curvatures and twist for a curved beam are substituted in straight beam energy. The equilibrium 
equations are obtained by differentiating the total energy twice. To solve these equations a 
displacement field is assumed for the out-of-plane displacement and the rotation. See appendix B.4 
for the equations. As Yoo did not make any assumption concerning the cross section in advance, 
critical loads of asymmetric cross sections can be calculated with his model. 

Euler buckling load for curved beams under uniform compression 

-B ± ✓B2 -4AC 
qE = 2AR 

with: 
J 

J 2 - J 2 
B = P, r- ( a - 1 ) + P <I> r- ( a - I ) 2 2 

2 
C=Mo (a -1) 
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Euler buckling load for curved beams under uniform bending 

As mentioned before, Yoo started with the total potential energy for a straight beam and substituted 
the curvatures and twist for a curved beam. For example the first derivative of the twist cp' is replaced 

U 2 
by (cp' - R ). In the total potential energy equation, the term (u') occurs related to the normal force P. 

Yoo has no substitute for the first derivative of the out-of-plane displacement u', therefore he 
2 

rewrites (u') to uu". By doing so he introduces an error. To study the influence of this substitution, 
2 

Yoo's model is adapted to model Yoo*. The term (u') in this model is used and not substituted by 
the term of a curved beam. The moment in the total potential energy is not related to u', so the 
critical moment for both models is the same. The critical q-load for the adapted model is given 
below, for the derivation see appendix B.4. 

Euler buckling load for curved beams under uniform compression 

* -B ± ✓B2 -4AC 
qE = 2AR 

with: 

A= I 

3.1.1.4 Trahair and Papangelis (1987) 
The validity of Vlasov's and Yoo's theories has been criticised by Trahair and Papangelis, due to the 
use of straight beam theory [7,8,9, I 0, 11]. Trahair and Papangelis investigated the problem of curved 
beams without using the straight-beam theory. They used the potential-energy approach for curved 
beams. 
First non-linear expressions for the axial and shear strains are derived for a curved beam. These 
expressions are substituted in the second variation of the total potential energy to get the buckling 
equations. To solve these equations, displacement fields for the out-of-plane translation and the 
rotation around the axis of the arch, are assumed. This results in two differential equations with two 
variables, which are related to each other. The Euler buckling loads for buckling under uniform 
bending or compression can be obtained from these equations. See appendix B.5 for the equations. 

Euler buckling load for curved beams under uniform compression 
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Euler buckling load for curved beams under uniform bending 

3.1.1.5 Rajasekaran and Padmanabhan (1989) 
Rajasekaran and Padmanabhan use more or less the same approach as Trahair [12]. However, instead 

of deriving the equation for the total potential energy, they work with the principle of virtual 

displacement. 
Trahair only assumed that the deformations in the plane have no influence on the out-of-plane 

stability and neglected these terms in the total potential energy. Rajasekaran and Padmanabhan did 
not neglect these terms. They showed with the four differential equations, obtained by executing the 
principle of virtual displacement, that the assumption of Trahair was right for the two loadcases of 

uniform bending and uniform compression. See appendix B.6 for these equations. 
In spite of using the same theory, the models of Trahair and Rajasekaran do not correspond for the 
arch under uniform bending. Different assumptions in strain-displacement equations are the cause of 

the difference. 

Euler buckling load for curved beams under uniform compression 

Euler buckling load for curved beams under uniform bending 

The just mentioned Euler buckling equations are given in the work of Rajasekaran and Padmanabhan 
[ 12]. The equilibrium equations of which these solutions are derived are also given. In these 

equations no terms related to the radius of gyration is present. The radius of gyration is introduced 
afterwards to compare the result to other models. When the Euler buckling q-load is calculated from 

the equations in [12] another solution is found. This is the same solution as the result of Trahair. See 
appendix B.6. This solution is also used to make a comparison with the other models. The name of 

this modified model is Rajasekaran*. 

Euler buckling load for curved beams under uniform compression 

Mo (b(a
2 

- 1)
2 j q* -~ 

E - R a +ab 
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3.1.1.6 Yang and Kuo 
Yang and Kuo studied the existing theories and adapted them according to their point of view [ 13, 
14, 15]. Like Rajasekaran and Padmanabhan, their model is derived with the principle of virtual 
displacements. The difference between the two theories lies in a different assumed strain­
displacement relation. See appendix B.7. 
It is to be expected that the results are very close to the ones of Rajasekaran and Padmanabhan. 

Euler buckling load for curved beams under uniform compression 

_1(-B± ✓B2 -4C) 
qE -R l" 2 

with: B= P,((a2-1)
2 

+a
4
~)+7+Elwf(l-a2)

2 (1 +~) 

P, GJ 2 2 ( GJ) n
2 

2 2 
C =-;:r- (a - 1) + Elw P, +R7" 17?(1- a) 

Euler buckling load for curved beams under uniform bending 

3.1.2 Comparison of the models 
The analytical models discussed in this chapter, have different assumptions and limitations. These 
differences lead to different Euler buckling loads for an arch under uniform compression or bending. 
In the past investigators made comparisons between the models. The different co-ordinate system 
and boundary conditions made this a complex task. The standard arch with the assumed co-ordinate 
system, introduced in this chapter, gives the possibility to compare, besides the results (Euler 
buckling loads), also the formulas. 
In this paragraph the models are compared to each other in the next three ways. 
With respect to: 
• assumptions and limitations 
• resulting formulas 
• Euler buckling loads. 
Concluding remarks, based on the different comparisons, will finish the paragraph. 
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3.1.2.1 Assumptions and limitations 
The features of the different analytical models are shown in Table 3.1. During the years, the model 
generally improved. The calculation method changed from direct into indirect. The applied theory is 
adapted specially for curved beams and the cross section restrictions disappear slowly. These 
changes point to a continuous improvement of the model. 

Table 3.1 Assumptions and limitations 

Researcher( s) year theory calculation method effect of cross section 
warm 

Timoshenko & 1961 straight beam direct not included closed, double 
Gere symmetric 
Vlasov 1961 straight beam direct included double symmetric 

I cross section 
Yoo 1982 straight beam energy method included non-symmetric cross 

sections 
Trahair & 1987 curved beam energy method included non-symmetric cross 
Papangelis sections 
Rajasekaran & 1989 curved beam virtual displacement included non-symmetric cross 
Padmanabhan sections 
Yang& 1989 curved beam virtual displacement included non-symmetric cross 
Kuo sections 

3.1.2.2 Formulas 
Timoshenko and Vlasov use the same calculation method, solving the equilibrium equations directly. 
The execution however is different. Timoshenko defines the curvatures and twist for a curved beam 
and substitutes them into the constitutive equations. Vlasov uses curvatures and twist for a straight 
beam and introduces the influence of the curved beam in the equilibrium equations. See appendix 
B.2 and B.3. There are two differences between the resulting equilibrium equations. First Vlasov 
introduces a warping rigidity in contrast to Timoshenko, secondly the terms of the equations are not 
corresponding. 

The other researchers used the energy method or the principle of virtual displacement. Both methods 
can be divided into two parts. One part represents the strain energy while the other part represents 
the potential energy. 

Strain energy 
For the strain energy the strain-displacement relations are required. See appendices B.4-B.7 for the 
linear axial strain and shear strain equations. Besides small differences, the strain-displacement 
relations of all models correspond to the following equations. 
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v' 
Yoo uses in his model for the third term between the brackets the term - z ( v" + R7) in the equation 

of Ex- For out-of-plane stability, this term is irrelevant and disappears out of the differential equation 
( in-plane deformations have no influence on the out-of-plane stability). Therefore, the results are not 
influenced by the different term. 

Rajasekaran and Padmanabhan use for - y (u" +!)only -y u" in their model. This can lead to 

different results, because the influence of the curvature is not taken into account. 
Finally Yang and Kuo find -aw instead of +aw, in their relation. This has no influence on the result 
for out-of-plane buckling, because £2 is used. 

Potential energy 
The second part of the energy, the potential energy, is different for every model. 

Yoo: 

Trahair: 

Rajasekaran: ½r [(u')2] 
[ 

II -1.:.. (u')
2
] 

+ M u <j> + 2R + 2R 

First of all, the terms related to the normal force Pare considered. 
Yoo used the straight beam theory and introduced the twist and curvatures for curved beams in this 
theory. The substitution of the term (u'/is executed in two steps. Instead of using the term (u')2 Yoo 

replaced it by uu" which is substituted by u ( u" + ! j, see appendix B.4. The difference of the first 

term between brackets is explained by this. 
Other differences for the part of P are all related to the radii of gyration. Rajasekaran already 
neglects these terms in the formulation of the principle of virtual displacements. In the total energy 
of Trahair the terms related to the radii of gyration are still present but are later neglected. Therefore 
the Euler buckling load of an arch under uniform compression according the model of Trahair is the 
same as for the model of Rajasekaran. In appendix B.6 this is shown. 
The results according the model of Yang are probably corresponding the models of Trahair and 
Rajasekaran, because the term with r2 is negligible as Trahair demonstrated. 
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The sum of the terms that will influence the critical moment M are all different. The first two terms 
are the same, only Yoo misses a factor½ . This is again the result of replacing the first derivative of 

the curvature by an other term. Trahair has no terms with u', compared to Rajasekaran and Yang. 
Rajasekaran ignores again the term with the radius of gyration, compared to Yang and the model of 
Yang has a different first term compared to all others. 

3.1.2.3 Results 
In Figure 3.3 and Figure 3.4, the Euler buckling loads of the different models are shown for a 
circular arch with different features. For the two loadcases, two different sections are calculated, 
combined with two different geometries resulting in 8 figures. The models marked with a star 
represent an adaptation of the original model. For explanation see paragraph 3. I. I of this chapter. 

Some remarks based on these figures are given below 
For the Euler buckling load loadcase l: (Figure 3.3) 
• The models ofVlasov and Yoo give very high results, especially with an arch length of 10 m. 
• The other models give good corresponding results. 
• Timoshenko's model gives a remarkable low result for the arch with IPES00 R=7m and L=3.5m. 

For the Euler buckling load loadcase 2: (Figure 3.4) 
• The load of Yoo is for the four different cases remarkably higher than the other loads. For the 

arches with a larger arch length, the discrepancy is the largest. 
• In general Timoshenko gives a load which is lower, especially for the last case( IPES00, Radius 

7m, Length 3.5m ). 
• Trahair gives for all cases a Euler buckling load which is lower than the models of Rajasekaran 

and Yang, especially for the more slender arches ( IPEIO0). 
• The models of Vlasov, Rajasekaran and Yang give good corresponding results 



Page 

16 

Loadcase I 

a) Basic arch 
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Figure 3.3 Euler buckling loads of the basic arch under uniform compression 
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Loadcase 2 

a) Basic arch 

1200 

1000 

800 

600 

400 

200 

2 3 4 5 6 

models 

c) cross section IPElOO 
arch length: 10 m radius: 7 m 

INml 
1.6E+5 

1 4E+5 

1.2E+5 

1.0E+S 

8 OE+4 

6.0E+4 

4.DE+4 

2 0E+4 

O.OE+O 

2 3 4 5 6 

models 

e) cross section IPE500 
arch length: 10 m radius: 7 m 

M 

February 98 

uJ Timoshenko 

[1J Vlasov 

l>~TI Yoo 

Iii Trahair 

Rajasekaran 

Yang 

b) Legend 

fNml 
5000 

4500 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

2 3 4 5 6 

models 

d) cross section IPElOO 
arch length: 3.5 m radius: 7 m 

INml 
1.0E+6 

9.0E+S 

8 OE+S 

7.0E+S 

6.0E+S 

5 OE+5 

4.0E+S 

3.0E+S 

2.0E+S 

1.0E+S 

2 3 4 5 6 

model 

t) cross section IPE500 
arch length: 3.5 m radius: 7 m 

Figure 3.4 Euler buckling loads of the basic arch under uniform bending 
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3.1.3 Conclusions 

Timoshenko and Vlasov used both the same calculation method (direct) and theory (straight beam 
theory), even so their results do not correspond very well. Due to their calculation method it is very 
hard to point out the difference in the formulas. The results however tell a lot about the methods. The 
results of Timoshenko are of the same order of magnitude as the other results. Sometimes the Euler 
buckling load is slightly lower but this can be explained by the neglection of the warping effect. 
Especially the stocky arches give a lower result, which confirm the just mentioned explanation, 
because stocky arches are more sensitive for warping (see appendix B.8). The model of Vlasov gives 
for the first loadcase extremely high results. A possible explanation can be found in the use of the 
straight beam theory. An arch with a shorter arch length resembles a straight beam better, this is 
shown in Figure 3.5. As can be seen in Figure 3.3 Vlasov' s results correspond more to the other 
results for an arch with a shorter length. 

<UL 

___ L __ _ 

Figure 3.5 Arch with same radius and varying length 

The model of Yoo may be regarded as a transition to the latest models. He still uses straight beam 
theory but already uses a virtual displacement method. The high results nevertheless are more an 
obstacle than a link between two methods concerning out-of-plane stability of arches. His 
substitution of (u')2 into uu" is not successful. The model Yoo* in which this substition is omitted, 
indicates this. The model gives namely results in the same order of magnitude as the other models 
do. Concluding from this, Yoo' s original model is not reliable. 

The models ofTrahair, Rajasekaran and Yang remain. They are based on the same theory (curved 
beam) and all use more or less the same calculation method. The formulas correspond also quite 
well. Trahair neglects a term related to the bending moment which results in small Euler buckling 
loads for the loadcase uniform bending. The second difference concerns the terms related to the 
radius of gyration, they are not in all models the same. In the model of Rajasekaran they are absent. 
The model of Trahair contains these terms but they are neglected afterwards. In the model of Yang, 
the terms are not neglected. The results of the three models however are very similar. 



TUE-Report Page 

CO/98.05 February 98 19 

3.2 Numerical models 

In paragraph 3.1, Euler buckling loads of different arches are obtained by using different analytical 
models. This is carried out for two loadcases: uniform compression and uniform bending. In this 
paragraph the Euler buckling load is determined numerically with the general purpose Finite Element 
Method DIANA. Two different models for FEM calculations are discussed: one model with beam 
elements and one model with shell elements. The objective of performing numerical buckling 
calculations is to verify the analytical models. 

3.2.1 Model with beam elements 

3.2.1.1 The element 
This investigation is focused on out-of-plane stability. To describe the out-of-plane displacements of 
an arch, beam elements with six degrees of freedom for each node are needed. Element L 12BE is 
such an element. See Figure 3.6. It is a two-node, three-dimensional class-I beam element. This 
means that it has as basic variables: three translations Ux, Uy and u, and three rotations <!>x, cj)y and <!>z in 
the nodes. Class-I points to a classical beam. This means that shear deformations are not taken into 
account and that it is assumed that the cross sections remain plane and perpendicular to the slope of 
the beam axis. This can be seen as Bernoulli's theory holds. 

y 

z 

Figure 3.6 L12BE beam element 

The expected displacement fields of the arch are sinus-shaped and are well described with a couple 
of these elements. The L l 2BE element does not take into account the influence of warping, because 
this element has no warping rigidity. When the arch has the possibility to warp at its supports, the 
Euler buckling load determined by DIANA is too small. As in most FEM programs, in DIANA an 
element is absent, which takes into account the influence of warping. Some programs do have a 
beam element that takes the warping-effect into account, but these are only straight beam elements. 
The warping moment in this element is developed along the beam-axis. When two beam elements are 
coupled at an angle the warping moment is set to zero in the node. To model an arch, straight 
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elements have to be connected at an angle. The consequence is that for every element the warping 
moment is put back to zero. This does not reflect the real warping behaviour and is therefore not 
appropriate to use. 

When we use beam elements to create a FEM model of an arch, the aspect of warping is neglected. 
Therefore, the results of the DIANA calculations can only be compared to the results of 
Timoshenko's model; he also neglects the warping rigidity in his model. 

3.2.1.2 The model 
Exactly the same arch as used for the analytical models, has to be used in the numerical model. This 
means the same shape of arch, the same section and similar boundary conditions. The shape of the 
arch can be defined exactly. The same section is obtained by attaching the right rigidities to the beam 
element. The boundary conditions are the one for a pin-ended supported arch. Special attention must 
be paid to the bending moment and compression force that appear in the arch. In the analytical 
models, uniform bending and uniform compression are assumed. To obtain this in the arch, one of 
the supports must be able to displace in radial direction of the arch (see Figure 3.7). When this is not 
the case, an extra force is introduced at the supports, which affects the uniform bending and the 
uniform compression in the arch. 

Figure 3.7 Free translation in radial direction at support 2 

3.2.1.3 Results 
The arch with uniform bending gives a very high Euler buckling load. This load is not the Euler 
buckling load for flexural-torsional buckling of the arch, but just for lateral buckling. With this beam 
element second order terms due to bending moments are not taken into account, which it makes it not 

appropriate to describe torsional buckling. Therefore, no Euler buckling load for the loadcase 
uniform bending is found. 
The Euler buckling load of the arch under uniform compression, agrees with the Euler buckling load 
of Timoshenko's model. This is illustrated in Table 3.2. From these results the conclusion can be 
drawn that for arches, not sensitive to warping, the numerical model with beam elements give good 
results. 
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Table 3.2 Euler buckling loads, numerical and according to Timoshenko 

cross section critical Timoshenko 
IPEIO0 35.4 Nim 35.3 Nim 
IPE140 75.7 Nim 75.6 Nim 
IPE180 151 Nim 151 Nim 
IPE220 289 Nim 289 Nim 
IPE240 414 Nim 414 Nim 
IPE270 515 Nim 515 Nim 
IPE330 913 Nim 912 Nim 
IPE400 1660 Nim 1660 Nim 
IPE450 2150 Nim 2150 Nim 
IPE500 2870 Nim 2870 Nim 
IPE600 5250 Nim 5250 Nim 

3.2.2 Model with curved shell elements 

3.2.2.1 The element 
To make a model in which warping effect is not neglected, curved shell elements can be used. The 
curved-shell element CQ40S is chosen to model the arch. See Figure 3.8. This isoparametric element 
has eight nodes, which have five degrees of freedom each: three translations and two rotations. The 
rotation in the plane of the element is prevented. The element is based on two shell hypotheses. The 
first one is that normals remain straight, but not necessarily normal to the reference surface. The 
second hypothesis assumes that the normal stress component in the normal direction of the shell is 
forced to zero. 

7 

6 

Figure 3.8 CQ40S element 

With the use of shell elements, the influence of warping can be described but another problem is 
introduced. The rigidities of a section can not simply be attached to the elements like for the beam 
elements. By using shell elements, a section is created with its own rigidities and dimensions, 
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depending on the element dimensions. A solution for this problem is not found in adapting the 
numerical model to the analytical model, but the other way around. 
The rigidities of the numerical model can be calculated from the cross section created with the shell 

elements. These values can also be used in the analytical models and a comparison can be made 
between the two models. See appendix C.1 for determination of the rigidities. 

3.2.2.2 The model 
Again shape, section and boundary conditions must be the same as in the analytic model. The shape 
of the arch depends on the position of the elements. It is possible to model a circular arch with the 
right dimensions. The section is not the same as used in the analytical models, but the rigidities of 
the numerical model are introduced in the analytical model. The boundary conditions are obtained by 
placing the next supports: the mid-node of the cross section at one support has prescribed 
translations in three directions and the other support has only two prescribed translations like in the 
beam model. The rotation around the beam axis is prevented in the supports by prescribing the 
translations in the out-of-plane direction of six nodes. See Figure 3.9 for the boundary conditions. 

the node in this direction 

Figure 3.9 Boundary conditions 

The arch is divided in twenty equidistant parts over its length. Each part consists of ten elements, 
which is shown in Figure 3.10. These are enough elements to describe the out-of-plane stability; in 
appendix C.2 the results are given of the investigation to the influence of the number of modelled 
elements on the results. At the supports beam elements are added to prevent the web and flange from 
deforming. The beam elements are placed on the edges of the shell elements at the ends of the arch. 
If these beam elements were not modelled, the Euler buckling load found by DIANA could not be 
compared to the ones found analytically. The local deformations at the supports affect the Euler 
buckling load and this does not happen in the analytical model. 

3.2.2.3 Results 
In Table 3.3 the Euler buckling loads are given for the two loadcases. The model with the shell 
elements takes the effect of warping into account. So these results can be compared to all analytical 
results except Timoshenko' s model. 
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Table 3.3 Euler buckling loads 

cross section Qcritical Mcritical 

IPE100* 1 27.0 Nim 347 Nm 
IPE140* 64.0 Nim 823 Nm 
IPE180* 127 Nim 1636 Nm 
IPE220* 238 Nim 3055 Nm 
IPE270* 424 Nim 5456 Nm 
IPE330* 771 Nim 9921 Nm 
IPE400* 1437 Nim 18540 Nm 
IPE500* 2813 Nim 36340 Nm 
IPE600* 5313 Nim 69140 Nm 

Figure 3.10 Model with curved shell elements 

1 IPE 100* refers to a section with shell elements, which resembles as good as possible an IPE 100. 



TUE-Report 

CO/98.05 

[Nim] 

80000 

70000 

60000 

50000 

40000 

30000 

20000 

10000 

01 0 

-+- Timoshenko 

-•- Vlasov 

a Yoo 

-+- Trahair 

,. .. Rajasekaran 

.....-Yang 

Yoo* 

-- numerical 

1 0 

February 98 

220 27 
IPE 

a) Uniform compression 

[Nm] 

250000 

-+-Timoshenko 

-----Vlasov 

200000 -.,... Yoo 

-><'-trahair 

150000 

100000 

50000 

.. .,,,...Rajasekaran 

-*·Yang 

-numerical 

I 
/ 

60 

o L~;;;,;;;;.;;;;;;~::.:------:;--.:~----~----~~~=~-_j 
100 140 180 220 270 330 400 500 600 

IPE 

b) Uniform bending 

Figure 3.12 Analytical and numerical Euler buckling loads (radius 7m, arch length tom) 

Page 

25 



Page TUE-Report 

24 February 98 CO/98.05 

3.3 Comparison of analytical and numerical results 

To determine the Euler buckling load of an arch under uniform compression or uniform bending, two 
different methods are used until now. The first one is analytical, by solving the differential 
equations. The second one is numerical, determining the Euler buckling load with the finite element 
method DIANA. To see whether the results of the two calculation methods correspond, a comparison 
has been made. The results are given in Figure 3.12. For the loadcase uniform compression (Figure 
3.12a) the results of the model of Vlasov and Yoo are much greater than the numerical results. The 
results of the other models are all close to the numerical results. The model of Timoshenko is the 
only model with lower results than the numerical results. For the loadcase uniform bending (Figure 
3.12b) Yoo' s results are again different from the other ones. This time not only the model of 
Timoshenko gives lower results than the numerical results but also the model of Trahair. 

For further investigation one model should be chosen to work with. The models of Yoo and Vlasov 
are dropped because their results can not be trusted. The model of Timoshenko is also not a good 
option because it neglects the warping influence which leads to conservative results. 
The tree remaining models, Trahair, Rajasekaran and Yang, give very corresponding results. When 
the equations for the Euler buckling load are compared to each other, it is obvious that the equations 
of Yang are less surveyable than the other equations. There the equations shall be used for a 
verification it is important to keep them as simple as possible. The models of Trahair and 
Rajasekaran remain. 
In Figure 3.11 the relative differences are given between the numerical and these analytical models. 
It is striking that for the loadcase uniform compression the differences are greater for arches with a 
larger profile for both models and for the loadcase uniform bending not. The model of Trahair gives 
lower results than the numerical one and for larger sections the difference is smaller. It looks like 
that the model of Trahair contains two differences with an opposite effect. The first one is an 
underestimation for all sections and the second one is a (smaller) overestimation for larger profiles. 
The model of Rajasekaran shows a more consistent result, for this reason this model is chosen for in 
further investigations. 
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Figure 3.11 Percentage error in Euler buckling load 
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The differences between the analytical model of Rajasekaran and the numerical model are small for 
arches with a small cross section but for larger cross sections the differences are greater. There must 
be a reason for this increasing difference between analytical and numerical model. The modelled 
arches in both methods are exactly the same, therefore the cause of the differences in results must be 
sought in the calculation method. A possible cause can be the assumed displacement-field in the 
analytical model. To solve the differential equations of the analytical method, two displacement­
fields are assumed. One for the out-of-plane translation and one for the rotation around the axis of 
the arch. Both displacement-fields are assumed to have a sinus-shape and are just an approximation 
of the real displacement-fields. When they differ too much from reality, this can be the cause for a 
discrepancy between analytical and numerical results. To investigate this, the displacements of the 
numerical model are compared to the sinus shape assumed in the analytical model. Table 3.4 shows 
graphs for the two cases: uniform compression and uniform bending. 
The local out-of-plane displacements are given for the nodes in the neutral axis of the cross section. 
For both loadcases the displacements hardly differ with the sinus-shape. The local rotation around 
the x-axis is obtained from the rotation around the global x-axis and global z-axis. As Table 3.4 
shows, the resulting local x-rotation is also a sinus-shape. 
To assume a sinus-shape for the displacement fields seems a good assumption. The cause of the 
differences in analytical and numerical results is not found in the displacement fields. 

For larger cross sections the difference is significantly greater than for smaller profiles. More stocky 
arches are more sensible for the influence of warping, this is shown in appendix B.8. No direct cause 
is found, but this points to a different interpretation of the warping effect in the two models. It is also 
remarkable that the results of Timoshenko' s model and the model with beam elements correspond 
quit well; both models with no warping effect. This also points to difficulties in the modelling of the 
warping effect. It can be concluded that both the analytical and the numerical model give reliable 
results. Only the effect of warping seems not to be interpreted in the same way in the two methods. 
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Table 3.4 displacement-fields DIANA 
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4. NON-LINEAR FINITE ELEMENT ANALYSES 

In the previous chapter, attention was paid to the Euler buckling load of an arch. This buckling load 
represents the critical load of a perfect arch, which is obtained by performing a first order elastic 
analysis. In practice, an arch will not buckle at this load due to simplification in the analysis of the 
arch. Non-linear FEM analyses are performed in this chapter to find out more precisely how arches 
behave under uniform bending and uniform compression. With these calculations the real behaviour 
of an arch is simulated as good as possible. Non-linear analyses include both physical non-linear 
and geometrical non-linear behaviour. The arch is also given an initial imperfection and residual 
stresses. 

The model used for the non-linear analyses is the same model as used to determine the Euler 
buckling load. For details see paragraph 3.2.2 and appendix C. 
Non-linear behaviour, imperfections and residual stresses are discussed in this chapter; not only 
these aspects themselves but also their influence on the arch behaviour. Next, the results of non­
linear analyses are given and the chapter finishes with a definition of the ultimate load. 

4.1 Physical and geometrical non-linear behaviour 

Physical non-linear behaviour 
Three relations between stress and strain are given in Figure 4.1. The relation in Figure 4.1 a is used 
in a physical linear analysis. The relation between stress and strain is always linear and there is no 
limitation in this model. In reality, the material shows this behaviour only in the beginning of the 
loading. At a certain value it starts to yield and deformations increase at an increasing rate. Another 
effect is strain hardening of the material, which occurs after yielding. Successively, linear behaviour, 
yielding and hardening are presented in Figure 4.1 b. This stress-strain relationship comes closest to 
the real physical behaviour. A schematic bi-linear model of the behaviour used in the non-linear 
analysis is shown in Figure 4.1 c. 
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An arch will deform infinitely with a physical behaviour as in Figure 4. I a. With the behaviour of 
Figure 4. lc, a plastic hinge is developed when all points in a cross-section yield. When enough 
plastic hinges are present, the arch will "collapse". Depending on the iteration method used in the 
FEM model the calculation will stop at this point or the load will decrease. 

Geometrical non-linear behaviour 
When geometrical linear behaviour is assumed, the effect of deformations on the stress distribution 
in the system, is not taken into account. Only for calculations with small deformations, this is a 
useful model, because small deformations hardly influence the load distribution in the structure. 
When the deformations are relatively large, the equilibrium should be set up for the deformed shape. 
Before an arch buckles out-of-its plane the deformations are rather large. These deformations cause 
an increase of the stresses in the cross section, which again lead to an increase of the deformations. 
This second order effect causes a reduction of the load that an arch can resist. 

4.2 Initial imperfections 

4.2.1 Influence of imperfections on the stability of arches 
When an arch is manufactured, imperfections are inevitable. In-plane imperfections of the arch, are 
not important for the out-of-plane stability, as long as they remain small. The imperfections that are 
important for out-of-plane stability, are the initial displacement out-of-plane and the initial rotation 
around the plane of the arch. See Figure 4.2. These imperfections facilitate the beginning of the 
deformation. 

Translation u 

~ ............ 
. . . . 

Figure 4.2 Out-of-plane translation and rotation around the longitudinal axis 

The influence of the imperfection on the behaviour of the arch can be shown in a load-displacement 
diagram. Two possible load-displacement diagrams are given for an arch in Figure 4.3. When a 
perfect arch is loaded, it does not deflect until a certain load. At this value, the buckling load, the 
arch suddenly deforms largely. This phenomenon is called bifurcation. The original load-
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displacement path becomes unstable and the arch will snap to a different path. Figure 4.3a and 
Figure 4.3b both show a different post-buckling behaviour. For Figure 4.3a counts, when 
deformations increase without load increasing, the buckling load has been reached. When positive 
post-buckling is taken into account (as in For Figure 4.3b ) the stiffness of the structure will increase 
with increasing load application thereby reaching a higher load than the buckling load. 

perfect arch 

imperfect arch 

Pbuckling 

x;-~-
increasing impcrfectio \ \ / increasing imperfection 

displacement 

a)without positive post-buckling behaviour 

Figure 4.3 Load-displacement diagrams 

displacement 

b) with positive post-buckling behaviour 

An imperfect arch will not deform as suddenly as a perfect arch. The deformations grow as the load 
increases. When the load approaches the critical load, the deformations grow with an increasing rate. 
This is shown in Figure 4.3. It also shows that the larger the initial imperfection the more the load­
deflection path differs with the path of the perfect structure. 

In Figure 4.4 load-displacement diagrams are given for an arch under uniform compression 
respectively uniform bending. The post-buckling behaviour is positive for both loadcases, because 
the arch can resist a higher load than the Euler buckling load. The following can be concluded with 
respect to the influence of the imperfection on the behaviour of the arch: It is clearly shown that the 
larger the initial imperfection, the more the load-displacement diagram differs from the path of a 
perfect arch. 

4.2.2 Size of the imperfection 
When non-linear FEM analyses are performed, a certain imperfection should be given to the arch. To 
determine a reasonable size for the imperfection, the causes of the imperfections are addressed. 
Two possible causes are: 
• member imperfection, caused during production 
• sway imperfection, caused during assembly 
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Figure 4.4 Influence of imperfections on the load-displacement diagram 

Codes of practice do not provide rules for imperfections of arches. When an arch is considered as a 
sway frame, the rules for frames can be used as a starting point. An analogy between imperfections 
of frames and imperfections of arches can be seen in Figure 4.5. 
In NEN 6771 10.2.5 rules about imperfections of frames are given. Here two options are presented to 
introduce imperfections: 
• Applying a sway imperfection to the arch combined with residual stresses 
• Applying an adjusted sway imperfection to the arch 
With the second option, the residual stresses are taken into account by means of an adjusted 
imperfection. The residual stresses for an arch are not the same as for a frame. So the second option 
for a frame is not usable for an arch. 
For a frame, the sway imperfection is based on practical experience. It is reasonable to assume that 
an arch can be produced and assembled with the same accuracy as a frame. In that case the sway 
imperfections can be calculated in the same way. 

The sway imperfection 'I' can be obtained with the following equation: 

1 
with: 'Vo = 250 

k1 = ~ S:1 and 

ns is the number of floors of the structure 

A r::::I_ ·\Jv.J •n;; 

nk is the number ofloaded columns with at least 50% of the average normal force. 
For a simple arch, k I and k 2 are both equal to 1. This results in an initial imperfection of: 

1 1 
'V = 'Vo = 250 ~ 400 



TUE-Report 

CO/98.05 February 98 

Frame sway 
+--+-

I Frnmc I Frame height 
height 

span 

a)Sway imperfection and member imperfection, frame 

arch 
1
swaf 

Cmw" I crown 

I height height 

span 

b)Sway imperfection and member imperfection, arch 

Figure 4.5 Analogy between frame and arch 

Page 

33 

span 

-=--== ···~-~l_iYL~ 

span 

-=--= ·····~.~.fu.~ 

It is possible, for an arch, that the size of the member imperfection is larger than the sway 
imperfection. This is because the member imperfection is related to the span of the arch, instead of 
the crown height of the arch. See Figure 4.5. For this reason both imperfections are determined and 
the largest one is applied. 

Like for a beam, member imperfection is held to 10
1
00 of the span. 

In the FEM calculations, the initial imperfection is applied with the help of an Euler analysis. With 
this calculation the buckling shape of the arch is determined. Afterwards the maximum deformation 
is scaled to the initial imperfection required. 

4.3 Residual stresses 

After production, residual stresses remain in the cross-section of the arch. Due to the existence of 
these stresses, the arch can carry a smaller load than expected. The yield stress is reached at a 
smaller load, so plasticity is sooner developed and the arch will collapse under a smaller load. For 
physical non-linear analyses, the size and the distribution of the residual stresses in the cross-section 
should be known. 
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In NEN 6771 prescriptions are given about the size and the distribution of residual stresses in a hot­
rolled I-section. To produce an arch, a beam with an I-section is bent, which affects the residual 

stresses. 
So the residual stresses which should be introduced in arch analyses are not the same as for straight 

beams. 

To obtain an arch, a straight beam is bent till it deforms plastically. The stresses in the cross-section 
in this phase are shown in Figure 4.6a. In the next phase, the arch is unloaded, this happens 
elastically. Figure 4.6b gives the stresses in the cross-section for this process. Figure 4.6c gives 
stresses after manufacturing of the arch. 

The same bending moment, which is applied to the beam to produce an arch, is removed in the 

second phase. 

With this information O'res can be determined and next the residual stresses. 

Phase a: M = Wp1 fy 

Phase b: M = Wei O'res ⇒ 
Wp1 

CTres = W fy 
el 

For example for the standard arch with IPEIO0* this is: 

Wr1= 
Wei= 
fy= 

38678 mm3 

35640 mm3 and 

235 N/mm2 

+ 

a)Plastic phase 

⇒ CTres = 255 N/mm2 

b )Elastic phase 

Figure 4.6 Stresses in cross-section 

CTres - fy 

c)Residual stresses 

The residual stresses in Figure 4.6c are introduced in the web of the I-section in the FEM model. 
This is done by applying the stresses in the nodes of the elements. See Figure 4. 7. The interpolation 
of the stresses between the nodes is linear. Which corresponds with Figure 4.6c. The residual 

stresses in the flanges are constant and have the value of the stress in the top respectively the bottom 
of the web. 
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Figure 4.7 Residual stresses in FEM model 

4.3.1 Influence of residual stresses 
In Figure 4.8 a plot is given of two load-displacement lines for an arch under uniform compression. 
One line represents an arch with residual stresses and the other line represents an arch without 
residual stresses. The difference between the two lines is very small. When the arch deforms 
elastically, no difference can be distinguished between the two lines. Just for the part where 
plasticity occurs in the arch, the deformations of the arch with residual stresses are larger. 
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Figure 4.8 Influence of residual stresses on load-displacement curve 
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4.4 Results 

In Figure 4.9, two general load-displacement diagrams are given. The first one describes the out-of­
plane displacement at the top of an arch, with a positive post-buckling behaviour and the second one 
without a positive post-buckling behaviour. Both behaviours are found for arches which buckle out­
of-their planes. Slender arches deform as shown in Figure 4.9a, stocky arches as shown in Figure 
4.9b. The more slender the arch, the more the load increases after the point of contraflexure. 

The arches which have been studied are presented in appendix D. The cross-section, arclength and 
radius of the arch are varied, to investigate arches with different characteristics. The load­
displacement diagrams are also given in appendix Das well as some numerical data. 

Euler buckling value Euler buckling value 

F 
F 

dz dz 

a) With positive post-buckling behaviour b) Without positive post-buckling behaviour 

Figure 4.9 Load-displacement diagrams 

Whether an arch has a positive post-buckling behaviour or not, depends on the geometry and the 
cross section of the arch. A slender arch deforms largely before it reaches the Euler buckling load. 
Due to these large deformations, the force transmission in the arch is affected, which may result in a 
positive post-buckling behaviour. Another item is the out-of-plane strength of the arch. When the 
arch stands no longer in its original plane, the load does not act any longer along the weak axis. See 
Figure 4.10. In this situation, the strength about the strong axis contributes also to the out-of-plane 
strength of the arch. These two effects are responsible for the positive post-buckling behaviour. 

Weak axis 

Weak axis 

Stro g axis 

Figure 4.10 Rotation of the axes 
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4.5 Ultimate load 

The purpose of performing a non-linear FEM analysis is to find the ultimate load carrying capacity 
of an arch. When the shape of the load-displacement diagram corresponds to I ine I in Figure 4.11, it 

is clear that the top of the curve indicates the ultimate load. At this load the arch loses its stability. 
But most arches do not normally have such a load-displacement diagram. Due to positive post­

buckling behaviour, the curve often has the shape of line 2 in Figure 4.1 I. Here, the ultimate load is 
not easy to determine. The arch does not lose its stability and failure of the arch occurs for very large 

deformations. What is in this case the ultimate load? 

Out-of-plane displacement of top-node 

Figure 4.11 Possible load-displacement curves 

In Eurocode 1 a general description of the ultimate limit state is given: 
The ultimate limit state concerns in almost all cases the first passage of a limit state that is 

equivalent with failure. 

According to Eurocode 1, the ultimate limit state includes: 

• loss of equilibrium of the structure or a part of the structure, considered as a rigid body; 
• attainment of the maximum resistance capacity of sections, members or connections by rupture 

or excessive deformations; 
• transformation of the structure or part of it in a mechanism; 
• instability of the structure or a part of it; 
• sudden change of the assumed structural system to a new system ( e.g. snap through). 

Arches with a high slenderness can deform excessively before they collapse as shown in Figure 4.12 

for an arch under uniform compression. The deformations are so large that the top of the arch nearly 
reaches ground level. It is difficult to determine the ultimate load for this type of failure. There is no 
clear point of loading from where deformations grow excessively. Therefore five options for the 
ultimate load are suggested and evaluated in this paragraph. 
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Five options for the ultimate load: 
I. ultimate strength; 
II. critical buckling load; 
III. intersection point of two linear parts; 
IV. point of contraflexure or top in load-displacement diagram; 
V. maximum deformation. 

Figure 4.12 Extremely deformed arch 
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I. Ultimate strength 
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Figure 4.13 Ultimate load according option I 

II. Euler buckling load 
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Figure 4.14 Ultimate load according option II 

The ultimate strength corresponds with the load 
which causes real collapse of the arch. Slender 
arches have a positive post-buckling behaviour, 

which leads to a very high ultimate strength. In 
Figure 4.13 this is shown by line 2. For stocky 
arches no positive post-buckling behaviour 

occurs. These arches will buckle at much lower 

loads, which is shown by line l in Figure 4.13. 

The deformations in combination with the 
ultimate strength, can be extremely large for 
slender arches as can be seen in Figure 4.12. 

These large deformations are the reason why the 
ultimate strength is not a good option for the 
ultimate load of an arch. 

The second option for the ultimate load is the 

Euler buckling load. Compared to the ultimate 
strength, the deformations are mostly smaller at 
the Euler buckling load. Using the Euler 
buckling load, is a possible way to restrict the 
deformations. This option has nevertheless a 

drawback. For arches without a positive post­
buckling behaviour, the Euler buckling load is 

higher than the ultimate strength. When the 
Euler buckling load is used as ultimate load for 
such arches it can lead to unsafe situations. See 
Figure 4. 14. So the Euler buckling load is not a 
good option. Either it will lead to an unsafe 
situation or the ultimate load can not be 
determined in the same way for arches with or 
without a positive post-buckling behaviour. 
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III. Intersection point of two linear parts 

I 
•••••••••••• J 

Out-of-plane displacement of top-node 

Figure 4.15 Ultimate load according option III 

To restrict the deformations even more, a third 
option is proposed for the ultimate load. The 
intersection of the line that represents the 
linear deformation and the tangent of the load­
displacement line in the point of contraflexure 
respectively the top. As can be seen in Figure 
4.15 the deformations for this option are small 
compared to the deformations of the other 
options. Both for slender and stocky arches the 
same method can be used to determine the 
ultimate load. It should be noted that for this 
option the ultimate load for the arch with a 
positive post-buckling behaviour is smaller 
than for the arch without a positive post­
buckling behaviour. 

IV. Contraflexure point or top in load-displacement diagram 

load I 

I 
f 

Out-of-plane displacement of top-node 

Figure 4.16 Ultimate load according option IV 

The fourth option is using the point of 
contraflexure or the top in the load­
displacement diagram, as ultimate load. A more 
mathematical definition of this point is: 

d(load) 
min I d(d. 1 t d ) I. See Figure 4.16. 1sp . op-no e 

The ultimate load can be determined in the 
same way for slender and stocky arches. For 
slender arches the derivative of the load­
displacement diagram has a minimum in the 
point of contra-flexure. For stocky arches the 
derivative of the load-displacement diagram has 
an absolute minimum of zero, the top of the 
diagram. 
For this option of the ultimate load, the 
displacements are in control and for both types 

of arches, it leads to safe situations. Another advantage of this option is that the arch gets another 
behaviour starting in the point of contra-flexure: influence of the stiffness of the strong-axis starts. 
So the point of contra-flexure has also a physical meaning. Also, the resulting load-displacement 
diagrams reflect real behaviour: for slender arches larger displacements and a greater load are 
allowed than for stocky arches. 
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V. Maximum deformation 

:f : 

i * imperfection 

x* imperfect10n 

Out-of-plane displacement of top-node 

Figure 4.17 Ultimate load according option V 

The final option for the ultimate load is related to 
the deformation of the arch. When the out-of­
plane deformation is directly connected to the 
ultimate load, the deformation can be controlled. 
See Figure 4.17. But how should the maximum 
allowable deformation be determined? When the 
maximum out-of-plane displacement is related to 
the imperfection, the maximum displacement is 
indirectly connected to the dimensions of the arch. 
To obtain a similar ultimate load for stocky and 
slender arches, the deformation for the ultimate 
load of a stocky arch should be the directive for 
the maximum deformation. For two stocky arches 
the displacement of the top-node is determined for 
the ultimate load. (See Table 4.1 ) The factor with 
which the initial imperfection is multiplied to get 

the top-node displacement is given in the last column. When these factors are plotted in a diagram 
against slenderness, a trendline could be drawn through these points, see Figure 4.18. 

maximum displacement . . . . 
For a large slenderness the factor, . ·t· 1 . ., t· 1s extremely high when this trendline 1s 1m ia 1mper1ec 10n 

used as a measure for the maximum displacement. Related to the slenderness it is not possible to 
determine a factor for the maximum displacement. It is also impossible to take one of the factors of 
the calculated arches. For more stocky arches this will lead to an unsafe situation and for more 
slender arches, the permitted displacement is relatively small. 
Therefore, it is impossible to give a good guide for the maximum displacement and the option to use 
the load reached for a maximum deformation as ultimate load, is not a good option. 

Table 4.1 Multiplication factor 

slenderness initial displacement of factor 
Im erfection top-node 

l.12 1.25 mm 3.75 mm 3.00 
2.72 2.49 mm 30mm 12.05 
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It can be stated that only two applicable options for the ultimate load are left. These two options are: 
• option III, intersection point of two linear parts; 
• option IV, point of contraflexure/top in the load-displacement diagram. 
These two options are looked at more closely. 

Option III, intersection point of two linear parts 
To get an idea of the course of the ultimate load according to this option, results are plotted in a 
diagram together with the Euler hyperbola. On the y-axis in Figure 4.19a the ultimate load divided 
by the area of the cross-section, is shown related to the yield strength ( CTcvl fy)- On the x-axis the 
relative slenderness is given. 

The relative slenderness Arel is defined as - ~NNpld. \J~ 
In Figure 4.19a ultimate loads and the Euler hyperbola are plotted for a range of arches with a 
different slenderness. The course of the two curves is very similar, especially for a large slenderness. 
Only for stocky arches the difference between the hyperbola and the ultimate loads is significant. To 
see the difference more clearly, the ultimate loads are divided by the Euler values and are printed in 
Figure 4.19b. The line fluctuates significantly. The fluctuations can be explained by the difficulty in 
defining the beginning and ending of the two linear parts. In Figure 4.15 it can be seen that it is not 
obvious where the lines should be drawn for a slender arch. 
This is a drawback of this option for the ultimate load; the ultimate load is not clearly defined. 
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Figure 4.19 Ultimate load ( option III ) as function of relative slenderness 

Option IV point of contraflexure/top of load-displacement diagram 
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For the ultimate load defined as point of contraflexure or top in the load-displacement diagram, the 
same diagrams are given: in Figure 4.20a the dimensionless ultimate loads and the Euler hyperbola 
are shown and in Figure 4.20b the relative ultimate loads are given. Figure 4.20a resembles Figure 
4.19a. The ultimate loads almost coincide with the Euler hyperbola, only for arches with a small 
slenderness the loads do differ. The relative ultimate loads in Figure 4.20b show fewer fluctuations 
than the relative ultimate loads in Figure 4.19b. The two arches with the smallest slenderness do not 
have a positive post-buckling behaviour and their ultimate load is smaller than the Euler load. The 

first part of the diagram can be explained by this. The remaining ten arches have a ultimate load very 
close to the Euler load, which is expected because the point of contraflexure is close to the Euler 
buckling load. 
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Figure 4.20 Ultimate load ( option IV) as a function of relative slenderness 
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Comparison between option III and option IV: 
• The curves for the ultimate load over a wide slenderness range is similar for both the options. 
• The fluctuations in option IV are smaller than in option III. 
• Option IV is better defined than option III. 
• Option IV has a physical meaning and option III does not have a physical meaning. 

The point of contraflexure or top is the best option for the ultimate load because these points are 
clearly defined and have a physical meaning. 



5. VERIFICATION METHODS 

The purpose of this research is to provide a verification method with which a certain safety is 
obtained against out-of-plane buckling of arches. This safety is reached when the design load is 
smaller than the design strength of the arch. The introduction of material factors and load factors 
leads to the required safety. It is not desirable to perform a non-linear DIANA analysis, to determine 
the ultimate strength, each time an arch has to be verified. A first order linear calculation should be 
sufficient. The Euler buckling load is a result of such a calculation and is rather easy to determine. If 

the relationship between the ultimate load and the Euler buckling load is known, a verification can 
be determined, which is practical in use. 

The objective is to make the verification correspond with the existing codes. Therefore this chapter 
starts with a discussion on the verification of buckling of columns and beams. After this, a 
verification for out-of-plane buckling of arches is proposed, which is checked with non-linear 
DIANA analyses. The chapter finishes with a comparison between the proposed verification method 
and other methods for out-of-plane buckling of arches. 

5.1 Stability check for columns and beams 

Three main cases are distinguished for the verification of stability of columns and beams: columns 
under compression, beams under bending and beam-columns under compression combined with 
bending. For all verification methods, the base is the same: the design load is compared to the 
capacity of the cross section and a buckling factor is introduced to take into account the effects of 
residual stresses, imperfections and second order behaviour. 

Stability check for columns under uniform compression according to NEN 6770 art.12.1.1: 

Nc.s.d is the design value of the compressive force 
Neu ct is the design plastic resistance of the cross section 
CDt,uc is the buckling factor, which describes the relationship between the buckling capacity and 
the design plastic resistance of the cross section. 

Stability check for beams under uniform bending according to NEN 6770 art. 12.2.2: 

My.max.s.d < 
CO.Cir My u d -

Mymaxsd is the design value of the maximum bending moment 
My ud is the design plastic resistance moment of the cross section 
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ffik;p is the buckling factor for lateral torsional buckling, which describes the relationship 
between the buckling capacity and the design plastic resistance of the cross section. 

Verification of beam-columns under a compressive force and a bending moment according to 
NEN 6770 art. 12.3.1.2: 

The buckling factor represents the relation between the buckling capacity and the design plastic 
resistance of the cross section. This relation is based on numerous buckling tests on columns. With 
the Perry-Robertson Formula this relation can also be determined analytically and presented in a 
formula. If the relative slenderness and the column section are known, the buckling factor can be 
calculated with the following equation: 

1 + ak (Arel - Ao) + Arel 
2 

] ✓ 2 2 7 

COtiuc = 21 2 - 2"' 2 (I+ ak (Arel - Ao ) + Arel ) - 4A,el-
1'-rel Arel 

Arel is the relative slenderness of the column 
Ao is a slenderness factor 
ak is a factor depending on the type of the column section 

The relationship between buckling capacity and the design plastic resistance of the cross section can 
also be presented graphically by so-called buckling curves, which are given in appendix A.2. The 
value of Ao is constant and for ak four values are available depending on the type and size of the 
cross-section and of instability with respect to the weak or strong axis of the cross-section. 

The buckling factor is given as a function of the relative slenderness. The relative slenderness is 
defined as: 

lbuc fy.d A _ ly.buc ~ {§_ 
n2 EI - iy1t \j~ 

The relative slenderness depends on the length and boundary conditions of the column (ly buc), the 
cross-section (iy) and material characteristics (Ed and fyJ). 
For more details about the verification for column stability, reference is made to NEN 6770 and 
NEN 6771. The verification in NEN 6771 is not based on a buckling factor, but on an imperfection 
parameter in which effects of residual stresses and initial imperfections have been taken into 
account. 
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5.2 Out-of-plane stability of arches 

5.2.1 Stability check 
In this investigation on out-of-plane buckling of arches, two load cases are considered: uniform 
compression and uniform bending. For both loadcases a stability check is required. The basis of the 
checking equations for columns can also be used for arches. An essential part in the stability check is 
the buckling factor, which describes the relationship between the buckling capacity and the design 
plastic resistance of the cross section. This buckling factor has to be determined for arches. 

Previous research on in-plane buckling of arches [I] has shown that the buckling curves for columns 
are also applicable for in-plane buckling of arches. This leads to the conclusion that the influence of 
residual stresses and imperfections on the in-plane strength of arches is of the same order of 
magnitude as for columns. With this in mind, the applicability of the column buckling curves for 
out-of-plane strength of arches, will be checked. 
The column buckling curves represent the buckling factors as a function of the relative slenderness 
of the column. For arches a relative slenderness can be defined in the same way as for columns, 

using the definition Arel = - ~ . -\J~ 
The relative slenderness of a column can be rewritten into a form in which only geometry and 
material factors are present. In the case of arches such a simplification is not possible and not 
necessary. 

To determine the relative slenderness of an arch the Euler buckling load must be known. In chapter 3 
two methods are presented to obtain this load: analytical and numerical. 
The analytical method provides in a simple way a good approach of the Euler buckling load, which is 
very useful for the verification method. The non-linear analysis with which the verification method 
is checked, is based on the same model as the model with which the numerical Euler buckling load is 
determined. When an analytical model is used for the verification the analytical Euler buckling load 
may not be larger than the numerical Euler buckling load. 

....• •..... .. . . . . . . 
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Figure 5.1 Ratio of numerical and analytical Euler buckling loads 
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The analytical model of Rajasekaran turned out to be the most appropriate to use as explained in 
chapter 3. The Euler buckling load of this model is however not always smaller than the numerical 

Euler buckling load. Therefore a reduction factor Bred is introduced to reduce the analytical load to 
the numerical load. 
In Figure 5.1 the ratio of the results of two calculation methods is given. The data of the arch with 
the smallest slenderness is not used in this figure, because it is sensitive for snap-through buckling 
and behaves therefore differently. The difference between the two calculation methods depends not 

on the relative slenderness as can be seen in Figure 5 .1, but rather on the depth of the cross section. 

When the depth of cross section is higher the difference between the two methods is larger. 
The length of the arch has less influence. Based on these observations a term is found which can 
describe the difference between the two calculation methods. 

R 

Figure 5.2 Parameters 

Hh 
The term LI describes this relation well. 

With: 

H 
h 
L 
e 

is the crown-height of the arch 
is the depth of section 

is the length of the arch 
is the span of arch 

In Figure 5.2 is indicated what the different 

parameters are. 

In Figure 5.3 the ratio's of the numerical Euler buckling load and the analytical Euler buckling load 
Hh 

are given related to LI. Together with these values, a line is given which represents the reduction 

factor. The reduction factor is defined as: 

Bred = I if 
Hh LI ::;0_25 

Hh = 1.05-0.2 LI if 
Hh 
LI> 0.25 

The analytical Euler buckling load should be multiplied by Bred to obtain a safe approach of the 
Euler buckling load of an arch. 
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Figure 5.3 Reduction factor 

Two checking equations for the out-of-plane stability of arches are proposed in this paragraph. One 
concerns out-of-plane buckling of circular arches under uniform compression. The other concerns 
out-of-plane buckling of circular arches under uniform bending. 

The stability check for arches subjected to uniform compression: 

Ncsd < I 
ffiarch.out N c.u.d -

Nc.sd 

Nc.ud 

ffiarch.out 

design value of the compressive force 
design plastic resistance to compression of the cross section 
buckling factor for out-of-plane buckling of arches 

The stability check for arches subjected to uniform bending: 

My.s.max.d < I 
ffiarch.out My.u.d -

My.max.s.d 

My.ud 

ffiarch.out 

design value of the bending moment 
design plastic resistance to bending of the cross section 
buckling factor for out-of-plane buckling of arches 

The buckling factor for out-of-plane buckling of arches can be obtained from the diagrams given in 
appendix [A.2]. For rolled sections and circular hollow sections, buckling curve a shall be used. The 
choice of these curves is based on the use of the curves for columns. 
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The relative slenderness must be known, in order to obtain the buckling factor. 

For arches under uniform compression, the relative slenderness is given by: 

For arches under uniform bending, the relative slenderness is given by: 

in which 
Nc.ud is the design plastic resistance to compression of the cross section 
Mc.u.d is the design plastic resistance to bending of the cross section 
Fy E is the Euler buckling load for uniform compression based on the model of 

Rajasekaran [ 12] 
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ME is the Euler buckling load for uniform bending based on the model of Rajasekaran[ 12] 

Mo ( b/a(a
2 

- 1)2 j 
FyE = ~red"R7 a + b 

with: 
L, H, I and R according to Figure 5 .4 

L 
a=-

rrR 

~red = I 

b _ rr Mo 
- P,L 

✓ ( rr
2 

Elw) Mo=Pz GJ+~ 

Hh 
if ii ::;0.25 

Hh 
= 1.05-0.2 LI Hh 

if LI> 0.25 

L 

Figure 5.4 Parameters of the arch 
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5.2.2 Check of the verification method 
In this paragraph, the proposed verification method for out-of-plane buckling of arches is verified. 
For a range of arches, the ultimate load has been determined and compared to the load which is 
allowed by the stability check. Arches with various cross sections and geometries were considered. 
For each arch the ultimate load is determined by a non-linear DIANA analysis. For details about the 
arches and the determination of the ultimate load see appendix D. All investigated arches consist of 
an !PE-section and buckle out-of-plane: buckling curve a shall be used to determine the buckling 
factor. 

In Figure 5.5 and Figure 5.6 the buckling curve and the ultimate loads are given for the two 
loadcases. In these figures the numerical Euler buckling load is used to obtain the relative 
slenderness. In Figure 5.7 and Figure 5.8, again the buckling curve and ultimate loads are given but 
in these figures the relative slenderness is obtained with the analytical Euler buckling load. The 
differences between the figures based on the numerical Euler buckling load and the figures based on 
the analytical Euler buckling load are very small. The analytical Euler buckling load is a safe 
approach of the numerical model, so the results are also on the safe side. 

The ultimate load obtained from FEM analyses correspond very well with the buckling curve. For 
the loadcase uniform compression all ultimate loads lie on the buckling curve and for the loadcase 
uniform bending the ultimate loads are on the safe side of the buckling curve. From these figures can 
be concluded that the proposed verification method for out-of-plane stability of arches seems to be 

well usable. 

The same arches are used for the determination of the ultimate load in Figure 5.5 and Figure 5.6. The 
relative slenderness of an arch subjected to loadcase I or to loadcase 2 is very different as can be 
seen in these figures. The relative slenderness of arches subjected to loadcase I, varies from I. I 4 to 
65. For the same arches, but now subjected to loadcase 2, the relative slenderness varies from 0.8 to 
6.8. The relative slenderness of an arch depends not only on geometry and boundary conditions but 
also on the load distribution. It is important to keep in mind that a comparison of arches based on the 
relative slenderness is only useful for the same loadcase. 
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Figure 5.5 Check of verification method with numerical Euler buckling load for uniform 
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Figure 5.6 Check of verification method with numerical Euler buckling load for uniform 
bending 
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Figure 5.7 Check of verification method with analytical Euler buckling load for uniform 
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For arches without a positive post-buckling behaviour it is very important that the ultimate load is 
larger than the maximal allowed load by the stability check. When this is not the case the arch will 
collapse. For an arch with a positive post-buckling behaviour this is less critical. The arch will 
deform more when the load is larger than the ultimate load, but will not collapse. In Figure 5.9b an 
example is given of an arch with a positive post-buckling behaviour and an ultimate load which is 
slightly smaller than the maximum load allowed by the stability check. It is clear that this causes no 
problems. 
Three arches of the investigated range do not have a positive post-buckling behaviour. In Figure 5.9a 
an example is given of such an arch for which the buckling curve gives a good prediction of the 
ultimate load. (See appendix D.2 for the load-displacement diagrams with load levels of the other 
arches.) The arches which do not have a positive post-buckling behaviour are stocky arches. The 
transition from arches without to arches with a positive post-buckling behaviour is for loadcase l 
about a relative slenderness of 4, and for loadcase 2 about 2. 
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Figure 5.9 Load-displacement diagrams 
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b) With positive post-buckling 

Only the arch with the smallest relative slenderness can not be verified with the proposed verification 
method. This arch has no positive post-buckling behaviour and the ultimate load is smaller than the 
maximum allowed load by the stability check. This arch however is very flat and the deformations 
out-of-plane are of the same order of magnitude as the in-plane deformations. This points to an 
interim phase between out-of-plane buckling and snap-through buckling. Snap-through buckling is 
another type of buckling to which a flat arch is sensitive and requires an additional verification 
method. 
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5.2.3 Combination of compression and bending 
In practice it hardly occurs that an arch is subjected to uniform compression or uniform bending. The 
two checking equations previously proposed in this chapter can be seen as a basis for the verification 
of other loadcases. In this subparagraph a possible approach is given how to determine a verification 
method for arches under uniform compression and uniform bending. 

Nsf-----------,.t-._ 

NA 

M 

Figure 5.10 Combination of uniform compression and uniform bending 

In the analytical equations for the out-of-plane stability of arches (appendix B) it can be seen that the 
compression force and the bending moment can be linearly combined. This is shown in Figure 5.10. 
The verification method for arches subjected to uniform compression and to uniform bending is in 
principal the same as for arches subjected to uniform compression. A difficulty is that the stability 
check is related to the design plastic resistance of the cross section. For a combination of uniform 
compression and uniform bending, the two load types have each their own plastic resistance. 
The introduction of load factors solves this problem. 

I. A, is the load factor with which the design load has to be multiplied to use the full plastic 
resistance of the cross section. 

2. "Ao is the load factor with which the design load has to be multiplied to obtain the load which 
belongs to the Euler level. 

3. A=* is the relative slenderness of the arch 

With the just defined relative slenderness a buckling factor w can be obtained. This buckling factor 
represents the relationship between the buckling capacity and the design plastic resistance of the 
cross section ( w = Act IA,). 
The load factor, Act , is the factor with which the design load has to be multiplied to achieve out-of­
plane buckling. In other words the stability check is Act 2 I. 

In Table 5.1 the verification method is compared to the verification of the stability of columns. 
In the first column the verification of columns is presented. The second column contains an 
adaptation of the first column to a verification with load factors. The third column contains the 
proposed verification for arches subjected to uniform compression and uniform bending. 
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Table 5.1 Comparison of verification for columns and arches 

Column 
Column* Arch 

NpLd A - NpLd A-_L__ . h N,.J M,J 
s - N,.d s - CT,.d Wit cr,.d =A+w pLd 

NEuler A _ NEu!er Ao_MB_NB 
o- N,.J - MA - NA 

1cr-~ eJ- NEulcr ~ A= - A= ~ 
f(Are!) = CD f(A) = co f(A) = co 

~ < 1 
CDNpLd -

cr,ct < 1 
(D fy -

CTsct < l 
(D fy - (=AJ21) 

In this investigation this verification method is not checked with FEM analyses. One example will 
follow to present the method. 

Example: 

N [Nim] 

J 
NB 
I 

MB 347 M [Nm] 

Figure 5.11 Euler buckling level 

The arch used in this example has as profile IPEIO0*, a radius of 7 meter and a length of 10 m. 

(the standard arch). 

Load: N = 1 N/m = I * 7 N and M = 1 Nm = I 000 Nmm 

a= 7 /1014 + 1000/ 40464.8 =0.0316 N/mm2 

'As= 235/0.0316 = 7432.9 
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N = M ( see Figure 5. I I ) 

N = 27- 271347 M intersection point: M=N=25.05 
A.a= 25.05/1 = 25.05 

• A: - lb 1c=·\J~ = 17.225 

• CD: buckling curve a: ro = 3.33212 10·3 

Act= 3.33212 10·3 * 7432.9 = 24.767 

According to the verification, the buckling capacity of the arch is N = 24.767 Nim combined with 
M = 24.767 Nm. A non-linear FEM analysis gives as ultimate load (point of contraflexure) for the 
arch subjected to compression and bending with a ratio I to I, 25.33 (25.33 Nim and 25.33 Nm). 
The stability check is for this example safe. 

5.3 Comparison to other verification methods 

In this section a comparison is made between the proposed verification method and the existing 
verification method in the German code DIN 18800. The proposed method will also be compared to 
the verification of steel bridges in the European prestandard, Eurocode 3 part 2. 

5.3.1 DIN 18800 
The German code DIN 18800 contains a verification method for out-of-plane buckling of circular 
arches. In this code the model of Timoshenko[3] is the basis for obtaining a critical load. 
Timoshenko's model is just appropriate for arches with closed cross sections. In this critical value 
the influence of warping is neglected, which results in a conservative verification for arches with a 
cross section sensitive to warping. For more details about the DIN 18800, the reader is referred to 

appendix A. 1. 

According to DIN 18800, verification for a circular arch subjected to uniform compression should be 

carried out as: 

N 
---<1 

K Npld -

The relative slenderness should be determined to obtain the factor K, the buckling factor. The 
relation between Kand the relative slenderness can be found in appendix A. I. 

,,_~N1 
/\,k -

NKi.Kr 
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L 
If in the equation for Nki.Kr , a is substituted with R , exactly the same equation as the solution of 

Timoshenko's model is obtained. 

The DIN 18800 has no stability check especially for an arch subjected to uniform bending. For a 
combination of compression and bending, the next stability check is present: 

For an arch only subjected to uniform bending this can be reduced to: 
M 

< 1 (Ky= 1, see appendix A. I) 
KmMpl.u.d -

Again a relative slenderness should be determined to obtain the factor Km (see appendix A. I how to 
determine Km)-

El,+ C 
with Mkiy=- lR (

EI, - C ·y El, C n2 

2R )+ R2 a 2 
El(!) n2 

and C = R 2 a2 + GJ 

The critical bending moment Mkiy resembles also the critical bending moment of Timoshenko, but 
here an extra term, for warping is included. 

The ultimate loads from the DIANA analyses are compared to the verification according to DIN 
I 8800. In Figure 5.12a, the line represents the buckling curve and the points are the DIANA results. 
For the load case uniform compression, most of the DIANA results are slightly above the buckling 
curve. This can be explained by the neglect of warping in Timoshenko' s model. The estimated Euler 
buckling load is small, which results in a conservative verification. On the other hand for the load 
case of uniform bending, the influence of warping is not neglected, which leads to DIANA results 
lower than the verification, see Figure 5. I 2b. As shown before, for most arches this is not a problem, 
due to positive post-buckling behaviour. Only the three arches with the smallest relative slenderness 
do not have this behaviour. So for these arches it is important that the DIANA results are on the safe 
side of the buckling curve. For the arches under uniform compression this is the case, but the 
ultimate load of the second arch under uniform bending is lower than the load allowed by the 
stability check. For this arch DIN 18800 appears to be just on the unsafe side. The load allowed by 
DIN is I .5% higher than the ultimate load of the arch. This difference is very small. 

From the comparison of the Din 18800 and the FEM results can be concluded that the verification 
method for out-of-plane stability of arches in DIN I 8800 is a safe method. 
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Figure 5.12 Verification according DIN 18800 

5.3.2 Eurocode 

59 

The European prestandard, Eurocode 3, part 2 handles steel bridges. In this part a brief description is 

given on how to determine the critical buckling force of free standing arches for out-of-plane 
buckling. 

In general this is written as Ne,= (tl J EI, . 

✓rr2 + a-2K 
The factor p for a free standing circular arch with radial loading is given as: P =Ra l(rc2 _ a2) 

2 

. . . rc2 ( rc2 - a2) EI, 
The factor p substituted m Ncr results m: Ne,= R2 a2 (rc2 + a2 K) 

7 (rc
2
R

2 
')2 

L rc-F- 1 J EI, 
Substituting a for R this becomes Ne,= (rc2R2 1 

R 
2 L2 + K ) 

1t
2 

Ncr Timoshcnko 

It seems that for the critical buckling force a factor rc2 too much is introduced. 

In the prestandard no verification method is present. When a verification method is determined in the 
same way as the proposed verification method with the critical force, rc2 Nc,Timo,henko, the method 
would be very unsafe. In Figure 5 .13 the results are given for this assumed verification based on the 

prestandard of the Eurocode. The ultimate loads are much lower than the load allowed by the 
stability check. Even for arches with a positive post-buckling behaviour this leads to unsafe 

situations. In Figure 5.13 for example, the deformations and the load allowed by the assumed 
verification of arch number four (appendix D) is given. From this figure it is clear that the assumed 
verification based on the critical load of the Eurocode prestandard can be very unconservative. 
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of the Eurocode. 

• The critical out-of-plane buckling load for arches subjected to uniform compression in the 
prestandard of EC3, differs a factor 1t

2 with the critical buckling load according Timoshenko. 
• When a verification method is based on the critical buckling load without this factor 1t

2
, the same 

verification is obtained as found in the DIN 18800 for out-of-plane stability of arches. 

5.3.3 Comparison Proposed verification - DIN 18800 
In Figure 5 .15 and Figure 5 .16 the buckling curves and the ultimate loads are given once again for 
the proposed verification and the DIN 18800. In these figures they are given related to the Euler 
buckling load to see the differences more clearly. A comparison with Eurocode 3 makes no sense, 
because of the mistake in the critical buckling load. When the critical buckling load is corrected, the 
same verification as the DIN 18800 is obtained. 

For the loadcase uniform compression the DIN 18800 is more conservative than the proposed 
verification in this report. The influence of the warping effect is clear to see when Figure 5 .15a is 
compared to Figure 5.15b. For arches with a relative slenderness of about 15, the DIN is the most 
conservative. The highest relative difference between the ultimate load and the maximum load 
allowed by the stability check is twenty percent. For the proposed verification the highest relative 
difference is just four percent. 
For the loadcase uniform bending the proposed verification is more conservative than the DIN 18800 
but, DIN 18800 is not always safe. The use of another buckling curve than the standard column 
buckling curve leads to the differences from the fourth ultimate load. The highest relative difference 
between the ultimate load and the verification is for the proposed verification twelve percent. For the 
DIN 18800 this is sixteen percent but the verification overestimate the ultimate load. Due to the 
positive buckling behaviour of these arches this is not that critical as it seems. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

6.1.1 Literature and Euler buckling load 
From the literature studied it can be concluded that not many codes have provisions to verify out-of­
plane stability of arches. The German code DIN 18800 is the most detailed on this subject. 
Literature study also showed that a number of researchers defined an analytical model to determine 
the Euler buckling load of an arch. The different models are based on straight beam theory or curved 
beam theory and they are worked out with a direct or indirect calculation method. These varying 
approaches lead to different Euler buckling loads. 

For the models separately, the following conclusions can be made: 
• The model of Timoshenko [3] neglects the effect of warping which results in small Euler 

buckling loads. Especially for stocky arches his model is conservative. 
• The model of Vlasov [ 4] leads to a significantly higher Euler buckling load for arches under 

uniform compression than the other models. The use of the straight beam theory is a possible 
explanation for the high Euler buckling loads. 

• The model of Yoo [5,6] gives for both loadcases, uniform compression and uniform bending, 
significantly higher results than other models do. The translation of the straight beam theory to 
the curved beam theory in his model, is the cause of this overestimation. 

• The models of Trahair [7,8,9, 10, 11 ], Rajasekaran [ 12] and Yang [ 13, 14, 15, 16 J give quite 
corresponding Euler buckling loads which also correspond with numerically determined Euler 
buckling loads. Different assumptions in strain-displacement relations lead to small differences 
in the results. 

After a study of the analytical models, the model of Rajasekaran seems to be the most appropriate for 
further use. The model provides in a relatively simple way the Euler buckling load, which can be 
seen as an upper limit of the ultimate load an arch can carry. 

6.1.2 Non-linear FEM analyses 
An important finding of the non-linear FEM analyses is the positive post-buckling behaviour of 
slender arches. These arches can carry a larger load than the Euler buckling load. The non-linear 
FEM analyses also showed that very slender arches deform extremely before they collapse. In that 
case the ultimate load is not clearly defined. Five options for the definition of the ultimate load are 
considered and the most appropriate is determined. 

The ultimate load is defined as: 
. . d(load) 

Load belongmg to: mm I d(d. 1 t t d ) I of the load-displacement diagram. 1sp acemen op-no e 
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For arches with a positive post-buckling behaviour this is the point of contraflexure in the load­
displacement diagram. For arches without a positive post-buckling behaviour this is the top in the 
load-displacement diagram. It can be concluded that this definition for arches with or without 
positive post-buckling behaviour gives a good estimate of the ultimate load. 

6.1.3 Verification method 
The proposed verification method for out-of-plane stability of arches provides, in a relatively simple 
way, a stability check for arches subjected to uniform compression or uniform bending. The method 
corresponds to the Dutch code concerning stability of columns. The use of the column buckling 
curves to determine the buckling factor, turned out to be successful. 
Like for columns, a relative slenderness has to be determined to obtain the buckling factor. This 
relative slenderness depends not only on the dimensions of the arch but also strongly on the load 
distribution. The same arch under uniform compression has a much larger relative slenderness than 
under uniform bending. From this, it can be concluded that comparing arches on the basis of their 
relative slenderness is only useful when the loadcase is similar. 

The proposed stability check for uniform compression is: 

with: 
Nc,d design value of the compressive force 

Nc.s.d <) 

Warch.out Nc.u.d -

Nc.u d design plastic resistance to compression of the cross section 
Warch.out buckling factor for out-of-plane buckling of arches 

The proposed stability check for uniform bending is: 

with: 
My max, d design value of the bending moment 
My u d design plastic resistance to bending of the cross section 
Warch.out buckling factor for out-of-plane buckling of arches 

My.s.max.d < ) 
Warch.out My.tu] -

The buckling factor for out-of-plane buckling of arches can be obtained from the column buckling 
curves. The curve to be used is a, for rolled sections and circular hollow sections. Only the relative 
slenderness must be known, in order to obtain the buckling factor. 

For uniform compression the relative slenderness is: 

For uniform bending the relative slenderness is: 

in which 

Arel= 

Neu d is the design plastic resistance to compression of the cross section 
Mcuct is the design plastic resistance to bending of the cross section 
FyE is the Euler buckling load for uniform compression based on the model of Rajasekaran [ 12) 
ME is the Euler buckling load for uniform bending based on the model of Rajasekaran [ 12] 
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a ab a ab 2 ( ✓( )2 J ME = ~red Mo - i;-2 + b + 2 + 1- a 

with: 
L, H, e and R according to figure 5 

L 
a=-

nR 

~red = I 

Hh 
= 1.05 - 0.2 Le 

n2 EI 
P z 
,=~ 

Hh 
for Le ~ 0.25 

Hh 
for Le > 0.25 
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Mo= ( 
n

2 Eiw) 
P, GJ+~ 

The reduction factor ~red is added to the original formulae from Rajasekaran yielding Euler buckling 
loads that comply with numerical results. 

R 

Figure 1 Parameters of the arch 

When the verification method in DIN 18800 is compared to the verification method determined in 
this investigation, it seems to be more conservative for the loadcase uniform compression. For the 
loadcase uniform bending, the determined verification method is more conservative than DIN 18800. 
The maximum load allowed by DIN 18800 leads however sometimes to larger deformations than 
allowed by the ultimate load. 

In the prestandard for Eurocode 3 part 2, steel bridges, a critical load for out-of-plane buckling of 
arch bridges is given. This critical load however is a factor n2 larger than the Euler buckling load 
according to Timoshenko's model. It can be concluded that it is much too large. Correction for this 
leads to the same rule as the one of DIN 18800 and thus the same remarks holds. 



Page TUE-Report 

66 February 98 CO/98.05 

6.2 Recommendations 

Cross section 
The arches, which are used for the investigation on out-of-plane stability, have all an IPE section. 

Other types of cross sections should also be investigated. Also the influence of an a-symmetric cross 
section is a topic for further investigation. 

Arch shape 
Besides circular arches, used in this investigation, there are also parabolic and chain-line arches. 

Whether these arches can also be verified with the proposed verification method should be 
investigated. 

Euler buckling load 
The Euler buckling load is used in the verification method to determine the relative slenderness of an 

arch. The model of Rajasekaran is used as basis for the Euler buckling load. The model however 
seems to overestimate the Euler buckling load for arches with a relatively high section depth. Further 
investigation to the cause of this overestimation is advised. 

The reduction factor, ~red , introduced to reduce the analytical Euler buckling load, is related to the 
Hh 

factor LI . More extensive investigation into the accuracy of the reduction factor and to the factor 

Hh. . d LI 1s advise . 

Verification 
The proposed verification method is checked by FEM analyses for a number of arches. Most of these 
arches have a positive post-buckling behaviour. For arches without a positive post-buckling 
behaviour, stocky arches, the verification is nevertheless more critical. Therefore it is advised to 
investigate more arches without a positive post-buckling behaviour. For the loadcase uniform 
compression these are arches with a relative slenderness smaller than 4. For the loadcase uniform 
bending arches have to be investigated with a relative slenderness smaller than 2. 

The investigation of Verstappen [ I ] resulted in a proposal for the verification of the in-plane stability 

of arches. This investigation resulted in a proposal for the verification of the out-of-plane stability of 
arches. For one special type of in-plane stability there still is no verification available. To cover all 
stability phenomenons for arches, a verification for snap-through buckling should be determined. 

Two verification rules are proposed in this investigation; one for uniform compression and one for 
uniform bending. For the combination of uniform compression and uniform bending a verification 
method is suggested. This method needs to be worked out or another method should be determined. 
In practice, uniform compression and uniform bending hardly occur. The influence of non-uniform 
loading should be investigated and incorporated in the verification. 
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As shown in this investigation, an arch can deform extremely before it collapses due to buckling. 
These large deformations can not be allowed in practice. The serviceability limit state should be 
checked especially for arches. 

Load distribution 

67 

For the loadcases studied in this investigation, it is obvious which normal force or bending moment 
should be used in the verification method. For other loadcases it should be defined how to determine 
the forces in the arch and which force, should be used in the verification method. 

Ultimate load 
The ultimate load defined in this investigation turned out to be useful for arches with and without 
positive post-buckling behaviour. The definition of an ultimate load in the case of positive post­
buckling yields a problem also for other structures and other stability phenomenons. For example 
local buckling of thin plated structures is also a stability phenomenon with positive post-buckling 
behaviour. It is an interesting study to find out whether the ultimate load defined in this investigation 
also works for this stability problem. 
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APPENDICES 

A. CODES 

A.1. Code DIN 18 800 

In this appendix, the verification rules for out-of-plane stability of arches are given according to 
DIN 18 800. 

Article 6.1.2 Arches under compression 
All rules for the out-of-plane stability of arches under compression, are based on the next 
verification: 

N 
--<I 
KNpLd -

where: 
N is the normal compression force in the crown of the arch. 
Nrict is the maximum allowable compression force. 
K is a factor based on the slenderness of the arch. 

The slenderness of the arch depends on the dimensions, the restraints and the loading of the arch. In 
the next subarticles is written how the slenderness for different arches can be obtained. With the 
slenderness Ak, the factor K can be determined in the following way: 
When Ak :s; 0.2 : K = I 

When Ak > 0.2 : K = ✓ 2 2 
k+ k -Ak 

with 
2 

k = 0.5( I + a ( Ak - 0.2 ) + Ak ) 

When Ak > 0.3 : K can be simplified to Ak (Ak +a) 

The value of a can be obtained from Table A. I. 
The selection of the buckling curve for a cross section is given in Table A.2. 

Table A.1 Parameter a to determine reduction factor K 

I :uckling cum a b C 

0.21 0.34 0.49 

d 

0.76 
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Table A.2 Selection of buckling curve for a cross section 
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y-y C Y-
t, > 40 mm 

z z z-z d 

5 

z z 

YE z~ YTY • ■ y-y y z z C 
z z-z 

.,__._ I 

• Article 6.1.2.1 Arches without bracing 

For a parabolic arch, the slenderness is: 

For a circular arch, the slenderness is: )._-- ~ k-·\/~ 

R 

a 
K 

Reduction factor with respect to the effective length out-of the plane of the arch 
according to Table A.3 

Reduction factor with respect to the effective length according to Table A.4 
Radius of gyration with respect to the z-axis 
Limit value for the slenderness 
Buckling value of an arch under uniform compression, with a double invariable 
symmetric cross section and pin-ended supports 
Radius of the arch 
Included angle of the arch 
Ratio between the bending stiffness and the torsional stiffness 
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Table A.3 Buckling factor P 1 

2 3 4 5 6 
f/L 0.05 0.10 0.20 0.30 0.40 

2 I, constant 0.05 0.54 0.65 0.82 1.07 

3 I, variable 0.05 0.52 0.59 0.71 0.86 I ( 

2 2 

I (a) =--1&_ 
' 

8 cosa8 

Table A.4 Buckling factor P2 
Loadin ex lanation 

conservative 
by hangers 

b osts 

q total load 
2 
3 

I - 0.35 qh/q 
I +0.45 s/ 

qh load part transmitted by hangers 

• Article 6.1.2.2 Arches with braces and end frame 

For this type of arches, the slenderness is: "-k = ~ ~ 
1, /\,a 

p Reduction factor according to Table A.5 
h Height of the end frame, see Figure A. I 

Figure A.1 Arch with wind bracing and end portals 

art transmitted b osts 

Page 
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Table A.S Diagram to obtain f3 

m
/J TJ=OO A:~ 

T]=2 
--t-",,---'t!- I T] =1 

n TJ=O.S 
0. T]•0,25 

• q:0,1 2,5 

hlh,-I 
n 2,0r--i---t--+-~~c'\l-'~-l---!----4 

hlh,-

Article 6.2.2 Arches under compression and bending 

• Article 6.2.2.1 General 
In general the slenderness Ak, for arches under uniform compression and uniform bending is the 
same as in article 6.1.2. 

• Article 6.2.2.2 Arches loaded in the crown of the arch, with invariable rectangular or I-shaped 
cross section. 

i2-For this type of arches, the slenderness is: Ak = . '\ 
lz Aa 

with f3 = ....2E.._ 
-JKi 

forarchesundercompression: K1 =2.47-(3+0.21 K) 1~0 +(700-6K+0.08K2
)(1~0J 

9.58 7.58 I ( 36.2 62.5 ) 
forarchesundertension Ki=-0.036+ IO+K+ (IO+Kt+; 0.134-S+K- (S+K)2 

( 
I 3 .4 I. 94 ) ( I \2 

- o.226+T+? ;) 
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~ Reduction factor 
s Half of the arch length 

a Included angle of the arch 
K Ratio between the bending stiffness and the torsional stiffness 

• Article 6.2.2.3 Circular arch with I-shaped cross section and pin-ended 

The verification rule for this type of arches is: 

Kz Buckling factor with respect to the z-axis 
Km Flexural-torsional buckling factor 
Ky Factor which introduces the influence of the moment distribution and the 

slenderness gradient 

K,: Kz = I 

I 

Am> 0.4 km= ( I +IAm2n) ~ 

with k = 0.5(1 + a( Ak - 0.2 ) + 1c/) 

2TI 
with ~ = _ ~ and 

\JK1 

with n from Table A.7 

Page 

75 

with 
EI, +C 

Mkiy=- 2R - (
EI, - C )

2 
El, C n2 

2R + R2 a2 

N 
Ky= I - -Nay::; 

Kz pld 

2 Elm TI 
C = R2a2 + GJ 

with ay = 0. 15 Akz ~nu - 0.15 ::; 0.90 

~mz Factor with respect to flexural-torsional 
buckling according to Table A.6 
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Table A.6 factor ~m.z 

Moment distribution 

end moments 

M1~'YM1 

., s"' s , 

moments due to in-olane 
lateral loads 

moments due to in-i>lane 
lateral loads plus end moments 

Table A. 7 Factor n 

Profll II 

3:: 2.5 

2 

I 2.0 

3 

9 1.5 

Mp1 

-l 

T□1 2.0 

Mp1 

J 

-<:: 

]L£y] 'I m1n .,., 

Mpt 
0.7 + 18 ·--

max 11 

'Tlln It __ ,, 0.25 
'Tlax Ii 

February 98 

~nl.Z.lj/ = 1.8 - 0. 7\j/ 

~m.z.q = 1.3 

~m.,.q = 1.4 

Mq= lmax Ml 

~M = lmax Ml or 

lmax Ml + lmin Ml 

TUE-Report 

CO/98.05 
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Article 6.2.3 Spatial loaded arches 
For the verification of the loading capacity of an arch, usually an elastic theory is used. When this 

calculation method used to determine the forces in the arch, an imperfection must be introduced. 

77 

In Table A.8 and Table A.9, values are given for the imperfection. Only one imperfection has to be 
applied on the arch: in-the-plane or perpendicular to the plane of the arch. The most unfavourable 
imperfection should be applied. 

Table A.8 In-plane imperfection 

Arch with symmetric deformations 

Arch with anti-symmetric 

deformations 

w0 for different bucklin stress lines 

a b c d 
s s - -

300 250 
L L - -

600 500 

s -
200 
L 

400 

s 
150 
L 

300 

Table A.9 Out-of-plane imperfection 

Vo for different bucklin stresslines 

a b C d 
L:::;20m L L L L -

300 250 200 150 

L~20m h h h h 
L1= 20L 300 250 200 150 
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A.2 Buckling curves 

In the Dutch code NEN 6770, the buckling factor for columns is given a.o. in curves (Figure A.2). 
When the relative slenderness is known, the buckling factor can be determined with these curves. 
Which buckling curve should be used is given in Table A. I 0. 

0,7 

+ 0,6 

I 0,5 

lJ buc 

0,4 

0,3 

0,2 

0,1 

0 

. I 
0 0,5 1,5 2 2,5 3 

A rot 

Figure A.2 Column buckling curves 
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Table A.10 Selection of buckling curve for a cross section 

Table 5.5.3 Selaction of buckling curve for a cross-section 

Cross section Limits Buckling Buckling 
about axis curve 

Rolled I-sections h/b > 1,2: 
11 s 40mm Y·Y a 

Z·Z b E . . r-I-• 40mm < t, s 100mm Y·Y b 
Z·Z C 

h/b S 1,2: 

L..Ll t, s 100mm y-y b 
Z•Z C 

t, > 100mm y-y d 
Z·Z d 

Welded I-sections 
z, .l _!t__ J.. tis40mm Y·Y b ·~l : ;, •--- _,T, 

Z·Z C 

t.>40mm Y·Y C 

Z·Z d z -z~ 

Hollow sections hot rolled any a 

0 D D cold formed 
• using fyb*) any b 

cold formed 
• using fya*) any C 

Welded box sections 

'I ,,, generally 
~ (except as below) any b I ' lw 

4 -

" ;- --+-- ', thick welds and 
i 

I ,I b I b"f < 30 Y·Y C 

hllw < 30 Z·Z C 

U-, L·, T- and solld sections 

-t-6. T • ♦ any C 

"lsee 5.5.1.4(4) and Hgure 5.5.2 

1,..,,..,.._ 
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B. EULER BUCKLING LOAD 

B.1 Calculation methods 

The different analytical models to obtain the Euler buckling load, result all in solving differential 
equations. To determine these equations several methods are available. A division can be in two 

main methods: The direct method and indirect method. 

Direct method 
The direct method consists of defining the equilibrium of a piece of the arch directly. Timoshenko 

and Vlasov used this method. For simple structures this is the easiest way to obtain the equilibrium 
equations. 

Indirect method 
For complex structures it is difficult to derive the equilibrium equations directly. In that case it is 
more convenient to use an energy or virtual displacement approach. The equilibrium equations are 

obtained indirectly from the total energy (UT) respectively the total work (W). 
Energy and work are related in the following way: W' = UT. 

A structure is in equilibrium when it is in the state of minimal potential energy. This is the case when 
the first variation of the total energy, is equal to zero. For a stable equilibrium the second variation 
must be greater than zero. The critical value for buckling can be obtained by putting the second 
variation of the total energy to zero. For the virtual displacement method only the first variation 

should be greater than zero. 

A short review of the energy method will follow, applied for an arch element with double symmetric 

cross-section. The execution of the virtual displacement method is more or less the same, because of 
their relation. Therefore the explanation of this method is omitted. 

The total energy contains the strain energy and the potential energy. For an arch element with linear 

elastic behaviour it can be expressed as: 
L 

I 2 , " UT = 2J (Ee + Gy) dV - J(pw + qv) ds + £-- { -Pw - Vv - M 8 ) 
I-; 2 

V Q 

The strain-displacement relations are used to substitute the strain terms in the energy functional. 

This energy functional will contain several functions of one independent variable x. This can be 

expressed as: 7t = J F(u,v,<p,w',u',<l>',v",u",<I>" )dx 

Four differential equations for the stability of a curved beam are obtained from this functional by 
differentiating twice with respect to the different degrees of freedom. Two equations are dependent 
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on w, v and their derivatives, which describes the in-plane-stability. The other two are dependent on 
u, <I> and their derivatives. They describe the out-of-plane-stability. 

By assuming a buckling displacement for <I> and u with the form: 
u = B 1 sin(nns/L) and <I>= B2 sin(nns/L) 
The two differential equations for out-of-plane buckling can be written in the next form: 

The critical moment or compression q-load for buckling can be obtained by putting the determinant 
to zero. In the following appendices different executions by different persons of this method are 
discussed. 
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B.2 Timoshenko & Gere 

In [3J Timoshenko and Gere determine the equilibrium equations directly by solving the equilibrium 
for a straight beam. These are adapted for a curved beam by using the curvature and twist for a 
curved beam. 
The equations for calculating the curvatures and twist are: 

1 
R is the initial curvature of the centre line of the bar. 

0 is the angle of twist per unit length. 

For small displacements the components of displacements can be considered separately and summed 
up to get the final change in curvature. 
Curvatures and twist of a curved bar after deformation are: 

For the case of bending two equal end moments Mo are applied. The directions x', y', z' are the local 
directions of the axes. The projection of Mo to these axes: 

M,- = Mo <jl My· = Mo M, = Mo u' 
Combining these equations the differential equations for bending are obtained: 

<jl Mo = EI, ( t- u" ) 

M0 = Ely ( "iz + v") 

Mo u' = GJ ( <jl' + ~ ) 
Mcr can be obtained by eliminating u from the first and the third equation and solving the differential 
equation for <jl. 
For the case of uniform compression the Euler buckling load can be determined in a similar way. 
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B.3 Vlasov 

Vlasov uses like Timoshenko the method of equilibrium. As can be seen in [ 4] he starts with six 
equilibrium equations and reduces them till three by eliminating the forces. 

dN Qz 
~-R -qx = o 
with: 
Qx.y,z are the forces in the directions of the axes 

leads to: 

qx,y,z are the projections of the external loads per unit length 
Mx,y,z are the bending moments in the cross section 
N is the normal force in the cross section 
H is the torsional moment in the cross section 
m is the externally applied torsional moment 

Replacing the following terms: 
My = Ely v" 

M2 = -El2 u" 

H = -Elw <)>"' + GJ<)>' 

- M ,, 2pm" m - yU -r 'I' 

P ,, M m" qy=-u+ Y'I' 

q, = - Pv" 

Leads to the general stability equations for a part of a circular beam with a double symmetric 
section: 

-Ely ( v""' + -f ) + P v"' = 0 

m"" m" 
-Et u"" - Pu" - Elw ~ + GJ t +My<)>"= 0 

-Et~ - My u" + Elw <)>"" + r2 P <)>" - GJ <)>" = 0 

When a displacement field for<)> and u is assumed in the last two equations, the critical bending 
moment and critical compression force can be determined. 
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B.4 Yoo 

Yoo uses the energy method [5,6 J. His starting point is the total potential energy for a straight beam. 
The curvatures and twist of a straight beam are replaced by those of a curved beam, to get the total 
potential energy for an arch. In Figure B. l the translation of the axes is shown from Yoo' s model to 
the standard arch. 

X z,v 

Figure B.1 Translation of the main axes 

Curvatures and twist for a straight beam replaced by those for a curved beam: 

P, = EAw' ⇒ EA ( w' + ; j 
My = Elyv" ⇒ Ely( v" +f) 

M, = El, u" ⇒ El, ( u" + *) 
T, = GJ cp' ⇒ GJ (<1>' - ~) 

M(t) = EI w<I>" ⇒ Elw( <I>" - i;;) 
After adapting the directions of the axes to the standard directions (see Figure B. I Translation of the 

main axes ), the total potential energy for a straight beam with double symmetric cross-section 
according to Yoo becomes: 

1t=U+V 
L 

U = ½J { EA(w')2 +Ely (v")2 + EI, (u")2 + Elw (cp")2 + GJ(cp')2 }dx 

0 
I 

V = ½ J {Px( v'2 + u'2 + r2cp'2) + 2My u"<p }dx 

0 
with P, = qx,R 

The terms u", cp'and cp" are replaced by the terms according to the equations above. For u' there is no 
good substitute. Yoo rewrites this to: 
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( ')2 II ( II 1) u = uu = u u + R 

The total potential energy for a curved beam according to Yoo: 

L 2 2 2 ,,2 ,2 

.!.J{ ( 1 -2'.._) ( 11 y ) ( II 1) ( II ~ \ ( , ~' n = 2 EA w - R + Ely v + R7 + EI, u + R + Elw <)> - R ) + GJ <)> - R) }dx 

0 

+½ }{P,[ +' +i, )+ u ( u" + ¾ )+ r'(f -~J] + 2M, (u" +¾} + 2M,(v" + i, )idx 
0 

The two differential equations for out-of-plane buckling are: 

_z ,,~ ,,~ ,~ __..!:!. 2n~ ~,, EI 
( ,t,) ( ")

11 

( ' )' P ( ") (2th ) R u + R + Elw <)> - R - GJ <)> - R + 2R - Pr <)> - R + M R + u = 0 

When (u')2 is not substituted for u ( u" + 1 j, the differential equations for out-of-plane buckling are: 

( m )' EI ( ")" GJ ( ')' ( 
2 

( 

11 

) ) EI2 U
11 + t) - Rw <)>" - ~ + R <)>' - ~ + P -u" - ~ ~ - <)>" + (M<)>)" = 0 

---1,fl~ II~ I~ 211~ ~ N EI ( m) ( 
11

)" ( ' )' ( ") (2th ) R u + R + Elw <)> - R - GJ <)> - R - Pr <)> - R + M R + u = 0 

For the arch under uniform bending, the Euler buckling load does not change. 

For u and <)>, a sinus-shape displacementfield is assumed. The differential equations for an arch under 

uniform compression could be rewritten to: 

2 

-B ± ✓B2 -4C 
P= 2 with 

M 2 2 

C=-¥-(a
2
-l) 

r 
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B.5 Trahair & Papangelis 

Like Yoo, Trahair uses the energy method. In [7,8,9, I 0, I 1] the normal and shear strains for a curved 
beam are first determined. With these strains the total potential energy is formed. See Figure B.2 for 
the translation of the main axes from Trahair' s model to the standard arch. 

Y,v z,v 

Figure B.2 Translation of the main axes 

The adapted normal strain and shear strain according to Trahair are: 

-- ,~ ,,y ,,~ ,,.!:!._ R 
[ 

"' / "] 
Ex= R-z (w -R)-y(u +R)-z(v + R)+aw(<I> - R) 

Second order terms are neglected to make a better comparison with other theories. 
Trahair mentioned in advance that <I> and u are not related with v and w. For the out-of-plane 
buckling only the terms with <I> and u are of influence. For the energy Trahair already neglected v and 
w. He used, terms of second order of the normal strain, to get the energy equation. 
Total energy for a double symmetric cross-section according to Trahair: 

1 "1 II~ •~ I { 2 ( "J2 ( ·J2 } UT = 2 f EI, ( u + R J + Elw <p - R + GJ <p - R ds 

0 
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The two differential equations for out-of-plane buckling are according to Trahair: 

( 
th y EI ( "Y GJ ( '')' 

2 
( 

11 

) EI, u"+tJ - Rw <)>"-~) +R <)>'-~j-Pu"-PT ~-<)>" +(M<)>)"= 0 

To obtain the Euler buckling load, Trahair ignores the terms r2JR 2 and r/R2
, because they are small 

compared to unity. 
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B.6 Rajasekaran & Padmanabhan 

Rajasekaran uses more or less the same approach as Trahair. Instead of deriving the equation for 
total potential energy, he works with the principle of virtual displacement [ 121. See Figure B .3 for 
the translation of the main axes. 

Jcr8Edv = pouds 

V s 
The normal strain and shear strain are according to Rajasekaran are: 

R [ , v ,, ,, w' ,, u" ] 
Ex= R-z (w -R)-yu -z(v +R)+aw(<l> -R) 

y=211( <J>'- ~) 

Y,v 

Figure B.3 Translation of the main axes 

Integrating leads to four equilibrium equations. 
With the boundary conditions of this case: 

z,v 

( 

th 'f' EI ( ")" GJ ( ')' ( ") EI, u" + t) - Rw <J>" - ~ + R <J>' - ~ - (Pu')' - M <J>" - ~ = 0 

( 
,, w'J" EA ( , ~) , , (Pw)' (Mv')' (Mw)' Pv M<b _ 

Ely v + R - R w - R - (Pv ) - R - R -~ + R3" + ~ - q, 

( , ~J' §1 ( ,, w')' Pv' Pw M ( , w) EA w - R - R v + R + R + R2"° + R7 v + R = 0 

89 
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From these equations can be seen that the in-plane stability and out-of-plane stability can be look at 

separately. The second and third equations describe the in-plane stability, because they are only 
dependent on v and w. The first and last equations describe the out-of-plane stability, they are only 

dependent on cjl and u. 

In paragraph 3.1.1.5, the critical q-load has been reproduced according to the critical load in the 

literature of Rajasekaran [ 12]. When the just mentioned differential equations are solved another 
solution is found. 
Differential equations for out-of-plane stability of an arch under uniform compression: 

( 
m )" EI ( ")" GJ ( ')' El, u" + t - Rw cp" - ~ + R cjl' - ~ - (Pu')' ) = 0 

EI ( m) ( ")" ( ' )' -t u" + t + Elw cjl" - ~ - GJ cjl' - ~ = 0 

With a sinus-shaped displacementfield for u and cjl this becomes: 

[ 
~ ] [ p ,L2 ~] A P, + R7 + P + B - R 1t2 - R = 0 

P,L ~ P,L 
~ 2 ] [ 4 ] - R 1t2 - R + B R21t4 + Pep 

The solution is: 
2 2 P,Pp(a -1) 

p = 4 2 
P,a R + P<I> 

This can be rewritten to: 
2 2 

Mo (a - 1) 
q*E = 

~R
2 

+ abR
2 

=0 ⇒ 

P,L
2 

~][A j -R1t2 - R 

=0 P,L4 

R21t4 +Pep B 

To compare the results to the ones of Trahair [ 11 ], Rajasekaran introduced afterwards the factor r2 in 
the solution of the differential equation [ 12] . Due to this a factor r2 appears in the solution. 

Trahair on the contrary neglect the terms related to the radii of gyration. The solution q*E is the same 
as the solution of Trahair in which the terms related to the radii of gyration are neglected. 

Trahair's solution: 

_ P, (( ...!_) ~j- P, ( ab +¾ ~+~ b

2 

+ 2 +bj- P, (a2-2 +~] 
qE - R ab ab + ab - a b - R ab a b - a b - R ab a b 

b+;- b+;- b+;- b+;-

Rajasekaran: 
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B.7 Yang & Kuo 

Like Rajasekaran the model of Yang in [ 13, 14, 15, 16] is based on the principle of virtual work. 
See Figure B.4 for the translation of the main axes. 
The strains Yang uses to get the equilibrium equations are: 

z,v 

Figure B.4 Translation of the main axes 

The equation from which Yang derives his equilibrium equations is: 

½ f { EI, o( u" + * J + Elw o( ~,, + i J + GJ o( ~· -~J }ds 

0 

½ J { P 8 ((u')2 + r2 (~' - ~J)}ds 

0 

1 l { ( ( ')2 2 ( ,)2 } i.} -2 J M 8 2~'u' - ~ + ~ ~, - ~ R ds = 0 

0 

The two differential equations for out-of-plane buckling are according to Yang: 

( 

th y GJ ( ')' 
2 

( " ) ( "Y 
2

1 EI, u" + t ) + R ~, - ~ - P u" - P ~ ~ - ~,, + M ~,, - ~ A I - ~) = 0 

Page 

91 
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B.8 Influence of warping 

The Euler buckling loads for the loadcases uniform compression and uniform bending are given in 
Table B.l and Table B.2 respectively. For each loadcase an analytical and a numerical solution are 
given. The analytical Euler buckling loads without warping influence are according to Timoshenko's 
model. The analytical Euler buckling loads with the influence of warping are according the model of 
Trahair. For the numerical results the beam element model is used to omit the warping influence and 
the shell element model gives results with warping influence. 

It is remarkable that for both calculation methods, the Euler buckling loads without warpmg 
influence are very similar. The results with warping influence are not that corresponding, especially 
for larger cross sections. This is an indication that the effect of warping is differently included in the 
two calculation methods. 

When the cross section of the arch is small the analytical results with warping do not differ much 
from the numerical results and the influence of warping is small. For the more stocky arches the 
results of the two calculation methods differ and the influence of the warping rigidity is 
considerable. A parallel can be seen: for a decreasing slenderness, the warping influence increases 
and the discrepancy between the results of the two calculation methods increases also. 

Table B.1 Euler buckling loads for uniform compression 

profile analytical numerical 
without war Ill with war Ill without war Ill with war Ill 

IPE 100* 26.7 Nim 27.0 Nim 26.7 Nim 27.0 Nim 
IPE 180* 123 Nim 128 Nim 123 Nim 127 Nim 
IPE 500* 2250 Nim 3160 Nim 2257 Nim 2813 Nim 
IPE 600* 4110 Nim 6090 Nim 4122 Nim 5313 Nim 

Table B.2 Euler buckling loads for uniform bending 

profile analytical numerical 
without war Ill with war Ill without war Ill with war Ill 

IPE 100* 344 Nm 347 Nm 347 Nim 
IPE 180* 1570 Nm 1645 Nm 1636 Nim 

IPE 500* 28900Nm 41240 Nm 36340 Nim 
IPE 600* 52700Nm 80300Nm 69140 Nim 
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In Figure B.5 the relative influence of warping is given in a column diagram. The relative influence 
of warping means the difference between the Euler buckling loads with and without warping, related 
to the loads without warping. In this figure it is very clear to see that for stocky arches the influence 
of warping is considerable. For the loadcase uniform bending, the influence of warping is according 
the analytical models 50%. The influence in the numerical models is smaller but still 28%. 
Therefore, for stocky arches it is worth the effort to take into account the warping influence. 

[%] 

60 

50 

40 

30 

20 

10 

0 

ml compression analytical 

□bending analytical 

II compression numerical 

IPE100 IPE180 IPE500 

Figure B.5 Relative influence of warping 

IPE600 
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C. SHELL ELEMENT FEM MODEL 

C.1 Cross section properties shell element model 

As mentioned in chapter 3 the profile IPE 100* created with shell-elements has not the same 
properties as a common IPEIO0 profile. In Figure C. I the difference in cross-section can be seen: 
For an IPEIO0 the link between the web and the flange is round. The profile created with shell 
elements has not these roundings. Another difference is the small overlap of the shell elements at the 
top and bottom of the web element. The rigidities of the IPE 100* profile created with shell elements 
can be calculated according to the dimensions of the cross-section. 

The values of the IPEIO0* profile are: 

A= (100 - 5.7)*4. l + 2(55 * 5.7) = 1014 mm2 

ly = /
2 

* 4.1 * (94.3)3 + 2(i
1
2 

* 55 * (5.7)3 + 5.7 * 55 * (47.15 )2) = 168,23 104 mm4 

100 

55 

': 

f--------1 

4.1 

I 5.7 

Figure C.1 Created "IPElOO" profile 

= 15.86 104 mm4 

= 8957 mm4 
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Table C.1 Profile properties 

IPE I I, A J 12 Iw 

100* l.68E+06 l.59E+05 1014 8957 8486 3.5 I E+08 
140* 5.39E+06 4.49E+05 1633 20590 19612 I.98E+09 
180* l.30E+07 l.01E+06 2368 39600 37848 7.43E+09 
220* 2.71E+07 2.04E+06 3268 71540 68491 2.27E+I0 
270* 5.61E+07 4.19E+06 4469 120400 115774 7.06E+I0 
330* l .14E+08 7.86E+06 6069 207000 199055 I.99E+ I I 
400* 2.23E+08 l.3 IE+07 8184 377200 361375 4.90E+I I 
500* 4.71E+08 2.14E+07 11340 717300 687811 l.25E+l2 
600* 9.02E+08 3.38E+07 15330 1341000 1270610 2.85E+l2 

When the values determined in this way, are introduced in the analytical calculation method, the 
results do not correspond with the results from numerical results. A straight beam model with shell 
elements is made to check the calculated properties. To determine the moment of inertia around the 
y-axis, Iy, the beam is inclined at one end and a force in they direction is applied at the other end. 
From the displacement in the y direction, Iy can be obtained. For I, the same procedure can be 
followed with a force in the z-direction. See Figure C.2. For J the beam is not inclined but the 
rotation in the middle of the beam is prevented. When two equal end moments are applied, the 
torsion moment of inertia, J can be determined from the rotation around the axis of the beam. For 
this property different values are found, compared to the values determined from the cross section. In 
Table C. l these values are indicated as h These are the values which should be introduced in the 
analytical models. 

M 

ML 
J=-

Gqi 

F 

- _\ 

Figure C.2 Determination of the rigidities 

M 
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C.2 Preliminary investigation shell element model 

The preliminary investigation of the shell element model concerns two aspects. The number of 
elements needed is investigated and the conditions are checked. 
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In Table C.2 and Table C.3 Euler buckling loads are given for models with an increasing number of 
elements and different conditions. For the first row of results no special conditions are added to 
prevent the end of the arch to deform. For the next two rows of results, the arches have beam 
elements on the edges, at the supports. The stiffness of these beam elements is varied to find out the 
influence of the stiffness on the results. The last row of results represents an arch without beam 
elements. The deformations of the arch edges are in this case prevented by tyings, prescribed 
deformations. 

Properties beam n = 200 n = 300 n =400 n = 500 
elements 

Iv= Iz = 0 mm 4 26.70 Nim 26.65 Nim 26.61 Nim 26.58 Nim 
5 Iv= Iz = 10 mm 4 26.97 Nim 26.97 Nim 26.97 Nim 26.97 Nim 

I 6 4 Iv= z = 10 mm 26.97 Nim 26.97 Nim 26.97 Nim 26.97 Nim 
with tyings 27.12Nlm 27.12Nlm 27.10 Nim 27.09 Nim 

Table C.2 Euler buckling loads for varying number of elements and varying conditions, 

loadcase 1 

Properties beam n = 200 n = 300 n = 400 n = 500 
elements 

Iv= lz = 0 mm 4 344Nm 343Nm 342Nm 342Nm 
5 4 Iv= l 2 = 10 mm 347Nm 347Nm 347Nm 347 Nm 
6 4 Iv= lz = 10 mm 347Nm 347Nm 347Nm 347 Nm 

with tyings 349Nm 349Nm 349Nm 349Nm 
Table C.3 Euler buckling loads for varying number of elements and varying conditions, 

loadcase 2 

Conclusions 
The model without any measures to prevent the edge of the arch of deforming has smaller buckling 
loads than the other models have. This shows the necessity of using beam elements or tyings. 
The Euler buckling loads of the models with varying stiffness of the elements give similar results. 
There the stiffness of the beam elements does not effect the Euler buckling load, the beam elements 
are a good solution to prevent the unwanted deformations. The last possibility, using tyings leads to 
slightly larger results. There the tyings not for hundred per cent correspond with the wanted 
situation, the preference is given to use beam elements. 
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The influence of the number of elements on the Euler buckling loads is very small. For the models 
with beam elements there is even no difference in results. From these analyses can be concluded that 
a model with 200 elements can describe buckling of an arch adequately. 
In Figure C.3 and Figure C.4 the influence of the number of elements for the different models is 
given graphically. In these figures it is clear to see that the influence of the number of elements used 
in the model is very small and that the tyings lead to a larger result as the beam elements. 

[N/m] 

28.4 
--Model without beamel. or tyings 
--111-Model with beam elements I,= 105 

28 __._ Model with beam elements I,= 106 

~Model with tyings 

27.6 

27.2 

26.8 

26.4+----t-----1---+----+-----t 

0 100 200 300 400 500 

n 

Figure C.3 Influence of number of elements, loadcase 1 

365 -;::.-=···===========:------­
-+- Model without beamel. or tyings 

360 

355 

[Nm] 

350 

345 

0 

-fit- Model with beam elements 1,~ 105 

----.t,--- Model with beam elements I,~ 1 o' 
-&- Model with tyings 

l!§)i---N!ji---*!Ji------l!J 
I • • .I 
~ 

100 200 300 400 500 

n 

Figure C.4 Influence of number of elements, loadcase 2 
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C.3 Verifying shell element 

It is striking that the results between the analytical and numerical method differ more for larger 
sections. Also has been shown that the influence of warping is greater for larger sections. It is not for 
sure that the eight-nodes curved shell elements can describe the warping effect well. Combined these 
two facts, it is interesting to investigate the capability of shell elements to take into account the 
influence of warping. For this purpose a straight bar is modelled in DIANA with the same curved 
shell elements as used for the arch. For a straight beam under uniform bending, the Euler buckling 
load is known. When the results of DIANA and the analytical load are close to each other, the shell 
elements probably handle the warping effect well. 

In the code NEN 6770 (11.2.5) a factor aT is defined, which indicates the division of the torsional 
moment over the twist capacity and the warping capacity of the cross section. aT lies between one 
and zero. When aT is one the influence of the warping is negligible. How closer it gets to zero the 
bigger is the influence of the warping. 
To calculate aT, first a factor ~T should be calculated. 

if ~T < 0.7 
if~T> 15 

otherwise 

then aT = 0 
then aT = I 

~T- 0.7 
ar = 14.3 

The length of the straight beam is 9171 mm and the properties of the cross section are according 
Table C. l in appendix D. l. 
For the three sections, that will be investigated the aT values are: 
IPE100* 1 aT = I 
IPE330* aT = 0.36 
IPE600* aT = 0.22 
The first section is not sensible for warping at all. The next two sections show a small value for aT, 

the warping plays a part for these sections. 

In code NEN 6771 (12.2.5.1) the formula for elastic kip moment is given: 

1 IPElOO* means a profile with shell elements, which resembles as good as possible a IPE l00. 
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In Table C.4, the results are given for the three sections. As we saw for the arch, the results of 
DIANA are lower than the results calculated with the analytical determined formula. However the 
differences for the straight beam are very small. The cause of the differences is not the influence of 
the warping because the first section is not sensitive for warping and shows the biggest difference. 
It can be concluded that the shell element used in the FEM model is appropriate to describe warping. 

Table C.4 Analytical and numerical results for a straight bar 

Section Mke DIANA difference 

IPEIO0* 1649 Nm 1647 Nm 0.12 % 

IPE330* 63.75 103 Nm 63.7 103 Nm 0.075 % 

IPE600* 379 103 Nm 378 103 Nm 0.00026 % 



D. NON-LINEAR ANALYSES 

D.1 Numerical results non-linear analyses 

In Table D. l and Table D.2, the ultimate strength of the different arches is given in the first column. 
The second column represents the Euler buckling value obtained by a DIANA analysis. The relative 
slenderness can be calculated from the first two columns. In the last column the ultimate load 
obtained from the non-linear analyses is given. 

The shaded rows in Table D.2 indicate that these arches have not a positive post-buckling behaviour. 
For these arches the characteristic value is also the ultimate load. 

Table D.1 Results non-linear analyses, arches with varying cross sections 

~ Arch length I Orn ~ C -! 
Arch length I Orn 

Radius 7m Radius 7m 

IPE Nc.u.d Neuler Arell Nu Mv.u.d Meuler Are12 Mu 
100 238290 189 35.5 179 9089 347 5.1 342 

140 383755 448 29.3 450 20647 824 5.0 822 
180 556480 892 24.9 888 38634 1636 4.9 1620 

220 767980 1665 21.5 1609 65542 3055 4.6 3051 

270 1050215 2971 18.8 2890 110238 5456 4.5 5409 

330 1426215 5396 16.2 5284 182400 9921 4.3 9824 

400 1923240 10059 13.8 9539 296190 18540 4.0 18460 

500 2664900 19691 11.6 19297 504350 36430 3.7 36313 
600 3602550 37191 9.8 34887 808700 69140 3.4 69000 

Table D.2 Results non-linear analyses, arches with varying dimensions 

arc- Radius ~ Profile IPEIOO Profile IPEIOO 
length 

L Arell Nu M .u.d Meuler Arel2 Mu 
t:is · 1LJ4 ··· ... 132300 9089 12967 0.84 6430 
•2.50> . il1li .. 30306 ··9039 4436 L43 4132 
3.50 4.51 I 1142 9089 2600 1.87 2634 
5.00 7.00 238290 3437 8.33 3353 9089 1417 2.53 1440 
10.0 5.00 238290 56.7 64.8 55.1 9089 193.3 6.85 195 
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D.2 Load-displacement diagrams 

In the next figures the load-displacement diagrams obtained by the non-linear FEM analyses are 
given. The Euler buckling load, ultimate load and the maximum load allowed by the proposed 
stability check are also given in these figures. The Euler buckling load given is the numerical Euler 
buckling load and the stability check is also based on the numerical Euler buckling load. 

IPE 140 

·· · Euler buckling load 

lTitimate load 

Maximum load allowed 
by stability check 

L 

-------+ dz 

R=7m, L=lOm 

F 

1
,0 

" 

------+ dz 

IPE 100 R=7m, L=lOm 

IPE 180 R=7m, L=lOm 
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IPE 220 

Feuo 

IPE 330 

F 

j'°'" 
1 •SOC 

IPE 500 

------. dz 

R=7m,L=l0 

----- dz 

R=7m,L=10m 

------ dz 

R=7m,L=10m 
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-----+ dz 

IPE 270 R=7m, L=lOm 

------+c1z 

IPE 400 R=7m,L=10 

............ •,>•<•••••••• .. •••<»+>,,><, H••••••••••••,«• .. ••••+• .. ••••••••••••• .. •• .. •••••••••••>••• 

F4000 

r,,00 

I ,,oo 

IPE 600 

-----dz 

R=7m, L=lOm 
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IPE 100 

p"'° 

1
,000 

"'" 

600 

IPE 100 

F 

r 
' 

IPE 100 

------+ dz 

R=7m, L=l.2Sm 

------ dz 

R = 7m, L = 3.Sm 

------ dz 

R= Sm, L =lOm 
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----- dz 

R =7m, L = 2.Sm 

------ dz 

R =7m, L = Sm 
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· · · · · · · · · · · · · · · Euler buckling load 

M 

· ·· ··· ·· - · Ultimate load 

Maximum load allowed 
by stability check 

L 

------- dz 

IPE 140 R=7m,L=l0m 

M 

1'°°" 

I"'° 

IPE 220 

-------. dz 

R=7m,L=l0m 
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-------+dz 

IPE 100 R=7m,L=l0m 

------- dz 

IPE 180 R=7m, L=l0m 

-------dz 

IPE 270 R =7m, L =10m 
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Maooo 

1 
ecoo 

4000 

----- dz 

IPE 330 R=7m,L=10m 

------+ dz 

IPE 600 R =7m, L =lOm 
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R=7m,L=10m 
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IPE 100 
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I"'° 

2000 

1500 

------- dz -------dz 

R =7m, L =1.25m IPE 100 R =7m, L =2.Sm 

------ dz ------- dz 

R =7m, L =3.Sm IPE 100 R=7m,L =Sm 

------ dz 

R=Sm,L=lOm 
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E. DIANA FILES 

Some DIANA files are given in this appendix. The data file is the file of the standard arch with 
profile IPE 100* and a radius of 7 meters and a length of 10 meters. The linear command files is 
given and the Euler file for loadcase I. The last command file is the file with the 5 first steps of the 

non-linear analysis. 
For the three command files the output files are also given. The tabular file of the Euler analysis is 
given additional to show that the arch buckles out-of-plane. 

E.1 Data file 

FEMGEN MODEL : IPEl00 
'COORDINATES' 

1 4.586111E+03 
2 4.083125E+03 
3 3.582700E+03 
4 3.087390E+03 

656 7.248005E+03 
657 6.782776E+03 
658 6.306340E+03 
659 5. 82112 5E+03 
660 5.329608E+03 
661 4.834295E+03 

'ELEMENTS' 
CONNECTIVITY 

1 CQ40S 1 34 
2 CQ40S 2 35 
3 CQ40S 3 36 
4 CQ40S 4 37 

195 CQ40S 606 636 
196 CQ40S 607 637 
197 CQ40S 608 638 
198 CQ40S 609 639 
199 CQ40S 610 640 
200 CQ40S 611 641 

201 Ll2BE 299 331 
202 L12BE 331 288 
203 L12BE 288 310 
204 Ll2BE 310 33 
205 Ll2BE 33 246 
206 L12BE 246 224 
207 Ll2BE 224 267 
208 L12BE 267 235 
209 L12BE 171 203 
210 Ll2BE 203 160 
211 Ll2BE 160 182 
212 Ll2BE 182 11 
213 Ll2BE 11 118 
214 L12BE 118 96 
215 L12BE 96 139 
216 L12BE 139 107 
217 Ll2BE 612 642 
218 Ll2BE 642 602 
219 Ll2BE 602 622 

1.758122E+03 
l.740193E+03 
l.686408E+03 
l.597041E+03 

l .133988E+03 
1.307646E+03 
1. 44 7 654E+03 
l.553298E+03 
1.624040E+03 
1.659521E+03 

2 45 
3 46 
4 47 
5 48 

607 647 
608 648 
609 649 
610 650 
611 651 
278 321 

.000000E+00 

.000000E+00 

.000000E+00 

.000000E+00 

2.750000E+0l 
2.750000E+0l 
2.750000E+0l 
2.750000E+0l 
2.750000E+0l 
2.750000E+0l 

13 55 
14 56 
15 57 
16 58 

12 
13 
14 
15 

617 656 616 
618 657 617 
619 658 618 
620 659 619 
621 660 620 
289 661 621 

44 
45 
46 
47 

646 
647 
648 
649 
650 
651 

* I 
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220 Ll2BE 
221 Ll2BE 
222 L12BE 
223 Ll2BE 
224 L12BE 
225 Ll2BE 
226 Ll2BE 
227 Ll2BE 
228 L12BE 
229 L12BE 
230 Ll2BE 
231 Ll2BE 
232 Ll2BE 
233 Ll2BE 
234 Ll2BE 
235 Ll2BE 
236 Ll2BE 
237 Ll2BE 
238 Ll2BE 
239 Ll2BE 
240 L12BE 

DATA 
I 1-200 I 1 

MATERI 
I 1-200 I 1 
I 200-240 I 

GEOMET 
I 1-20 I 1 
I 101-120 /1 
I 21-100 /2 
I 121-200 /2 
I 201-216 /3 
I 217-232 /4 
I 233-236 /5 
I 237-240 /6 
'MATERI' 
1 YOUNG 

POISON 
YIELD 
YLDVAL 

2 

622 3 62 
3 62 562 
562 542 
542 582 
582 552 
492 522 
522 482 

482 502 
502 342 
342 442 
442 422 
422 462 
462 432 
11 54 
54 22 
22 75 
75 33 
342 382 
382 352 
352 402 
402 3 62 

2.1E5 
0.3 

VMISES 
235 

February 98 

:HARDIA 235. 0.001119 
STRAIN 

300. 50. 
HARDEN 

2 YOUNG 2.1E5 
POISON 0.3 

'GEOMET' 
1 THICK 4.1 

FLAT 
2 THICK 5.7 

CYLIN 4585.5 -5288.9 0. 
3 ZAXIS -1.1532109 -1.0000 

CROSSE 200 
INERTI 1. E6 l. E6 0.lE-7 

4 ZAXIS 1.1532109 -1.0000 
CROSSE 200 
INERTI 1. E6 l. E6 0.lE-7 

5 ZAXIS -1.1532109 -l. 0000 
CROSSE 200 
INERTI 1. E6 1.E6 0. lE-7 

6 ZAXIS -1.1532109 -1.0000 
CROSSE 200 
INERTI 1. E6 

'DIRECTIONS' 
1 1.000000E+00 
2 0.000000E+00 
3 0.000000E+00 

4 1.1532109 
5 -1.1532109 
6 0.0000000 

'DATA' 

1 NGAUS 2 2 5 
'SUPPORTS' 

l.E6 0. lE-7 

0.000000E+00 
l.000000E+00 
0.000000E+00 

1.000000 
1.000000 
0.000000 

0. 0. l. 
0.0000 

0.000 

0.0000 

0.0000 

0.000000E+00 
0.000000E+00 
1.000000E+00 

0.000000 
0.000000 
1.000000 
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*2 

*3 
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I 352 I TR 5 6 *4 
I 22 I TR 1 2 3 
I 11 54 75 33 342 382 402 362 / TR 3 

'LOADS' 

CASE 1 *5 
ELEMEN 
I 11-20 I 

EDGE ETAl 
FORCE -lE-3 
DIRECT 2 

111-120 I 
EDGE ETAl 
FORCE -1.5E-3 
DIRECT 2 

CASE 2 *6 
NODAL 

11 FORCE 4 10.604454 
33 FORCE 4 -10.604454 
342 FORCE 5 10.604454 
362 FORCE 5 -10.604454 
CASE 3 
NODAL 
12 FORCE 3 1 

:prestress 

CASE 4 *7 
ELEMEN 

/ 1-10 I PRESTR -20 -20 -20 107 235 235 235 107 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 :J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

/ 101-110 /PRESTR -20 -20 -20 107 235 235 235 107 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 11-20 /PRESTR -235 -235 -235 -107 20 20 20 -107 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 111-120 /PRESTR -235 -235 -235 -107 20 20 20 -107 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

/21-60 / PRESTR -165 -165 -165 -165 0 0 0 -165 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

/ 121-160 /PRESTR -165 -165 -165 -165 -165 -165 -165 -165 00000000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 61-100 / PRESTR 165 165 165 165 165 165 165 165 00000000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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/ 161-200 /PRESTR 165 165 165 165 165 165 165 165 00000000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

/ 21-60 / PRESTR -20 0 
0 0 
0 0 
0 0 
0 0 
0 0 

/ 121-160 I 
PRESTR -20 0 

0 0 
0 0 
0 0 
0 0 
0 0 

/ 61-100 /PRESTR 20 0 
0 0 
0 0 
0 0 
0 0 
0 0 

161-200 
PRESTR 20 0 

0 0 
0 0 
0 0 
0 0 
0 0 

'END' 

COMMENT 
* I Beam elements to prevent deformation of the cross section at the end of the arch. 
*2 Direction tangent to the arch in the left support. 
*3 Number of integration points in in the two directions in the plane of the shell and over the 

depth of the shell. 
*4 Support conditions 
*5 Loadcase uniform compression 
*6 Loadcase uniform bending 
*7 Residual stresses 

E.2 Command files 

Command file for linear analysis 
*FILOS 

INITIA MA=lOOOOO 
*INPUT 
*ELASSE 
*ELMAT 
*LOADS 
*ORDER 
*SOLVE 
*POST 

LAYOUT 
CHARAC SI=15 
MODEL.0 

* I 
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END LAYOUT 

SELECT 
ELEMENTS ALL/ 
END ELEMENTS 

END SELECT 

OUTPUT GRAPHI FI="FRA" 
DISPLA GLOBAL 

END OUTPUT 

:SELECT 
: NODES/ 12-22 55-64 352-361 392-401 / 
:END SELECT 

:OUTPUT TABULAR 
DISPLA TOTAL TRANSLA GLOBAL Z 
DISPLA TOTAL ROTATI GLOBAL X 

:END OUTPUT 
*END 

COMMENT 

February 98 

1 * Specifies the layout of the output graph. 

*2 

*3 

2* Generates an output graph with the global displacements of the arch. 

3* Generates an output file with the global translations and the global rotations 

Command file stability analysis 
*EULER 

OUTPUT TABULA 
DISPLA TRANSLA 

END OUTPUT 

EXECUTE 

STRESS ELASTI CA=l 

MODES NM=l 

NODISP 

IMPERF.B (1) 9.171 

PERFOR SUBSPA NT=5 MI=30 
END EXECUTE 

OUTPUT GRAPHI FI="eul" 
DISPLA GLOBAL 

END OUTPUT 
*END 

COMMENT 
1 * Loadcase 1 from the linear analyses is considered. 
2* Number of eigenvalues to be calculated. 
3* No influence of displacements. 

*l 
*2 
*3 
*4 
*5 

*6 
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4* The imperfection for the non-linear analysis is defined here. The maximum deformation is 

scaled to 9.171. 
5* Specifies the subspace iteration: 5 trial vectors and a maximum of thirty iterations 
6* Generates an output graph with the buckling shape of the arch. 
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Command file non-linear analysis 

*NONLIN 
INITIA 

ANALYS PHYSIC GEOMET 
USE 
END USE 

OPTION TANGEN 

START STRESS.I (4) 1. / 

END INITIA 
LOADING 

LOAD ( 1 ) : ( 1 ) 1 . / 
END LOADING 

February 98 

* I 

*2 
*3 

SELECT *4 
NODES 12 6 17 / 
NODES 12 17 21 357 353 / 

ELEMEN 10 20 30 40 50 60 70 80 90 100 101 111 
121 131 141 151 161 171 181 191 / 

INTPNT ALL/ 
NODES ALL/ 

END ELEMEN 
END SELECT 

OUTPUT NEUTRA 
DISPLAY GLOBAL 
STRESS TOTAL CAUCHY INTPNT 

END OUTPUT 

SELECT 
NODES 12 6 17 / 

END SELECT 
OUTPUT TABULA 

DISPLAY GLOBAL 
END OUTPUT 

SAVE STEPS 5 / 
EXECUTE LOAD(l) STEPS 

SIZE 3.A (5) / 
SIZE 4. (2) 2. (4) / 

PERFOR.A NEWTON REGULA MI=30 

NORM ENERGY CONTIN CO=l.E-4 
END EXECUTE 
*post 
model eye=lOOOOOO 1000000 1000000 
end model 
output graphi nonlin FI="plot" 
displa global SC=l 
end output 
*END 

COMMENT 
* I Indicates that the analysis is geometrical and physical non-linear. 
*2 Use a tangent stiffness method. 

*5 

*6 

*7 

*8 
*9 

TUE-Report 
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*3 Indicates that the analysis starts with initial stresses, the loadcase is defined in the dat file. 

*4 Selection for output for a neutral file. 
*5 Selection for output for a tabular. 
*6 Save step 5, from which the analysis can be continued. 

*7 Defination of the number of steps and the step size. 

*8 Use a Newton-Raphson iteration. 
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*9 Specifies the convergence criterion 

E.3 Output files 

linear analysis output file 

1: *FILOS 
2: INITIA MA=l00000 

FILOS FILE INITIALIZED 
MA= 100000 DI= 300 BF= 

3:*INPUT 
1024 2048 

0 

/DIANA/DC/ST33 13:23:06 
4:*ELASSE 
5:*ELMAT 
6: *LOADS 
7: *ORDER 
8: *SOLVE 
9: *POST 

10: LAYOUT 
11: CHARAC SI=15 
12: MODEL.O 
13: END LAYOUT 
14:SELECT 
15: ELEMENTS ALL/ 
16: END ELEMENTS 
17:END SELECT 
18: OUTPUT TABULAR 
19: DISPLA GLOBAL 
20: STRESS TOTAL CAUCHY 
21: END OUTPUT 
22:OUTPUT GRAPHI FI="FRA" 
23: DISPLA GLOBAL 
24:END OUTPUT 
3 6: *END 

$$$$$$$ $$$$$$$$ 
$$$$$$$$$ $$$$$$$$ 
$$ $$ $$ 
$$ $$ $$ 
$$ $$ $$ 
$$ $$ $$ 
$$ $$ $$ 
$$ $$ $$ 
$$$$$$$$$ $$$$$$$$ 
$$$$$$$ $$$$$$$$ 

.00-CPU 

$$ 
$$ 

$$$$ 
$$$$ 

$$ $$ 
$$ $$ 

$$$$$$$$ 
$$$$$$$$ 

$$ $$ 
$$ $$ 

8192 16384 32768 

. 00-IO 20.-FA 

$$$ $$ $$ 
$$$$ $$ $$ 
$$$$ $$ $$$$ 
$$ $$ $$ $$$$ 
$$ $$$ $$ $$ $$ 
$$ $$$ $$ $$ $$ 
$$ $$ $$ $$$$$$$$ 
$$ $$$$ $$$$$$$$ 
$$ $$$$ $$ $$ 
$$ $$$ $$ $$ 

BEGIN 

**************************************************************************************** 
**************************************************************************************** 

1 

*** FEMGEN MODEL : IPEl00 

**************************************************************************************** 
**************************************************************************************** 
*** DIANA RELEASE 6.2 LATEST UPDATE: Tue Oct 15 07:09:35 MDT 1996 
**************************************************************************************** 

/DIANA/IN/CO30 
/DIANA/IN/MA30 
/DIANA/IN/GE30 
/DIANA/IN/DA30 
/DIANA/IN/DI3 0 
/DIANA/IN/ EL3 0 
/DIANA/IN/LO30 
/DIANA/IN/SU30 
/DIANA/IN/CF30 
/DIANA/EA/IT30 

13:23:13 
13:23:14 
13:23:14 
13:23:15 
13:23:15 
13:23:16 
13:23:17 
13:23:18 
13:23:18 
13:23:19 

ELEMENT-TYPE DATA READY: HE= 

.57-CPU 
1.26-CPU 
1.28-CPU 
1.32-CPU 
1.34-CPU 
1.37-CPU 
1.81-CPU 
1.92-CPU 
1.94-CPU 
1. 96-CPU 

240 NE= 

. 93-IO 
1.04-IO 
1.13-IO 
1.26-IO 
1.35-IO 
1.49-IO 
1. 65-IO 
1. 77-IO 
1. 89-IO 
2.00-IO 
240 MD= 

375.-FA 
419.-FA 
463.-FA 
507.-FA 
551.-FA 
595.-FA 
641.-FA 
687.-FA 
732.-FA 
773.-FA 

40 

BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 

115 
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/DIANA/EA/ID30 13:23:20 2.15-CPU 2.10-IO 821.-FA 
ELEMENT DATA EVALUATED HE= 240 
NODE-ELEMENT CONNECTION TABLE EVALUATED 

/DIANA/EA/BC30 13:23:36 8.06-CPU 3.08-IO 916.-FA 
SYSTEM BASES GENERATED NB= 1322 NN= 661 MT= 2 
BOUND. COND. EVALUATED NS= 13 NT= -1 ND= 13 

/DIANA/EA/AT30 13:23:37 8.47-CPU 3.35-IO 1002.-FA 
SYSTEM D.O.F. GENERATED: ND= 3425 
ELEM.TRANSF.MAT. STORED: HE= 240 MC= 43 MV= 55 

/DIANA/EM/ST30 13 :23 :41 9.83-CPU 3.99-IO 1160.-FA 
ELEM. STIFFNESS STORED HE= 240 SF.ELSTIF 

/DIANA/EM/RE30 13:23:51 17.41-CPU 4.92-IO 1296.-FA 
/DIANA/LO/LV30 13:23:51 17.45-CPU 4.98-IO 1337. -FA 

RHS-VECTORS INITIALIZED: ML= 4 ND= 3425 SF.RHSIDE 
EXTER. LOAD INITIALIZED: ML= 4 ND= 3425 SF.EXTLOD 
CONST.DISP. INITIALIZED: ML= 4 ND= 3425 SF.DISCON 
STRESS LOAD INITIALIZED: ML= 4 ND= 3425 SF.SIGLOD 

/DIANA/LO/FI30 13:23:52 17.47-CPU 5.11-IO 1403.-FA 
ELM. FORCES TO RHS-VECT: NV= 4 ML= 240 SF.RHSIDE 

/DIANA/LO/N030 13:23:54 17.95-CPU 5.80-IO 1806.-FA 
NODAL LOADS TO RHS-VECT: NV= 4 NL= 0 SF.RHSIDE 
NODAL LOADS TO EXT.LOAD: NV= 4 NL= 0 SF.EXTLOD 

/DIANA/LO/EL30 13:23:54 17.98-CPU 6.01-IO 1879.-FA 
ELEMENT LOAD TO RHS-VECT: NV= 4 SF.RHSIDE 
ELEMENT LOAD TO EXT.LOAD: NV= 4 SF.EXTLOD 

/DIANA/LO/WE30 13:23:56 18. 37-CPU 6.56-IO 2025.-FA 
/DIANA/LO/DF30 13:23:57 18.41-CPU 6.64-IO 2067.-FA 
/DIANA/LO/RL30 13:23:57 18.43-CPU 6.76-IO 2114.-FA 

INC. INITIAL STRAIN/STRESS LOAD ADDED TO RHS-VECT: NV= 4 
/DIANA/LO/LV30 13:24:04 22.83-CPU 7.65-IO 2497.-FA 

SUM OF EXT.LOAD TO CALC: ML= 

SUM OF EXTERNAL LOADS: 

4 ND= 3425 SF.EXTLOD 

BEGIN 

BEGIN 

BEGIN 

BEGIN 

BEGIN 
BEGIN 

BEGIN 

BEGIN 

BEGIN 

BEGIN 
BEGIN 
BEGIN 

SF.RHSIDE 
BEGIN 

LOAD SET TR X TR Y TR Z RO X RO Y RO Z 
1 -.7314D-03 -.9172D+Ol .OOOOD+OO .OOOOD+OO .OOOOD+OO -.4206D+05 
2 .OOOOD+OO .OOOOD+OO .OOOOD+OO .OOOOD+OO .OOOOD+OO .1283D-02 
3 .OOOOD+OO .OOOOD+OO .lOOOD+Ol .1711D+04 -.4586D+04 .OOOOD+OO 
4 .OOOOD+OO .OOOOD+OO .OOOOD+OO .OOOOD+OO .OOOOD+OO .OOOOD+OO 

/DIANA/OR/NR30 13:24:05 22.97-CPU 7.84-IO 2611.-FA BEGIN 
NESTED DISSECTION: MBAND= 644 PROFILE= 65686 

/DIANA/SO/GE31 13:24:06 23.26-CPU 8.02-IO 2667.-FA BEGIN 
DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 

FLOPS= 38064029. PROFIL= 422599. ( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .61405D+OO HD= .24499D+l2 
/DIANA/PO/WR30 13:24:31 32.88-CPU 10.65-IO 3499.-FA BEGIN 

TABULA file lin.tb OPENED 
PICT.COORD. STORED ...... NN= 661 

GRAPHI file FRA012.pic OPENED FOR: DISPLA TOTAL TRANSL 
GRAPHI file FRA013.pic OPENED FOR: DISPLA TOTAL TRANSL 
GRAPHI file FRA014.pic OPENED FOR: DISPLA TOTAL TRANSL 
GRAPHI file FRA015.pic OPENED FOR: DISPLA TOTAL TRANSL 

/DIANA/DC/END 13:25:50 99.47-CPU 16.19-IO 4838.-FA STOP 

Euler analysis outputfile 

l:*EULER 
/DIANA/DC/ST33 13:26:00 .00-CPU . 00-IO 27.-FA BEGIN 

2: OUTPUT TABULA 
3: DISPLA TRANSLA 
4: END OUTPUT 
5: EXECUTE 
6: STRESS ELASTI CA=l 
7: MODES NM=l 
8: NODISP 
9: IMPERF.B (1) 9.171 

11: END EXECUTE 

CO/98.05 
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12:0UTPUT GRAPHI FI="eul" 
13: DISPLA GLOBAL 
14:END OUTPUT 
15: *END 

0 
$$$$$$$ $$$$$$$$ $$ $$$ $$ $$ 
$$$$$$$$$ $$$$$$$$ $$ $$$$ $$ $$ 
$$ $$ $$ $$$$ $$$$ $$ $$$$ 
$$ $$ $$ $$$$ $$ $$ $$ $$$$ 
$$ $$ $$ $$ $$ $$ $$$ $$ $$ $$ 
$$ $$ $$ $$ $$ $$ $$$ $$ $$ $$ 
$$ $$ $$ $$$$$$$$ $$ $$ $$ $$$$$$$$ 
$$ $$ $$ $$$$$$$$ $$ $$$$ $$$$$$$$ 
$$$$$$$$$ $$$$$$$$ $$ $$ $$ $$$$ $$ $$ 
$$$$$$$ $$$$$$$$ $$ $$ $$ $$$ $$ $$ 

**************************************************************************************** 
**************************************************************************************** 

*** FEMGEN MODEL : IPElOO 

**************************************************************************************** 
**************************************************************************************** 
*** DIANA RELEASE 6.2 LATEST UPDATE: Tue Oct 15 07:09:35 MDT 1996 
**************************************************************************************** 

1 

0 
0 

0 

0 

/DIANA/EM/KG30 13:26:01 .06-CPU .31-IO 
STRESS STIFFNESS STORED: HE= 240 SF.KGSTIF 

/DIANA/EI/EV30 13:26:14 10.83-CPU 1. 29-IO 
1 EIGENVALUES FOUND AFTER 4 ITERATIONS 

BUCKLING-VALUES: 
.26968D+02( 1) 
GENERALIZED MASS 
.32562D-02( 1) 
RELATIVE ERROR I IRI I I I IKxl I: 
.41434D-04( 1) 
EIG-VAL,FREQ,VEC STORED: ND= 3425 NV= 
EIG-VAL,FREQ,VEC STORED: ND= 3425 NV= 

/DIANA/NL/IV30 13:26:42 34.91-CPU 
DISP.-FIELD INITIALIZED 
ELEMENT-DATA INITIALIZED 

1 
1 

3.27-IO 

155.-FA BEGIN 

543.-FA BEGIN 

2362.-FA BEGIN 

/DIANA/SO/GE31 13:27:03 50.63-CPU 4.79-IO 2975.-FA BEGIN 
DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 

FLOPS= 38064029. PROFIL= 422599. ( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED : SO= .61408D+OO HD= .244980+12 
/DIANA/EM/KG30 13:27:25 59.48-CPU 6.97-IO 3418.-FA BEGIN 

STRESS STIFFNESS STORED: HE= 240 SF.KGSTIF 
/DIANA/EI/EV30 13:27:37 70.16-CPU 8.01-IO 3830.-FA BEGIN 

0 1 EIGENVALUES FOUND AFTER 4 ITERATIONS 
0 BUCKLING-VALUES: 

.26969D+02 ( 1) 
0 GENERALIZED MASS 

. 325570-02 ( 1) 
0 RELATIVE ERROR I I R I I / I I Kx I I : 

.46863D-04 ( 1) 
EIG-VAL,FREQ,VEC STORED: ND= 3425 NV= 
EIG-VAL,FREQ,VEC STORED: ND= 3425 NV= 

/DIANA/PO/WR30 13:28:04 94.32-CPU 
TABULA file euler.tb OPENED 

PICT.COORD. STORED ...... NN= 661 

1 
1 

9.92-IO 5677.-FA 

GRAPHI file eul004.pic OPENED FOR: DISPLA TOTAL TRANSL 
/DIANA/DC/END 13:28:09 97.96-CPU 11.04-IO 5786.-FA 

Part of the Euler tabular file with the global displacements 

Analysis type 
Mode nr. 
Buckling value 

EULER 
1 
2.697E+Ol 

BEGIN 

STOP 

117 
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Result DISPLA TOTAL TRANSL 
Axes GLOBAL 

Nodnr DtX DtY DtZ 

1 -4.072E-05 5.281E-03 9.999E-01 Point in the middle of the arch 
2 -4.106E-05 5.213E-03 9.876E-01 
3 -4.236E-05 4.997E-03 9.509E-01 
4 -4.492E-05 4.641E-03 8.908E-0l 
5 -4.899E-05 4. 161E-03 8.0BBE-01 
6 -5.459E-05 3.579E-03 7.069E-01 
7 -6.123E-05 2.918E-03 5.876E-01 
8 -6.736E-05 2.202E-03 4.539E-01 
9 -6.990E-05 l.456E-03 3.089E-01 

10 -6.357E-05 7.036E-04 l.564E-01 
11 -4.043E-05 -3.500E-05 .000E+00 

12 -4.161E-05 5. 114E-03 9.706E-01 Point in the middle of the arch 
13 -4.199E-05 5.050E-03 9.587E-01 
14 -4.323E-05 4.844E-03 9.231E-01 
15 -4.548E-05 4.505E-03 8.648E-01 
16 -4.875E-05 4.048E-03 7.852E-01 
17 -5.270E-05 3.491E-03 6.862E-01 
18 -5.633E-05 2.856E-03 5.704E-01 
19 -5.759E-05 2.168E-03 4.406E-01 
20 -5.283E-05 1.448E-03 2.999E-01 
21 -3.636E-05 7.189E-04 l.518E-01 
22 .000E+00 .000E+00 .000E+00 
23 -4 .251E-05 4.947E-03 9.414E-01 
24 -4.291E-05 4.887E-03 9.298E-01 
25 -4.408E-05 4.692E-03 8.953E-01 
26 -4.603E-05 4.369E-03 8.387E-01 
27 -4.850E-05 3.934E-03 7.615E-01 
28 -5.079E-05 3.403E-03 6.656E-01 
29 -5.142E-05 2.795E-03 5.532E-01 
30 -4.780E-05 2.134E-03 4.273E-01 
31 -3.575E-05 l.440E-03 2.908E-01 
32 -9 .141E-06 7.342E-04 l.472E-01 
33 4.043E-05 3.499E-05 .000E+00 
34 -4.079E-05 5.266E-03 9.968E-01 
35 -4.157E-05 5.123E-03 9.722E-01 
36 -4.346E-05 4.835E-03 9.237E-01 
37 -4.676E-05 4.415E-03 8.525E-01 
38 -5.162E-05 3.882E-03 7.602E-01 
39 -5.786E-05 3.257E-03 6.493E-01 
40 -6.452E-05 2.565E-03 5.224E-01 
41 -6.937E-05 l.831E-03 3.826E-01 
42 -6.830E-05 l.079E-03 2.334E-01 
43 -5.474E-05 3.315E-04 7.843E-02 
44 -4. ll 7E-05 5.197E-03 9.853E-01 
45 -4.152E-05 5.132E-03 9.731E-01 
46 -4.279E-05 4. 920E-03 9.370E-01 
47 -4.520E-05 4.573E-03 8.778E-01 
48 -4.887E-05 4.105E-03 7.970E-01 
49 -5.365E-05 3.535E-03 6.966E-01 
50 -5.878E-05 2.887E-03 5.790E-01 
51 -6.248E-05 2.185E-03 4.472E-01 
52 -6 .137E-05 l.452E-03 3.044E-01 
53 -4.997E-05 7 .113E-04 1.541E-01 
54 -2.022E 05 -1.750E-05 .000E+00 

634 1.502E-03 -3.087E-03 3.604E-01 
635 1.057E-03 -3.202E-03 4.920E-01 
636 6.957E-04 -3.311E-03 6.115E-01 
637 4.192E-04 -3.407E-03 7.160E-01 
638 2.223E-04 -3.487E-03 8.028E-01 
639 9.367E-05 -3.547E-03 8.698E-01 
640 1.707E-05 -3.584E-03 9.155E-01 
641 -2. 715E-05 -3.599E-03 9.385E-01 
642 4.447E-03 -4.163E-03 1. 676E-05 
643 3.521E-03 -4.667E-03 1.473E-01 
644 2.676E-03 -5.194E-03 2.910E-01 
645 1. 939E-03 -5.723E-03 4.275E-01 
646 l.327E-03 -6. 231E-03 5.535E-01 
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647 8.460E-04 -6.698E-03 6.658E-01 
648 4.907E-04 -7.106E-03 7.617E-01 
649 2.481E-04 -7.437E-03 8.389E-01 
650 9.686E-05 -7.681E-03 8.954E-01 
651 9.755E-06 -7.826E-03 9.299E-01 
652 5.353E-03 -5.955E-03 7.391E-02 
653 4.151E-03 -6.886E-03 2.198E-01 
654 3.083E-03 -7.833E-03 3.604E-01 
655 2.177E-03 -8.760E-03 4.970R-01 
656 1.445E-03 -9.632E-03 6.115E-01 
657 8.872E-04 -1.041E-02 7.160E-01 
658 4.907E-04 -1.l0BE-02 8.028E-01 
659 2.316E-04 -l.159E-02 8.699E-01 
660 7.729E-05 -l.195E-02 9.lSSE-01 
661 -1.173E-05 -1.212E-02 9.386E-0l 

Output file of step 1 and step 5, of the non-linear analysis 

l:*NONLIN 
/DIANA/DC/ST33 13:28:10 .01-CPU .00-10 27.-FA BEGIN 

0 

2: INITIA 
3: ANALYS PHYSIC GEOMET 
4:USE 
5: END USE 
6: OPTION TAN GEN 
10: END INITIA 
11: LOADING 
12: LOAD(!): (I) I./ 
13: END LOADING 
15: SELECT 
16: NODES 12 6 17 / 
23: END SELECT 
24: OUTPUT NEUTRA 
25: DISPLAY GLOBAL 
27: END OUTPUT 
29: SELECT 
30: NODES 12 6 17 / 
31: END SELECT 
32: OUTPUT TABULA 
33: DISPLAY GLOBAL 
34: END OUTPUT 
36:SA VE STEPS 5 / 
37: EXECUTE LOAD(I) STEPS 
38: SIZE 3 (5) / 
40: PERFOR NEWTON REGULA Ml=30 
41: NORM ENERGY CONT IN CO= I .E-4 
42: END EXECUTE 
43:*POST 
44:MODEL EYE=l000000 1000000 1000000 
45:END MODEL 
46:OUTPUT GRAPHI NONLIN FI="plot" 
47:DISPLA GLOBAL SC=I 
48:END OUTPUT 
49:*END 

$$$$$$$ $$$$$$$$ $$ $$$ $$ $$ 
$$$$$$$$$ $$$$$$$$ $$ $$$$ $$ $$ 
$$ $$ $$ $$$$ $$$$ $$ $$$$ 
$$ $$ $$ $$$$ $$ $$ $$ $$$$ 
$$ $$ $$ $$ $$ $$ $$$ $$ $$ $$ 
$$ $$ $$ $$ $$ $$ $$S $$ $$ $$ 
$$ $$ $$ $$$$$$$$ $$ $$ $$ $$$$$$$$ 
$$ $$ $$ $$$$$$$$ $$ $$$$ $$$$$$$$ 
$$$$$$$$$ $$$$$$$$ $$ $$ $$ $$$S $$ $$ 
$$$$$$$ $$$$$$$$ $$ $$ $$ $$$ $$ $$ 
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**************************************************************************************** 
**************************************************************************************** 
*** *** 
*** FEMGEN MODEL : IPEIO0 *** 
,f:** *** 
*********************************~'****************************************************** 
*********************************~'****************************************************~'* 
*** DIANA RELEASE 6.2 LATEST UPDATE: Tue Oct 15 07:09:35 MDT 1996 *** 
**************************************************************************************** 

/DIANA/NL/JN30 13:28:12 .13-CPU .49-10 221.-FA BEGIN 

ANALYSIS INCLUDES: 
( QUALIFIERS AND PARAMETERS CAN BE OVERRULED PER EXECUTION BLOCK) 

PHYSICALLY NONLINEAR BEHA VIOR: 
PLASTI NS= 10 TY= l.O00E-04 

GEOMETRICALLY NONLINEAR ALGORITHM: 
TOT AL LAGRANGE 

/DIANA/NL/L030 
/DIANA/NL/XQ31 

13:28:36 
13:28:36 

STEP I INITIATED: 

7.51-CPU 
7.57-CPU 

3.09-10 
3.21-10 

555.-FA BEGIN 
630.-FA BEGIN 

LOAD INCREMENT: LOADING( I) * 3.000E+00 
DECOMPOSITIONSIMULATED:MB= 360NQ= 34l2ND= 3425NG= 180 

FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .61408D+00 HD= .24498D+l2 
JN SEGMENT EXECUT:= NPLAST= 0 

STEP I : ENERGY NORM = 9.869E-02 TOLERANCE= I .000E-04 

DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .66l38D+00 HD= .24498D+l2 
IN SEGMENT EXECUT:= NPLAST= 0 

RELATIVE ENERGY VARIATION = 7.502E-0l CHECK= FALSE 

DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .60230D+00 HD= .244980+12 
IN SEGMENT EXECUT:= NPLAST= 0 

RELATIVE ENERGY VARIATION = 6.734E-02 CHECK= FALSE 

DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .60239D+00 HD= .24498D+l2 
IN SEGMENT EXECUT:= NPLAST= 0 

RELATIVE ENERGY V ARIA TJON 3.569E-05 CHECK=TRUE 

STEP I TERM INA TED, CONVERGENCE AFTER 3 ITERATIONS 
TOTAL LOAD FACTOR: LOADING( I)* 3.000E+00 

/DJANA/PO/WR30 13:31:45 165.85-CPU 18.50-10 3814.-FA BEGIN 
SEVERITY : WARNING 
TRACE BACK: POUTBL 
ERROR CODE: /DJANA/PO/WR30/000I 

TUE-Report 

CO/98.05 
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ERRORMSG.W: The se1ial number of the neutral file in which the model of 
the first phase of the analysis is stored is 0 18 and not 000. 

NEUTRA file nlq0 18.nf OPENED 
NEUTRA file nlq0 19.nf OPENED 
TAB ULA file nlq.tb OPENED 

/DIANA/FL/MA30 13:31:49 166.74-CPU 20.11-10 4000.-FA BEGIN 
/DIANA/NL/XQ31 13:31:50 166.76-CPU 20.20-10 4047.-FA BEGIN 

STEP 5 INITIATED: 
LOAD INCREMENT: LOADING( I) * 3.000E+00 

DECOMPOSITION SIMULA TED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .56850D+00 HO= .244980+12 
IN SEGMENT EXECUT:= NPLAST= 0 

STEP 5 : ENERGY NORM = 8.093E+00 TOLERANCE= I .000E-04 

DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED : SD= . I 0535D+0 I HD= .24498D+ 12 
IN SEGMENT EXECUT:= NPLAST= 0 

RELATIVE ENERGY VARIATION = 3.099E-0l CHECK= FALSE 

DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED : SD= .55736D+00 HD= .24498D+ 12 
IN SEGMENT EXECUT:= NPLAST= 0 

RELATIVE ENERGY VARIATION = 9.141E-02 CHECK= FALSE 

DECOMPOSITION SIMULA TED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599 ( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .59086D+00 HD= .24498D+l2 
IN SEGMENT EXECUT:= NPLAST= 0 

RELATIVE ENERGY VARIATION I .884E-04 CHECK= FALSE 

DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .5573ID+00 HD= .244980+12 
IN SEGMENT EXECUT:= NPLAST= 0 

RELATIVE ENERGY VARIATION = 7.397E-04 CHECK= FALSE 

DECOMPOSITION SIMULATED: MB= 360 NQ= 3412 ND= 3425 NG= 180 
FLOPS= 38064029. PROFIL= 422599.( 776854.) 
RMS= 149. 

DECOMPOSITION EXECUTED: SD= .5573ID+00 HD= .24498D+l2 
IN SEGMENT EXECUT:= NPLAST= 0 

RELATIVE ENERGY VARIATION I. I 93E-05 CHECK= TRUE 

STEP 5 TERMINATED, CONVERGENCE AFTER 5 ITERATIONS 
TOTAL LOAD FACTOR: LOADING( I)* 1.500E+0I 

/DIANA/PO/WR30 13:46:40 973.36-CPU 96.24-10 19920.-FA BEGIN 
NEUTRA file nlq023.nf OPENED 
TAB ULA file nlq.tb OPENED 
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/DIANA/FL/MA30 13:46:43 973.67-CPU 97.76-10 20086.-FA BEGIN 
CPITMS : WARNING : TTIME : NOT FOUND 
CPITMS : WARNING : TIME : NOT FOUND 
NONLIN STEP 5: SAVED ON /usr4/uscr/desx/desx5.ff 
/DIANA/PO/WR30 13:48:45 973.70-CPU 110.06-10 20393.-FA BEGIN 

TABULA file nlq.tb OPENED 
/DIANA/PO/WR30 13:48:53 973.88-CPU 111.02-10 20505.-FA BEGIN 

PICT.COORD. STORED ...... NN= 661 
GRAPH! file plot005.pic OPENED FOR: DISPLA TOTAL TRANSL 

/DIANA/DC/END I 3:49:07 977.86-CPU 112.48-10 20657.-FA STOP 

TUE-Report 
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