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Abstract

The project deals with the control of a laboratory-located MIMO process.
Two controllers are developed, namely a LQR controller (Linear Quadratic Regulator) and a
Robust controller.
To be able to develop a controller, a process model is estimated, which covers the main part of
this essay.

To perfoml any system identification and to implement any controller, a flexible-graphical
software program has been written, that easily perfonns the above tests.

Physical laws are used to derive a model structure, to overcome the problem of choosing the
correct model structure for model identification. This method is also known as physical
parameterized modelling. The model stmcture contains known and unknown parts that are
identified using a one-step-ahead prediction. A regularization technique is used, to restore the
ill-conditioned Jacobian, due to the poor influence of the identification parameters on the model
output.
An open-loop identification is perfonned of the final closed-loop system (including the
controller).
An open-loop identification of the closed-loop has been chosen, to take a closer look at c1osed­
loop identification and because the process is poorly damped.
A non-linear and a linear discrete process model are estimated. Because the non-linear model
cannot be used to develop our controllers, we use it as a way to test the derived model
structure.
The non-linear model is obtained by perfonning a direct identification. That means that the
process inputs are used as the identification inputs, instead of the reference inputs of the
closed-loop system.
The identification parameters of the linear model are retrieved from the identified closed-loop
model, by making use of the known controller model.
A Binary and Generalized binary noise signal is used as test-input signal. The a-priori
infomlation, needed to design these signals, is extracted from a calculated process model, were
a good guess is made of the identification parameters.
The estimated non-linear and linear model are validated by simulation, residual analysis and a
scalar error measurement, all of them indicating a small model error.

The LQR controller, used to perfonn the "closed-loop" identification is based on the above
calculated model.
With the estimated process model, a (new) LQR controller and a Robust controller are
developed, such that the closed-loop is asymptotically stable and that the perfomlance
requirements are met as good as possible.
The perfonnance requirements consist of a (well-known) zero tracking error, small overshoot
and a "fast" step response with no actuator saturation.
The measured process outputs correspond to the states of our process model, such that no
observer is used. This results in a robust stability margin.
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The identification parameters have a physical significance, which can easily change through
changing, for example a process valve. The possible parameter uncertainties are well defined,
such that a robust controller is developed, that can deal with these uncertainties in an explicit
manner.
The fJ/ J-C. theory is used to develop our controller, such that we can guarantee pre-defined
controller objectives, regardless of the paranleter uncertainties.

The controller is calculated by assuming a full complex uncertainty matrix (unstructured
uncertainty), such that "simple" algorithms can be used to calculate the controller. This leads
to conservative results, as we are dealing with structured uncertainty, leading to a diagonal
uncertainty matrix. The conservatism results are reduced by keeping the dimensions of
structured uncertainty matrix as small as "possible". This can be achieved by choosing only
uncertain parameters (efficient parameters) that have a considerable influence on the output.
The regularization technique, used during identifications, is used to select the efficient
parameters.

An uncertainty state-space presentation is introduced, to fonnulate our robust controller
problem in a 1£ franlework. It handles uncertain parameters that appear in a state-space

presentation in an easy way, and can easily be implemented in Matlab by using the ,...-Analysis
and Synthesis Toolbox.

It is shown that the closed-loop perfonnance deterioration of both controllers is small in case
all uncertain parameters undergo a +20% parameter change. 111is is not that surprising, as
during identification we already noticed that most identification parameters have only little
influence on the process output, which was our motivation for using a regularization teclmique.

4



Contents

1 Introduction
1.1 Modelling and Controlling
1.2 Thesis Outline

2 Objectives and Process Description
2.1 Problem Formulation
2.2 Process Description

3 System Identification
3.1 Ingredients ofSystem Identification
3.2 Model Structures
3.3 Parameter Estimation
3.4 Parameter Calculation
3.5 Model Validation
3.6 Input Design
3.7 Pre-Processing ofData
3.8 Final Remarks

4 Controller Design
4.1 LQR Design
4.2 Robust Controller Design

4.2.\ Nominal Performance
4.2.2 Robust Stability
4.2.3 Robust Performance
4.2.4 Structured Singular Value

4.3 Final Remarks

5 Identification of the Process
5.1 Flexible Environment
5.2 Controller Design
5.3 Final Identification Preparations

5.3.\ The Identification Frequencies
5.3.2 Anti-Aliasing Filters
5.3.3 Input Design

5.4 Model Estimation
5.4.\ Pre-Processing
5.4.2 Parameter Estimation

5.4.2. J Non-Linear Model Estimation
5.4.2.2 Linear Model Estimation

5.5 Conclusion and Final Remarks

5

7
8

10

11
II
12

15
15
17
20
22
26
27
30
36

37
37
45
45
49
5\
54
57

59
60
63
66
67
70
74
79
79
82
83
88
93



6 Control of the Process
6.1 LQR Development
6.2 Robust Controller Development

6.2.1 Problem Fonnulation
6.2.2 Controller Calculation and Validation

6.2 Conclusion and Final Remarks

Bibliography

Appendices

A Identification Results
A.1 Mathematical Process Model
A.2 Flexible Environment
A.3 Results of the Closed-Loop Controllers
A..J Pre-Processing Results
A.5 Validation Results

B Controller Results
B.1 Return Difference Equality
B.2 LQR Controller Results
B.3 State-Space Uncertainty Presentation
B.4 Robust Controller Results

6

95
95
96
97

101
107

109

111

111
111
117
119
121
123

129
129
131
133
139



1

Introduction

The project deals with the development o/several controllers for a laboratory MIMO process.
Before any controller can be developed, identification is perfonned to extract process
information, which is needed for controller development.

This chapter states some basic decisions and their motivation, that are necessary before we can
start with our project. The ideas used are clear and simple, but not to say unimportant.
Identification consists of the making of several choices, like model structure and input signal.
After these choices have been made, a model can "easily" be estimated by using some
mathematical tools.
These choices need to be considered carefully, as the quality of the model depends highly on
them. The choices are based on prior knowledge of the process. See the thesis of De Vries
[Vri94b] for a good discussion on the use of prior knowledge.
The trend these days is to develop general flexible models where fewer prior knowledge is
needed, because it can often be difficult to obtain.
With the above reasoning it can be quite easily understood, why Identification Engineers often
speak about identification as being more an art than a science. This is exactly why this master
thesis isn't filled with a lot of mathematical equations to make our decisions. Rather, we often
use logical reasoning to come up with decisions whose accuracy, we can check later, using our
estimation results.
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Chapter 1 Introduction

1.1 Modelling and Controlling

To develop a controIler, some knowledge of the process to be controIled is needed. There are
many ways to represent this knowledge. The one most often used is the so caIled
"mathematical representation".
In this thesis, the knowledge is stored in a discrete dynamical mathematical model, which is
used to develop several controIlers, which results wiIl be compared.

The quality of the model depends highly on the demands put on the controlled process, on the
process characteristics and on the specific type of controIler applied.
The more accurate one wants to control the process, the more accurate one needs to store the
process knowledge.
Therefore it's important to specify the identification procedure from a controIler point of
view, by first specifying the controIler demands, or, in other words:

Let the modelling effort reflects the intended use of the model.

Our controIler demands are quite "simple":
..J a zero steady state error of the output signals, with a step response as input signal;
..J a "small" settling time;
..J an overshoot of no more than about 5 %;
..J actuator saturation is aIlowed.

AIl this asks for an "accurate" model.

The "knowledge representation" needed for the controIler depends on the type of controIler.
For example, with a robust controIler some uncertainty description may have to be determined.

There are two basic approaches to mathematicalmodeIling: white box modelling and black box
modeIling.
White box models are solely constructed from prior knowledge and physical principles without
any use of measurements from the system. For obvious reasons this methods is also referred to
as physical modelling.
Black box models are designed entirely from data using no physical insight whatsoever. The
model structure is chosen from families that are known to be very flexible and successful in
past applications. This means that the parameters do not have a physical meaning; they are
tuned just to fit observed data as weIl as possible.

Black box identification is sometimes used as a synonynl to system identification. However, a
much more convenient definition, and the one most commonly used, is that system
identification is the theory of designing mathematical models of dynamical systems from
observed data. We can use white box modeIling teclmiques and tune some of the physical
parameters. This method is also known as physical parameterized modelling and explained
in-depth in the thesis of Lindskog [Lin96]. Physical parameterized modeIling also implies that
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Chapter I Introduction

all identification methods can be categorised to be on a scale, ranging from pure black box to
white box.
The motivation of Lindskog for physical parameterized modelling is that real engineering
applications are never that "black", which means that we are always able to collect some
process infonnation, which can be used in our identification procedure.
In practice this process infommtion is often discarded with the thought: "we won't loose that
much". By using general flexible structures it's hoped that such infomlation is captured by
tuning the parameters. However the price paid for flexibility is usually that many parameters
must be estimated, hereby violating another basic identification principle:

Do not estimate what is already known!

The above discussion on modelling is our main reason for using physical parameterized
modelling. Use is made of physical insight to come up with an appropriate model structure in
state-space structure. In this way a compact MIMO state space model is put forward, with
only a few parameters to be estimated. Because we only need to estimate a few parameters,
these will show a smaller variance than when a general flexible black box structure is chosen.

The process under study is non-linear. Physical parameterized modelling is able to estimate
non-linear models in an "easy" way. TIle only problem we have is that most of the control
methods, like the one we are going to use, are only able to cope with linear models.

There is chosen for an open-loop identification of the closed-loop, to
- investigate "close-loop identification", as "most" industrial processes already use feedback;
- the process is poorly damped, as it has it's poles "close" to the imaginary axis, which
makes it difficult to manage the process during open-loop identification (a practical issue)

It may sound somewhat confusing when we speak about an open loop-loop identification of the
closed-loop, to estimate a process model. While in fact, we are perfonning an closed-loop
identification. So we if we speak about the closed-loop identification, we mean that we are
identifying a process model by perfomling an open-loop identification of the closed loop.

After the identification is perfonned and the required models are estimated, two controllers will
be developed, namely a robust and a LQR controller.
There is chosen for a robust controller because the position of the valves, as part of the process
(fig 2.1), can easily be changed and cause uncertainty in the parameters.
TIle LQR controller shows some robustness properties (chapter 4), when no use is made of an
observer to estimate the states. For this reason a LQR controller is developed, because the
process states fonn the measured process outputs.

The software tool Matlab 4.2c, with the required toolboxes and Maple V 2.0a, will be used to
perfonn our identification and to develop the controllers.
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Chapter I Introduction

1.2 Thesis Outline

In the next chapter we will start with stating our objectives and a description of our process
under study.
In the chapters three and four a comprehensive treatment of some identification, and controller
design subjects are outlined.
In chapter five and six, the outlined theory is used to perfonll our identification and develop
several controllers.
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2

Objectives and Process Description

We will begin this chapter by formulating our original objectives.
Next, a description of the process will be given, and a white box model of the process will be
derived. A non-linear and a linearized model structure will be derived and used during our
identification procedure, which is described in the next chapter.

2.1 Problem Formulation

In the introduction we already pointed out our final objectives and some basic choices,
concerning these objectives. However, in this section, we will formulate our original objectives.

The process we wish to control, is described in detail in the next section. The process is
approximately time-invariant and non-linear. It has two control signals (the inputs) and three
outputs, which are the water levels, see figure 2.1. in the next section.

The problem formulation is as follows:
Identify a process model with conventional techniques, like the ones described in [Lju87] and
use this to design two controllers, namely a LQR and a Robust controller.
The controllers need to control the water levels in the outer colunms.

11



Chapter 2 Objectives and Process Description

2.2 Process Description

The laboratory-located process was developed by the Gernmn company Amira, who also has
developed a software program, with Borland C++, to control the process.
The acquisition card for collecting data, which is mounted in the computer, is also made by
Amira. The acquisition card, DAC6214 uses 12 bits for D/A and AID conversion. Amira also
offers an adapter card, which is an extension to the converter card, concerning interrupt
generation for real-time operation. However, this extension is not present in our configuration,
which means that all real-time functions have to be implemented with software.

Figure 2.1 shows a clear view of the inputs (UI and U2) and outputs (hi, h2 and h3) of the
process.
We will derive a non-linear and a linear model structure, which describe the input-output
behaviour.
In appendix A.1 a mathematical process model is derived. In this section, only the final results
are given, that is, a non-linear and a linearized model structure. Also, an interpretation of the
parameters can be found in the same appendix.

a

1 3

r
2

'--_---, ,-___ Q,; L----,.---rQ3~ '--_---, ,- __

lQIL ~ 1Q3L

Figure 2.1: the laboratory-located process under study.

The non-linear model (appendix A.1):

h(k) =0 N·f!N(k -1)
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Chapter 2 Objectives and Process Description

Qr..r (k-i) contains the manipulated output and input samples up to time index k-i; the regression
vector.
The parameters in Otv are easy to estimate and keep their physical meaning. That is, usually we
have to include a reparameterization, through which we cmmot uniquely substitute back and
determine the original parameters which contain the physical meaning. See, for example
[Lju87], exan1ple 5.1 on page 130.

The linear model (appendix A.i):

(2.2)

where:

Or in state space:

xp(k + 1) = Ap,dXp(k) + Bp,dU(k)

h(k) =Cp,dxp(k)

where:

The indexes p and d refer to the Discrete Process model.
The interpretation of the symbols can be found in appendix A.i.

(2.3)

(2,4)

(2,5)

The values of the parameters in the matrices have to be estimated by performing an
identification.
The position of the zeros (in the matrix entries) and the parameters are easily verified by a
closer look at the derived process model, using our knowledge of the process, For example, if
we look at the first element in the vector xp(k+ i), which is equal to hj(k+ i), we can see that
this only depends on hj(k) (the integration), h3(k) (direct cOimected colunm) and Uj(k) (the
water input).

The non-linear model has to give us a better description of the real process, The only problem
is that we cannot use it for developing a controller with the techniques we are going to use. But
the non-linear model can help us to validate (give more confidence ) our chosen model
structure. Also can it be used in the final stage of controller design, to validate its perfom1ance.

13



3

System Identification

This chapter gives a brief introduction to the field of parametric system identification. We start
by stating the problem in section 3.1 and focus mainly on the choice of model structure in
section 3.2. Section 3.3 and 3.4 address basic teclmiques for parameter estimation and
calculation. Some general methods for model validation are presented in section 3.5.
A special section, section 3.6, is dedicated to the input design, because we can only see proper
system dynamics if we apply a careful chosen input signal (you don't get what you don't ask).
We are not treating any "special" close-loop concepts, as we perform an open-loop
identification of the closed-loop system, and extract a process model with knowledge of the
controller.
The presentation is far from complete, but the purpose is merely to introduce concepts, ideas
and algorithms, which are used in subsequent chapters.

More comprehensive treatments of system identification are given, for example in Soderstrom
and Stoica [Sod89] and in Ljung [Lju87]. Furthermore one can find a detailed treatment of
data pre-processing in the PhD thesis of Backx [Bac87].

3.1 Ingredients of System Identification

System identification is highly iterative in nature and is made up from three main ingredients:
data, the model structure and the selection criterion, all of which include choices that are
subject to personal judgements.

The data ZN : To estimate models we first need to collect data. Let ZN be a data colunm
vector, containing all inputs and outputs in one row, used for identification:
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Chapter 3 System Identification

ZN =[z(1) z(2) .. zeN) r E 91Nx
(P+nJ),

where T indicates the transpose operation.
For a system with p outputs and m inputs:

where time index k is equal to iT with i = 1..00 .

(3.1)

(3.2)

It is of course crucial that the data reflects all important features of the underlying system. The
excitation signals u(t) must be carefully chosen so that the system dynamics clearly show up in
the outputs y(t).

The model structure f1: One of the most difficult decisions in identification, if not the most
difficult, is the model structure selection. Roughly speaking, the problem can be divided into
three subproblems:
..J the first one is to specify the type of model to use. This involves the selection between linear

and non-linear structures, between black box, grey box and physically parameterized
approaches, and so forth;

..J the next issue is to decide the size of the model set. This includes the choice of possible
variables and combination of variables to use in the model. It also involves fixing orders
and degrees of the chosen model types, usually to some interval. Once these two issues are
settled one has in principle determined a model set f1* over which the search for a model
can be carried out. However, one problem is that f1* can be much too large, although by
using prior structural information, it can often be reduced significantly;

..J the last item to consider is how to parameterize the model set, so that the estimation
algorithms have a good chance of finding reasonable parameter values.

Assuming that the members of f1* can be parameterized by a finite-dimensional parameter
vector e E Dn c !Jldxl, one particular model corresponding to e is denoted f1 (8). The model
structure to which such a model belongs is defined by the mapping

(3.3)

We will usually not use this theoretic system notation, but instead denote the family of
candidate structures by

/\

y(k,8) =g(k, 8, rp(k, 8)) , (3.4)

/\

where y(.) accentuates that the function g() is a predictor, that is, it is based on signals that are

known at time k. The predictor structure is ensured by the regressor <(J(k, 8), which maps
output signals up to the index k-1 (y(k-1) ) and input signals up to index k (u(k) ) to an r­
dimensional regression vector:

rp(k,8) =rp(y(k -1),u(k),8) E91'x,.

16
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Chapter 3 System Identification

The selection criterion VN (O,ZN): measured and model outputs never match perfectly in
practice, but differ as:

f\

&(k,B) =y(k) - y(k,B) , (3.6)

where &(k, B) is an error term reflecting unmodeled dynamics on one hand and noise on the
other hand. An obvious modelling goal must be that this discrepancy is "small" in some sense.
The purpose of the selection criterion is precisely to give "small" a meaning by ranking
different models according to some pre-determined cost function (hence each model is assigned
a quality mark). The selection criterion can come in several forms, although we shall adopt
here a scalar loss function:

(3.7)

where l() is a positive scalar-valued function, typically chosen to be quadratic. In the case of
SISO systems this becomes O.5&2(k, B) and in the case ofMIMO systems: O.5&TA&.
With the matrix A one can weight the relative importance of the components in & ( ).

Once these three items are settled, we have implicitly defined the model search. It then "only"
remains to estimate the parameters () and to decide upon whether the model is good enough or
not. If the model cannot be accepted, some, or even all, of the entities above have to be
reconsidered; in the worst case one must start from the very beginning and collect new data.
Thus system identification is iterative and the (model acceptance) criterion shows personal
taste characteristics.

3.2 Model Structures

This section gives an overview of some common model structures.
The section only contains a brief overview, while a lot ofthe theory is very well known and can
be found in the books pointed out at the beginning ofthis chapter.

Linear Black Box Structures: linear black box modelling is based on the assumption that the
data originates from a system:

(3.8)

where q is the shift operator, and G o(q, ()o) and HO(q, ()o) are rational transfer functions, both
assumed to be proper and H o(q, ()o) additionally assumed to be monic and inversely stable.
Furthermore, the sequence (eO(t)} , t=1,2, ... ,N, denotes one particular realisation, which for
analysis purposes often is assumed to be white noise. In practice eO(t) is often taken as
Gaussian white noise.

17



Chapter 3 System Identification

By simply replacing eO(t) by (3.6) we get the one-step-ahead predictor (the predictor structure
follows as H°(-) is monic):

1\

y(k, BO) = (1- HO (q, BO)-I )y(k) + HO (q, BO r l GO (q, BO)u(k) . (3.9)

Because neither the parameters 0° nor the structures GO(-) and H 0(-) are known, these must be
searched for in the model structure:

g(k, B, cp(k, B)) = (1- H(q, Br l )y(k) + H(q, Brl G(q, B)u(k). (3.10)

What this leaves us with is the parameterization of G(-) and H(-), which is usually done by
using "some" process information. Several special cases of the structure of (3.1 0) (depending
on the choice of G() and H(-) ) have been so successful in past applications that they have
been given their own names. The most common are; FIR and ARX, which form a linear
regression OrfP(t), and OE, ARMAX and BJ which form a pseudo-linear regression OrfP(t, (J).

The general MIMO case, with m inputs and p outputs, can be covered by working with px m
pseudo-linear parallel regressions. However, for such multi-variable systems, it is often more
convenient to work with model structures with state-space innovation-form:

x(k + 1) = A(B)x(k) + B(B)lI(k) + K(B)e(k)

y(k) = C(B)x(k) + D(B)lI(k) + e(k)

with e(k) discrete white noise:
The corresponding one step predictor is given by (replacing e(k) by (3.6) ):

(3.11)

A A

x(k + 1) =(A(B) - K(B))C(B)x(k) + (B(B) - K(B)D(B))u(k) + K(B)y(k)
A A

y(k) = C(B) x(k) + D(B)u(k)
(3.12)

Notice that (3.11) is a more restricted structure than the one in [Lju87] (page 86), for where
the Kalman applies, but it is the same structure that Ljung uses in the identification Toolbox of
Matlab.
If all these matrices are filled with parameters it is rather easy to show that the above state
space structure is over-parametrized. That is, it involves more parameters than necessary to
describe the input-output behaviour of the true system, leading to more than one global
minimum. This has motivated the development of special structures (for example; controller
and observer canonical fomls), having fewer parameters.
McKelvey has shown that there are black box situations where a fully parametrized state
space structure is to be preferred to these tailed structured, mainly because of numerical
problems. See for example [KeI93].

Non-linear Black Box Structures: a lot of things become more complicated when we tum to
non-linear black box modelling.

18



Chapter 3 System Identification

This area isn't of direct importance to our work, but it calillot be left out of our small overview
of model structures.
The possibilities are enom10US in this area and we restrict our overview to just the basic
structure, from which many black box models follow. See [Lin96] and references therein for a
more complete overview.

Suppose that we have a non-linear MIMO system like (3.8):

y(k) = jO(t,BO ,y(k -l),u(k» + v(k), (3.13)

where.f() is some unknown non-linear function and v(t) an additive disturbance term.
Suppose further that the regression vector rp(t) has a predetermined number of terms. A
"natural" identification approach then is to try predictor structures of the following fom1:

n

g(k,B,rp(k» = 'Lajgj(rp(t),Pj,r),
j=!

(3.14)

where, sometimes with the abuse of notation, we call gl) a basis function. These are usually
rather simple and they all are typically of one single type. Furthermore, the basis functions
mean that each gl) essentially covers a certain part of the total regression space. This part is
specified by the parameters f3J and y;, where f3J is related to the scale or direction of the basis
function and Yi specify the position or translation of it. The remaining a;. parameter is a
"coordinate" parameter (weight), giving the basis function its final amplitude shape.
Depending on the basis function there are several classifications that can be made.
As an example, we would like to point out a well known non-linear black box model, the so
called neural network (jig 3.1), which have a basis function of the so called ridge type:

(3.15)

where k() is a function of one variable. Well known is the threshold function
k(x) =max(O.sign(x)).

Physically Parameterized Structures: physically parameterized model structures are solely
designed from physical insight and are customized for one specific application or for some
classes of applications.
The model description is fixed, often through quite a laborious procedure, it contains known
constants as well as unknown paran1eters. This also means that all introduced variables x(k)
have physical significance.
Since most laws of physical are time-continuous it is natural here to adopt the framework of
differential equations.
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Figure 3.1: neural network

Although we often start our work in this domain, the resulting model is sooner or later
converted into the time-discrete world. Before this, the gained relationships are often
summarized in a time-continuous state space form like:

.
x(t) =f(t,X(t),e,ll(t), vet))

y(t) =h(t,X(t),e,ll(t),e(t)),

where f(:J and g(:J are non-linear functions that, except for the parameter (), are known.

3.3 Parameter Estimation

(3.16)

Having determined what kind of model structure will be used, the next step is to use input­
output data to estimate the unknO\Vll parameters. These should be adjusted so that the
performance of the accepted model is optimal in some sense. To be able to make this decision
we must define a performance criterion. As a criterion function we use (3. 7) (scalar loss
function) and minimize this function, which indirect, results in a small average model error:

(3.17)

where "arg min" is the operator that returns the argument which minimises the loss function.
Equation (3.17) is a very important and well-known problem formulation leading to prediction
error minimization (PEM) methods.
We can consider two type of PEM algoritlmls. The first one deals with model structures were
the parameters enter the prediction model linearly and where (3.17) becomes a linear least­
squares problem. This problem can be solved analytically.
The second type deals with model structures where the parameters enter the prediction
structure non-linearly, were (3.17) can be solved by a non-linear least-squares technique.
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Non-linear Constrained Least-Squares: for many grey box problems it is known a priori
from the application which set of parameters values are feasible. Hence it is most natural to
use this insight to provide reasonable initial parameter values for the algorithms above.
However, nothing hampers this knowledge from being violated once the search is started. To
ensure an estimate with some physical meaning, we can include a parameter constraint.
The idea is as follows. The loss function (3. 7) is expanded with an extra term, which contains
the parameter constraints:

(3.18)

where pi is a positive scalar and a() is a barrier function. The barrier function is chosen so
that an increasingly larger value is added to the objective function as the boundary of the
feasibility function is approached from the interior; at the boundary itself this quantity is
infinity. cd-) contains the constraints of all the I parameters.

Spurious and efficient parameters: ill-conditioning of the Jacobian, which is propagated to
the Hessian approximation, is the main numerical difficulty in Newton type of search
algorithms. In identification this problem arises, for example, when the data ZN is not
sufficiently informative or when the applied model structure g(-) is "too" flexible, i.e., it is
over-parametrized.
A rank deficient Jacobian matrix is obtained if one or more of the columns of the I N contain
zero or almost zero entries only. It also occurs when some of the columns are linearly or near
to linearly dependent.
Zero columns occurs when the criterion function may exhibit flat valleys, which means that
these parameters hardly influence the model output in this search area. Linearly or near to
linearly columns of the Jacobian usually means that several parameters try to reflect similar
system properties.
Both cases mean that we are dealing with parameters that don't influence the criterion fit that
much. This observation suggests that the parameters should be divided into two sets: the set of
spurious and the set of efficient parameters. Since the spurious parameters do not improve the
fit considerably it is intuitively reasonable to treat those as constant that are not to be
estimated. Notice that this parameter decomposition often can be made quite arbitrarily. For
example, if the model structure is gO =(0/ + O})u(k-1) , then either OJ or O} can be regarded as
efficient.
The above situation can easily occur (less obvious) when using high flexible models. Such
excessive flexibility is found in most black box approaches, e.g., in structure (3.11), in neural
networks, in radial basis function networks, etc., while the problem is rarely encountered when
using physically parameterized structures. In general, physical insight can be used to reduce
the number of spurious parameters. For example, parameters in "flat" regions can be replaced
by constants.
The way to overcome the ill-conditioning problem and automatically unveil an efficient
parameterization are known as regularization techniques.
A regularizing effect can be imposed by adding a penalty term to the criterion (3.7):
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(3.19)

where j.J > 0 is a small user-tuneable row vector, ensuring a positive definite Hessian.
The regularizing effect is that a parameter, not affecting the first term that much will be kept
close to zero by the second term. This means that j.J can be seen as a threshold that labels the
parameters to be either efficient or spurious. A large j.J simply means that the number of
efficient parameters d becomes small.
Altering the criterion to be:

1 N

VN(B, ZJ =-"L)(&(k, B)) + J.l(B - B')', (3.20)
N 1=\

yields regularization towards B'. This is interesting, as B' can represent pnor parameter
knowledge.
There can be shown [Lju87] that, under mild assumption, the asymptotic misfit essentially
depends on two factors, that can be affected by the choice of the model structure. First we have
a bias error, which reflects the misfit between the true system and the best possible
approximation of it. Typically, this error decreases when the number of parameters d
increases. The other term is the parameter variance error, which usually grows with d but
decreases with N.
Thus there is a clear trade-off between the bias and the variance contributions. Suppose that a
flexible enough model structure has been decided upon. Decreasing the number of parameters
that are actually updated, by increasing j.J is beneficial for the total misfit as long as the
decrease in variance error is larger than the increase in bias error. In other words, the purpose
of regularization is to decrease the variance error contribution to a level where it balances the
bias misfit.
A statistical analysis, like an asymptotic expression for the covariance matrix of the
parameters, can be found in [Lju92] and [Kel93].

3.4 Parameter Calculation

This section describes how the linear least-square and non-linear least-square problem can be
solved, using fixed model structures.
A more in-depth treatment of the described methods, can be find in [Lin96], [Lju87], [Gra92]
and references therein.

Linear Least-Squares: when all parameters occur linearly one usually talks about a linear
least-squares problem. This is the case for the structures like FIR, ARX. In fact all structures
of the form ifcp(t), allowing linear as well as non-linear regression vector elements, belong to
this category.
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The optimal solution of (3.17) is found, when the gradient of (3.17), with respect to (), equals
zero, that is:

(3.21)

In case of a MIMO system with a quadratic criterion, (3.21) becomes (Lju87 page 179):

(3.22)

For numerical reasons, the inverse of [.] is rarely formed, but instead the estimate is computed
via QR-factorization or singular value decomposition (SVD), which both are able to handle
rank deficient regression matrices.

Non-Linear Least-Squares: when the parameters to be estimated appear in a non-linear
fashion, in the function to minimize. Typically all structures of the form (}T<p(t. B) belong to this
category.
Methods for numerical minimization of a function V(B), update the estimate of the minimising
point iteratively. This is usually done according to:

/\0+ 1) /\(i) (i)

B =B +af , (3.23)

where f (j) is a search direction based on infonnation about V(B) acquired at previous iteration,
and a is a positive constant determined so that an appropriate decrease of V(B) is obtained. Let
(}N E91 dx1

.

In this section we will pay especial attention to the detennination of fri)o Depending on the
information supplied to determine f(i}, numerical minimization methods can be divided into
three groups:
1. methods using function values only;
2. methods using values of the function Vas well as its gradient;
3. methods using values of the function, of its gradient, and of its Hessian (the second

derivative matrix).

The typical member of group 3 corresponds to Newton algorithms, where the correction in
(3.23) is chosen in the "Newton" direction:

(3.24)

with the gradient as:

(3.25)
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With J() E 91dxm being the Jacobian vector:

(3.26)

where m is the number of outputs.
Differentiating the gradient with respect to the parameters yields the Hessian:

(3.27)

The major computational burden lies often in the calculation of the Jacobian J(). One way
around this difficulty is to numerically approximate the derivatives by finite differences. For
example by a forward difference approximation with a perturbation vector hk ek:

(3.28)

with ek being a column vector with a one in the kth position and zeros elsewhere and with hk

being a small positive scalar perturbation.

As the first part of the Hessian can be fonned directly from the Jacobian, the part involving the
derivative of J() is generally rather expensive to compute. Therefore two classes of methods
can be recognised; those that try to approximate the second derivative and those ignoring it.
Here we focus on two methods, which fit in the latter category and hence second derivative
approximations will not be needed.
First we will point out the most simplest way of approximating the Hessian, used by the so
called gradient method.

Gradient method (steepest -descent): since the gradient itself points in a descent direction a
simple and robust idea is to replace the Hessian by an identity matrix of appropriate
dimension, thus avoiding the inverse completely. Hence/i) will become:

(i) A (i)

f = -I .V; (BN ) (3.29)

Although simple, one major drawback with the gradient method is that the convergence rate is
rather slow, close to the minimum when the function to be minimized has long narrow valleys.
A. Grace shows this in [Gra92], through an example.
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Gauss-Newton method: by neglecting the second derivative term of the Hessian, we get:

jli) =-[tJOJ(.yrv;(e~). (3.30)

Note that we left out the constant N in (3.30), which appears in (3.27), as this is just a constant
and can easily be included in a in (3.23)
Now suppose there exists a global minimum, such that &(k, B}=eo (k), such that E{&(k, B}}=O.
Then this value yields to a global minimum of E{VN(B)}. Close to the global minimum the
second term of Hessian will then be close to zero, since:

EoJOeo(k)=O Vk,
o()o

(3.31)

where ()o indicates the parameters in the global minimum. As a consequence: leaving out the
second term, will not take away too much of our 'good' convergence near the minimum, like
the gradient method does.
Moreover, by omitting the second term, the approximated Hessian is always assured to be
positive semidefinite. This makes the numerical procedure a descent algorithm and guarantees
convergence to a stationary point.
Even though the expression [.] in (3.30) is assured to be positive semidefinite, it may be
singular or close to singular. This is the case when the model is over-parametrized or the data
not informative enough. Then some numerical problems arise when calculating the inverse in
(3.30). Various ways to overcome this problem exists and are known as regularization
techniques. A well known technique is the Levenberg-Marquardt procedure. Other techniques
are the singular value decomposition (SVD) and QR-factorization, which were already
mentioned as a tool for solving the Linear Least-Squares.

Levenberg-Marquardt method: is able to deal with the singularity problems through:

(3.32)

where the approximated Hessian is guaranteed to be positive definite since 8 > O. Just like in
the case of the Gauss-Newton algorithm, the update is in a descent direction.

Notice that:

the Gauss-Newton method is also know as modified Newton-Raphson and Quasi­
Linearization;

- often the term damped is used, to indicate that a adjusted step size is used (a (i) in (3.23)).
For example the damped Gauss-Newton method. Adjusting the step size is done by a so
called line-search method, which we did not point out in this section.
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3.5 Model Validation

After estimation, the obvious question is whether the derived model is adequate for its intended
use or not. This is a subjective and overall hard problem of model validation.
To gain confidence in a model, the general advice is to employ as many validation tools as
possible, by using all available process information.
So it might be better to speak about model invalidation, as we are doing our best, searching for
some test, which our model will not pass successfully. If it passes the test, we will obtain more
confidence in our estimated model.
For example if the presented parameter represents the length of a rod it must at least be
positive. Test of this kind belong to the prior knowledge category, and are especially important
when the parameters have a physical meaning.
The overwhelming majority of methods, are based on experimental data. A basic test is to
investigate the variance of the estimated parameters. A high variance compared to the
parameters value indicates that something is wrong. Another useful method is to estimate
several models simultaneously parallel. The frequency response of a parametric model can for
example be compared to a non-parametric spectral estimate. This non-parametric model is not
very useful for developing a controller, but for validating in the frequency domain it serves as
a nice tool. Especially while it has a small bias and hardly depends on any prior knowledge,
which gives a high confidence level.
The most versatile validation tool for all categories is simulation. The true system and the
derived model are then fed with the same input signals, whereupon the measured outputs are
compared to the ones computed from the model. For afair comparison it is desirable here that
the experiments are based on fresh data, that is, data not used for estimation. This is known as
cross validation.
It is also often worthwhile to investigate the residual sequence s(~ (3.6), especially on new
data.
The often assumed "whiteness" (all process infonnation is captured by the chosen model
structure) of the residual sequence can be tested through the sample covariance

(3.33)

which for r > 0 should be "small", at least if N is large. Furthermore, the assumed
independence between the input and residual signals can be inspected by plotting

1 N+T 1\

R~'"(r) =- L c:(k,8N )u(k - r),
N k=mat(I,I+T)

(3.34)

for various time lags 1'. These should also be "small", since otherwise there is more
information in the output originating from the input, which means that there is still unrnodeled
dynamics present.

26



Chapter 3 System Identification

The significance of these tests can be seen by substituting (3.8) and (3.10) in (3.6), so that we
get:

(3.35)

It can easily be seen that both G o(q, () 0) and H o(q, () 0) are estimated correctly, if (3.33) is
small. Whereas (3.34), will only tell us if G o(q, ()o) is estimated correctly, that is, (3.34) will
be small, when the bias tenn G(~ - GO(~ is small.

3.6 Input Design

Because we haven't any restrictions on our input design, as with an industrial process, we are
left with a lot of freedom to carefully construct an input signal which is infonnative enough to
estimate a reliably model.
In this section we take a closer look at two methods for the construction of our input signal,
namely the Binary Noise and Generalized Binary Noise, which can easily be used in practice.

Input design has been a research topic for several decades, and various mathematically based
procedures have been developed to design an input signal. See the thesis of v.d. Klauw [Kla95]
and references herein for an overview.
Most mathematical ideas are based on reduction of the parameter variance.
Let us not forget that the model error consists of a bias part and a variance part, like equation
(3.35) indicates. The bias part is caused by wrong, or under-modelling (the true model cannot
be estimated in the chosen model set) and in practice, by the finiteness of the data. The
variance part or model uncertainty is caused by noise, acting on the process. It can be
influenced by changing the parameterization and by the test-input signal.
The drawback of most of the input design methods are that they are often not easy to use
within a reasonable amount of time in practice and depend on a lot of prior infonnation.

The amount of infonnation in the data depends on the experimental situation, which mainly is
detennined by the sampling time, the acquisition equipment and the input signal.
An experiment is informative enough if the data allows discrimination between any two
models in the chosen set.
Ljung shows that, in case oflinear model structures [Lju87]:
.,J an open loop experiment is informative if the test-input signal is persistently exciting;
.,J a quasi-stationary signal (u(k)} is persistently exciting of order n, if the frequency

spectrum t!Ju( VJ) is different from zero at at least n points in the interval -fr < (r) S fr.

As a consequence: a maximum number of n parameters can be estimated, when we use an
input signal u(k), that is persistently exciting of order n. It is thus sufficient to use n
sinusoids to identify an nth-order system.
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With the above two statements we can construct an experiment that is "infonnative enough" to
generate data sets that are "infonnative enough", which still leaves us with a lot of freedom.
This can, for example, be used to construct rtJu( w) so that the variance in the paranleters is
minimised by choosing some appropriate cost function.
The construction of the input signals in this section scarcely uses this freedom, but surely
satisfies the above requirements needed for an infomlative experiment and doesn't require a lot
of a priori knowledge.

Binary Noise (BN): a sequence that switches between two values (e.g., -I and I) with a non­
switching probability p = 0.5. The signal has equal power over the full frequency range up to
half the basic switching frequency, which is usually chosen so that we have equal power over
the whole frequency region of interest in which the system is located. So, every mode is
activated with the same amount of energy. The basic switching frequency is the fastest possible
switching frequency.
The amplitude of the input signal, often depends on the linearity of the process around the
working point.
As the basic sampling frequency detennines an upper limit, the length of the experiment
detennines the lower limit of the frequency area, which can be identified.
As discussed in [Bac89], the length of the identification data has to be chosen 5-10 times the
largest relevant time constant to allow reliable estimation of the process eigenvalues.

Advantages of a binary noise test signal in comparison to other test signals such as a
multisine:
- from an operational point of view, a BN signal is much more acceptable than a test signal

which has non-constant amplitude, such as an ensemble of sine wave signals or white noise.
In the process industry it is preferred that control engineers perfonn BN or step response
experiments since this type of disturbance is familiar to plant operators;
the approach doesn't call for detailed a priori knowledge like an optimal multisine wave;
optimal multisine wave signals concentrate their energy in, or in the neighbourhood of, the
natural frequencies, as this is most infonnative. However plant operators do not easily
accept such a concentration of energy at such "critical" frequencies.

BN is also know as Pseudo Random Binary Noise Sequence (PRBNS) and among others is
used in [Bac89] and [Lju87].

Generalised Binary Noise (GBN): a binary noise signal with a non-switching probability 0 <
p < I. The sequence has an extra free parameter p, which results in more required a priori
knowledge than a BN to detennine p.
This signal is introduced by Tulleken [TuI90] to overcome the serious shortcomings of BN in
conjunction with one-step-ahead predictor error estimators. Such estimators appear to give an
unfair advantage to higher-frequency components, as they only look one step ahead. By
changing the non-switching probability we can manipulate the frequency spectrum of the test­
input signal, such that most power is concentrated in the lower frequencies.
For controller design this is usually the most important frequency area.
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Alternatively the BN can also be used to put more energy in the lower frequencies by enlarging
the basic switching time T'= MT with M=2,3, ... The basic switching time is defined as the
smallest possible switching time.
An important drawback is hidden in the fact that we are not able to properly excite frequencies
higher than OJ =2rc1(MT), while the basic switching time is T'=MT. The continuous-time
spectrum of the M-fold conventional BN is I/(OJ)=MTsinc(wMTI2i [TuI90]. We are
confronted with gaps in our spectrums at frequencies: OJ =2krcl(MT) with k=I,2,3, ...On the
other hand any GBNhas it its gaps at more irrelevant frequencies OJ =2krclT.

In [TuI90] a method is developed to estimate the optimal p for a general SIMO ARMAX
system, where it is assumed: the number of observations are "large", so that {Uk} and {Yk}
become almost stationary stochastic signals, and an asymptotically unbiased estimator is used.
The optimal non-switching probability is estimated by maximising a cost function, which
contains the ARMAX parameters, which are not a priori known. After a process model has
been estimated, one can use this cost function to find a "better" input design, to estimate a
more accurate process model.

Tulleken developed guidelines for estimating a sub-optimal p, which he derives from Monte­
Carlo experiments with a second order process, with white noise added at the input and output.
Of course this is a restrictive choice but a significant amount of processes can be very well
approximated with second order dynamics. The guidelines are summarised in table 3.1 and are
calculated by solving a cost function numerically

Process type TITs P E{T}/rs
First Order 1/32 0.94 1/2
Sec. order min phase 1/25 0.8 1/5

osc. damped non-min phase 1/15 0.8 1/3
Sec. order min phase 1/20 to 1/10 0.9-0.95 1

over. damped non-min phase 1/20 to 1/10 0.9-0.95 1
Table 3.1: guidelines for sub-optimal p.

In table 3.1 we use Ts for the 99 % settling time and E{T} for the expected switching time
[TuI90]:

E{T}=~
1- P

(3.36)

If another basic switching time T has been chosen than the one corresponding to the third
column (TITs), p should be adjusted by using the last column together with (3. 36).
Note that we "only" need some knowledge about a step response (settling time, osc. damp) a
priori to estimate p.
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3.7 Pre-Processing of Data

This section describes techniques that have been developed to carry out various signal
manipulations to improve the modelling of a process after the input-output data has been
collected.
All polishing actions carried out on the signals, are directed to increase the ratio of relevant
information on the process dynamics to disturbances, blurring that information.
Just like the other sections it contains only an overview and a more detailed account can been
found in [Bac87] and [Lju87].

Pre-processing of the collected process data involves the following processing steps:
..J peak shaving;
..J trend determination and correction;
..J scaling and offset correction;
..J filtering;
..J delay time correction;
..J sample rate reduction.

Peak shaving: is required to reduce the effect of spikes (peaks due to e.g. loose contacts,
power failure, cross-talk between cables etc.) on measured process signals. In industrial
practice, spikes are often induced in the sensors and the long leads from the sensors to the
measuring equipment.
The amplitudes of the noise spikes may be very large compared to the actual signal range.
If these spikes are not removed from the signals, they may fonn an important part of the noise
energy. As a consequence the spikes can have a considerable influence on the ultimate model,
although they have no relation with the process itself. This a priori knowledge has to be used
for reducing the influence of the spikes which can be accomplished by using the following
signal processing procedure:
- clip the signal amplitudes to values never to be reached by the real process signals;
- compute a trend signal from the clipped signal;
- compute the standard deviation of the trend-corrected, clipped signal;
- interpolate all samples of the original signal that are outside a band defined by the trend

signal plus and minus a times the computed standard deviation, where a is chosen such that
no signal value exceeds the pemlitted signal range.

Trend correction: is generally required as measured process signals often show drifts or
variations of which the cause in most cases is known. In general not all process variables that
influence the output are selected as input for modelling purposes. These inputs that haven't
been selected can however, contribute to the changes in the output, which can be considered as
coloured white noise. They don't average out because of their low frequency behaviour and the
relative 'short' data length. As a consequence they have a bad influence on the estimation.
Mostly it is impossible to prevent drifts and slow variations during open-loop experiments, but
these drifts will eventually be compensated for, by the MIMO control system to be designed.
The trend can be removed by subtracting it from the data. It can be estimated with a
symmetric, non-causal, low-pass filter, as such a filter has no phase shift. The idea is to filter
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twice: once with a causal low-pass filter, which has negative phase shift, and a second time
with the corresponding anti-causal low-pass filter, which has a positive phase shift. The
average of the sum of the two filtered signals obtained, will not be shifted in phase.
Mathematically this can be expressed by

co -I 00

Ytr = "Lh;cy(k - i) + "Lh;QCy(k - i) = "Lh;y(k - i) , (3.37)
;=0 i=-oo i=-oo

where h Cand h QC are the impulse responses of the causal and anti-causal filters respectively.

Scaling and Offset correction: we want to describe the dynamic behaviour of the process in
its working point, so the offsets need to be subtracted. Especially in practice, these offsets can
be rather large compared to the signal changes, which could lead to loss of computational
accuracy.
In general not all inputs and outputs have the same order of magnitude. The numerical values
obtained are related to physical quantities which in general do not even have the same
dimension. The signal with the largest numerical value will automatically get the highest
weight in the quadratic criterion which is minimised in the estimation phase. As a consequence,
if no scaling takes place, the model obtained for the description of the process dynamics, will
be good for the input/output combination with the largest numerical values and bad for the
input/output combination with the smallest numerical value.
Scaling can best be done with respect to the power contents of the signals.
To make the power of all signals equal, first the average power of each signal is determined.
The average power of the dynamic part of the signal is equal to the variance of the signal.
To make the average power of each signal equal to one, each sample, after the offset has been
subtracted, is divided by its standard deviation, i.e. the square root of the estimated variance.
As a consequence all outputs will be equally important for the identification algorithms and the
relative accuracy of the various transfers will no longer depend on the signal amplitudes.
Let I u and 2; be the diagonal scaling matrices:

and the chosen model structure:

y(s) = C(s)u(s)

After scaling, we will estimate the transfer function G·(s):

(3.38)

(3.39)

y, (s) = C" (s)u, (s) with C(s) = L~'C"(S)Lu' (3.40)

So the original transfer function can be recovered by multiplying the estimated transfer with
the scaling matrices, as indicated in (3.40).

31



Chapter 3 System Identification

In case of a state-space presentation:

x(t) = Ax(t) + Bll(t)

y(t) = CX(t) + Du(t)

the estimated state-space model will be:

x(t) = Ax(t) + BOu(t)

y(t) = Cx(t) + DOll(t)

with

(3.41)

(3.42)

(3.43)

Filtering: has to prohibit aliasing effects caused by sampling and has to reduce the influences
of the disturbances on the measured process signals. On the other hand filtering on the data
may give rise to undesirable loss of relevant process data. Therefore the design of appropriate
filters is an important step.
The design of a filter is mainly govemed by the following constraints:
--J In the pass-band the filters are not allowed to have noticeable influence on the signal

characteristics. Therefore they need to have a flat frequency response.
--J The cut-off frequency of the filters has to be chosen high enough so that the filters don't

introduce a significant attenuation and phase shift at frequencies covered by the process
dynamics.

--J Disturbances at frequencies beyond the bandwidth of the process have to be removed as
much as possible in order to prevent problems caused by folding effects and to reduce the
influence of the disturbances.

Considering these constraints, we choose for a Lowpass Butterworth Filter (LBF), as it
guarantees a maximallyflat passband and it has an easy electric realization.
A digital LBF can easily be determined with, for example Matlab. The design of an analog
LBF asks for some extra work and will be treated in this section.
We will point out some of his properties and a design procedure, which makes it easy to
develop them. A more detailed discussing can be found in [VaI82].

An analog LBF is based on the connection of several second order transfers of the form:

(3.44)

with the same OJo's and different Q's, to get the desired rolloff in the transition band, as (3.44)
only has a rolloff of +20 dB per decade.
The frequency response of (3. 44) is maximal flat in the passband with a DC-gain equal to one.
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We then have to detennine the OJo's and Q's to meet our specifications. This can be
accomplished with the following design procedure:
1. specify the filter;
2. find the order n, which has to be an integer;
3. detennine OJo;

4. detennine Q;
5. realisation of an electric circuit.

1. Filter specification: The filter is often specified as done infigure 3.2.

transition
lE- band

-J-­
I

T01tnding
error

stopband
~

Wp Ws

e.! )

Figure 3.2: filter specification.

Where OJp , a max and OJ•• amin are used to specify respectively the passband and sperband.
Notice that a is calculated by [dB] =-20·logIH(s)l.

2. The order n: is detemlined with the following fonnula [VaI82]:

loa.,in llO
- I

log---­loa_IIo - In = -----"-""-----=-

CV
2Iog-'

cv
p

(3.45)

Because n will in general be a non-integer, it has to be round up, to make sure we meet our
specifications.
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3. Determination of OJo: A maximally flat passband is realised by making sure that all
derivatives of IHMI, near w=O, are zero. This is accomplished by choosing IH(s) I such that it
yields [VaI82]:

IH(s).1 = ----;===1==

l+(:J
where n indicates the amount ofLBF elements of the form (3.44).
From (3.46) we can obtain an expression for OJo:

OJ
OJ =-----

o (1oallo -ly" .

(3.46)

(3.47)

Depending on which frequency has to be met exactly (jig. 3.2), one uses OJ. or OJp in (3.47).
This difference in OJo is due to the rounding error in the order n . In figure 3.2 the effect of the
rounding error is indicated, when we are taking OJ. as exact point, that is, the filter response has
to go exactly throw OJ•.

4. Determination of Q: it can easily be shown that all n poles [VaI82]:
- lie in the complex, left half-plane, on a circle with radius OJo;
- are symmetric with respect to the real axis;
- are separated by the same angle.
As a consequences; the position of the poles are exactly know, when the order IS given.
Considering (3.44), the following expression for Q can be obtained:

0=--­
-I 2 cos !If;

(3.48)

with i= l..n and lj/; the angle between the negative real axis and the poles in the upper left half­
plane.
The parameters Q; only depend on the order and are listed in textbooks like in [VaI82].
Notice that (3.48) can also, easily be determined when we use the damping parameter q in
(3.44), instead of Q, which is more familiar in control theory. We know that q ;=cos lj/; and
Q=1/(29·

5. Realisation of an electric circuit: when OJo and all Q;'s have been determined, an
analog circuit have to be determined to implement our parameters.
There are several possibilities, which all use one op-amp (operational-amplifier) to realize
(3.44). The circuit we will use is shown infigure 3.3.
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Figure 3.3: realisation ofa LBF element.

With: c = 2Q .
I R'OJ o

c = I
2 2OJ oQR

(3.49)

Delay time correction: one is often confronted with the problem that the signals to be used for
process analysis and process modelling can only be measured with, sometimes significant, time
delays. For example when a temperature cannot be measured directly, but only from a certain
distance.
Time delays can easily be compensated by shifting the input and output relative to each other.
For a process with m inputs and p outputs, each output can show a delay in the response to
each input, so that finally m jJ different time delays may be found. However, the number of
delays that can be compensated by shifting the signals against each other is only m+p-1.
Time delays remaining after compensation, have to be estimated as part of the model, which
will increase the number of parameters that need to be estimated. More parameters will
decrease the expected accuracy of the parameters (increase of variance), as they have to be
estimated from the same data.
Estimation of the delays can be done with correlation techniques. One method is based on the
analysis of the cross-correlation between process input and output signals. For this purpose the
process under investigation is assumed to be ergodic. The input signal applied to the process is
assumed to be a stationary, white, inter-channel independent, zero mean noise sequence with
varIance:

E{UU T }=(J"21 p • (3.50)

Furthermore the input signal is assumed, not to be correlated with the output noise signal n(k).
The process response to an arbitrary input signal may be written as:

y(k) = L M;u(k - i) +n(k),
;=0

(3.51)

where M; form the Markov parameters.
The final cross-correlation between process output and input is then estimated to be [Bac87]:

(3.52)
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Consequently the cross-correlation function obtained will have the fonn of the impulse
response.
If the input signal doesn't match the required assumptions, the cross-correlation function is the
convolution of the impulse response with the auto-correlation function of the input. One can
also first filter the data by whitening the input as much as possible, as done by Matlab.

The time delays can be found from the cross-correlation function by looking for the beginning
of a sequence of values that differ significantly from zero. Due to the finite length of the data
sequence used for the computation of the cross-correlation function, the first elements of the
computed correlation function will not be equal to zero even if they present a pure time delay.

Sample rate reduction: to build in redundancy that may be used for signal processing, the
data is sampled at a frequency 5-10 times higher than the bandwidth of the process. For
example, filtering the data analog to overcome aliasing can be done better at a frequency much
higher than the process bandwidth. More accurate filtering can better be carried out digitally.
After all pre-processing has been carried out, one has to reduce the sample rate to the
frequency used for building the model. This operation is called decimation. Before decimation,
one probably has to filter the data (digitally) again to prevent aliasing.

3.8 Final Remarks

After the basic concepts of system identification have been described, which are needed to
estimate an "good" model, we can finally start with our identification in chapter 5.

A lot of literature has been devoted to the subjects described in this chapter. Therefore system
identification has often been described as an area crowed with seemingly unrelated ad-hoc
methods and tricks. However, as Ljung points out in his book [Lju87]; the underlying basic
ideas are really quite small, and that it is indeed quite possible to orient oneself in the area of
system identification with these basic ideas as a starting point. This is the reason why only
identification concepts were described in this chapter, which will be used as a starting point in
chapter 5.
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Controller Design

After an appropriate process model has been estimated, several controllers can be developed.
The basic concepts of the controllers, that need to be developed, are outlined in this chapter.
The first section explains the ideas of the LQR controller, which is also used to perform a
closed-loop identification.
In section 4.2 we explain the development of a robust controller based on the minimisation of

the systems oo-norm, which gives us the possibility to incorporate process uncertainties in an
explicit way.
Only an overview will be given, and in the corresponding sections, one can find literature
references for a more in-depth discussion.

4.1 LQR Design

A brief overview of the LQR concepts will be given. A more detailed treatment can be found in
[Dam96a], [And90] and [Fran94].

The LQR (Linear Quadratic Regulator) controller belongs to the family of the state-feedback
controllers, where the states of the process form part of the inputs of the controller.

A well known feature of these controllers is that they use more process information (the states).
Therefore, they can in general perform better then when only the process inputs and outputs
are used.
State-space design consists of four independent steps:
I. determination of the control law;
2. estimation of the states;
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Chapter 4 Controller Design

3. combining the estimator and the control law;
4. introducing the reference input.

The outputs of our process are equal to the process states, so step 2 and 3 are left out.

Determination of the control law: consider the following process:

x(t) =Apx(t) + Bpu(t) ,
y(t) =Cpx(t)

or in discrete fonn:

x(k + I) =Apx(k) + Bpu(k)

y(k) =Cpx(k)

(4.1.a)

(4.1.b)

where the time index k is equal to iT with i = 1..00 , with T indicating the sample time.
Notice that (4.1.b) doesn't indicate the discrete counterpart of (4.1.a), as they are using the
same symbols A, B, C, D to indicate a process.

The control law has the following fonn:

Xl (d)

x2 (d)
u(d) = K(d) "x(d) with K(d) =[Kl(d) K 2 (d) .. Kn(d)] and x(t)= , (4.2)

xn(d)

were the time index d can be either the continuous time index t or the discrete time index k.
Combining (4.1) with (4.2) yields:

or:

.
x(t) = (A p - BpK)x(t)

y(t) =Cpx(t)

x(k + I) =(A p - BpK)x(k)

y(k) =Cpx(k)

(4. 3. a)

(4. 3. b)

Note that no reference signal appears in (4.3), as the original regulator problem is to apply a
control signal u(t) such that the states x(t) are returned to zero as quickly as possible. In step
four, the reference input will be introduced.

For an nth-order SISO system, there will be n feedback gains, K" .. ,Kn . Since the system has n
poles, it is possible that there are enough degrees of freedom to select arbitrarily any desired
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pole location by choosing the proper values of K; (pole-placement problem), provided that the
state-space realisation of the process is controllable.
How do we choose the closed-loop pole locations?, or in other words; how do we find the
correct value for K; in (4.2). One approach is called optimal control, which minimises a cost­
function. LQR makes use of the following cost function (performance index):

I 'J I
J = - J(xT(t)Qx(t) +uT(t)Ru(t))dt +-xT(t)PJx(t)

2~ 2
with Q ~ 0, R > 0, P

J
~ 0

(4.4)

The matrices Q and Pf are symmetric, non-negative definite; and R is symmetric, positive
definite and are used to "tune" the performance requirements.

Note that the cost function is considered for continuous process models . However if we
consider discrete process models, like the ones given in (4.1. b), the integral will become a
summation and the time index t will indicate the discretization of the continuous time interval.

By means of R, Q, tf and Pf we can give different weightings to the cost of control and the cost
of deviation from the desired state. The choice of these quantities is more an art than a science.
We will restrict ourselves to linear time-invariant feedback control, where K isn't a function
of t. The so called time-invariant solution can be found by letting tf go to infinity. In this case
the matrix Pf no longer makes sense, while x(tJ} =0 for tf ~Gl?, such that it can be omitted.

Solving (4.4) in case tf ~Gl?, when dealing with a continuous process model [Dam96a]:

(4. 5. a)

where P is the (unique) symmetric positive definite solution of the Algebraic Riccati Equation:

(4. 5. b)

Solving (4.4) in case tf ~Gl?, when dealing with a discrete process model (Dam96a):

(4. 6. a)

where P is the (unique) symmetric positive definite solution of the Discrete Algebraic Riccati
equation:

(4. 6. b)

This leads to an asymptotically stable closed-loop system, while x(tf) =0 for tf ~Gl?, provided
that the process is stabilizable and detectable.
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In comparison with other techniques that find an appropriate K, LQR offers a convenient way
of including the control effort that is allowed. However, it doesn't allow explicit control of the
transient response.

Introducing the reference input: the state feedback K, as determined in the preceding part,
brings the states as soon as possible to zero. However, in practice, the output, which is a
function of the states, has to follow a certain reference signal, with a zero steady state error.
In [Fran94] two approaches are discussed for introducing the conunand input signal.
One method re-defines the old states. The LQR controller will then be developed to force the
state-error to become zero, instead of the states themselves. The state-error is the difference
between the measured, and the desired sate. The desired states reflect the desired outputs.
Knowledge of the desired states has to be available to ensure a zero steady-state error between
the output and the reference signal, which involves exact knowledge of the matrices Ap, Bp, Cpo
Dp , which is seldom available. As a consequence, we can say that the method is not very
robust, as a small process change will cause the steady-state error to be non-zero.
The above method has a feedforward control stmcture, whereas the following method has a
feedback stmcture and it doesn't make use of "any" process knowledge.

A common method for tracking signals is by introducing integral action into the controller.
New states are introduced to include the integral action, which will cause the steady state error
to become zero, without the need for process knowledge. In this section we will introduce direct
integral action, which causes the steady state error to become zero for step-wise inputs, which
are most common in practice.

Consider again (4.1.a) and introduce:

.
XI (I) =y(/) - r(t).

Thus the augmented process becomes:

[~.](/)]=[O Cp] [X](t)]+[ 0 ]U(/) + [-I]r(/),
x(t) 0 Ap x(/) Bp 0

and the feedback law:

[
X/I)]u(/) =[K, Kol .
x(t)

They will result in a control configuration as shown in figure 4.1
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r(t)

1
Aug1nented process

Process
x(t)

+/£""1 ~ I I I
,----------'

x(O
,,(0

K x,(t)

Figure 4.1: the augmented process.

Figure 4.1 corresponds (again) to the original problem formulation, for where the LQR
controller was developed, and (4.5) and (4.6) were derived.
The LQR controller is determined for the augmented process. However, the total controller
exists of the feedback gain K and the (included) integrator.
The signal e(t) can be seen as a state vector containing disturbances, reflecting the reference
signal, which need to be brought to zero.
The performance matrices Rand Q are used to "tune" the perfonnance requirements, such that
we choose the weighting matrix Q so, that only the states xlt) are weighted in (4.4) and not
x(t), as these are not the ones we wish to bring to zero!

When we are dealing with a discrete process model, we have to approximate the derivatives in
(4.7) This can be done with difference equations. For example by a ZOH approximation, like
also was used in appendix A.l :

(4.10)

Equation (4.7) then becomes:

Xl (k + 1) = Xl (k) + T(y(k) - r(k» (4.11)

Thus the augmented process yields:

(4.12)

and the feedback law:

u(k) = [K1
K ].[X/(k)].

o x(k)
(4.13)
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In [And90] some interesting features, concerning the robustness of the optimal time-invariant
regulator are dealt with, in case no estimator is used. We would like to point out two of these
features that concern the gain and the phase margin:
V when no estimator is used, to reconstruct the states, we are assured to have an infinity gain

margin in each loop, with a downside limit of 1/2 ;
V a phase margin of at least 60 degrees.

However, as they share the same properties, we shall only examine them for SISO systems, as
MIMO systems are more awkward to consider.
A more in-depth discussion of these properties and more, can be found in [And90].

We shall consider our fundamental open-loop system as given in (4.1.a), that is completely
controllable, observable and time-invariant. Let (4.4) be our performance index (cost function)
with tj+<XJ.

Then, the following will hold [And90]:

and

R + B~ (- jwI - A~ )-1 Q(jwI - Ap) -1 Bp =

[1 -B; (- jwI - A;) -1 KT JR[I - K(jOJI - A;) -1 Bp J'

[I - B; (- jwl - A;)-l KT]R[I - K(jwI - Ap)-l Bp] ~ R.

(4.14)

(4.15)

The inequality (4.15) is a simple consequence of (4.14), once it is recognised that N*QN is
non-negative definite, with Q non-negative definite and N arbitrary. The operator () * takes the
transpose and the complex conjugate of the matrix (). Equation (4.14) is known as the return
difference equality, and a proof is given in appendix H1.

For SISO systems (4.15) becomes:

(4.16)

Or in terms of the sensitivity function:

(4.17)

for all frequencies, as:

(4.18)
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The left side of (4.18) is known as the return difference, when the system is given as in.figure
4.2.

+,,,?~
~~ , x=Apx+Bpu 1-%_('_)--------i -K

Figure 4.2: the closed-loop part of the process with LQR
control.

Gain margin: we recall that the gain margin of a closed-loop system is the amount by which
the loop gain can be changed until the system becomes unstable.
The Nyquist plot is a curve in the complex plane, obtained from the complex values of -K(jOJI­
Apj-lBp , as OJ varies through the real numbers from minus to plus infinity.
Because of (4.16), the Nyquist plot of the closed-loop system avoids a certain region of the
complex plane, which is equal to a circle of unit radius centered at -1 +jO. That is, the distance
of any point on the Nyquist plot from the point -1 +jO is at least unity (fig. 4.3).
It is known that when a closed-loop system is multiplied by a constant factor fJ , it will
continue to be asymptotically stable if the Nyquist diagram -K(jOJI-Apy1Bpencircles the point­
1/fJ+jO a number of times counterclockwise, which is equal to the amount of unstable process
poles.
Consequently, asymptotic stability is guaranteed for all real fJ> Y2, as in this case the point
1/fJ+jO lies in the avoided circle.

/{
111 Nyquist pial 1\,

Figure 4.3: the avoided region by the
Nyquist plot .for a system with LQR control

Notice that we already showed that the LQR controller results in a stable system. In this case,
the Nyquist plot always encircled the avoided circle counterclockwise, a number of times equal
to the amount of unstable process poles.
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Phase margin: we recall that the phase margin is the amount of negative phase shift that must
be introduced (without gain increase) to make that part of the Nyquist plot, corresponding to {tJ

~ 0, pass through the point -l+jO.
The phase margin is determined from that point, or those points on the (tJ ~ 0 part of the
Nyquist plot, which are at unit distance from the origin.
As the system avoids the circle with unit radius centered at -1 +jO, the smallest phase margin
that can be constructed is 60 degrees. So the phase margin is at least 60 degrees.

The same results, referring to the gain margin and phase margin, hold for the MIMO case, in
each loop, provided that the weighting matrix R is diagonal. The only difference is, that
instead of (4.17), we obtain:

(4.19)

for all frequencies, where a is the largest singular value and Sand R can be found in
respectively (4.18) and (4.4).

Notice that:
- the robustness properties still hold for the augmented process. This can easily be seen by

taking a closer look at the proof of the return difference equation in appendix B.1. Hereby
keeping in mind that, the reference signal can be seen as an disturbance, influencing some
of the states and that the state matrices are expanded, due to the new introduced states;
in the case when an estimator is used, these features are lost. The more the process differs
from our estimated observer model, for reconstructing the states, the smaller the critical
circle becomes;
the robustness properties were derived in case of a continuous process model with a analog
controller.
Anderson also derives almost the same robustness properties in case of a discrete process
model with a discrete controller, which are about the same, depending on the sample time.
For example, there also exists an avoided circle, centered at -1+jO, with a radius, that is
equal to one when the sampletime approaches zero. However, the gain margin can never
approach infinity, as some system poles will be located outside the unit circle, centered at
zero, which forms the stability boundary.
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4.2 Robust Controller Design

With Robust control we mean that we want to develop a controller which can deal with pre­
defined process uncertainties in an explicit manner. That is, we can still guarantee certain
perfonnance objectives, regardless of these uncertainties. The perfonnance objectives can be
tested by analysing the systems co-nonn.
We will begin by defining our process under study and some of his properties. Next we will
look how these properties can be used to define our perfonnance objectives and how they can
be realised by making use of the systems co-nonn. We will focus our self on the basic ideas and
the problem fonnulation. A more detailed background can be found in books as [Zho96],
[Cla95]. and [Dam96b].

4.2.1 Nominal Performance

Lets us consider the control configuration as shown in figure 4.4.

disturbance

Y output
}-------,------7

7neasure7nent
noise

l------------------{2:~--

-------712:
reference

r

Figure 4.4: Simple control configuration.

we can derive the following:
y = T· (r - f.i) + S .d

e ;; r - y = S . (r - d) + T· f.i

u = R . (r - f.i - d)

(4.20)

with

T = PC(l + pcr'

S = (l +pcr'

R = C(l +Pcr1

(4.21)

Where T, Sand R are known as respectively the complementary sensitivity, the sensitivity and
the control sensitivity functions.
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Notice that:
for reasons of conveniently, we left out the function argument of the symbols in (4.20) and
(4.21);

the above expressions are also known as the output complementary sensitivity, the output
sensitivity and the output control sensitivity functions, as they are measured at the plant
output. We will, however, not make this difference.

From (4.20) it follows that:
" for a good disturbance error reduction, that is for r - d to affect e to the least extent, S

should be small;
" for a good measurement noise error reduction, that is for fJ to affect e to the least extent, T

should be small;
" for the "disturbances" r - d and the noise fJ to affect the control input u to the least extent, R

should be small.

From above it follows that T, Sand R should all be made small. However it can easily be seen
that the following holds:

S+T=I, (4.22)

which indicates that T, S and R can't be made small in the same frequency area, such that there
should be a sort of trade-off. Fortunately the spectra of the disturbances d are usually
concentrated at low frequencies, whereas the spectra of the measurement noise p is
concentrated at higher frequencies. Thus one may shape T and S, such that S(jm) is "small" at
low frequencies and T(jm) is "small" at high frequencies.
If both T and S should be small in the same frequency area, we could think of a two-degree of
freedom controller, making use of the feedback controller C (fig. 4.4) and a pre-compensator,
located at the reference input.
We would like to have a scalar measurement of the systems T, Sand R to be able to speak
about a "small" T (or S, R). For SISO systems we can easily use the maximum absolute value
of the complex frequency responses IT(jm) I, 1S(jm) I and IR(jm) I. For the MIMO case this is
not that straightforward. We could think about using the spectral radius p as a scalar
measurement:

peA) = m~xIAil,
I

(4.23)

where A.; are the eigenvalues of the matrix A. However the eigenvalues may give poor
indication of the "gain" of a transfer function, if the gain is measured as the 2-norm ratio of the
output y to the input u. See [Cla95] for a nice example, indicating this drawback..
We will use the ;1'rinduced norm as a scalar measurement, defined as:
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"Sup" stands for supremum. H(jw) is a stable transfer function matrix and ~2 is a nonned
space known a the Lebesgue space for continuous signals, defined as:

(4.25)

with u(t) E 9t ixJ a vector as function of time.

Let the :J-Cr, nonn of a stable transfer be defined as:

IIHL ~ sup a(HUw)) ,
OJ e!R

where a (~ is the largest singular value.
It then can be shown that [Dam96b]:

(4.26)

(4.27)

So a small T(jw) now means that IIT(jw) 1100 should be small, or in other words we need to
minimise :J-Cr,nonn, by calculating a correct stable controller C(s).

Weighting functions can be used to reflect the frequency area of interest. A typical
perfonnance specification for robust control is given as a weighted sensitivity function:

(4.28)

where WpJ and Wp2 denote the input and output weight respectively, as shown infigure 4.5.
The normalised input vector d' is assumed to belong to the Lebesgue space, which we defined
in (4.25) with their nonn bounded by 1.
The input weight WpJ is used to transfer the nonnalised inputs to the physical inputs. For
example, disturbances d are usually expected to have small amplitude at high frequencies.
Thus, if disturbance rejection is of primary interest a low pass filter would be a possible choice
for WpJ •

The output weight Wp2 is used to trade-off the relative importance of the individual errors in e
and to weight the frequency range of primary interest.
So the weighting function offers us a tool for specifying our input and output signals in a
physical set-up. However, in practice, the filters are often designed without any physical
background, concerning the input and output signals. They are adjusted until the desired
perfonnance is met.
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r y

Figure 4.5: Nominal performance problem.

The nominal performance objective is defined as follows:

Nominal Performance Problem: the nominal performance problem is, given the weighting
function WpJ and Wp2, to design a stabilising controller C(s) such that the cost function:

is minimised. Thus:

J = IIWp2 (s)S(s)Wpl (s)lloo (4.29)

C(s) = arg min 11~2 (s)S(S)~1 (s)lloo '
C(s) E 3,

(4.30)

where -.7s denotes the set of all stabilising controller. If a controller can achieve II Wp2 S WpJ 1100
< I, we say that the closed-loop system has nominal performance.
Problem (4.30) is a standard X problem which can be solved with well known techniques,
that are implemented in the Il-Analysis and Synthesis Toolbox [Ba193].

A very convenient way of formulating the nominal performance problem is by use of the 2x2
Block Problem Formulation, as shown injigure 4.6. The generalized plant N(s) contains the
nominal plant P(s) as well as the weighting functions to reflect the nominal performance
objectives. If set-point changes are of primary importance, d' may be replaces by a normalised
reference r '.

d' (s)

u(s}~

N(s)

e'(s}

- e(s}

~ C(s) ~
Figure 4.6: the 2x2 block nominal
performance problem.
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The transfer function from d' to e' is given by the linear fractional transformation (LFT):

e' = (NIl + N 12C(/ - N22Cr i N21 )· d'

=Wp2 (s)S(S)~1(s)· d'
(4.31)

where Ny are the matrix entries of the transfer function matrix N(s) in figure 4.6.
The above formulation of performance objectives is not restricted to "ordinary" sensitivity
problems. If, e.g. disturbances enter the loop not only on the output y but also on the input, or
even as an additional input to P(s), this will merely change the transfer matrix expression in
(4.28).

4.2.2 Robust Stability

We will now come to the main reason for choosing a J£, controller strategy. That is, the
possibility to incorporate pre-defined process uncertainties and to guarantee closed-loop
stability, as long as the process lies in the model set defined by the uncertainties.
The closed-loop stability under above circumstances is known as Robust stability and will be
explained in this section.

Let us assume that the process in figure 4.4 has an output multiplicative uncertainty, as
shown in figure 4.7. The uncertainty .d(s) is any stable transfer function.

1--'--------..:»1-------;.

Figure 4.7: process with multiplicative
uncertainty.

We can pull out the uncertainty block, with reference zero, as is done in figure 4.8. In our
example M(s) equals the complementary sensitivity T(s), but in general it depends on the type
of process uncertainty.
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6,(s)
w(s)

'--

'il__', IM(s) I
Figure 4.8: the closed loop,
with pulled out uncertainty.

We can guarantee robust stability, by making use of the famous small gain theory:
Small gain theory [Dam96b]: Suppose that the systems M(s) and /),(s) are both stable transfer
functions. Then the autonomous system detennined by the feedback interconnection offigure
4.8 is asymptotically stable if.

Using Schwartz equality it follows that:

'rIro (4.32)

It then can be proven that [Zh096], when:

(4.33)

(4.34)

where y is a positive constant, the feedback connection offigure 4.8 is asymptotically stable ij.'
and only if.

'rIro (4.35)

Usually two digital weighting matrices Wu1(s) and Wu2(s) are introduced, such that:

and II Li(s) II~ 51 V OJ .

(4.36)

Usually the input weight Wu1(s) is used to perfonn any necessary scaling and Wu2(s) is used as
a frequency weight to approximate the scaled a(~ (jw)). There is seldom any reason not to
choose Wuls) and Wu2(s) as diagonal matrices.
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The robust stability objective is thus, given e.g. an output multiplicative uncertainty
specification Wu2 ,d Wu1 , to design a stabilising controller C(s) such that the cost function:

(4.37)

is minimised. Thus:

C(s) = arg (4.38)

where 3.. denotes the set of all stabilising controller. If a controller can achieve II Wu2 T Wu111<.()
< 1, we say that the closed-loop system is robustly stable. Notice how the structure of the
robust stability problem (4.38) equals the structure of the nominal performance problem
(4.30). Consequently the robust stability problem may be fomlUlated as a 2x2 block problem
as well, as is shown infigure 4.9.

( )) S Z s

N(s)
u(s) ;------) - e(s)

'--- C(5) .;---

u( )

Figure 4.9: the 2x2 block robust
stability problem.

4.2.3 Robust Performance

The robust performance objective is derived from (4.29), with the nominal sensitivity S(s)

function replaced by the perturbed one S(s) due to process uncertainty:

(4.39)

The robust performance problem in figure 4.10, is obtained by combining figure 4.6 and
figure 4.9 and know as the NL1K formulation, where K is the stabilising controller.
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The robust perfonnance problem can be fonnulated as:

(4.40)

If:
(4.41)

for all Li(s)with II Li(s) II"" ~ I, we say that the closed loop system has robust performance.

As was already mentioned with the nominal perfonnance problem, the above fonnulation of
robust perfonnance is not only restricted to "ordinary" sensitivity problems.
If we include the controller infigure 4.10 in N(s) (seefig. 4.11), we can easily fonnulate the
robust perfonnance problem as an 2x2 problem and detennine the linear fractional
transformation (LFT) from d' to e'

1V(s)

d' (s)
N(s)

e' (s)
)

n I

C(s) I

Figure 4.10: the robust
performance problem.

Notice that the robust perfonnance condition (4.41) is similar to the robust stability condition

(4.35), when using a nonnalised process uncertainty II Li(s) II"" s 1. Hence we conclude: the
system Wp2 S WpJ satisfies the robust perfonnance condition (4.41) ifand only if it is stable for
a nonn bounded matrix uncertainty I1p , with II I1p II "" s 1. Thus by augmenting the uncertainty
structure with a full complex performance block I1p(s), the robust perfonnance condition can
be equivalenced with a robust stability condition. This is shown infigure 4.11.
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8:.p

8:.

w(s) z(s}
----:

N(C(s))
f----

d' (s) e'(s}

Figure 4.11: the 2x2 block
robust performance problem.

Let /!,,' (s) = diag{ ~ (s), ~p(s)} denote the augmented uncertainty matrix. Then the following
holds [Cla95]:
Assume that N(C(s)) and /!,,' (s) are stable transfer functions with II/!,,' (s) 1100 s 1. Then the
system N will satisfy the robust performance criterion ~f

IIN(C(s))II«> < 1, (4.42)

which is easily understood from the small gain theory ( (4.34) and (4.35) ). However, because
the structure /!,,' (s) is more restrictive, it is a sufficient condition only, That is /!,,' has a
diagonal structure, which is an element of the set that consists of all full complex uncertainty
matrices, for where the necessary condition applies.

Clearly robust performance implies both nominal performance and robust stability, such that
the latter ones imply a necessary condition for robust performance.
We may now formulate a X problem as:

C(s) = arg min IIN(C(s))t
C(s) e3,

(4.43)

If (4.42) holds, the closed-loop system will have robust performance. However since (4.42) is a
sufficient condition only, it may be arbitrarily conservative.

Figure 4.11 can be formulated as a 2x2 block problem:

[
Z(S)] = [Nll
e'(s) N 21

N 12 ] [W(S)]
N 22 d'(s)

(4.44)

An convenient way to check robust stability, nominal performance and robust performance is
the following:

robust stability: let II ~ (s) 1100 S 1, then the closed-loop plant is robustly stable if, and only if
(follows directly from (4.35)):

(4.45)
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nominal performance: without taking model errors into account (w = 0), nominal
perfonnance can be guaranteed if.

IINdl", < 1 (4.46)

robust performance: taking into account the model errors, the system is said to have robust
perfonnance if.

(4.47)

As mentioned before, we encounter two main limitations in connection with the :J-C, control
theory. Probably the most important one, is that we can only handle full complex uncertainty
structures ~(s) E en/xn/ non-conservatively in an :J-C, robustness test. The other main limitation
is that the robust perfonnance problem can only be considered conservatively evenfor full
complex uncertainty blocks, because perfonnance and robustness cannot be separated in the
:J-C, framework. The conservatism introduced, depends on the applied uncertainty model and
the condition number of the plant [Cla95]. We shall now give a short introduction to the
structured singular value )1, to overcome above limitations. That is, we will discuss a method
that take into account the diagonal structure of ~(s) and that can deal with (real) parameter
uncertainties.

4.2.4 Structured Singular Value.

In [Cla95] it is shown that (4.35) tums into a suj}lcient condition only, when we are dealing
with parameter uncertainties, which is easily understood when we realise that the scaled
parameter uncertainty set [-1;+1], is a more restrictive set than the earlier defined set
II fl' (s) 1100 s 1, for were the small gain theory applies. Because we are dealing with a more
restrictive uncertainty set, in general the sufficient condition (4.35) can be arbitrarily
conservative.
So we have to use some measure, which takes into account the diagonal structure of the
uncertainty, such that the "necessity condition" is "recovered".

Definition of the structured singular value:
Let M be a matrix M E en/xn/, then the positive real-valued function )1d is defined as:

(lkf) ~ 1
J.l 6

- min{(j"(~) I~ E \{',det(I - lkf~) = o} ,

where the structured set 'I' is defined as:

(4.48)
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which is the set of possible structured uncertainties. Notice that the full complex block il
(which can be a performance block) is of course just a special element of the above set '1'. The
positive integers ri, rj and k are used to specify repeated blocks and the full complex blocks
respectively.

When M is a transfer matrix, we can interpret 11j.1.,1(M(jw)) as the size of the smallest
uncertainty il(jw) which shifts the Nyquist plot of the transfer matrix M(jw) to the Nyquist
point -I at the frequency roo

Notice that:
..J the maximum singular value can be defined in the same way as (4.48) [Zh096]:

a(M) = 1
mill{a(~) I~ is ullstructured,det(l- M~) = o}

..J Equation (4.48) is equivalent to:

Ill'-. (M) = max p(M~),
I'-.e'l'

where p was defined in (4.23);

(4.50)

(4.51)

From (4.48) we can directly derive expressions for the robust stability problem and the
performance problem:
Let us define Fu(N(s), C(s)) ( the upper linear fractional transfomlation) as being the transfer
from w(s) to z(s) infigure 4.9 and il(s) E 'I' be the nonnalised uncertainty with Ilil(jro) 1100 < l.
The closed-loop system is robustly stable if and only if.

where

1111 A (Fu )1100 =sup 11 A (F;J
(J)

Notice that the left side of (4.53) is also is known as IlFu II".

(4.52)

(4.53)

We can formulate the robust performance as follows:
Let an :J-Cx, performance specification (normalised) be given on the transfer function from d' to
e' (typically a weighted sensitivity function), of the form:

IIFu (N(s), ~(s),C(s»t < 1

55

(4.54)



Chapter 4 Controller Design

Then FJN,LJ,C) is stable (robustly stable) and IIF,,(N,LJ,C) II~ < I (having robust performance)

V ~(s) E 'fI with II ~(j(j) II N < I if and only if.

.- (4.55)

where N(s) is the transfer function as indicated in .figure 4.11, and the perfonnance block is
just an element of ~(s).

With (4.55) we can test both robust stability and robust perfonnance in a non-conservative
manner. So perfonnance and stability conditions are now separated, much tighter uncertainty
descriptions may be given due to the diagonal structure on 'fI and non-conservative results are
provided for all uncertainty models.

't,.-

As we have shown above, f.l is a powerful tool for assessing robust stability and robust
perfonnance under structured and unstructured uncertainties. Unfortunately the computation of
J.1 is very difficult and yet an unsolved mathematical problem. However tight upper and lower
bounds for J.1 may be effectively computed for both complex and mixed uncertainty sets.
Algorithms for calculating the upper bound and lower bound are nowadays commercially
available in the Matlab Toolbox f.l-Analysis and Synthesis [BaI93].
We will not explain how the J.1-bounds are used to analyse and develop a controller. See
[Zh096] and [Cla95] for a detailed discussing. However, referring to the upper and lower
bound we like to notice that from (4.50) and (4.51) it is not difficult to see that:

p(M) ::; J-l t, (P) ::; a(P) (4.56)

However these bounds are insufficient since the gap between the upper an lower bound can be
arbitrarily large. Thus these must be tightened, which can be done through transfonnation on P
that do not effect J-l,lP).
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4.3 Final Remarks

The LQR controller has some useful robustness properties, when no estimator is used to
reconstruct the states. We gave an overview of two of those properties; the gain and phase
margin. An in-depth treatment was avoided, as we only want to make the reader aware of these
"useful" properties, which gives us motivation for the development of a LQR controller, as will
be done in the next chapter.
The robustness properties were derived for continuous process model with an analog controller
and for discrete process model with a discrete controller. However, how will these robustness
properties look like, when the discrete controller is implemented, that is controlling a
continuous process?
If the sample time will be small enough, compared to the system dynamics, we can probably
consider the whole system in the continuous domain (s-plane), such that the robustness
properties, like mentioned in section 4.1 will apply.
The LQR controller may show some robustness properties, but can't deal with pre-defined
uncertainties in an explicit manner, such as the :J-G, theory can. This was our main motivation
for applying the :l-Cx, theory to develop a robust controller.
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5

Identification of the Process

The theory outlined in chapter 3 will be used to identify a linear and non-linear process model,
of a non-linear process, which was described in chapter 2.

An open-loop identification is performed of the final closed-loop system (including the
controller) .
A non-linear and a linear discrete process model are estimated. Because the non-linear model
can't be used to develop our controllers, we use it as a way to test the derived model structure.
The non-linear model is obtained by performing a direct identification. That means that the
process inputs are used as the identification inputs, instead of the reference inputs of the
closed-loop system.
The identification parameters of the linear model are retrieved from the identified closed-loop,
by making use of the known controller model.
The estimated non-linear and linear model are validated by simulation, residual analysis and a
scalar error measurement.

There is chosen for a open-loop identification of the closed-loop, to
- investigate "closed-loop" identification, as a lot of industrial processes already use

feedback;
- the process is poorly damped, as it has its poles "close" to the imaginary axis, which makes

it difficult to manage the process during open-loop identification (a practical issue).

It may sound somewhat confusing when we speak about an open loop-loop identification of the
closed-loop, to estimate a process model. While in fact, we are performing an closed-loop
identification. So we if we speak about the closed-loop identification, we mean that we are
identifying a process model by performing an open-loop identification of the closed loop.
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Chapter 5 Identification of the Process

Before we collect any data and estimate a process model, which is done in section 5.4, we first
need to do some preparation, to be able to perform our identification. Basically, they consist of
- the development of a flexible environment, to be able to collect data (section 5.1);
- the development of a controller, to perform a "closed-loop identification" (section 5.2);
- some final identification preparations (section 5.3):

...J choice of the frequencies for model building, collecting data and controller calculation;

...J design of the anti-aliasing filter;

...J input design.

The chosen working-point (point of linearization) is hi = h] = 30 cm, which is half of the total
output range (0-60 cm). In industrial practice, the point of linearization depends on the use of
the process; that is, identification should be done in that part of the output range, which is most
interesting. However, because this information isn't available, we simply choose the working
point as half of the total output range. For the same reason, all valves (jig 2.1), are set
approximately half open.

5.1 Flexible Environment

To perform a closed-loop identification and to control the process, it is necessary to write some
software that can:
...J save some system data at a pre-defined sample rate, which will be used to estimate our

model;
...J use a pre-defined input signal;
...J control the process "properly" at a pre-defined sample rate, so that a closed-loop

identification can be performed;
...J show "some" process information on the screen.

The laboratory-located process was developed by the German company Amira, which has also
written some software with Borland C++, to control the process.
The acquisition card, for collecting data, which is mounted in the computer, is made by Amira.
The converter card DAC6214 uses 12 bits for D/A and AID conversion. Amira offers an
adapter card, which is an extension to the converter card. However, this extension isn't
available, which mains that all real-time functions have to be implemented with software.

Unfortunately, the software written by Amira, can't be used to perform the above tasks.
Mainly this is due to badly organised documentation, which is especially important with the
pre-compiled parts of the software. Therefore we can't even use parts of the software, apart
from the drivers.

New software has been developed with Borland, C++, version 3.1. The main features are
- saving system data at a pre-defined sample rate;
- use of a pre-defined input signal;
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- control of the process at a pre-defined sample rate, such that a closed-loop identification
can be performed;

- graphical representation of the input and output signals, with an automatic scaling option,
such that data trends can be observed in detail;

- possibility to choose different controllers.

The software has the following structure:
" a main file (*.c);
" header file (* .h). Contains among others, all function definitions and declaration, used by

the functions present in the function file;
" function file (*.c). Contains all functions written by the developer;
" Borland library files;
" CoolTimer file (*.c), responsible for the real-time functions. It handles the PC-timer

progranuning and is know under the name CoolTimer, written by Bobby Z;
" driver file (* .c), which contains the acquisition drivers, necessary for communicating with

the acquisition card, written by Amira.

In [Bra97b] one can find a listing of the program.
It will go to far to discuss the software in detail. However we like to point out some
"important" details:
- the software is written with the ANSI-C norm in graphical mode. So no use has been made

of the object-orientated possibilities that Borland offers;
- the software is written for PC's, that are able to support 640x480 pixels with 16 colors

(VGAHI);
- the real-time functions, which are called in the interrupt service routines, cannot contain all

possible C-functions when we are using CoolTimer. For example the command printj
cannot be used in a real-time function. For this reason we used arrays to realise our buffers,
as the C-function malloc (and more) isn't allowed. This function is used when working with
dynamic data structures, to allocate memory;

- the buffers are used to:
" save data to file;
" plot data on screen;
" read the input data from file.

The buffers are used by the real-time functions, in the interrupt servIce routines,
because:
I. we cannot include all C-function in the real-time functions;
2. to obtain flexibility, such that no data is lost;
3. to allow an interaction between user and software.
The last one decides the length of the buffers, which corresponds to the "allowed"
interaction time. An example of an interaction is a setpoint change. In this case the
program waits for an input from the user, which means that no data is written from the
buffer into a file. However, the data is still being processed by the real-time functions in
the interrupt service routine, that is, that data is still being written in the buffers.
As a consequence, when the buffers are entirely filled, the real-time functions fill the
buffers at positions that still need to be read, in case of saving data to file. So wrong
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data will be read from the buffers, which is due to a too long interaction time, which
depend on the fastest sample rate that is used.
The buffers are chosen, that we have a interaction time of about 30 seconds, when the
fastest sample frequency is 5 Hz. This seems to be more than enough.
A remedy for the above "problem" would be, to collect the keyboard-input by making
use of the PC-keyboard buffer. However, the program with the buffers, seems to work
well enough to perfonn our work and it is not in our interest to develop a piece of
software that works "perfect";

- the following files need to be located in the same directory, as from were the program is
started:

-V egavga.bgi, which is a display driver;
-V input.ed, when using pre-defined input signals. It is an ASCII file, with a column for

every setpoint-offiet. That is, the new setpoint is the sum, of the setpoint before the
input file is used, and the offset defined in the input file. Each row-entry is a function of
time, namely the sample frequency SampleFreqCon, which is a value, defined in the
Header file;

-V fiUni.ed, when using the digital filters.
-V simjni.ed, when using the intern simulation model.
-V Iqr_ini.ed, when using the LQR controller.
-V rob_ini.ed, when using the Robust controller.

The above *.ini file (ASCII files) contain a model description in state-space. The state­
space matrices A, B, C and D appear in the *.ini file, in the same corresponding order.
Notice that fiUni.ed contains the SISO filter configuration, which corresponds to
equation (5.9).
The size of the A matrix and the number of inputs (number of columns B) and outputs
(number of columns C) need to be defined in the header file.
The *.ini files introduce a lot of flexibility. For example, the calculated robust control
(with Matlab), can directly be saved in the corresponding rob_ini.ed file.

-V The fonnat is such that the non-zero matrix entries of a matrix A, are listed in either
lines or columns. The order of the matrix entries: Au, A I ,2, ... , An,m, where nand m
indicate the number of rows and colunms respectively. In case of system matrices (A, B,
C, D), they appear in the corresponding alphabetical order.

- the following file is created in the same directory, as from were the program is started:
-V datai.ed (i: file index). This is an ASCII file in which data is stored, that can be used for

identification. Each row-entry is a function of time, namely the sample frequency
SampleFreqHigh, which is a value, defined in the Header file. The saved data consists
of an index; the 2 setpoints; the 2 pumpvalues; the 2 LQR controller states and the 3
process outputs.

To get an impression of the software layout on the screen, some screen dumps can be found in
appendix A. 2.
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5.2 Controller Design

It is not in our interest to develop a high perfonnance controller yet, as we only need a
controller to be able to perfonn a closed-loop identification. The tasks it needs to perfonn are:
...J overcome actuator saturation during identification;
...J a "fast enough" step response.

With the idea "try simple things first", two equal analog controllers are implemented (after
discretization), to pull away the process poles (3 poles), as they are located 'near' the
imaginary axis (integration behaviour). That's why this controller is called the Pull controller
to distinguish the different types of controllers. A pole is placed in the origin to ensure a zero
steady state error.
Because all states of the process are available (levels hj, h2, h3 ), and the Pull controller
doesn't work satisfactory in practice, we also develop a LQR controller in this section.

To test and compare the controllers, we use a step response of the real process with a
controller calculation frequency of 5 Hz . The choices of these frequencies are explained in the
next section.
Before data is collected and controller calculation takes place, analog and digital filtering is
perfonned to prevent aliasing. The analog and digital anti-aliasing filters will be described in
section 5.3.2.

Pull control: two equal SISO controllers of the fonn:

C = K (s+nr
C C ( ) ,ss+p

are implemented with Tustin's approximation (bilinear approximation)

2 z-l
s=---

T z+l .

(5.1)

(5.2)

Where n < p, and n, p are the zero and pole respectively in (5.1).
Note that this way of developing and implementing an analog controller makes it analytically
independent of the sample time T.

Through eye inspection, the values of the Pull-controller are set to: n = 0.025, P = 0.05 and
Kc = 0.4 (in accordance with above conditions).
Both SISO controllers operate parallel and use only the error signal as input; the difference
between the reference signal and the output.
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In appendix A.3, step responses (fig. a.3.1) of the controller, with the simulation model and the
real process, are shown. In the same appendix, one can find a bode plot (fig. a. 3. 2) from input
1 to all outputs, of the simulation model.
The simulation model is implemented in Matlab and consists of the SISO controllers together
with the continuous state-space model, as was derived in appendix A.1. The matrix entries of
the linearized model are calculated by assuming that all the process valves are half open. In the
next section, more details are given on the calculation of the closed-loop simulation model.

However, like the step response appears to have a reasonable settling time (figure a. 3.1. a), in
practice this seems to be much larger. This is probably due to a long interaction between the
two outer columns, as they are controlled independently. For example, lets assume that the
setpoint in the first column is kept constant and that the setpoint in the second column is
changed (see fig. 2.1 for the corresponding numbers of the columns). The controller for the
first column will not react, until it notices an error in the first column. It would be better to use
a controller that also looks to the changes in the other columns, such that it will be able to
react soonerlbetter.
This is exactly what the LQR controller does.

LQR control
In the pull controller we did not use all available information, like the level of the third column
(h3 ). We will develop a controller; a LQR controller, which uses all available output
infonnation.
A brief overview of the LQR controller was given in the previous chapter. In section 4.1,
independent steps were pointed out to develop an LQR controller.
Because we are measuring all the states, no estimator needs to be developed, which leaves us
only with two steps.
In this section we will go through this steps to develop our controller, that is, detennining the
control law and introduction of the reference signal.

Introduction of the reference input: this is done as indicated in figure 4.1. This leaves us
with an augmented process with five states: three states from the original process, and two new
states, introduced by the integrator.
The state-space presentation of the augmented process is given by equation (4.8).

Determination of the control law: is detennined by minimising (4.4), for tf ---+aJ, with the
continuous augmented process as argument. The time-invariant feedback gain can easily be
detennined with Matlab. The Matlab function lqrd is used, which calculates a discrete
feedback gain, from a continuous cost-function. Before the function minimises (4.4), it first
discretizes the continuous process and the continuous weighting matrices, using the sample
time and the zero order hold approximation (ZOH). See the manual of the Control Toolbox for
more infonnation on this function.

Before Q and Rare detennined, we need to be aware of the non-linearity in the actuator
transfer.
Non-linearity is a well know property of most actuators and their static transfer is shown in
figure 5.1. Notice that this is the static non-linearity of the actuator transfer. The dynamic
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behaviour of the actuator transfer is much faster than the process dynamics and therefore not
of our interest.
We have to try that, during identification, we find ourselves in the most linear part of the
actuator transfer, such that an accurate linear model can be fitted from the data.

Figure 5.1: static-transfer ofa
family ofactuators.

The working point was chosen as 30 cm, such that the process output is half of the total output
range (0-60 cm), in which we find ourselves in the most linear part of the actuator transfer
(valves half open).
The weighting matrices are chosen diagonal; Q is fixed and R is changed until no saturation
takes place with a step input of 0->30 cm on both inputs. In this case we are almost sure to
find ourselves in the most linear part of the actuator transfer during identification, where we
use a step input-change of about 5 cm.

The augmented process is simulated with simulink to verify the estimated feedback gain, before
the controller is implemented. Within some iterations, the following feedback gain and
weighting matrices were obtained (with a sample frequency of 5 Hz):

3[20.5R=1O o

1.5

o
o ]. Q = 0

16.5 '
o
o

o 0 0 0

1.5 0 0 0

o 0 0 0;

o 0 0 0

o 0 0 0

K =_[8.536.10-2 -2.823.10-6 6.511· 10-' 2.715.10-3 4.601· 10-2
]

2.959.10-6 9.514.10-3 3.372.10-3 6.733.10-1 4.605.10-2

(5.3)

Notice that:
the weighting matrices needed to be chosen higher than those originally found using
simulink, because of the difference between the simulation model and the real process, like
the non-linearity;

- we choose the weighting matrix Q such that, only the states xlt) (4.8) are weighted in (4.4)
and not x(t), as these are not the ones we wish to bring to zero;
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the integrators are implemented in software by making use of the Zero Order Hold
approximation:

z-l
s=--

T '
(5.4)

where *(5.4) represents a transformation from the s-domain (continue) to the z-domain
(discrete);

- besides the static non-linearity in the actuator, the process also shows static non-linearities.
The static non-linearity of the whole system will be detennined further on in this chapter,
which will eventually determine the amplitude of our input signal, used for identification.
Note that the actuator and the process were mentioned separately here. However, unlike
noticed otherwise, we will never make this distinction and always mean that the actuator is
included in the process, like already was done in the preceding part of our project;

In appendix A.3, a step response (fig. a.3.l) of the controller, with the simulation model and
the real process, is shown. In the same appendix, one can find a bode plot (fig. a.3.2) from
input 1 to all outputs, of the simulation model. The responses are calculated in the same way
as was done with the Pull controller.

The most important differences between the two controllers are that:
..J because the LQR controller uses more process information than the Pull controller, the

output in an outer column is less sensitive to the input in the other outer column. This can
be seen infigure a. 3.l.c and by comparing the lower frequency areas of their bode plots in
fig. a. 3. 2 in appendix A. 3;

..J the LQR controller has a smaller bandwidth (fig. a. 3. 2), such that it is less sensitive to high
frequency disturbances at the output/input. With the real process, the LQR controller does
indeed, show a more calm steady state behaviour. This so called calm behaviour is notable
at low water levels (around 20 cm), when the water falls into the colunm, causing "high"
frequency noise (flow a in fig 2.1). Nomlally the water enters the column by flowing along
the wall (flow b infig. 2.1);

..J the LQR controller ensures that the bode plots from input 1 and 2 to all outputs are almost
the same for the simulation model. This is due to the same weight put on the states by the Q
matrix. This means that the step responses for both outer columns are almost the same,
whereas both colunms have different dynamic behaviour (the leakage's are different). The
Pull controllers are, however, exactly the same. As a consequence the step responses for
both outer columns are different, as well as both their bode plots;

..J the Pull controller is faster (first intersection with the desired setpoint), but shows an higher
overshoot and longer 99%-settling time;

..J The LQR controller shows satisfactory results, and will therefore be used for identification.

5.3 Final Identification Preparations
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In this section, the final identification preparations are described, such that in the next section
data can be collected and a non-linear and linear model can be estimated.
The preparations consist of input design, development of the anti-aliasing filters and the choice
of the "identification" frequencies. That is, the frequencies for calculating the controller and
collecting data.

5.3.1 The Identification Frequencies

In the previous chapter we already used a simulation model of the process and a frequency to
calculate our controller. In this section we will take a closer look on how they are determined.

A closed-loop model will be calculated, with help of the linear process model, as derived in
appendix A.I. to extract information. This infomlation is needed to choose the following
frequencies: .
- model building frequency ((",);
- collecting data, used for pre-processing (fi);
- calculate the controller outputs (fc);
- collecting data from the process (1;,);

The above frequencies are shown infigure 5.2.

Model building frequency if".): defines the frequency used for final model building (discrete
model).
We have to consider [Lju87]:
v a "small" fm allows much noise reduction, with possible loss of system dynamics;
V a "high" fm could give numerical problems, as all poles cluster around the point I in the z­

plane;
v a "high" fm gives a model fit, which is mainly concentrated to the high-frequency band;
v a "high" fm can result in a non-minimum phase model, while the original system is minimum

phase.

Ljung determines that the optimal fm lies near the time constants of the system. This is ,
however, not exactly known and overestimating them may lead to very bad results. Therefore
he advises to use afm which is about ten times the bandwidth ofthe system to be identified.

Collecting data, used for pre-processing (Ii): we choose this 5-10 times the frequency, used
for model building to perform some data polishing, before parameter estimation takes place.
This so called polishing was briefly explained in section 3.7.

Calculating the controller outputs ifc): defmes the frequency used for calculating the
controller outputs
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We have to consider [Fran94]:
- when implementing an analog controller in a digital computer, we need to find a digital

equivalence by using approximation techniques. A good choice, for getting a good digital
approximations, is a frequency of20-30 times the bandwidth of the total system;

- the frequency must be chosen high enough to reduce the high frequency disturbances in the
process output;

- a fast enough response to setpoint changes is often required;

Collecting data from the process (fp): this frequency must be chosen high enough, such that
the filter characteristics doesn't have any important influence on the system characteristics.

From the above discussion it follows that we have to obtain an idea of the system bandwidth.
This is determined with help of the mathematical (white) model, derived in appendix A.1.

In appendix A.1 the following state-space process model is constructed:

.
x p(I) = Ap,:xp(I) + Bp.cu(/)

h(t) =Cp.cxp(I)
(5.5)

Note that we have include the index 'c', to indicate the continuous model. Index 'd' will be
used to indicate the discrete model.
The parameters of the matrices Ap,c; Bp,c; Cp.c are calculated by assuming that all valves (jig.
2.1) are half open. This is a reasonable suggestion to get an "idea" of the process
characteristics, as it strongly corresponds to the situation under which identification takes
place.

Note that the dynamic non-linearity of the process is influenced by changing the position of the
valves. For example, when the valve in column 1 is opened more, that simulates leakage, the
non-linearity "increases". This can be understood, as the level in column 1 will increase more
slowly, but decreases faster. With a linear model, however, there is no difference between the
speed of decreasing and increasing.
The degree of dynamic non-linearity will not be investigated, but can mean that we are not able
to fit a linear model to our collected data with only a small error.

With the valves half open we get (appendix A.1):

(5.6)

[

1C -
p,e 0
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For identification we use the LQR controller, with the configuration as discussed in the
previous chapter (fig 4.1). The state-space representation of the closed-loop system, is found
by combining (4.8) and (4.9):

Xs(t) = Ascxs(t) + Bscr(t). ,

Ys = Cscxs(t)
with

o 0 0 0

000 I 0

A•.< = -2.777·10.... 8,911·1O-8 -2.382.10-2 -8.832.10-5 1.136· 10....

-9.932·10-8 -3.096·10.... -1.097·10-4 -2.520.10-2 1.123·10....

o 0 1.608.10-3 1.608.10-3 -4.366.10-3

(5.7)

B ='.<

-I 0

o -I

[
0 0 I 0 0]o 0 . C =

, u 00010
o 0

o 0

The index's' is used to indicate the closed-loop system.
We used the Matlab function lqr to calculate the continuous feedback gain.

It can "easily" be seen that the "maximum" bandwidth is determined by the transfer function
between input 1 and output I (seefig 2.1 for an explanation of the input and output numbers).
From the bode plot between input I and output I, as shown infigure a.3,2 in appendix A.3, we
can determine:

OJ -3dB :::; 2 .10-2 rad / s; OJ -40dB :::; 0.3 rad / s (5.8)

Hereby using [dB]=20·log[..].
Ljung's advises a OJm= 10'(J)Bw, system, which yields 1m :::; 0.032 Hz (frequency for model
building).
We choose 1m = 0.1 Hz, which corresponds to the basic switching time of the (generalized)
binary noise test signal, which will be designed in section 5.3.3. In this case the input test
signal doesn't need to be filtered, before parameter estimation takes place.
Notice that this corresponds to a Tm, which is about 18 % of the 99 %-settling time, which is
about 548 s (section 5.3,3). In [Sod89], Tm is taken as 10 % of the 99 %-settling time, as rule
of thumb,

Considering the arguments of Franklin [Fran94], given in this section, we choose Ie = 5 Hz
(Calculating frequency, used to calculate the controller outputs).

The frequency for collecting data, used for identification; fi, equals .fe. This means: fi:::; 50j""
such that we have a lot of redundancy for pre-processing, which won't cause any problem.
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To neglect the influence of the anti-aliasing filters, we choose j~ = 25 Hz (frequency for
collecting data from the process).
Notice that we need an extra digital anti-aliasing filter, before we lower.f;, of 25 Hz to j~ of 5
Hz.This combination of a digital and analog filter, to avoid aliasing effects, is well known in
practice, and avoids the use of one expensive analog filter, when not using a digital anti­
aliasing filter

Figure 5.2 gives a clear overview of the chosen frequencies and the role of the anti-aliasing
filters, which will be developed in the following section.

Displaying user info.

Saving/Importing data. etc...
'-----_-----,__---.J (model building with 1m)

Figure 5.2: implementation structure of the jilters
and their jrequencies.

5.3.2 Anti-Aliasing Filters

In this section we will develop two Lowpass Butterworth Filters (LBF), as outlined in section
3.7.
As shown injigure 5.2 we need two lowpass Butterworth filters to prevent aliasing effects; a
digital LBF before calculating the controller output and an analog LBF before collecting the
data.
An anti-aliasing filter is acquired to remove (sufficient attenuation) all frequency components
higher than half the sample frequency, also known as the Nyquist frequency.

We will go through the design procedure, as outlined in section 3.7, to design our analog
lowpass butterworth filter.
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Analog LBF: which has to remove all frequency components higher than 12.5Hz ((p=25Hz).

1. Filter specification: defining the parameters values infigure 3.2:
amin= 40 dB; a max =3 dB; OJp =6.5 Hz; OJs = 12Hz;

2. The order n: with (3.45) we find na=4 (after rounding). Order four means that we get
a cascade circuit with two LBF components.

3. Determination of OJo: if we choose OJs as exact point, (3.47) yields OJo=42.42rad/s.

4. Determination of Q: with (3.48) we get: Q/=0.541 and Q2=IJ07.

5. Realisation of an electric circuit: if we choose R= IOMn we find with (3.49):
C/,/=2.55·10-9F; CJ,2=2.22·1O-9F; C2,J=6.16·1O-9F; C2.2=0.90·10-9F. However, we have
to use nonnalised values. By using the £-12 nonn, which has a 10% tolerance, we get:
C/,/=2.7nF; CJ,2=2.2nF; C2,J=6.8nF; C2.2=lnF.

In figure 5.3 the filter frequency response is shown, for the calculated components, and the
nonnalised components. Notice that the error made, by using nonnalised values, can be
neglected.
Don't forget that the components have a tolerance of 10%. This influence isn't investigated in
detail, but the frequency response is tested with a spectrum analyser and the filter gives
satisfactory results.

Phose

-100

Frequency response. with and without 1\.Q1'"Jnalised c07nponc:nls
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Figure 5.3: frequency response ofthe analog LEF.

The final electric circuit is given infigure 5.4
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CI.I C:. 1

R R I R R 1[;+,
~

In
~ Out

TC,.t L
Cu

Figure 5.4: analog lowpass Butterworthfilter to prevent aliasing effect.

Notice that:
- the circuit in figure 5.4 is only for one process output, while the total process has three

outputs;
an extra resistance is placed in the op-amp feedback DC-loop: Rn = 20 MO, to reduce the
DC-offset at the op-amp outputs. This offset can't be ignored, as the DC-resistance at the
input is quite large.
We are using op-amps of the TIL family: LM324, which have a bias-offset current at both
inputs of 5nA. The non-inverting input, which has the same voltage as the op-amp output
(in steady state, without Rn), will then have an offset of 20·1 06 x 5.106 = 0.1 V for one op­
amp (for one process output: 0.2V). This offset can't be ignored, as the output range ofa
sensor is only about two Volts. The offset can be reduced by putting a resistance in the DC­
feedback loop (Rn). This resistance has to be equal to the total DC input resistance, seen
from the non-inverting input: Rn =2R = 20 MO. In this case, the offset that appears at the
non-inverting input, which is the same as the voltage at the inverting input, will be
compensated by Rn . As a consequence the output of one op-amp is "almost" offset free. In
practice we still have an offset of about 0.01 V, which can be neglected and can easily be
compensated by the software.
Note that one channel has an offset of about 0.2 V, as it contains two op-amp, which
corresponds to a level offset of about 10 cm. This can easily be compensated by the
software. However, the process will automatically stop a pump, when a level passes the 60
cm limit, which will then already take place at a level of about 50 cm.
A remedy would be to use other op-amps. For example op-amps of the CMOS family,
which hardly has any offset current. However, these were not available;
OJs was chosen as exact point. We could have chosen OJp as exact point, as these cut-off
frequencies are far removed from the real process characteristics. Even so, in our case, a
little amount of aliasing can be allowed, as this will be rejected by our digital filter. The
combination of an analog and digital filter, to form an anti-aliasing filter, is well know in
the field of (practical) signal processing (audio) and is discussed in [Ver95]

Digital LBF: which has to remove all frequency components higher than 2.5 Hz (fc= 5Hz).
The design is a bit different than that of the analog filter, as we make use of the Matlab
function butter. This function takes as arguments; the order and the -3dB cut-off frequency.
We have chosen for a fifth order LBF and a -3dB cutt-off frequency of 1 Hz, such that an/in ~

40dB at OJs = 2.5Hz.
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The state-space presentation (controller canonical fom1) of the digital LBF, with a sample
frequency of 25 Hz (/P), then becomes:

4.187 -7.070 6.010 -2.5704 0.442

1 0 0 0 0

o 1 0 0 0

o 0 1 0 0

o 0 0 1 0

1

o
x/(k) + 0 in(k)

o
o

out(k) = 1.10-3[0.197 0.063 0.343 0.052 0.031] x/(k) +2.140· lO- j in(k)

The frequency response of the digital filter is shown in figure 5.5:

ID 0 r- - __~:....____-FT--'eg:......u_en-cy___,TCsponseof t~e,__di-gi-la-lf:......i _llc_T -.

(5.9)

Gain
ID -1

·ID

·10
Phase

-3U

...
10 .,~--~c_---__'_:_-.l.-----....J

10·' 10 n 10 1

.~. L- --------'

IQ ·c 10 -I

Figure 5.5: the frequency response ofthe digital LBF

Notice that the values of (5.9) are implemented with an accuracy of 15 numbers, while in (5.9)
only the rounded numbers are shown. In this case, we can neglect the rounding errors. If we
use the given values in (5.9), the filter has a step response like injigure 5.6.b, instead of that in
jigure 5.6.a. It seems that this controller-canonical representation is very sensitive to
parameter disturbances (not very robust).
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Figure 5.6: step response ofdigital LBF, without (5. 6. b) and with rounded values
(5. 6. a).

5.3.3 Input Design

In this section we design two kinds of input signals; a Binary Noise (BN) and a Generalized
Binary Noise (GBN). Both input signals were discussed in section 3.6.
Two GBN signals are designed, to estimate respectively a non-linear and linear model.
First the input signals for the linear model will be developed. At the end of this section some
changes are made to the conventional GBN signal, which will then be used to identify a non­
linear model.
During the input design, some prior system information is needed, which is extracted from the
calculated simulation model, which was determined in section 5.3.1.

The whole system (controller and process), which will be identified, consists of two inputs and
two outputs, such that we apply two independent input signals at the same time.

Binary Noise (BN): a sequence that switches between two values (e.g., -1 and I) with a non­
switching probability p == 0.5. The signal has equal power over the full frequency range up to
half the basic sampling frequency, which is usually chosen so that we have equal power over
the whole frequency region of interest in which the system is located. The basic switching
frequency is the fastest possible switching frequency.
What we need to determine is:
1. the basic sampling frequency;
2. the length of the input signal;
3. the amplitude.

1. Basic sampling frequency: in section 5.3.1 we obtained a system bandwidth OJ.40dB ==
0.048 Hz.
We choose a basic sampling frequency of 0.1 Hz to detennine an input signal that has equal
power in the frequency range of 0-0.048 Hz.
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2. Length of input signal: as the basic sampling frequency detennines an upper limit,
the length of the data used for identification, detennines the lower limit of the frequency area,
which can be identified.
As discussed in section 3.6, we choose the length of the identification data as 5-10 times the
largest relevant time constant to allow reliable estimation of the process eigenvalues. The
largest time constant of the simulation model can easily be calculated with Matlab: "big ~

229sec and "small ~ 80sec. We then choose an identification data length of 10.10+3 samples.
Including data, used for validation, we obtain a final input signal of 20.10+3 samples. Let us
remind that the input signal is added to the process at a frequency of 5 Hz and the data is
collected with the same frequency.

3. Amplitude: we use the following constraints:
...; the process is assumed to be linear. To be able to fit a linear model, the amplitude

ranges of the applied test signals have to be small enough, such that this assumption
isn't violated;

...; the output signals should have a sufficient signal to noise ratio. A SIN of more than
20 dB is desirable.

Step one refers to the static non-linearity. Notice that the dynamic non-linearity will not be
investigated.
The static non-linearity of the whole system in the surroundings of the working point, can be
tested by applying a staircase signal, as shown in figure 5. 7. This signal is applied to each
process input separately. The time interval of each step should be chosen in accordance with
the response time of the process.

Input

I Slt71tples
)

Figure 5.7: a staircase signal for testing the
static non-linearity.

Notice that we have a closed loop configuration, while the staircase signal as described above,
should be applied in open-loop configuration. The linearity test can then be perfonned by
taking the setpoints as input and the process inputs as output. The modified test will show the
same static non-linearity of the process, as the controller is linear.

Applying the linearity test to our system, with a step of 3 cm and a working point of 30cm;
results in the static transfers that are shown in figure 5.8 and figure 5.9 (with an offset
correction).
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Figure 5.8: static non-linearity test for setpoint 1.

The setpoints and the process inputs are indicated as rj and Uj respectively.
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To make sure that we find ourselves in the linear steady-state transfer, we choose an amplitude
of 4 em. The signal to noise ratios of the outputs are given table 5.1, together with the standard
deviation (Std) of the noise.
The SIN are computed in steady state, from 8 data sets of 1000 samples each, with a sampling
frequency of 5 Hz.

SIN ( fdB]=2010g(·) ) Std.

output 1 (hI) 88.360 dB 2.472.10.2

output 2 (h2) 98.807 dB 2.148.10-2

Table 5.1: the signal to noise ratios and the standard
deviations ofthe process outputs.

It is not surprising that the standard deviations are very low, as we deal with a laboratory­
located process, which hardly shows any disturbance influences like an industrial process
Therefore an amplitude of 4 em should be more than enough.
Infigure 5.10 the final BN signal for input 1 is shown, together with his power spectrum.
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Figure 5.10: binary noise test-input signalfor input 1.
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The BN signals are constructed with Matlab, by using the uniform random generator.
We have chosen a basic switching frequency of 5/50 Hz, such that the basic switching time is
50 times as big as the sample time, used for controller calculation. In section 3.6 we noticed
that this way of constructing an input signal, will cause gaps in the power spectrum at
frequenciesf=k!(MT,) with k=1,2,3, ... In our case, the gaps appear at O.IHz, 0.2Hz, ... (M=50),
as can be seen in figure 5.10. However these gaps are outside our frequency area of interest
and therefore irrelevant.

Generalized Binary Noise (GBN): will be constructed as a BN signal. The only difference is
that the non-switching probability (P) won't be set to 0.5, but will be detemlined with the help
of some prior system knowledge. For the determination of p, we will make use of Tullekens
guidelines, which are summarised in table 3.1, section 3.6.

Our system shows dynamics which "look like" that of an over-damped second order process,
such that together with (3.36) and the last colunm in table 3.1 we get:

(5.10)

where Ts is the 99 % settling time and Tsw is the basic switching time of 0.2 s.
The settling time is 548sec and is the average of the settling times of hi, and h], measured from
there step response: 30 -> 40cm (with the real process). Substituting this values in (5.10)
yields p = 0.9996.
The rest of the parameter values, like the amplitude, are the same as for the BN signal.
Infigure 5.11 the final GBN signal for input I is shown, together with his power spectrum.
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Figure 5.11: generalised binary noise test-input signal for input 1.

To estimate a non-linear model, we have to make sure to activate the static non-Iinearities of
our process as our model is able to capture these non-Iinearities. In other words; in section 3.6
it was discussed that the input signal need to be informative enough, to allow discrimination
between any hvo models in the chosen set. When estimating a linear model this comes down to
designing an input signal that is persistently exciting of order n. We can say that, concerning
the model discrimination, we at least have to make sure that the system non-linearity's are
activated.

The non-linear model can cover more information, so the input signal have to be richer than in
the linear case.
We take the same GBN signal as designed earlier and choose an amplitude which switches
between 5 and 10 em.
The non-linear model structure that is derived in appendix A.l will be used for identification of
a non-linear process model. Notice that this model is able to capture process non-linearity's,
but not actuator non-linearities, like the one discussed in section 5.2, because they were not
encountered in the derived model. For this reason, and to overcome actuator saturation, we
chose a maximum amplitude of 10 em. Whereasfigure 5.8 andfigure 5.9 indicate that in this
area, the static non-linearity just begins to appear. So we would be motivated to choose the
maximum amplitude higher than 10 em.
In figure 5.12 the final test-input signal for input I is shown, together with his power
spectrum.
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Figure 5.12: generalised binary noise test-input signal, jar input 1 with a variable
amplitude.

5.4 Model Estimation

After the input signals, as developed in the previous section, are applied and data is collected,
we can almost start with our model estimation
We will start with some polishing operations to improve the data contents, before the final
models (non-linear and linear) are calculated in section 5.4.2. In the same section a validation,
of the estimated models, will be carried out.

5.4.1 Pre-Processing

Pre-processing of data concerns the improvement of the ratio of relevant information on the
process dynamics to disturbances, blurring that information.
Pre-processing was explained in section 3.7 and is carried out with the help of Matlab.
The pre-processing actions are performed on the data collected with:
I. the GBN input signal, with variable amplitude. We call this the GBNv data set;
2. the BN input signal (constant amplitude), we call this the BN data set;
3. the GBN input signal (constant amplitude), we call this the GBN data set.

Notice that the BN data and the GBN data are used to estimate a linear model, while the
GBNv data is used to estimate a non-linear model.

Pre-processing involves the following operations (section 3.7):
..J peak shaving;
..J trend determination and correction;
..J scaling and offset correction;
..J filtering;
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" delay time correction;
" sample rate reduction.

Peak shaving, detrending and scaling will not be carried out, as we are identifying a closed­
loop system, such that possible trends are corrected by the controller. The system is located in
a laboratory, which hardly has any influences of power failures, loose contacts, etc... , causing
possible peaks.
Furthermore do the system outputs have the same dimension (cm) and about the same
variance, such that scaling is superfluous.
So this leaves us with the following polishing action:

Offset correction: offset correction is carried out by subtracting the data with the chosen
working points. The working points are: h1.2= 30cm and hi!":! 28cm.

Filtering and sample rate reduction: we have to filter to (section 3.7):
- avoid aliasing effects, as we are perfomting a sample rate reduction if ->f",);
- to reduce the influences of the disturbances on the measured process signals.

Step two forms an tighter upper limit than step one, for the filter attenuation.
The lower limit of the cut-off frequency depends on the system characteristics, such that the
system will not be influenced too much by the filter characteristics.
The filter is determined by using information of the spectrum ratios, of the output-input
signals, which are shown in figure 5.13. In figure 5.13 we can distinguish the process
characteristics (lower frequency area) and the noise characteristics (higher frequency area),
which we try to separate by choosing a correct filter.

Notice that:
" we can both use the BN or GBN data to calculate the ratios, which give the "sante" results;
" the Matlab function spectrum is used to plot the power spectrum. To plot reliable frequency

information, make sure that the fourier length is chosen correctly, as it is related to the
frequency resolution. See the Signal Processing Toolbox manual for more infonnation,
concerning this function.

80



Chapter 5 Identification of the Process

10 2

10 2

10
f [Hz]

r1 - >h2

r2 -> h2

10 -2

10 -2 f [Hz] 10 0

10
r1 --C> h1

10 2

10

~-
IU 0

10 -2 10 -2

10 10 -4

]0 -b 10 -6

10 -4 10 -2 10 0 10 2 10
-4

f [HZ]

10 r2 -> h1 10 2

10 0 10 0

10 -2

~I
10 -2

10 10

10 -b 10 -6

10 -4 10 -2 10 0 10 2 JO -4
f [Hz]

Figure 5.13: ratio ofthe output-input spectrum.

In figure 5.14 the frequency response of the filter is shown, which is a sixth order Butterworth
with a cut-off frequency of 0.02 Hz, such that an/in 2: 40 dB at OJs = 0.05 Hz. The data is
filtered by using the Matlab function idfilt.
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Figure 5.14: the frequency response ofthe digital filter. usedfor pre-processing.

In Appendix A. 4; figure a. 4.1, the data is plotted after offset correction, filtering and sample
rate reduction. Only the data, used for the linear model, is plotted. The data, used for the non­
linear model, undergoes, apart from the offset correction, the same polishing actions.
Notice that:

the GBN input signal is filtered as well, before sample rate reduction is performed, as it has
a basic switching frequency of 5 Hz, whereas fn/ = 0.1 Hz;
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the phase shift infigure 5.14 is almost linear in the area of the system frequency response.
Such that the influence of the filter on the system characteristics can be neglected, when
both the input and output are filtered.
After filtering, but before the sample rate reduction takes place, the first and last 50
samples are thrown away. This is done, because these samples are contaminated by the
influences of improper initial conditions of the filters.

Delay time correction: we measure the process output without any delay, such that we
shouldn't expect a delay correction. However we are perfonning a closed-loop identification,
and the controller used for model building works with a frequency (/",= 0.1 Hz) that is different
than that of the controller, used for collecting data (fc = 5 Hz).The controllers have one time
delay (the controller exists of an integrator and a feedback gain;.fig. 4.1). The controller, used
for model building, will therefore have a delay of lOs, while the delay of the implemented
controller is only 0.2 s. We therefore have to shift our output data 9.8 s (also the process
input), relatively to our system inputs (the setpoints), to compensate the difference.
Notice that:
.y the parameters of both controller are different, due to different sanlple times. However, we

won't expect any problems, as the controller is just a discretization of our continuous
controller, calculated in section 5.2 and that the process dynamics are relatively slow,
compared to a f", of O. I Hz;

.y if no shifting is perfonned, the cross-correlation between the input and the residuals
indicates a large value for small positive lags of r (3.34). This can be explained as follows:
Lets assume that we have a large value for r = I. This means that the residual and the input
u(k-1) are strongly related, such that the residual takes over the role of the influence of u(k­
1) on the model output, as the model isn't able to fulfil this task. This is obvious, as our
model structure can only produce an output after about lOs, while our data already shows
an input influence after about one second.

5.4.2 Parameter Estimation

Two models will be calculated in this section, a non-linear and a linear model.
The models are calculated as described in section 3.3, that is by minimising a cost function,
which reflects the error between the output of the calculated model and the collected data.

For validation we use: an error indication; simulation results and residual analysis, which were
explained in section 3.5.
The residual analysis consits of the cross-correlation between the inputs and the residuals,
present in the data used for estimation. In this way we can verify if the model structure is able
to capture all dynamics, present in the data.

The Error indication is defined as:
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(5.11)

which is a summation of the squared-error outputs calculated with the validation set.
With the non-linear model the outputs are formed by hI, h2, h3 and with the linear model by hI
and h2 .

5.4.2.1 Non-linear model estimation

The parameters of the non-linear model structure (a.l.12) - (a.l.14) in appendix A.l will be
estimated, when use is made of the GBNv input signal. The input signal was designed in
section 5.3.3
The linear regression model (a.l.14):

h(k)=0·!1(k-I), (5.12)

can directly be used as prediction model, when the noise, acting on the system is assumed to be
white.
We calculate the parameters by writing separate regression equations for every output (hI, h2,

h3), that can hold the collected samples.
For hI this yields (a.l.12):

0\ (0) 02 (0) °3(0) °4(0) hi (I)

0\ (I) 02 (1) °3(1) 04 (1)
qJ\l

hi (2)
qJ12

(5.13)=
qJI3

0\ (N -1) °2(N-1) 03(N -I) 04(N -1)
qJI4

hj(N)

Notice that we used £4(k) to indicate the i th element of the vector n, which can be found in
(a.l.12).
We solve our linear problem formulation with the Matlab operator '\', which uses a QR
factorisation to calculate the inverse:

x =A \ B is the solution ofA .x =B . (5.14)

We perform a direct identification, that means that we use the process inputs (uj, U2) as
identification inputs and the process outputs (hj, h2, h3) as identification outputs. In this case
we can't guarantee that we haven't got a bias when the data length approaches infinity and the
real process model lies in the chosen model structure [Kla95]. This is due to the fact that the
identification input is correlated with the noise, acting on the process outputs.
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The proof given in [Kla95] counts for linear models, while we have a non-linear model.
However it can easily be seen, that, because our model is only non-linear in the samples, it can
be written as a linear model by renaming the samples (our linear regression model), for which
the proof holds.

We perform a direct identification, because we can't derive one direct model between our
system in- and outputs, without re-constructing the process input as an auxiliary signal. This is
due to the non-linear part of our system function.
Even if we would use our system in- and outputs as identification in- and outputs, we still need
to construct our auxiliary signal, such that we are still performing a (hidden) direct
identification.
We shall see that for the estimation of our linear model, we make use of one direct system
model, which is the discrete version of (5.7). In this case we don't use any auxiliary signal.
The only signals we use are formed by the system in- and outputs, which we use for
identification. The input isn't influenced by the output, so neither by the noise, acting on the
output, such that we haven't got the bias problem as discussed above.

The identification data exists of the first half of the total data length and the rest is used for
validation. In table 5.3 the estimated parameter values are given and injigure a.5.2 (appendix
A.5) the validation by simulation is shown.
The calculated parameter values are given in table 5.2 and in figure a.5.1 the validation by
simulation is shown. In this case the valves are assumed half open, as was done in the previous
sections to extract some system information.

Parameter Parameter Parameter Parameter
s value s value

qJJI 1 qJ27 7.191.10-2

qJJ2 -1.151.10-1
qJ28 3.247.10-1

qJJ3 -7.191.10-2
qJ39 1

qJu 3.247.10-1
qJ3,JO -1.151.10-1

qJ25 I qJ3,JI -7.191.10-2

qJ26 -1.870.10- 1
qJ3,J2 7.191.10-2

Error 13.095 cm2

Table 5.2: parameters of the calculated non-linear
model.
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Parameter Parameter Parameter Parameter
s value s value

<{J" I (fixed) <{J27 4.151·10'1

<{J12 -3,912·10,1 <{J28 3.257·10,1

<{Jo -5.172·10'] <{J39 I (fixed)

<{J14 3.486·10'\ <{J3,IO -2.967·10,1

<{J25 1 (fixed) <{J3. " -3.941·10']

<{J26 -6.104·10'] <{J3.12 4.947·10'1

Error 3.100.10'] cm2

Table 5.3: parameters of the estimated non-linear
model.

Notice that:
v The data, used for the non-linear model, undergoes, apart from the offset correction, the

same polishing actions. No offset correction has been performed, as the estimated model
structure isn't only valid in a certain working point. Even so, if we would perform offset
correction, we would have to take the root of negative data points, which gives use complex
parameter values.
We won't loose any accuracy due to no offset correction, as the output variation is about
10% of the working point.;

V some parameters are fixed, as can be seen in table 5.3;
v validation is performed with the second half of the original data set;
V the model input range is: [-10,10] volt and the output range: [0,60] cm.

We like to know if our chosen model structure can capture our data, without lost of physical
meaning. That is, do our parameters retain their physical meaning.
The nine identification parameters that we estimated earlier (table 5.3) consist of eight
uncertain parameters, as can be seen from (a.1.16) in appendix A.1, which are caring our
physical significance. Because we have more identification parameters than uncertain
parameters, we can't calculate an unique solution for these latter ones, given the identification
parameters. It would then be more obvious to directly estimate our eight uncertain parameters,
which turns our linear problem into a non-linear problem. Because we want to restrict our
parameter search to values with physical meaning we begin by defining parameter constraints,
as was discussed in section 3.3.

The uncertain parameters are formed by the section areas of our process valves and the static
pump gains (a.1.16 appendix A.1). We define feasibility regions of these parameters, as
knowledge about them is available.
A feasibility region for every parameter is defined as injigure 5.15:
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ICost Junction

Lower bound Nominal Upper bound

Figure 5.15: cost function of a feasibility
region.

During identification, the process valves are about half open, such that the we. define the
following regions (table 5.5):

Lower bound

0.1 cm2

0.1 cm2

2 cm31(sV)

Nominal

0.4 cm2

0.25 cm2

5 cm31(sV)

Unce U er bound
~=!:!:::=====~==l========;;===4=====;:~~

Leakage 0.7 cm2

Interconnection 0.4 cm2

Pum Gain 8 cm31(sV)
Table 5.4: uncertainty regions ofthe parameters.

The obtained non-linear least square problem is solved with the Matlab function leastsq
(optimization toolbox).
The Levenberg-Marquardt method, as described in section 3.4, has been used to search for a
mInimum.
The nominal values (table 5.4) are used as initial parameter values (valves half open).
Because the function is quite general, we notice that the parameter constraints calmot be
implemented as in (3.18), but instead, all constraints are added to all prediction errors (all
vector elements). So the second sUllUnation operator in (3.18) has been left out.

The estimated parameter values are given in table 5.5.

Leakage Interconnection Pump Gain

au 7.000.10-1 all3 5.421.10-1 CJ 4.825

aL2 8.420.10-1 aJ32 4.523.10-1 C2 4.771

au 1.488.10-1 ano 6.933.10-1

Error 4.146.10-\ cm2

Table 5.5: the physical parameters of the non-linear model, with
parameters constraints.
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The meaning of the symbols in table 5.5 can be found at the end in appendix A.i.
From the Error in table 5.5 it can been seen that the parameters, found with our earlier linear
problem formulation (table 5.3), have lost their physical meaning. That is, the (local) minimum
can't be found in our constraint search area.
Notice that:
'" there is a small possibility that our earlier found minimum (linear formulation) lies in our

defined feasibility region, as we dealing with local minima. However this possibility was
made small by starting the search procedure with different initial values;

'" several warnings were shown by Matlab due to a ill-conditioned Jacobian. This is caused
by a "too flexible" model structure, as was discussed at the end of section 3.3. As long as
they doesn't appear to "often", it won't give any problems. If the warnings appear at the
end of the search, they will be responsible for a high parameter variance for one or more
parameters. That is, we find our self in a minimum plain, rather than in a minimum point;

'" apart from the estimated pump gains, which apparently have little influence, most of the
estimated parameter values are near the upper bounds defined in table 5.4;

'" we tried to find an estimate of the parameter variance, which is a function of the Jacobian.
However, because of lack of infornlation about the function leastsq, this seemed to be
rather difficult.

In table 5.6 and table 5.7 the results are shown, when we are not using our defined feasibility
regions. That is, the search area doesn't has any restrictions. The Matlab function leastsq is
used to search for a minimum.

Leakage Interconnection Pump Gain

aLi 1.373 all 3 1.623.10-1 Cl 5.172

aLl 1.129 aJ32 1.302.10-1 C2 4.883

au 9.633.10- 1 aJ20 9.788.10- 1

Error 2.898.10- 1 cm2

Table 5.6: the physical parameters of the non-linear model,
without parameters constraints.

P:H:lmeter Parameter Parameter Parameter

" value s value

({JJI 1 ({J27 3.744.10-2

({J12 -3.949·10,1 ({J28 3.171·10,1

({J13 -4.667.10-2
({J39 1

({Ju 3.359.10-1
({J3,IO -6.062.10-1

({J25 1 ({J3,JI -3.744.10-2

({J26 -6.062.10-1
({J3,12 4.667·10,2

Error 2.898.10-1 cm2

Table 5.7: parameters (matrix entries) ofthe estimated
non-linear model, without parameter constraints.
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Apparently we are able to find an even smaller Error, when the problem is fornmlated as an
non-linear problem without parameter constraints, than the linear problem formulation.
In figure a.5. 3 and figure a.5.4 (appendix A. 5) the cross-correlation between the residuals and
inputs are shown, which is a validation method that was explained in section 3.5. Notice that
the cross-correlation function is further removed from the x-axis, in case of the parameter
constraints than without parameter constraints. This indicates that more system information,
present in the data, is included in case of the search without parameter constraints (see also the
end of section 3.5). This is an alternative way of verifying that the (local) minimum, found for
modelling, doesn't lie in the feasibility region.
The horizontal lines infigure a.5.3 andfigure a.5.4 indicate the 99% confidence levels, when
the cross-correlation is assumed to be nonnal distributed (Lju87). These confidence levels are
a function of the residual auto-correlation function. Because the residuals of the model with
parameter constraints is "less white" (not shown here), the confidence levels are further
removed from the x-axes. That the residuals are less white is easily understood when we
assume that our noise, acting on the process outputs, is white, like assumed in our chosen
model structure. Then the "less whiteness" of the residuals is caused by process information,
which couldn't be included in the model structure, such that it is present in the residuals,
causing a relation between the residual samples.

5.4.2.2 Linear model estimation

The parameters of the linear model structure (a.l.9) - (a.l.10) in appendix A.l will be
estimated, when use is made of the BN and GBN input signals. These input signals were
designed in section 5.3.3
The parameters will be estimated with the Matlab functions mj2th and pern, from the
Identification toolbox [Lju91]. Or with the Matlab function leastsq from the Optimization
toolbox [Gra92].
As validation, we use the last half part of the GBN data.

We begin by implementing the model structure (3.11) with the Matlab function rnj2th, such
that the parameters can be estimated with the function pern.
The matrices A(~, B(~, C(~ in (3.11) correspond to the closed-loop matrices As.d(~, Bs.d(~,

Cs.d(~, which form the discrete counter part of the matrices in (5.7). The matrices consist of
known parts, due to the known controller and unknown parts due to the uncertainty in the
physical parameters (table 5.4).
Matrix D(~ equals zero and e(k) is a 9t2xl vector, which produces an independent white noise
sequence on every output. The covariance matrix of e(k) is diagonal, with the same value for
every matrix entry. Notice that the value of this matrix entry is of minor importance as they all
have the same value, and therefore has the effect of a scaling factor on the final matrix K(~.

K(~ consists of a ge x2 matrix, that indicates the noise influence on the system states.
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After a first run of our identification with the function pem, K(B) is chosen with zero values for
all matrix entries, except for the entries K3•1 and K4,2 (to be estimated), as these are the only
parameters that give a significant contribution when all matrix entries are chosen as free
parameters (in the first run).

The initial values are the nine calculated parameter values (matrix entries), in case the valves
are assumed to be half open (table 5.8).

The Matlab function pem uses the Gauss-Newton method (section 3.4) to estimate the
parameters (to find a local minimum).
We seemed to have an ill-conditioned problem (for both the GBN and BN data-sets), as
Matlab let us know that we only have a rank ten, while we are estimating eleven parameters:
nine of the process and two of the Kalman gain. This problem was discussed in section 3.3.
The problem occurs when we are estimating too many parameters to capture the process
information, such that some parameters have a gradient of almost zeros, or when there exist
parameters that are a function of the others.
Our nine process parameters, to be estimated, are formed by eight uncertain parameters
(a.l.l6), such that there are parameters which are related. The parameters we are estimating
are given in (a. 1. 15) . It can easily be seen that we have the following relations:

'1111 =III ('1113 , B12 )

'1122 = 122 ( '1123' B22 )

'1133 = 133 ( '1131' '1132 ' B32 )

(5.15)

From (5.15) it follows that the estimated parameters are strongly related, resulting in an ill­
conditioning of the Jacobian. Possible ways to overcome this problems are:

fixing one or more parameters;
estimating the eight parameters that are caring the uncertainties, as done with the non-linear
model;

performing regularization.

The above methods will be applied in the above order:

Fixing parameters: when we are fixing any parameter, the Jacobian seem to be well­
conditioned. However we derived in (5.15) that more parameters are related, such that fixing
only one, wouldn't solve the problem. Apparently these relations are hardly present in our
collected data, which can occur when the parameters are only "weakly" related.
We seem to obtain best results when fixing the parameters '1/13 and '1/23. They are fixed to their
initial values.

The estimated parameter values are given in table 5.19 and in figure a.5.6 and figure a.5.7
(appendix A.5) the validation by simulation, and the residuals analysis are shown. Only the
cross-correlation between the inputs and the residuals are used for residual analysis, as we are
more interested if "all" process knowledge is/can be included.
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The calculated parameter values are given in table 5.10 and in figure a. 5. 5 the validation by
simulation is shown. In this case the valves are assumed to be half open.

Parameter Parameter Parameter Parameter

Is value s value

'l/ll 9.641.10.1
'1/24 3.247.10.1

'1/13 2.542.10.2
'1/31 2.542.10.2

'1/14 3.247·10') '1/32 2.542.10.2

'1/21 9.575.10.1
'1/33 9.383.10.1

'1/23 2.542.10.2

Error 9.467.10') cm2

Table 5.8: the calculated parameters of the linear
model.

I BN parameters U GBN parameters I

'l/ll 8.955.10.1
'1/24 2.200.10. 1

'l/ll 8.506.10.1
'1/24 2.682.10.1

'1/13 2.542.10.2 '1/31 3.831 '1/13 2.542.10.2
'1/31 4.081

'1/14 2.144.10.1
'1/32 5.441 '1/14 2.840.10.1

'1/32 3.937

'1/21 8.690.10.1
'1/33 -7.282.10. 1

'1/21 8.411.10.1
'1/33 3.472.10.1

'1/:23 2.542.10.2
'1/23 2.542.10.2

Errorgbn 5.922.10.2 cm2 Errorgbn 3.906.10.2 cm2

Errorbn 1.319.10.2 cm2 Errorbn 1.780.10.2 cm2

Table 5.10: the estimated parameters ofthe linear model with 2 parameters fixed.

Notice that:

also the BN validation data is used for simulation, indicated by Errorbn. (without index, the
GBN validation data is used). From the Error difference it follows that with the GBN input
test signal, the model has most power concentrated in the lower frequencies. That is, the
Error with the GBN parameters, is "significant" smaller than that with the BN parameters,
using the GBN validation data. Note that with the GBN validation data, the lower frequency
components are dominating;

the 99 % confidence levels of the GBN residuals are further removed from the x-axes than
those of the BN residuals. The confidence levels are a function of the residual auto­
correlation, as was already mentioned with the estimation of the non-linear model. The
residuals of the BN data are caring more high frequency components, improving this white
noise characteristics, corresponding to a smaller value for the confidence level. Because the
BN residuals are caring more high frequency components, his cross-correlation is more
scattered than that of the GBN residuals;
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we find a large value fo the BN cross-correlation of r, to h, and rz to hz for small positive
lags of T (figure a.5.6). It indicates that the estimated model isn't able to include the
influence of u(k-a) sufficient, for small values of a. This can be caused by an
overestimated time delay, or by high frequency modes, which can't be included in our
model. The cross-correlation of the GBN residuals doesn't show the large cross-correlation
peaks, and the BN input test-data shows more high frequency components. So most
probably, the real process shows high frequency modes, which can't be included with our
derived model structure. It is obvious that the GBN input test-data isn't activating these
high frequency modes, as it was designed with our derived model structure.
The filter used for pre-processing introduces a phase shift, which is almost linear in the
frequency region of interest, resulting in an almost pure time delay. With the BN data this
time delay is only introduced in the output signal, as the input isn't filtered. Thus, we
assumed a smaller time delay as is present in the final BN data. However, this is exactly the
opposite operation than the one, causing our cross-correlation peak, and therefore can't be
the cause. We verified above, by filtering also the input data with the same filter as the
output data and the peaks, indeed still appeared;

we put more weight on the lower frequency area, when we also filter the BN input data
[Lju87]. We then obtain smaller Errors for both validation sets (Errorgbn and Errorbn), which
are almost the same as the Errors measured with the GBN data.

estimating the eight parameters that are caring the uncertainties: the nine matrix
entries of our model structure, which we are estimating, are a function of eight independent
parameters, that are caring the uncertainties. To prevent an ill-conditioned problem, due to the
relations between the matrix entries (5.15), we directly estimate these eight independent
parameters.
We performed the estimation with the Matlab function pern, and still came up with an iII­
conditioned problem. This is due to the little influence that some parameters have on the model
output, causing matrix columns of the Jacobian to become almost zero. This was easily
checked by fixing some parameters. When fixing a parameter, causing the ill-conditioned
problem, we can do with seven parameters to be estimated. However, when leaving this
parameter as to be estimated, it can be that we first have to fix three or more parameters,
before its influence becomes significant.

performing regularization: a method to get grip on an ill-conditioned problem, as
was explained in section 3.3.
We use only the GBN data, as we noticed that the difference with the BN results were rather
small, but still a bit better (the Error). Even so, with the GBN input signal, more weight is put
on the more important (in control) low frequency area of our model.

Equation (3.20) is implemented using the Matlab function leastsq. We started with a "large"
regularization value IJ to prevent the Matlab warnings, that appear with our previous problem
formulation. Next, IJ is decreased, such that no warnings appear and that the Error decreases.
In this way we try to find a balance between the increase in bias and the decrease in variance.
We found a IJ = 5.10.5, which is the same for all parameters.
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The estimated parameter values are given in table 5.10 and injigure a.5.8 the validation by
simulation, and the residuals analysis are shown.

GBN parameters
Leakage Interconnection Pump Gain

aLi 1.109 all] 1.070 CJ 4.272
aL2 6.150·10'\ aJ32 1.663 C2 4.469
au 2.091 ano 4.5·10'\

Error 2.800.10'\ cm2

Table 5.JO: the physical parameters (uncertainties) of the linear
model, with regularization.

Notice that:
" from tabIe 5.10 it follows that some of our parameters lost their physical meaning (let us

remind us that when the valves are entirely opened: ahj = 0.4 cm2and aLi = 0.8 cm2). We can
easily increase the regularization parameter j.l to retain our physical meaning. However this
will result in a bigger Error;

" we found a smaller error than with fixing the parameters;
" Like discussed in section 3.3, the efficient parameters are formed by aLi, au, alJ3, am. and

the spurious parameters by aL2. ano, CJ and C2. That is, the spurious parameters, on the
contrary to the efficient ones, have hardly any influence on the model output, such that they
could be fixed. So regularization can be used to examine which parameters can be fixed;

" the estimated parameter values of the non-linear model, without the parameter constraints,
are quite different than those of the linear model, with regularization (compare table 5.6
and table 5.10). This isn't that surprising when we remind ourselves that with the non­
linear model, we were dealing with a (local) minimum plain rather than a minimum point.

During our experiment design, we extract some system infommtion from the derived white
model (appendix A.1). For the choice of the sample frequencies we made use of the system
bandwidth and for the total data length we used the biggest time constant. A wrong estimation
of those values won't influence the final results that much. Still, with the final estimated model
(with regularization) we calculate: 'big ~ 108 sand W.3dS ~ 1.2·10'2 rad/s. The values original
used: 'big ~ 229 sand W.3dS ~ 2.10.2 rad/s. The time constant seems to be overestimated, which
means that we have collected more data than necessary and thus should improve the estimation
results.
Notice that for the design of the GBN signal we used the 99%-settling time, which we obtained
directly from the real process.
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5.5 Conclusion and Final Remarks

We developed some software to perform our identification and to implement our controllers.
The real-time function are implemented in software, which asked for some special care, as the
use of buffers, such that no data is lost and an accurate order of the source code.
The software was proven to be flexible and therefore already in use by other students to
improve the software (buffer problem and change of language), perform experiments and
implement other controllers.

We estimated several linear and non-linear models, based on a model structure, derived from a
mathematical process model (appendix A.i). Such a model structure is also known as a
physically parameterized model structure, as was explained in section 3.2.

The estimated non-linear model can't be used for our controller design, but surely gives us
more confidence in the chosen model structure. We found two non-linear models of which one
retained his physical meaning in the parameters (table 5.5). The physical meaning of the
parameters is retained by defining parameter constraints. However we showed that a lower
value of the cost function, which corresponds to the model output error, can be found outside
the constraint search area (table 5.6).
Apparently there is more dynamics present in the data than can be captured by the derived
model structure, retaining his physical meaning. Possible causes are, that:
1. we haven't captured all "possible" process dynamics, with the white model, derived in

appendix A.i;
2. we can't guarantee that we haven't got a bias, under certain weak conditions, as was

mentioned in section 5.4. This means that it is possible that we don't converge to our true
process model, even if it lies in our chosen model set. While it is possible that this true
process model retains his physical meaning;

3. a combination of 1 and 2.

A way of un-correlating the process inputs, used as identification inputs, is by using a two
stage identification strategy [Hof93]. In this way, first a model between the setpoints and the
process inputs is estimated, which is used to reconstruct the un-correlated process inputs.
These are then used to estimate our process model. Because the identification inputs are
uncorrelated with the noise, acting on the process outputs, we can guarantee a zero bias, under
certain weak condition (section 5.4).
However the model used to reconstruct our process inputs would be a linear one, which could
cause loss of information, as we want to estimate a non-linear process model.

We found a linear model, which is able to re-produce the validation data with a small error.
Also the residual analysis seemed to be acceptable, which means that almost all process
infonnation, available in the data, was captured in the estimated model.
The small error indicates that we can "easily" simulate our non-linear proces with a linear
model, in surroundings of the working point in which we performed our identification. Let us
remind us that the process non-linearity highly depends on the positions of the valves,
simulating the leakages.
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Just like the estimated non-linear model, the linear model did not retain his physical meaning,
due to the approximation of a non-linear process with a linear model and/or uncaptured
process dynamics in our derived process model.

We showed that our chosen linear model structure seemed to be "too" flexible, which leads to
an ill-conditioning of the Jacobian. We used two techniques to overcome this problem, namely
regularization and fixing parameters.
Regularization seems to be an easy and flexible way to overcome ill-condtioned problems and
gives us more insight in the influence of the estimated parameters.
Fixing parameters, also gives good results, but isn't able to give us insight in the parameter
influence, like regularization. Also it can be difficult to obtain correct values for the fixed
parameters, without some process knowledge. Regularization can even help us finding better
values for the fixed parameters.

The improvement we obtained, by using the GBN input signal, instead of the BN input signal,
is hardly visible as we already obtained an accurate process model with the BN data. The GBN
input signal puts more weight on the lower frequency area, as was discussed in section 3.6. We
showed that we can also put more weight on the lower frequency components by filtering the
BN input signal, which results in smaller Errors for the validation data. The Errors, then
appear to be almost the same as the ones obtained with the GBN data.

In the introduction (chapter I), we motivated the use of a physically parameterized model
structure. We almost, only looked at his benefits. Our major motivation was that real
engineering applications are never that "black". We were able to find a "good" model, but let
us not forget the extra work (problems) we went through. Basically this was due to the time
put in deriving the model structure and the need of re-tuning (tricks) the model structure and
his unknown parameters (e.g.: regularization), due to the chosen model structure.
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We will develop two controllers which make use of the process model, estimated in the
previous chapter through regularization. In the first section, a LQR controller will be
developed, which should perform better than the LQR developed in chapter 5, as it makes use
of a more accurate process model.

Next, a Robust controller will be developed, as the process valves (fig. 2.1) can easily be
changed, causing parameter perturbation.
Because the parameter uncertainties are well defined a robust controller is developed, that can
deal with these uncertainties in an explicit manner.
The }{. theory is used to develop our controller, such that we can guarantee pre-defined
controller objectives, regardless of the parameter uncertainties.

Theoretical background of both controllers was given in chapter 4 and references therein.

6.1 LQR Development

We will develop our LQR controller in the same way as we did in section 5.2.
The only difference is that we use the process model, estimated in the previous chapter to
calculate our controller. We use the parameters, that were estimated with a regularization
technique and are summarised in table 5.10.
Because we use another process model, we have to re-tune our weighting matrices.
Using the function lqrd, we obtain:
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[
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-1.217.10-4
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9.002.10-2

7.088.10-2

5.129.10-1

1.541· 10-
1

]

2.185.10-1

(6.1)

See section 5.2 for more detailed information about the development conditions.

To compare both LQR controllers, based on different process models (a calculated and
estimated one), we compare their step responses. The step responses are given in figure b.2.1
in appendix B.2.

Our new LQR controller shows the following differences with the old controller:
...J has little overshoot (fig b.2.1.a);
...J is faster (fig b.2.1.a);
...J an outer column has less influence of a setpoint change in the other outer column, when his

setpoint is kept constant (fig b.2.1.b andfig b.2.1.c);
...J the transfer from input 1 to output 2 and from input 2 to output 1 (cross-transfers) show

non-minimum phase behaviour (fig b.2.1.b).

We can say that we find a new LQR controller that performs "better", which isn't that
surprising as we used a more accurate process model.

6.2 Robust Controller Development

The development of our robust controller basically consist of three steps:
problem formulation. This consist of the specification of the:
...J model uncertainty;
...J performance objectives;
controller calculation;

closed-loop analysis.

In the next section we will begin by formulating our problem, and include our parameter
uncertainties. Next we will calculate our controller and analysis the closed-loop results.
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6.2.1 Problem Formulation

We begin by specifying our problem. The uncertain parameters are directly related to the
interconnections between the three tanks (see fig. 2.1), the tank leakage's and the pump
transfers (see a.1.16). As a consequence of their uncertainties, there also appears an
uncertainty in the working point value of tank 3 (see fig. 2.1), which appear in (a. 1.15) . So the
structured uncertainties are formed by:

with

(6.2)

h = 1
13 ~' •h.-h,

1
and h2J = ~ 0 o'

h,- h,
(6.3)

Notice that we have included the uncertainty of h, (level of tank 3 in the working point) as an
independent uncertainty which is incorrect as it is a function of the other uncertainties.
However, as this relationship is not exactly known and not included in our process model, we
assume it as an independent uncertainty.
As the working point of tank 1 equals that of tank 2, we get that h l3 equals h23 , such that h23

can be removed from (6.2).

Every uncertain parameter represents a set of parameter values, which we represent by :

all = a;, (1 + <5aL'~aLl)

a12 =a;2(1+<5aL2~aL,)

a" = a;, (1 + <5aL'~aL,)

am = a;I3(1+<5a1I3~a1I3)

a l2J =a;2J (1 + <5a12J~a12J)

a 120 = a;20 (1 + <5a120~a12J '

c1 = c; (1 + <5,,~<,)

c = c'(I+<5 ~ )
2 :2 ('2 ('2

h13 =h;,(1+<5hl!~hl3)

with

~aLI' AaL 2' •.• , Ah13 EBA and B~ = [-1,+1]

(6.4)

(6.5)

Above means that, for example CI has a uniform distribution with an average value C'I and an
interval length of oc/LJ.c/.·C·1

In appendix B.3, the graphical state-space representation is given of the process (a.1.6) with
the above uncertain parameter. In appendix B.3 we use the following macros:
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I I I
h = h =-' h =-

13 ~h' _ h' 10 fji' 20 fji
1 3 v"1 V"2

_J2i. b-~
g- 2A' - A

h =_1_
30 Jh:

(6.6)

We have to pull out the uncertainties ~ (as done in figure 4.8) to determine the final NL1K
presentation, from which the controller can be calculated. To perform this task, we introduce
the following state-space uncertainty representation with (Dp=O):

h(t) ,--------, g(t)

,------, :r(t)
f-'-----f-------4

Figure 6.1: Uncertainty state-space presentation.

Assume that we have a system with m inputs and p process outputs, s states and q
uncertainties.
Then h Qyqx/ QYsx/ Qymx/ QYpx/ h th t W. Qyqxm W. lpsxq W., g E;fl , X E;fl ,u E ;fl , Y E;fl ,suc a u E ;fl , out E • I , in E

9?qxs, Wm E 9?qxq, Wy E 9?pxq and Ltpe E 9rxq.

With:
Ap, Bp, Cp, the process state-space matrices (Dp = 0), which correspond to (a. 1. 7);
Wu, Wout, Win. Wm, used to incorporate the state-space parameter uncertainties ~, which are

incorporated in the diagonal matrix Ltpe .

Notice that q is the total number of uncertainties that exists of independent and dependent
(repeated) uncertainties.

It is easy to see that Wyand WII are used to handle uncertainties that appear in the process
matrices Bp and Cp respectively. So Wy equals zero, as the uncertain parameters are located in
Ap and Bp •

The presentation of figure. 6.1 can easily be implemented in Matlab, by making use of the
Matlab command sysic. This is an interconnection progranl, to connect different matrices,
which can be a constant or a system matrix. For more information about this program, see the
J..1-Analysis and Synthesis Toolbox manual [BaI93].
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For our graphical state-space model in appendix 8.3 we define:

h = [iLl i L2 iLJ in3
·2 ·3

i/20
.) ·2 ·3

i) i2r1123 1/23 113 113 113
(6.7)

g = [OLI °L2
2 3 ) 2 3

02r°LJ °113 °/23 °123 °120 °13 °13 °13 0)

Notice that the vectors in (6.7) represent 12 uncertainties, while we only have 9 uncertain
parameters. The difference is due to the repeated uncertainties (see figure b.3.1 -b. 3. 3), which
are indicated by a sup-index.

The matrix entries of Wu, WOUI' Win, Wmand Ltpa can easily be determined with the help of the
state space presentation in appendix 8.3 and are summarised in the same appendix.

The next step in formulating our problem is the performance specification.
As we want a good tracking behaviour with a zero steady state error, we minimise a sensitivity
function, which is the transfer function between the error e and the reference r: see figure 6. 2.
To overcome actuator saturation, we minimise the control sensitivity function, which is the
transfer between the input u and the disturbance d (see fig. 6.2). The frequency areas of
interest, over which we minimise, are specified with the filters Va and Vu:

v.. (S)=v•• (S)-[~ ~] (6.8)

For ve,u(s) we choose a simple first order filter, as the final controller order is proportional to
the order of the generalized plant:

(6.9)

Figure 6.2: Performance specification.

The generalised plant is the open loop configuration as in figure 6.1 with all filters, for
performance and uncertainty specification included.
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Having defined the parameter uncertainties and the perfonnance objectives, we construct the
following NL1K structure:

h(s)

w(s)
N(s)

g(5)

z(s)

Figure 6.3: The final NL1K structure.

In which:

e l

2
U I U I]T

2 2

[ d d d3]
T

W = r1 r2 1 2

p=[e1 e2 h3Y
~=diag{~p, ~pe}; ~p =diag{~Pl' ~p2}

(6.10)

Where ej, Uj, ri, d j and hi are components of the corresponding vectors, which can be find in
figure 6.2.
A diagonal matrix is indicated by diag{).
The matrix Cp and C3 are used to couple out hi, h2 and h3 respectively.
The diagonal uncertainty matrix ~: Llpe E 91 12x12 (appendix B.3) and the performance blocks:

Lip I E e2x2
; L1p2 E e3x2

, with II~ ,,"'::; I.

We noticed that we want a good tracking behaviour, with a zero steady state error. This can be
accomplished by including an integrator in the controller. One way to fulfill this task is to
include an integrator in the filter Ve. In this way the controller must have a pole at s = 0 to
make the oo-nonn finite. The problem with this approach is that the pole s = 0 of Ve becomes
an uncontrollable pole of the generalised plant, which violates the assumption that all states
have to be detectable and stabilizable. This is one of the assumptions made, to be able to
calculate an internally stabilising controller [Dam96b].

A possible way out, is to approximate the integrator by a first order process with a "small"
pole. This will correspond to a small pole in the controller, which can be approximated by an
integrator when implementing the controller.
For this reason we choose lITe2 in (6.9) sufficiently small with Te2> 0, to approximate the
integrator action in Ve .
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6.2.2 Controller Calculation and Validation

A controller is calculated by minimising the "gains" of the transfer functions between h(s) to
g(s) and w(s) to z(s) (jig 6.3), such that the influence of the parameter uncertainties and
disturbances is minimised.
The "gain" is measured as the 2-norm ratio of the outputs g(s) and z(s) to the inputs h(s) and
z(s) respectively. The gain is minimised by minimising the oo-norm of the generalized plant.

We find a "reasonable" J-C,-controller with the Matlab function hinfsyn. Our process model, is
the estimated model in the previous chapter, which was estimated through regularization (table
5.10). Furthermore we chose for all parameters a maximum parameter uncertainty of 20% (in
(6.4): 1/&= 20).

By choosing a smaller value for llre2 we are moving Iv.(jOJ) I to the left.
It seems that, by moving Iv.(jOJ) I to the left, the closed-loop system becomes rather slow,
referring to his step response. This can be explained in the following way. When we are
moving IveOOJ) I to the left, we are also moving in the same direction the allowed frequency
area in which the sensitivity function S(s) may appear, (see section 4.2 about the use of the
weighting filters). Due to S(s) + T(s) = I, it is easy to see that the complementary sensitivity
function T(s) will move to the left as well, causing a slower step response. Notice that by
moving S(s) to the left, his farm won't change that much, and due to S(s) + T(s) = 1 neither
does T(s).
Another "simple" way of examining the relation between T(s) and S(s) is by presenting them as
vectors in the complex plane, related by S(s) + T(s) = 1.

As was mentioned in section 4.2, the oo-norm of the generalized plant is minimised by
assuming a full complex uncertainty matrix ~ E c. This can lead to a conservative indication
about the robust stability and robust performance, when we are dealing with structured
uncertainties as was explained in section 4.2. Therefore, we also calculated the structured
singular value f.Jj, which is shown in figure 6.4, together with the largest singular value. The
f.Jj value is calculated for the mixed uncertainty matrix ~ in (6.10), with the I!-Analysis an
Synthesis Toolbox.
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Figure 6.4: the largest singular value
(dotted) and the f..J-bounds (solid), with
9 independent uncertain parameters

Fromfigure 6.4 we can conclude that we introduced quite some conservatism by assuming a
full complex uncertainty matrix to calculate the J-C,-controller.
Less conservative results can be obtained by:
I. reducing the number of uncertain parameters, which results in a smaller uncertainty matrix

with relatively less zero matrix entries (whenever that is possible);
2. using a ,...-synthesis teclmique, which is able to deal with structured uncertainties, as was

explained in section 4.2.4;
3. transforming the structured uncertainty matrix ~p in (6. J0) to a unstructured uncertainty

matrix by determining the process uncertainty as a function of the frequency.

We will calculate a robust controller by reducing the number of uncertain parameters, which
only asks for some small changes in our original problem formulation. Furthermore can we use
our identification results in the previous chapter to reduce our set of uncertain parameter.
The ,...-synthesis teclmiques have as disadvantage that, they lead to high order controllers. In
section 4.2.4 we briefly outlined that the ,...-upper and lower bounds are tightened by correct
matrix transformations (filters). However these filters cause the order of the generalized plant
to increase and therefor as well the order of the controller.
Before we calculate our controller, by reducing the number of uncertain parameters, we like to
outline point 3.

Another interesting way to incorporate process uncertainties and to come up with a controller
of relatively low order, is by defining the process uncertainty in the frequency domain. We like
to give an small outline of how this works.
Assume that we like to represent our process uncertainty as an output multiplicative
uncertainty as was shown infigure 4.7:

P'(s) = (1 + ~(s)W(s»P(s), (6.11)

where P' is a set of possible process models, due to the perturbation ~: ~ E Cpxp with II ~ II co s
1 and p the number of process outputs. P presents the nominal process and W is the well
known weighting filter.
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Rewriting (6.11) yields:

(PI (s) - P(S))p-l (S) =Ll(s)W(s) , (6.12)

where the left side presents the relative process uncertainty.
We are only considering robust stability. With IILlII", < 1, it is then sufficiently that the
following holds, to guarantee robust stability (4.35):

(6.13)

We then choose a filter W of the fonn (6.8), with w equal to the left side of (6.13). The left side
of (6.13) can be calculated by varying the uncertain parameters. We define the uncertainty
interval of every uncertain parameter and calculate the relative process uncertainty for every
pre-defined discrete parameter value in the uncertainty interval. For example, if we have 8
uncertain parameters and we discretisize our defined uncertainty interval with 10 points, we
will perfonn a total of 108 process uncertainty calculations.
During calculating, we can easily register the maximum relative process uncertainty, that is a
function of the frequency. With the Matlab function fitmag (there are more that perfonn the
same, see [BaI93]) we fit a rational stable transfer function to the detennined upper bound, that
consists of amplitude points as a function of the frequency. This stable transfer function serves
as our fmal filter W.
Apart from a long calculation time, needed to detennine our upper-bound, we detennine a
relatively tight bound. The number of calculations can be reduced by choosing for example, a
nonnal distribution for the discretized uncertainty interval
The square uncertainty matrix Ll has "only" the dimension of the number of outputs, which
yields to less conservatism, when calculating the ,?-C-controller of the final uncertainty matrix
(augmented with the perfonnance blocks).
We could label the above procedure as a way of transfonning a large-real uncertainty matrix
(structured uncertainty) to a smaller-complex uncertainty matrix (unstructured uncertainty).

To reduce the number of parameters, to decrease the uncertainty matrix dimensions, we make
use of the identification results in the previous chapter. In table 5.10 we found an accurate
process model through a regularization technique, were the estimated parameters were divided
in so called efficient and spurious ones. The spurious parameters, on the contrary to the
efficient ones, hardly have any influence on the model output, when dealing with parameter
perturbation. We therefore fix the spurious parameters and only choose the efficient ones, as
the uncertain parameters .
The efficient parameters are au, a/3, al/3, am leading to a smaller diagonal process uncertainty
matrix: Lipe E 915x5

Our new uncertainty vectors (6.7) become:

(6.14)
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and the new fonned matrices Wj and L1pe infigure 6. J are sununarised in appendix B. 3.
Notice that our perfonnance specification stays the same.

The largest singular value and the J!-bounds of the final closed-loop system are shown infigure
6.5, when the J-C,-controller is calculated with the Matlab function hinfsyn, under the same
conditions as before. That is, a chosen parameter uncertainty of 20% for all parameters.

Figure 6.5: the largest singular
value (dotted) and the f.J-bounds
(solid), with 4 (independent)
uncertain parameters.

The J!-bounds are calculated for the mixed uncertainty matrix ~ in (6.10) and the difference
between the <Xl-nonn and the J!-upper bound of our generalised system, certainly reduced
considerable.
It seems that we find a robust controller that has robust performance, as defined in section 4.2.
As explained in section 4.3, we can investigate the robust stability and the nominal
performance separately, which is done in figure 6.6.

Nominal p('rforman.ceStability Tobustn€'~~
Glt'

OJ ...
on'

--~
..

...
"...

." ...
. ".0 -II 10 -4 ..., .. ' " ' Ie -fl 10 -4

\

" '

Figure 6.6: the largest singular value (dotted) and j.t bounds (solid) for the
stability robustness and the nominal performance.
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In figure 6.6 only the Jl-upper bound for the stability robustness is shown, as the Jl-lower
bound is zero for some frequencies, which results in numerical problems.

The filter parameters of Ve and Vu (figure 6.2 and (6.9) are summarised in table 6.1 and their
frequency response is shown in figure 6.7.

filters: TJ T2 K

Ve 111.265·10,2 112·10'5 200
Vu 1/2.10-2 114.428 0.7

Table 6.1: the parameter values, ofthe performance filters.

10 1 ,-- --'-P"-'-'''/=orm=a=nc.:...:'F=ilt=",,--s ,

10 ~ .

10'

10 0

v,

r

Figure 6. 7: the frequency response
ofthe performance filters.

We found a J-C,-controller of order seven, which we reduced to order five, without hardly any
increase in the <Xl-norm: The final fifth order continue controller is summarised in appendix B.4

In figure b.4.1 (appendix B.4) a step response with the real process is shown for input I, for
both the LQR controller, developed in the previous section and the robust controller.
If we compare both controllers, it is difficult to speak of a "better controller" because of two
reasons:
..; a "better controller" is decided, based on the control objectives, which we hardly have,

which gave us a lot of freedom;
..; the maximum value of the actuator output is 4 Volt and 7 Volt with respectively the robust

and LQR controller, with a step of 0 -> 30 cm. That means that the performance filters
could be adjusted such that better use is made of the total actuator range (-10 - 10 Volt) .
This will certainly results in a faster closed-loop system.

Notice that:

we approximate the two small poles lITe2 by zero values, which did not seem to give any
virtual difference in the step response. The final discrete controller is calculated with the
tustin transformation;
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the step response offigure bA.l differs from that in figure b.2.1, while we use the same
LQR controller, but under different process conditions;
At first, the filter parameters were chosen such that we were sure to obtain stability
robustness. Next, through fine-tuning the filter parameters, actuator saturation was avoided
and the perfonnance specifications were met as good as possible.
The first order filter Ve (see (6.8) is used to approximate integration behaviour in the
controller, by choosing a sufficient small value Ilte2 . However, this results in a small
bandwidth for Ve, and thus of the upper bound of the sensitivity function S(s). This can be
unacceptable when for example, the disturbances are also present at "higher" frequencies.A
more accurate Ve can be developed by using a second order filter, giving us more degree of
freedoms, which can be used to improve the frequency bandwidth.

We now come to the final part of our analysis were we like to compare the perfonnance
deterioration of the dosed-loop, due to paranleter perturbations, for the different controllers
developed in this essay.
In figure bA.2 - bAA (appendix BA) the dosed-loop step responses are shown, with the
estimated model and the controllers developed in the previous sections, when all four uncertain
parameters undergo a non-time varying +20% parameter change.
We can see that the influence of parameter perturbations on the process output is rather small
for all three controllers. That is, for the Pull, LQR and Robust controller. This also can be
seen from figure 6.5 and figure 6.6 in case of the robust controller, as there appears to be a
relative small difference between the nominal perfonnance and the robust perfonnance.
The result isn't that surprising, as we, during identification, already saw that most parameters
have only little influence on the process output, which was our motivation for using a
regularization technique.
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6.3 Conclusion and Final Remarks

We developed a (new) LQR controller and a robust controller, which are based on the process
model, estimated at the end of the previous chapter.
The new LQR controller seems to perform "better" (figure b.2.l) than the LQR controller
developed in the previous chapter, which was used to perform our closed-loop identification.
This results is not that surprising as the new LQR controller is based on a more accurate
process model.

We developed a robust controller by minimising the oo-norm of the generalized plant, to deal
with the real-structured parameter uncertainties in an explicit way.
The regularization technique, used during identification in chapter five, helps us to select the
"correct" uncertain parameters. That is, the identification parameters that have a considerable
influence on the process model output.
The final largest singular value of the closed-loop system doesn't differ that much from the J.l­
upper bound (structured singular value), such that it was not necessary to use one of those
"new" synthesis techniques. These so called "new" synthesis techniques can deal with
structured uncertainties, leading to a less conservative controller. Their major drawback is that
they lead to high order controller. Therefore we discussed an easy way to determine a "small"
unstructured uncertainty matrix from a "large" structured uncertainty matrix, such that
"conventional" algorithms can used to calculate the controller.

As our uncertain parameters appear in a MIMO state-space description, we introduce an easy
way to incorporate their uncertainty, such that the derived generalised plant can easily be
implemented in Matlab, by making use ofthe f.lAnalysis and Synthesis Toolbox.

The final Robust controller is compared with the earlier mentioned LQR controller and the
differences are rather "small", even when the uncertain parameter are perturbed.
Let us remind that our LQR controller doesn't use an observer, to reconstruct the process
states, and that an accurate process model was estimated, such that it was expected to perform
"well".

It is shown that the closed-loop performance deterioration of the 3 controllers: Pull, LQR and
the Robust controller is small in case all uncertain parameters undergo a non-time varying
+20% parameter change (Figure b.4.2 - bAA). This is not that surprising, as we during
identification already saw that most parameters have only little influence on the process output,
which was our motivation for using a regularization technique.
The difference in performance deterioration, for the different controllers can probably be
increased by letting the parameter perturbations vary in time. However, due to lack of time we
were not able to investigate this validation method. Let us remind that the :J-t: controller
guarantees robust performance for any stable transfer II Ll 1100 < I (scaled), which allows time­
varying uncertainties (dynamic uncertainties).

It is well known that the weighting filters, to specify performance, are of major importance, as
the closed-loop performance depends highly on it Gust as the choice of the model structure in
system identification). It offers us a lot of freedom in directly shaping our system transfers in
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the frequency domain. Because of this large amount of freedom, care must be taken in
developing the filters, as wrong choices can easily lead to bad perfonnance or prevent us of
finding the (sub)optimal solution. We used simple first order weighting filters to reduce the
controller order. However, as was mentioned at the end of section 6.2.2, we probably good
perform better by using a second order filter, which gives us more degrees of freedom to
incorporate the controller integration behaviour. Due to lack of time, we were not able to
investigate this possible improvement.
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Appendix A

Identification results

This appendix contains preparation and identification results of the laboratory-located process. The
identification is performed in chapter 6 and the theoretical background can be found in chapter 3.

A.I Mathematical Process Model

In this section a mathematical process model will be derived, of which the final results are given in
section 2.2.

~
Q, 11

1

l'"
3 2

/ ()_~Zi Q,

Nominal OuljlDw

Figure al.l: The process

Ifwe make a balance for every tank, we obtain the following 3 equations:

Q. (I) - QI3 (I) - QIL (t) =A· hi (I)

Q2 (I) + Q32 (I) - Q20 (I) - Q2L (I) =A· h2(I) ,.
QI3 (I) - Q32 (I) - Q3L (I) = A ·h3 (t)

where:
Qij (t) The water flow, as indicated in the fig. a.l.l [cm3/s].
A The section area of a tank [cm2

].

h;(t) The water level in the tank (bottom of tank represents the zero level)[cm].
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(a.i.i)



Appendix A. 1

The following expression describes the relation between the tank level and the velocity (m/s) of a liquid
in an opening of a tank (Torricelli):

v(t) =J2gh(t) ,

where g is the gravity "constant".
With (a.i.2), Q(t) in the intercolUlections valves becomes:

(a.i.2)

(a.i.3)

(a.i.4)

In which a is the section area of the intercolUlection or a leakage [cm2
]. This parameter is influenced

by the position of the valve.
Combining (a.i.i) and (a.i.3) yields:

• 1 r-----:----....,.
h, (t) = "A(Q, (t) - a lll sgn(h,(t) - h, (t»~2glh.<t) -h,(t)I- aLI J2gh, (t»

• 1 r--,.--------,.
h, (t) ="A(Q, (t) + am sgn(h,(t) - h, (t»~2glhJ (t) -h, (t)I- a L1 J2gh, (t»

• Ih3 (t) = A (a113 sgn(h1 (t) - h3 (t»J2glh, (I) -h3 (1)1- a132 sgn(h3 (I) - h2 (I»J2glh3 (I) -h2 (1)1- a L3 J2gh3 (I)

Notice that the section area in the intercolUlection between tank 1 and tank 3 is indicated as am

We can linearize equation (a.i.4), using a first order approximation:

(a.i.5)

with r,t=1..3 and s=1..2.
o

Where h r indicates the value of hr in the working point in which we linearize.
Before we linearize, we have to decide what our working point will be, to get rid of the sign and
absolute functions:

o 0

In the working point we choose h) =h2 .

We control h) and h2, and h3 is simply following the levels in these tanks. Therefore the level in h3 will
always be a bit lower than the one in hi and h2 , in the working point!
Using (a.i.5) to linearize (a.i.4), gives us the final linearized process model:
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•

with:

x p(t) =Ap,exp(t) + B p,eu(t)

h(t) =C p,eXp(t)
(a. 1. 6)

[

f//ll

Ap,e = 0

f//31

o
f//13] [f//14
f//23 ; Bp,e = 0

f//33 0

(a. 1. 7)

Notice that:
...J we are only interested in the process model in the working point, so that we left out the working

point hr and also use hi instead of t::.hi;
...J we have include the index 'c', to indicate the continuous model. Index 'd' will be used to indicate

the discrete model;
...J the meaning of the parameters in the matrices Ap•c ; Bp•c ; Cp•c are summarised the end of this

section.

We use a computer to identify our process with AiD converters which contain Zero Order Hold (ZOH)
components, to convert the signal.
So the most natural way to approximate the derivatives in (a. 1.6), is by a ZOH approximation:

(a. 1.8)

where T is the sampletime and the time index k is equal to iT with i = 1..00 .

Qi (t) is controlled by the input signal Uj (t), with i:1,2, by low-level servo systems. The dynamic of
these controllers are relative fast, compared with our process dynamics, that we can approximate the
transfer between Qi (t) and Ui (t) by a static gain, which can be found in the documentation of the
process.

Ifwe use the ZOH approximation and we write the equations directly in matrix form, we get:

xp(k + l) = Ap,dXp(k) + Bp,dU(k)

h(k) =Cp,dx p(k)

with:

(a. 1. 9)

o
(a.1.10)
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where:

'11 =(1+TV/I1)

'22 = (1 + TV/ 22 )

'33 =(1+ TV/33) ;

'l3 =TV/l3 ; '14 =TV/14

'23 =TV/23 ; '25 =TV/25'

'31 =TV/31 ; '32 =TV/32

(a. I. ll)

To detennine a non-linear model, we return to equation (a.I.4) and use a ZOH approximation to
obtain a discrete model, which yields:

[
J~ (k)] [({J ({J ({J ({J 0 0 0 0 0 0 0 0]II 12 IJ 14
h2(k) = 0 0 0 0 ({J ({J ({J ({J 0 0 0 0

25 26 27 28

h,(k) 0 0 0 0 0 0 0 0 ({J39 ({J3.10 ({JJ.II ({JJ.12

(a.I.I2)

where:

fIJI) = ell ; flJI2 = Te l2 ; flJlJ = Te lJ ; flJI4 = Te l4

flJ25 = e 21 ; flJ26 = Te22 ; flJ27 = Te2J ; flJ28 = Te24

flJJ9 = e JI ; flJ3.1O = Ten ; flJJ.11 = Ten ; flJJ.l2 = TeJ4

h,(k -I)

~J~(k -I)
sgn(h, (k - I) - h,(k - I))~r:-Ih-,(-k---I)---J-"(-k---l--:-)I

u,(k-I)+l0

hJk -I)

JJ~(k -I)
sgn(h,(k -I) -h2(k -1))~r:-lh-,(-k---I)---J-'2(-k---I--:-)1 '

u2(k -I) + 10

J'J(k - I)

~h,(k -I)

sgn(h,(k -I) - h2(k -I))~r:-IJ'J-(-k---I)---h
2
-(k------;"I)1

sgn(h,(k -1)-h,(k-I))~lh,(k-I)-h,(k -1)1

(a.J. 13)

Notice that we perfonn an offset correction on the input u(k-I) of 10 Volt, as the process input range
is [-10,10] Volt and the output range [0,60] em..

We can write (a. I. 12) as a linear regression structure:

(a. I. l4)
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The meaning of the matrix entries in (a. 1. 7) and (a.l.12):

and:

(a. 1.15)

B12 =- aLl f2i ; Bn =- a /13 J2i ; BI4 =~
A A A

B - _ (a /20 + a L2) ~. B _ a /23 ~. B _~
22 - A v",g, 23 - A V",g, 24 - A

B =_a L3 ~g . B =_a /23 ~g . B = a /13 ~g
32 A V"'6' 33 A V"'6' 34 A V"'6

(a.l.16)

All that left us is to give the values of the constants Cj, which is the static gain of the transfer from Ui to
Qi, the section area of tank (A) and those of the interconnections (alij) and leakage (aLi), when the
valves are entirely opened. These values can be found in the documentation of the process:
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A.2 Flexible Environment

Two screen-dumps are shown, ofthe software that makes it possible to control the laboratory-located
process. The software is described in section 2.1
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A.3 Results of the Closed-Loop Controllers

This section contains some results of the two controllers, which were designed to perform a close-loop
identification.
The controllers are a Pull and LQR controller, of which the LQR controller is finally used for
identification
The section contain a step response, with the real process and with the simulation model, and bode
plots of the simulation model.
The step response of the real process is performed with a controller calculation frequency of 5 Hz
(section 5.3.1). Before data is collected and controller calculation takes place, analog and digital
filtering is performed to prevent aliasing. The analog and digital anti-aliasing filters are described in
section 5.3.2.

St('prE'5ponse /0'1' Tf -) h'

-, 0'-------,/0:::-00-------:.00=-----::011-:-0-~800------c:,00~0-~,/OO

tim. [see]

Figure a.3.1.a: a step response of the
calculated simulation model with the
Pull and LQR controller from input 1
to output 1.

StepruprmsE' for 71- >h2

",-----------------,

Stept'Up071SE' fOT rl-:>h1

J7.--__-_--_-_-_------,

"f------;",c;;::=--------....,

JJ

"
Jil

I' O'-------,I~OO------,.O-:-O-------:6OO~-----,8~OO------,-::,OO-:-0----,,~Ioo

tll'Pl.(t4'C']

Figure a.3.1.b: a step response ofthe
real process with the Pull and LQR
controller from input 1 to output 1.
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Figure a.3.J.c: a step response of the
real process with the Pull and LQR
controller from input 1 to output 2.
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Figure a.3.J.d: a step response of the
real process with the Pull and LQR
controller from input 1 to output 3.
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Input I to an outputs dOlled: hI; sotid: h2; dashed: h3 (system)
10 1r----~----~---........
10' •••................... _--

----------- ----- , , ,,,

Figure a.3.2.a: bode plot of the Pull
controller from input 1 to all outputs
with the calculated simulation model.
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Figure a.3.2.b: bode plot of the LQR
controller from input 1 to all outputs
with the calculated simulation model.
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A.4 Pre-Processing Results

The meaning of the used symbols in the figures:
GBNv generalized binary noise input signal, with a variable amplitude;
GBN generalized binary noise input signal, with a constant amplitude;
BN binary noise input signal, with a constant amplitude;
ri setpoint i, with i=1,2 (input);
hi water level i, with i=1,2 (output).

- Data after scaling; offset correction, filtering and sample rate reduction:

4 4

2

o

-2

-4
o 200 Scon.ple No.) 400

-4
o 200 400

4

2

o

-2

-4
o

r,

200 400

4

2

o

-2

-4
o

r2

200 400

Figure a.4.J.a: collected data after, offset correction, filtering and sample rate reduction, with BN as
input signal.
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h,
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oSample200

5
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4 r, 4 rz

2 2

o o

-2 -2

-4
o 200 400

-4
o 200 400

Figure a.4.1.b: collected data after, offset correction, filtering and sample rate reduction, with GBN
as input signal.
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A.5 Validation results

The validation results of the calculated non-linear model and linear model.

Appendix A.S
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Figure a.5.1: validation by simulation ofthe calculated non-linear model (solid) with the collected
data (dotted).
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Figure 0.5.2: validation by simulation ofthe estimated non-linear model (solid) with the collected
data (dotted).
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Cross-correlation between the inputs and res'iduals

30

U I and h,

-I
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u, and h:
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U J and h J

-I
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u, and h,

-I
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-I
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Figure Q.5.3: cross-correlation between the inputs and the residuals for the non-linear model, with
parameter constraints.

Cross-correlation between the inputs and residuals
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Figure 0.5.4: cross-correlation between the inputs and the residuals for the non-linear model, without
parameter constraints.
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Figure a.5.5: validation by simulation ofthe calculated linear model (solid) with the collected data
(dotted).
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Figure a. 5. 6.a: validation by simulation ofthe estimated linear model (solid), when two parameters
are fixed, with the collected data (dotted).
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Cross-correlation between the inputs and the residuals with the BN data
r/ and h, r/ and h 2

05 05
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Figure a. 5. 6.b: cross-correlation between the inputs and the residuals for the linear model, when two
parameters are fixed.
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Figure a.5. 7.a: validation by simulation ofthe estimated linear model (solid), when two parameters
are fixed, with the collected data (dotted).
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Cross-correlation between the inputs and the residuals with CBN data
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Figure 0.5. 7.b: cross-correlation between the inputs and the residuals for the linear model, when
two parameters are fixed.
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Figure a. 5. 8. a: validation by simulation ofthe estimated linear model (solid), with regularization,
with the collected data (dotted),
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Cross- correlation between the inputs and the residuals with CBN data
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Figure a.5.8.b: cross-correlation between the inputs and the residuals for the linear model. with
regularization.

128



Appendix B

Controller results

This appendix contains results, and preparations of the design of the LQR controller and the Robust
controller. Both controllers are developed in chapter 6 and their theoretical background is given in
chapter 4.

B.t Return Difference Equality

The optimal LQR feedback gain (4. 5.a) was given as:

(b.1.1)

and the steady state Riccati equation (40 5. b) as:

From (bo1.1) itfollows, keeping in mind that Q, R andP are symmetric, that:

PBp =_KT R 0

With (b. 1. 1), (b. 1.2) can be rewritten as

Multiplying on the left by BTp(_jOlI_ATprJ and on the right by (jOlI-AprJ Bp yields

129
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-B; (-jwl- A;)-I K T R - RK(jwl- Ap)-I Bp + B; (- jw! - A;)-l K TRK(jwI - A p)-I Bp =

BJ (- jw! - A;)-l Q{Jw! - A p)-l Bp

Reorganising (b.105) yields the return difference equality (4014):

(bo1.5)
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B.2 LQR controller step responses

In this section we compare two LQR controllers. One was based on our calculated model, which we
used to perform our closed-loop identification. The second LQR controller is based on our estimated
model, as discussed in section 6.1.

The step responses of the real process are performed with a controller calculation frequency of 5 Hz
(section 5.3.1). Before data is collected and controller calculation takes place, analog and digital
filtering is performed to prevent aliasing. The analog and digital anti-aliasing filters are described in
section 5.3 .2.

J6 r-_~_S~te,---pr_,sp,---o~n._e=--fO_T ~TI_-_>_h~t_~_---;

JOJ

])1

30

30.1

".. '-----~~---,2<~.---=-3Il~0---:-:'O~O-=~.:'------'-::'IIOC--------:::'
11"'·[-1

CalMllatetl

£shmatrd

Ji'

JO

J'

29 0''----------;;;,IIO~-2:;:;;00~-JOO::::;'--.=00~---:5:-:::00~---:,=OO~--c7="00
""'.[Iot!;"]

JI

n

"f-------,,~;;;=------___1

Figure b.2.1.a: a step response ofthe
estimated closed-loop model with 2
different LQR controllers from input
1 to output 1.

Figure b.2.J.b: a step response ofthe
estimated closed-loop model with 2
different LQR controllers from input
1 to output 2.

SiePT€iIJHYtUl€ Jar rl - > h3

1110 200 JOO '00 500 .110
ilrM (Iotc]

100

Figure b.2.1.c: a step response ofthe
estimated closed-loop model with 2
different LQR controllers from input
1 to output 3.
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B.3 State-Space Uncertainty Presentation

The graphical state-space presentation of the process (a.i. 6), with the uncertain parameters defined as
in (6.3). For an explanation of the used symbols, see section 6.2.

HlE-------------,

'CI)

~-----_____;__xw

Figure b.3.}: The state space presentation ofxlt).
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The matrix entries of Wu, WOUI) W;m Wmand Ape

This section contains the matrices used to specify the parameter uncertainties, in the state space
uncertainty presentation, showed in figure 6.1. The matrices are summarised in case we are assuming
nine, and four (independent) uncertain parameters.
To spare paper and for reasons of conveniently, we only summarise the matrix entries. The remainder
entries are zero.
Our process model has 2 inputs and 2 process outputs, 3 states and an explanation of the symbols
(parameters) can be find in (a.1.15), (a.1.16), (6.3), (6.5) and (6.6).

W; and Ape with nine (independent) uncertain parameters:

Wll -~·hlo W22 -~-h °20 W33 -~·h °30

WJ4 -~-h °13 W2S -~-h °13 W34 ~·h °13

Wl8 -g W27 -~·h °20 W36 -g

Wl,Il 1 W29 g W3.10 ~-h '13

W2.12 1

WI' OaLJ<J°LJ W22 OaL2<J °12 W33 OaL3<J °u

W41 Oal13 <J °113 WS2 Oal23<J ~23 W43 i5al13 <J °113

WSI i5h! r h °13 a °11 3 W62 i5al23 <J °123 WS3 i5al23 <J °123

WIO.I ohwh °13 a ~13 Wn i5al20 <J °120 W63 -i5al23 <J ~23

Wn Ohwh °13 a °123 W83 i5hl r h °13 a °113

WIO,2 i5hl3 ·h °13 a ~23 W93 Ohlrh '13 a '123

WIO,3 i5hl r h °13 (a ~13 - a °123)
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W84 Oh/rh °13

W95 Ohlrh °/3

WIO,4 Ohlrh °13

WlO,6 ohwhol3

Is a diagonal matrix, which we indicate with diag{0 } :

Wi and L1pe with four (independent) uncertain parameters:

w]] -?,-h 1O W24 -?,-h °/3 W32 -g-h30

WI3 -?,-h °/3 W33 g·h °/3

W35 -go

Wll OaLJ-a°LJ II W42 Oal23-a ~23 W23 OaU-a °L3

W31 Oal13-a ~/3 II W52 Oal23 -a °123 W33 Oal13 -a °113

W43 Oal23·Q °123

W53 -Oal23'Q °123

W" and Wm become zeros, as can easily be seen fromjigure b.3.1-3.

L1 w5x5
pe E.;n :
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B.4 Robust Controller Results

This section contains results of the final robust controller with four uncertain parameters, which was
developed in section 6.2. The robust controller is also compared with the LQR controller developed in
section 6.1.

The final fifth order continue robust controller:

.
Xc (t) =Acxc(t) + B)n(t)

out(t) =Ccxc(t) + D)n(t)
(b.4.1)

with:

-8.446 0 0 0 0 3.824.10-1 1.971.10-2 4.907.10-2

0 -5.436 0 0 0 -3.365.10- 1 5.805.10-2 -1.112.10-2

A =10-2 . 0 0 -3.874 0 0 B = -5.871.10-2 -1.207.10-1 -4.920.10-2c c

0 0 0 0 0 -1.995. 10-2 -5.162.10-2 -1.805· 10-9

0 0 0 0 0 5.724.10-2 -5.143.10-2 0

C _[1.162.10- 1 1.098.10-1 6.773.10-2 2.613.10-2 -5.910.10-2]

c - 1.205.10-2 -7.562.10-3 9.734.10-2 4.614.10-2 4.632.10-2

D _ [-1.041.10-3 2.082.10-3 -1.850 '10-3
]

c - 6.820.10-4 -8.780.10-4 1.717.10-3
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Appendix BA

The step response of input 1, with the real process, with both the LQR controller and Robust
controller, developed in chapter 6:
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Figure b.4.l.a: step response of the
real process with the LQR controller
and Robust controller from input 1 to
output 1.

Figure b.4.l.b: step response of the
real process with the LQR controller
and Robust controller from input 1 to
output 2.
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Figure b.4.1.c: step response of the
real process with the LQR controller
and Robust controller from input 1 to
output 3.
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Appendix BA

Step response of Input 1 'with the Robust Controller• -~~----_._-_ .._._~--j
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Figure bA.2: the step response of input 1 without (solid) and with (dotted) a non-time varying
parameter change of+20%, in case of4 uncertain parameters.
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Figure bA.3: the step response of input 1 without (solid) and with (dotted) a non-time varying
parameter change of+20%, in case of4 uncertain parameters.
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Appendix B.4
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Figure bAA: the step response of input 1 without (solid) and with (dotted) a non-time varying
parameter change of + 20%. in case of4 uncertain parameters.
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