EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

A license plate recognition system : the design of a license plate recognition system for Dutch
license plates

De la Haye, R.J.

Award date:
1998

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/75062791-4514-4400-97ba-8fac7628551a

A license plate

recognition system

The design of a
license plate recognition system
for Dutch license plates.

Author: R.J. De la Haye

Student at: Eindhoven University of Technology

ID-number: 331187

Coaches: J.A. Hegt and N.A. Khan

Graduation professor: W.M.G. van Bokhoven

Place: Eindhoven University of Technology,
Faculty of Electrical Engineering,
Department S.E.S.

Date: 12-02-98

The Eindhoven University of Technology accepts no responsibility for the contents of theses and reports written by students.

Summary

This report describes the design and implementation of a license plate recognition system for
Dutch license plates. The system consists of five stages. The front-end is formed by a high-
speed shutter camera and a frame grabber that delivers the digitised images of cars passing by.
In the license plate segmentation step, the approximate position of the four corner points of a
plate is indicated by hand for the time being. This stage has already been automated but is not
available to us. The corner points may not correspond to a rectangle area due to the
perspective view distortion. A bilinear transformation that makes use of bilinear grey value
interpolation is applied to correct for this. The result is a rectangular license plate with a size
of 180 x 40 pixels. Histogram stretching is applied to enhance the image for the character
segmentation stage, which approximately segments the characters, based on the properties of
the vertical projection of the license plate. The resulting characters are normalised with
respect to contrast, intensity and size. Then the characters are projected onto a low-
dimensional space with the help of the Hotelling transform. This transformation contains the
relevant information that is needed to distinguish the characters. The transformation depends
on a good segmentation, which is not guaranteed by the segmentation stage. Clues about the
segmentation accuracy can be obtained by comparing the inverse Hotelling transformed result
with the original character. If they differ significantly then the segmentation is probably bad.
This leads to a much improved segmentation and thus a transformation that holds the needed
information for the classification. The Hotelling transformed characters can be classified with
different methods. A probabilistic neural network should result in the best performance, but it
does not because of the limited amount of sample data. Classifying the transformed characters
with the help of the Euclidean distance proved to result in the lowest misclassification and
rejection rate. 545 plates were used to test the system. A misclassification rate of 0.4% was
achieved with a rejection rate of 13%. Further development of the system, for which a number
of recommendations are given, is expected to increase the system performance.

Contents

1. Introduction

1.1 A system overview

1.2 The assignment

1.3 The application areas

1.4 The approach

2. The literature study

"o e e N i W

3. Classification methods

11

3.1 Template matching

3.2 Artificial neural nets

3.2.1 Training a neural net

3.2.2 Probabilistic neural nets

3.3 Transformation methods

3.3.1 The Hough transformation

3.3.2 The PCA transformation

4. Dutch license plates

11
14
16
20
22
22
23
24

4.1 The common Dutch license plate

4.2 Other types of plate

4.3 Conclusions and recommendations

5. The camera and frame grabber

24
26
28
29

5.1 Conclusions and recommendations

6. License plate segmentation

32
33

6.1 The bilinear transformation

6.2 Bilinear interpolation

6.3 Bilinear resampling

6.4 Conclusions and recommendations

33
36
39
41
42

7. Character segmentation

7.1 Histogram stretching

7.2 Analysing the column sum graph
7.3 Finding the dashes

7.4 Segmenting the first and last character

7.5 Segmenting the character pairs

7.6 Segmenting the top and bottom of the characters.

7.7 Conclusions and recommendations

8. The theory of the PCA transformation

43
46
47
48
49
50
53
55

9 Classification with the PCA transformation

60

11. System evaluation

Acknowledgements

Bibliography

9.1 Segmentation dependency of the PCA transformation

9.2 Segmentation error correction

9.3 Classification of the a PCA transformed character

9.4 Measuring the quality of recognition

9.4.1 The distance ratio

9.4.2 The radial basis function network

9.4.3 The Bayesian classifier

9.5 Syntax checking

9.6 System overview

9.7 Conclusions and recommendations

10. The implementation

63
64
66
69
69
71
75
75
76
77
78

10.1 Matlab 5.0

10.2 The implementation

10.2.1 Calculating the prototypes

78
79
81
84

11.1 The camera and frame grabber

11.2 The license plate segmentation

-11.3 The character segmentation stage
11.4 The classification stage

11.4.1 Distance ratio

11.4.2 The RBF layer

11.4.3 The trained RBF network

11.4.4 The Bayesian classifier

11.4.5 Conclusions

11.5 The syntax checker

12. Conclusions and recommendations

84
84
85
88
88
89
91
91
91
93
94

96

97

1. Introduction

The origin of this project lies at the Dutch ministry for traffic regulations. They announced to
be interested in using license plate recognition systems in future. Philips responded to this by
examining the possibilities of a license plate recognition system. Philips Industrial Vision,
part of CFT', specialised in optical systems, image manipulation and character recognition is
focussing the attention on such a system. This was also done earlier in the Kever [VII]
project, which was only partially a success. It was too complex and expensive. Unfortunately
not many details about this project are available to us. This time Philips Industrial Vision
asked the faculty of Electrical Engineering at the Eindhoven University of Technology to do
research on license plate recognition systems. At the university it was decided that this would
make an interesting graduation project. I applied for this project because of my interest in
artificial intelligence, text recognition and image processing.

Within the frame of the project “character recognition” of the faculty of Electrical
Engineering at the Eindhoven University of Technology, neural and non-neural techniques are
studied to recognise license plates. The problem of license plate recognition differs at many
points from the problem of scanned text or hand-written text recognition. Here it is tried to
find and implement the optimum approach that fits best to the problem of license plate
recognition.

1.1 A system overview

The parts of a license plate recognition system that actually belong to the assignment can be
pointed out in the system overview presented in figure 1.

! Centrum for Fabrication Technology

License plate Character Classification

Syntax

segmentation segmentation checking
= LP RP 0f
| 2 o
| } 2 Y 9 7
o ? 9

tHnnmim
UGG

L

Figure 1. A system overview.

The system can be divided into five stages. All will roughly be discussed here.

A high-speed shutter camera and a frame grabber form the front-end of the system. The

camera delivers images of cars passing by. A result like figure 2 is obtained after digitising an

image with a frame grabber.

Figure 2. A sample image of the front of a truck.

This image is taken of the front of a truck, but it is preferred to take them of the back of a
vehicle. The optical resolution of the images is assumed to be 439 x 510 pixels. The location
of the license plate can be calculated from the digitised images. This is done in the license
plate segmentation stage. The license plate segmentation stage of the system that was
implemented by CFT was supposed to be used for this, but it is unavailable to us at the time,
so no experiments can be done with it. Only some specifications are available. It is assumed
that the system can find the corner points of the license plate in an image with a precision of
about two pixels. These two pixels refer to the dimensions of the input image of 439 x 510
pixels. An image with four corner points indicated approximately is the starting point of the
assignment.

The area described by the four corner points is transformed to a rectangular area of fixed
dimensions. Then the characters in the resulting image are approximately segmented. Next the
characters are classified and the syntax of the results of the classification is checked.

One could also imagine an extra stage for image enhancement, but actually all stages except
the syntax check stage can contain some sort of image enhancement or image normalisation.
There can be an enhancement stage for the whole image, one for the whole plate and one for
the individual characters. The enhancement steps are assumed to be part of the corresponding
stages themselves.

1.2 The assignment

The assignment was as follows:

Design and implement a license plate recognition system. The starting point was an image
with the corner points of the license plate indicated approximately. All stages missing
should be designed and implemented as good as possible within the six months available
for the graduation project. Special attention should be paid to eliminating misclassification.
A thorough literature study is needed to get insight into license plate recognition systems.
The system should work for Dutch license plates, but should be designed in a way that it
can be adapted for foreign plates without much work. The permitted time to recognise one
plate is unknown and should not be of primary concern, especially because the system is
perhaps implemented on custom hardware later. This usually causes the processing times
to be reduced tremendously.

1.3 The application areas

A justified question at this time is: “What do you want to do with a license plate recognition
system?”. This is unknown at the moment. One can suspect that it could be used to bill
speeders because of the involvement of the government. However, there are many other areas
where a license plate recognition system can be useful. It could be used to:

e study travel habits. This could help solving the traffic jam problem in Holland;

e operate a no-stop tolling system;

e operate a ticket-free parking lot;

e secure gas stations;

e tell drivers that they are exceeding the maximum speed(with signs next to the road).

There are at the moment some experiments in the Netherlands with signs next to the road
which indicate if the car passing is going too fast. These signs will have a much higher impact
if the sign also mentions the license plate number of the car. It is important to reduce speeding
because this has been found to be causing traffic jams. In general one can say that a license
plate recognition system is beneficial for the safety and traffic flow on the roads.

1.4 The approach

It is always a difficult task to come up with a good approach. Obviously a literature study is a
good starting point. A bottom up approach seems to be the most optimum for the project. The
problems that could occur in a license plate recognition system are very hard to predict
beforehand. With a bottom up approach it is possible to get a complete system running in a
short time and then study the performance of the different stages. Then the bottleneck of the
system should become clear and can be tackled.

It was decided to use Matlab to implement the programs that are needed. Matlab programs
usually run very slowly and the programming language of Matlab is not well defined, but for
this project it is very well suited. With Matlab a gigantic amount of useful functions for
statistical and image manipulating are available. This is ideal for rapid prototyping, which is
very important for this project. At the end the methods used are important, not the
implementation. However, before anything is implemented, a literature study is done, which
is described in the next chapter.

2. The literature study

An extensive literature study was done at the beginning of the project described in this paper.
It should give insight in the problems that a license plate recognition system faces. The study
should yield the following information:

e Which classification methods are suitable, and what are the benefits and drawbacks of
each method?

e What are the bottlenecks of already existing systems?

e What is the performance these systems?

e Are license plate recognition systems still developed nowadays?

e What can image enhancement do to improve a system?

e Which character segmentation schemes are applied?

A separate report was written in Dutch about the literature study. It is available at the faculty
together with many articles related to license plate recognition systems. This report was
written for the so-called “Bibliotheekpracticum”, which is a course on how to do and report a
structured literature search.

The answers to the questions asked are roughly discussed here.

From the found literature it is concluded that most license plate recognition systems use
neural nets to classify characters. These nets seem to be “smart” enough to deal with this
difficult problem. The neural nets are most of the time used in combination with some kind of
feature extraction like for example connected component detection. Systems applying neural
nets have the best performance according to the articles. Some systems use template matching
and some use special transformations. But then the system performance is less compared with
the neural net approach.

Most systems described in the articles have the same problems. They have difficulties in
classifying characters that look about the same, like for example the “5” and a “S” or the “8”
and a “B”. One can draw an important conclusion from this. All classification methods will
most likely have weak points, this could be for example the classification of the “5” and the
“S”. Applying an extra stage specialised on a weak point probably offers a solution. This
multi-stage classification approach was not found in any of the studied articles but has
probably much potential.

It is often hard to judge the performance of a system from a description in an article. The
performance is sometimes mentioned, but the conditions that lead to the stated performance
are usually not, at least not in detail. In most cases the rejection rate for the whole system is
mentioned, but the rejection rate per stage is not. The only conclusion one can draw about the
performance is that the plate rejection rate of the whole system can be high, like 25 percent, if
a very low, like 0.1 percent, misclassification rate is needed [XI]. The license plate
segmentation is claimed to work almost flawlessly in some systems.

From the amount of recent publications it is concluded that much research is done on license
plate recognition systems nowadays. A lot of research is done on electronic recognition
systems with radio transmitters. However, an optical recognition system is always needed as a
backup, so license plate recognition systems are still examined.

There was not much information in the articles about license plate enhancement and
segmentation. Many enhancement techniques only improve images for the human spectator.
An enhancement is sometimes of no use for a classifier, it can even deteriorate the
performance of a system.

About image enhancement the articles only state that thresholding a license plate image
without losing relevant information is very difficult if not impossible.

Classification methods will be examined in more detail in the next chapter.

10

3. Classification methods

Many different classification methods are discussed in literature. All methods found can be
placed in three main groups, sorted by the strategy they apply. The three basic classification
methods are template matching, artificial neural nets and transformation methods like the
Hough transformation. The three classification methods will be discussed and compared with
each other in the context of license plate recognition. Each group has many subclasses, only
some of them will be dealt with here.

All methods have their own advantages and drawbacks. It is important to understand the

- problems that a license plate recognition system faces if one wants to judge each method. A
list of properties of license plate recognition was made to get an idea about these problems:

e High noise levels

e Much distortion

e Many different circumstances

e Low optical resolution

¢ Low contrast

e Just1 font

e Only small variations in character size
e Known syntax

e Known character spacing

The first five properties are disadvantages, the last four are advantages of license plate
recognition compared to optical character recognition, OCR, on scanned printed text.

There is another aspect that plays an essential role in license plate recognition systems,
namely the elimination of misclassification. A system should be able to classify, but it also
should give a measure that indicates how certain the system is about a classification. With this
measure one can decide to accept or reject results and so influence the rejection and
misclassification ratio. A balance between the rejection and the misclassification has to be
found. There are no boundaries given for the rejection or misclassification rate, but a system
with a high misclassification rate is obviously useless.

The three main classification methods will be discussed in the next paragraphs.

3.1 Template matching

Template matchers are basically comparing characters with prototypes. The prototype that
matches best to the character “wins”. There are many ways to calculate matching costs. One
way is to multiply the prototype pixel values with the corresponding pixel values of the
unknown character and sum the results. The pixel values can also be subtracted from each
other and then squared and summed. This is how template matching is implemented most of

11

the time. A special way of calculating the matching costs is applied in elastic template
matching. Here the costs are a measure of the morphing energy that is needed to transform a
character into a prototype.

If one looks at the list of properties in the previous paragraph then template matching does not
seem to be a bad method. Especially because only one font with a limited variation in
character size has to be recognised. Template matchers perform very well if used to classify
characters that resemble the prototypes very well, which partially seems to be the case here.
An important question is: “Are the matching costs a good measure to classify characters?”.
The best way to find out is to do some experiments. This can be done in a short amount of
time because an elastic template matcher is already available and building a template matcher
is fairly easy. Doing some experiments will also increase the understanding of the problem of
license plate recognition. At this time no experiments have been done for this project with any
kind of template matcher.

An important drawback of template matching will most likely make this method unsuitable
for license plate recognition. The next example points out this drawback. Assume that the
characters in figure 3 are the prototypes of a template matcher.

Figure 3. A prototype “9”, “3” and “8”.

In addition, assume that the character in figure 4 should be classified.

Figure 4. A sample character.

If the differences in grey level of each square of the sample character and the prototypes are
summed for each prototype then the result will be two for each case. This yields that the

sample character has to be rejected because there is no winner. This is probably the correct
thing to do but that is not the point here. The “distance” between the prototypes and the
sample character does not seem to be equal for all prototypes if one just looks at the example.
This is a somewhat subjective measure, which is caused by the way humans identify
characters. Humans pay more attention to structures like loops and strokes than to pixel data.
The example shows that all pixels are treated equally which is far from optimal. Not all pixels
are equally important. Their location and the values of all other pixels in the image specify
how important they are. The next examples will go more into this drawback of template
matching for license plate recognition. Figure 5 shows two manually distorted license plates.

Figure 5. Two manually distorted Dutch license plates.

Most people can classify the plates in figure 5 without having any doubt, in spite of the heavy
distortions that were applied manually. This is remarkable because humans are able to do this
even without knowing what exactly the prototypes look like. The distortions in the plates
apparently cannot confuse humans. The parts of the characters in the plates that are not
removed give enough clues about the identity of the characters. Template matchers usually
treat all pixels as equals. Changes in pixel values, if compared with the prototypes, will all
contribute the same to the matching cost, independent of the position and the significance of
the pixel. Obviously all pixels forming a character are not equally important to recognise the
character as is shown in this example. Template matchers are not aware of the specific
features that distinguish one character from the other. They just look at the differences
between a character and the prototypes. This is why this approach is probably unsuitable for

13

license plate recognition systems. A more advanced method is needed. Literature claims that
neural nets offer a solution, therefore neural nets will be examined in the next paragraph.

3.2 Artificial neural nets

Artificial neural nets can be useful in a very wide range of problems. They are very suitable to
model systems that are hard to describe mathematically. In image and character recognition
neural nets proved to be especially useful. Neural nets seem to be able to cope with these
kinds of problems.

A neural net is capable of “learning” the behaviour of a system by “looking” at sample data,
presented in the form of vectors, of the system. A system is treaded as a black box, only the
response to a number of inputs is known. The net “learns” by training it. This is done by
presenting sample data to the net with the help of a training algorithm. After training it
usually can accurately predict the response of even very complex systems to input data that is
never saw before.

The set of samples used to train the net is called the training set. A test set is used to check the
performance of the net. Sometimes this test set is used as a stop criterion for the training. In
this case also a validation set is needed to measure the performance of the net independently
of the training and test set. Usually all sets contain about the same amount of samples. A lot
of sample data is needed for training and testing. This is considered a drawback of neural nets.
The test and training set should be a good representation of the real life situation. Special
attention should be paid to this. After training it is hard to find out which criteria the net uses
to draw conclusions. Therefore, a bad test and training set will not immediately betray itself
after training.

From the found literature it is concluded that applying neural nets is the most popular
approach for license plate recognition systems. Applying them can be done in many ways.
The grey levels can be used as inputs for the net immediately or some kind of feature
extraction like for example connected component detection can be used. If the grey levels are
fed to the net then a large net is needed, which implies that a lot of sample data must be
available. As a rule of thumb there must be about five times as many samples in the training
set as the number of weights in the net.

Many net structures are possible. The dimensions and thus the degrees of freedom in a net
should fit to the problem that it is facing. It should have enough degrees of freedom to solve
the problem. But if the net has too many degrees of freedom then the net starts paying
attention to irrelevant information like noise and is not able to generalise the problem, which
will cause degradation of the performance. Finding the right net structure for a problem can
be a very difficult task.

A very nice property of neural nets is their flexibility. If after some experiment it turns out
that the net has certain problems, like for example the classification of the “8” and the “B”
then extra information can be fed to the net in order to train it for a better discrimination
between these two classes. The application area of neural nets is not limited to classification

14

problems. A neural net can even be used to draw conclusions about the results of two
independent classifiers or for image enhancement or segmentation.

A very common net structure is presented in figure 6. This net structure is called the feed-
forward multi-layer perceptron architecture.

Second
= neuron
Fi hidden O
1rst layer — = weight
hidden y welg
layer

Figure 6. A multi-layer perceptron architecture.

The neural net in figure 6 has four layers, which are connected by weights. These weights
transport data coming from the output of a neuron to the input of a neuron in the next layer.
The neurons represent a non-linear function like a radial basis or a sigmoid function. This
function describes the receptive field of the neuron. Often a Gaussian function defined by

equation (1) is used for this.
D2

f(Dy=e (1)

With D the distance from the centre of the radial basis to a point, and ¢ a parameter

describing the spread of the function. Figure 7 shows two radial basis functions with different
o values.

R
N
RS

(‘:&%{6“‘3\9

Figure 7. Two radial basis functions, 61 » G».

15

The distance can be calculated in many ways. It does not even have to be measured equally in
all directions. This can also be modelled with different 6 values for each direction. For the 2-
dimensinal case this will result in equation (2).

2
bl by
7

FDGxy)=e = @)

The receptive field of the neuron can then look like figure 8.

Figure 8. A special radial basis function.

How to train a multi-layer perceptron is described in the next paragraph.

3.2.1 Training a neural net

Many different training algorithms can be used to train a neural net. Training is most often
focussing on reducing the mean square error of the output vector in relation to the wanted
output vector. In most cases only the weights in the net are adapted to achieve this. This can
be a very complex task, depending on the network structure. An imaginary mean square error
function is plotted for just two weight values, w; and w, in figure 9.

16

5
24,

s
%

Figure 9. An error function.

Finding the global minimum of the mean square error function is usually the goal of training.
The error function can contain local minima. It is difficult to tell if the result of training is the
global or a local minimum.

A very popular training method is the back-propagation training algorithm. How this method
works is illustrated in figure 10.

7Input 1ini Wanted
vector result
Adjust weights

Network
result

Hidd layer
idden
layer O

neuron

weight

Figure 10. Back-propagation.

17

The weights in the net are initialised before training it. They can be initialised at random, but
for the training speed and stability it is better to find an initialisation that is as close as
possible to the expected weights after training. Training can cause oscillation of the weights.
This is called instability of the training. If this occurs then the weights do not converge to a
steady state. An initialisation for the weights can be found by solving the equations in the net
for a number of training vectors. In some cases an initialisation can be calculated that is equal
to the optimum solution in terms of the mean square error of the net. An example of such a
net is shown in figure 11.

@ = adder
Summation

layer O = neuron

Hidden
layer — = weight

Figure 11. A dual-layer network.
The summation layer does not consist of neurons but of adders. The outputs(H) of the input
can be calculated for all training vectors(X). Then the output of the net(Y) can be calculated
with the weights(W). In matrix form this yields equation (3).

Y=WH 3)

The wanted outputs for each input vector of X are known, these are the target vectors 7. For
the optimal weight matrix this yields equation (4).

T=W,H 4)
Thus the optimal weight matrix is defined by:

W =TH (5)

opt

18

So W, can be found by calculating the inverse of matrix H. If H is not a square matrix then
there is no inverse of H. In this case the pseudo inverse can be used. Equation (6) gives the
definition of the pseudo inverse.

HPseudo =HT((H.HT)_1)T (6)
Thus the optimal weight matrix is defined by:

Wop, — T H Pseudo (7)

So in this case only training data is needed to find an optimum weight matrix, but in most
cases training the net is needed.

The weights are adapted in the training stadium. This can be done for each training vector
separately or for the whole training batch at once. Batch training is more stable and quicker to
calculate. There are many strategies to adapt the weights. To examine if the result is a global
or a local minimum one can try different initialisations of the weights before training. If the
outcome is the same every time then the result is probably the global minimum.

The network in figure 11 can be trained by adapting the weights with AW of equation (8).

AW =L (T-Y)H' 8)

With Ly the learning rate and T the target matrix which defines the wanted output for each
training vector. The response of the net to the training vectors is represented in Y. The
learning rate defines how much the net is updated each time. An appropriate value must be
found. If the value is small then the training can take very long. The net can start oscillating if
the learning rate is too large.

The definition of the error at the output of the net depends on the problem that it is trying to
solve. If one for example is only interested in the highest and second highest response at the
output layer then the error of the net is not defined by the mean square error. Let us assume
that one wants the highest response to be 1 and the second highest response to be 0. A target
vector with zeros and one 1 can be used for this. This way one “pushes” all outputs except one
to go to 0. Which is more than one needs. It is better to only adapt the weights that are related
to the output that one wants to be 1 and the highest other output. This can be achieved by
resetting the outputs that are of no interest to the wanted output levels. Thus not all weights
are adapted. This leads to a better performance of the network.

Not all neural nets require training, like for example a Bayesian classifier implemented as a
neural net. This is an example of a probabilistic neural net. These nets are described in the
next paragraph.

19

3.2.2 Probabilistic neural nets

The Bayesian classifier can be implemented as a probabilistic neural net [II, chapter 3] [IX
chapter 3]. A Bayesian classifier is ideal to classify point clouds. Each training sample is
stored in a neuron in this approach. A Gaussian radial basis function can be used as the
receptive field of the neurons. The response of all neurons of a class is summed with an adder.
The class associated with the adder with the highest result is assumed to represent the correct
classification result. The more neurons in a class the higher the probability that the adders of
the class “wins”. A class can be interpreted as one neuron with a complex receptive field. The
receptive field of this neuron is the sum of the receptive fields of all neurons of a class. These
properties of the Bayesian classifier result in two very important advantages over other
classifiers:

e No assumption is made about the shape of the distribution of probability, it solely depends
on the distribution of the training data.
o It implicitly reckons with the a-priori probability of a class.

Equation (9) shows how to calculate the response f,(X) of a Bayesian classifier for class A.

_ (X—Y‘,,')T(X—Yu,')

202

fa(X)=ie)

with i the training vector number, ¢ the smoothing variable, n, the number of training vectors
in class A, X the test vector to be classified, Y, the ith training vector of class A and T the
vector transpose. Figure 12 shows a Bayesian classifier implemented as a neural net.

Summation
layer

Pattern
layer

Figure 12. A neural net implementation of a Bayesian classifier.

20

No training is required for this kind of network. The spread of the non-linear function of the
neurons that form the receptive field of a class must be set to an appropriate value. Let us
assume that a Gaussian radial basis function is a the receptive field of the neurons, then a
appropriate value for ¢ must be chosen [II, p. 3.10]. If the sigma value is small then almost
only the neuron closest to the sample data will respond. The second closest neuron will
respond much less. The classifier then almost works like a neighbour classifier. If the ¢ is
large then the most probable classes will overwhelm the other classes. Figure 13 shows an
example with two classes. The receptive fields are shown in one dimension. Class B has two
times as many sample vectors as class A. The sigma in the right image is larger than the sigma
of the left image. The response of class A on input x; is higher than the response of class B in
the left image. It is the other way around in the right image.

=
Response

Response

A B A
%

Xj input X input

Figure 13. The receptive fields of two classes for different sigma’s.

Figure 13 shows that the classification result depends on the chosen sigma value. Figure 14
shows an example of the receptive field of a class for two different sigma values.

AN
i
A
/f”:':‘:“‘&\‘g /)
i

q

Vi
), s

oSNl

R
et SRy
£ 480!
“
o3

305K
“‘\‘:‘:‘“
0S50S

Figure 14. The receptive fields of a class for different sigma’s, 0,<0>.

21

The chosen &) in figure 14 is probably too small, &, is chosen better.

If there are many neurons then this approach is very computational intensive. There are
methods to reduce the number of neurons, and thus the computation time, without decreasing
the performance of the classifier. One could for example approximate a cluster of neurons
with one neuron with a large receptive field. This technique is called clustering [IX, p. 163-
165].

An advantage of the Bayesian classifier is that no training is required. If enough good sample
data is available then this approach results in an optimal classifier for point clouds. It is
possible to test this type of classifier without an independent training and test set. Then all
except one sample is used to “train” the net. For each test cycle only one sample is excluded
from the train set. This sample is used to test the net. This way the test set is independent of
the train set, but no separate sets are needed.

Neural networks seem to be promising. The possibilities should definitely be explored.
Many classifiers based on neural nets use some kind of feature extraction. This is done to
reduce the dimensions of the net, which would be quite large is the pixel data was fed to the
net immediately. A transformation can be used to classify or extract features or reduce the
dimension of pixel data. Some transformation methods are described in the next paragraph.

3.3 Transformation methods

Many transformations on characters can be used to classify them, but this is not commonly
seen in license plate recognition. Transformation methods can also be used for feature
extraction or data reduction. This is often done in combination with a neural net. Two
transformation methods will be discussed here. The first one is the Hough transformation.

3.3.1 The Hough transformation

The Hough transformation [VIII, p. 7.1-7.6] is based on contour information. It is suitable to
find objects in an image that can be described with simple functions like a straight line or a
circle. Some articles found in literature successfully use this transformation to segment license
plates.

Accurately finding the contours of characters on license plates is very difficult because of the
low resolutions used here. The different circumstances of the license plate images makes it
even more difficult. That is why this transformation in not likely to perform well for license
plate classification.

A transformation method that already was examined in a former project [I] is the PCA
transformation. It is described in the next paragraph.

22

3.3.2 The PCA transformation

A student examined the possibilities of using the principal component analysis, PCA, for
multi-font character recognition in a former project[1]. The results were very encouraging.
The system showed that PCA is very suitable to reduce the dimension of data without losing
relevant information. This is ideal in combination with a neural net because then dimensions
of the net can be reduced and thus only a small training and test set is needed. The classifier
proved to be very noise resistant. In this system the pixel data was PCA transformed. The
result was a vector with a much lower dimension than the pixel data. The PCA transformed
character was then classified with a radial basis neural network. The scheme of the system is
presented in figure 15.

Radial
basis Summation
layer

Figure 15. Classification with PCA transformation and a radial basis neural net.

The PCA transformation seems to be able to reduce the dimension of the pixel data without
losing relevant information. If there are N prototypes then the PCA transformation of a
prototype has at most N-1 elements. This number is independent of the number of pixels in
the prototypes. The prototypes can even be reconstructed exactly from their PCA
transformation. Only a small neural net is needed to build a classifier if the principal
component analysis is used, so the amount of train and test samples required is much less than
without the transformation.

This seems to be a very promising approach for license plate recognition also. It will be
examined in more detail in chapter 8.

23

4. Dutch license plates

All motorised vehicles on the Dutch roads must be registered at the ministry for traffic
regulations. They assign a license plate number to each vehicle. The number is placed on a
license plate, which has to be mounted on the vehicle. A plate is usually mounted symmetrical
to the bumper of the vehicle, but placing it more to the sides is also allowed. All vehicles
except motor cycles have plates at the back and the front. Motor cycles only have plates at the
back.

The legal requirements for Dutch license plates allow about 60 different models. These differ
from each other in height, width, colour, text font or layout of the characters. The different
shapes of plates can directly influence the license plate and character segmentation stage. The
fonts used in the plates can directly influence the classification.

The regulations concerning the different models are very strict. This can help in segmenting
and recognising license plates.

The next paragraphs only describe the most common Dutch license plates models.

4.1 The common Dutch license plate

Figure 16 shows an example of the most common Dutch license plate model.

Figure 16. The most common Dutch license plate model.

The background of the common Dutch plate is yellow, the characters are black. Almost every

Dutch license plate is of this type. That is why was chosen to only focus at this type of plate at
first. At a later stage the developed character segmentation and classification can be expanded
for other types. The exact percentage of the Dutch plates which are of this model is unknown,

it is probably about 98 percent.

The plate height may be 11 or 12 cm, usually it is 11 cm. The license plate segmentation stage
should not have any problems with these differences. The height of the characters is

24

proportional to the plate height. Therefore, if the plates are scaled to a fixed size then the
character dimensions should be the same. The character height is about 8 cm if the plate is 11
cm high. The plate is 52 cm wide.

The characters are usually punched in a metal plate, so they have some depth. There are also
variants where the characters are glued on the plate. These characters are about 1 cm thick.
This can cause some shadow around the characters on the plate.

Only a few fonts are allowed in license plates. Law regulates the character dimensions and
spacing. In practice only one font is seen in the most common type of plate. If one only
focuses on this type of plate then one has to deal with just one font.

The characters must be placed symmetrically in a plate. Therefore, the space above the
characters must be the same as the space below them because all characters have about the
same height. The space to the left of the first character and the space to the right of the last
one must also be the same.

The contents of a plate has to obey strict syntax rules. It consists of three pairs of characters
separated by two dashes. A pair always consists of two digits or two letters of the alphabet.
Not all letters of the alphabet are used. The contents of a plate gives information about the
type and age of a vehicle. Not all characters are used and some combinations of characters in
a pair are not allowed.

A syntax check stage can be used to check if the recognition results are according the
regulations and thus detect some misclassifications. If for example an “8” is classified as a
“B” then the syntax check stage will detect that the syntax is invalid.

Another thing that can be checked after classification is the character spacing. If a
misclassification is caused by bad segmentation then the character spacing found is probably
invalid. Checking this can help in reducing misclassification.

A new model will replace this type of plate in the near future. The new model is outlined with
a thin black line. This is probably beneficial to the license plate segmentation stage. The
syntax of the contents and the plate dimensions are the same as the common model. A blue
area is added in the left part of the plate. The blue area and the outline are the cause that the
characters are a little smaller than in the common model. The symbol of United Europe, a
circle of stars, is placed in the blue area together with a flag and an abbreviation of a country.
This type of plate is called the Euro plate, it has not been released yet so no examples are
available. A sticker is sometimes put on new plates to make them look like a European plate.
This is actually illegal. Figure 17 shows an example.

Figure 17. A fake Euro plate.

25

4.2 Other types of plate

Besides the most common Dutch license plate, described above, several other types can be
distinguished. For instance figure 18 shows the so-called “square” plate. The plate is not
square of course. These plates are mostly used on trucks and hatchbacks.

Figure 18. A “square” plate.

Motor cycles have much smaller plates than cars. An example is shown in figure 19. These
plates usually contain a “M”.

Figure 19. A motor cycle plate.

Another type of plate is presented in figure 20. Two bolts and an APK? sticker are also visible
in this image. This plate is less wide than the common plate. This model is called the
“American” plate because it is mostly seen on American cars, which have less space reserved
for the license plate. A special permit is needed for these plates.

% A sticker that shows that an obliged annual inspection has been executed on the car, in Dutch APK stands for
“Auto Periodieke Keuring”, which means car periodical inspection.

26

Figure 20. An “American” plate.

All previously described plates have a yellow background with a black foreground. The plate
in figure 21 is a garage plate. It has a green background and a white foreground. Garages use
it for test-drives. Special license plate numbers are used for these plates. Note that there is an
“A” in this plate.

Figure 21. A “garage” plate.

The plate in figure 22 is very uncommon. It is a temporarily plate. This plate is just valid for a
few days. It is used to import cars that do not have a license number yet or for trucks that are
modified and thus need a new license plate number. This is the only plate that may be made
by hand. It has a white background and black characters.

Figure 22. A temporarily plate.

Cars that got their license plate number before 1977 have plates with a blue background and a
white foreground. An example is shown in figure 23.

27

Figure 23. A plate of the old model.

Blue is the complementary colour of yellow, so inverting the colours of this image should
result in an image that looks look like the common model, as is shown in figure 24.

Figure 24. An inverted plate of the old model.

4.3 Conclusions and recommendations

The plates described in the last paragraph represent only a small amount of the total number
of plates seen in Holland. The exact percentage is unknown. In a snap check of 1000 plates
only a few plates were not of the common model. This makes it difficult to get a reasonable
amount of sample images to experiment with these rare models. Therefore they are ignored at
the moment. It is unknown how the license plate segmentation stage will react on these plates.
It is best if the license plate segmentation stage detects what kind of plate is present in an
image. In addition, foreign plates should be detected there. The aspect ratio and colour of a
plate give clear clues about the type of plate. If the type of plate is known then the character
enhancement, segmentation and classification can be adapted to it.

With all these types of plates is seems to be interesting to spend some time on examining the

possibilities of segmentation-free classification. Perhaps an extension to the used
segmentation error corrections discussed in chapter 9.2 can offer a solution.

28

5. The camera and frame grabber

The approach described here is designed and implemented by CFT, it is no part of the
assignment. Not many details about this part of the system are known to us.

A high-speed shutter PAL® camera and a frame grabber form the front-end of the system. The
camera delivers images of automobiles passing by. A frame grabber then digitises the images.
Artificial lighting is used to assure a minimum level of illumination of the license plate. The
angle between the road and the line between the camera and the license plate is assumed to be
about 31°, like shown in figure 25. Some experiments done by the Dutch ministry for traffic
regulations proved that this is the optimal angle.

N

31° —>

Figure 25. The camera position.

No trigger mechanism is used to start the camera or frame grabber, so a continuous flow of
images is delivered. These images are evaluated by computer to find out if there is a license
plate in the image. Examining all images is probably very time consuming. Most systems
described in literature use trigger mechanisms like optical bridges or electromagnetic loops in
the road. Which approach is best depends on the available computing power. The method of
CFT will deliver the best results because it is independent of the vehicle length and speed. In
addition, the placement and angle of the camera in relation to the road is less critical this way.
More images of one plate are taken, which can be beneficial to segment the plate.

It is best to take images of the back of a vehicle instead of the front. Here are some reasons:

e Motorcycles only have license plates at the back.

e The lights at the back of a vehicle do not influence the images as much as the front
lights.

e Many trucks have signs at the front, which can be mistaken for license plates.

¢ Drivers who want to avoid being seen by a camera can drive very close to the vehicle in
front of them. The license plate will then be obscured.

e The plate at the back is usually cleaner than the front plate.

Some examples illustrating this are presented in figure 26.

? Phase Alternating Line

29

Figure 26. Images of the front of some vehicles.

These images were made on a highway. The vehicles drive about 100 kilometres per hour.

A disadvantage of taking images of the backside is that many Dutch cars have APK stickers
on the plate at the back. These stickers have a lighter colour than the background of the
common Dutch plate. This can lead to problems in the segmentation and recognition of the
characters on the plate. The stickers now have become obsolete.

Usually more than one camera will be used, especially if there are more lanes in the road. A
wide camera angle or more cameras must be used to make sure that no car can pass by
without getting its license plate on camera. If a wide camera angle is used then the resolution
of the license plate characters will be very poor.

The cameras use the PAL system. A PAL image consists of two frames, one containing the
odd and one containing the even image lines. In total there are 585 visible image lines. Each
line contains about 680 pixels. The Kell-effect*[VIII, p. 2.6] limits the resolution of 585 x 680
to 439 x 510 pixels. The characters on a plate are expected to be at least 15 pixels high.

A special monochrome camera is used to sample two frames at once, this is necessary because
the cars could be driving very fast. Usually every fiftieth second one frame is sampled which
leads to 25 full images per second. If every fiftieth second one frame would be sampled then
the two frames would be unsuitable to be used as one image in this application. A gain of a
factor two in the vertical resolution is achieved by using this special camera.

4 Kell factor 0,75.

30

At this time a monochrome camera is used, later a colour camera could be applied, which
could help in recognising foreign plates. In addition, the license plate segmentation stage can
benefit from a colour camera.

The license plate images coming from the frame grabber can look very differently. Partially
this is caused by the artificial lighting. Dirty plates do not reflect much light, so they still stay
very dark. Clean plates reflect a lot of light, which makes the background of a plate very
bright. The characters then become very thin, almost skeletonised. The angle that the plate is
facing in relation to the lights also influences the images. Figure 27 and 28 are examples of
images coming from the frame grabber. These and actually all images used here are achieved
a little differently than described above. A VHS’® tape, recorded in PAL, was used to store the
images of the camera. Later the images were digitised. This extra step reduces the optical
resolution of the images and introduces some noise. The performance of the system will
probably increase if this step is omitted.

More than 1000 images were obtained in two setups. The first setup contained 593 plates. 29
images contained foreign plates. 19 images contained totally unreadable plates, which are
probably Belgian plates. The remaining 545 images were used to test the license plate
recognition system. These 545 images were split up in two sets to be able to judge the
performance of the system better. The images were split up in 461 good and 84 bad samples.
The bad samples contain an obvious distortion in the license plate, which probably will cause
problems for the character segmentation or classification. The images made in the second
setup, where the image contrast and brightness was increased a little, can be used to develop
the system further.

Figure 27. A car with a bright plate.

3 Video Home System

31

Figure 28. A dark image.

The images in figure 27 and 28 show that the results coming from the frame grabber can be
very different. Some noise is clearly visible in figure 27, especially at the upper side of the
image.

It is important to tune the setup of the camera and frame grabber correctly. The characters in
bright plates should not disappear, and the background of dark plates should not become as
dark as the characters.

A computer is continuously checking the images coming from the frame grabber for license
plates. If an image is found with a plate in it, then the location of the plate has to be
calculated. This is done in the license plate segmentation stage, which is described in the next
chapter.

5.1 Conclusions and recommendations

Special attention must be paid to a good setup of the camera and frame grabber. Properties
like contrast, sharpness, noise, camera angle and used artificial lighting all can influence the
performance of the system.

At this time a monochrome camera is used. Using a colour camera could help in recognising

foreign plates. In addition, the license plate segmentation stage can benefit from a colour
camera.

32

6. License plate segmentation

The approximate positions of the four corner points of a plate are calculated in the license
plate segmentation stage. CFT designed and implemented this stage for the most common
plate. The license plate segmentation stage is unavailable to us at the time, so no experiments
with this part of the system were done. From CFT some specification of the performance of
the system are known. It is claimed that the system is able to segment the plates with an
accuracy of about two pixels. These dimensions in pixels refer to the dimensions of an image
of 439 x 510 pixels that is delivered by the frame grabber.

The rejection and error rate of the license plate segmentation stage are unknown. From
literature it is known that a license plate segmentation stage can have a rejection rate as low as
1% and still have an error rate of almost zero. The details about the license plate segmentation
are unavailable to us, only roughly the strategy is known. The license plate is found by
applying template matching to find the corner points of the license plate. If four points are
found that are possibly the corner points of a license plate then the contents of the quadrangle
is checked on spatial frequencies. Certain spatial frequencies can be expected because of the
characters in a plate. Template matching is applied to see if there are two dashes in the
quadrangle. This implies that the approach is only suitable for Dutch plates.

An image with the four corner points of a license plate indicated is the starting point for the
project described in this paper.

Due to the perspective view, these corner points may not correspond to a rectangle. The area
described by the four corner points will be transformed into a rectangular area of fixed
dimensions. This should correct for most of the perspective view distortion of the plate, but
cannot correct for distortions caused by bent plates. The perspective view correction is done
with the bilinear transformation, which is described in the next paragraph.

6.1 The bilinear transformation

The bilinear transformation can transform an area described by four points (A’, B’, C’ and D’)
to a rectangular area(A, B, C and D), like shown in figure 29.

33

B?

Original plate

X >

Figure 29. The bilinear transformation.

This transformation leads to eight equations, two for each corner point. For each corner point
(x’,y’) of the original image the equations are:

X =0y +0x+0L, Y+ 0Ly

, (10)
y =Bo+Bix+B,y+ Byxy

with x and y defining the position of the point (x,y) in the transformed image. The 8 equations
for the four corner points can be written in matrix shape:

I oxy yo xoa|[a Bo| [x0 va
1 x; y, x4 .a| B, _ x;; Y;; =M.[a /3]=[X' Y'] (11)
1 xe ye xyalle, B, X Ve
1 x, yp Xy,]l By Xp)’;)

M contains the position of the four corner points of the transformed plate. These corner points
can be chosen as needed. X’ and ¥’ contain the position of the four approximately segmented
license plate corners. The 8 unknown variables(¢; and §; with i € {0, 1, 2, 3}) can be solved
with equation (12):

@« Bl=M7[x" Y] (12)
The a’s B’s only have to be calculated once per transformation. Then one can calculate the
positions of a point in the original image (x’, y’) for all points in the transformed image (x, y)

with the help of equation (10).

There are two ways to interpret pixels. One is to interpret them as samples. Then the grey
level of a pixel is defined by a sample that corresponds with the centre of the pixel. In the

34

second interpretation, pixels are interpreted as areas. One interpretation can sometimes be
translated to the other interpretation, as will be shown in this and the next paragraph.

With the help of the bilinear transformation one can calculate the areas in the original image

that defines the grey level of each pixel in the transformed image. Figure 30 illustrates this.

Indicated corner

Original image point
rvj‘/
o

1 1

i
Banl?

— !

Figure 30. The areas defining the grey level of the transformed pixels.

So the small dark grey area in figure 30 defines the grey value of one pixel in the transformed
image. The areas usually overlap more than one pixel of the original image.

To find the grey level of a transformed pixel one has to calculate how much of the area
overlaps the pixels in the original image. This can be quite complex as one can see in figure
31.

Figure 31. An area which overlaps eight pixels of the original image.

So eight pixels of the original image hold information about the grey level of one pixel in the
transformed image in this example.

Exact calculation of all areas and overlaps that define the grey level of the pixels in the
transformed image is very computational intensive and difficult to implement. An
approximation of the area can be calculated with bilinear interpolation, which is described in
the next paragraph.

35

6.2 Bilinear interpolation

In bilinear interpolation [VIII, p. 5.13-5.15] the grey level of an interpolated pixel is
calculated, based on the grey levels of four pixels of the original image. For the centres of
every pixel in the transformed image, the corresponding position in the original image is
calculated, using the bilinear transformation. The grey level for this position(P) is then
calculated based on bilinear interpolation of the four neighbouring pixels in the original
image, which is illustrated in figure 32.

Interpolated surface

XC Xc+ 1

Figure 32. Bilinear interpolation.

The four corner points of the plane, which is a hyperbolic parabolide, are defined by the grey
levels, f(x, y), of the four pixels in the original image closest to P. This bilinear interpolation
is defined by equation (13).

f(x,y)=ax+by+cxy+d (13)

In our case, f(x, y) represents the interpolated grey level at position (x, y) in the original
image. Four solutions to equation (13) are known, thus the four parameters (a, b, ¢ and d) can
be solved. The solutions of the equations are given by the positions and grey level of four
pixels in the original image. The parameters are found by assuming that x=0 and y=0 at the
point (x., y.). This yields:

36

fx,y)=d
fx.+l,y)=a+d
fx,y.+)=b+d
fx,+Ly. +D)=a+b+c+d

(14)

If the parameters are known then the grey level of a pixel in the transformed image can be
calculated.

It is hard to judge how good this interpolation is from these equations. Another interpretation
of bilinear interpolation, which leads to exactly the same results, makes it easier to show how
accurate the method is, depending on the conditions.

Bilinear interpolation can be seen as an approximation of the area in the original image that
defines the grey level of a pixel in the transformed image. The approximated area has the
same size as a pixel in the original image. Figure 33 shows two times four pixels of the
original image, with the area that defines the grey level of a transformed pixel indicated.

Figure 33. Bilinear interpolation.
Left: The approximated area. Right: The real area.

The area that defines the grey level of a transformed pixel is shown in the right image in
figure 33. This area is approximated with the area shown in the left image in figure 33.

The overlap between the approximated area and the pixels in the original image is now easy
to calculate.

How good the approximation is depends on the scaling factor and the rotation of the bilinear
transformation. Up scaling causes the approximated area to be too large. This causes some
blurring in the transformed image. Down scaling causes the area to be too small, which leads
to loss of detail because not all relevant pixels are taken into account. In the extreme case this
leads to nearest-neighbour interpolation. Rotations also cause loss of detail.

Here the bilinear interpolation is used to resample with scale factors close to 1 and small
rotations, so the approximation should not be far off.

The information contained in a resampled image is always equal or less than in the original

image. Sometimes it may seem as if a resampled image contains more details and thus more
information. Figure 34 shows an example.

37

Figure 34. An original (top) and a bilinear resampled (bottom) image.

It seems as if the resampled image in figure 34 contains more details and thus contains more

information, but this cannot be the case of course. Figure 35 shows another example of a
resampled image.

Figure 35. An original (left) and a bilinear resampled (right) image.

This example clearly shows the blurring caused by the bilinear resampling. The original
image can not be reconstructed by resampling the blurred image.

A drawback of bilinear resampling is the introduction of blurring in the resampled image.
Here this is not a real problem because the noise level in the license plate images is so high

38

that some blurring actually enhances the image. In this way salt and pepper noise is reduced
somewhat.

6.3 Bilinear resampling

Bilinear resampling is used to scale the segmented license plate to fixed dimensions. From
some sample images it was concluded that the dimensions of the plates are about 100 x 22
pixels. The dimensions of the destination image were chosen to be 180 x 40 pixels. This way
all segmented plates are up scaled and the aspect ratio is about the same as in the source
image. Up scaling also helps in finding the correct columns for the character segmentation. If
the resolution of a plate is very low, as in some example images, then the gap between the
characters is very small and hard to find. After up scaling this is usually no problem anymore.

The license plate segmentation had to be done by hand to get sample data. It was tried to
achieve a segmentation accuracy according to the specifications given by CFT. Segmenting
license plates can sometimes be very hard, especially if the image is very dark, like figure 28,
or the area surrounding the plate is as bright as the license plate, as in figure 36. It is unknown
how the system of CFT will react to these circumstances. It is assumed that either it will reject
these plates or segment them according to the specifications.

Figure 36. A difficult plate to segment.

39

An example of an original image and scaled and segmented license plate is shown in figure
37.

Figure 37. An original image and a segmented license plate scaled to 180 x 40 pixels.

Figure 38 shows how the bilinear transformation can be used to correct for perspective
distortion.

40

Figure 38. An image with perspective distortion (top) and the plate after the bilinear
transformation and resampling (bottom).

This figure shows that the bilinear transformation can correct for most of the perspective
distortion, but it cannot correct for the distortion that is caused by bent plates.

6.4 Conclusions and recommendations

At this time the license plate segmentation is done by hand. This leads to a lower rejection
and error than with the automated system. Furthermore the segmentation accuracy is probably
better when done by hand. To evaluate the system it would be best to have the automated
system available.

The plates are extracted from the images with the bilinear transformation. This corrects for
most of the perspective view distortion, but it cannot correct for distortions caused by bent
plates. If the corner points of a plate are known then it should be possible to find the contours
of the plate. Then a more advanced transformation, one that uses six points for example, can
be used to find a better reconstruction of the plate.

The characters on a plate can be segmented after the license plate segmentation stage. This is
done in the character segmentation stage, which is described in the next chapter.

41

7. Character segmentation

The role of character segmentation is very dependent on the classification method. There are
classification schemes without segmentation, so-called segmentation-free classification
schemes. Here another segmentation method for the common Dutch license plate is discussed.
The contents of a Dutch license plate has to obey many rules. From these rules a model of a
license plate can be made. This model just contains seven parameters, which are defined as
ranges. Figure 39 shows this model.

Figure 39. A model of the common Dutch license plate.

The vertical position of the dashes should be on top of the vertical middle of the plate. The
next table gives the parameter description and its minimum and maximum value in pixels.
The numbers given refer to the standard resolution of 180 x 40 pixels of a scaled license plate
image.

Table 1. License plate parameters expressed in numbers of pixels.

| Character width
| Dash width
{ Side space

4
; 2
| Top/bottom space 4 10
| Character/dash line width 3

The ranges were initialised with values extracted from the official description of Dutch
license plates. This description does not allow any freedom in some dimensions like for

42

example the line width. However, in practice it is easy to see that some dimensions are not the
same for all plates. In these cases real live images were used to draw conclusions about the
range of a dimension.

Many conclusions can be drawn from table 1. One can for example calculate the smallest
possible distance between the left edge of the plate and the left side of the left dash. This is
not calculated by summing the minimum possible values for C A D A E, because one
dimension can influence another. Dimension A and C should not be equal to the minimum
possible value at the same time. This is because the plate width is equal to
6A+2B+2C+3D+4E, which is constant. If one wants to calculate the smallest possible distance
between the left edge of the plate and the left dash then one has to imagine a plate that causes
this distance to be minimal. This occurs if the characters in the left pair have the minimum
possible character width and the other characters have the maximum character width.

The character segmentation stage is based on the column sum. The grey levels of all pixels in
a column of a scaled plate are added up. By calculating the column sum it is tried to get
information about the characters and the spaces between them, so only the areas where the
characters actually can be should be taken into account when calculating this vertical
projection. The minimum possible value for parameter C and F point out this area.

In figure 37 it is seen that a lot of noise is present, especially in the background of the plate.
This is probably caused by dirt and reflections on the plate. A special form of histogram
stretching can improve the image quality, resulting in a more reliable column sum graph.
Histogram stretching is described in the next paragraph.

7.1 Histogram stretching

A histogram is a graph which shows the number of pixels of a colour in an image for each
colour. Techniques like histogram equalisation, shifting, stretching and shrinking [VIIL, p 6.1-
6.2] can be used to enhance an image.

An ideal image should at least contain a certain percentage of light grey pixels from the
yellow background of the plate. There should also be at least a certain percentage of dark
pixels in the image. By examining some images it was concluded that an image should at least
contain about 60% light pixels and about 10% dark pixels. Experiments showed that an image
is enhanced for the character segmentation by projecting 60% of the lightest pixels to absolute
white. Projecting 10% of the darkest pixels to absolute black proved to distort the character
segmentation. If this is done then dark areas in between characters are sometimes projected to
absolute black, thus degrading the column sum graph. Projecting just 3% proved to enhance
the column sum graph. Linear histogram stretching is applied to the remaining 37% of the
pixels. The described process of histogram stretching is illustrated in figure 40.

43

Grey level after stretching

Black Grey level before stretching

Figure 40. Histogram stretching for the character segmentation.

A histogram before and after histogram stretching is shown in figure 41.

Figure 41. Left: The histogram of a license plate. Right: The histogram after enhancement.

The enhanced histogram seems to indicate that the image was almost binarised, but keep in
mind that the vertical scaling of the two images is different. Binarisation can actually occur
with plates that have a high contrast. The most important part of the image is the dark part.
This part is almost untouched by the enhancement. The major part of the noise in the
background is removed by the histogram stretching. Figure 42 shows the plate of figure 37
after enhancement.

Figure 42. A for segmentation enhanced license plate.

44

This plate looks better than the original non-enhanced image, but that is not what is important
here. The improvement that is achieved for the column sum graph is. Figure 43 shows the
column sum graph of the license plate in figure 37, which is not enhanced.

Figure 43. The column sum of a non-enhanced license plate.

The graph is very smooth which is very welcome here. The smoothness is caused by the
blurring introduced by the bilinear interpolation.

Figure 44 shows the column sum graph of the same image after enhancement. The extremes
in this figure are clearly more distinct.

—

Figure 44. The column sum of the enhanced plate in figure 42.

This graph is analysed for extremes. This is done in the next step of the character
segmentation.

45

7.2 Analysing the column sum graph

A graph like shown in figure 44 is examined for extremes. Dark pixels correspond with low
grey levels so the characters and the dashes should produce minima in the graph. Spaces
between characters and dashes should appear in the graph as maxima. The characters can also
cause extremes in the graph.

A maximum is assumed if one, or both, of the following criteria are met.

e A value in the column sum graph is larger or equal to its six closest neighbours and the
values four columns further and before the position are smaller than the basis position.
This can be indicated with: “< << <=2>22>>", where each symbol represents a value in
the graph. The “=" represents the maximum.

e A value in the graph between two minima is larger than a threshold, which is equal to 98%
of the maximum possible value for the column sum. If more values next to each other
exceed this threshold then only the centre position is assumed to be a maximum. If the
number of positions is even, then there is no centre position. In this case the position to the
right of the centre is assumed to be the maximum.

The second criterion is needed if the graph clips to the maximum possible value, like seen in
figure 44. This happens if a large area of the background is projected to white. The definition
of a minimum is analogous to the definition of the maximum. Figure 45 shows the extremes

indicated in the column sum graph of figure 43.

n \] N\

Figure 45. The extremes found in the column sum graph.
The definitions for the extremes are the results of fine-tuning with many plates. It is important

not to miss extremes, on the other hand not every little distortion should lead to extremes.
This could confuse the next steps.

46

7.3 Finding the dashes

Experiments showed that the step described here functions almost flawlessly for all plates
tested. This makes this step the ideal starting point for the character segmentation.

From the model of the license plate it is concluded that the horizontal location of a dash is
limited to a range. It is also known that a dash produces a minimum in the column sum graph.
Template matching is applied to find the dashes. This is only done at the minima in the range
for each dash. The best match in a range is assumed to be the location of the dash. Figure 46
shows a plate with its column sum and template results at the ranges.

Ll 1.

Figure 46. A plate (top) and the results of template matching at the minima in the dash ranges.

It is assumed now that a column containing part of a dash is indicated. Usually the dash is
indicated somewhere in the middle. Next the dashes are segmented. This is done by
comparing the indicated column with the columns in the neighbourhood. The columns that
match best are assumed to be part of the dash. This way the dash is accurately segmented.
Then the characters are segmented at the sides next to the dashes. This is done by shifting the
segmentation positions for the dashes towards the characters by two columns. The number of
columns to shift should actually be equal to the average number of columns between a
character and a dash. Two columns proved to work nicely. At this moment a side of each
character is segmented with an accuracy of about two columns. Figure 47 illustrates the
procedure described.

47

Initially found | dash column

Dash segmentation Dash segmentation

2 columns 2 columns
Character segmentation Character segmentation

Figure 47. Estimating the character segmentation from the dash segmentation.

These steps work flawlessly for all examples tested but one can imagine some possible
problems beforehand. A problem can occur if the dash does not produce a minimum or if part
of a character is mistaken for the dash. Both cases are quite unlikely. A part of a character that
can be mistaken for a dash, like for example the middle part of a “H” usually does not
produce a minimum in the graph so it is ignored completely.

7.4 Segmenting the first and last character

The left side of the first and the right side of the last character are segmented by examining
the column sum graph. Changes in the graph indicate the start or the end of a character. Let us
assume that the left side of the first character must be found. The left of the plate contains an
area that should be blank. The most right column in this area is the starting point. From there
the changes in the column sum are calculated cumulatively. If the changes exceed a threshold
then the start of a character is assumed. The right side of the last character can be segmented
in the same way, then one start at the right and looks for changes to the left.

This method works quite well in most cases, but there are some problems. Figure 48 presents
two cases that can cause some difficulties.

Figure 48. Two difficult to segment characters.

48

The changes in the graph at the columns where a character starts or ends are very dependent
on the shape of the character. The left side of the “J”” and the right side of the “L” produce
only a small change in the graph. This change is very hard to detect, especially if there is
noise in the background. This is partially solved by examining how steep the graph is in the
area where the graph exceeds the threshold that indicates the start of a character. A steep
graph indicates that a nice edge has been found. A flat graph indicates that probably a part of
a character is cut off at the point found. The found position is corrected depending on how
steep the graph is.

At this point the outsides of all character pairs are segmented. The next step is to segment
them completely.

7.5 Segmenting the character pairs

The character pairs are segmented by examining the maxima in the column sum graph. A
maximum is expected between the characters. The fact that all characters, except the “1” have
about the same character width is used here. It indicates that a maximum in the middle of the
two previously found character segmentation positions is most likely the right separator for
the characters. The absolute level of the maximum is also taken into account. It is multiplied
with the graph in figure 49, which gives a modelled estimation of the probability, in relation
to the position, that a column is the right separator.

Left character Right character

Previously Previously
found found
segmentation segmentation

Probability

Position

Figure 49. A modelled estimation of the probability of the segmentation position between a
character pair.

It was not examined if the graph in figure 49 represents the actual probability, but it proved to
enhance the character segmentation a great deal. It can be examined later if the segmentation
needs to be enhanced further.

49

The probability is zero at the sides because of the minimum character width. In the middle it
has a maximum. The found maxima in the column sum graph between the previously found
character segmentations are weighted with the help of this graph. The highest result is
assumed to be the separator between the characters. The space between the characters of a
pair is five pixels on average. That is why the four neighbouring columns that match the
found segmentation best are added to complete the horizontal segmentation. Figure 50 shows
a plate with horizontally segmented characters.

Figure 50. A plate with horizontally segmented characters.

The example shows an almost perfect segmentation. The next step is to segment the
characters vertically.

7.6 Segmenting the top and bottom of the characters.

The vertical position of the characters on a plate should always be the same. However,
because of the limited accuracy in the license plate segmentation and bent plates this position
can vary. This can even cause different vertical positions for characters next to each other.
Figure 51 shows an example of a bent plate.

Figure 51. A bent plate.

It is clearly visible that the “L” in figure 51 has a different vertical position than the “B” next
to it. A segmentation scheme is needed to find the vertical position of the characters. This is
done with the help of an edge map. This way it is tried to find the outline of the characters.
The threshold used for the edge map is tuned on the image. This is needed because of the

50

different circumstances, like sharpness and noise level, of the images. Figure 52 shows the
edge map of the plate in figure 51. The threshold is tuned to find about 720 edge points. With
this number most of the character outline is found.

The top and bottom of the characters produce horizontal lines in the edge map, as is seen in
figure 52. The figure also shows a graph for the edge points in each row. The plate was
enhanced before the edge map was derived.

"’5;-’@',(&'2 -
)‘E}." @JR:‘@» | o

Figure 52. An edge map and its row sum for the edge point.

The start and stop row for the characters is estimated for the whole plate by looking at the
cumulative row sum of the edge map. The right image in figure 52 points out the rows in the
row sum graph that cause a high increase in the cumulative row sum. The row that causes this
cumulative graph to exceed a threshold is assumed to be the start row. There is only a limited
range of rows where a character can start or end. If the columns found are outside this range
then the threshold is adapted until a possible solution if found. This approach differs very
much from the strategy applied for the horizontal segmentation. Using edge information for
the horizontal segmentation is very tricky, like shown in figure 53.

Figure 53. Two characters and their edge map.

Using edge information for the vertical segmentation relies on the edges of six characters,
which is much more reliable than examining the edges of just one character. Smooth
transitions from dark to light will not always be detected by an edge operation.

The found vertical segmentation is now fine-tuned on the character pairs. It is assumed that
the vertical segmentation is maximally two pixels off. So five (two up and two down and the

51

estimated row itself) rows are taken into account to correct for this segmentation error. The
rows are limited horizontally by the horizontal segmentation found earlier. The sum of these
rows is calculated. The absolute level of the sum does not give much information. However, a
change in the sum compared with a row up or down indicates the end of a character. The row
with the highest change is taken as the correct vertical segmentation for the character. This is
done for all characters, and functions very well in most cases. Figure 54 shows an example of
a plate with fully segmented characters.

Figure 54. A plate with segmented characters.

The character segmentation was tested with 545 plates. Only 6 of them were segmented
badly. The next figure shows an example of a segmentation fault.

Figure 55. A segmentation error caused by a boit.

The segmentation error in the last character in the plate of figure 55 is caused by a bolt to the
right in the plate. It is hard to detect if this is part of a character of or not. The position of the
bolts is usually in the vertical middle of the plate. Perhaps this property can be used to correct
for this. The segmentation error in figure 56 is caused by the “1”. The segmentation between
the characters of a pair is assumed to be most likely in the middle of the segmentations on the
outside of the characters. Perhaps the model shown in figure 49 can be refined.

52

Figure 56. A segmentation error caused by the “1”.

7.7 Conclusions and recommendations

The segmentation scheme described in the previous paragraphs performs very well and
reliable in most cases. Only 6 of the 545 plates are segmented badly. The rest is segmented
with an accuracy of about two pixels horizontally and one pixel vertically. This is acceptable
for the classification, which is able to correct for these small errors.

A more accurate segmentation can probably decrease the error and rejection rate of the
classifier. Here are some conclusions and ideas about how to improve the segmentation stage.

Some small changes in the parameters in the system can probably lead to a better
performance. Especially the model of the license plate and the probability model shown in
figure 49 can be refined.

Distortions like dirt and bolts can result in dark areas near the characters. This is the main
cause of bad segmentation. Fine-tuning the segmentation parameters will probably only solve
this problem partially. Also a more advanced image enhancement will probably not increase
the performance much.

The plates are extracted from the images with the bilinear transformation. This corrects for
most of the perspective view distortion, but it cannot correct for distortions caused by bent
plates. If the corner points of a plate are known then it should be possible to find the contours
of the plate. Then a more advanced transformation, that uses six points for example, can be
used to find a better reconstruction of the plate.

Three properties that perhaps can help in the character segmentation are not used at the time.
One is that the space to the left of the first character should be about the same as the space to
the right of the last character. Also the property that the character height should be about the
same for all characters can be used. The vertical segmentation of the character pairs should be
about the same. Taking the average of the vertical segmentations of the characters in a pair is
probably more reliable than examining them separately. It is better to have a 1-pixel error for
both characters than to have a 2-pixel error for one and no error for the other.

53

A low misclassification rate is very important for the whole system. Bad segmentation can
lead to misclassification. To reduce bad segmentation one can try to detect segmentation
errors. The segmentation scheme actually does this but instead of rejecting the plate it tries to
segment the plate again with adapted parameters. In most cases this corrects the initial error.
Perhaps the classification stage can use this information.

At this moment the segmentation is done independently of the classification. This is not the
optimum way to segment a license plate, especially if the classification stage is able to correct
for small segmentation errors. A co-operation of the classification and segmentation stage is
most likely to perform very well. One can for example imagine a scheme where a segmented
character is classified. The classifier then enhances the segmentation or even rejects it. This
information is fed back to the segmentation stage, which then responds accordingly.

The segmented characters are offered to the classifier. Here the classification is done with the
help of the principal component analysis which is described in the next chapter.

54

8. The theory of the PCA transformation

The principal component analysis or Hotelling® transform is based on statistical properties of
vector representation. It has several useful properties that make it an important tool for image
processing. Any kind of information can be transformed. Here the transform is based on a set
of prototype characters that each have to fit in a window of a fixed size. Each prototype is
stored as a vector, the elements represent the grey levels of the pixels. The calculation of the
transform itself is very simple, it just takes a few matrix manipulations. Some calculations on
the prototype vectors have to be computed once before the transform can be computed.

The theory is the Hotelling transform is described in [1II, p. 148-157], here this theory will be
addressed again, but now the focus is on character recognition.

Consider a population of M prototype vectors x forming the n X M matrix X, with n the
number of elements of a prototype vector. The elements of X represent the pixel data of the
prototypes. The mean vector of the population is defined as

m, = E{x) (15)
The covariance matrix of the vector population is defined as
C,=E{(x-m)x-m)"} (16)

Where T indicates vector transposition. Because x is n dimensional, C, and (x—mx)(x-mx)T are
matrices of order n X n. Element c¢;; of C, is the variance of x;, the ith element of the x vectors
in the population. Element c;; of C, is the covariance between the elements x; and x; of the x
vectors. This yields ¢;; = ¢;; thus C, is symmetric and C, is of course real because the pixel
data is real. If elements x; and x; are uncorrelated then their covariance is zero, therefore in
this case c;=c;=0.

For M prototype vectors, with n elements, stored as columns in the prototype matrix X, the
mean vector and covariance matrix can be calculated with

1 M
m_=—>)Y x. jef{l,2,...,n 17
i,x M; ik l { } ()
and
xx’
C,=cov(X)= 2 -—mxmf (18)

6
This transform is commonly referred to as the principal component analysis, eigenvector or discrete Karhunen-
Logve transform.

55

C, is always real and symmetric, thus’ C, has an orthonormal set of n eigenvectors.
All A’s that satisfy the next equation are the eigenvalues of matrix A.

Ae = Ae (19)

The corresponding e’s are the eigenvectors of A. It is obvious that any A will satisfy equation
(19) if e is the zero vector, these A‘s are not allowed, but A =0 is a valid eigenvalue.

The M prototype vectors form a basis in R® with K < M. Equation (18) yields that C, also
forms a basis in R¥. With respect to the eigenvalues this leads to the conclusion® that no more
then M distinct eigenvalues can exist for C,. Still the eigenvectors of C, form a basis in R"
with n the number of elements in a prototype vector. Because C, forms a basis in R and the
eigenvectors form a basis in R”, it is clear that at least n-M A‘s are zero. Furthermore, if there
are M vectors that point to positions in R", with L > 1, then it is possible to construct a basis of
order M-1 in which it is possible to point out all M positions. This yields that at least n-M+1
eigenvalues are zero. For example, to point out two positions in 3-D, a basis of order one is
needed. This is of course a line.

Now let ¢; and A; with i € {1, 2, ..., n} be the eigenvectors and corresponding eigenvalues of
C, arranged so that I > 1A, | withj € {1, 2, ..., n-1}. Equation (19) yields that

C,E=EH (20)

with H the diagonal matrix of the ordered eigenvalues and E a matrix containing the first n-1
eigenvalues as columns. Let K=M-1, then at least n-K eigenvalues are zero, equation (20)
yields

C.E=E Ay (1)

K . 0

The prototype matrix X, forms a basis in RK, with K € M-1, so C.X, an x n matrix, will be of
the form:

TA symmetric n X n matrix has an orthonormal basis of eigenvectors in R". [Kr, p. 436]
8 1f an n x n matrix A has n distinct eigenvalues, then A has a basis of eigenvectors in R".[Kr, p. 435]

56

CX= 22)

Usually n will be much larger than X, so a very large part of the matrix will always contain
zeros hence these elements do not have to be calculated.

Now let A be a matrix whose rows are formed from the first K eigenvectors of C; so that the
first row of A is the eigenvector corresponding to spectral radius A;. Matrix A isthena K x n
matrix. Suppose that A is a transformation matrix that maps the x’s into vectors denoted by y’s
as follows:

y=A(x—-m) (23)

Equation (23) is called the principal component transform. The y’s are K dimensional. The
mean of the y vectors resulting from this transformation is zero because the mean of the ith
elements of (x - m,) over the population is zero, thus,

m_ =0 (24)
The covariance matrix of the y’s can be obtained in terms of A and C, by
C, =YY" —m,m, =YY" =AC A" (25)

Furthermore, C, is a diagonal matrix because Y is an orthogonal matrix. The elements of C,
along the main diagonal are the eigenvalues of C,, that is,

c,= y (26)

The off-diagonal elements of the covariance matrix are zero, so the elements of the y vectors
are uncorrelated. Keep in mind that the 4;’s are the eigenvalues of C, and that the elements
along the main diagonal of a diagonal matrix are its eigenvalues. Thus C, and C, have the
same eigenvalues. In fact, the same is true for the eigenvectors.

Figure 57 illustrates the concepts just discussed.

57

Figure 57. A 2-D population with its principal axes.

The binary object shown is treated as a 2-D population. In other words, each cross in the
figure is treated as a 2-D vector x=(a,b)", where a and b are the coordinate values of the
crosses with respect to the x; and x; axes. These vectors are used to compute the mean vector
and covariance matrix of the population. The net effect of using equation (23) is to establish a
new coordinate system whose origin is at the centroid of the population and whose axes are in
the direction of the eigenvectors of C,, as shown in the figure. This coordinate system clearly
shows that the transformation is a rotation transformation that aligns the data with the
eigenvectors of C.. In fact, this alignment is precisely the mechanism that decorrelates the
data. Furthermore, as the eigenvalues appear along the main diagonal for C,, A; is the variance
of component y; along eigenvector e;. The concept of aligning an object with its principal
eigenvectors plays an important role in image analysis.

An important property of the Hotelling transform deals with the reconstruction of x from y.
The inverse of an orthogonal matrix is equal to the transposition of the matrix, so A=A A
vector x can be reconstructed from its corresponding y by using the relation:

x=A"y+m, =ATy+m, 27

If instead of using all the eigenvectors of C, only the first K eigenvectors are used to form
matrix A then the K X n transformation matrix projects the input vector onto the first K
eigenvectors forming a basis in R¥. The reconstruction given in equation (27) will be exact for
vectors that are in the prototype population. The same is true for all vectors being linear
combinations of the prototype vectors. All other vectors cannot be reconstructed exactly.

It can be shown that the mean square error between a reconstruction that uses all n
eigenvectors of C, and one using only the first K eigenvectors can be expressed by:

n K n
a=>1,-31= >4, (28)
j= j=

j=K+1
As was shown at least n-K eigenvalues are zero, so the mean square error is zero for the

reconstruction of a transformation of a prototype vector or of a linear combination of the
prototype vectors.

58

In words the PCA transformation can be described like:

e A PCA transformation is an orthonormal decomposition by projection onto the
relevant eigenvectors of the correlation matrix. Thus the eigenvectors point in the
directions of the maximum energy/variation of the prototypes. This way only the
information that distinguishes one prototype from another is kept. This leads to a

reconstruction that is not exact anymore for characters that hold information that is
irrelevant for classification.

The next chapter will examine how this theory can be used to classify characters.

59

9 Classification with the PCA transformation

The character segmentation offers a segmented plate to the classification stage. This plate
is first enhanced with the histogram stretching described in paragraph 7.1. However, this
time only 30% of the lightest pixels is projected to white. 3% of the darkest pixels is
projected to black again. These values leave the grey areas surrounding the characters in
tact. These areas also contain information about the characters. Then the character size,
brightness and contrast are normalised. The character size is normalised based on the
character height because this is most accurately found by the character segmentation
stage. The character is resampled to a fixed height. The width is scaled with the same
amount as to keep the same aspect ratio. Then the brightness and contrast of the resulting
character is normalised. Of course the prototypes are treated in the same way. An average
prototype for each class is calculated. Not all characters are used in Dutch license plates.
Here some sample characters that are used very rarely are ignored because no or only one
or two samples were available. A more detailed description about how this is done can be
found in paragraph 10.2.1 .

With these prototypes the PCA transformation matrix is calculated. This transformation
projects the prototypes to RX, with K equal to the number of prototypes minus one. In this
K-dimensional space only the relevant information about the prototypes is kept. All
information that is not needed to distinguish between the prototypes is lost. The
transformation will project all sample characters onto the prototypes hyper plane as is
shown in figure 58 for the 2-dimensional case.

Sample
NE
AN AN
Prototype 1 Prototype 2

Figure 58. A sample character that is projected by the PCA transformation.

The figure shows an example with just two prototypes that are defined in two dimensions.
The prototype positions correspond to the PCA transformation of the prototypes. All 2-D
vectors, like the sample vector, will be projected orthogonal onto the line as shown in the
figure.

If the sample vector is not on the line then the reconstruction will not be exact, this means that
irrelevant information in the sample vector is filtered out. With irrelevant information all
information is meant that does not actually cause a sample character look more or less like
one of the prototypes.

60

On the line it is easy to measure how much the sample looks like the prototypes, only the
Euclidean distance between the projected point and the PCA transformation of the prototypes
has to be calculated. The distance is a valid property to measure how much a sample vector
looks like a prototype because the eigenvectors of the covariance matrix form an orthonormal
basis. If only the distances between the PCA transformations are needed then equation (23)
can be simplified to

y=Ax (29)
This will remove an offset from the PCA transformations.

A reconstruction of a PCA transformation can even look ‘better’ than the original sample
character, artefacts like noise that aren’t in the prototype plane are filtered out. However, for
classification the reconstruction is not better then the original, only parts of the character that
are irrelevant in terms of classification are filtered out. This will be illustrated in the next
example. Figure 59 shows imaginary prototypes. The prototypes are assumed black and white
for simplicity. The black squares represent values of 0, the white represent values of 1.

Figure 59. Two imaginary prototypes, a “O” and a “D”.

Then the average prototype looks like:

Figure 60. The average prototype.

The grey area represents values of 0.5.

61

Now let us assume that a sample character like figure 61 must be classified.

1 2 3 4 5

Figure 61. A sample character.

The parts that the two prototypes have in common are irrelevant because they do not help in
distinguishing the two prototypes. The relevant squares are the squares that are different for
the prototypes being B, B2, C1, C2, DI and D2. In order to measure how much the sample
character looks like one of the prototypes, just one measurement is needed because there are
two prototypes. This measurement is represented by the first eigenvector of the covariance

matrix, which is also called the first PCA component. Figure 62 shows the first eigenvector.

Figure 62. The first eigenvector.

The calculation of a PCA transformation can be interpreted as a special kind of “feature”
extraction with the help of the eigenvectors of the covariance matrix of the prototypes.

The prototype “D” can be expressed as the average prototype minus the first PCA component.
It can be calculated that the PCA transformation of the prototype “D” and “O” are -1.22

(—\/6 /2) and 1.22(\/6 /2) respectively. The PCA transform of the sample character will be
-0.82(\/6 /3). Thus the (PCA)distance between the prototypes is about 2.4 and the distance of
the PCA transform of the sample character and the “D” is just 0.4, yielding that the sample
character is probably a “D”. The reconstruction is given in figure 63.

62

Figure 63. The reconstruction of the sample character.

The reconstruction looks better like the prototype “D” than the original sample vector in
figure 61. However, just two things have happened, the black squares that are not part of one
of the prototypes are removed. In addition, the parts that overlap the black and white area in
the first component are spread out.

The approach described here is segmentation dependent. The next paragraph will examine the
segmentation dependency closer.

9.1 Segmentation dependency of the PCA transformation

The classifier has to deal with small segmentation errors. So one could wonder what would
happen if the sample character in figure 61 is segmented a little differently? Let’s assume that
this results in a sample character that looks like figure 64, which is the sample character of
figure 61 shifted one pixel to the left.

Figure 64. A sample character.

The PCA transformation of this character is 0.82(V6 /3), which is closest to the PCA
transformation of the prototype “O”. So now the character is classified as an “O”. This

segmentation dependency is very disturbing for the classification, counter measures have to
be taken.

This is discussed in the next paragraph.

63

9.2 Segmentation error correction

The segmentation offered by the character segmentation stage contains an errors of about two
pixels horizontally and one pixel vertically. However, an accurate segmentation is needed to
get the right classification result. An accurate segmentation can be achieved by shifting the
character in the segmentation window over several positions. The character is shifted two
positions to the left and right and one pixel up and down. Now one of these positions should
contain an optimal segmentation, but which one is it? The next example will illustrate how
this position is found. Figure 65 shows the reconstruction of the PCA transformation of
sample character in figure 64.

Figure 65. The reconstruction.

If the sample character of figure 64 is compared with its reconstruction in figure 65, then one
can see that many changes have taken place. If the same is done with figure 61 and its
reconstruction in figure 63, then one can see that there are fewer differences. These
differences can be measured as a distance. A big distance indicates a possible segmentation
error and thus a possible classification error because the PCA transformation then ignores
much of the sample character. Especially large segmentation errors are detected by this
distance measure. Small segmentation errors will not result in classification errors as quickly.
Many distance measures are possible. It seems only logical that big differences in pixel value
are weighted heavier than small ones. Small differences could even be ignored because they
are probably caused by noise. Large differences indicate that a part of a character is missing
or was added.

The distance measure calculates the “distance” between the individual pixels of the original
character and the reconstruction of the transformed character. This could be done like:

D=Y|x -1 (30)

With x; respectively r; the grey levels of the input and the reconstructed character. The number
of pixels is n. A good value for P was found with some experiments. The values 0.5, 1, 1.5, 2,
2.5 and 3 were tried. P equal to 2 was found to give the best results. With this value the
distance measure delivers a good measurement to predict bad segmentation.

64

Differences in pixel value close to each other should contribute more to the distance measure
than scattered ones. Scattered differences can be caused by noise like for example salt and
pepper noise. This should not contribute much to the distance measure. Differences that occur
close to each other indicate that part of a character is missing or is added. This can be detected
by low-pass filtering the reconstruction subtracted from the original character. A Gaussian
filter was tried with different spreads and kernel sizes. However none of the experiments
improved the distance measure.

Resuming, to correct for a segmentation error the character is shifted up and down and to the
sides. Two positions to each side and one position up and down proved to work best. Also
trying a segmentation without the first and last row improved the system. This last
segmentation is only shifted to the sides. So in total there are 20 positions tried. At first more
positions to the side and up and down were tried, this only slightly improved the rejection
ratio, but introduced some extra misclassification errors. All tried positions are PCA
transformed and reconstructed. The original and the reconstruction are used to measure the
distance. Then only the six segmentations with the smallest distance measure are taken into
account as possible correctly segmented characters. The PCA transformation does not care for
data that is the same for all prototypes, it ignores these areas. So it would be best to segment
the character as close as possible. However, for the distance measure this is not ideal.
Especially badly segmented characters will betray themselves if the window for the prototype
is only a little larger than the prototypes. Only the parts that are in the window are taken into
account to measure the distance between an original and a back transformed character. So the
window for the prototypes is chosen a little larger than is needed for the largest prototype.
The prototypes were derived from the average per class of all(2766) characters of the set of
good license plates. An example of a prototype is shown in figure 66.

Figure 66. The prototype “H”.

Figure 67 shows a character in different positions with its reconstructed version.

65

Figure 67. A sample character (top) in different positions with its reconstruction (bottom).

This figure shows that a difference between the original and its reconstruction can indicate a
segmentation error. This way especially large segmentation errors are detected easily, but also
other kinds of “distortions” can cause a differences. So this distance measure indicates an
optimal segmentation and thus the PCA transformed character holds the right information for
classification. How a PCA vector can be classified is examined in the next paragraph.

9.3 Classification of the a PCA transformed character

The PCA transformation of characters and the prototypes are points in n-dimensional space.
Two important properties of this space are known.

e The Euclidean distance between two points gives a measure of the relevant distortion
between the corresponding characters.
e The variation in the consecutive elements of a PCA vector tends to decrease.

From this one can conclude that the Euclidean distance can be used to classify PCA

transformed characters and that not all elements of a PCA vector hold as much information.
This is illustrated in figure 68 for the PCA transformation of the prototypes.

66

Standard deviation

1 10 20 26
Element number

Figure 68. The standard deviation of the 26 consecutive elements of the PCA transformed
prototypes.

The figure clearly shows that the standard deviation, and thus the ability of discrimination,
decreases for the consecutive elements for the prototypes. So one could wonder how the
reconstruction of a PCA transformed prototype would look if not all elements are used. Some
examples of this are shown in figure 69 for the prototype “0” and “K”.

All elements(26) 15 elements 10 elements 5 elements

Figure 69. The reconstruction of the prototypes “0” and “K” when using all, 15, 10 and 5
elements of its PCA transformation.

67

Figure 69 shows that the reconstruction still looks very well if only 15 elements are used.
The variation in the elements of the PCA transforms of a set of distorted characters is shown
in figure 70.

=

3=l

=

e

()

=]

~

Bt

[

o

f=}

S

[75]
1 26
Element number —>

Figure 70. The standard deviation of the elements of a set of PCA transformed characters.

Figure 70 shows that the variation in the consecutive elements of a set of PCA transformed
characters also tends to decrease. When looking at these figures the question arises if all
elements are really needed to classify a PCA transformed character. Perhaps the last elements
of a PCA vector contain more noise than information. The generalised Fisher’s criterion [X]
in equation (31) gives an estimation of the information, the average ability of discrimination
for each component of a PCA vector.

p= -1 (31)
o_2

With p? the square mean value of the considered element computed over all classes,
and £® and o? are respectively the average values of the square of its mean value and of its
variance computed over each class. At this time all elements of a PCA transformed character
are used.
If the variation in the consecutive elements of a PCA vector tends to decrease then one can
wonder which shape of cloud a set of PCA transformed characters form. This was examined
for some classes. It showed that the clouds of points are no spheres. A distribution like shown
in figure 71 is more likely.

68

X = Prototype position
* = Sample vector

:. 0'.- x -.0.'

Direction of second

component

<>
Direction of fist
component

Figure 71. A possible distribution of PCA transformed characters of a class in 2 dimensions.

At this point one problem has to be solved, one has to find the most likely classification. In
other words, one has to find a measure for the quality of recognition for each point in the PCA
space. With this one can decide which quality is needed to accept a classification result. The
quality of recognition is examined in the next paragraphs.

9.4 Measuring the quality of recognition

Finding a good measure for the quality of recognition is very important. Reducing
misclassification depends on it. The problem of finding the areas that represent reliable
recognition can be tackled in different ways. The starting point is a n-dimensional space with
the prototypes indicated as points. The areas around the prototypes that define a sure
classification have to be found for each prototype. It seems logical that the area close to a
prototype represents a reliable recognition. So a distance measure or ratio can be used to
define the area of secure classification.

9.4.1 The distance ratio

The Euclidean distance was tried to find the areas that represent secure recognition. The
prototype closest to the transformed character is accepted then. The distance to the second
closest prototype gives information about how sure the classification is. So the ratio between
the distances to the closest and second closest prototype gives a measure for how secure the
classification is. A small ratio indicates a sure classification, values close to 1 indicate
insecure classification. Figure 72 shows an example of the resulting ratio in two dimensions
for an imaginary set of prototypes. The dark areas are caused by the prototypes, they cause a
small ratio. The white lines represent areas with a ratio of 1, they divide the space in areas that

are closest to one prototype. A figure that divides a space like this is called a Voronoi
tessellation [IX p. 225].

69

Figure 72. Ratio of the distance between the two closest prototypes.

The next figure shows some level lines of figure 72.

Figure 73. Level lines of the distance between the two closest prototypes.

70

A certain error and rejection rate belongs to each level line. The smaller the area in the level
lines the smaller the error rate, but the rejection rate will increase. Another method to find a
measure for the quality of recognition is described in the next paragraph.

9.4.2 The radial basis function network

A radial basis function network can also be used to find a measure of the quality of
recognition. One can try to model the areas of secure recognition with a radial basis function
and use a neural net to optimise the modelled areas. This can be done with a radial basis
neural network like shown in figure 74.

Hidden

Layer Summation
(RBF) layer

Figure 74. Classification with PCA transformation and a radial basis neural net.

The PCA vector can be classified with a radial basis neural network. A Gaussian function
according equation (32) is used for this:

DZ

f(Dy=e (32)

with D the Euclidean distance from a point to the PCA transformation of a prototype and ¢
the spread of the Gaussian function. Appropriate values for the sigma’s have to be found. The
values for the sigma’s are not very critical [IX, p. 42-43]. The neural net will adapt to the
chosen sigma’s. A sigma close to zero will result in a nearest-neighbour classifier, so sigma
should not be very small or very large. The sigma of each neuron is set to half the Euclidean
distance to the closest neuron. This will lead to sigma’s like shown in figure 75.

71

X = Prototype position

Figure 75. The sigma’s of three neurons, 6,0, and G, -C3.

This corresponds with the idea that points close to the PCA transformation of the prototypes
are reliable. If the distance to the closest neuron is large then also the receptive field can be
large. Neurons that lie close to each other indicate that the corresponding prototypes look
alike. Therefore, their receptive field should be smaller.

No training is needed for this net, the optimum least mean square solution can be calculated
like described in paragraph 3.2.1. The hidden layer proved to be a reliable source of
information to draw conclusions about the quality of recognition. This is because the smooth
transition in the response of one neuron to the next, like shown in figure 76.

—»>

Response

Neuron A Neuron B

Figure 76. The response of two neurons in 1 dimension.

The area that one wants to accept or reject can be pointed out in this figure. The difference
between the highest response and the runner up can be used for this. No Gaussian radial basis
function is needed for this criterion. Just a distance measure would suffice. This method
would even be equal to the method that uses the distance ratio if all sigma’s had the same
value. Figure 77 shows an example of the difference in response between the highest and
second highest response in two dimensions for an imaginary set of prototypes.

72

Figure 77. The difference between the highest and second highest response of the RBF
neurons.

Figure 78. Some level lines of the difference between the highest and second highest response
of the RBF neurons.

73

These modelled areas can now be refined with the help of the neural net. If one examines the
neural net closely then one can predict the problems that will occur after training. The net is
trained to respond with a 1 at one output and with a O at all others outputs. The problem is
caused by the fact that the net tries to achieve this for all sample vectors, independently if the
sample vector represents a good or a bad character. This is not what one wants because this
does not give any information anymore about how certain the net is about a classification
result. So the net points out the areas where an output should be 1 and all other zero, but not
the areas where it is insecure. Two points that lie very close to each other will both be
recognised as if they represent a very sure classification. This is illustrated in figure 76.

Neuron A Neuron B

Response

Xy X2 Input

Figure 79. The response of two neurons of a “trained” neural net.

So applying a neural net in this way offers no improvement. In this approach it is tried to
change the form of the receptive field at the output of the neurons with the help of a neural
network. Perhaps the neural net should be put at the inputs of the RBF neurons. This would
result in equation (33).

W, z~pif*
2

Y,=e¢ * (33)

with Y; the response of a neuron representing the prototype p; on the input vector x. W; is the
neural net for the neuron. It scales and rotates the axes of x to make the receptive field of the
neuron optimal. However also with this variation more information than just the right
classification result for each character is needed to train the net.

Perhaps this problem can be solved with a Bayesian classifier, which is examined in the next
paragraph.

74

9.4.3 The Bayesian classifier

The basics of a Bayesian classifier were already discussed in paragraph 3.2.2 about
probabilistic neural nets. Half of the sample data of the set of good plates was used to
initialise the neural net. How these PCA transformed characters are collected is very
important for the performance of the Bayesian classifier. One of the transformed characters
coming from shifted characters can be used, but which one? The selection will influence the
density and spread of the PCA transformations that represent one class. The vectors were
selected with the help of the radial basis function described earlier. The PCA transformed
character with the highest response was used.

A good value for the sigma is important for this stage. A large sigma value will cause most
common characters to be recognised too often. A small value leads to a nearest-neighbour
classification. No values for the sigma’s were found that performed better than the approach
with the distance ratio. A Bayesian classier should perform best for this kind of problem, but
the amount of training data needed is probably much more than used here.

9.5 Syntax checking

A syntax check stage can be used to filter out impossible classification results. There are
many rules for the syntax of the most common Dutch license plate model. Only the two most
important rules are used here:

e Each pair of characters consists of two digits or two letters of the alphabet.
e There are at least two digits or two letters of the alphabet in a plate.

Actually there are many more rules that can help in finding impossible classification results.
For example some character combinations are not used.

Here the syntax checker is used for two things, first of all to check the syntax, but also to try
to find the correct syntax if an error is detected. To do this all character pairs are checked. If a
character pair is found that contains a digit and a letter of the alphabet then the quality of
recognition is examined for these two characters. If one character is recognised with a high
quality and the other with a low quality then the character with a low quality is probably
misclassified. The character is then classified again with the a-priori knowledge that it is a
digit or a letter of the alphabet. Also if a valid syntax if found then the characters are
classified again with the a-priori knowledge which pairs are digits and which are letters of the
alphabet. This leads to an increase of the recognition quality and thus to a lower rejection rate
because not all prototypes have to be taken into account. After the syntax check the final
results are available.

75

9.6 System overview

The whole scheme of the license plate recognition system is presented in figure 80. It roughly
shows the major steps of the system.

Bilinear transformation
Bilinear interpolation
Histogramstretching

Character segmentation
Model of license plate
Vertical projection
Edge map

Normalisation
PCA transformation

Classification with
distance ratio

Rejection criterion

Syntax
check/correction

Rejection criterion

Classification
with known
syntax

Figure 80. The scheme of the license plate recognition system.

76

9.7 Conclusions and recommendations

The distance measure performs best in terms of rejection rate and misclassification rate. This
approach probably does not represent the optimal solution for this problem. Probably the
Bayesian classifier performs better if more training data is available.

The applied method for the segmentation error correction seems to have much potential. Even
segmentation-free classification seems to be possible with this approach. Here the six
positions with the lowest distance measure are examined further. The actually positions that
these six positions represent are not examined. These positions should correspond to a logical
structure of positions. If for example in one corner a low distance is found, but the neighbours
represent a high distance measure then the position in the corner is probably not optimal
segmented.

The used white space around the prototypes is very important for the distance measure. These
areas do not matter for the PCA transformation. The size and scaling of prototypes and the
white space around them is probably not optimal at this moment.

The probability of a certain character for each character position in the license is not equal.
This is caused by the rules that are applied for license plate numbers. Even certain character
combinations occur more often than other combinations. At this time no use of these
properties is made. Using them could improve the system performance.

Many rules that could help to detect misclassification are not yet used by the syntax checker.
The syntax checker should be extended with these rules.

In a previous project [I] the scaling and segmentation of a character was adapted based on
statistical properties of the character. Here this is not used because the distortions are here
different than in the described project. Perhaps a experiment can show if this assumption is
right.

77

10. The implementation

All the algorithms described in the previous chapters were implemented in Matlab 5.0. The
next paragraph gives some general information about Matlab.

10.1 Matlab 5.0

Matlab is an abbreviation for Matrix Laboratory. It is an elaborate object oriented software
package for scientific numeral calculations. Support, information and demos are available at
the Internet http://www.mathworks.com.

Matlab is available for many different operating systems. Mainly Matlab 5.0 for Microsoft
Windows 95 was used to develop the algorithms for the license plate recognition system. Also
version 5.0 for SUN OS, which is a Unix like operating system, was used. These different
versions should be fully compatible according the specifications of Matlab but experiments
proved that they are not. The fact that SUN OS is case sensitive and Windows 95 is only case
aware causes one difference. In Matlab for SUN OS all character in the file names are
assumed to be lowercase. If under SUN OS a filename for a function or a script contains
uppercase character then Matlab will not find it. A batch script named “lowercas” was written
for SUN OS to rename all files in the working directory to lowercase. This will solve this
problem.

Matlab consists of a basis that can be expanded with toolboxes. A toolbox consists of a
number of functions, scripts and data, each stored in a separate file. It is necessary to have
certain toolboxes installed before a script of a function will work. The programs written for
the license plate system only need the image toolbox installed. All other functions used are
part of the Matlab basis system. The image toolbox contains functions to read, write and
manipulate images.

Matlab has some properties that can lead to problems in portability of a program. It is allowed
to declare a variable with a name of an already existing function like for example “sin” in
Matlab. If this is done then the function will become inaccessible.

The search path of Matlab can also cause some problems. The search path tells Matlab where
to look for functions and scripts. The working directory is always searched before the
directories in the search path. This becomes a problem if one for example changes to working
directory to a backup directory to have a look at a previous version of a function and then
continues experimenting. The programs will then use old versions of functions and read old
data, so it is needed to make sure that the working directory is the right one.

A large number of toolboxes containing many functions is available in Matlab. Often a
function needed is already implemented. However, where can one find it? Most of the time
the built-in help function cannot answer this question. The help about a function usually refers
to other functions about the same subject, but the references are far from complete. For

78

example, the help about the function “plot” does not refer to the function “stem” although
they are both plot functions. Usually no references to functions in toolboxes that do not
belong to the basis system are mentioned in the help function.

Another drawback of Matlab is the way it stores its data. The only data type that allows a
reasonable freedom of manipulation is the “double array”, which is eight bytes large. If one
for example wants to store and manipulate a black and white image of 3000 x 2000 pixels
then the amount of 24E°® bytes is needed. This is very much considering that the image just
holds 75E* bytes of pixel data.

Nevertheless, Matlab is a nice program to experiment with in spite of the drawbacks. It
contains very powerful functions that can be applied to two or even higher dimensional data.
Matlab is ideal for rapid prototyping, which is very important for this project. At the end the
methods used are important, not the implementation. The implementation is important for the
developers of the system. It tells the exact details about the used methods. The
implementation will be discussed in the next paragraphs.

10.2 The implementation

The implementation consists of many functions and script files. Some general-purpose
functions were written. They are roughly described here.

e FRAME. This function removes all columns and rows of a certain value (colour) from the
borders of a matrix. It is used to strip white space around characters.

e EXPAND. Does the opposite of FRAME. It adds borders around characters.

e FEXIST. Checks if a given filename exists on disk.

e TO_ALFA. Gives the character belonging to its index, or the index belonging to the
character.

e SHOWPROT. This function shows the prototypes.

e SHOWCOMP. This function shows the PCA components.

e DISTANCE. Calculates the Euclidean distance between two vectors.

e SDISTANC. Does the same as DISTANCE, but returns the squared distance. _

e CALCSIGM. Calculates the sigma values for the RBF neurons. Half the distance from the
neuron to the closest distance is calculated. Two times the squared sigma is returned.

e LP_PATH. Returns the path to the license plate toolbox. This file has to be adapted after
installation.

e PLATEPAT. Returns the path to the license plate images. This file has to be adapted after
installation.

e FIGURE?. The “?” stands for “17,712”,7217,22”,23,732”,"24”, “42” or “26’. This is a
group of functions which are used to open windows at specified locations on screen.

e RADIAL. Calculates the response of the hidden and output layer of a radial basis neural
network.

79

e TRAINRA4. This function trains the radial basis function neural network. It only focuses
on the winner and runner up.

e SYNTAXCH. Checks if the results of the classification of a Dutch plate meet some syntax
criteria.

e BAYES. Calculates the response of one class in a Bayesian network. It is used by
BAYESCLA.

e BAYESCLA. This function calculates the response of a Bayesian network for all classes.

e SPLITBAY. Splits up a set of PCA vectors in different classes. This is needed for the
Bayesian classifier.

e SPLITSET. Splits up a set of PCA vectors. This can be used to generate a train and test
set.

e SHOW. Shows an image. The image is histogram stretched before showing it.

e NORMALIS. This function normalises the columns of a matrix so that the average of the
columns becomes 0 and the standard deviation becomes 1.

e HISTRETC. Stretches a histogram as described in paragraph 7.1. Actually the pixel
values are changed, not the colour map of the image.

e RESAMP. This function resamples a rectangular area in an image. It is used to scale
characters to the wanted dimensions.

e MINI12. Finds the smallest and the second smallest value in a data set.

e MAXI12. Finds the largest and the second largest value in a data set.

e BIRESAMP. This function transforms an area pointed out by four corner points with the
bilinear transformation. It is used to extract a license plate for an image. A description can
be found in paragraph 6.1 and further.

e PSEUDO_L This function calculates the pseudo inverse of a matrix.

e W_INIT. This function calculates an initialisation matrix for the RBF network with the
pseudo inverse.

e KLTRANSR. Calculates the Karhunen-Loéve (PCA) transformation.

e EIGHANS. Calculates the sorted eigenvalues with their eigenvectors.

e SHOWSEGM. Shows the results of segmentation in an image.

e PCA_CLAS. Classifies a PCA vector with the distance ratio method.

e CHAR2PCA. Calculates the PCA transformations of the character in all positions.

These functions are called from the functions and scripts that form the body of the system.
Some programs are implemented as scripts, this makes debugging them easier because then
all data is still accessible after termination of the program. Most of the programs that form the
body of the system are already discussed in the previous chapters. Here the rough outline
starting from the prototypes to the results of classification is explained.

80

10.2.1 Calculating the prototypes

Prototypes form the basis for the PCA transformation. The quality of the prototypes is very
important. The best way to calculate them is by taking the average of a large set of real life
characters of a class. A 2-stage process is used to achieve this. A lot of images were available,
these were segmented manually with the help of LP_SEGM. The characters are obtained by
segmenting the characters of a selected group of plates automatically with the program
GET_CHAR, which calls SEGMENT to segment the characters on the plates. All plates with
heavily distorted characters or character segmentation errors were excluded from this group.
The resulting 461 plates were used to calculate the prototypes.

The characters must be segmented exactly before one can take the average. This process can
be automated. Some reasonably well segmented prototypes are needed for this. Some images
of scanned pictures of plates were used to get these prototypes. Not all characters were found
in these pictures. The missing characters were scanned from the official description of the
license plate characters. The “Q” is not included in the official description, so no prototype is
available of this character. Instead the dash is substituted. The resulting prototypes are stored
in the image “PROTOTYP.BMP” which is shown in figure 81.

ABCDEFGHIJKL
MNOP-RSTUVW
XYZ0123456789

Figure 81. The initialisation prototypes.

These prototypes are segmented by PROT_SEG. The results are scaled to the wanted
dimensions and put in a window of 28 x 20 pixels. Some white space is left around the
prototypes. Two examples are shown in figure 82.

81

Figure 82. A scaled and segmented initialisation prototype “B” and “8”.

The approximately segmented characters can be classified with these prototypes. The
classifier returns information about the segmentation correction. This is used to correct for
segmentation errors. Then the prototypes can be calculated from the correctly segmented
characters with the help of the function MAKEPROT, the results are stored in
PROT_AVR.MAT. Two prototypes which were calculated this way are shown in figure 83.

Figure 83. The prototype “B* and “8”.

The PCA transformation is calculated from these prototypes with the CALC_ALL, the results
are stored in PCA_TRAN.MAT. Then the PCA transformation with the distance measure
from the original and the reconstruction of a character can be calculated for all characters.
This is done with the help of the function PCA_DATA, the results are stored in
PCA_DATA.MAT. The resulting data can be analysed with the different classification

82

schemes. The results of the classification are checked by a syntax check stage. The whole
trajectory is illustrated in figure 84.

LP_SEGM

PROT_SEG

MAKEPROT

SEGMENT

CHAR2PCA

CALC_ALL

Classifier

SYNTAXCK

Figure 84. The scheme of the recognition system.

Different classification methods can be used, they differ in the way they classify the PCA
vectors. RECOGN follows the scheme presented in figure 84.

All characters can be segmented and saved as separate files with GET_CHAR. Then the PCA
data with the distance measure can be calculated with PCA_DATA which creates a files
called PCA_DATA.MAT. This mat file can be analysed with ANAL_PCA.

The syntax of a plate is checked with the program SYNTAXCK. It only checks if all character
pairs consist of two digits or two letters of the alphabet and if there are no more than four
digits or four letters of the alphabet in the plate.

83

11. System evaluation

Here the recognition system is evaluated with the help of the results. 545 plates were used to
evaluate the system.

The evaluation of the consecutive stages of the system:

e Camera and frame grabber;
¢ License plate segmentation;
e Character segmentation;

o (lassification;

e Syntax checker;

will be treated in the following paragraphs.

11.1 The camera and frame grabber

The images obtained form the frame grabber can be very different. Some license plates in the
images are very bright and some are very dark. The applied image enhancement and
normalisation corrects for this with success. Special attention must be paid to a good setup of
the camera and frame grabber. Properties like contrast, sharpness, noise, camera angle and
used artificial lighting all influence the performance of the system.

The resolution of the characters delivered by the frame grabber proved to be enough for the
approach described here. The character height is on average about 18 pixels. The recognition
system would benefit from a better resolution.

At this time a monochrome camera is used. Using a colour camera could help in recognising
foreign plates. In addition, the license plate segmentation stage can benefit from a colour
camera.

11.2 The license plate segmentation

The license plate segmentation stage cannot be evaluated because it is unavailable to us. The
rejection and error rate is unknown. All plates were segmented by hand, which resulted in an
error and rejection rate of 0. It was tried to achieve a segmentation accuracy according to the
specifications given by CFT. It would be best to test the system with automatically segmented
plates to really see if the character segmentation and classification is able to deal with the
errors that are introduced by the license and character segmentation stage.

84

The plates were extracted from the images with the bilinear transformation. This corrects for
most of the perspective view distortion, but it cannot correct for distortions that are caused by
bent plates. If the corner points of a plate are known then it should be possible to find the
contours of the plate. A more advanced transformation can then be used to calculate a better
reconstruction of the plates. This will result in a lower error and rejection rate.

Bilinear interpolation is used to resample the plates in the images to fixed dimensions. This
introduces some blurring in the images, which actually enhances the images a little. However,
the amount of blurring depends on the resolution and angle of the plate in the image. It is
unknown if this causes degradation of the performance of the system.

11.3 The character segmentation stage

The character segmentation proved to function very reliable. Only 6 out of the 545 plates
were segmented badly. They had large segmentation errors in the segmentation of one or
more characters on the plate. All other characters are segmented with an accuracy of about 2
pixels horizontally and 1 pixel vertically to each direction. The license plates are enhanced for
this stage with histogram stretching. This improves the reliability of the character
segmentation.

The segmentation accuracy can be measured with the help of the classification stage. The
classification stage applies a segmentation correction, the needed segmentation correction
gives information about how accurate the initial character segmentation was. The
segmentation error correction shifts the character up and down and sideways. It also tries if
the classification result is better if the first and last row of the character are ignored. At first 7
horizontal and 5 vertical positions were tried. The percentage of the number of times that a
position delivered the highest and the correct result is shown in table 2. All (3270) characters
were treated as independent characters, no syntax checking was used. No characters were
rejected. 3172 characters were classified correctly, 98 were misclassified.

A Gaussian function was used to measure the quality of recognition for the PCA transformed
characters. The sigma’s of the Gaussian functions were set to half the distance of the neuron
to the closest other neuron.

85

Table 2. The percentage of the total number of correct winning results per position for 35
positions.

The percentage of the number of times that a position delivered the winning, but wrong result
is given in table 3.

Table 3. The percentage of the total number of misclassifications per position for 35 positions.

Table 2 indicate that the segmentation error is indeed about 2 pixels vertically and 1 pixel
horizontally. Shifting 3 pixels to each side and 2 pixels up and down does not seem to be
needed for a correct result, these positions actually contribute relatively much to the
misclassification. That is why they are not used anymore. Thus only 20 positions are taken
into account.

At this stage also the segmentation was enhanced which resulted in a better horizontal
segmentation but this also seems to have caused an offset in the horizontal and vertical
segmentation. The enhanced segmentation reduced the number of misclassifications to 69.
The enhanced segmentation seems to indicate that perhaps only three horizontal positions are
need for an accurate horizontal segmentation. Table 4 shows the percentage of the number of
correct winning results per positions.

86

Table 4. The percentage of the total number of correct results per position for 20 positions.

There is an offset in the segmentation which was not further examined because of time
constraints. In the optimum case there should be a maximum at the basis position.

The percentage of the number of times that a position delivered the winning, but wrong result
is given in table 5.

Table 5. The percentage of the total number of misclassifications per position.

The total number of misclassifications is 69, which is 2.1% of the total number of characters.
The results with the reduced number of positions are better. The number of misclassifications
is lower. This is because some errors are caused by shifting the characters to far, which can
lead to misclassification if the bad segmentation is not detected.

The classification stage is able to deal with the errors introduced by the segmentation stages,
but improving the segmentation will result in a lower misclassification and rejection rate.

87

11.4 The classification stage

Here the different classification methods are compared with each other. All methods are based
on the PCA transformation of the characters. The methods actually only differ in the way they

analyse the PCA transformed characters.

11.4.1 Distance ratio

Here the distance to the closest prototype is used to classify the characters. The ratio between
the closest and second closest prototype is used to decide if the character classification is
accepted or rejected. One minus this ratio can be interpreted as a threshold to reject or accept
a result. If the threshold is set to 0, thus all character are accepted, then 63 out of the 3270
characters are misclassified, which is 1.9% of the characters. Figure 85 shows the error rate as

a function of the rejection rate.

2 T T ¥ T T L) T T L
\
Threshold=0
15 -

1F i
S
E 05+ i
E Threshold=1
£
[_'[_] D I 1 1 —

0 10 20 30 40 50 60 70 80 a0 100
Rejection rate (%)

Figure 85. The error rate as a function of the rejection rate for the distance ratio method.

Figure 86 shows the threshold as a function of the rejection rate for the distance ratio method.
The shown graph can be used in combination with figure 85 to find the threshold at a certain

error and rejection rate.

38

08

o
™

o
=~

o
(N}

Threshold

—l 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Rejection rate (%)

a

Figure 86. The threshold as a function of the rejection rate for the distance ratio method.

11.4.2 The RBF layer

In this method a RBF layer is used to classify the characters. A Gaussian function is used for
this. The sigma’s of the RBF neurons are set to half the distance of the neuron to the closest
other neuron. The RBF neuron with the highest response is accepted as the classification
result. The difference between the highest and second highest response is used as threshold to
accept or reject a result. The error rate as a function of the rejection rate is shown in figure 87.
69 classification errors were made at a threshold of 0.

2 T L] T]) 1 T] T
\
Threshold=0
151 i

1} J
S
Tgo.s i -
= Threshold=1
)
£
F-T-] U (] 1 R | 1 — t) I

0 10 20 30 a0 50 60 70 80 a0 100

Rejection rate (%)

Figure 87. The error rate as a function of the rejection rate for the RBF layer method.

89

Figure 88 shows the threshold as a function of the rejection rate for the RBF method. The
shown graph can be used in combination with figure 87 to find the threshold at a certain error
and rejection rate.

08

o
o
T

1

o
BN
Ll

1

o
N
L

0 10 20 30 40 50 60 70 80 90 100
Rejection rate (%)

Threshold

0

Figure 88. The threshold as a function of the rejection rate for the RBF layer method.

In the next figure the results of the classifier with the distance ratio and the RBF layer can be
compared.

2 I T T I L) T) 1 | S

Distance ratio
------- RBF layer .

151

o
oy}

Error rate (%)

Q
fl
'
1
[}
L
)

10 20 30 40 50 60 70 80 a0 100
Rejection rate (%)

[

Figure 89. The error rate as a function of the error rate for the RBF and ratio approach.

90

The figure indicates that the approach that uses the distance ratio performs better than the
RBF approach. A lower rejection rate at the same error rate as with the RBF layer can be
achieved with it.

11.4.3 The trained RBF network

Half of the characters of the good set are used to calculate the optimum weight matrix, in
respect to the mean square error, for the net. The classification results with the trained RBF
network are about the same as with the RBF layer only. But the net does not give clear
information about how sure the net is about the classification as predicted in paragraph 9.4.2.
Using a trained RBF network in this way is not suitable for this problem.

11.4.4 The Bayesian classifier

Half of the characters of the good set are used to initialise the network. The misclassification
rate of the Bayesian classifier is very dependent on the chosen sigma and the quality and
amount of the training data. Especially the amount of training data causes the classifier to
perform worse than the other classification methods. Measuring the quality of recognition
proved to be hard for this classifier. Further examination is of this type of classifier is needed.
A sigma value of 10 seemed to be an appropriate.

11.4.5 Conclusions

The classification approach that uses the distance ration proved to perform best in this
application. 1 minus the distance ratio is interpreted as a threshold that regulates the
misclassification and rejection ratio. This method is used for the time being. Table 6 shows
the confusion matrix for a threshold of 0.35. At this point the rejection rate is 5.2% and the
error rate is 0.6%. The characters are classified as individual characters, not as part of a syntax
of a license plates. Only the used prototypes are shown in the table.

91

Table 6. The confusion matrix for a threshold of 0.35, 1 represents 0.03% of the total number
of characters.

Most of the misclassifications can be detected if the syntax of the plate is used, this done in
the syntax check stage.

92

11.5 The syntax checker

The characters were treated as individual characters in the previous paragraphs. Here the
syntax of the classification results of a plate is checked.

The role of the syntax checker is very dependent on the errors that the classification makes,
and thus on the threshold that is used to accept characters. Almost all misclassifications are
digits that are classified as a letter of the alphabet or the other way around at the threshold
used here. If such errors do not occur two times in one pair of characters then the syntax
checker will detect them and reject the plate. The syntax checker also checks if there are to
many digits or letters of the alphabet in the plate. 15 errors were detected by the syntax
checker.

93

12. Conclusions and recommendations

First of all, one can conclude from the results that using the PCA transformation for license
plate character recognition is very well possible. A recognition rate of 87% with a
misclassification rate of 0.4% was achieved with it. A compromise between the
misclassification and rejection rate can be made by adapting the threshold. Further developing
the Bayesian classifier can probably increase the performance still.

It is best if the license plate segmentation stage detects what kind of plate is present in an
image. In addition, foreign plates should be detected there. The aspect ratio and colour of a
plate give clear clues about the type of plate. If the type of plate is known then the
enhancement, segmentation and classification can be adapted to it.

The character segmentation scheme based on the vertical projection performs good enough
for the classification. The error rate is just 1.1%, which shows that it is possible to deal with
the character segmentation problem in this way. However, a drawback of this approach is that
it has to be redesigned for the different models of the Dutch license plates and foreign license
plates. Segmentation should not be done independently of the classification, especially if the
classification stage is able to correct for small segmentation errors. A co-operation of the
classification and segmentation stage is most likely to perform very well. One can for
example imagine a scheme where a segmented character is classified. The classifier then
enhances the segmentation or even rejects it. This information is fed back to the segmentation
stage, which responds accordingly.

In this project the license plate segmentation was done by hand. This leads to a lower
rejection and error rate than with the automated system. Furthermore the license plate
segmentation is probably more accurate when done by hand. To evaluate the system it would
be best to have the automated system available.

To detect misclassification one can check the character spacing found by the classifier. This
spacing has to obey to strict rules. If the characters are classified then the spacing is known
and can be checked. Misclassifications caused by bad segmentation can be detected this way.

The applied segmentation correction is working very well. It is based on the properties of the
reconstruction of a PCA transformed character. The difference between the original and the
reconstructed character gives clues about possible segmentation errors. Segmentation-free
classification even seems possible with this approach. All possible character area’s on a plate
can be PCA transformed and reconstructed. The differences between the original and
reconstruction together with the response of for example a radial basis layer, which evaluates
the PCA transformations, give information about the segmentation of the character.

94

There seems to be an offset in the vertical segmentation of the characters, this is concluded
from the results of the system evaluation. Removing this offset will probably cause an
increase in the system performance.

The used white space around the prototypes is very important for the distance measure. These
areas do not matter for the PCA transformation. The size and scaling of the prototypes and the
white space around them is probably not optimal at this moment. Optimising the scaling and
white space will probably cause an increase of the system performance.

95

Acknowledgements

I have to thank my coaches Hans Hegt and Nadeem Khan. They always made time for me if
technical of moral support was needed. Together we formed a team, which made working on
this project very enjoyable. Both had the best intentions with me and even tried to help me
ahead on my way into a professional career. I am definitely certain that such good coaches are
very rare and consider myself lucky to have worked with them.

I also have to thank my girlfriend Ester, who in the course of time probably thinks that I love
my computer more than her. She is wrong of course.

To close I'm much obliged to my friends and colleagues at the computer centre of the
university for putting up with my boring stories about character recognition. Cheers to you all.

96

Bibliography

m Bogaards, H.
“Karakterherkenning met principal component analysis”, department of Electrical
Engineering, Electronic Circuit Design Group, Eindhoven University of Technology,
1997, project report.

[] Chen, C.H.
“Fuzzy logic and neural network handbook”, McGraw-Hill, 1996,
ISBN 0-07-011189-8.

[I] Gonzalez, R.C & R.E. Woods.
“Digital image processing”, first edition, Addison-Wesley Publishing Company, 1993,
ISBN 0-201-50803-6.

[TV] Hegt, J.A.
“Neurale Netwerken”, department of Electrical Engineering, Electronic Circuit Design
Group, Einhoven University of Technology 1994, syllabus.

[V] Hertz, J. & A. Krogh & R.G. Palmer.
“Introduction to the theory of neural computation”, Addison-Wesley Publishing
Company, 1991, ISBN 0-201-50395-6.

[VI] Kreizig, E.
“Advanced engineering mathematics”, 6™ edition, John Wiley & Sons, 1988,
ISBN 0-471-85824-2.

[VII] Centrum for Fabrication Technology

“Kenteken Verwerking (KEVER)”, Philips Industrial Vision, design documentation,
1993.

[VII] Vliet, R.G. Van
“Beeldbewerking”, edition 1993, department of electrical Engineering,
Control group, Eindhoven University of Technology , Syllabus.

[IX] Wasserman, Philip D.
“Advanced methods in neural computing”, Van Nostrand Reinhold, 1993,
ISBN 0-442-00461-3.

[X] Fukunaga, B.
“Introduction to statistical Pattern Recognition”, Academic Press, London, 1990.

97

[XI] Nijhuis JJA.G. & M.H. Ter Brugge & K.A. Helmholt & J.P.W. Pluim &
L. Spaanenburg & R.S. Venema & M.A. Westenberg.
“Car license plate recogniton with neural networks and fuzzy logic”, Proceedings of

the 1995 IEEE international conference on neural networks, 27 november-1 december
1995, Vol. 5, p. 2232-2236.

98

	Voorblad
	Summary
	Contents
	1 Introduction
	2 The literature study
	3 Classification methods
	4 Dutch license plates
	5 The camera and frame grabber
	6 License plate segmentation
	7 Character segmentation
	8 The theory of the PCA transformation
	9 Classification with the PCA transformation
	10 The implementation
	11 System evaluation
	12 Conclusions and recommendations
	Acknowledgements
	Bibliography

