
 Eindhoven University of Technology

MASTER

Building distributed Smalltalk/Java applications using COBRA

van Meer, P.G.A.

Award date:
1998

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4a1f6297-c427-4015-b425-1b4c71df582f

ICSfEB 677

Technische Universiteittli) Eindhoven

Faculty of Electrical Engineering
Section of Information and Communication Systems

Master's Thesis:

Building distributed
Smalltalk/Java applications

using CORBA

P.G.A. van Meer

Coach:

Supervisor:

Examiner:

Period:

ir. S. van de Kuilen (ELC Object Technology, Capelle aid IJssel)

Prof.ir. M.PJ. Stevens

dr.ir. lP.M. Voeten

December 1997

The Faculty of Electrical Engineering of Eindhoven University of Technology does not
accept any responsibility regarding the contents of Master's Theses

Building distributed SmalitalklJava applications using

CORBA

by

P.G.A. van Meer

December 1997

A master thesis project performed for the Information- and Communication Systems group at the
Departement of Information Technology at the Eindhoven University of Technology. The project was
completed in co-operation with ELC Object Technology B. V.

Preface

This report describes my master thesis project for the Departement of Information Technology at
the Eindhoven University of Technology. The project was done together with ELC Object
Technology, Capelle aid Ijssel, which supplied me all the facilities to do my research successfully.

Working at ELC Object Technology was a great experience for me, technically and socially. All
the employees of ELC Object Technology were very willing to help me with my problems. Their
attitude towards technology, especially Object Technology, and towards each other, inspired me
to work with passion on my master thesis project. Also, I appreciated a lot that I was able to
explore new technologies like distributed object oriented applications in a very creative way. I am
convinced that everything I learned at ELC Object Technology forms a good starting point for the
rest of my career as an engineer.

I would like to thank prof. ir. M.PJ. Stevens and the other staff members of the Information- and
Communication Systems group at the Eindhoven University of Technology for their support.

This master thesis project I want to dedicate to my mother who brought me were I am now. I wish
she could have seen me finishing this work and starting my career. She deserved so much more.
Even if she is not here any more, she will always remain my inspiration,

Ralf van Meer
Capelle aid IJssel
December 1997

2

Summary

Distributed systems and object-oriented programming are very much related to each other. The
structure of object oriented applications is very attractive to distribute because of the fact that
every component of the application, called 'object', can be distributed, that is, can be moved to
another physical location. This makes applications very flexible and opens new possibilities for
development and functionality.

The fast expanding Internet adds again another dimension to software distribution. Applications
can be distributed now across the Internet, which makes the software accessible for everyone who
has access to the Internet.

Until now, for each application, for each programming language and for each platform, there
existed another distributed system, which often was not more than just customised TCPIIP
communication between different components.

In 1989, the Object Management Group (OMG) started a project to design a standardised
distributed system called 'the Common Object Request Broker' (CORBA). This distributed
system reached maturity in 1996 and is designed independent of programming languages and
operation platforms. The object's interfaces are described using an independent Interface
Description Language (OMG IDL) which describes the operations, attributes, exceptions,
constants, etc. of an object. By compiling the IDL to specific program language skeletons, the
object's implementation can be added to the heterogeneous distributed system.

All the objects added to the distributed system communicate using the CORBA Object Request
Broker (ORB). Together with its services, the CORBA ORB ensures that all objects can find and
use other object's services. The communication is done using the Internet Inter ORB Protocol
(IIOP), also specified by OMG.

In this report, CORBA is used to build distributed applications with two different languages:
Smalltalk and Java. Smalltalk is a proven object oriented language, which is very powerful for
developing complex business logic. In contrary, Java, which is only two years old and very much
supported by the internet browsers to add applications to the Internet homepages, is not mature
enough for using it for complex applications. CORBA can bring this two features (a reliable
proven language versus an Internet supported language) together by distributing the business logic
(Smalltalk) and view logic (Java in an Internet browser) of the application.

The CORBA's language independent architecture is discussed after which CORBA is focussed on
the Smalltalk and Java object oriented languages. Features as the IDL Smalltalk- and Java
language mappings, commercial implementations of CORBA for Smalltalk and Java, and
performance measurements of CORBA are presented and discussed. To understand CORBA even
better a description of the implementation of a Smalltalk server ORB is discussed.

3

Building distributed Smalltalk/Java applications using CORBA

Contents
1. INTRODUCTION 6

1.1. Distributed applications 6
1.2. ELC Object Technology 6
1.3. ELC Object Technology and distributed applications 6
104. Assignment 7

2. CORBA 8

2.1. CORBA, the Common Object Request Broker Architecture 8
2.2. Object Management Group 8
2.3. The CORBA reference model 8
2.4. The ORB 9
2.5. ORB interfaces 10
2.6. Object Services 11

2.6.1. Naming service 11
2.7. Common facilities 12

2.7.1 12
2.8. ORB implementations 12
2.9. CORBA compared with other distributed systems 13

2.9.1. CORBA and DCE 13
2.9.2. CORBA and DCOM 14

3. CORBA IIOP PROTOCOL 15

3.1. CORBA GlOP specification 15
3.2. The lOR 16
3.3. CORBA and the OSl model 17

3.3.1. The OSTmodel 17
3.3.2. CORBA mapped onto the OST layers 17

4. CORBA FOCUSSED ON SMALLTALK AND JAVA 19

4.1. Mapping OMG IDL to programming languages 19
4.2. lDL to Smalltalk language mapping 20

4.2.1. Smalltalk naming collisions 21
4.2.2. Smalltalk object mappings 21
4.2.3. Smalltalk type mappings 22

4.3. lDL to Java language mapping 22
4.3.1. Java type mappings 23

404. The Smalltalk typing problem 23
4.4.1. Solution using the Any-type 23
4.4.2. Solution using VisualAge's Public Interface Editor 25

4.5. Smalltalk class methods 25

5. COMMERCIAL IMPLEMENTATIONS OF CORBA ORBS FOR SMALLTALK ANDJAVA 27

5.1. Smalltalk 27
5.2. Java 27
5.3. lONA's ORBlX for VisualAge for Smalltalk 28

5.3.1. Orbix components 28
5.3.2. ORB connection manager 28
5.3.3. Orbix's CORBA services 28

504. Visigenic's VisiBroker for Java 29
5.4.1. VisiBroker's features 29
5.4.2. Using VisiBroker to contact objects outside the ORB 30

5.5. The Performance of a Smalltalk server and Java client 31

4

Building distributed Smalltalk/Java applications using CORBA

5.5.1. Measuring variable method invocations 32
5.5.2. Measuring variable parameters in one invocation 34

6. IMPLEMENTATION OF A CORBA FRAMEWORK 36

6.1. Implementation of the nop Protocol in Smalltalk 36
6.1.1. CORBAType classes 36
6.1.2. nop protocol classes 38

6.2. Implementation of a server ORB in Small talk .40
6.2.1. 1nteiface repository 41
6.2.2. The ORB 44

6.3. Using VisualAge to specify the interface .44

7. CONCLUSIONS AND RECOMENDATIONS 46

APPENDIX A. COMMON DATA REPRESENTATION (CDR) 47

APPENDIX B. ALIGNMENT OF IDL TyPES 48

APPENDIX C. THE CORBA ANY-TyPE 50

APPENDIX D. GlOP MESSAGE DEFINITIONS 51

APPENDIX E. OBJECT SERVICES 57

APPENDIX F. CORBA OBJECT REQUEST BROKER IMPLEMENTATIONS 58

APPENDIX G. SOURCE CODE, CORBATYPE CLASSES 60

APPENDIX H. SOURCE CODE, GIOPMESSAGE CLASSES 72

APPENDIX I. SOURCE CODE, REPOSITORY CLASSES 85

APPENDIX J. PERFORMANCE MEASUREMENT RESULTS 95

APPENDIX K. REFERENCES 96

5

Building distributed SmalltalklJava applications using CORBA

1. Introduction

1.1. Distributed applications

Distributed systems are becoming more and more reality today. Information can be stored at multiple locations across
the network. Doing this makes applications more powerful and flexible to use and opens new possibilities for the
application's development and performance. Due to the fast expanding internet infrastructure, new attractive
possibilities for distributing your applications arise. That's why the need for distributed applications is still growing
enormously.

In a distributed object oriented application environment, the objects of which the application consists, can be widely
spread over different locations in the network. The objects can communicate with each other over the network when
they need information. For example, an object, which represents the user interface, can communicate with objects that
can access a database at a complete different physical location.

For different platforms and programming languages there are now many different systems to achieve object
distribution. All systems work well but when you want to use different platforms and programming languages in
forming one distributed application, the present techniques fail.

The in 1989 founded Object Management Group solved this problem by creating a standard for distributed systems.
This standard, which reached maturity in august 1996 is called the 'Common Object Request Broker Architecture' or
abbreviated 'CORBA'. It became mature in its recent release: 'CORBA 2.0'.

1.2. ELC Object Technology

ELC Object Technology is a division of the ELC Information Services IT company with several settlements in The
Netherlands. ELC Object Technology builds customised applications using Object Oriented software analysis, design
and implementation strategies. Doing this, ELC Object Technology prefers to use the powerful object oriented
programming language Smalltalk together with its proven development environment: IBM VisualAge for Smalltalk.

1.3. ELC Object Technology and distributed applications

When building applications, ELC uses a self developed Persistency Framework, which provides a connection
between the application and a persistency database. Looking at this configuration, three groups of objects can be
distinguished: The objects, which cope with the database (Persistency Framework), the objects that form the actual
application (intelligent objects) and the objects that form the user interface. This configuration is called the Three
Layers Model: Persistency layer, Business layer, View layer.

ELC Object Technology wants to design its view layer using the platform independent- and user friendly facilities of
an internet browser by implementing the view logic using Java applets. The communication between these Java
applets and the objects in the business layer (programmed using Smalltalk) has to be established using object
distribution. Because the software must be platform independent and has to run in a heterogeneous Smalltalk/Java
environment, CORBA should be able to solve this problem. Both Smalltalk and Java have been supplied with
CORBA features. Thus a basis for the solution already exists.

6

Building distributed Smalltalk/Java applications using CORBA

1.4. Assignment

Because ELC Object Technology wants to combine the internet browser facilities with the powerful Smalltalk
environment, it has formulated the following assignment for this master thesis project:

• Explore the CORRA standard. This is described in chapter 2 and 3 in which the CORBA architecture is
presented together with comparisons to other distributed systems.

• Explore the facilities to support CORRA in Smalltalk and Java. In chapter 4, CORBA is focussed on
Smalltalk and Java. The CORBA language mappings for these languages are described and discussed. And
several commercial implementations for these languages are discussed

• Explore the usefulness of these tools to build distributed applications. In chapter 5, two implementations of
CORBA, ORBIX for Smalltalk and Visigenic's Visibroker for Java are discussed.

• Ruild a framework to build distributed applications between Smalltalk and Java using the CORRA
standard. In chapter 6, the construction of a Smalltalk CORBA server ORB is described, constructed upon nop,
together with extensions on the ORBIX CORBA implementation

7

Building distributed Smalltalk/Java applications using CORBA

2. CORBA

2.1. CORBA, the Common Object Request Broker Architecture

CORBA stands for Common Object Request Broker Architecture. CORBA is a standardised way to build distributed
applications in multi-language (heterogeneous) and multi-platform environments. To understand CORBA I shall first
explain its abbreviation:

• Common. Common stands for the group of objects that together form a distributed application. These common
objects can differ in implementation language, operation platform and physical location.

• Object Request Broker. Object Request Broker or shortly ORB stands for the core part of the distributed system.
The ORB can be compared with a telephone exchange, which takes care of the communication between different
objects. One object needs services from another object - or more abstract - a client needs the services from an
object implementation. The ORB is responsible for sending the request of the client to the object implementation
and then returns the reply of the object implementation to the client.

• Architecture. Architecture stands for the description of the Common Object Request Broker. It is important to
state that CORBA is only architecture, not an implementation, of a distributed object system. The actual
architecture of CORBA is specified by OMG, the Object Management Group [OMG 1995a].

2.2. Object Management Group

"The Object Management Group, Inc. (OMG) is an international organisation supported by over 500
members, including information system vendors, software developers and users. Founded in 1989, the OMG
promotes the theory and practice ofobject oriented technology in software development. The organisation's
goal consists ofthe establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability, portability, and
interoperability ofobject-based software in distributed. heterogeneous environments. Conform these
specifications it will be possible to develop a heterogeneous applications environment across all major
hardware platforms and operating systems".

OMG's core part of its business is the Object Management Architecture (OMA). The OMA provides the basic
structure upon which all OMG specifications - especially CORBA - are based. For a complete description of the
OMA see [OMG 1997a].

2.3. The CORBA reference model

The key to understand the structure of the OMG's CORBA architecture is the CORBA Reference Model. From this
model, all CORBA features are specified. It consists of the following components:

• Object Request Broker, or short 'the ORB', which enables objects to make and receive requests and replies in a
distributed environment without bothering about the receiving object's implementation or location. It is the
foundation for building distributed applications and the core part for interoperability between distributed
applications in heterogeneous environments. The architecture of the CORBA Object Request Broker is described
in this chapter.

• Object Services, a collection of services (interfaces and objects) that support basic functions for using and
implementing objects. Services are necessary to construct any distributed application and are always independent
of application domains. For example, the Life Cycle Service defines conventions for creating, deleting, copying,
and moving objects. It does not limit the implementation of the objects in an application. Specifications for Object

8

Building distributed Smalltalk/Java applications using CORBA

Services are contained in CORBAservices: Common Object Services Specification. [OMG 1995b]. An example
of a CORBA service, the CORBA Naming Service, is described in this chapter.

• Common Facilities, a collection of services that many applications may share, but which are not as fundamental
as the Object Services. For instance, a system management or electronic mail facility could be classified as a
common facility. Information about the Common Facilities will be contained in CORBAfacilities: Common
Facilities Architecture. [OMG 1995c]

• Application Objects, which are products of a single vendor on in-house development group which controls their
interfaces. Application Objects correspond to the traditional notion of applications, so they are not standardised
by OMG. Instead, Application Objects constitute the uppermost layer of the Reference Model. The Object
Request Broker, then, is the core of the Reference. (For more information about the OMG Reference Model and
the OMG Object Model, refer to the 'Object Management Architecture Guide' [OMG 1997aD.

Application
objects

Object Request Broker

Object services

Figure 2-1 The CORBA reference model

2.4. The ORB

The CORBA Object Request Broker (ORB) functions like a telephone exchange, which connects a client to a service
(most commonly another person). In distributed applications, this service is represented by an implementation of an
object or a group of objects. When a client tries to achieve a service from an object implementation the ORB is
responsible for the following tasks:

Request
• To find the object implementation for the request
• To prepare the object implementation to receive the request
• To communicate the data making up the request

Reply
• To find the client again for receiving the reply
• To prepare the client for receiving the reply
• To communicate the reply data to the client

The interface the client and object implementation see is completely independent of where they are located, what
programming language they are implemented in, which platforms are used, or any other aspect which is not defined
in the interfaces.

If you want to call someone, you need a telephone number to specify another telephone. The client of an ORB can
perform a request on an object implementation when it has the following information:

• An Object Reference (lOR, Internet Object Reference) that uniquely describes an object subscribed to an ORB

9

Building distributed Smalltalk/Java applications using CORBA

• The interface of the object
• The desired operation/attribute/exception etc. it wants to perform/obtain.

2.5. ORB interfaces

Client Object implementation

Object adapter

ORB

Figure 2-2 The structure of Object Request Broker interfaces

Figure 2-2 shows the structure of a CORBA Object Request Broker (CORBA ORB) together with its interfaces. The
interfaces to the ORB are shown between the client/object implementation and the ORB. The arrows indicate whether
the ORB is called by the client/object implementation or the ORB performs an upcall using the interface.

To make a request, the client can use the following interfaces:

• Dynamic Invocation interface (the same interface independent of the target object's interface). Due to this
interface's dynamic structure it is able to communicate with object implementations that have been created during
runtime.

• A static OMG IDL stub (the specific stub depending on the interface of the target object). Due to this interface's
static structure the object implementations interface has to be known before runtime.

• The ORB interface. The client can also directly interact with the ORB for some functions.

The object implementation receives a request as an upcall through the following interfaces:

• A static OMG IDL generated skeleton. By specifying the interface before runtime using IDL (Interface
Description Language) the ORB knows how to cope with the object implementation.

• Dynamic skeleton interface. Due to this interface's dynamic structure it is possible to act as a completely new
object implementation during runtime.

• The ORB interface. Like the client, the object implementation may call the Object Adapter and the ORB for
extra support.

So, definitions of the interfaces to and from object implementations can be defined in two ways:

• Interfaces can be defined statically in an interface definition language, called the OMO Interface Defmition
Language (OMO IDL or shorter IDL). This language defines the protocol of objects according to the operations,
attributes, exceptions, constants and typedefs it provides. Thus the object is defmed by its interface description
using IDL.

• Alternatively, or in addition, interfaces can be defined dynamically. They can be added to an Interface Repository
service in the ORB, which represents the components of an interface as objects, permitting dynamic runtime
access to these components. The object implementation information which is provided at installation time (can be
during runtime) is stored also in the Implementation Repository and can be used by the ORB for request delivery.

10

Building distributed Smalltalk/Java applications using CORBA

The statically defined IDL interfaces and the dynamically defined interfaces have equivalent expressive power. It
makes no difference for a client whether the object implementation expresses its interface using static or dynamic
descriptions. And vice versa for the object implementation.

2.6. Object Services

The object services are interfaces that are used by many distributed applications. Object services are location,
platform and language independent and provide additional functionality to the ORB. Some services are so crucial that
a distributed application could not function normally without them (e.g. Naming service and Life cycle service).
Examples of services are shown in Appendix E. Here, only the naming service, which is of essential importance for a
CORBA distributed application to function normally, is described as a short example.

2.6. 1. Naming service

The naming service locates object implementations with a specified name. This is a fundamental service for
distributed object systems because the Interoperable Object Reference (lOR) for the appropriate object
implementation is not always available for the client.

The naming service provides a mapping between a name and an lOR. Storing such a mapping in the naming service
will be called 'binding an object'. Removing an entry will be called 'unbinding'. Obtaining an lOR that is bound to a
name is known as 'resolving the name'.

Names can be hierarchically structured by using contexts. Contexts are similar to directories in file systems and they
can contain names as well as subcontexts.

The use of laRs alone to identify objects has two problems:

• laRs as stand-alone entities are difficult for human users to cope with because they are opaque data types and
their stringified form (which can be obtained from the ORB interface) is a long sequence of numbers.

• When a service is restarted, its objects mostly have new laRs. But, clients want to use the object implementation's
service continuous without having to check whether or nollhe lOR has been changed.

The typical use of the naming service involves object implemenlations binding to the naming service when they come
into existence and unbinding before they terminate. A client resolves names, which produce objects on which they
can invoke operations.

[
Client Object

I
implementation

resolve bind
unBind

CORBA Naming Service

Figure 2-3 CORBA Naming Service

11

~~" . ~ Building dislributed SmalffalklJava applicalions using CORBA

2.7. Common facilities

While the ORB specifies a system's core component, the object services represent its most basic and essential features
for functionality. It provides the essential interfaces needed to create an object, introduce it into its environment, use
and modify its features. Common Facilities are the final area of the Object Management Architecture to be defined.
They fill the gap between the enabling technology defined by CORBA and the Object Services, and the application­
specific (not standardised) services.

Some examples of Common Facilities include email and printing. These types of Common Facilities are needed in
most application domains. In addition, there are many companies working on more specialised Common Facilities,
such as system management.

Common Facilities are separated into two categories:

• Horizontal Common Facilities, which are shared by many or most systems. There are four major sets of these
facilities: User Interface, Information Management, Systems Management and Task Management.

• Vertical Market Facilities, which support the domain-specific tasks that are associated with vertical market
segments. Some Vertical Market Facilities may migrate to Horizontal Common Facilities. Services that are
common across many vertical facilities areas are candidates for horizontal facility status.

The boundaries separating Common Facilities from Application Objects and from Object Services are quite vague.
They reflect the evolution of object system technology. The current placement of the boundaries reflects the current
OMG standardisation effort. As experience in an application area matures, areas of potential new Common Facilities
will be discovered and defined, just as evolving system infrastructures will gradually incorporate pieces of the
Common Facilities domain into their basic Object Service offers.

I Application objects
I

I

/ I
Common facilities

I ORB
I

.&.
T Object servicesf Due to vage boundaries

'- migration of services is possible J

Figure 2-4 Migration of object services

2.8. ORB implementations

In the architecture, the CORBA ORB is not required to be implemented in one stiff way. Rather it is defined by its
interfaces, which are defined by OMG. Any ORB implementation that provides the appropriate CORBA 2.0 interface
is acceptable and can be called CORBA 2.0 compliant.

Different ORBs may make quite different implementation choices, and, together with the IDL compilers, repositories,
and various Object Adapters, provide a set of services to clients and implementations of objects that have different

12

Building distributed SmalltalklJava applications using CORBA

properties and qualities. There may be multiple ORB implementations (also described as multiple ORBs) which have
different representations for IORs and different means of performing invocations on objects. It may be possible for a
client to simultaneously have access to two IORs managed by different ORB implementations. When two ORBs are
intended to work together, those ORBs must be able to distinguish their IORs. It is not the responsibility of the client
to do so. There are now several commercial implementations, which are CORBA 2.0 compliant (see Appendix F).

2.9. CORBA compared with other distributed systems

Because ELC had to decide what policy to choose for building distributed applications I investigated for other
distributed systems. Two distributed systems, besides CORBA, appeared to be interesting for building professional
distributed applications:

• DCE (Distributed Computing Environment)
• DCOM (Distributed Common Object Model)

2.9.1. CORBA and DCE

DCE (Distributed Computing Environment) supports the construction and integration of C-based client/server
applications in heterogeneous distributed environments. DCE has been implemented and designed by the Open
Software Foundation (OSF).

The most crucial difference between DCE and CORBA is that DCE was designed to support procedural
programming, while CORBA was designed to support object-oriented programming. CORBA supports al1 of the
characteristics of object oriented programming styles, with the possibility of creating new objects at runtime.

Distributed procedural programming environments such as DCE support a different set of capabilities than object
oriented distributed environments. However, DCE does have additional capabilities that begin to overlap with
traditional capabilities of object-oriented systems:

• A DCE client can determine at runtime the specific servers to which it will bind and make RPCs (however the
interfaces supported by those servers must be fixed at compile time).

• A DCE server may generate so cal1ed object UUIDs (universal unique identifiers), to denote different resources
managed by the server. A client that does an RPC to the server can use an object UUID to identify a specific
resource. For example, a print server might generate object UUIDs for the different printers it controls, and a
client submitting a print request would specify the desired printer. UUID can be compared with CORBA Object
References.

• A DCE server may also generate so cal1ed object type UUIDs, associate each object UUID with an object type
UUID, and register a separate set of RPC handlers for each object type UUID. When a client does an RPC to the
server and specifies an object UUID, the specific function that is invoked in the server depends on the object type
with which the object UUID is associated. For example, the print server might associate one object type UUID
with RPC handlers that support line printers and another object type UUID with a corresponding set of RPC
handlers that supports PostScript printers.

Although the most significant difference between DCE and CORBA is the style of programming, there are still other
differences between CORBA and DCE as shown in Table 2-1.

13

Building distributed Smalltalk/Java applications using CORBA

CORBA
Object Management Group (OMG)
IDL based on C++ syntax
IDL supports multiple inheritance
Support of dynamic invocation
Based on an ORB which controls the server activation
Does not support the pointer type (for C)
Only supports request/reply context

Open software foundation (OSF)
IDL based on C syntax
IDL supports no inheritance
Does not support dynamic invocation
Based on RPC. The user has to activate the server
Supports the pointer type
Supports real application contexts
Sueeorts eieelining for large data structures

Table 2-1 eORBA against DeE

2.9.2. CORBA and DCOM

DCOM (Distributed Common Object Model) is the distributed extension of the Component Object Model (COM)
which grew from Microsoft's work on OLE (Object Linking Embedding). The ful1 set of these technologies is called
ActiveX.

The differences between CORBA and DCOM are less clear than the differences between CORBA and DCE. Because
DCE is designed for procedural programming an important distinction between DCE and CORBA can instantly be
made.

However, DCOM is, like CORBA, designed to build distributed applications using an object-oriented environment.
The key decision which system to use cannot be made on programming style in this case.

CORBA implementations exist on almost every platform, and have been used successfully in many large projects. But
its complexity and the industry's failure in the past to agree on interoperability between CORBA ORBs have cost its
wide commercial acceptance.

DCOM is stil1 new as a commercial product. Microsoft is working to make COM and DCOM generally available on
the Macintosh. A Solaris version of DCOM developed in partnership with Software A.G with general availability
since for April 1997. Beta versions for Digital Unix, Linux (on Intel platforms), and IBM mainframes are expected
soon this year (1997).

CORBA is more mature as a cross-platform technology, while DCOM has an army of developers who already know
COM programming. COM also benefits from user-friendly Windows tools. In [OMG 1995a] OMG describes the
standard to interoperate with DCOM.

In Table 2-2 the most important differences between CORBA and DCOM are listed.

CORBA DCOM--- ._---------- _._..._----_..._---_._-_.".---
Object Management Group Microsoft
(OMG)
Many different vendors who build Only Microsoft
for -and develop CORBA ->
increases quality of product.
More mature, since 1992 Since 1996

Table 2-2 eORBA against DeOM

For practical tests comparing CORBA and DCOM see [MON 1997] and [POM 1997].

14

Building distributed SmalltalklJava applications using CORBA

3. CORBA nop protocol

When separate ORBs want to use each other's subscribed objects they need to communicate with each other.
Therefore there has to be a protocol for communication among ORBs so they can interoperate. OMG specified a
protocol called GlOP (General Inter ORB protocol). The GlOP is an abstract protocol, which does not care about the
transport layer (though it makes some assumptions to it). For the actual communication using the internet, which uses
the TCP/IP transport protocol, OMG specified the nop (Internet Inter ORB Protocol). nop is currently the only
implementable protocol OMG specified.

Objects

ORB 1
nQP

a CORBA service

Figure 3-1 ORBs communicating using nop

While describing the nop, first an overview of the GlOP specification is presented after which the additional feature
on GlOP, specified by the nop is described. This additional feature is the Interoperable Object Reference, the lOR.

3.1. CORBA GlOP specification

The GlOP protocol consists of a set of 7 different messages, which are client/server specific. While describing these
GlOP messages, it is necessary to define client and server roles. A client is the party that opens a connection and
sends requests. A server is the party that accepts connections and receives requests. So, the connection will always be
in one direction. This makes things more easy because dealing with a unidirectional network while using more
connections (each with its own direction) is similar to dealing with a bi-directional network.

The 7 GlOP message are summarised in Table 3-1, which shows the message type names, whether the message can
be sent by client, server, or both, and the value used to identify the message type in GlOP message headers.

15

Building distributed SmafltalklJava applications using CORBA

°I
2
3
4
5
6

Value
Client
Server
Client
Client
Server
Server
Client/Server

Message type
Request
Reply
CancelRequest
LocateRequest
LocateReply
CloseConnection
Messa~eError

- --*----------Originator

Table 3-1 GlOP Message types

As shown in Table 3-1 a GlOP message (MessageTypeHeader) can contain seven different types of messages. The
complete GlOP message is build out of three parts:

• MessageHeader. This is a 12-octet header, which contains data such as byte order, message type and total
message size.

• MessageTypeHeader. The MessageTypeHeader can be one of the seven messages as shown in Table 3-1. The
MessageTypeHeader can be empty in case of the CloseConnection or MessageError message.

• MessageTypeBody. The message body contains the actual bulk of data of the message. The Request, Reply or
LocateReply message can have a message body.

In Appendix D I shall describe the properties of GlOP messages using Pseudo-IDL. This is also used in [OMG
1995a] to define the GlOP messages and has proven to be quite satisfying in the specification for the GlOP protocol
due to the fact that GlOP is used to send messages on behalf of OMG IDL specified interfaces.

3.2. The lOR

IIOP adds the transport layer dependent features to the GlOP specification. Most important it describes the
Interoperable Object Reference (lOR) which locates objects across a TCP/IP network.

The data structure of the lOR, which is shown in Figure 3-2 is not to be used internally to any given ORB, and is not
intended to be visible to application level ORB programmers. It should be used only when a request is invoked on an
object subscribed to another ORB.

lOR tag=O Single component

typeID: string tag=l Multiple components

~profiles

TaggedProfile - Version
tag: 10ng={O,I}

major: char

IprofileData minor: char

ProfileBody iiopVersion ObjectKey

host: string Not specified. Free to
port: short objectKey implement

Figure 3-2 Sturucture of the lOR

16

Building distributed Smalltalk/Java applications using CORBA

laRs can be 'stringified' by the ORB interface using the 'objeccto_string' operation. They can be turned into a
CORBA object using the ORB interface's 'string_to_object' operation.

This stringified representation ensures that ORBs could address directly objects in a foreign ORB. Normally, a
CORBA service, that is subscribed to a foreign ORB, can be obtained using an lOR string. When this remote
CORBA service is a Naming service, objects binded to this service can be accessed without using laRs.

3.3. CORBA and the 051 model

Now that CORBA and its inter-ORB protocol (HOP) are described, CORBA ORBs can be mapped onto the seven
different layers of the OSI model to get a better understanding of the design structure of CORBA.

3.3.1. The OSI model

The OSI model (Open Systems Interconnection) deals with connecting systems that can share their resources to each
other. It has seven layers that all represent a different level of abstraction, see [TAN 1996].

7. The application layer. This layer represents a certain application that can use the network to deliver its
services (e.g. electronic mail, ftp and telnet).

6. The presentation layer. This layer maps data types (such as String or Integers) into a protocol to send it
onto the network.

5. The session layer. This layer adds some low-level services to the Transport layer such as dialogue control
and synchronisation.

4. The transport layer. This layer sets up connections with other communications sessions and makes sure
every message gets where is has to be.

3. Network layer. This layer controls the network traffic. It takes care of routing and buffering problems and
defines descriptors for source and destinations locations.

2. Data link layer. This layer makes sure that the 'raw' bits travel across the wire in the right order and without
transmission errors.

1. Physical layer. This layer communicates 'raw' bits across the wire.

3.3.2. CORBA mapped onto the OSllayers

7. Application layer. The ORB interface represents the application layer. The distributed application's stubs
and skeletons send their requests and replies to the ORB, using the ORB interface, which starts entering the
communication process.

6. Presentation layer. The marshalling of primitive data types and CORBA objects represented as laRs into
HOP represents the presentation layer. This marshalled data types are the parameters for the requested or
replied methods. The marshalling is done by the ORB.

5. The session layer. The connection management of the ORB. A CORBA implementation (e.g. Orbix, see
paragraph 5.3) is free to implement its own connection management. OMG only specifies some assumptions
regarding the transport behaviour (connection-oriented, reliable, byte-stream communication and error
notification. See [OMG 1995a]).

4. - 1. The transport-, network-, data link- and physical layer represent the TCP/IP protocol upon which HOP is
build.

17

Building distributed Smalltalk/Java applications using CORBA

OSI model

Application

Presentation

Session

Transport

Network

Data link

Physical

CORBA

ORB interface

IIOP marshalling

Connection Manager

TCP/IP sending IIOP

Figure 3-3 CORBA mapping onto the OSI model

18

Building distributed SmalltalklJava applications using CORBA

4. CORBA focussed on Smalltalk and Java

Before I start discussing CORBA concerning Smalltalk and Java, first OMG IDL has to be discussed, in the context
of these two languages, to get an idea about the features IDL consists of.

4.1. Mapping OMG IDL to programming languages

Programming language 1

OMGIDL
(Interface definition language)

IDL specified objects
can communicate
transparantly

OMGIDL
(Interface definition language)

Programming language 2

Figure 4-1 Language mappings to IDL

The OMG Interface Definition Language (OMG IDL or IDL) defines the types of objects by specifying their
interfaces. An interface consists of a set of named operations (and the parameters to those operations), attributes,
exceptions, constants etc. Note that IDL provides the descriptive framework for the objects to be manipulated by the
ORB, it is not necessary there is implementation source code available for the ORB to work. As long as the
equivalent information is available in the form of stub routines (static) or a runtime interface repository (dynamic), a
particular ORB may be able to function correctly.

IDL is the medium a particular object implementation tells its possible clients what operations are available and how
they should be invoked. So actually IDL describes the object's protocol. From the IDL definitions, it is possible to
map CORBA objects into particular programming languages or object systems, as shown in Figure 4-1.

The next example is an IDL source code that describes something like a person-database:

19

Building distributed Smalltalk/Java applications using CORBA

module PersonDataStorage{
interface Address{

attribute short houseNumber;

} ;

interface Person{
Address getAddress();
void setAddress(in Address anAddress);
string name();

} ;

} ;

Example 4-1 IDL source code

In Example 4-1, the IDL source code describes a person database. The interfaces (protocols) of two objects ('Address'
and 'Person') are described in the module 'PersonDataStorage'. With its interface description, the object
implementation 'Address' is defined to be an implementation that has the attribute 'houseNumber'. The 'houseNumber'
attribute is determined to return a short typed variable that likely contains the house number of the 'Address' object
implementation.

The other object implementation called 'Person' contains information about a person. It can accept the messages:
'getAddressO', 'setAddress(in Address anAddress), and 'nameO'. The 'getAddressO' method returns a parameter that is
an 'Address' object. In practice this return parameter will be an lOR (Internet Object Reference) to a new instantiated
'Address' object. The other methods in this interface speak for themselves.

The actual programming language for the 'Address' and 'Person' object is not important is this case. Just because the
object implementation's interface is described in IDL makes it accessible for every client through a CORBA ORB.

A particular mapping of OMG IDL to a programming language should be the same for all ORB implementations.
Language mapping includes the definition of the language-specific data types to access objects through the ORB.

Originally OMG supported three language mappings in the release of CORBA 2.0 [OMG 1995a]:

• Mapping for C
• Mapping for c++
• Mapping for Smalltalk

Later OMG adopted other language mappings into its standard:

• Ada Language Mapping, 19 march 1996
• C++ Language Mapping 1.1, 19 march 1996
• IDL COBOL Mapping, 11 march 1997
• IDL Java Mapping 1.0,24 June 1997

4.2. IDL to Smalltalk language mapping

The OMG IDL to Smalltalk mapping was part of the initial release of the CORBA 2.0 specification by OMG.

The mapping of OMG IDL to Smalltalk was designed with the following goals:

20

Building distributed Sma/ltalklJava applications using CORBA

• A minimum protocol that additional classes to the Smalltalk Common Base classes need for achieving the IDL
mapping is described in [OMG 1995a, chapter 19].

• Whenever possible, OMG IDL types are mapped directly to existing, portable Smalltalk classes (from the
Smalltalk Common Base), see [GOL 1980].

• The Smalltalk mapping only describes the public (client) interface to Smalltalk classes and objects supporting
IDL. Individual IDL compilers or CORBA implementations might define additional private interfaces.

• Because of the dynamic nature of Smalltalk, the mapping of the any (and union) type do not need an explicit
mapping. Instead, the value of the any (and union) type can be passed directly to the object after conversion by the
ORB.

• The explicit passing of environment and context values on operations is not required.
• Except in the case of object references, no memory management is required for data parameters and return results

from operations. All such Smalltalk objects reside within Smalltalk memory, so garbage collection will reclaim
their storage when the ORB) no longer references them.

4.2. 1. Smalltalk naming collisions

One enormous shortcoming of OMG IDL is the operation name conversion. OMG has specified the mapping of an
IDL operation to a Smalltalk method selector as follows:

_______}DL operatio~.declaration Sm.~talk select~ _
methodO; #method
method(in any argl); #method: anAny
methodOn any argl ,in any with); #method: anAnyl with: anAny2

The above does not seem to be a problem but when IDL is generated from Smalltalk source code (the other way
around), many problems arise because, in the OMG specification of IDL, OMG does not allow two operations
declarations to have the same name. methodO, method(in any arg1) and method(in any arg 1, in any with) are
therefore not accepted together in one interface declaration. I solved this problem by specifying the IDL operation
naming as follows:

Smalltalk selector:;;..;.;;..:..::.;;.;:c:- _---
#method
#method: aParameter
#method: aParameterl with: aParameter2

IDL operation declaI:_~t.'--io_n _
methodO;
method(in any argl);
meth£~With(inany ar~1, in any with);

As can be seen, this solution does not eliminate naming collision between #message and #message:. But, in practice,
this proved to work out well.

The use of underscore characters in OMG IDL identifiers is not allowed in all Smalltalk implementations. Thus, a
conversion algorithm is required to convert names used in OMG IDL to valid Smalltalk identifiers. To convert an
OMG IDL identifier to a Smalltalk identifier, remove each underscore and capitalise the following letter (if it exists).
Notice that naming collisions are possible when you apply the above description (when 'method_withO;' and
'methodWithO;' are both in the same interface description).

4.2.2. Smalltalk object mappings

Each OMG IDL interface defines the operations that IORs with that interface must support. In Smalltalk, each OMG
IDL interface defines the methods that IORs with that interface must respond to. Implementations can map IDL
interfaces to:

• a single Smalltalk class for every interface (most common)

21

Building distributed Smalltalk/Java applications using CORBA

• all IDL interfaces to a single Smalltalk class
• several Smalltalk classes to several OMO IDL interfaces.

The design goals permits the mapping to ignore memory management, since Smalltalk handles this itself (through
garbage collection).

A CORBA object is represented in Smalltalk as an Interoperable Object Reference (lOR) which uniquely describes
an object in an ORB. The object must respond to all messages defined by that CORBA object's interface. An lOR can
have a value, which indicates that it represents no CORBA object. This value is the standard Smalltalk value nil.

4.2.3. Smalftalk type mappings

array
boolean
char
float, double
(unsigned) long, (unsigned) short, octet
sequence
string
exception
struct
any
constant
enum
union
Object Reference (lOR)
IDL operation
IDL attribute

Smalltalk class
Array
Boolean ('true' or 'false' objects)
Character
Float
Integer
OrderedCollection
String
Dictionary
Dictionary
Smalltalk object that can be mapped into an IDL type
Smalltalk CORBAConstants dictionary
Smalltalk objects that implement the CORBAEnum protocol
Smalltalk object that implement the CORBAUnion protocol
Smalltalk object that responds to the lOR's interface
Smalltalk message
Smalltalk getter- and setter methods

See for a detailed description of the Smalltalk IDL type mapping [OMO 1995a, chapter 20].

4.3. IDL to Java language mapping

The OMO IDL specification is modelled after C++. It includes such constructs as typedef, enum, const, attribute,
struct, module, and interface. Additionally, it contains several data types, such as byte, long, string, and float. Because
the Java language is also modelled after C++, the IDL to Java mapping is quite straightforward.

The mapping of OMO IDL to Java (1.0.2), see [OMO 1997b], was designed with the following goals:
• Client-side and server-side source code portability (transparency)
• ORB replaceability
• Binary compatibility between client stubs (and server skeletons) and ORBs.

4.3. 1. Java object mappings

An IDL interface is mapped to a public Java interface with the same name, and an additional "helper" Java class with
the suffix Helper appended to the interface name which takes care of the 'narrowing' of a CORBA object to the
specific class.

22

Building distributed Smalltalk/Java applications using CORBA

Because IDL supports multiple inheritance, the IDL interfaces are mapped to the Java interface which also support
multiple inheritance. Java classes do not support multiple inheritance.

The design goals permits the mapping to ignore memory management, since Java handles this itself (through garbage
collection).

A CORBA object is represented in Java as an Interoperable Object Reference (lOR) which uniquely describes an
object in an ORB. The object must respond to all messages defined by that CORBA object's interface. An lOR can
have a value, which indicates that it represents no CORBA object. This value is the standard Java value null.

4.3.2. Java type mappings

The Object Management Group has established standards for mapping IDL into the Java language. The full
specification maps the entire IDL set into associated Java keywords.

array
boolean
char
float
double
long
octet
sequence
short
string
exception
struct
any
constant
enum
union
Object Reference (lOR)
IDL operation
IDL attribute

fixed array of the type
boolean
char
float
double
int
byte
array of the type
short
java.lang.String
CORBA.Exception
A class representing the struct
CORBA.Any
public static final
A class representing the enum containing ints
A class representing the union
Java object that responds to the lOR's interface
Java operations
Ja,:,a ~etter- and setter operation

IDL numeric data types can be signed or unsigned. Since Java only supports signed numbers, all unsigned IDL
numeric identifiers will convert to the Java data type that is one size larger than it's signed counterpart. For example,
unsigned char values in IDL convert to signed int variables in Java.

For more information about the IDL to Java mapping see [OMG 1997b].

4.4. The Smalltalk typing problem

When you want to distribute Smalltalk Objects with CORBA one important problem arises. CORBA describes the
interfaces of objects using IDL. This is a strongly typed language, which specifies the input- and output types of
methods and attributes of objects. Smalltalk, in contrast, is totally untyped. The input parameters and the result type
of a method performed on an object are only known during runtime. When you want to create IDL from your
Smalltalk objects during edit time, typed IDL can not be generated from your Smalltalk classes.

4.4.1. Solution using the Any-type

23

Building distributed SmalltalklJava applications using CORBA

Taking a first look at this problem the solution seems to be easy. The CORBA IDL supports the Any-type, which can
contain any type you want. In the Any-type, a TypeCode is included which describes one of the 22 possible primitive
CORBA-types (including IORs, see Appendix C). Because of this feature, the Any-type should be perfect to use for
every Smalltalk method's in- and output parameter. During runtime, the ORB can determine the in- and output
parameter types of methods and convert them to an Any-type corresponding to the Smalltalk-CORBA type mapping
(see [OMG 1995a]). Also the ORB should only receive Any-types and convert them into the appropriate Smalltalk
type objects.

But, when you are using a typed programming language - such as Java - at the other side of your distributed
environment, using the Any-type is not a good solution. Every time you provide a method with a parameter, you have
to typecast the parameter-types to the Any-type. Consequently your Java code will look like this:

II IDL for Calculator which is implemented in Smalltalk
II module Smalltalk{
II interface Calculator{
II any sum(any,any); IIAccording to Smalltalk's nature,

use the Any-type
II
II
II } ;

} ;

public void anOperation{
Calculator aCalculator=new Calculator();
int a=3;
int b=5;
int c=aCalculator.sum(

new CORBA.Any() . from_long (a) ,
new CORBA.Any() . from_long (b)
) . to_long;

When building your application according to Java's language nature, you wish the source code would look like this:

24

Building distributed Smal/talklJava applications using CORBA

II IDL for Calculator which is implemented in Smalltalk
II module Smalltalk{
II interface Calculator{
II long sum(long,long);
II
I I } ;
II } ;

public void anOperation{
Calculator aCalculator=new Calculator();
int a=3;
int b=5;
int c=aCalculator.sum(a,b);

In this last case the Smalltalk methods should be typed because the interface is described in this way. In other words:
The type of the input- and output parameters of Smalltalk methods must be known before runtime.

4.4.2. Solution using VisualAge's Public Interface Editor

In VisualAge, the Public Interface Editor can be used to specify the interface for every object. Using this feature, IDL
can be generate from this Public Interface Editor. The implementation of this VisualAge interface to CORBA IDL
converter is described in paragraph 6.3.

4.5. Smalltalk class methods

An important disadvantage of OMG IDL (and also the VisualAge Public Interface Editor) is that it cannot specify the
class methods of a class (in Java, static methods). This is due to the fact that IDL considers a class not as an object
but as a distinct phenomena which is only used to describe the behaviour of an object implementation which is always
an instance of a class. This description of behaviour, or protocol description, is an interface in IDL.

In Smalltalk, everything is an object. Classes are also objects, which are instances of an abstract class called
Metaclass. So class methods in Smalltalk are actually instance methods of an instance of Metaclass.

When you want to distribute the Smalltalk class methods (or Java static methods) of an object there are two
possibilities:

• Delegation. A method should be implemented as an instance method of the object, which delegates a message to
the object's class (Aself class theMethod).

• An separate IDL interface for the class protocol. The class protocol of the object can be described using a
separate IDL interface, see Example 4-1.

25

Building distributed Smafltalk/Java applications using CORBA

module ClassProtocols{
interface CalculatorClass{
IIProtocol description for the Calculator class methods

Calculator newO; IIConstructor method
};

} ;

Example 4-1 Class protocol description

26

Building distributed Smalltalk/Java applications using CORBA

5. Commercial implementations of CORBA ORBs for Smalltalk and
Java

5.1. Smalltalk

Monday, the 8th of September I went to the IBM international training centre, la Hulpe, Belgium, for a training in the
IBM Component Broker. The IBM Component Broker is the solution of IBM for distributed application
environments. It is the succeeding generation of IBM's DSOM (Distributed Systems Operations & Management)
product, which was suspended when the Component Broker was accounced. The IBM Component Broker is more
than just a CORBA compliant ORB. It provides extensive features to access databases and supports many CORBA
services. The product is very attractive for ELC Object Technology because of its ful1 integration into the VisualAge
development environment.

But, The IBM Component Broker for Smal1talk will only be completely available the second half of 1998 so I had to
concentrate on other Smal1talk CORBA implementations for the moment.

Two other options for a VisualAge for Smal1talk CORBA implementation were still open. The GEMStone ORB that
demands a total GEMStone development platform (very expensive), and IONA's Orbix.

I decided to research IONA's Orbix because:

• It is a proven implementation ofCORBA (also for many other languages and platforms)
• It is completely programmed in VisualAge for Smal1talk
• It is not so expensive

5.2. Java

To test a Java implementation of a CORBA compliant ORB I chose Visigenic's VisiBroker. There are several other
Java implementations of CORBA available but VisiBroker turned out to be a very consequent CORBA 2.0 compliant
implementation which uses the nop protocol not only for Inter ORB communication but also inside its ORB to
communicate between client- and a server implementations both subscribed to VisiBroker. Netscape 4.0 now has
integrated Visigenic's VisiBroker into the browser to provide applet's CORBA support.

I decided to research Visigenic's VisiBroker because:

• It is a proven implementation (Netscape 4.0 has integrated it into their browser)
• It is completely programmed in Java (1.1)
• It is freely available for evaluation purposes

27

Building distributed Smal/talklJava applications using CORBA

5.3. IDNA's DRBIX for VisualAge for Smalltalk

5.3. 1. Orbix components

IDL compiler

Client Server

Figure 5-1 Orbix components

Figure 5-1 shows the different components of the Orbix CORBA implementation:

• nop marshalling and unmarshalling. This component marshals the different Smalltalk types into an nop byte
stream conform the presentation layer of the OSI model, see paragraph 3.3.2.

• Interface repository and binding manager. The interface repository contains all the information about the
object's interfaces. The binding manager, which is not a standard CORBA component specified by OMG, maps
IDL types to Smalltalk types (interfaces to classes, operations to methods etc.).

• The IDL compiler compiles IDL, which can be generated from a Smalltalk object implementation (only any
types), into the interface repository.

5.3.2. ORB connection manager

The ORB connection manager takes care of the TCP/IP communication. It awaits network events of incoming
messages and then sets up a TCP/IP socket connection with the requesting party. This way a separate communication
process for every client can be achieved. To limit the amount of opened connections, the connection manager ages the
physical connections every time a certain heartbeat interval expires. The connection's status degrades from
#connected, #unknown, #inDoubt to #unresponsive. Thus, logical connections always remain but physical
connections are discarded when they have not been used for a certain time.

5.3.3. Orbix's CORBA services

Orbix for VisualAge for Smalltalk supports three standard CORBA services:

• Naming service for binding object implementations to a static name.
• Life cycle service for creating, moving, deleting and destroying object implementations.
• Event service for sending asynchronous events to other object implementations (push- and pull model).

28

Building distributed Smalltalk/Java applications using CORBA

For more information about Orbix for Smalltalk and it's services see: [ION 1997].

5.4. Visigenic's VisiBroker for Java

The first step in creating an application with VisiBroker is to specify all of the objects' interfaces using the OMG's
Interface Defmition language (IDL). The IDL mappings for the Java language, as implemented by the VisiBroker, are
summarised in the VisiBroker for Java Reference Manual (see [VIS 1997a]). The interface specification is used by
the VisiBroker idl2java compiler to generate stub source code for the client application and skeleton source code for
the object implementation. The stub source code is used by the client application for all method invocations. The
skeleton source code, along with regular source code, is used to create the server that implements the object. The
source code for the client and object, once completed, is used as input to the Java compiler to produce a Java
application and an object server. The things described above are shown in Figure 5-2.

Figure 5-2 Creating a distributed application using VisiBroker for Java.

5.4.1. VisiBroker's features

In addition to providing the features defined in the CORBA specification, VisiBroker offers enhancements that
increase application performance and reliability.

Fault Tolerance
VisiBroker can determine if the connection between your client application and an object server has been lost, due to
a server crash or network failure. When a failure is detected, an attempt is made to restart the server or to connect
your client to a suitable server on a different host. The connections are managed by the OSAgent.

HOP GateKeeper
The nop GateKeeper allows Java clients and servers running within any Java 1.0+ compatible browser to be
transparently available to other COREA objects, even when an applet firewall is in place. The GateKeeper can be
used simultaneously as an HTTP daemon. This eliminates the requirement for a separate HTTP server during the

29

Building distributed Smalltalk/Java applications using CORBA

application development phase. The GateKeeper, which 'tunnels' the nap protocol needed by applets is shown in
Figure 5-3.

Figure 5-3 The nop Gatekeeper

Optimised Binding
When your application binds to an object, VisiBroker can select and establish the most efficient communication
mechanism. Depending on the platform and the location of the requested object, the bind may be established through
a local pointer reference or a remote TCPIIP connection.

Web Naming
Web Naming allows you to associate Uniform Resource Locators (URLs) with objects, allowing an
object reference to be obtained by specifying an URL.

Defining interfaces without IDL
VisiBroker's java2iiop utility allows you to use the Java language to define interfaces, instead of using IDL. You can
use the java2iiop utility if you have existing Java code that you wish to adapt to use distributed objects or if you do
not have the time to learn IDL. The java2iiop utility generates the necessary container classes, client stubs, and server
skeletons from Java code.

Enhanced thread and connection management
Connection management is dependent on what thread policy the user selects. VisiBroker provides two thread policies
to choose from: thread-per-session or thread pooling (limited number of threads). The user selects the thread policy
and then VisiBroker automatically selects the most efficient way to manage connections between client applications
and servers, see [VIS 1997b].

IDL to Java mapping
CORBA-based products are used in a mUlti-platform world. Distributed objects are developed using a variety of
platforms and programming languages. Programming languages define one-to-one relationships from IDL constructs
to programming constructs. VisiBroker for Java conforms to the OMG IDLiJava Language Mapping Specification
rOMG 1997b] In this mapping, for each IDL construct the corresponding Java construct is described.

For more information about the mapping specification, refer to The OMG IDLiJava Language Mapping
Specification, available from Visigenic's web site at <http://www.visigenic.com> or [OMG 1997b].

5.4.2. Using VisiBroker to contact objects outside the ORB.

To contact objects outside the VisiBroker's ORB you have to work with lOR's that are configured with the
appropriate host and port number. As can be seen in Figure 3-2, the lOR is build out of multiple profiles, which

30

Building distributed SmalltalklJava applications using CORBA

contain an ObjectLocator (or ProfileBody). The ObjectLocator is the key-part of the lOR because it contains the
following important information:

• The host where the object is located (coded as a dotted decimal address like '194.165.88.49').
• The port the object can be accessed on (a TPC/IP port number).
• The ObjectKey which denotes (in an opaque way) the desired object.

To assemble an lOR you could build an lOR builder, which constructs an lOR out of its sub-components
(TaggedProfiles, ObjectLocators and ObjectKeys). But, in VisiBroker these components already exist in private
object space in the form of separate classes. To build my lOR I decided to decompile the VisiBroker's lOR class
together with its sub-components to use it for building my own IORs. Doing this resulted in the following code to
build an lOR in the VisiBroker:

II Example Java source code to build an lOR

import pomoco.GlOP; liThe VisiBroker GlOP package

public lOR buildlOR(String repositoryld,String interfaceName,
String obj ectName , String host,int port) {

ObjectKey anObjectKey=new ObjectKey(interfaceName,objectName);
ObjectLocator anObjectLocator=new

ObjectLocator(host,port,anObjectKey.asOctetSequence()) ;
lOR anlOR=new lOR(repositoryld,anObjectLocator);
return (anIOR) ;

Example 5-1 Java source to build an lOR

The ObjectKey class I implemented myself because of the fact that this ObjectKey should be an ObjectKey conform
the non-VisiBroker ORB (Smalltalk). You are completely free how to implement the ObjectKey as long as it is
encapsulated as a CDR-OctetSequence [OMO 1995a, chapter 12]. The 'asOctetSequence' operation returns a
VisiBroker OctetSequence class, which can be used to build the ObjectLocator. For example the ObjectKey for
objects subscribed to the Orbix Smalltalk ORB have an ObjectKey which is a 'long' representing the OlD (Object
ID), a unique number for every object subscribed to the Orbix ORB.

The lOR that is returned from the example above, can be converted to a CORBA.Object by sending the message
to_Object() to the lOR. This CORBA.Object can be used transparently as an object that has the interface described
by the CORBA IDL.

5.5. The Performance of a Smalltalk server and Java client

For testing the performance of distributed applications using CORBA I tested a Smalltalk server (lONA's Orbix) with
a Java client (Visigenic's VisiBroker). Doing this I used an object with the following interface description:

31

Building distributed Smalltalk/Java applications using CORBA

module Performance {
typedef sequence <octet> sequenceOctet;
interface ByteAcceptor{

boolean acceptByte(in octet anOctet};
boolean acceptBytes(in sequenceOctet aSequence};

} ;
} ;

Two tests were performed:

• Measuring the time of a variable number of method invocations (using the 'acceptByte' operation).
• Measuring the time for one method invocation with variable input data (using the 'acceptBytes' operation).

5.5. 1. Measuring variable method invocations

For measuring the time of a variable number of method invocations, I wrote a Java client program that invokes the
method and calculates the delta time at the moment this method returns true. To measure only the invocation time I
implemented the 'acceptByte' routine in Smal1talk as simple as possible:

acceptByte: anOctet
"true

Some problems I had to expect measuring this performance were:

• The operating system, Windows 95, can interrupt the method invocations which makes the result not exactly
linear.

• The testing will be done 10cal1y. When doing this test at two separate physical locations, network overhead will
also introduce unexpected results.

• However the source code to achieve the measurement is kept as simple as possible, it wil1 add its unavoidable
time consuming part to the result.

32

Building distributed Smalltalk/Java applications using CORBA

Reply in ms

3072

2048

1024

: Server access time
I
I
I
I

0..L.Tn1
TTTTTmmTTTTTmmTTTTTmm"TTTTTmm"TTTTTmm"TTTTTmm"TTTTTmmmmTTTTT~,,!!,:

Number ofmethod invocations (seMmg one octet) 100.0

Figure 5-4 Method invocations against time

The initial offset of the linear line can be explained because Orbix sets up its connection the moment it receives an
invocation. The measurement's points have been measured separately from each other, this means, the Orbix server
shuts down for every measurement point and has to be restarted for a new series of method invocations.

Four measurements where done for one number of method invocations. This way, the average of those four
measurements cancels the operating system interventions (like random swapping of system resources). The graph of
Figure 5-4 shows the measured values of Table 5-1 and interpolates (linear) the intermediate values. The complete
measurements are shown in Appendix J.

Number of method invocations
I
2
5
10
20
50
100

Average ti~~in ms (!!.~'!I}9~~ measures) ..
660
715
770
908
1113
1828
3038

Table 5-1 Measured values for variable method invocations

33

Building distributed Smalltalk/Java applications using CORBA

5.5.2. Measuring variable parameters in one invocation

For measuring the time of a variable number of input octets in one method invocation, I wrote a Java client program
that invokes the method with a certain number of input octets, and calculates the delta time at the moment this method
returns true. To measure only the invocation time I implemented the 'acceptBytes' routine in SmaIltalk as simple as
possible:

acceptBytes: anOctetSequence
Atrue

The problems I had to expect measuring this performance are the same as in the previous experiment.

Reply in ms

2048

1536

1024

Server access time
512

O~TTTTTTI~TTTTTTlm'TTT!'~~TTTTTTlTTTTTTlmTTm=,TTTTTTlrTTTTTT1~~
Number of octets (xl000) in one method invocation 100.0

Figure 5-5 Number of input octets for one method invocation against time

The initial offset of the linear line can be explained because Orbix sets up its connection the moment it receives an
invocation. The measurement's points have been measured separately from each other, this means, the Orbix server
shuts down for every measurement point and has to be restarted for a new method invocation.

Four measurements where done for one method invocation. This way, the average of those four measurements cancels
the operating system interventions (like random swapping of system resources). The graph of Figure 5-5 shows the
measured values of Table 5-2 and interpolates (linear) the intermediate values. See also Appendix 1.

34

Building distributed Sma/ltalklJava applications using CORBA

Number of input octets
1000
2000
5000

10.000
20.000
50.000
100.000

Av_~~~ tiJ!le in ms (from four measures)
742
770
810
908
1085
1610
2403

Table 5-2 Measured values for variable input octets in one method invocation

35

Building distributed Smalltalk/Java applications using CORBA

6. Implementation of a CORBA framework

Before I started research on Orbix I implemented the nop protocol in Smalltalk to communicate with Visigenic's
VisiBroker. Doing this gave me a better look upon the internal funcionallity of a CORBA ORB. By extending this
HOP protocol implementation with an interface repository and an object server I implemented a Smalltalk server
ORB. Features ofthis server ORB, like generating IDL from Smalltalk code, were later added to the Orbix CORBA
implementation to improve the integration with the VisualAge environment.

6.1. Implementation of the /lOP Protocol in Smalltalk.

To test the nop protocol I implemented this protocol in Smalltalk for sending Smalltalk CORBAType instances
(which are build out of Smalltalk objects). First, these CORBATypes are described after which the implementation of
the nop protocol using these CORBATypes is described.

6. 1. 1. CORBA Type classes

To type Smalltalk I decided to develop classes that bridge the type conversion between Smalltalk and IDLIJava.
These classes are called the CORBAType classes. Every Smalltalk class can be converted into a CORBAType class,
which has the following properties:

• It can be marshalled into an nop byte stream (conform the type's alignment, see Appendix B).
• It can be converted into an IDL string for generating IDL source code.
• It can be converted into a Java string for generating Java 'helper' classes.

CORBAType is an abstract class, which describes the behaviour of its subclasses. This behaviour consists of several
methods to convert the CORBAType into an IDLString (for generating IDL), a JavaString (for generating Java
Helper classes) and an nop ByteArray for sending the object across the wire. The design of the CORBAType class
with its subclasses is shown in Figure 6-1.

36

Building distributed Smal/talk/Java applications using CORBA

CORBAType (abstract)

value: anObject

aslDLString: String
asJavaString: String
alignment: Integer
asCORBAType: CORBAType
isCORBAType: Boolean
size: Integer
asIIOPByteArray(aByteOrder: Boolean): ByteArray
new(aByteArray: ByteArray, byteOrder: Boolean): CORBAType

""'-
I I I I

ICORBABoolean I \CORBAFloat! ICORBALongl CORBANull !CORBAObjref I
IvalueICORBAChar I !CORBADouble I ICORBAString I

ObjectKey lOR

interfaceName: String profiles: OrderedCollection
objectName: String typeld: String

'I

addProfile: TaggedProflle

I
Version I---- ObjectLocator

major: Integer iIOPVersion: Version
~. profiles

minor: Integer host: String
I---- TaggedProfile -

port: Integer objectLocator: ObjectLocator

objectKey: ObjectKey tag: Integer

Figure 6-1 Smalltalk CORBAType classes

All the Smalltalk class objects can be converted to a CORBAType class using the method asCORBAType. For
example, sending this message to a Smalltalk Integer class returns a CORBALong class. Every Smalltalk primitive
type class was extended with such an 'asCORBAType' method. Also the Smalltalk Object class was extended. The
last returns not a CORBAType class but a CORBAType instance of CORBAObjref which value holds an lOR with
information about the Smalltalk object. The correspondence between the Smalltalk classes, CORBATypes and
IDLlJava types are shown in Table 6-1

Smalltalk Type
Boolean
Character
Float
Integer
String
UndefinedObject
Object (none of the above)

Smalltalk CORBAType
CORBABoolean
CORBAChar
CORBAFloat or CORBADouble
CORBALong
CORBAString
CORBANull
instance of CORBAObjref

IDL Type
boolean
char
float or double
long
string
Object (undefined lOR)
Object

Java Type
boolean
char
float or double
int
java.lang.String
null
CORBA.Object

Table 6-1 Smalltalk type conversions to CORBA and Java

37

Building distributed Smalltalk/Java applications using CORBA

When the asCORBAType method is send to a Smalltalk instance, an instance of CORBAType is returned. For
example, the result '1.23 asCORBAType' returns an instance CORBAFloat, which value is a Float containing 1.23.
When you send the asl/OPByteArray method to this CORBAFIoat a ByteArray is returned which can directly be send
to a CORBA compliant ORB.

Resuming, the asCORBAType method is implemented in every Smalltalk primitive class as class- and instance
method. The method is also implemented as class- and instance method in Object.

Beside this, the aslIOPByteArray method is also implemented as class- and instance method in Object. This method
first converts the objects into a CORBAType (using the asCORBAType method) after which the aslIOPByteArray
method is performed. This way you can send 'aslIOPByteArray' to every Smalltalk object, which makes it possible to
send every Smalltalk object across the wire using lIOP.

6. 1.2. /lOP protocol classes

Due to the Object Oriented structure of the lIOP/GIOP specification it was quite easy to implement this protocol in
Smalltalk. The protocol can be implemented using the following object model:

Version MessageHeader GlOPMessage
messageTypeBody

major: Integer magic: char[4]='GlOP'
messageHeader

aslIOPByteArrayminor: Integer byteOrder: Boolean
~nessageTypeHeadermessageType: Integer

()
I messageSize: Integer

MessageTypeHeader CORBAType
glOPVersion aslIOPByteArray

requestld: Integer
aslIOPByteArray

aslIOPByteArray

A
I I I I

RequestHeader ReplyHeader CancelRequestHeader LocateRequest LocateReplyHeader

responseExpected: Boolean replyStatus: Integer Header locateStatus: Integer
operation: String

serviceContext
objectKey

requestingPrincipal

serviceContext objectKey

CORBASequence
ObjectKey

asIIOPByteArray
aslIOPByteArray

Figure 6-2 Object Model of the HOP implementation

When taking a close look at Figure 6-2 and comparing it with the GlOP specifications in Appendix D (and [OMG
1995a, chapter 12]), it becomes clear that every Pseudo-IDL specification of the GlOP message components
(MessageHeader, RequestHeader etc.) can be assigned to a class. Following closely the OMG specification I
implemented the IIOP protocol in this way. I used Smalltalk upper/lower case conventions by writing OMG defined
variables like 'requesCid' as 'requestld' to achieve a consequent implementation.

38

Building distributed Smalltalk/Java applications using CORBA

GIOPMessage class

The complete GIOPMessage is contained in the GIOPMessage class (Figure 6-2) which has three instances:

• messageHeader. This instance contains an instance of the MessageHeader class in which the message header data
for the GlOP message is assembled.

• messageTypeHeader. This instance can contain an instance of the classes: RequestHeader, ReplyHeader,
CancelRequestHeader, LocateRequestHeader or LocateReplyHeader. Although the GlOP message type can also
be a CloseConnection message or a MessageError message these message are encoded as an empty
messageTypeHeader instance (nil). In this case, the message type follows from the messageType instance in the
MessageHeader.

• messageTypeBody. This instance can contain an instance of the subclasses of CORBAType. The class
CORBAType functions as an abstract class that provides the common behaviour of the classes that can form the
GlOP message body. The message body can also contain a ByteArray of 'raw' data. Because ByteArray is a class
already implemented in Smalltalk this class cannot be inherited from the MessageTypeBody class. In this case the
common behaviour is implemented as an extension to the ByteArray class). When the messageTypeBody contains
a 'nil' this denotes that no message body is present in the GlOP message.

The methods of the GIOPMessage class contain methods to port a GIOPMessage from and to a Smalltalk ByteArray,
which can be sent or received directly using a TCP/IP connection. The method 'asIIOPByteArray' converts a
GIOPMessage into a ByteArray. The 'new: aByteArray' method, which is the overruled Smalltalk construction
method, converts a ByteArray into a GIOPMessage.

Converting a GIOPMessage into a ByteArray seems a quite difficult task. The different message types have to be
dealt with separately, the byte order has to be correct (big-endian or little-endian) and the byte alignment, described
in Appendix B, has to be taken into account.

By implementing an 'asIIOPByteArray' method in every message object, this problem can be solved. However, every
'asIIOPByteArray' method other than the 'asIIOPByteArray' method in the GIOPMessage class and the
MessageHeader class has to have an input parameter 'byteOrder' because of the fact that the byte order for the entire
GlOP message is determined in the MessageHeader class. Because in every GIOPMessage class there exists a
messageHeader instance containing a MessageHeader the byte order is also known in the GIOPMessage class.

When implementing the 'asIIOPByteOrder' method described above in every message object, the GIOPMessage class
can send this message to its messageTypeHeader and messageTypeBody instance. Doing this, the GIOPMessage gets
transparently the ByteArrays it needs to convert itself into an IIOP ByteArray.

It is also possible to work the other way around. When ByteArray is present (received from a TCP/IP stream), the
GIOPMessage can be instantiated using this ByteArray. Again this seems to be a quite difficult task but by
implementing this class constructor method in every message object and sending it the convenient ByteArray, the
problem can be solved quite easy.

MessageTypeHeader class

The MessageTypeHeader is an abstract class of which its methods are defined to be the subclasses' responsibility. It
contains one instance: requestId. This instance is a common instance that is defined in every message type header. It
represents a unique number for every outstanding request (which has not yet been replied). The subclasses of the
MessageTypeHeader are:

• RequestHeader
• ReplyHeader
• CancelRequestHeader
• LocateRequestHeader

39

Building distributed Smalltalk/Java applications using CORBA

• LocateReplyHeader

According to the GlOP message type header specifications (see Appendix D and [OMG 1995a, chapter 12]) the
CloseConnection message header and MessageError message header are missing. This is due to the fact that these
two messages do not require a message header. Both message are represented by the Smalltalk UndefinedObject (nil)
and are coded in the MessageHeader messageType instance.

MessageTypeHeader subclasses

The RequestHeader class is used to represent a GlOP message's request message. It contains instances according to
the defined properties of the request message (see Appendix D). The serviceContext and the requestingPrincipal
instances are encoded using the CORBASequence class. This CORBASequence class contains an OrderedCoIlection
of CORBAOctet classes which composes the contents of the RequestHeader class. Doing this is called (CDR­
)encapsulation [OMG 1995a].

The ReplyHeader class is used to represent a GlOP message's reply message. It contains instances according to the
defined properties of the reply message (see Appendix D). Like the RequestHeader class there are instances which are
(CDR-)encapsulated using the CORBASequence class.

The CancelRequestHeader class is used to represent a GlOP message's cancelrequest message. It is a class without
instances. The inheritance relation to the abstract MessageTypeHeader class defines the only instance (requestld).
The reason this class is implemented is because of the subclass responsibility of the 'asIIOPByteArray' method that is
therefore implemented in the CancelRequestHeader class.

The LocateRequestHeader class is used to represent a GlOP message's LocateRequest message. It contains one own
instance, objectKey, which is encapsulated when sending the 'asIIOPByteArray' method.

The LocateReplyHeader class is used to represent a GlOP message's LocateReply message. It contains the instance
locateStatus, which determines the contents of the messageTypeBody instance of the GIOPMessage class.

6.2. Implementation of a server ORB in Smalltalk

The basics of the server ORB implementation in Smalltalk lays in three components:

• The Smalltalk typing using the CORBAType (sub)c1asses.
• The implementation of the nop protocol using the GlOPMessage class.
• The implementation of an interface repository.

The CORBAType classes and the implementation of the IIOP protocol are described in paragraph 6.1.1 and 6.1.2. In
this paragraph the implementation of the interface repository is described. Together with the CORBAType- and
GIOPMessage classes this forms the basics of a complete CORBA server ORB (of coarse without the standard OMG
defined CORBA services).

40

Building distributed Smalltalk/Java applications using CORBA

6.2. 1. Interface repository

Repository

moduleDefs: OrderedCollection

addModuleDef(aModuleDef: ModuleDef)
resolveInterface(aRepositoryID: String): InterfaceDef

~moduleDefs
ModuleDef

name: String
interfaceDefs: OrderedCollection

asIDLSourceCodeForJava: IDLSourceCode
asJavaSourceCodes: OrderedCollection
findInterfaceDef(anInterfaceDef: InterfaceDef): InterfaceDef
allInterfaceDefs: OrderedCollection
addInterfaceDef(anInterfaceDef: InterfaceDef)

jlinterfaceDefs
~ interfaceDefs

InterfaceDef SourceCode (abstract)

name: String sourceCode: String
interfaceDefs: OrderedCollection Save(fiIeName: String)
operationDefs: OrderedCollection A
asIDLSourceCodeForJava(aModuleName: String): IDLSourceCode
asJavaSourceCodes(aModuleName: String): OrderedCollection

I IDLSourceCode I JavaSourceCode
findInterfaceDef(anInterfaceDef: InterfaceDef): InterfaceDef !moduleName: String \c1assName: String
findParentInterfaceDef(anInterfaceDef: InterfaceDef): InterfaceDef
allInterfaceDefs: OrderedCollection
addInterfaceDef(anInterfaceDef: InterfaceDef)
addOperationDef(anOperationDef: OperationDef)

loperationDefs
type J

OperationDef parameterDefs _ ParameterDef ICORBAType

name: String name: String
smalltalkName: Symbol type: CORBAType
retumParameter: ParameterDef asIDLString: String
parameterDefs: OrderedCollection returnParameter asIDLStringForJava: String
asIDLString: String
asIDLStringForJava: String
asJavaOperationString: String
addPararneterDef: ParameterDef

Figure 6-3 Object model of the interface repository

41

Building distributed Smalltalk/Java applications using CORBA

The interface repository contains all the interface information about the objects that can be accessed through the
ORB.

The Repository object contains the complete interface repository. It consists of modules, which act like a set of
interface descriptions. Using the 'resolvelnterface' method returns an interface definition that corresponds to a
RepositorylD. A RepositorylD is defined by OMG and looks like, for example:
'IDL:ModuleNamelInterfaceName: 1.0'. When you specify such a RepositoryID, the Repository returns an interface
definition 'InterfaceName' in the module 'ModuleName'.

The ModuleDef object can contain several interface definitions. You can lookup an interface using the
findlnterfaceDefmethod on the ModuleDef. alllnterfaceDefs returns an OrderedCollection containing all interface
definitions defined in the current module.

The InterfaceDef object contains the actual interface definition. It defines the operations that can be performed using
this interface. Also, an InterfaceDef can contain other interface definitions. This means the current interface definition
is a super interface for the in itself specified interface definitions. Like the ModuleDef object it is possible to find
interfaces contained in the current InterfaceDef and to get an OrderedCollection with all the specified interface
definitions in the current InterfaceDef.

The OperationDef object describes an operation definition by specifying its input- and output parameters. An
OperationDef has, beside its name, also a smalltalkName. This name corresponds to the actual Smalltalk selector for
the method, which is described by the operation definition. The reason for this is that the operationName cannot
contain colons and should therefore be expressed in another way. Because IDL does not support operations with the
same name (even if the parameters are different!) I chose the solution for conversion presented in paragraph 4.2.1.
The Smalltalk Naming applied here is similar to the binding manager of the Orbix CORBA implementation.

The ParameterDef object describes the in- and output parameters of an operation definition. The type is described
using a CORBAType class (or CORBAObj ref instance, see Table 6-1). The name of the parameter is assigned using
the Smalltalk operation definition (see the OMG IDL <-> Smalltalk mapping, [OMG 1995a, chapter 19]).

The ModuleDef and InterfaceDef have methods called: asIDLSourceCodeForlava and aslavaSourceCodes. These
methods return an instance of a subclass of SourceCode which contains respectively an IDLSourcesCode or a
collection of JavaSourceCode. This SourceCode object can directly be saved to disk (using the save method in
SourceCode) and compiled with an IDL compiler or Java compiler.

The method asIDLSourceCodeForlava has the postfix 'ForJava' because it takes care of interface/operation names
when they look like Java reserved words (such as 'new' and 'do'). In this case these names are converted to
RESERVEDWORD<name> ('new' becomes 'RESERVEDWORDnew' and 'do' becomes 'RESERVEDWORDdo').

42

Building distributed SmaJJtalklJava applications using CORBA

The 'asJavaSourceCodes' method returns a collection of JavaSourceCode (one for every interface). These Java
sources are a subclass of the stub generated by the VisiBroker's 'idl2java' compiler. They are not necessary for
contacting the Smalltalk ORB but make life more easy because they support:

• Transparent constructors. When you instanciate a CORBA object you have to use the '-Helper' class which
enables you to 'narrow' a CORBA object obtained from an lOR to the actual object type. In the extra Java subclass
you can use a transparent constructor which takes care of this problem using the lOR builder described in
paragraph 5.4.2.

• Garbage collection facility. When Java garbage collects, it sends the message 'finalizeO' to the object before it is
killed. In the extra Java subclass the finalize method is overruled to send a message to the Smalltalk ORB that the
object is garbage collected after which the ORB can remove it.

The asJavaSourceCodes method uses a class called JavaDefaults. This class contains several constants needed for
compiling Java code.

JavaDefaults

ClassMethods:

Names
companyName: String
defaultObjectName(interfaceName): String
garbageCollectMethodName: String
newMethodName: String
productName: String ('sORBet')
remoteInstanceName: String
Package
corbaPackage: String
iorPackage: String
objectLocatorPackage: String
Post/Prefix
skeletonPostfix: String
skeletonPrefix: String
varPostfix: String
varPrefix: String
SpecialMethods
finalizeMethod: String

Figure 6-4 JavaDefaults class

43

Building distributed Smalltalk/Java applications using CORBA

6.2.2. The ORB

ORB tCPSettings TCPSettings

interfaceRepository: Repository host: AbtTCPInetHost
members: Dictionary port: AbtTCPPort
tCPSettings: TCPSettings update

current: ORB
Repository I,start

stop interfaceRepository

subscribe(anObject: Object, name: String)

Figure 6-5 The ORB class

In Figure 6-5 the ORB class is shown. It contains the following instances:

• interfaceRepository. This instance contains the interface repository in which the interface description of all the
possible distributed objects are described.

• members. This instance contains a Dictionary in which all the to the ORB subscribed object instances are stored.
The ORB can only send messages to these instances. When an instance is created out of a subscribed object (using
the transparent constructors in Java), the ORB assigns this instance with a transient name obtained from the ORB
to the members dictionary. This transient name is a unique number because it is auto-incremented when it is
requested from the ORB.

• tCPSettings. This instance contains a TCPSettings object in which all the TCPSettings (host and port) of the
ORB are stored. You can update the TCPSettings. This will assign the TCP settings with the local host.

The object server can be started and stopped and objects can be subscribed to the ORB. Being subscribed makes the
objects visible to the ORB and accessible for remote users.

6.3. Using VisualAge to specify the interface

VisualAge for Smalltalk can support an interface definition for every class using the Public Interface Editor. This
Public Interface Editor can specify the public attributes (getter- and setter methods), actions (methods) and events for
a class. When specifying an interface, every class is supported with a class-method called: IS_instanceInterfaceSpec.

When this method is performed on the class it returns an instance of AbtInterfaceSpec (see Figure 6-6) which contains
all the action-, attribute- and event descriptions specified in the Public Interface Editor. This way it is possible to type
every Smalltalk class which makes it possible to convert the interface specification into using other types than only
the Any-type. Also the interface repository described in 6.2.1 can be filled with this information to make the object
accessible by the ORB. The IDL generated from the AbtInterfaceSpec can also be used to generate IDL for Orbix.

44

Building distributed Smalltalk/Java applications using CORBA

AbtlnterfaceSpec I
asIDLString: String I

~eatures

IAbtFeatureSpec (abstract)

A
I I

AbtActionSpec AbtAttributeSpec ItbtEventspec (not needed for

selector: Symbol AttributeClass: Object CORBA interfacing)

parameters: OrderedCollection getSelector: Symbol
resultType: AbtParameterSpec setSelector: Symbol

1parameters IreSUItType

AbtParameterSpec

parameterClass: Object
parameterName: String

Figure 6-6 The VisualAge AbtInterfaceSpec class

A disadvantage of the VisualAge Public Interface Editor is that it cannot specify the result type of an action. In
contrast, the AbtActionSpec class, which is used to describe the interface specification of an action actually contains a
resultType instance (see Figure 6-6). I solved this problem by extending the Public Interface Editor with the
possibility to specify the result type of an action.

45

Building distributed Smalltalk/Java applications using CORBA

7. Conclusions and recommendations

To build distributed Smalltalk/Java applications CORBA turns out to be the solution. A Java ORB, Visigenic's
VisiBroker, now is implemented in the Netscape 4.0 browser and many CORBA implementations are now available
for a large range of different programming languages. Compared with other distributed systems, this moment CORBA
is the absolute winner when object oriented languages are concerned. Microsoft's DCOM has not reached the mature
level of CORBA and is not widely supported at the moment. When the time has come that DCOM will be used,
CORBA already has specified a bridge to DCOM.

There are many commercial implementations of CORBA available today. However, Smalltalk seems to be a problem
in this area. An extensive search for commercial implementations of CORBA for VisualAge for Smalltalk has lead to
three products: The IBM Component Broker, The GEMStone ORB and IONA's Orbix. The Component Broker turns
out to become the VisualAge for Smalltalk CORBA implementation for the future but the product's timeline shows
that it will be only available late 1998. For the moment Orbix is a good alternative. Its integration into the
VisualAge's development system a quite poor. For this reason I extended Orbix with several features, e.g. generating
IDL form the VisualAge's Public Interface Editor.

For Java a larger range of CORBA implementations is available. I chose Visigenic's VisiBroker because it is the most
supported Java CORBA implementation at the moment. It is integrated into the Netscape 4.0 browser and
implemented completely in Java. Also the intra-ORB communication is achieved with the lIOP protocol which makes
the implementation very straightforward.

The performance of the communication between the Smalltalk Orbix ORB and the Java VisiBroker ORB is measured
in this report. Many restrictions on this results can be made because of the operation system overhead, network
bottlenecks and application overhead. Conform [DOD 1997], CORBA does not ensure any kind of quality of service.
It depends on the implementation of the ORB, operating system (which provides the OS systems calls for TCP/IP
communication) and network environment what the result of the measurements will be. The results obtained in
paragraph 5.5 are just an indication of what can be expected from a normal 150 MHz Pentium, windows 95,
environment. When the results from paragraph 5.5 are compared with the results in [DOD 19971 the restrictions of
these arguments on the performance become clear.

When Smalltalk logic is distributed using CORBA one major problem arises. Smalltalk is totally untyped while the
Interface Description Language is completely typed. This means that when a Smalltalk application is distributed, IDL
can not simply be generated from your Smalltalk code. There has to be some way to specify the typing of Smalltalk
methods. In this report it is done using the VisualAge's Public Interface Editor. Another disadvantage is the Smalltalk
to IDL naming conversion. OMG only specifies an IDL to Smalltalk mapping. When the opposite direction
(Smalltalk to IDL) is concerned, many naming collisions appear, see paragraph 4.2.1.

When Java logic is distributed using CORBA the typing problem described above is not the problem. Since IDL and
Java are both designed after C++ , the IDL types clearly match the Java types. One disadvantage for pure object
oriented programmers (like Smalltalk programmers) is that primitive IDL data types (such as 'long' and 'float') map to
non-objects in Java ('int' and 'float'). This makes distribution between Smalltalk and Java not as transparent as it could
have been.

In chapter 6, a Smalltalk implementation of a CORBA server ORB is described. When I implemented the lIOP
protocol in Smalltalk to test if the VisiBroker used lIOP conform the OMG standard, it became clear that the
implementation of the lIOP is the key for a complete server ORB. When primitive data types, and Interoperable
Object References (lORs), can be marshalled into an lIOP byte stream, the only things that lack from a CORBA
server ORB is an interface repository and a connection manager (for client/server communication on TCP/IP). This
can also be seen in Figure 5-1 in which the components of the Orbix CORBA implementation are shown. Of coarse,
the OMG defined standard CORBA services are still to be developed.

46

Building distributed SmalltalklJava applications using CORBA

Appendix A.Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG lDL to a binary, low-level representation for
transfer between agents. CDR has the following features:

• Variable byte ordering. Machines with a common byte order may exchange messages without byte swapping.
When communicating machines have different byte order. the message originator determines the message byte
order, and the receiver is responsible for swapping bytes to match its native ordering. Each GlOP message (and
CDR encapsulation) contains a flag that indicates the appropriate byte order. The supported byte orders are: Big­
Endian (high order byte first) and Little-Endian (low order byte first).

• Aligned primitive types. Primitive OMG IDL data types are aligned on their natural boundaries within GlOP
messages, permitting data to be handled efficiently by architectures that enforce data alignment in memory (see
Appendix B).

• Complete OMG IDL Mapping. CDR describes representations for all OMG IDL data types, including
transferable pseudo-objects such as TypeCodes (see Appendix C). Where necessary. CDR defines representations
for data types whose representations are undefined or implementation-dependent in the CORBA Core
specifications.

47

Building distributed SmalltalklJava applications using CORBA

Appendix B. Alignment of IDL types

Alignment of IDL primitive datatypes

In order to allow primitive data to be moved into and out of octet streams with instructions specifically designed for
those primitive data types, in CDR all primitive data types must be aligned on their natural boundaries. For example
the alignment boundary of a primitive datum is equal to the size of the datum in octets. Any primitive of size n octets
must start at an octet stream index that is a multiple of n. In CDR, n is one of 1, 2, 4, or 8.
Where necessary, an alignment gap precedes the representation of a primitive datum. The value of octets in alignment
gaps is undefined. A gap must be the minimum size necessary to align the following primitive. Table 7-1 gives
alignment boundaries for OMG-IDL primitive types. Alignment is defined above as being relative to the beginning of
an octet stream. The first octet of the stream is octet index zero (0). Any data type may be stored starting at this index.
Such octet streams begin at the start of an GlOP message header and at the beginning of an encapsulation, even if the
encapsulation itself is nested in another encapsulation.

__....l1P~ O_ctet alignment
char 1
octet 1
short 2
unsigned short 2
long 4
unsigned long 4
flo~ 4
double 8
boolean 1
enum 4

Table 7-1 Alignment requirements for OMG IDL primitive data types

How the primitive datatypes show in Table 7-1 are configured into their aligned bytes is specified in [OMG 1995a].

Alignment of IDL constructed datatypes

OMG IDL constructed datatypes are built from OMG IDL primitive data types using facilities defined by the OMG
IDL language. Constructed type have no alignment restrictions beyond those of their primitive components of which
they consist. The constructed datatypes are defined using the IDL primitive datatypes as follows:

• Struct. The components of a structure are encoded in their order of their declaration in the structure. Each
component is encoded as defined for its data type.

• Union. Unions are encoded as the discriminant tag of the type specified in the union declaration, followed by the
representation of any selected member, encoded as its type indicates.

• Array. Arrays are encoded as the array elements in sequence. As the array length is fixed, no length values are
encoded. Each element is encoded as defined for the type of the array. In multidimensional arrays, the elements
are ordered so the index of the first dimension varies most slowly, and the index of the last dimension varies most
quickly.

• Sequence. Sequences are encoded as an unsigned long value, followed by the elements of the sequence. The
initial unsigned long contains the number of elements in the sequence. The elements of the sequence are encoded
as specified for their type.

• String. Strings are encoded as an unsigned long containing the length of the string, followed by the individual
characters in the string, encoded according the ISO Latin-l character set. The length (initial unsigned long) and

48

eel"¥" Building distributed SmalltalklJava applications using CORBA

string representation include a terminating null character, so that conventional C-string handling library routines
(e.g., strcpy) may be used in the encoded message buffer.

• Enum. Enum values are encoded as unsigned longs. The numeric values associated with enum identifiers are
determined by the order in which the identifiers appear in the enum declaration. The first enum identifier has the
numeric value zero (0). Successive enum identifiers are take ascending numeric values, in order of declaration
from left to right.

49

Building distributed Smalltalk/Java applications using CORBA

Appendix C. The CORBA Any-type

Any values are encoded as a TypeCode (encoded as described above) followed by the value type parameters followed
by the encoded value. The TypeCodes are listed in Table C-l.

TCKind Integer
tk_null 0
tk_void I
tk_short 2
tk_Iong 3
tk_ushort 4
tk_ulong 5
tk_float 6
tk_double 7
tk_boolean 8
tk_char 9
tk_octet 10
tk_any 11
tk_TypeCode 12
tk]rincipal 13
tk_objref 14
tk_struct 15

tk_union 16

tk3num 17

tk_string 18
tk_sequence 19
tk_array 20
tk_alias 21
tk3xcept 22

- none- Oxffffffff

Value Type Parameters
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none ­
empty - none -
complex string (repository ID), string(name)
complex string (repository ID), string (name), ulong (count) {string (member
name), TypeCode (member type)}
complex string (repository ID), string(name), TypeCode (discriminant type), long
(default used), ulong (count) discriminant type (label value), string (member name),
TypeCode (member type)}
complex string (repository ID), string (name), ulong (count) {string (member
name)}
simple ulong (max length)
complex TypeCode (element type), ulong (max length)
complex TypeCode (element type), ulong (length)
complex string (repository ID), string (name), TypeCode
complex string (repository ID), string (name), u10ng (count) {string (member
name), TypeCode (member type)}
simple lon¥ (indirection)

Table Col, TypeCode enum values, parameter list types, and parameters

50

Building distributed Smalltalk/Java applications using CORBA

Appendix D.GIOP Message definitions

GlOP Message Header

All GlOP messages begin with the following header, defined in OMG IDL:

module GlOP { II Pseudo-lDL
enum MsgType {

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError

} ;

} ;

struct MessageHeader
char
Version
boolean
octet
unsigned long

} ;

magic [4];
GlOP_version;
byte_order;
message_type;
message_size;

The message header clearly identifies GlOP messages. It is defined to be byte-ordering independent, since the header
itself defines the byte ordering of subsequent message elements. The members of the header are:

• magic. The magic identifies GlOP messages. The value of this member is always the four (uppercase)
characters "GlOP".

• GlOP_version. The GlOP_version contains the version number of the GlOP protocol being used in the
message. The current version of GlOP is "1.0".

• byte_order. The byte_order indicates the byte ordering used in subsequent elements of the message
(including the message_size field). A value of FALSE (0) indicates Big-Endian byte ordering, and TRUE (1)
indicates Little-Endian byte ordering.

• message_type. The message_type indicates the type of the message, according to Table 3-1. These
correspond to enum values of type MsgType. Remember the enum values are of type long.

• message_size. The message_size contains the length of the message following the message header, in octets.
This count includes any alignment gaps.

In Figure D-l, a typical representation of a GlOP MessageHeader is showed.

"GlOP"

Figure D-l, Representation of the GlOP MessageHeader

51

Building distributed Smalltalk/Java applications using CORBA

Request Header

The request header is specified as follows:

module GlOP { II Pseudo-lDL
struct RequestHeader {

lOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence<octet> object_key;
string operation;
Principal requesting-principal;

} ;
} ;

The members of this RequestHeader struct have the following definitions:

• service_context. The service_context contains ORB service data being passed from the client to the server.
The context is only defined for a single client/server message. No global environment context is supported.

• request_id. The requesUd is used to associate reply messages with request messages. The client (requester)
is responsible for generating this values.

• response_expected. The response_expected variable is set to TRUE if the request is expected to have an
reply according to its requesUd. The value is FALSE if the operation is defined as one-way, or if the
operation is invoked with the DII (dynamically) and the invocation flag includes the INV_NO_RESPONSE
flag.

• object_key. The objecekey uniquely identifies the object which is the target of the invocation. This value is
only meaningful to the server and is not interpreted or modified by the client as it is opaque.

• operation. Operation contains the name of the operation being invoked. In the case of
• attribute accessors, the names are _gee<attribute> and _see<attribute>. The case of the operation or

attribute name must match the case of the operation name specified in the OMG IDL source for the interface
being used.

• requesting_principal. The requesting_principal contains a value identifying the requesting principal. It is
provided to support the BOA::geeprincipal operation.

The parameters in the request are encoded in the request body. The request body includes the parameters encoded in
the order in which they are declared in the operation's IDL specification (from left to right conform the alignment).
After this an optional Context pseudo object is encoded as a CORBA Context object (see [OMG 1995a]).

Reply Header

Reply messages are sent in response to request messages. Replies include inout- and out parameters, operation results,
and may include exception values. Reply messages may also provide object location information in the form of an
Object Reference.

52

Building distributed Smaf/talk/Java applications using CORBA

The reply header is specified as follows:

module GlOP { II Pseudo-IDL
enum ReplyStatusType {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

} ;

struct ReplyHeader {
IOP::ServiceContextList
unsigned long
ReplyStatusType

} ;

} ;

service_context;
request_id;
reply_status;

The members of the ReplyHeader have the following definitions:

• service_context. The service_context contains ORB service data being passed from the server to the client,
encoded as described in "GlOP Message Transfer" on page 12-3.

• requesCid. The requescid is used to give replies to the appropriate requests. It contains the same requesUd
value as the corresponding request.

• reply_status. The reply_status indicates the completion status of the associated request, and also determines
part of the reply body contents. If no exception occurred and the operation completed successfully, the value
is NO_EXCEPTION and the body contains return values. Otherwise the body contains an exception, or
directs the client to resend the request to an object at some other location.

The parameters in the return of the reply are encoded in the reply body. The reply body can include parameters or
values in three different forms according to the reply_status variable:

• If the reply_status value is NO_EXCEPTION, the body is encoded as if it were a structure holding first the
operation's return value, then any inout and out parameters in the order in which they appear in the
operation's IDL definition (from left to right). Notice that this structure can be empty.

• If the reply_status value is USER_EXCEPTION or SYSTEM_EXCEPTION, then the reply body contains
the exception that was raised by the operation, encoded as a CORBA exception object (see [OMG 1995a]).

• If the reply_status value is LOCATION_FORWARD, then the body contains an Object Reference. The
client ORB is responsible for re-sending the original request to that (different) object denoted by the Object
Reference. This resending is transparent to the client program making the request.

CancelRequest Header

CancelRequest messages may be sent from clients to servers. CancelRequest messages notify a server that the client is
no longer expecting a reply for a specified pending Request or LocateRequest message.

The cancel request header is defined as follows:

module GlOP { II Pseudo-IDL
struct CancelRequestHeader {

unsigned long request_id;
} ;

} ;

53

Building distributed Smal/talk/Java applications using CORBA

The value of the requesCid is the same as the value specified in the original Request or LocateRequest message.
When a client issues a cancel request message, it serves in an advisory capacity only. The server is not required to
acknowledge the cancellation, and may subsequently send the corresponding reply. The client should have no
expectation about whether a reply (including an exceptional one) arrives.

LocationRequest Header

LocateRequest messages may be sent from a client to a server to determine the following regarding a specified object
reference:

• Whether the object reference is valid.
• Whether the current server is capable of directly receiving requests for the object reference.
• To what address requests for the object reference should be forwarded if the server is not capable to handle the

request.

Note that this information is also provided through the Request message, but that some clients might prefer not to
support retransmission of potentially large messages that might be implied by a LOCATION_FORWARD status in a
Reply message.

The LocateRequest header is defined as follows:

module GlOP { II Pseudo-IDL
struct LocateRequestHeader {

unsigned long requesUd;
sequence <octet> object_key;

) ;
) ;

The members are defined as follows:

• request_id is used to associate LocateReply messages with LocateRequest ones. The client (requester) is
responsible for generating values.

• object_key identifies the object being located. In an lIOP context, this value is obtained from the objecCkey field
from the encapsulated ProfileBody in the lIOP profile of the lOR for the target object. This value is only
meaningful to the server and is not interpreted or modified by the client.

LocationReply Header

LocateReply messages are sent from servers to clients in response to LocateRequest messages.

The locate reply header is defined as follows:

54

Building distributed Smalltalk/Java applications using CORBA

module GlOP { II Pseudo-lDL
enum LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

} ;
struct LocateReplyHeader {

unsigned long request_id;
LocateStatusType locate_status;

} ;
} ;

The members have the following definitions:

• requesCid is used to associate replies with requests. This member contains the same requesUd value as the
corresponding LocateRequest message.

• locate_status. The value of this member is used to determine whether a LocateReply body exists. Values are:
UNKNOWN_OBJECT The object specified in the corresponding LocateRequest message is unknown to

the server; no body exists.
OBJECT_HERE This server (the originator of the LocateReply message) can directly receive requests for

the specified object; no body exists.
OBJECT_FORWARD A LocateReply body exists.

LocateReply Body
The body is empty unless the LocateStatus value is OBJECT_FORWARD. In this case the body contains an object
reference (lOR) that may be used as the target for requests to the object specified in the LocateRequest message.

CloseConnection Header

CloseConnection messages are sent only by servers. They inform clients that the server intends to close the
connection and must not be expected to provide further responses. Moreover, clients know that any requests for
which they awaiting replies will never be processed, and may safely be reissued (on another connection). The
CloseConnection message consists only of the GlOP message header, identifying the message type.

MessageError Header

The MessageError message is sent in response to any GlOP message whose version number or message type is
unknown to the recipient, or any message is received whose header is not properly formed (e.g., has the wrong magic
value). Error handling is context-specific. The MessageError message consists only of the GlOP message header,
identifying the message type.

1I0P Internet Object References

Individual objects, that are accessible through the nop, are denoted using an nop profiled Object Reference which is
specified in paragraph 3.2. In this profile the TCP/IP properties of the nop can be seen because the location of the
object is specified using a TCP/IP 'host' and 'port' number.

The host identifies the internet host to which nop mapped GlOP messages for the specified object may be sent. In
order to promote a very large (internet-wide) scope for the object reference, this will typically be the fully qualified
domain name of the host. However according internet standards, the host string may also contain a host address
expressed in standard 'dotted decimal' form (e.g., '194.165.88.49').

55

Building distributed Smalltalk/Java applications using CORBA

The port contains the TCP/IP port number (at the specified host) where the receiver is listening for incoming requests.

module IIOP { II Pseudo-IDL
struct Version {

char major;
char minor;

} ;

struct ProfileBody { II
Version
string
unsigned short
sequence<octet>

} ;
} ;

nop Profiled Object Reference

ObjectLocator
iiop_versioni
host;
port;
object_key;

56

Building distributed Smalltalk/Java applications using CORBA

Appendix E. Object services

• Naming service. The naming service is described separately in paragraph 2.6.1. See also [VOG 1997,
Chapter 8].

• Trading service. The trading provides a service to bind object implementations by properties instead of by
name.

• Event service. The event service provides several ways to integrate events into your distributed application
• Life cycle service. The Life Cycle Service defines conventions for creating, deleting, copying and moving

objects. Because CORBA-based environments support distributed objects, life cycle services define services
and conventions that allow clients to perform life cycle operations on objects in different locations.

• Persistent object service. The Persistent Object Service (POS) provides a set of common interfaces to the
mechanisms used for retaining and managing the persistent state of objects.

• Transaction service. The Transaction Service supports multiple transaction models to perform transactions
on objects.

• Concurrency control service. The Concurrency Control Service enables multiple clients to co-ordinate
their access to shared resources. Co-ordinating access to a resource means that when multiple, concurrent
clients access a single resource, any conflicting actions by the clients are reconciled so that the resource
remains in a consistent state.

• Relationship service. The Relationship Service allows entities and relationships to be explicitly represented.
Entities are represented as CORBA objects. The service defines two new kinds of objects: relationships and
roles. A role represents a CORBA object in a relationship. The Relationship interface can be extended to add
relationship-specific attributes and operations. In addition, relationships of arbitrary degree can be defined.
Similarly, the Role interface can be extended to add role-specific attributes and operations.

• Externalisation service. The Externalisation Service defines protocols and conventions for externalising
and internalising objects. Externalising an object is to record the object state in a stream of data (in memory,
on a disk file, across the network, and so forth) and then be internalised into a new object in the same or a
different process. The externalised object can exist for arbitrary amounts of time, be transported by means
outside of the ORB, and be internalised in a different, disconnected ORB. For portability, clients can request
that externalised data be stored in a file whose format is defined with the Externalisation Service
Specification.

• Query service. The purpose of the Query Service is to allow users and objects to invoke queries on
collections of other objects. The queries are declarative statements with predicates and include the ability to
specify values of attributes; to invoke arbitrary operations; and to invoke other Object Services.

• Licensing service. The Licensing Service provides a mechanism for producers to control the use of their
intellectual property. Producers can implement the Licensing Service according to their own needs, and the
needs of their customers, because the Licensing Service does not impose it own business policies or
practices.

• Property service. Provides the ability to dynamically associate named values with objects outside the static
IDL-type system. Defines operations to create and manipulate sets of name-value pairs or name-value-mode
tuples. The names are simple OMG IDL strings. The values are OMG IDL Anys. The use of type any is
significant in that it allows a property service implementation to deal with any value that can be represented
in the OMG IDL-type system (see Appendix C). The modes are similar to those defined in the Interface
Repository AttributeDef interface.

• Time service. Enables the user to obtain current time together with an error estimate associated with it.
• Security service. The security service provides functionality that restricts certain users to access an object

implementation.

57

Building distributed Smalltalk/Java applications using CORBA

Appendix F. CORBA Object Request Broker implementations

• CHORUS/COOL. The CHORUS/COOL ORB by Chorus Systems is a CORBA 2.0 compliant Object Request
Broker for Distributed real-time Embedded Systems. It is optimised for the CHORUS componentized operating
system technology, but it also supports a variety of popular operating systems like SunOS, Linux, Windows
NT/95. The CHORUS IDL Compiler (CHIC) generates standard C++ code.

• Corbus. Corbus by BBN Corporation is a CORBA 2.0 compliant distributed object-oriented system, with support
for multithreaded servers which provide scaleable object location and controlled sharing of services. It provides
C, C++ and Common LISP (non-standard) language bindings.

• DAIS. DAIS by ICL is a set of CORBA based software tools to create and run a distributed application. The
DAIS Run-time Libraries contain a CORBA conformant Object Request Broker (ORB). The DAIS ORB is
distributed, resides within all client and server modules, is scalable on the whole network and avoids a single point
of failure. DAIS supports the following languages: C, C++, Java, Cobol (in development) and Eiffel (in
development).

• Distributed Smalltalk (DST). Distributed Smalltalk by ParcPlace-Digitalk, Inc. (formerly known as HP
Distributed Smalltalk) supports the full OMG CORBA 2.0 specifications and the following CORBA services:
naming, event, lifecycle, transaction and concurrency. Advanced tools like a remote object debugger, a Smalltalk
to IDL generator and an ORB monitor are also included.

• Java IDL. The Java IDL by Sun Microsystems allows you to define remote interfaces in the IDL interface
definition language. These IDL definitions can then be compiled with the idl2java stub generator tool to generate
Java interface definitions and Java client and server stubs. Java IDL is currently available on Win32/x86 and
Solaris/SPARC. Jorba

• ObjectBroker. ObjectBroker by BEA Systems, Inc. (formerly called DEC ObjectBroker) is a CORBA 2.0
Object Request Broker with full CORBA compliant C++ language bindings. It allows unmodified CORBA
objects to be accessed via OLE Automation, CORBA custom interfaces, and OLE custom interfaces. It also
supports DCE'S Generic Security Services API (GSSAPI), which allows the use of both DCE-based security
(kerberos) and other third-party authentication packages.

• OrnniBroker. OmniBroker by Object-Oriented Concepts, Inc. is a CORBA 2.0 compliant ORB with complete
C++ language mapping and IIOP as native protocol. It supports the Dynamic Skeleton Interface and comes with a
COS compliant Naming Service.

• ORB Plus. ORB Plus by Hewlett Packard is a fully threaded implementation of the CORBA 2.0 specification and
includes the following CORBAservices: Events, Naming, and Lifecycle. Developers in the HP-UX environment
have at their disposal the additional capability of the DCE ClOP (Distributed Computing Environment Common
Inter-ORB Protocol), which can be used as an alternative to the CORBA 2.0 IIOP. A special transport abstraction
layer, part of the ORB Plus architecture, allows the DCE ClOP and the COBRA 2.0 IIOP to be used
simultaneously.

• Orbix. Orbix from IONA Technologies is a full and complete implementation of CORBA. Orbix runs on more
than 20 operating systems with seamless interworking guaranteed across all supported platforms. It supports C++,
Ada95 and Smalltalk. Orbix Programming Guide gives a complete introduction in programming with Orbix using
C++. Orbix for Windows closely integrates Microsoft OLE and ActiveX technology with CORBA to provide
interworking between the Component Object Model (COM) and CORBA.

• OrbixWeb. OrbixWeb is a full Java implementation of Orbix . It has been specially modularised and optimised
for operation over large networks.

• PowerBroker CORBAplus. PowerBroker CORBAplus by Expersoft is a comprehensive implementation of the
CORBA 2.0 specification. It includes asynchronous requests, multi-threaded support and also delivers visual tools
for editing the Interface Repository. PowerBroker CORBAplus is currently available for Windows 95/NT,
Solaris, HP-UX and AIX. PowerBroker CORBAplus for OLE automatically converts CORBA interfaces into
OLE Automation interfaces for inclusion into Windows OLE applications. This implementation meets the OMG
COM/CORBA Mapping specification, automating the interaction between OLE clients and CORBA objects.
CORBAplus for OLE also gives Visual Basic programmers direct, transparent access to CORBA objects and
services, providing Windows desktop clients with unprecedented levels of interoperability and flexibility.

58

Building distributed Smalltalk/Java applications using CORBA

PowerBroker CORBAplus for Java is a CORBA 2.0-compliant Object Request Broker with Java to IDL language
mapping support.

• SOMobjects. SOMobjects form the basis for IBM's implementation ofCORBA. SOM provides an object­
structured protocol that allows applications to access and use objects, regardless of the programming language in
which they are created (Derived class implementers can use different languages from those used by base class
implementers). The SOMobjects Toolkit is available for AIX, OS/2 and Windows 3.l/95/NT. IBM Distributed
Smalltalk by IBM Corporation extends VisualAge for Smalltalk to support distribution of objects on different
computers on a network using IBM's Distributed System Object Model (DSOM). These objects can send standard
Smalltalk messages to one another, regardless of their physical location. They can also freely send other Smalltalk
objects as arguments, and receive objects as results. The different parts of an application can be located on any
computer in the network that is running IBM Distributed Smalltalk.

• VisiBroker. The VisiBroker family features an agent based, multi-threaded architecture with automatic
configuration and smart binding. It also provides load balancing and high availability, enabling easy object
migration and replication. VisiBroker for C++ by Visigenic Software, Inc. (formerly called ORBeline) is a
CORBA 2.0 Object Request Broker. A key benefit ofVisigenic is that its inter-ORB communication is
implemented using the nop protocol. VisiBroker for Java by Visigenic Software, Inc. (formerly called Black
Widow) is a CORBA 2.0 Object Request Broker written completely in Java with also an intern implementation of
the nop protocol. It consists of a development and a run-time component.

59

Building distributed Smalltalk/Java applications using CORBA

Appendix G. Source code, CORBAType classes

CorbaType

Object subclass: #CORBAType
instanceVariableNames: 'value'
classVariableNames: ..
poolDictionaries: ..

CORBAType public class methods

alignInteger: anInteger
Iresultl
result:=anInteger-l.
[(result\\self alignment)=O] whileFalse:[result:=result+1].
"result+ I.

corbaTypeDictionary
"(Dictionary new

at: #void put: CORBAVoid;
at: #Iong put: CORBALong;
at: #string put: CORBAString;
at: #octet put: CORBAOctet;
at: #short put: CORBAShort;
at: #Object put: CORBAObject;
at: #f1oat put: CORBAFloat;
yourself)

fromString: aString
laCORBATypeClass aModuleName anInterfaceNamel
aCORBATypeClass:=self corbaTypeDictionary at: aString asSymbol
ifAbsent: [

"CORBAObjref fromString: aString
].
"aCORBATypeClass new.

CORBAType public methods

alignInteger: anInteger
Iresultl
result:=anInteger-l.
[(result\\self alignment)=O] whileFalse:[result:=result+l].
"result+ 1.

alignment
"I

asCORBAType
"self

copy
"(self class new value: self value;yourself)

isCORBAType
"true

printIDLString
laStringl
aString:=self class printString.
aString:=aString copyFrom:6 to: aString size.
aString at: I put: (aString at: I) asLowercase.
"aString

60

Building distributed Smal/talk/Java applications using CORBA

size
"self error: (self printString,' should implement #size').

value
"value

value: anObject
value:=anObject

CORBABoolean

CORBAType subclass: #CORBABoolean
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

CORBABoolean public class methods

asIDLString
"'boolean'

asJavaString
"'boolean'

new: aByteArray byteOrder: aByteOrder
((aByteArray at:!)=1) ifTrue:[

"self new
value: true;
yourself.

]
ifFalse:[

"self new
value: false;
yourself

].

CORBABoolean public methods

alignment
"I

asIIOPByteArray: aByteOrder
self value ifTrue:["#[I]]
ifFaIse:["#[O]].

size
"I

CORBAChar

CORBAType subclass: #CORBAChar
instanceVariableNames: "
c1assVariableNames: "
poolDictionaries: "

CORBAChar class public class methods

asIDLString
"'char'

asJavaString
"'char'

new: aByteArray byteOrder: aByteOrder

61

Building distributed Smalltalk/Java applications using CORBA

"self new value: (aByteArray at: I) asCharacter;yourself

CORBAChar public methods

alignment
"I

asIDLString
"'char'

asIIOPByteArray: aByteOrder
"(ByteArray new:l) at:I put: self value value;yourself

size
"I

CORBAFloat

CORBAType subclass: #CORBAFloat
instanceVariableNames: "
c1assVariableNames: "
poolDictionaries: "

CORBAFloat class public class methods

aslDLString
"'float'

asJavaString
"'float'

new: aByteArray byteOrder: aByteOrder
laCORBAFloat sign exponent fraction I
aCORBAFloat:=self new.
sign:= «aByteArray at: 1)//128).
exponent:= (

«(aByteArrayat: I) - (sign* 128»*2) +
«aByteArray at: 2)11\28)

).

fraction:= (
« (aByteArray at:2) - « (aByteArray at:2) 11128)*128))*256*256) +
«aByteArray at:3)*256) +
(aByteArrayat:4)

).
aCORBAFloat value: (

«fraction asFloati (2 raisedTo: 23)) +1)*
(2 raisedTo: (exponent - 127» *
(-I raisedTo: sign)

).
"aCORBAFloat

CORBAFloat public methods

alignment
"4

asIIOPByteArray: byteOrder
laCollection fraction anUnsignedFioat exponent signl
aCollection:=OrderedColiection new.
anUnsignedFloat:=self value copy.
sign:=O. "positive"
(anUnsignedFioat < 0) ifTrue:[

anUnsignedFloat:=(O asFioat -anUnsignedFloat).
sign:=\. "negative"

].
exponent:=(anUnsignedFioat In 121n) truncated.
fraction:=«(anUnsignedFioat I (2 raisedTo: exponent»-I)*(2 raisedTo: 23» rounded.

62

Building distributed Smalltalk/Java applications using CORBA

exponent:=exponent+127.
aCollection add: (sign* I28+(exponenl II 2)).
aCollection add: «exponent \\ 2)* I 28+(fraction 1165536)).
aCollection add: «fraction - «fraction 1165536)*65536» 11256).
aCollection add: (fraction \\ 256).
"aCollection asByteArray

size
"4

CORBADouble

CORBAType subclass: #CORBADouble
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

CORBADouble public class methods

asIDLString
""double'

asJavaString
"'double'

new: aByteArray byteOrder: aByteOrder
laCORBADoubie sign fraction exponentl
aCORBADouble:=self new.
sign:= «aByteArray at: 1)1/128).
exponent:= (

«(aByteArrayat: I) - (sign*128))*16) +
«aByteArray at: 2)1116)

).
fraction:= (

« (aByteArray at:2) - « (aByteArray at:2) 1116)*16))*256*256*256*256*256*256) +
«aByteArray at:3)*256*256*256*256*256) +
«aByteArray at:4)*256*256*256*256) +
«aByteArray at:5)*256*256*256) +
«aByteArray at:6)*256*256) +
«aByteArray at:7)*256) +
(aByteArrayat:8)

).
aCORBADouble value: (

«fraction asFioat 1 (2 raisedTo: 52» +1)*
(2 raisedTo: (exponent - 1023» *
(-I raisedTo: sign)

).
"aCORBADouble

CORBADouble public methods

alignment
"8

asIlOPByteArray: aByteOrder
"(CORBAFIoat new value: self value) asllOPByteArray: aByteOrder

size
"8

CORBALong

CORBAType subclass: #CORBALong
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

63

Building distributed Smalltalk/Java applications using CORBA

CORBALong public class methods

alignment
~4

asIDLString
~'Iong'

asJavaString
"'int'

new: aByteArray byteOrder: aByteOrder
aByteOrder ifFalse: [

"Big-endian"
~self new

value: (
«aByteArray at: I) *256*256*256)+
((aByteArray at:2) *256*256)+
«aByteArray at:3) *256)+
(aByteArray at:4)

1
iITrue:[

"Little-endian"
~self new

value: (
«aByteArray at:4) *256*256*256)+
«aByteArray at:3) *256*256)+
«aByteArray at:2) *256)+
(aByteArray at: I)

CORBALoug public method~

alignment
~self class alignment

aslDLString
~'Iong'

asIIOPByteArray: aByteOrder
Itemp aCollectionl
aByteOrder ifFalse:[

"Big-endian"
temp:=self value aslnt32.
aCollection:=OrderedCollection new.
aCollection add: (temp II (256*256*256)).
temp:=temp-(aCollection last)*256*256*256).
aCollection add: (templl(256*256)).
temp:=temp-«aCollection last)*256*256).
aCollection add: (temp/1256).
temp:=temp-«aCollection last)*256).
aCollection add: temp.
~aCollection asByteArray.

1
iITrue:[

"Little-endian"
aCollection:=ByteArray new:4.
temp:=self value aslnt32.
aCollection at:4 put: (temp II (256*256*256)).
temp:=temp-((aCollection at:4)*256*256*256).
aCollection aU put: (templl(256*256)).
temp:=temp-«aCollection at:3)*256*256).
aCollection at:2 put: (tempI1256).
temp:=temp-«aCollection at:2)*256).
aCollection at: I put: temp.

64

Building distributed SmalltalklJava applications using CORBA

"aCollection asByteArray
].

asJavaString
J\lint'

asSmalltalkObject: aByteArray byteOrder: aByteOrder
"Integer new: aByteArray byteOrder: aByteOrder

size
"4

value
"value

value: anlnteger
value:=aninteger asinteger

CORBANull

CORBAType subclass: #CORBANull
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

CORBAObjref

CORBAType subclass: #CORBAObjref
instanceVariableNames: 'repositoryld name'
classVariableNames: "
poolDictionaries: "

CORBAObjref public class methods

asIDLString
"'Object'

asJavaString
"'CORBA.Object'

for: aninterfaceName moduleName: aModuleName
laModuleindex theModuleDefsl
theModuleDefs:=ORB current interfaceRepository moduleDefs.
aModuleIndex:=theModuleDefs findFirst: [:eachleach=(ModuleDef new name: aModuleName;yourself)].
(aModulelndex=O) ifTrue:[

"Module not found, return an CORBAObjref class"
"self

]
ifFalse:[

«theModuleDefs at: aModuleindex) fmdlnterface: (interfaceDef new name: aninterfaceName;yourself)) isNil ifTrue:[
"interface not in repository. return CORBAObj ref class"
"self

]
ifFalse:[

"interface in repository, return instance of CORBAObjreP'
"self new
value: (lOR

moduleName: aModuleName
interfaceName: aninterfaceName
objectName: ORB current newTransientName
host: ORB current tCPSettings host
port: ORB current tCPSettings port portNumber);

yourself

fromModuleName: aModuleName interfaceName: aninterfaceName

65

Building distributed Sma/ltalk/Java applications using CORBA

lanlORI
anIOR:=IOR

fromModuleName: aModuleName
interfaceName: aninterfaceName.

"CORBAObjref new
value: anlOR;
repositoryld: anlOR typeld;
name: «anIOR profiles contents at: I) objectLocator objectKey objectName);
yourself.

fromString: aString
laModuleName aninterfaceName anlORI
aModuleName:=aString chopTiIlColon.
aninterfaceName:=aString copyFrom: (aModuleName size +3) to: aString size.

"self fromModuleName: aModuleName interfaceName: aninterfaceName

new: aByteArray byteOrder: aByteOrder

Build from CDR OctetSetjuence encapsulation

laCORBAObjrefl
aCORBAObjref:=self new.
aCORBAObjref value: (lOR new: aByteArray byteOrder: aByteOrder).
aCORBAObjref repositoryld: aCORBAObjref value typeld.
aCORBAObjref name: (aCORBAObjref value profiles at: I) objectLocator objectKey objectName.
"aCORBAObjref.

CORBAObjref public methods

alignment
"self value alignment

as IDLString
"«self value profiles at:l) objectLocator objectKey interfaceName)

aslIOPByteArray: aByteArray
" the value will contain an lOR"
"self value asIIOPByteArray: aByteArray

asJavaString
laninterfaceNamel
aninterfaceName:=

«self value profiles at: I) objectLocator objectKey interfaceName).
"aninterfaceName chopTiIlColon,':,
(aninterfaceName copyFrom: (aninterfaceName chopTiIlColon size +3) to: aninterfaceName size)

name
"name

name: aCORBAString
name:=aCORBAString

printIDLString
(self value profiles size=O) ifTrue:["'objref Smalltalk::UndefinedObject'].
"'objref ',(self value profiles at: I) objectLocator objectKey interfaceName

printString
"'CORBAObjref value=',self value printString

repositoryld
"repositoryld

repositoryld: aCORBAString
repositoryld:=aCORBAString

size
"self value size

66

Building distributed Smalltalk/Java applications using CORBA

value
value isNil iffrue:[selfvalue: lOR new].
"value

CORBAString

CORBAType subclass: #CORBAString
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

CORBAString public class methods

alignment
"4

asIDLString
"'string'

asJavaString
"'java.lang.String'

new: aByteArray byteOrder: aByteOrder
laCORBAString aStringArray lengthl
aCORBAString:=self new.
length:=(CORBALong new: aByteArray byteOrder: aByteOrder) value.
(length=O) iffrue:[aCORBAString value:"."aCORBAString].
aStringArray:=aByteArray

copyFrom: 5
to: (3+length).

"self new value: aStringArray asString;yourseIf.

CORBAString public methods

alignment
"4

asIDLString
"'string'

asIIOPByteArray: aByteOrder
laCollectionl
(self value size=O) iffrue:["#[O 0 0 0]].
aCollection:=OrderedCollection new

addAll: «self value size+l) asIIOPByteArray: aByteOrder);
addAll: self value asByteArray;
add: 0;
yourself.

"aCollection asByteArray

asJavaString
"'java.lang.String'

asSmalltalkObject: aByteArray byteOrder: aByteOrder
"String new: aByteArray byteOrder: aByteOrder

size
(self value size=O) iffrue:["4]
ifFalse:[

"self value size+5.

value
value isNil iffrue:[self value: "].
"value

67

··e'... ~·i .i

lOR

Building distributed Smalltalk/Java applications using CORBA

CORBAType subclass: #IOR
instanceVariableNames: 'typeld profiles'
classVariableNames: "
poolDictionaries: "!

lOR class public class methods

fromModuleName: aModuleName interfaceName: anlnterfaceName
Aself

moduleName: aModuleName
interfaceName: anlnterfaceName
objectName: CDefault',anlnterfaceName)
host: ORB current tCPSettings host dottedDecimalAddress
port: ORB current tCPSettings port portNumber

interfaceName: anlnterfaceName objectName: anObjectName host: aHost port: aPortNumber
laTypeldl
aTypeld:=CSmalltalk::',anlnterfaceName) asRepositoryld.
A(selfnew

typeld: aTypeld;
addProfile: (TaggedProfile new

tag: 0;
objectLocator: (ObjectLocator new

host: aHost;
port: aPortNumber;
objectKey: (ObjectKey new

interfaceName: anlnterfaceName;
objectName: anObjectName;
yourself);

yourself);
yourself);

yourself)

moduleName: aModuleName interfaceName: anlnterfaceName objectName: anObjectName host: aHost port: aPortNumber
laTypeldl
aTypeld:=(aModuleName,'::',anlnterfaceName) asRepositoryld.
A(selfnew

typeld: aTypeld;
addProfile: (TaggedProfile new

tag: 0;
objectLocator: (ObjectLocator new

host: aHost;
port: aPortNumber;
objectKey: (ObjectKey new

interfaceName: (aModuleName,'::',anlnterfaceName);
objectName: anObjectName;
yourself);

yourself);
yourself);

yourself)

new: aByteArray byteOrder: aByteOrder

Build lOR from encapsulated datastructure: sequence<octet>
boolean byteOrder
string typeld
sequence<taggedProfile> profiles

IanlOR indexl
anlOR :=self new.
index:=9. "Skip the sequence length and byteOrder"
«Boolean new: (aByteArray from:5) byteOrder: false)=aByteOrder) ilFalse:[

self error: 'ByteOrders are not compliant'

68

Building distributed Smalltalk/Java applications using CORBA

].
anlOR typeld:

(CORBAString new: (aByteArray from:index) byteOrder: aByteOrder) value.
index:=index+anIOR typeld asCORBAType size.
index align: 4.

anlOR profiles:
(CORBASequence new: (aByteArray from:index) byteOrder: aByteOrder type: TaggedProflle) value.

"anlOR

lOR public methods

addProfile: aTaggedProfile
self profiles add: aTaggedProfile

alignment
"4

asllOPByteArray: aByteOrder
laStructl
aStruct:=CORBAStruct new

add: (self typeld asCORBAType);
add: (CORBASequence new value: self profiles);
yourself.

"aStruct asIIOPByteArray: aByteOrder

aslORString: aByteOrder
laStringl
aString:='IOR:'.
(self asIIOPByteArray: aByteOrder) do:[:eachl

«each printStringRadix: 16 showRadix: false) size = I) itTrue:[
aString:=aString, '0' ,(each printStringRadix: 16 showRadix: false)

]
ifFalse:[

aString:=aString, (each printStringRadix: 16 showRadix: false)
].

].
"astri ng

printString
"'lOR: typeld=', self typeld, ' objectKey=',(self profiles at: I) objectLocator objectKey printString

profiles
profiles isNil ifTrue:[self profiles: OrderedCollection new].
"profiles

profiles: anOrderedCollection
profiles:=anOrderedCollection

size
"(self asIIOPByteArray: false) size

typeld
"typeld

typeld: aString
typeld:=aString

TaggedProfile

CORBAType subclass: #TaggedProfile
instanceVariableNames: 'tag objectLocator'
classVariableNames: "
poolDictionaries: "

TaggedProfile public class methods

69

Building distributed Smalltalk/Java applications using CORBA

alignInteger: anInteger
A(anInteger align: 4)

new: aByteArray byteOrder: aByteOrder
laTaggedProfile indexl
aTaggedProfile:=self new.
index:=!.
aTaggedProfile tag:

(CORBALong new: aByteArray byteOrder: aByteOrder) value.
index:=(index+4) align: 4.

aTaggedProfile objectLocator: (ObjectLocator
new: (aByteArray from: index)
byteOrder: aByteOrder

).

AaTaggedProfile

TaggedProfile public methods

alignment
A4

asCORBAType
Aself

asIIOPByteArray: aByteOrder
A(CORBAStruct new

add: (CORBALong new value: self tag);
add: (self objectLocator);
yourself) asIIOPByteArray: aByteOrder

objectLocator
objectLocator isNil ifTrue:[seif objectLocator: ObjectLocator new].
AobjectLocator

objectLocator: anObjectLocator
objectLocator:=anObjectLocator

size
A(self asIIOPByteArray: false) size

tag
tag isNil ifTrue:[self tag: 0).
Atag

tag: anInteger
tag:=anInteger

ObjectLocator

CORBAType subclass: #ObjectLocator
instanceVariableNames: 'host port objectKey iIOPVersion '
classVariableNames: "
poolDictionaries: "

ObjectLocator public class methods

new: aByteArray byteOrder: aByteOrder
lanObjectLocator indexl
anObjectLocator:=self new.
index:=S. "Ignore the sequence length"

«CORBABooIean new: (aByteArray from:index) byteOrder: aByteOrder) value = aByteOrder) ifFalse:[
self error: 'The ByteOrder of the ObjectLocator differs from the MessageHeader'.

70

Building distributed Smalltalk/Java applications using CORBA

].
index :=index+ I.

anObjectLocator iIOPVersion:
(Version new: (aByteArray from:index) byteOrder: aByteOrder).

index:=(index+2) align:4.

anObjectLocator host:
(CORBAString new: (aByteArray from: index) byteOrder: aByteOrder) value.

index:=(index+anObjectLocator host size +5) align: 2.

anObjectLocator port:
(CORBAShort new: (aByteArray from: index) byteOrder: aByteOrder) value.

index:=(index+2) align: 4.

anObjectLocator objectKey: (ObjectKey
new: (aByteArray from: index)
byteOrder: aByteOrder).

AanObjectLocator

ObjectLocator public methods

aslIOPByteArray: aByteOrder
laStructl
aStruct:=CORBAStruct new

add: (CORBALong new value:O); "size will be calculated later"
add: (CORBABoolean new value: aByteOrder);
add: self iIOPVersion;
add: (CORBAString new value: self host);
add: (CORBAShort new value: self port);
add: self objectKey;
yourself.

aStruct value at: I put: «aStruct size -4) asCORBAType).
AaStruct asllOPByteArray: aByteOrder

host
host isNil ifTrue:[seif host: ORB current tCPSettings host dottedDecimalAddress].
Ahost

host: aString
host:=aSlring

ilOPVersion
iIOPVersion isNii ifTrue:[self ilOPVersion: Version new].
AilOPVersion

i10PVersion: aVersion
iIOPVersion:=aVersion

objectKey
objectKey isNil ifTrue:[self objectKey: ObjectKey new].
AobjeclKey

objectKey: anObjectKey
objectKey:=anObjectKey

port
port isNil ifTrue:[self port: ORB current tCPSettings port portNumber].
Aport

port: anInteger
port:=anInteger

71

Building distributed Smalltalk/Java applications using CORBA

Appendix H. Source code, GIOPMessage classes

Object subclass: #GlOPMessage
instanceVariableNames: 'messageHeader messageTypeBody messageTypeHeader'
classVariableNames: 'Socket'
poolDictionaries: "

GIOPMessage comment: 'PoolDictionary definition:

Smalltalk at: #MsgType put:(
EsPoolDictionary new

at: "RequestHeader" put: 0;
at: "ReplyHeader" put: I;
at: "CanceIRequestHeader" put:2;
at: "LocateRequestHeader" put:3;
at: "LocateReplyHeader" put:4;
at: "CloseConnection" put:S;
at: "MessageError" put:6;
yourself)

GIOPMessage public class methods

clearSocket
Socket:=nil.

locateRequestFrom: aDirectedMessage
laGlOPMessagel
aGIOPMessage:=self new.

aGIOPMessage messageTypeHeader: LocateRequestHeader new.
aGlOPMessage messageTypeHeader objectKey: (ObjectKey new

interfaceName: ('Test::',aDirectedMessage receiver class printString):
objectName: aDirectedMessage receiver printString;
yourself

).

aGlOPMessage messageHeader: (MessageHeader new
magic: 'GlOP';
byteOrder: false;
messageType: (aGlOPMessage messageTypeDict at: #LocateRequestHeader);
messageSize:

(aGIOPMessage messageTypeHeader asIlOPByteArray: false) size;
yourself

).

"aGIOPMessage

new: aByteArray
laGIOPMessage aByteArrayCopyl
aGIOPMessage:=self new.
aGIOPMessage messageHeader: (MessageHeader new: aByteArray).
aByteArrayCopy:=aByteArray

chopFromBegin: 12
align: 1.

(aByteArrayCopy size> 0) ifTrue:[
(aGIOPMessage messageHeader messageType=(aGIOPMessage messageTypeDict at:#RequestHeader)) ifTrue:[

aGIOPMessage messageTypeHeader: (RequestHeader
new: aByteArrayCopy
byteOrder: aGIOPMessage messageHeader byteOrder)

].
(aGlOPMessage messageHeader messageType=(aGlOPMessage messageTypeDict at:#ReplyHeader)) ifTrue:[

aGIOPMessage messageTypeHeader: (ReplyHeader
new: aByteArrayCopy

72

Building distributed Sma/ltalklJava applications using CORBA

byteOrder: aGIOPMessage messageHeader byteOrder)
].
(aGiOPMessage messageHeader messageType=(aGIOPMessage messageTypeDict at:#CanceIRequestHeader)) iITrue:[

aGIOPMessage messageTypeHeader: (CancelRequestHeader
new: aByteArrayCopy
byteOrder: aGIOPMessage messageHeader byteOrder)

].
(aGIOPMessage messageHeader messageType=(aGIOPMessage messageTypeDict at:#LocateRequestHeader)) iITrue:[

aGIOPMessage messageTypeHeader: (LocateRequestHeader
new: aByteArrayCopy
byteOrder: aGIOPMessage messageHeader byteOrder)

].
(aGIOPMessage messageHeader messageType=(aGIOPMessage messageTypeDict at:#LocateReplyHeader)) iITrue:[

aGIOPMessage messageTypeHeader: (LocateReplyHeader
new: aByteArrayCopy
byteOrder: aGIOPMessage messageHeader byteOrder)

].
(aGIOPMessage messageHeader messageType=(aGIOPMessage messageTypeDict at:#CloseConnection)) iITrue:[

aGIOPMessage messageTypeHeader: nil
].
(aGiOPMessage messageHeader messageType=(aGIOPMessage messageTypeDict at:#MessageError)) iITrue:[
aGIOPMessage messageTypeHeader: nil
].
aByteArrayCopy:=aByteArrayCopy

chopFromBegin:
(aGIOPMessage messageTypeHeader asIIOPByteArray: aGIOPMessage messageHeader byteOrder)

size
align:!.

(aByteArrayCopy size> 0) iITrue:[
(aGIOPMessage messageTypeHeader class=LocateReplyHeader) iITrue:[

(aGIOPMessage messageTypeHeader locateStatus=2) iITrue:[
"MessageBody is an lOR"
aGiOPMessage messageTypeBody: (lOR

new: aByteArrayCopy
byteOrder: aGIOPMessage messageHeader byteOrder)

].
]
itFalse:[

"MessageBody is a parameter Struct"
aGIOPMessage messageTypeBody: aByteArrayCopy

].
].

].
"aGiOPMessage

requestFrom: aDirectedMessage
laGiOPMessagel
aGIOPMessage:=self new.

aGiOPMessage messageTypeHeader: RequestHeader new.
aGiOPMessage messageTypeHeader

objectKey: (ObjectKey new
interfaceName: (Test::',aDirectedMessage receiver class printString);
objectName: aDirectedMessage receiver printString;
yourself);

operation: aDirectedMessage selector asString;
yourself.

aGIOPMessage messageTypeBody: Struct new.
aDirectedMessage arguments do:[:eachl

aGiOPMessage messageTypeBody add: each
].

aGIOPMessage messageHeader: (MessageHeader new
magic: 'GlOP';
byteOrder: false;
messageType: (aGiOPMessage messageTypeDict at: #RequestHeader);
messageSize: (

73

Building distributed SmalltalklJava applications using CORBA

«aGIOPMessage messageTypeHeader asllOPByteArray: false) size) +
«aGIOPMessage messageTypeBody asllOPByteArray: false) size)

);
yourself

).

"aGIOPMessage

GIOPMessage public methods

asllOPByteArray
laCollection aHeader aTypeHeader aTypeBody aByteOrderl
aByteOrder:=self messageHeader byteOrder.

aTypeHeader:=self messageTypeHeader asllOPByteArray: aByteOrder.
aTypeBody:=self messageTypeBody asllOPByteArray: aByteOrder.
self messageHeader messageSize: (aTypeHeader size + aTypeBody size).
self messageHeader messageType:

(self messageTypeDict at:(self messageTypeHeader class printString asSymbol».
aHeader:=seIf messageHeader asllOPByteArray.

aColIection:=OrderedCollection new

"MessageHeader"
addAlI: aHeader;

"MessageTypeHeader"
addAlI: aTypeHeader;

"MessageTypeBody"
addAlI: aTypeBody;
yourself.

"aCollection asByteArray

byteOrder
self messageHeader isNil
ifTrue:["false]
ifFalse:["self messageHeader byteOrder].

createReturnMessage: anORB

"The MessageTypeHeaders return a GIOPMessage because the MessageHeader
depends on the message type"

"self messageTypeHeader
createReturnMessage: anORB
messageTypeBody: self messageTypeBody
byteOrder: self messageHeader byteOrder.

messageHeader
"messageHeader

messageHeader: aMessageHeader
messageHeader:=aMessageHeader

messageSize
"«self messageTypeHeader asIIOPByteArray: self byteOrder) size +
(self messageTypeBody size»

messageTypeBody
"Return the value of messageTypeBody."
messageTypeBody isNil ifTrue:[self messageTypeBody: #[]].
"messageTypeBody

messageTypeBody: aMessageBody
"Save the value of messageTypeBody."

messageTypeBody := aMessageBody

74

Building distributed SmalltalklJava applications using CORBA

messageTypeDict
A(Dictionary new

at:#RequestHeader put:O;
at:#ReplyHeader put: I;
at:#CanceIRequestHeader put:2;
at:#LocateRequestHeader put:3;
at:#LocateReplyHeader put:4;
at:#CloseConnection put:S;
at:#MessageError put:6;
yourself)

messageTypeHeader
"Return the value of messageTypeHeader."

AmessageTypeHeader

messageTypeHeader: aMessageTypeHeader
"Save the value of messageTypeHeader."

messageTypeHeader := aMessageTypeHeader

sendMessage: aHost port: aPort
ImyConnectionSpec myBuffer al
Socket isNil ifTrue:[

myConnectionSpec:=AbtTCPConnectionSpec new
hostType: #AbtTCPInetHost;
hostId: aHost;
port: aPort;
yourself.

Socket:=(AbtSocket new
connectUsing: myConnectionSpec;
yourself

).

I.

Socket sendData: (OrderedCollection new
addAlI: self messageHeader asIIOPByteArray;
addAlI: (self messageTypeHeader asIIOPByteArray: self messageHeader byteOrder);
addAll: (self messageTypeBody asIIOPByteArray: self messageHeader byteOrder);
yourself) asByteArray.

[(myBuffer:=Socket receive) length=OI whileTrue:[].
AmyBuffer asByteArray

sendMyMessage
lal
self messageTypeHeader: (RequestHeader new

requestId: I;
responseExpected: true;
objectKey: (ObjectKey new

interfaceName: 'Ralf::AnyReturner';
objectName: 'ElciiOPProtocol';
yourself

);
operation: 'name';
yourself

).
self messageTypeBody: #[].
self messageHeader: (MessageHeader new

byteOrder: false;
messageType: 0;
messageSize: self messageSize;
yourself

).
a:=self asDirectedMessage.

75

Building distributed Smalltalk/Java applications using CORBA

MessageHeader

Object subclass: #MessageHeader
instanceVariableNames: 'magic glOPVersion byteOrder messageType messageSize '
classVariableNames: "
poolDictionaries: 'MsgType '

MessageHeader public class methods

new: aByteArray
laMessageHeader aByteArrayCopyl
aMessageHeader:=self new.
«aByteArray copyFrom:) to:4) asString='GIOP') ifFalse:[

self error:'Not a GlOP message'
].
aMessageHeader magic: 'GlOP'.
aByteArrayCopy:=aByteArray

chopFromBegin: 4
align:l.

aMessageHeader glOPVersion:
(Version new: aByteArrayCopy).

aByteArrayCopy:=aByteArrayCopy
chopFromBegin:2
align:!.

aMessageHeader byteOrder:
(Boolean new: aByteArrayCopy byteOrder: false).

aByteArrayCopy:=aByteArrayCopy
chopFromBegin: I
align:!.

aMessageHeader messageType:
(aByteArrayCopyatl).

aByteArrayCopy:=aByteArrayCopy
chopFromBegin: I
align:!.

aMessageHeader messageSize:
(Integer new: aByteArrayCopy byteOrder: aMessageHeader byteOrder).

"aMessageHeader

MessageHeader public methods

aslIOPByteArray
laCollectionl
aCoUection:=OrderedCoUection new

addAIl: self magic asByteArray;
addAU: self gIOPVersion asIIOPByteArray;
add AU: self byteOrder asIIOPByteArray;
add: (self messageType);
addAII: (self messageSize asIIOPByteArray: selfbyteOrder);
yourself.

"aCollection asByteArray

byteOrder
byteOrder isNil ifTrue:[self byteOrder: false].
"byteOrder

byteOrder: aBoolean
false
true

Big Endian
Little Endian"

76

Building distributed SmalltalklJava applications using CORBA

byteOrder:=aBoolean

gIOPVersion
gIOPVersion isNil iffrue:[self gIOPVersion: Version new].
AgIOPVersion

glOPVersion: aVersion
gIOPVersion:=aVersion

magic
magic isNil iffrue:[self magic: 'GlOP'].
Amagic

magic: aString
magic:=aString

messageSize
AmessageSize

messageSize: anlnteger
messageSize:=anlnteger

messageType
AmessageType

messageType: anlnteger
messageType:=anlnteger

MessageTypeHeader

Object subclass: #MessageTypeHeader
instanceVariableNames: 'requestld '
c1assVariableNames: 'Language'
poolDictionaries: "

MessageTypeHeader public methods

aslIOPByteArray: aByteArray
self shouldNotlmplement

requestld
Arequestld

requestld: anlnteger
requestld:= anlnteger

RequestHeader

MessageTypeHeader subclass: #RequestHeader
instanceVariableNames: 'objectKey operation principal responseExpected serviceContext '
c1assVariableNames: "
poolDictionaries: "!

RequestHeader public class methods

new: aByteArray byteOrder: aByteOrder
laRequestHeader indexl
aRequestHeader:=self new.
index:=l.

aRequestHeader serviceContext:
(CORBASequence new: aByteArray byteOrder: aByteOrder type: CORBAOctet).

index:=(index+
(aRequestHeader serviceContext aslIOPByteArray: aByteOrder) size)
align: 4.

77

Building distributed Smal/talklJava applications using CORBA

aRequestHeader requestId:
(CORBALong new: (aByteArray from:index) byteOrder: aByteOrder) value.

index:=index+4.

aRequestHeader responseExpected:
(CORBABoolean new: (aByteArray from:index) byteOrder: aByteOrder) value.

index:=(index+ I) align:4.

aRequestHeader objectKey: (ObjectKey
new: (aByteArray from: index)
byteOrder: aByteOrder).

index:=(index+aRequestHeader objectKey size) align: 4.

aRequestHeader operation:
(CORBAString new: (aByteArray from: index) byteOrder: aByteOrder) value.

index:=index+
(aRequestHeader operation size +5) align:4.

aRequestHeader requestingPrincipal:
(CORBASequence new: (aByteArray from:index) byteOrder: aByteOrder type:CORBAOctet).

"aRequestHeader.

RequestHeader public methods

addServiceContext: aServiceContext
self serviceContext add: aServiceContext

asllOPByteArray: aByteOrder
"(CORBAStruct new

add: self serviceContext asCORBAType;
add: self requestld asCORBAType;
add: self responseExpected asCORBAType;
add: self objectKey asCORBAType;
add: self operation asCORBAType;
add: self requestingPrincipal asCORBAType;
yourself) asIlOPByteArray: aByteOrder

createReturnMessage: anORB messageTypeBody: aByteArray byteOrder: aByteOrder
(Language='Java') ifTrue:[

"(self createReturnMessageJava: anORB messageTypeBody: aByteArray byteOrder: aByteOrder)
].
(Language='Smalltalk') ifTrue:[

"(self createReturnMessageSmalltalk: anORB messageTypeBody: aByteArray byteOrder: aByteOrder)

createReturnMessageJava: anORB messageTypeBody: aByteArray byteOrder: aByteOrder

laReplyMessage aninterfaceDef anOperationName anOperationDef aDirectedMessage
result aNewName anlOR aMessageBody aGlOPMessagel

aReplyMessage:=ReplyHeader new
requestId: self requestId;
serviceContext: self serviceContext;
yourself.

aninterfaceDef:=anORB interfaceRepository resolveinterface:
self objectKey interfaceName asRepositoryld.

(self operation beginsWith:'RESERVEDWORD') ifTrue:[
anOperationName:=self operation copyFrom: ('RESERVEDWORD' size+ I) to: self operation size

]
ifFalse:[

anOperationName:=self operation copy
).

anOperationDef:=aninterfaceDef operationDefs at:(
aninterfaceDef operationDefs findFirst:[:ala name=anOperationName)).

78

Building distributed SmalltalklJava applications using CORBA

aDirectedMessage:=DirectedMessage
selector: anOperationDef smalltalkName
arguments: (aByteArray asArgumentArray: anOperationDef parameterDefs byteOrder: aByteOrder)
receiver: (anORB members at: self objectKey objectName asSymbol).

(aDirectedMessage selector=#garbageCollect) iITrue:[
"kill the object if it is not a default factory"
(self objectKey objectName beginsWith: 'Default') ifFalse:[

anORB members
removeKey: self objectKey objectName asSymbol
ifAbsent:[].

Transcript cr;show: ('Garbage collected ',self objectKey objectName)
].
result:=CORBAVoid new.

]
ifFalse:[

(aDirectedMessage selector=#new) iITrue:[

result:=(anORB members at: self objectKey objectName asSymbol) class new.
]
ifFalse:[

result:=aDirectedMessage send.
].

].

"Depending on the result, set the reply status"
aReplyMessage replyStatus: O. "NO_EXCEPTION"

(anOperationDef retumParameter lype-=result asCORBAType class) iITrue:[
(anOperationDef retumParameter type class-=result asCORBAType class) iITrue:[

self error: 'Method result does not correspond to the interface definition'
] .

].

"Subscribe the lOR's and build messagebody"
(result asCORBAType class=CORBAObjref) iITrue:[

aMessageBody:=result asCORBAType.
(aMessageBody value profiles at: I) objectLocator objectKey objectName: anORB newTransientName printString.
anORB subscribe: result name: (aMessageBody value profiles at:l) objectLocator objectKey objectName.

]
ifFalse:[

(anOperationDef retumParameter type=CORBAVoid)
iITrue:[aMessageBody:=#[]]
ifFalse:[aMessageBody:=result asCORBAType].

].

aGlOPMessage:=GIOPMessage new
messageTypeHeader: aReplyMessage;
messageTypeBody: (aMessageBody);
yourself.

aGIOPMessage messageHeader: (MessageHeader new
messageType: I; "Reply message"
messageSize: aGIOPMessage messageSize;
byteOrder: aByteOrder;
yourself).

"aGIOPMessage

createRetumMessageSmalltalk: anORB messageTypeBody: aByteArray byteOrder: aByteOrder

laReplyMessage anInterfaceDef anOperationName anOperationDef aDirectedMessage
result aNewName anIOR aMessageBody aGIOPMessagel

aReplyMessage:=ReplyHeader new
requestld: self requestld;
serviceContext: self serviceContext;
yourself.

aDirectedMessage:=DirectedMessage
selector: self operation asSymbol

79

Building distributed Smalltalk/Java applications using CORBA

arguments: (aByteArray asArgumentArrayFromAny: aByteOrder)
receiver: (anORB members at: self objectKey objectName asSymbol).

result:=aDirectedMessage send.

"Depending on the result, set the reply status"
aReplyMessage replyStatus: O. "NO_EXCEPTION"

"Always return an lOR"
anORB subscribe: result name: (aNewName:=anORB newTransientName printString).
anIOR:=(I0R new

typeld: CIDL:',self objectKey interfaceName moduleName,'1' ,result class printString,': 1.0');
addProfile: (TaggedProfile new

tag: 0;
objectLocator: (ObjectLocator new

host: anORB tCPSellings host dOlledDecimalAddress;
port: anORB tCPSellings port portNumber;
iIOPVersion: (Version new major: I ;minor: O;yourself);
objectKey: (ObjectKey new

interfaceName: (self objectKey interfaceName moduleName,'::',result class printString);
objectName: aNewName;
yourself);

yourself);
yourself);

yourself).
aMessageBody:=anIOR.

aGiOPMessage:=GIOPMessage new
messageTypeHeader: aReplyMessage;
messageTypeBody: aMessageBody;
yourself.

aGiOPMessage messageHeader: (MessageHeader new
messageType: I; "Reply message"
messageSize: aGIOPMessage messageSize;
byteOrder: aByteOrder;
yourself).

AaGIOPMessage

objectKey
"Return the value of objectKey. "
objectKey isNil ifTrue:[self objectKey: ObjectKey new).
AobjectKey

objectKey: anObjectKey
"Save the value of objectKey."

objectKey := anObjectKey

operation
"Return the value of operation."

Aoperation

operation: aString
"Save the value of operation."

operation := as Iring.

printSIring
ATime now printString,'RequestHeader: requestld=',self requestld printSIring,' operation=',self operation,' objectKey=',self objectKey

printSIring

requestId
requestId isNii ifTrue:[self requestId: 0).
ArequestId

requestId: aninteger
requestId:=aninteger

80

Building distributed Smal/talk/Java applications using CORBA

requestingPrincipal
"Return the value of principal."
principal isNil ifTrue:[self requestingPrincipal: CORBASequence new].
Aprincipal

requestingPrincipal: aSequence
"Save the value of principal."
principal := aSequence

responseExpected
"Return the value ofresponseExpected."
responseExpected isNil ifTrue:[self responseExpected: true].
AresponseExpected

responseExpected: aBoolean
"Save the value of responseExpected."

responseExpected := aBoolean.

serviceContext
"Return the value of serviceContext."
serviceContext isNii ifTrue:[self serviceContext: CORBASequence new].
AserviceContext

serviceContext: aSequence
"Save the value of serviceContext."

serviceContext := aSequence.

ReplyHeader

MessageTypeHeader subclass: #ReplyHeader
instanceVariableNames: 'replyStatus serviceContext'
c1assVariableNames: "
poolDictionaries: "!

ReplyHeader public class methods

new: aByteArray byteOrder: aByteOrder
laReplyHeader index!
aReplyHeader:=self new.
index:=1.

aReplyHeader serviceContext:
(CORBASequence new: aByteArray byteOrder: aByteOrder type:CORBAOctet).

index:=(index+
(aReplyHeader serviceContext asllOPByteArray: aByteOrder) size)
align: 4.

aReplyHeader requestId:
(CORBALong new: (aByteArray from: index) byteOrder: aByteOrder).

index:=(index+4) align:4.

aReplyHeader replyStatus:
(CORBALong new: (aByteArray from: index) byteOrder: aByteOrder).

AaReplyHeader

ReplyHeader public methods

asIIOPByteArray: aByteOrder
A(CORBAStruct new

add: self serviceContext;
add: self requestld asCORBAType;
add: self replyStatus asCORBAType;

81

Building distributed Smalltalk/Java applications using CORBA

yourself) asllOPByteArray: aByteOrder

printString
"Time now printString,'ReplyHeader: requestld=',self requestld printString, , replyStatus=',self replyStatus printString

replyStatus
"replyStatus

replyStatus: aninteger
replyStatus:=aninteger

serviceContext
serviceContext isNil ifTrue:[self serviceContext: CORBASequence new].
"serviceContext

serviceContext: aSequence
serviceContext:= aSequence

CancelRequestHeader

MessageTypeHeader subclass: #CancelRequestHeader
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

CancelRequestHeader public class methods

new: aByteArray byteOrder: aByteOrder
laCancelRequestHeaderl
aCanceIRequestHeader:=self new.
aCancelRequestHeader requestId:

(integer new: aByteArray byteOrder: aByteOrder).
"aCancelRequestHeader

CancelRequestHeader public methods

asllOPByteArray: aByteOrder
"(Struct new

add: self requestld;
yourself) asllOPByteArray: aByteOrder

LocateRequestHeader

MessageTypeHeader subclass: #LocateRequestHcader
instanceVariableNames: 'objectKey'
classVariableNames: "
poolDictionaries: "

LocateRequestHeader public class methods

new: aByteArray byteOrder: aByteOrder
laLocateRequestHeader aByteArrayCopyl
aLocateRequestHeader:=self new.

aLocateRequestHeader requestld:
(CORBALong new: aByteArray byteOrder: aByteOrder) value.

aByteArrayCopy:=aByteArray
chopFromBegin:4
align:4.

aLocateRequestHeader objectKey:(ObjectKey
new: aByteArrayCopy
byteOrder: aByteOrder).

"aLocateRequestHeader

82

Building distributed Smal/talk/Java applications using CORBA

LocateRequestHeader public methods

asllOPByteArray: aByteOrder
J\(OrderedCollection new

addAII: (self requestld asllOPByteArray: aByteOrder);
addAII: (self objectKey asllOPByteArray: aByteOrder);
yourself) asByteArray

createReturnMessage: anORB messageTypeBody: aByteArray byteOrder: aByteOrder
"Creates a server message (LocateReply) from this message"
laMessage aGlOPMessagel
aMessage:=LocateReplyHeader new.
aMessage requestld: self requestld.
(anORB members includesKey: self objectKey objectName asSymbol) ifTrue:[

aMessage locateStatus: I. "OBJECT_HERE"
]
itFalse:[

aMessage locateStatus: O. "UNKNOWN_OBJECT"
].
aGIOPMessage:=(GlOPMessage new

messageTypeHeader: aMessage;
messageTypeBody: nil;
yourself).

aGIOPMessage messageHeader: (MessageHeader new
messageType: (aGiOPMessage messageTypeDict at: #LocateReplyHeader);
messageSize: aGiOPMessage messageSize;
byteOrder: aByteOrder;
yourself).

J\aGIOPMessage

objectKey
J\objectKey

objectKey: aSequence
objectKey:=aSequence

printString
"'LocateRequestHeader: requestld=',self requestId,' objectKey=',self objectKey printString

LocateReplyHeader

MessageTypeHeader subclass: #LocateReplyHeader
instanceVariableNames: 'IocateStatus '
classVariableNames: ..
poolDictionaries: ..

LocateReplyHeader public class methods

new: aByteArray byteOrder: aByteOrder
laLocateReplyHeader aByteArrayCopyl
aLocateReplyHeader:=self new.

aLocateReplyHeader requestld:
(Integer new: aByteArray byteOrder: aByteOrder).

aByteArrayCopy:=aByteArray
chopFromBegin: 4
align: 4.

aLocateReplyHeader locateStatus:
(Integer new: aByteArrayCopy byteOrder: aByteOrder),

J\aLocateReplyHeader

LocateReplyHeader public methods

asIIOPByteArray: aByteOrder

83

a.•.'.·· .w Building distributed Smal/talklJava applications using CORBA

"(Struet new
add: selfrequestId;
add: self loeateStatus;
yourself) asIIOPByteArray: aByteOrder

loeateStatus
"loeateStatus

loeateStatus: anInteger
"0 UNKNOWN_OBJECT"
"I OBJECT_HERE"
"2 OBJECT_FORWARD (lOR in the Message body"
loeateStatus:=anInteger

printString
"'LoeateReplyHeader: requestld=',self requestld,' loeateStatus=',self loeateStatus

84

Building distributed Smalltalk/Java applications using CORBA

Appendix I. Source code, Repository classes

Repository

Object subclass: #Repository
instanceVariableNames: 'moduleDefs '
c1assVariableNames: "
poolDictionaries: "

Repository public methods

addModuleDef: aModuleDef
self moduleDefs add: aModuleDef

moduleDefs
moduleDefs isNil iITrue:[selfmoduleDefs: OrderedCollection new).
"moduleDefs

moduleDefs: aColiection
moduleDefs:=aCollection!

resolveinterface: aRepId
" aRepId should by a repository Id like: 'IDL:ModuleName/interfaceName: 1.0'.

This method returns the InterfaceDef specified by aRepId

laModuleName aninterfaceName i iOld aModuleDef aninterfaceDef operationDef aTreeNode resultl
i:=1.
[(aRepId at:i)=$1) whileFalse:[i:=i+ I].

aModuleName:=aRepld copyFrom: 5 to: (i-I).

iOld:=i.
[(aRepId at:i)=$:) whileFalse:[i:=i+l).
aninterfaceName:=aRepId copyFrom: (iOld+l) to: (i-I).

aModuleDef:=self moduleDefs at: (
self moduleDefs findFirst:[:eachleach name=aModuleName]

).
anlnterfaceDef:=aModuleDef findinterface: (interfaceDef new

name: aninterfaceName;
yourself).

"aninterfaceDef.

ModuleDef

Object subclass: #ModuleDef
instanceVariableNames: 'interfaceDefs name'
c1assVariableNames: "
poolDictionaries: 'CldtConstants '

ModuleDef public methods

= aModuleDef

"(self name=aModuleDef name)

addinterfaceDef: aninterfaceDef
self interfaceDefs add: aninterfaceDef

allinterfaceDefs
laCollectionl
aCollection:=OrderedCollection new addAIl: self interfaceDefs;yourself.
self interfaceDefs do:[:eachl

85

Building distributed SmalltalklJava applications using CORBA

aCollection addAlI: each allInterfaceDefs
].
"aCollection

asIDLSourceCodeForlava
laShingl
aString:='module ',self name,' {', 13 asCharacter asString, 10 asCharacter asString.
self interfaceDefs do:[:eachl

aString:=aString, ' interface ',each name,';', 13 asCharacter asString, 10 asCharacter asString.
].
self interfaceDefs do:[:eachl

aString:=aString, (each asIDLSourceCodeForlava: ") sourceCode.
].
aString:=aString,');' .
"(IDLSourceCode new

moduleName: self name;
sourceCode: aString;
yourself).

aslavaSourceCodes
laCollectionl
aCollection:=OrderedCollection new.
self interfaceDefs do:[:each I

aCollection addAlI: (each aslavaSourceCodes: self name)
].
"aCollection

copy
laModuleDell
aModuleDef:=ModuleDef new.
aModuleDef name: self name.
self interfaceDefs do:[:eachl

aModuleDef addInterfaceDef: each copy
].
"aModuleDef.

findInterface: anlnterfaceDef
Iresultl
self interfaceDefs do:[:eachl

(result:=each findInterface: anInterfaceDef) isNil ifFalse:["result].
] .
"nil

interfaceDefs
interfaceDefs isNil iITrue:[self interfaceDefs: OrderedCollection new].
"interfaceDefs.

interfaceDefs: aCollectionOfInterfaceDefs

interfaceDefs := aCollectionOfInterfaceDefs

name
name isNil iITrue:[self name: "].
"name

name: aString
name:=aString

InterfaceDef

Object subclass: #InterfaceDef
instanceVariableNames: 'name operationDefs interfaceDefs '
c1assVariableNames: "
poolDictionaries: 'CldtConstants '

InterfaceDef public class methods

86

Building distributed Sma/ltalk/Java applications using CORBA

fromSmalltalkClass: aClass
lanOperationDef aninterfaceDef anOrderedDictionaryl
aninterfaceDef:=se1f new.
aninterfaceDef name: aClass printString.
(aClass respondsTo: #IS_instanceinterfaceSpec) ifTrue:[

(anOrderedDictionary:=aClass IS_instanceinterfaceSpec features) doWithIndex:[:each :indexl
(each c1ass=AbtActionSpec) ifTrue:[

aninterfaceDef addOperationDef: (OperationDef fromAbtActionSpec: each selector:
(anOrderedDictionary keyAtindex: index».

).
(each c1ass=AbtAttributeSpec) ifTrue:[

(OperationDef fromAbtAttributeSpec: each selector: (anOrderedDictionary keyAtindex: index»
do: [:eachOperationl

aninterfaceDef addOperationDef: eachOperation
).

j.
).

).
"aninterfaceDef

fromSmalltalkClass: aSmalltalkClass retumParameter: aRetumParameter
laninterfaceDef theSubclasses anInterfaceNameI
aninterfaceDef:=InterfaceDef new.
(aSmalltalkClass c1ass=Metaclass) ifTrue:[

aninterfaceName:=aSmalltalkClass printString chopTillSpace,'Class'.
)
ifFalse:[

aninterfaceName:=aSmalltalkClass printString.
).
aninterfaceDef name: aninterfaceName.
«aSmalltalkClass methodsArray select:[:ala-=nil]) collect:[:ala selector)) do:[:eachl

aninterfaceDef addOperationDef: (OperationDef new
name: each asIDLOperationString;
smalltalkName: each;
parameterDefs: each asParameterDefs;
retumParameter: aRetumParameter copy;
yourself)

).

"When no new method is implemented in a MetaClass, implement it"
(aSmalltalkClass c1ass=Metaclass) ifTrue:[

(aninterfaceDef operationDefs includes: (OperationDef new name:'new'» ifFalse:[
aninterfaceDef addOperationDef: (OperationDef new

name: 'new';
smalltalkName: #new;
parameterDefs: OrderedCollection new;
rctumParameter: aRetumParameter copy;
yourself)

).
).

theSubclasses:=aSmalltalkClass subclasses.
(theSubclasses size>O) ifTrue:[

theSubclasses do:[:eachl
anIntcrfaceDef addlnterfaceDef: (self fromSmalltalkClass: each retumParameter: aRetumParameter copy)

).
"aninterfaceDef

)
ifFalse:[

aninterfaceDef interfaceDefs: OrderedCollection new.
"aninterfaceDef

).

InterfaceDef public methods

< aninterfaceDef
aninterfaceDef isNil ifTrue:["false)

87

Building distributed Smalltalk/Java applications using CORBA

ifFalse:[
A(self name<aninterfaceDef)

<= aninterfaceDef
(self = aninterfaceDef) iffrue:(Atrue].
A(self < aninterfaceDef).

= aninterfaceDef
(aninterfaceDef class-=InterfaceDef) iffrue:(Afalse].
A(self name=aninterfaceDef name)

addinterfaceDef: aninterfaceDef
self interfaceDefs add: aninterfaceDef

addOperationDef: anOperationDef
self operationDefs add: anOperationDef

addOperationFromString: aString usingSmalltalkName: aSmalltalkName
laStringCopy returnParameterString operationName parameterStringCollection aReturnParameter aParameterCollection

aParameterDefl
aStringCopy:=aString chopBeginEnd.
returnParameterString:=aStringCopy chopTillSpace.
operationName:=(aStringCopy:=(aStringCopy copyFrom: (aString chopTillSpace size +1) to: aString size) chopBeginEnd)

chopTillBracketOpen.
parameterStringCollection:=aStringCopy betweenBrackets asSeperatorByCommaCollection.

aReturnParameter:=ParameterDef fromString: returnParameterString.
aParameterCollection:=OrderedCollection new.
parameterStringCollection do:[:eachl

(aParameterDef:=ParameterDef fromString: each) isNil ifFalse:[
aParameterCollection add: aParameterDef

].
].
self addOperationDef: (OperationDef new

name: operationName;
returnParameter: aReturnParameter;
parameterDefs: aParameterCollection;
smalltalkName: aSmalltalkName;
yourselt).

allinterfaceDefs
laCollectionl
aCollection:=(OrderedCollection new addAll: self interfaceDefs;yourselt).
self interfaceDefs do:[:eachl

aCollection add All: each allinterfaceDefs
].
AaCollection

asIDLSourceCodeForJava: aParentinterfaceName
laStringl
«aParentinterfaceName isNil)l(aParentinterfaceName=")) iffrue:[aString:=' interface ',self name,' {',LineDelimiter.]
ifFalse:[

aString:=' interface' ,self name,':',aParentinterfaceName,'{',lineDelimiter.
].
(self operationDefs asSortedCollection:[:a :bla<b]) do:[:eachl

aString:=aString, each asIDLStringForJava
].
aString:=aString,' J;', LineDelimiter.
self interfaceDefs do:[:eachl

aString:=aString, (each asIDLSourceCodeForJava: self name) sourceCode.
].
A(IDLSourceCode new

moduleName: ";
sourceCode: aString;
yourselt).

asJavaSourceCodes: aModuleName

88

Building distributed Smalltalk/Java applications using CORBA

laString aCollectionl
aCollection:=OrderedCollection new.
aString:='c1ass ',self name,' extends " aModuleName,'.',JavaDefaults skeletonPrefix,seif name,JavaDefaults

skeletonPostfix,' {',LineDelimiter.
aString:=aString,' " 'public ',aModuleName,'.',self name,' ',JavaDefaults remoteinstanceName,';'.LineDelimiter.
aString:=aString, (JavaDefaults

constructors: self name
moduleName: aModuleName
host: ORB current tCPSettings host dottedDecimalAddress
port: ORB current tCPSettings port portNumber
tab: I).

aString:=aString, (JavaDefaults finalizeMethod: I).
self operationDefs do:[:eachl

aString:=aString, each asJavaOperationString
].
aString:=aString,'}',WINLineDelimiter.

self interfaceDefs do:[:eachl
aCollection addAII: (each asJavaSourceCodes: aModuleName)

].

aCollection add: (JavaSourceCode new
sourceCode: aString;
c1assName: self name;
yourself).

"aCollection.

copy
laninterfaceDefi
aninterfaceDef:=InterfaceDef new.
aninterfaceDef name: self name.
self operationDefs do:[:eachl

aninterfaceDef addOperationDef: each copy
].
self interfaceDefs do:[:eachl

aninterfaceDef addlnterfaceDef: each copy
].
"aninterfaceDef.

findinterface: aninterfaceDef
"returns the interface in the tree conform an interfaceDef'
Iresultl
(self=aninterfaceDef) ifTrue:["self]
itFalse:[

self interfaceDefs do:[:eachl
(result:=each findinterface: anlnterfaceDef) isNil itFalse:["result].

] .
].
"nil

findParentinterface: aninterfaceDef
"find the parent of aninterfaceDef'
(self interfaceDefs includes: aninterfaceDef) ifTrue:["self]
itFalse:[

self interfaceDefs do: [:eachl
(each findParentinterface: aninterfaceDef) isNii itFalse:["each].

].
].
"nil

getChildren
"Return the value of getChildren."

"interfaceDefs

hasChildren
"Return the value of hasChildren."
"self interfaceDefs isEmpty not

89

Building distributed Sma/ltalklJava applications using CORBA

identifier

interfaceDefs
interfaceDefs isNil iITrue:[self interfaceDefs: OrderedCollection new].
"interfaceDefs

interfaceDefs: aCollectionOfinterfaceDefs
interfaceDefs:=aCollectionOfinterfaceDefs.

name
name isNil iITrue:[self name: "].
"name

name: aString
name:=aString

operationDefs
operationDefs isNil iITrue:[self operationDefs: OrderedCollection new].
"operationDefs

operationDefs: aCollection
operationDefs:=aCollection

OperationDef

Object subclass: #OperationDef
instanceVariableNames: 'name parameterDefs rctumParameter smalltalkName '
classVariableNames: "
poolDictionaries: 'CldtConstants '

OperationDef public class methods

finalizeOperation
laStringl
aString:=' protected void finalizeO{',WINLineDelimiter.
aString:=aString,' try{',WINLineDelimiter.
aString:=aString, , _remoteInstance.garbageCollectO;',WINLineDelimiter.
aString:=aString,')',WINLineDelimiter.
aString:=aString,' catch(CORBA.SystemException e){',WINLineDelimiter.
aString:=aString,' System.err.println(e);',WINLineDelimiter.
aString:=aString,' }"WINLineDelimiter.
aString:=aString,' j',WINLineDelimiter.
"aString.

fromAbtActionSpec: anAbtActionSpec selector: aSelector
lanOperationDefi
anOperationDef:=se1f new.
anAbtActionSpec parameters isNil ifFalse:[

anAbtActionSpec parameters do:(:eachParameterl
anOperationDef addParameterDef: (ParameterDef new

type: eachParameter parameterClass asCORBAType;
name: eachParameter parameterName;
yourself).

].
].
anAbtActionSpec resultType isNil iITrue:(

anOperationDef relUmParameter: (ParameterDef new
type: Object asCORBAType).

]
ifFalse:[

anOperationDef retumParameter: (ParameterDef new
type: anAbtActionSpec resultType parameterClass asCORBAType

).

].
anOperationDef name: aselector asString omitColons.

90

Building distributed SmaJltalk/Java applications using CORBA

anOperationDef smalltalkName: aSelector.
"anOperationDef.

fromAbtAttributeSpec: anAbtAttributeSpec selector: aSelector
"Returns a collection with operationDefs"
lanOperationCollectionl
anOperationCollection:=OrderedCollection new.
anAbtAttributeSpec getSelector isNil ifFalse:[

anOperationCollection add: (OperationDef new
returnParameter: (ParameterDef new

type: anAbtAttributeSpec attributeClass asCORBAType;
yourself);

name: aSelector asString omitColons;
smalltalkName: aselector;
yourself).

].
anAbtAttributeSpec setSelector isNil ifFalse:[

anOperationCollection add: (OperationDef new
retumParameter: (ParameterDef new

type: CORBAVoid;
yourself);

addParameterDef: (ParameterDef new
type: anAbtAttributeSpec attributeClass asCORBAType;
name: 'setParameter';
yourself);

name: (aSelector asString omitColons,'Set');
smalltalkName: aSelector;
yourself).

].
"anOperationCollection

OperationDef public methods

< anOperationDef
"(self name < anOperationDef name)

= anOperationDef
(anOperationDef respondsTo: #name) ifTrue:[

"(self name=anOperationDef name)
]
ifFalse:[

"false
].

addParameterDef: aParameterDef
self parameterDefs add: aParameterDef

asIDLString
"Converts the operation in an IDL source String"
laString operationNamel
operationName:=self name.
aString:=self returnParameter type asIDLString, , " operationName.
aString:=aString, '('.
self parameterDefs do: [:eachl

aString:=aString, each asIDLString.
(each-=self parameterDefs last) ifTrue:[aString:=aString,','.].

].
aString:=aString, ');'.
"aString

asIDLStringForJava
"Converts the operation in an IDL source String"
laString operationNamel
(JavaDefaults javaReservedWords includesKey: self name) ifTrue:[

operationNalOe:=OperationDef JavaReservedWords at: self name.
]
ifFalse:[

operationName:=",self name.

91

Building distributed Smalltalk/Java applications using CORBA

].
aString:=' " self returnParameter type asIDLString, ' " operationName.
aString:=aString, '('.
self parameterDefs do:[:eachl

aString:=aString, each asIDLStringForJava.
(each-=self parameterDefs last) iITrue:[aString:=aString,','].

].
aString:=aString, ');', LineDelimiter.
"aString

asJavaOperationString
laString operationName aParameterString aParameterNameStringl
aParameterString:=".
aParameterNameString:=".
self parameterDefs do:[:eachl

aParameterString:=aParameterString, each type asJavaString,' ',each name.
(each-=self parameterDefs last) iITrue: [aPararneterString:=aParameterString,','].

].
self parameterDefs do:[:eachl

aParameterNameString:=aParameterNameString,each name.
(each-=self parameterDefs last) iITrue: [aParameterNameString:=aParameterNameString,', '].

].
"JavaDefaults

remoteMethod: self name
returnTypeString: self returnParameter type asJavaString
parameterString: aParameterString
parameterNameString: aParameterNameString
tab: I

copy
lanOperationDefl
anOperationDef:=OperationDef new.
anOperationDef

name: self name;
returnParameter: self returnParameter;
smalltalkName: self smalltalkName.

self parameterDescriptions do: [:eachl
anOperationDef addParameterDescription: each copy

].
"anOperationDef.

name
name isNil iITrue:[self name:"].
"name

name: aString
name:=aString

parameterDefs
parameterDefs isNii iITrue:[selfparameterDefs: OrderedCollection new].
"parameterDefs

parameterDefs: aCollection
parameterDefs:=aCollection

returnPararneter
returnParameter isNil iITrue:[seif returnPararneter: (ParameterDef new type: (CORBAVoid new);yourselt)].
"returnParameter

returnParameter: aPararneterDef
returnPararneter:=aParameterDef

returnParameterldentifier
returnParameter isNii iITrue: ["nil]
i!False:["self returnParameter type].

smalltalkNarne
smalitalkName isNil iITrue:[self smaUtalkName: self name asSymbol].

92

Building distributed Smalltalk/Java applications using CORBA

"smalltalkNarne.

smalltalkName: aSymbol
smalltalkName:=aSymbol

ParameterDef

Object subclass: #ParameterDef
instanceVariableNames: 'type name'
classVariableNames: "
poolDictionaries: "

ParameterDef class public class methods

fromString: aString
laS tringCopy aParameterDefi
(aString=") iITrue:["nil).
aParameterDef:=self new.
"Build the parameterDef from an IDL string
e.g. 'void' or 'in long aName'
"
aStringCopy:=aString chopTillSpace.
«aStringCopy='in')I(aStringCopy='out')I(aStringCopy='inout') iITrue:[

"we are dealing with a normal parameter"
aStringCopy:=(aString copyFrom: (aString chopTillSpace size +1) to: aString size) chopBeginEnd.
aParameterDef type: (CORBAType fromString: aStringCopy chopTillSpace).
aStringCopy:=(aStringCopy copyFrom: (aStringCopy chopTillSpace size +1) to: aStringCopy size) chopBeginEnd.
aParameterDef name: aStringCopy.

)
ifFalse:[

"we are dealing with a retumParameter"
aParameterDef type: (CORBAType fromString: aString).

).
"aParameterDef

JavaReservedWords
"OperationDef JavaReservedWords

ParameterDef public methods

= aParameterDescription
(aParameterDescription respondsTo: #name) iITrue:[

"(self name=aParameterDescription name)
)
ifFalse:[

"false
).

asIDLString
"'in ',self type asIDLString,' " self name

asIDLStringForJava
IparameterNamel
(JavaDefaults javaReservedWords includesKey: self name) iITrue:[

parameterName:=JavaDefaults javaReservedWords at: self name.
)
ifFalse:[

parameterName:=self name.
).
"'in ',self type asIDLString,' " parameterName

copy
laParameterl
aParameter:=ParameterDef new.
aParameter name: self name.
aParameter type: self type copy.
"aParameter

93

Building distributed Smalltalk/Java applications using CORBA

name
name isNil iITrue:[self name: "].
J\name

name: aString
name:=aString

printString
J\type printString

type
type isNil iITrue:[self type: CORBAVoid new].
J\type

type: aString
type:=aString

94

Building distributed Smalltalk/Java applications using CORBA

Appendix J. Performance measurement results

To measure the performance of an Orbix CORBA Smal1talk server and a VisiBroker CORBA Java client I performed
two measurements which are described in paragraph 5.5. The complete measured results are given in this Appendix.

Number of method Measurement 1 Measurement 2 Measurement 3 Measurement 4 Average (msec)

1 660 660 660 660 660
2 720 710 720 710 715
5 770 770 770 770 770
10 880 930 940 880 908
20 1100 1100 1150 1100 1113
50 1820 1810 1810 1870 1828
100 3030 3020 3070 3030 3038

Table J-1, Time agains method invocations

B!J~'!1~~r~~i:~.~.~.M~_(ls_lI!~~t:~!._M~(l~~E!:!!!.~~~...M!:.(l~u.~~!!!.~!l_.. Meas~~.t:_~_..~_\l~E(l,ge (msec)
1000 710 720 770 770 743
2000 770 770 770 770 770
5000 770 820 820 830 810
10000 820 940 930 940 908
20000 1040 1100 1100 1100 1085
50000 1600 1650 1540 1650 1610
100000 2420 2410 2410 2403

Table J-2, Time against sent bytes (one method invocation)

95

Building distributed SmalltalklJava applications using CORBA

Appendix K. References

[OMG 1995a]
Object Management Group, "The Common Object Request Broker - Architecture and Specification".
Revision 2.0, July 1995, Updated July 1996

[OMG 1995b]
Object Management Group, "CORBAservices - Common Object Services Specification". Revised Edition
March 31,1995, Updated: March 28,1996, Updated: July 15, 1996, Updated: November 22,1996,
Updated: March 1997

[OMG 1995c]
Object Management Group, "Common facilities architecture". Revision 4.0, november 1995

[OMG 1997a]
Object Management Group, "A discussion of the Object Management Architecture". January 1997

[OMG 1997b]
Object Management Group, "IDL/Java language mapping". March 19, 1997

[VOG 1997]
Andreas Vogel and Keith Duddy, "Java Programming with CORBA". John Wiley & Sons, 1997

[VIN 1997]
Steve Vinoski, IONA Technologies inc., "CORBA, integrating diverse applications withing distributed
hetrogeneous environments". IEEE Communications Magazine, february 1997, page 46

[DOU 1997]
Douglas C. Schmidt, a.o., "A high-performance end system architecture for real-time CORBA". IEEE
Communications Magazine, february 1997, page 72

[MON 1997]
John Montgomery, "Distributing Components, for CORBA and DCOM it's time to get practical". Byte
magazine, april 1997, page 93

[POM 1997]
John Pompeii, "Programming with CORBA and DCOM, it just isn't as easy as proponents of either side
would have you believe". Byte magazine, april 1997, page 103

[TAN 1996]
Andrew S. Tanenbaum, "Computer Networks". Pretice-Hall inc., New Jersey, 1996

[GOL 1980]
Adele Goldberg and David Robson, "The language and its implementation". Addison Wesley Publishing
Company, Xerox Palo Alto Research Center, 1980

[VIS 1997a]
Visigenic, "VisiBroker for Java, reference manual release 2.5". Visigenic Software inc., 1997

[VIS 1997b]
Visigenic, "VisiBroker for Java, programmer's manual release 2.5". Visigenic Software inc., 1997

96

"eco ~:. Building distributed SmaJitalklJava applications using CORBA

[ION 1997]
laNA Technologies Ltd., "Orbix/Smalltalk programming guide". Release 1.0, January 1997

97

	Voorblad
	Preface
	Summary
	Contents
	1 Introduction
	2 COBRA
	3 COBRA IIOP protocol
	4 COBRA focussed on Smalltalk and Java
	5 Commercial implementations of COBRA ORBs for Smalltalk and Java
	6 Implementation of a COBRA framework
	7 Conclusions and recommendations
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Appendix K

