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ABSTRACT

Linear system models, which can be obtained from existing linear identification

techniques, hold in a fixed operating point. When the process, however, changes its
operating point a wide operating range will be passed through and a linear model satisfies
no more, a nonlinear model must be used. This clearly occurs in start up, shut down and
change over situations.

Multilayer neural networks can 'learn' static nonlinear functions by a given training set of
input-output pairs which define this function. When dynamics are included, by means of

the feedback of past outputs and the use of past inputs, it is still possible to model
nonlinear processes with neural network models. A universal nonlinear system description
will be introduced, which includes both a well known linear ARMA model and a
nonlinear neural network model. So it is possible to use a priori knowledge about the

linear part of the system (possibly from earlier linear identifications) directly as an
initialisation. In that case the neural network model only needs to model the remaining
nonlinear part of the system.

Simulations show that this approach is able to identify nonlinear systems by estimating the

linear and nonlinear parameters simultaneously. A special identification procedure (first
the equation error model identification and then the output error model identification) is

necessary to obtain a good simulation model in particular when the system output is

disturbed by noise. The identification of the water vessel process has proved in conclusion
that it is possible to find one nonlinear model for the entire working range in stead of
numerous linear models each for a specific working point.
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1 INTRODUCTION

A system working in an operating point, behaves fairly linear and can be modelled by

linear models. Much attention has been paid to linear system identification techniques.
When a system, however, changes its operating point a wide range has to be passed

through and the system can not be described by linear models any more. In such
situations it is desirable to have a nonlinear model which describes the system behaviour.

This clearly occurs in start up, shut down and change over situations.

In recent years there has been an increasing interest in using neural networks for

nonlinear system identification [3,4,6,7,8,9,11,12,17], while neural networks are capable
to represent nonlinear relationships. At the section Measurement and Control of the
Eindhoven University of technology a study has started to investigate if neural networks

can be used for nonlinear system identification. The study includes:

• A literature study, to find out what has been published about neural networks with
respect to system identification. Important articles turned out to be [12] from Narendra

and Parthasarathy, who give some detailed simulation results, and [20] where the

learning algorithm used is discussed.

• The implementation of a learning algorithm (backpropagation). While there is no
learning algorithm available, an algorithm has to be written (in C, to speedup the

algorithm) and linked to MATLAB.

• The developed algorithm is tested on examples from [12], to verify the algorithm.

• The identification of a water-vessel process using the nonlinear system identification
algorithm.

In the next chapter some fundamentals about neural networks are discussed, extra

attention is paid to those neural network structures which will be used for nonlinear

system modelling. In chapter 3 a universal model is introduced which includes both a

linear and a nonlinear model. On the basis of this model a nonlinear system identification

using neural networks is discussed. Some simulation results are reviewed in chapter 4

after which the identification of a water-vessel process will be discussed in chapter 5. In

the final chapter the results are discussed and recommendations for further research are
given.
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2 NEURAL NETWORKS

In this chapter some fundamentals about neural networks are discussed. First the structure

of a neural networks in general is explained. A so called multilayer neural network is
introduced, which is capable to approximate static nonlinear relationships. To learn this

input-output relation a learning algorithm is involved. For dynamic system identification

applications dynamics must be included into the multilayer neural network, so a dynamic
neural network will be explained in the last section.

2.1 Fundamentals of neural networks

A neural network consists of a number of processing elements, also known as neurons,

which are connected with each other. The structure of a neural network is defined by the
way the processing elements are connected.

The most elementary part of a neural network is the processing element. The structure of

a processing element is presented in figure 2.1.

bias

x

x
n

I---~ f [.J I--~ y

SYMBOL X~Y

Figure 2.1 Structure of a processing element
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A processing element has one or more inputs Xi , which it receives from processing

elements or from the outside world. However it has one output, which can be connected
to other processing elements or can act as an output of the neural network. Every input to

the processing element, Xi' is weighted by a weightfactor Wi and summed with a weighted
bias value. The output of the processing element is obtained by passing the weighted

inputs through a processing function 1[.] . The relation between the inputvector x and the

outputscalar y of a processing element can be described by formula 2.1.

(2.1)

Commonly used processing functions are the linear-, ramp-, step- and sigmoid functions,
figure 2.2.

ramp
f(x)

1

lineair
f(x)

---I---X

f(x) = 1
1 x~xo

f(x) =c.X -1 x$Xo

C.X xo<x<x o

stap sigmoid
f(x) S(x)

1

x

-1 X

f(x) ={
1 x>o 1

-I x<o
S(x) =

1 + e-x

Figure 2.2 Commonly used transfer functions
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A nonlinear processing function gives the neural network the ability to represent nonlinear

relationships. As will be explained in section 2.3, the learnalgorithm used imposes a

restriction on the processing function, the first derivative has to exist. Sigmoid functions

are of prime interest because they exhibit a linear, nonlinear and a saturation behaviour

which is useful in nonlinear system identification. Because of this advantage a sigmoid

function is frequently used. Three kind of sigmoid functions are applied (figure 2.3):

I
S(x)=--

1+e-.1

S(x)= l-e -.I

1+e-.1

SIGMOID FUNCTIONS SCI()

(2.2)

(2.3)

(2.4)
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Figure 2.3 Three sigmoid functions
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As can be seen from the processing element model, the bias term affects the coordinate

space of the processing function, which enables the network to characterize the structure

of the non-linearity.

The network topology is formed by dividing the processing elements up into groups

(layers) and making connections between the processing elements. There are three kind of
layers:

- input layer: A collection of processing elements who receive their inputsignals from

the outside world.

- output layer: A collection of processing elements who send their output to the outside

world.

- hidden layer: Every layer between the input- and output layer.

To create a neural network structure the processing elements are connected by

connections. As can be seen in figure 2.1, each connection has a weight value which

defines the 'strength' of the connection. In general there are three types of connections to

distinguish.

1. Intra-layer connections: connections between processing elements from one layer.

2. Inter-layer connections: connections between processing elements from different

layers. There are two inter-layer connections: feedforward

connections, connections in one direction, and feedback

connections, connections in both directions (when a loop

exists in the network).

3. Recurrent connections : connections which connect the output of a processing

element with its own input.

In figure 2.4 the different connection types are given.

intra-layer

layer k

inter-layer

layer k layer (k+1)
.. ~ ............• ~/.... ,

," I
~~~ ..,,,

c"
('

\ ,
" ..,

" I',.-.. ,••••............•• ~

feedforward
...... feedback

recmrent

layer k

Figure 2.4 Different network connection types
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2.2 Multilayer neural networks

For the use of process modelling, a neural network is needed that learns input-output
relations, from input-output data pairs of the process. A neural network which is able to

learn static input-output relationships is the so called multilayer neural network (MNN).

Figure 2.5 gives the topology of an MNN.

input
layer

layerl layer (L-l) layer L

Figure 2.5 The topology of a multilayer neural network

Y2

The MNN has the subjoined properties.

- The input layer distributes the inputs to the network over the first hidden layer. While

the processing elements of the input layer have only one input and a linear processing
function, they are fed through elements, and not real processing elements.

The network consists only of feedforward inter-layer connections, which only connects

processing elements of layer I with processing elements of layer (l+1).
The network is completely interconnected, this means that all possible connection,
provided allowed, are made.

All processing elements are represented by circles. The processing elements of the

hidden layers have the same processing function. Typically a sigmoid function is
chosen.
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- For identification applications it's preferable that the output of a neural network model

can describe a wide range. However the output of a processing element is limited by
the range of the used processing function. Depending on the kind of sigmoid function
in the range (0,1) or (-1,1). To meet the requirement of a wide output range, the

processing functions of the output layer processing elements are chosen to be linear.

- The number of processing elements in layer 1 are represented by the parameter il . So

the number of inputs is io and the number of outputs is iL •

- Every layer 1 is extended with i, weights according to the bias term.

The MNN can also be denoted in a block diagram, figure 2.6. Each layer of the network

is represented by two blocks, a W-block representing the weights associated with the

connections coming into this layer and a S-block containing the processing functions

going with the processing elements of this layer.

INPUT LAYER LAYER 1 OUTPUT LAYER

sigmoid

linear

u

u------~~

sigmoid . linear

Xl ~:'............ w S :;> y
: ; L L, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,

Figure 2.6 Block diagram representation of a multilayer neural network

The matrices W and S are of the form.

I 1 I I 0 0Wl1 W2, Wi,.,' S,[.]

0 I 0
W'=

S2['] (2.5)S ,=

I I I Iwli, W2i, Wi,.,i, 0 0 Si [.]
I

where hidden layer number

11.' number of processing elements in layer (1-1)

I, number of processing elements in layer 1
wpq weightfactor of connection between processing element p and q of

respectively layer 1 and (1-1).
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According to the properties of an MNN, the W and S matrices of the input- and output

layer are respectively: input layer W = S = I

output layer S = I

So the input-output relation can be given by equation 2.6.

one layer

total network y=Sd WLSL_I [WL_I SL-Z[' . SI [WI So[Wo. u]] . . ]]] (2.6)

y=WLSL_I [ . . SI[WI,U] .. ]

For ease of notation a neural network will be notated as follow:

where L

L-l

number of layers (without input layer)

number of hidden layers

number of inputs

number of outputs

number of processing elements in respectively layer 1..L-l

A formula can be derived which calculates the number of parameters Q in the MNN.

L

Q=L (iH +1)i,
'=1

(2.7)

From formula 2.7 it can be seen that multilayer neural networks with the same number of

processing elements, but with a different number of hidden layers, contain not an equal

number of parameters. For example an N1 10 1 MNN has 31 parameters and an N1 5 5 I has

46 parameters.

Finally the value of neural networks can be judged by a theorem of Funahashi [16],

which is posed here without prove.

Theorem

f[.] non-constant, bounded and monotonically increasing function

(sigmoid function)

compact set on ]RiO

real valued continuous function on K
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For any € > 0, there exists an integer il and the real constants WrQ, wrq and W sr with

(q = 1. . jo; r = 1. . j I; s = 1. . jz) such that:

i l io

Y;s(u1",ui)=L wsr f[L Wrquq-wrOl
r=1 q=1

satisfies

max l'lts(ul ... u.)-y; (ul ... u.)1 <€
~ s ~

This results in the MNN structure given in figure 2.7.

u 1---<"

Figure 2.7 MNN stated by Funahashi

}---- 't'. = y.
12 12

(2.8)

(2.9)

The theorem states that any continuous MNN with one hidden layer with a fixed

continuous sigmoidal nonlinearity and a linear output layer, can approximate any

continuous function arbitrarily well on a compact set. Although this theorem does not

give any insight into the size of the hidden layer (the number of processing elements il )

and the learnalgorithm to obtain this MNN, it does show that the fundamental structure of

an MNN is such that it can model any continuous nonlinear function. It should be noticed

that it is often advantageous to use more than one hidden layer, because it can lead to an

MNN containing less processing elements.
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2.3 Learning algorithm for a multilayer neural network

A neural network can be seen as a model with the weights as the model parameters. To

perform some specific task, the weights of the network have to be set somehow to get a

desired input-output behaviour. A process, involving a so called learning algorithm, takes

place, in which the weights of the network are adjusted to reproduce the desired

behaviour. The learning algorithm adjusts the parameters (weights) of the neural network

based on a given set of input-output pairs: learn patterns. If the weights of the network

are considered as elements of a parameter set W, the learning process involves the

determination of the parameter set W· which optimizes a performance function J based on

the output error. Backpropagation is the most commonly used method for this purpose in

the static case (for multilayer neural networks). The performance function which has to be

minimized is the least squares criterion.

(2.10)

where Yp(k)

yp(k)

N

model output number p

system output number p

batch size

number of outputs

The backpropagation algorithm minimizes the performance function according to the well

known steepest descent method. The parameter set W of the neural network is, after some

learnpatterns, modified in such a way that counts J(wnew) <J(W01d
) • This means that W

has to be moved in the direction -Vw J(W). Formula 2.11 gives the mathematical form of

the steepest descent method.

(2.11)

where wnew new weight parameters

wold old weight parameters

alearnvelocity factor

Vw J gradient of J w.r.t. W

The modification of each separate weight is according to the subjoined expressions.

The derivation of this expressions is restored in appendix A.
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(2.12)

where q

r

processing element of layer 1-1

processing element of layer I

the output of processing element q

weight value of the connection from processing element q to r

When r is a processing element of a hidden layer:

0r(k)=f[netr(k)] L 0s(k)wsr
s=1

(2.13)

where s processing element of layer 1+1

When r is a processing element of the output layer:

with f [netr(k)] =1 (2.14)

The parameter ex is the learnvelocity factor, and has a value in the range [0,1]. When ex is

chosen too large, the algorithm will not converge to a minimum, but become instable.

When, however, ex is too small, the learning time will be very large. This means that
there's an optimum value for ex, where the algorithm is just stable and the convergence

time minimal. According to experience ex must be chosen in the range [0.1,0.25].

In the backpropagation algorithm there are two distinct phases, a forward phase and a

backward phase. During the forward phase the inputs u(k) are propagated forward

through the network to produce the network outputvector Y(k). The neural network

outputvector y(k) is compared to the desired outputvector y(k), and an errorsignal op(k) is

calculated for every processing element of the outputlayer (formula 2.14). During the

backward phase the errorsignal oik) is propagated backward through the network to
calculate an errorsignal for every processing element separately, according to the

recurrent relation 2.13. With this error signal and expression 2.12 all weights can be
modified.

As can be seen from expression 2.13 the first derivative of the processing function has to

exist. Together with the ability to approximate nonlinear relationships, the sigmoid

15



function is the most appropriate processing function.

When the steepest descent method is used there is no guarantee that the algorithm will

find a global minimum. The initial value and the properties of the error surface defines

what kind of minimum will be found. The backpropagation error surface is described by

the function J =J(W) in the (Q+ 1)-dimensional space. Herewith counts J E R. and W E~ ,

with Q networkconnections (weights). Until now very little is known about the property

of backpropagation error surfaces. Three aspects are mentioned in [13].

1. Experiments have showed that a lot of backpropagation error surfaces have large areas
with a small slope. In this areas weights have to change considerable to give a
significant reduction of the performance function.

2. Backpropagation error surfaces have a lot of global minima. There is not a unique
minimum by the fact that there exists more than one parameter set that describes the
same input-output behaviour (no canonical form).

3. It has been proven [13] that backpropagation error surfaces possess local minima.

About the place and number of local minima in proportion to global minima is nothing
known yet.

In view of the first property of backpropagation error surfaces, the conventional
backpropagation algorithm has the disadvantageous property that the converge time
increases when the slope Vw J(W) becomes smaller. To speed up the backpropagation
algorithm there are some improved algorithms developed.

- The 'jump every time' version of the backpropagation algorithm modifies the weights

after every learnpattern. In this case the batch size N is one, so formula 2.12 passes
into the subjoined expression.

(2.15)

When the gradient is calculated over N samples and the parameters are not adjusted

every sample, the gradient is the superposition of the gradient over every single
sample. In formula 2.15, however, the weights are updated after every sample, so the

next gradient will be calculated in another 'point', thus not the same result after N

samples (as with formula 2.12) is obtained. Hopefully a faster convergence will

appear. Figure 2.8 shows the difference between the standard backpropagation

algorithm and the 'jump every time' version.

16



5

]3
.] .

mm

Gadient after 5 samples

Superposition of gradients after every sample in 'point' J0

Gradient calculated after every sample in a new 'point' J0 ... J4

Figure 2.8 The steepest descent method when N = 1 and N> 1

- The momentum version of the backpropagation algorithm includes a momentumterm.

This term is proportional to the last weight modification, expression 2.16.

(2.16)

- Making the learnvelocity factor a variable is another way of speed-up the algorithm.

This kind of algorithms is called Self Adapting Backpropagation SAB. In [10] some

heuristics are discussed.

- A better way to improve the learning rate is the use of Newton-like algorithms instead

of gradient techniques. The weight modification is then according to expression 2.17.

wn"",=w old - [02J(W)] -1 oJ(W)
oWoW T oW

(2.17)

The Newton algorithm converges quadratically (Le. very fast) as the initial values of

the parameters are close enough to the minimum value of J. In a lot of cases this

requirement is not met, so a combination of steepest descent and Newton will give the

solution, the Marquardt algorithm 2.18.

(2.18)
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In the beginning A is large, so 2.18 will pass into 2.11. Further on in the learning
process A is small, so 2.18 will pass into 2.17. The steepest descent method is used to
get near the minimum, and Newton is used to get at the minimum in high speed.

The second derivative of J to W will be calculated as follows:

1 N iL

=-LL
N k=1 p=1

neglected

(2.19)

The last term can be neglected when J is close to its minimum since ep(k) is small

(Gauss-Newton method). The advantage is that the remaining term always leads to a
positive definite matrix and consequently no difficulties in the inversion process.
Despite of the extra calculation time, which is necessary to calculate the inverse of the
second derivative, there is a faster convergence in a lot of practical applications.

2.4 Recurrent multilayer neural networks

The MNN performs a nonlinear mapping between the inputs and outputs. Dynamics are
not included within their structure. Processes which have to be identified do have

dynamics. Dynamics can be included within the processing element, by extending the

processing function with a first-order lowpass filter with the time constant as an extra

parameter [3]. A more obvious solution, but not as elegant, uses time histories of data.
The input of the MNN will be extended with time histories of inputs as well as outputs.

An MNN which arises is called a recurrent multilayer neural network, RMNN. Recurrent

multilayer neural networks can be constructed of only two basic operations.
1. delay network

2. nonlinear operator N[.], a multilayer neural network

Figure 2.9 shows the most simple form of an RMNN.

18
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U > D(z -1 )
q

N[.] Y

n q

Figure 2.9 The structure of a recurrent multilayer neural network

If we have p inputs, q outputs and the number of relevant delays is n for both inputs and

outputs, then the delay operators are given by:

-IIZ q

-2 IZ q

The modification of the weights of the RMNN can not be done by the backpropagation

algorithm. As can be seen in appendix A for the calculation of Vw J the knowledge of

Vw Y is enough. According to formula 2.20, an extra term in the calculation of Vw J will

occur because of the feedback of past outputs.

dy _ oN[v] oN[v] ov dy
-- + .-.-
dW oW OV oy dW

= oN[v] + oN[v] .D(z -I). dy
oW OV dW

(2.20)

The last term in 2.19 contains the past derivatives of y to W. Since this term makes the

calculation of the gradient Vw J complex (time consuming and no guaranteed

convergence) it will be neglected in the beginning. So the learn algorithm will be conform

to the back propagation algorithm. Practical applications and a special identification

procedure have shown (section 3.2) that good results will be obtained.
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3 SYSTEM IDENTIFICATION

The ability of neural networks to approximate nonlinear relationships makes them prime
candidate for the use in nonlinear system identification. To model nonlinear systems,

nonlinear system descriptions have to be given. Four nonlinear models and a universal
model are discussed. To identify systems two identification models are discussed, the
equation error model and the output error model. Because a universal system description
will be used, which includes a linear ARMA model besides a neural network model, an

extended learnalgorithm will be derived. In conclusion an identification protocol for

nonlinear system identification will be discussed.

In this chapter only the SISO case is discussed. It is obvious that the same discussion can

be stated for the MIMO case. Some restraints are imposed on the nonlinear systems to be
identified:

- The system has to be BIBO stable (Bounded Input Bounded Output).
- A tight bound should be available for the inputs and outputs to the system in operation.

3.1 System description

To identify nonlinear systems it is necessary to define nonlinear models, whose
parameters have to be estimated to represent the system. Narendra and Parthasaraty [12]

introduce four nonlinear models, derived from the linear ARMA (Auto Regressive

Moving Average) model. The well known ARMA model is represented by the subjoined

linear difference equation.

(3.1)

with A(Z-l) =a
1
z-1 +azz-z+ .... +anz-n,,

B(z -1) =b
1
z -1 +bZz -Z + •... +bn.z -n.

and Z -1 a delay operator

Based on this model, nonlinearities can be introduced. Depending on the nonlinearity,

four models can be derived, represented by difference equation 3.2 up to 3.5.
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Modell

y/k)=A(Z -l)Yp(k) + g [u(k) , u(k-l), .... , u(k-n)]

with A(Z-l) =a1z-1+a2z-2 + .... +a" z-"J
J

Model 2

Model 3

(3.2)

(3.3)

Model 4

y/k)=![Yp(k-l) , Y/k-2), .... , Yp(k-ny ); u(k) , u(k-l) , .... , u(k-n,)]

where f[.] and g[.] are general nonlinear functions

(3.5)

In all four models the output of the system at time k depends on its past outputs, the input

at time k and past inputs. The dependence on the input at time k and past inputs is
nonlinear in modell, while the dependence on the past outputs is nonlinear in model 2.

In model 3 the nonlinear dependence on present and past inputs and outputs is separable.
It is evident that model 4, in which the output is a nonlinear function of past inputs and
outputs, subsumes model 1 to 3. Model 4 is, however, analytically the least tractable
while it includes the most model parameters which have to be estimated. So it is
advantageous to use one of the other models if any a priori information about the
nonlinearities in the system is available. It can reduce the number of model parameters

considerably. It is obvious that the nonlinear functions! and g of the different system

descriptions will be modelled by a multilayer neural network.
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The block diagram representations of the various models are displayed in figure 3.1.

MODEL 1 I

u(k)

MODEL 21

y(k)

u(k) y(k)

IMODEL 31

u(k) y(k)

MODEL 41

t---..,......-~ y(k)f[.]

L..--------I TDL~_----l

u(k)

ITDLI Tapped Delay Line

Figure 3.1 Block diagram representation of model 1 to 4
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In a lot of practical situations much is known about the linear part of a system, obtained

from linear identifications. This a priori knowledge can not be used completely in one of

the models mentioned before. Here a fifth model will be introduced which is capable to

use this a priori information and which contains all four models given by Narendra and

Parthasarathy. This universal model can be described by the difference equation

y(k)=A(z -I)y(k) + [bo+B(z -I)] u(k) +jIu,y] +g [u,y]

with u=[u(k),u(k-l), ,u(k-n,)]
y=[y(k-l) ,y(k-2), ,y(k-n

y
)]

A(Z-I) =a1z-1+a
2
z-2 + •••• +anz-n,,

B(Z-I) =b1z-1+b2z-2 + .... +bn.z-n•

(3.6)

Two separate nonlinear networks have to be used in order to incorporate the previous

model 3. A schematic representation is drawn in figure 3.2.

u(lc)

ARMAmodel

7)--------~.......,

/1'

I .JIDi:1-

f
f[.]

IDL
: Nonlinear model ~

\

I-----.;---'~~@ ) y(k)

'I'

, .....................................................
· .· ,· .· ., .
: I .rni'l- :-r g[.]

: Nonlinear model
'-- fIDL~---_--......

Figure 3.2 Block diagram representation of modelS
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The advantages of this model over the other models are:
- There is no need to write different identification algorithms for each model. One

algorithm can handle all models.
It is possible to use a priori information from linear identification techniques directly.

One can use ARMA parameters, obtained from earlier linear identifications, to
initialize the ARMA parameters of model 5. So the nonlinear identification procedure

estimates the neural network parameters and the ARMA parameters simultaneously,
but the ARMA parameters are not expected to change much, because they have good
starting values. This makes the identification procedure much faster.

It is also possible to identify linear systems. This is not as effective as the existing
identification algorithms due the fact that a steepest descent method is used.
When the ARMA parameters are a priori known, something can be said about the
amount of nonlinearities in the system. By fixing the ARMA parameters, the

identification procedure will only estimate the nonlinear part.

3.2 Identification models

For neural network identification the same identification models are used as for
conventional identification techniques. These are equation error model and output error

model, also known as the series-parallel model and the parallel model. Both models are
discussed.

Output error model

The blockscheme of the output error identification model is given by figure 3.3.

u(k) --~----r-~ system

model

Figure 3.3 Output error identification model

24



As can be seen the inputs to the model are the system inputs and the past model outputs.

Formula 3.7 gives an expression for the output error eoE(k).

system y(k) =A(z -I)y(k) + [bo+B(z -I) ]u(k) +f(u,y) +g(u,y)

model Y(k) =A(z -I)y(k) + [bo +B(z -I)] u(k) + N1[u,y] + N
2
[u,y]

with eoE(k) =y(k) -y(k)

(3.7)

As can be seen from figure 3.3 the model used is a recurrent multilayer neural network.

The disadvantage of this model is the learnalgorithm which has to be used to train the

network. The algorithm becomes very time consuming because of the recurrent

relationship and there's no guarantee that the output error y(k)-y(k) will tend to zero
(section 2.4).

Equation error model

The blockscheme of the equation error identification model is displayed in figure 3.4.

u(k) ---...---.....--~ system

Figure 3.4 Equation error identification model

An expression for the equation error eEE(k) can be derived.

system y(k) =A(z -I)y(k) + [bo+B(z -I)] u(k) +f(u,y) +g(u,Y)

model Y(k) =A(z -I)y(k) + [bo +B(Z-I)] u(k) + NJ[u,y] + N2[u,Y]

with eEE(k) =y(k) -Y(k)
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In contrast to the output error model, the inputs to the model are the system inputs as
well as the system outputs. While there's no feedback loop in the model (no recurrent
relations) a multilayer neural network can easily be trained. The training time will reduce
considerably when the backpropagation algorithm is used. Since the system is supposed to
be BIBO stable and the inputs and outputs are bounded, all signals in the identification

model are bounded. Though the model would not give a good simulation, because the
estimation is fully based upon past outputs (the inputs are 'masked').However, the
prediction is very good. To overcome the problem of bad simulation and the difficult
learning of the output error model, the subjoined identification procedure will be
followed. The identification is started with the equation error identification model. When
no improvement is obtained, the identification model is switched to the output error
identification model. In this way the convergence problem of the output error model will

hopefully be solved, and a good simulation model will be found.

3.3 The extended backpropagation algorithm

For the estimation of the parameters of model 5, it is necessary to estimate the parameters
of the ARMA model and the two neural network models simultaneously. For simplicity,

the ARMA parameters are also estimated with the steepest descent method. The
parameter set f) consists of the ARMA parameters A, B and the parameters of the

multilayer neural networks WI and W2• The gradient VoJ can be calculated as follows:

The performance function J is:

N iL

J= ~ ~ ~ ~ [Yp(k) -Yp(k)]2

N iL 0" (k)
oj =.!. L L [y (k) -y (k)] 2-
of) N k31 p=l P p of)

For the SISO case counts iL = 1, so:

oj =.!. t [y(k) - y(k)] oy(k)
of) N k=l of)
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Output error model

system y(k) =A(z -I)y(k) + [bo+B(z -I)] u(k) +f(u,y) +g(u,Y)

model y(k) =A(Z-I)y(k) +[bo+B(z-I)]u(k) +NI[u,Y] +N2[u,Y]

with eoE(k) =y(k) -y(k)

N5: = J.. L Y(k-i). eoik)
5a j N k=1

5J 1 N •
-A =- L u(k-J).eoik)
5b. N k=1

J

(3.10)

recurrent backpropagation algorithm

recurrent backpropagation algorithm

This is only the first approximation, because y(k-i) is also a function of 8.

Equation error model

system y(k) =A(z -I)y(k) + [bo+B(z -I)] u(k) +f(u,y) +g (u,Y)

model y(k) =A(z -I)y(k) + [bo+B(z-I)] u(k) + NI[u,Y] +N2[u,y]

with eEE(k) =y(k) -y(k)

8 EA(z-l) 5J 1 N •
with 1~i<ny-A =-Ly(k-l).eEE(k)

5aj N k=1

8 EB(z-l) 5J 1 N •
with O~j~nu-A =,.-- L u (k-J). eEE(k) (3.11)5b. N k=1

J

8 EW. backpropagation algorithm

8 EW2 backpropagation algorithm
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To define the structure of model 5, a so called connection matrix will be introduced.

Figure 3.5 gives the place of the connection matrix in the model.

I MODEL 51

ARMA

~
PI::
E-<
<:

u(k) TDL ::E
z

NI y(k)0....
E-<

y(k-l) u
TDL ~1\

y(k-l)
0
u

N2

Figure 3.5 Structure defmition of model 5 by a connection matrix

The connection matrix consists of three rows and a variable number of columns. Every

row defines the structure of a 'sub-model'. Row 1 defines the structure of the ARMA
model, row 2 and 3 the structure of respectively neural network 1 and 2. The number of
columns is defined by the process order. First connection matrices for sample k to (k-q),

where q is the system order, are defined.

t t t

+

t

Yk- I Yk-2

Each matrix represents one delay time. The connection matrix is formed by cascading

these matrices (equation 3.12).
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The connection matrix is:

.~] - ARMA model
- Neural model 1

- Neural model 2

(3.12)

The connection matrix will be filled with ones and zeros. When the concerning
input/output is an input of the 'sub-model' the corresponding matrix entry is one. When

the entry is zero, the corresponding parameter will not be estimated (for example fixed
delays). To clarify the described procedure an example is given.

example
system model:

y(k) =a1y(k-1) +a2y(k-2) + bou(k) + N1[y(k-l),y(k-2)] + N2[y(k-l) ,u(k),u(k-l)]

inputs: ARMA model : y(k-1),y(k-2),u(k)
Neural network 1: y(k-1),y(k-2)
Neural network 2: y(k-1),u(k),u(k-1)

So the connection matrix will be

[~
0 0 1 0

i] ARMA model-0 0 1 0 - Neural model 1

0 I 1 0 - Neural model 2

t t t t

Uk U
k

_
1 YH y1;-2

As can be seen from this example some properties of the connection matrix are:
- The number of ones per row define the number of inputs to the 'sub-model'.
- The system order is equal to the number of columns divided by two minus one.
- The second column of the connection matrix is filled with zeros, while this column

represents the output at time k.

29



3.4 The identification protocol

As with linear techniques there are three different phases to distinguish, a preparation

phase, a training phase and a validation phase. A schematic overview of the total

identification protocol is restored in figure 3.6.

...-----1 apiori infonnatioo 1-----,

validation
data

trainings
data

TRAINING TIlE MODEL

1

2
...... _- _-- .. ------ . __ ._-_ - _-. -_ _..

model not good
MODEL VALIDATION

model good 3

Figure 3.6 Schematic overview of the identification protocol
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1. Preparation phase

In the preparation phase following aspects can be seen.
- Experimental design

The input to the system need to be a noise-like signal, because otherwise the neural
network tunes to the inputsignal in stead of the input-output relation. Random,
uniformly distributed, white noise signals are preferable. Especially a PRBNS input
(Pseudo Random Binary Noise Sequence), which is often used in linear identification
techniques, is not suitable. Because the input value jumps between two discrete values
the scale between this values is supposed to be linear, which is of course not the case
for nonlinear systems.

Signal check and validation
Before using measured data it's necessary to do some data correction.
- Trend, spike and time delay elimination.
- Offset elimination, inputscaling in the range [-1,1] and output scaling to increase

accuracy.
Choice of modelset
The choice of the modelset is fully based upon a priori knowledge. This a pnon
knowledge can be related to the model order, the number of inputs and outputs, the
nonlinearity and so on. The use of this information is of essential importance, because
it can reduce the number of model parameters considerable.
Neural network structure definition
There are some neural network structure parameters which must be defined.
- The number of neural network inputs and outputs is defined by the number of system

inputs and outputs and by the model order. The model order defines the number of
outputs which have to be fed back, so together with the system inputs the total
number of neural network inputs are known.

- The number of hidden layers and processing elements per hidden layer depend on the
complexity of the input-output relation which has to be mapped.

- The type of sigmoid that will be used.
Initializing the neural network parameters (weights)
When the weights start with equal values the network can never learn. All the error

signals to the hidden processing elements remain identical and the neural network begin
at a local minimum and remains there. This problem can be counteracted by initializing
the weights with small random values (-0.25 ~w~0.25).
Initializing the ARMA parameters
When there is a priori information about the ARMA parameters, from other earlier
identifications, they are initially set to this values. Otherwise they are set to zero.
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2. Training phase

During the training phase the model parameters are estimated by the extended
backpropagation algorithm. Before starting the learning algorithm some learn parameters
must be set.
- The learnvelocity factor a

A good choice of this parameter is necessary, a bad choice can lead to instability or

slow convergence. The learnvelocity factor of the linear estimation and the neural
network estimation can be set separately. This is necessary because aNEURAL can be
chosen higher than aARMA' without leading to instability.
The batch size N
Normally the batch size is chosen to be one, but when there are a lot of learnpatterns
it's better to calculate the mean gradient over a number (N) of learnpatterns. To speed
up the learnalgorithm when great batch sizes are used, a can be increased without
convergence problems.
The number of iterations
In order to reduce the total number of data samples, the same data is successively
presented to the network. The times the same dataset is presented is also a learn
parameter and depends upon the length of the dataset. A total of hundred thousand
learnvectors (= number of samples times the number of repetitions) is normally enough
to train a neural network.
The momentum factor {3

According to the literature [3,10,13,14,21], the momentumfactor {3 can speedup the
algorithm without instability problems. While experiments showed that this factor did
not speedup the algorithm, {3 will be chosen zero.
ARMA parameters fixed or estimated
This parameters defines whether the ARMA parameters are estimated or not. When
they are a priori known they can be fixed during training.

3. Validation phase

The validation phase is the third and final phase in the identification protocol. In this
phase will be investigated if the model meets the previously set requirements. The model
is accepted if it satisfies these requirements. If the requirements are not met, the model
structure, especially the neural network structure, is modified and the training phase will
be passed through again. Possibly with different initial weights to escape local minima.

The performance of the model will be tested by a validation dataset. To get a reliable
validation, the validation dataset may not be used for network training. Most validation
techniques for neural networks criticize the quality by a visual inspection. The model
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4 SIMULATION RESULTS

In this chapter some simulation results are shown. In order to compare the obtained

results, systems are taken from the examples given by Narendra and Parthasarathy [12].

They give examples of each system description discussed in section 3.1. Next to it an

example of the universal model, model 5 is given. The identification of all systems is

according to the described identification procedure. The identification will be started with

the equation error identification model (EEM). When there's no improvement obtained,

the identification model is switched to the output error identification model (OEM) to

achieve a good simulation model. The performance of the estimated models is studied by

comparing the system output with the model output using the output error model. The

validation signals were chosen to be the same as the test signals used by Narendra and

Parthasarathy. The performance given in the examples is calculated during training, and

defined by equation 4.1.

T

L [y(k) _.9(k)]2
performance =_k=_l---:::-- _

T

Ly2(k)
k=l

where: T number of samples in the training data set

y(k) system output at sample k

5'(k) model output at sample k

All systems satisfy the previously mentioned requirements: - BIBO stable

- bounded input

- bounded output

(4.1)

The neural network parameters are initially set to small random values. When the systems

contain ARMA parameters, they were initially set to zero. In all simulations the estimated

model parameters after the EEM identification act as starting values of the OEM
identification.

The simulation results are divided into two groups, reviewed in the next sections.

Simulation results without noise.

Simulation results with additive white noise
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4.1 Simulation results of systems without noise

In this section, simulation results are shown when the output of the system is not

disturbed by some kind of noise.

Simulation 1

The system to be identified is described by the difference equation

y(k)=0.3y(k-1) +0.6y(k-2) +f[u(k)]

with

ffu(k)] = U(k)3 +0.3 U(k)2 -0.4 u(k)

training data : random, uniformly distributed noise in the interval [-1.5, 1.5]

validation data

(4.2)

EEM

u(k)= {
sin(211"k/250) 0~ k~ 250

0.75 sin(211"k/250) +0.25 sin(211"k/25) 250 < k< 500

(4.3)

The neural network structure is: N1 5 5 1

The learn parameters and the estimated a-parameters are gathered in table 4.1.

run 1 run 2

learn patterns 500 500

iterations 50 50

batch size 1 1

O!NEURAL 0.1 0.05

O!ARMA 0.01 0.01

a l (al =0.3) 0.3042 0.3024

a2 (a2 =0.6) 0.5948 0.5974

performance 4.55e-03 2.28e-03

Table 4.1 EEM identification results of simulation 1
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The validation results after the last run are shown in figure 4.1.

500

-2 L....-. -----J

o

...
::l
0..
'5o

500

o

-5 L..- _

o

5...
::l
0..
'5
o

(a) k (b) k

'5
0..
'5
o

10.5o-0.5
-0.5 L.-_---I__---l..__---L..__--J

-1

(c) u

Figure 4.1 Model validation after EEM of simulation 1
(a) System output y(k) when the input is random [-1.5, 1.5]

(b) y(k) (solid) versus y(k) (dashed)

(c)j[u] (solid) versus N1[u] (dashed)

OEM

(4.4)

The neural network structure is: N1 5 5 I

The learn parameters and the estimated A parameters are gathered in table 4.2,

and the validation results after the last run are shown in figure 4.2.
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run 1

learn patterns 500
iterations 50
batch size 1

°NEURAL 0.001

°ARMA 0.001
al (al =0.3) 0.3004
a2 (a2=0.6) 0.5985
performance 2.2e-03

Table 4.2 OEM identification results of simulation 1

10.5o
u

-0.5
-0.5 '-----I.__---L..__....I..-_-----I

-1

(b)

500

(a) k

6

4

:;
Eo 2
::l
0

0

-2
0

Figure 4.2 Model validation after OEM identification of simulation 1

(a) y(k) (solid) versus y(k) (dashed)

(b)j[u] (solid) versus N1[u] (dashed)

As can be seen from this simulation, the model approximates the system perfectly. While

the linear part and the nonlinear part are fully separable (they are related to either the
input or the output of the system), the AR parameters converge to the real values.

Otherwise it is possible that the neural network models a piece of the linear part.

Simulation 2

The system to be identified is described by the difference equation

y(k)=f[y(k-1) , y(k-2)] + u(k) (4.5)

with
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f[y(k-1) ,y(k-2)] =y(k-1)y(k-2)[y(k-1) +2.5]
1+ y(k-1)Z + y(k-2)Z

training data : random, uniformly distributed noise in the interval [-2,2]

validation data

u(k) =sin(271"k/25)

EEM

y(k)=N\ [y(k-1) ,y(k-2)] +bou(k) (4.6)

OEM

The neural network structure is: Nz 5 5 \

The learn parameters and the estimated bo parameter are gathered in table 4.3.

run 1 run 2

learn patterns 1000 1000
iterations 25 25

batch size 1 1

C¥NEURAL 0.05 0.01

C¥ARMA 0.01 0.01
"-
bo (bo= 1) 1.004 1.003
performance 1.54e-02 1. 14e-02

Table 4.3 EEM identification results of simulation 2

The validation results after the last run are shown in figure 4.3.

y(k)=N\ [y(k-1) ,y(k-2)] +bou(k) (4.7)

Neural network structure Nz 5 5 \

The learn parameters and the estimated bo parameter are gathered in table 4.4, and

the simulation results after the last run are shown in figure 4.4.
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Figure 4.3 Model validation after EEM identification of simulation 2

(a) System output y(k) when the input is [-2,2]
(b) y(k) (solid) versus y(k) (dashed)

run 1

learn patterns 1000
iterations 25
batch size 1

aNEURAL 1.0e-04

aARMA 1.0e-04
A

bo (bo= 1) 0.9971
performance 9. 17e-03

Table 4.4 OEM identification results of simulation 2

10050

k
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Figure 4.4 Model validation after OEM identification of simulation 2
y(k) (solid) versus y(k) (dashed)
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As can be seen the model approximates the system very well. In contrast to simulation 1,

a greater data set was used. There was no perfect fit when 500 samples were used, so a

training set of 1000 samples were used for learning (values in between were not

investigated). As in simulation 1, the linear and nonlinear part are fUlly separable so the

bo parameter is estimated well.

Simulation 3

In this simulation the system is a model 3 type of the form:

y(k) =Jty(k-l)] + g [u(k)]

with

![y(k.,.l)] = y(k-l)
1+ y(k-l)2

g [u(k)] = U(k)3

(4.8)

Because the nonlinearities are separable, the identification model consists of two neural

networks. Since the input was a random signal in the interval [-2,2], N2 approximates

g only over this interval. An input range of [-2,2] results in a variation of y over the

interval [-10,10] so N1 approximates f over the latter interval.

validation data :

u(k) = sin(2'n-k/25) + sin(2'n-k/ 10)

EEM

y(k) = N1 [y(k-l)] + N2[u(k)] (4.9)

The neural network structures are: N 1=N1 5 5 I and N2 = N1 5 5 I

The learn parameters are gathered in table 4.5 and the validation results after the

last run are shown in figure 4.5.
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run 1 run 2

learn patterns 500 500
iterations 50 50
batch size 1 1

(1NEURAL 0.05 0.005
(1ARMA -- --
performance 8.68e-04 2.00e-04

Table 4.5 EEM identification results of simulation 3
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Figure 4.5 Model validation after EEM identification of simulation 3

(a) System output y(k) when the input is random [-2,2]

(b) y(k) (solid) versus y(k) (dashed)

(c) g[u] (solid) versus N2[u] (dashed)

(d)j[y] (solid) versus N,[y] (dashed)
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From figure 4.5 it can be seen that there is a mutual offset compensation (between N j and

N2). This offset can be clearly seen in figure 4.5(d) because g(u) is fairly dominant. Due

to this compensation the overall model is good.

OEM

(4.10)

The neural network structures are: N j = N j 5 5 j and N2 = N j 5 5 j

The learn parameters are gathered in table 4.6. The validation results after the last

run are shown in figure 4.6.

run 1 run 2

learn patterns 500 500

iterations 50 50

batch size 1 1

(XNEURAL 1.0e-03 1.0e-03

(XARMA -- --

performance 1.9le-04 l.90e-04

Table 4.6 OEM identification results of simulation 3
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Figure 4.6 Model validation after OEM identification of simulation 3

(a) g[u] (solid) versus N2[u] (dashed)

(b)j[y] (solid) versus N,[y] (dashed)
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Figure 4.6 Model validation after OEM identification of simulation 3

(c) y(k) (solid) versus y(k) (dashed)

Simulation 4

The system to be identified is described by:

y(k)=j[y(k-l) , y(k-2) , y(k-3); u(k) , u(k-l)]

with

training data : random, uniformly distributed noise in the interval [-1,1]

validation data

(4.11)

EEM

u(k)~ {
sin(21l"k/250) O:sk:s 500

0.8 sin(21l"k/250)+0.2 sin(21l"k/25) 500< k< 800

y(k)=N, [y(k-l) ,y(k-2) ,y(k-3); u(k) ,u(k-l)]
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The neural network structure is: N5 5 5 t

The learn parameters are gathered in table 4.7.

run 1 run 2

learn patterns 500 500

iterations 50 50

batch size 1 1

(lNEURAL 0.1 0.1

(lARMA -- --
performance 8.01e-02 8.01e-02

Table 4.7 EEM identification results of simulation 4

The validation results after the last run are shown in figure 4.7.

800600400
k

ut versus model out ut

200

(b)

1

0.5
.....
='
l:l.. 0.....
:I
0

-0.5

-1
500 0

1

0.5..
:I
l:l.. 0..
:I
0

-0.5

-1
0

k

(a)

Figure 4.7 Model validation after EEM of simulation 4

(a) System output y(k) when the input is [-1,1]

(b) y(k) (solid) versus y(k) (dashed)

OEM

y(k) =Nt [y(k-l) ,y(k-2) ,y(k-3); u(k) ,u(k-l)] (4.13)

Neural network structure N5 5 5 t

The learn parameters are gathered in table 4.8.
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run I

learn patterns 500

iterations 50
batch size 1

aNEURAL 0.01

aARMA --
performance 8.0le-02

Table 4.8 OEM identification results of simulation 4

The validation results after the last run are shown in figure 4.8.
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Figure 4.8 Model validation after OEM identification of simulation 4

y(k) (solid) versus y(k) (dashed)

As can be seen the model can not 'follow' the system completely. The performance

remains unchanged after the first run of the EEM identification (this can also be seen in

the validation results, no improvement). It may be possible that the learning algorithm is

stuck in a local minimum. Identifications, however, with other neural network structures

and initialisations, showed no improvement. Maybe increase of the batch size or extra

low frequency contents in the learning set may be of any help (see chapter 5 where

initially same effects occur). A suggestion for further research is the use of the validation

dataset as training set to see if this leads to improvement.
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Simulation 5

The system to be identified is a single water vessel, figure 4.9.

¢

h

input flow [m Is]

water level [m]

h

water vessel

Figure 4.9 A single water vessel system

The input is the flow into the vessel (4)) and the output the water level in the vessel (h).

The difference equation is derived in appendix B.

h(k) = a l h(k-1) + hi ¢(k-l) +f[h(k-l)]

with a l = 1

b l =1500

The input and the output are scaled to obtain a higher accuracy.

input data : random, uniformly distributed signal [0, 3e-05] [m3/s]

validation data : random, uniformly distributed signal [0, 3e-05] [m3/s]

EEM

h(k) =al h(k-1) +bl 4>(k) + NI [h(k-1)]

(4.14)

(4.15)

The neural network structure is: NI 5 5 I

The learn parameters and the estimated ARMA parameters are gathered in table

4.9. The validation after the last run is shown in figure 4.10.
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run 1 run 2

learn patterns 500 500

iterations 50 50

batch size 1 1

aNEURAL 0.05 0.01

aARMA 0.01 0.01

al (al = 1) 0.8812 0.8858
...
bo (bo= 15(0) 1501 1501

performance 8. 13e-04 3.08e-04

Table 4.9 EEM identification results of simulation S

10050

k

0.3 Ou ut 0.3

0.25 0.25,.......,...- t:
..c: ~

.~ 0.2 - 0.2..c:
lI) Ol)

..c: 'u
..c:

0.15 0.15

0.1 0.1
0 500 0

k

(a) (b)

Figure 4.10 Model validation after EEM identification of simulation S

(a) System output h(k) when the input is [0, 3e-QS]

(b) h(k) (solid) versus h(k) (dashed)

OEM

h(k) = £2 1h(k-1) +bl ¢(k) + NI [h(k-1)] (4.16)

The neural network structure is: NI S S I

The learn parameters and the estimated ARMA parameters are gathered in table

4.10. The validation after the last run is shown in figure 4.11.
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run 1 run 2

learn patterns 500 500

iterations 50 50

batch size 1 1

(XNEURAL 0.001 0.001

(XARMA 0.001 0.001

3.1 (al=l) 0.8881 0.8881
bo (bo= 15(0) 1490 1487

performance 1.77e-03 4.lge-04

Table 4.10 OEM identification results of simulation 5

0.3

0.25
S........... 0.2.c
00......
~

.c
0.15

0.1a 50 100

k

Figure 4.11 Model validation after OEM identification of simulation 5

As can be seen the model describes the system behaviour perfectly. It should be noticed

that a linearisation is done automatically, so the al parameter changes from 1 to 0.8881.

The neural network model only models the nonlinear part.

4.2 Simulation results of systems with additive white noise

In figure 4.12 a system is given when its output is disturbed by random, uniformly

distributed white noise. On account of time limitations, only the result of the first three

simulation, disturbed by noise, are given here.
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u(k)--~ SYSTEM

e(k)

)--~ y(k)

Figure 4.12 A system when its output is disturbed by additive white noise

Simulation 6

The system to be identified is described by the difference equation

y(k)=0.3y(k-l) +0.6y(k-2) +f[u(k)] +e(k)

with

f[u(k) ]=U(k)3+0.3 U(k)2 -0.4 u(k)

e(k) random, uniformly distributed white noise [-0.1,0.1]

(4.17)

training data : random, uniformly distributed noise in the interval [-1.5, 1.5]

validation data

EEM

u(k) = {
sin(2 trk /250) O:s k:s 250

0.75 sin(27rk/250) +0.25 sin(27rk/25) 250 < k:s 500

y(k) =G, y(k -1) + G2y(k-2) + N, [u(k) ] (4.18)

The neural network structure is: N, 5 5 ,

The learn parameters and the estimated a-parameters are gathered in table 4.11.

The validation results after the last run are shown in figure 4. 13.
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run 1 run 2

learn patterns 500 500
iterations 50 50
batch size 1 1

aNEURAL 0.1 0.01

aARMA 0.01 0.01

al (a l =0.3) 0.2992 0.3056
a2 (a2 =0.6) 0.5770 0.5934

performance 2. 14e-02 2.75e-03

Table 4.11 EEM identification results of simulation 6
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Figure 4.13 Model validation after EEM of simulation 6
(a) System output y(k) when the input is random [-1,1]

(b) System output during validation

(c) y(k) (solid) versus y(k) (dashed)

(d)j[u] (solid) versus N1[u] (dashed)
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OEM

(4.19)

The neural network structure is: N1 5 5 1

The learn parameters and the estimated A parameters are gathered in table 4.12.

run 1

learn patterns 500

iterations 50

batch size 1

O'NEURAL 0.001

(1ARMA 0.001

ell (al =0.3) 0.3033

el2 (a2 =0.6) 0.5960

performance 2.66e-03

Table 4.12 OEM identification results of simulation 6

The validation results after the last run are shown in figure 4.14.

1.------,.---,.---,-----,

10.5o-0.5
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(a) (b)

Figure 4.14 Model validation after OEM of simulation 1

(a) y(k) (solid) versus y(k) (dashed)

(b)j[u] (solid) versus N,[u] (dashed)
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The end performance is not as good as in the noise free case. An extension of the dataset,

however, from 500 to 1000 samples leads to similar results as in the noise free case.

Simulation 7

The system to be identified is described by the difference equation

y(k) =f[y(k -1) , y(k-2)] + u(k) +e(k)

with

f[y(k-1) ,y(k-2)] - y(k-1)y(k-2) [y(k-1) +2.5]
1+ y(k-1)2 + y(k-2)2

e(k) random, uniformly distributed noise [-0.3,0.3]

training data : random, uniformly distributed noise in the interval [-2,2]

validation data

u(k) =sin(2?rk/25)

EEM

,..
j(k)=N\ [y(k-1),y(k-2)] +bou(k)

(4.20)

(4.21)

The neural network structure is: N25 5 \

The learn parameters and the estimated bo parameter are gathered in table 4.13.

run 1 run 2

learn patterns 1000 1000
iterations 25 25
batch size 1 1

aNEURAL 0.05 0.01

aARMA 0.01 0.01
"bo (bo= 1) 1.013 1.011
performance 1.061 2.91e-02

Table 4.13 EEM identification results of simulation 7
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The validation results after the last run are shown in figure 4.15.
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Figure 4.15 Model validation after EEM identification of simulation 7

(a) System output y(k) when the input is [-2,2]

(b) System output y(k) disturbed by noise

(c) Noise free output y(k) (solid) versus model output y(k) (dashed)

OEM

y(k)=N
1
[Y(k-l) ,y(k-2)] +bou(k) (4.22)

Neural network structure N2 5 51

The learn parameters and the estimated bo parameter are gathered In table 4.14,

and the simulation results after the last run are shown in figure 4.16.
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run 1 run 2

learn patterns 1000 1000

iterations 25 25

batch size 1 1

a NEURAL 0.001 0.001

aARMA 0.001 0.001..
bo (bo= 1) 0.9968 0.9989

performance 3.7e-02 5.97e-03

Table 4.14 OEM identification results of simulation 7

-2'-------""---------.1
o 50 100

Figure 4.16 Model validation after OEM identification of simulation 7

y(k) (solid) versus y(k) (dashed)

As can be seen the identification of systems with noise added to the output is no problem

due the fact that a OEM identification is used. The model indeed models the noise free

system (y(k». A comparison with the noise free case (page 39) learns that one extra run

is necessary to obtain the same (even lower) performance. Note that there is a substancial

improvement in OEM compared to EEM due to proper noise modelling.

Simulation 8

In this simulation the system is a model 3 type of the form:

y(k) =fty(k-l)] + g [u(k)] +e(k)

with
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j[y(k-1)]- y(k-1)
1+ y(k-1)2

g [u(k)] = U(k)3

e(k) random, uniformly distributed noise in the interval [-0.5,0.5]

training data : random, uniformly distributed noise in the interval [-2, 2].

validation data

u(k) = sin(27rk / 25) + sin(27rk/ 10)

EEM

j(k)=Nt [y(k-1)] + N2[u(k)]

The neural network structures are: N I =Nt 5 5 I and N2 =N1 5 5 t

The learn parameters are gathered in table 4.15.

run 1 run 2

learn patterns 500 500

iterations 50 50

batch size 1 1

(¥NEURAL 0.01 0.01

(¥ARMA -- --
performance 5.997 7.37e-03

Table 4.15 EEM identification results of simulation 8

The validation results after the last run are shown in figure 4.17.
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Figure 4.17 Model validation after EEM identification of simulation 8

(a) System output y(k) when the input is random [-2,2]

(b) System output during validation

(c) y(k) (solid) versus y(k) (dashed)

(d) g[u] (solid) versus N2[u] (dashed)

(e)j[y] (solid) versus N,[y] (dashed)
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OEM

y(k)=N) [y(k-l)] +N2 [u(k)] (4.25)

The neural network structures are: N) =Nl 5 5) and N2=N) 5 5 )

The learn parameters are gathered in table 4.16. The validation results after the

last run are shown in figure 4.18.

run 1 run 2

learn patterns 500 500

iterations 50 50

batch size 1 1

Q'NEURAL 1.Oe-03 1.Oe-03

Q'ARMA -- --
performance 3.lge-03 9.l5e-05

Table 4.16 OEM identification results of simulation 8

10 G x) versus N1
1 F versus N2

5
.... 0.5
:::l ~C. 0
~
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-10 -0.5
-2 -1 0 1 2 -10 -5 0 5 10

x y

(a) (b)

Figure 4.18 Model validation after OEM identification of simulation 8

(a) g[u] (solid) versus N2[u] (dashed)

(b)J[y] (solid) versus N,[y] (dashed)
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Figure 4.18 Model validation after OEM identification of simulation 8
(c) y(k) (solid) versus 5'(k) (dashed)

4.3 Comparison with results obtained from the literature

In [12] the same simulations were done (only the noise free case). Here a

similarly high performance is obtained. The way, however, the results are

obtained is quite different.

• The neural network structures used here, contain considerable less parameters.

Here neural network structures of NiO 5 5 I are used and in the literature NiO 20 10 I

networks were used (iO is the number of inputs to the neural network and

depends on the simulation). This means about 200 parameters less.

• Also a smaller data set is used. Here 500 different samples are used, which

are repeated 200 times to train the network. In the literature 100.000 different

data samples were used. This makes the training of practical systems possible.

• When the simulation systems contain linear parameters, they are estimated

with the nonlinear parameters simultaneously. Narendra and Parthasarathy did

not estimate the linear part of the system, they set the linear parameters a

priori to the real values. As can be seen in the simulations, the linear

parameters are estimated very good.

• In contrast to the literature, also the OEM is used during training so a good

simulation model will be obtained. Especially in the case when the system

output is disturbed by noise, the OEM gives an improvement over the EEM. It
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should be noticed that the special identification procedure (first the EEM and

then the OEM) gives no improvement in the noise free case. The final

performance is not better when the OEM is used in stead of another run with

the EEM. In the case where the system output is disturbed by noise, however,

the final performance obtained with the OEM is better than another run(s) with

the EEM.
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5 IDENTIFICATION OF THE WATER-VESSEL PROCESS

5.1 Description of the water-vessel process

The water-vessel process is a laboratory process, that is used by students during practical
training to study some aspects of identification and control theories. The process consists

of three vessels placed above each other. Water is pumped from a supply vessel into the

top vessel and flows via the middle vessel into the lower vessel. From the lower vessel

the water flows into the supply vessel. A scheme of the process has been drawn in figure
5.1.

¢ input flow [m Is]

h water level [m]

upper vessel

middle vessel

lower vessel

supply vessel

Figure 5.1 Scheme of the water-vessel process

In order to be able to measure and control the process, extra equipment has been added to

the process. - A level sensor for the lower vessel, to measure the water height.
- A rotation speed detector for the determination of the water flow.

- A personal computer (PC) to control the pump and store the process
measurements.

- DIA and AID converters for the interface between the PC and the

process.
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A more detailed description of the process and the peripherals is given by Liebregts [2].

The water level measurements are disturbed by:

- adhesion; for descending water the measured level is too high, which results in a

hysteresis of maximal 2 [mm].

- the bubbles which appear when the water drops into the vessel.

The relation between the ADC value and the actual water height is:

h = 1.710-4 ADC
h

where ADCh discrete output value of the ADC

h actual water height in the lower vessel [m]

(5.1)

The water is pumped into the upper vessel by a roller pump. The flow is not constant but

fluctuates around an average level. These fluctuations are very fast compared to the

dynamics of the water vessels, so they can be neglected. The input voltage of the pump

is, however, not a good measure for the average flow. The rotation speed of the pump is

a much better measure for the average flow, so it will be measured and used as the model

input. The measurement of the rotation speed is six times oversampled so a good value

for the average flow can be calculated by averaging over a sample interval. The relation

between the actual flow and the output of the ADC is:

(5.2)

where ADCq, discrete output value of the ADC

q, actual flow into the upper vessel [m3/s]

Figure 5.2 gives a block diagram of the process with all the disturbances.

DISTURBANCES

roller 0 ~
V c -----::~L.._pu_m_p_~-~~~ 1-------:'*

h

DISTURBANCES _--:~

sensor noise

u

DISTURBANCES ---:~

sensor noise

y

Figure S.2 Block diagram of the water-vessel process
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The input to the process is the roller pomp voltage and the output is the water height in

the lower vessel, however, for the model the water flow will be the input. As can be seen

in appendix B one vessel can theoretically be described by a first order nonlinear
difference equation:

h(k) =a,h(k-1) +bocf>(k-1) +f[h(k-1)] (5.3)

where cf>(k:)
h(k:)

flow into the vessel [m3/s]

water level in the vessel [m]

While the water-vessel process contains three vessels, described by a first order nonlinear
difference equation, the total process is a third order nonlinear process. However, the

high frequency behaviour of the upper vessel (it has the smallest time constant) will be
filtered by the middle and the lower vessel, and the sample frequency is too low to 'see'

the dynamics of the upper vessel. Thus the water-vessel process can be described by a

second order nonlinear difference equation.

5.2 Previous identification results

The previous identifications are all based upon linear identification techniques and can

directly be used to initialize the ARMA parameters of the model. The results mentioned

here are obtained by Lof [1]. Lof divides the process working range in 39 equal intervals
and investigates how the ARMA parameters of the process change when different working

points are passed through. The control voltage V c passes through the entire working range

from 0.6 to 3.9 [V] (cf> is about 0.5 to 3.5 [*lOe-5 m3/sD. The model used is given by the
subjoined difference equation.

(5.4)

where u(k)
y(k)

water flow into the upper vessel [m3/s]

water level in lower vessel [m]

For the exact lapse of the ARMA parameters will be referred to [1], only the upper and

lower values are given here (table 5.1).
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bo b l b2 a l a2

mInimUm -10 -110 370 1.43 -0.77

maximum 40 290 530 1.75 -0.53

Table 5.1 Results of an earlier identification

5.3 Identification of the water-vessel process

In contrast with linear identifications the entire working range will be modelled by a

nonlinear model. As discussed Lof modelled the water-vessel process by a number of

linear models, belonging to different working points. For this purpose a PRBNS signal

had to be superpositioned onto a varying working point. As working point variation a sine

wave has been chosen, because it could easily be removed by data filtering. Although this

data is not suited for neural network training, it was used for identification. New

experiments were not possible while the water-vessel process was broken down and there

was no time to reconstruct it. Information about the experiment done by Lof:

- PRBNS period time 15 [s]

- oversample rate 6

- total measure time 22:30 [h:m]

- sine wave range [0.9 , 2.6] [V]

[0.86, 3.14] *lOe-5 [m3/s]

- PRBNS range [-0.3 , 0.3 ] [V]

[-0.36, 0.36] *lOe-5 [m3/s]

The data, as this is direct descended from the AID converters, is plotted in figure 5.3.
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Figure 5.3 The raw data

(a) data from the rotation sensor

(b) data from the level sensor
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First the data can be converted to the real water flow and water height with formula 5.1

and 5.2 (figure 5.4).

4 x 10-5 flow r----r---=:p="-----,.------,0.5

Figure 5.4

(a)
The actual data

(a) water flow cJ> [m3/s]

(b) water height h [m]

(b)

To make the data useful for nonlinear system identification with neural networks, data
processing is necessary.

- Peak shaving is not necessary because the data contains no peaks.

- The delay time is about 7.5 [s], so the data must be corrected for this delay time.

- The oversampled rotation speed (flow) measurements have to be averaged.

- The input and output values have to be scaled to increase accuracy. The scaled input

and output ranges are [-1,1].

The processed data is presented in figure 5.5.

1 1

0.5 0.5

::s 0 >. 0

-0.5 -0.5

-1 -10 2000 4000 6000 0 2000 4000 6000
k k

(a) (b)
Figure 5.5 The scaled data

(a) input u

(b) output y
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The relation between the scaled input and the actual flow is given by formula 5.5.

</>(k) =1.53351O-s(u(k) + 1.2687) (5.5)

where </>(k)

u(k)
actual flow [m3/s]

scaled input used for identification

The relation between "the scaled input and the actual flow is given by formula 5.6.

h(k) =0.2070y(k) +0.2651 (5.6)

where h(k)
y(k)

actual height [m]

scaled model output used for identification

There are two kind of identifications done:
1. Without the use of a priori information.

2. With a prior knowledge about the auto regressive parameters from earlier
identifications.

1. This identification of the water-vessel process makes no use of a priori knowledge.
The identification is divided in two phases. During the first identification phase the

ARMA parameters are estimated. This estimation is very fast comparing to the
estimation of the neural network parameters. The results obtained are:

a l = 1.474 bo= 35
a2 =-O.5111 bl =245

b2 =377

As can be seen in table 5.1 most estimated ARMA parameters (except a2) are within

the variation range. In the second phase the ARMA parameters are initially set to the

values obtained in the first phase.

EEM

As can be seen from equation 5.3, the nonlinear part is only a function of the past

outputs.

y(k) =oly(k-1) +o2y(k-2) +hou(k) + hi u(k-1) +h2u(k-2) +

NI [y(k-1) ,y(k-2)]
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The neural network structure is: N25 5 I

The learn parameters and the estimated ARMA parameters are gathered in table

5.2.

run 1 run 2 run 3

learn patterns 5400 5400 5400

iterations 10 10 10

batch size 5400 5400 5400

(YNEURAL 0.2 0.2 0.2

(YARMA 0.1 0.1 0.1
a l 1.471 1.471 1.741

a2 -0.5137 -0.5141 -0.5141

bo 7.6 3.2 3.1

b l 215 208 206

b2 346 338 334

performance 4.41e-03 3.58e-04 2.97e-04

Table 5.2 EEM identification results of identification 1

While there was no validation data available, the data used for training was also

used for validation. The validation results after run 3 are presented in figure 5.6.
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Figure 5.6 Model validation after EEM for identification 1

(a) y(k) (solid) versus 9(k) (dashed) for 1500~k::;;2000

(b) y(k) (solid) versus y(k) (dashed) for 4500 ~ k~ 5000
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It should be noticed that the batch size is chosen to be 5400 (equal to the length of the
data set). When the batch size was 1, there was no good fit over the entire operating
range, while the data set is very extensive and the system passes very slow through the
entire operating range. So the neural network model continually learns small pieces of
the entire range, which results in a model belonging to the last part of the data set. To
overcome this problem, the calculation of the gradient is only once over the entire data

set, so the batch size is 5400.

OEM

y(k) =a)y(k-1) +a2y(k-2) +bou(k) +b) u(k-1) +b2 u(k-2) +

N) [y(k-1) ,y(k-2)]
(5.8)

The neural network structure is: N2 5 5 )

The learn parameters and the estimated ARMA parameters are gathered in table
5.3.

run 1 run 2

learn patterns 5400 5400
iterations 10 10

batch size 5400 5400

aNEURAL 1.0e-03 1.0e-03

aARMA l.Oe-03 1.0e-03
a) 1.471 1.471
a2 -0.5141 -0.5141
bo 3.2 3.2
b) 206 206
b2 334 334
performance 2.97e-04 2.97e-04

Table 5.3 OEM identification results of identification 1

The validation results after the OEM identification are shown in figure 5.7.
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Figure 5.7 Model validation after OEM for identification 1

(a) y(k) (solid) versus y(k) (dashed) for 1500~ k ~ 2000

(b) y(k) (solid) versus y(k) (dashed) for 4500~ k ~ 5000

2. Since the ARMA parameters are not constant over the entire work range, the ARMA
parameters are initially set to the mean values of the estimated ARMA parameters.

according to table 5.1 al = 1.59 bo= 15
a2 =-0.65 b l =90

b2 =450

The identification procedure is divided in two parts, an EEM part and 'an OEM part.

EEM

y(k) = Qly(k-l) + Q2y(k-2) + houCk) + hI u(k-l) +h2u(k-2) +

NI [y(k-l) ,y(k-2)]

(5.9)

The neural network structure is: N25 5 I

The learn parameters and the estimated ARMA parameters are gathered in table

5.4.
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run 1 run 2 run 3

learn patterns 5400 5400 5400
iterations 10 10 10

batch size 5400 5400 5400

(XNEURAL 0.2 0.2 0.2

(XARMA 0.1 0.1 0.1
al 1.593 1.594 1.594
a2 -0.6469 -0.6461 -0.6458

bo 4.5 5.1 5.1

b l 123 131 135

b2 472 469 462
performance 2.90e-03 3.54e-04 2.97e-04

Table 5.4 EEM identification results of identification 2

The validation results after the EEM identification are shown in figure 5.8.
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Figure 5.8 Model validation after EEM for identification 2

(a) y(k) (solid) versus Y(k) (dashed) for 15OO~k~2000

(b) y(k) (solid) versus Y(k) (dashed) for 4500~ k ~ 5000

OEM

y(k) =oly(k-1) +o2Y<k-2) + bou(k) + bl u(k-1) +b2u(k-2) +

NI [y(k-1) ,y(k-2)]

69

(5.10)



The neural network structure is: Nz5 5 I

The learn parameters and the estimated ARMA parameters are gathered in table

5.5.

run 1 run 2

learn patterns 5400 5400

iterations 10 10
batch size 5400 5400

aNEURAL 0.001 0.001

aARMA 0.001 0.001

aJ 1.594 1.594

a2 -0.6457 -0.6457

bo 5.2 5.2

b l 135 135

b2 462 462

performance 2.94e-04 2.94e-04

Table 5.5 OEM identification results of identification 2

The validation results after the OEM identification are shown in figure 5.9.
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Figure 5.9 Model validation after OEM for identification 2

(a) y(k) (solid) versus y(k) (dashed) for 1500sks2000

(b) y(k) (solid) versus y(k) (dashed) for 4500sks5000
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5.3 Comparison with a linear identification

In this section the results obtained are compared to the results obtained by Lof [1]. The

results are compared with a mean linear model (figure 5.10). The linear model is:

(5.11)

with 3 1= 1.59

32=-0.65
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Figure 5.10 Simulation 1

Simulation 2

(a) output system (solid), nonlinear model (dashed) and linear

model (dotted) for lS00s;ks;2000

(b) output system (solid), nonlinear model (dashed) and linear

model (dotted) for 4S00s;ks;SOOO

(c) output system (solid), nonlinear model (dashed) and linear

model (dotted) for lS00s;ks;2000

(d) output system (solid), nonlinear model (dashed) and linear

model (dotted) for 4S00s;kS;SOOO
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Conclusions

• The nonlinear model performs better over the entire range than the mean linear model.
Even in the operating range for which the linear model holds, the nonlinear model

gives the same performance, so the nonlinear model can replace 39 local linear models
(used by Lot).

• In both identifications, with and without the use of a priori knowledge, a good model
is obtained. When there is no a priori information available, it is better to estimate a

linear model first (fast estimation compared to the nonlinear estimation) and then use

this model to initialize a second nonlinear identification.

• By using a priori knowledge about the linear part of the system, the final model is
found in only 50 steps (parameter modifications).

• Practice showed that the use of other neural network structures (with more parameters)
give no improvement.

• Better results will be obtained when another data set is used, designed for neural
network system identification (section 3.4).
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6 CONCLUSIONS AND RECOMMENDATIONS

• It can be concluded that nonlinear dynamic system identification using neural networks
leads to good models. These models can be obtained using a simple learning algorithm.

• The results obtained from simulations are in accordance to the results presented in the
literature. However,

- the neural network models used, contain considerable less parameters. Nio 5 5 1

networks instead of N jo 20101 networks are used (iO is the number of inputs).
a smaller data set is used, 500 samples in stead of 100.000 samples. This

facilitates the identification of real systems.
the linear as well as the nonlinear parameters of the system model are estimated
simultaneously.

the output error model is used during identification to obtain a good simulation

model of the system. Especially in the case when the system output is disturbed
by noise, the OEM gives an improvement over the EEM.

• As can be seen from the identification of the water-vessel process, it is advantageous
to use a nonlinear identification technique using neural network models. Only one

model can describe the process behaviour over the entire operating range in stead of 39
linear models. It is expected that even better results will be obtained when the input

signal (during training) is a random, uniformly distributed signal over the entire
working range.

• The use of a universal model which contains both a linear and a nonlinear model has

proven to be valuable since the final model of the water-vessel process was found in

only a few steps (about 50 parameter modifications).

• The application of the output error identification model with the neglect (section 3.2)

leads to good results when the learnvelocity factors (XNEURAL and (XARMA are chosen to be
low (factor 10 to 100 with regard to the equation error model). To overcome the

special identification procedure in the future, it is advisable to write a special algorithm

for the recurrent multilayer neural network. Especially in the case when Newton-like

algorithms will be applied, the total learning time will be acceptable.

• For the extension of the algorithm from S1SO to M1MO, only the linear part of the
learning algorithm has to be modified since the nonlinear part (neural network) is
already MIMO.
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APPENDIX A Diversion of the backpropagation algorithm

The performance function is defined as:

with Yp(k) model output

Yp(k) system output

N batch size
lL number of outputs

The weights are modified according to the steepest descent method.

(A.I)

(A.2)

with new weight parameters

old weight parameters

learnvelocity factor
gradient of J w.r.t. W

Figure A.I shows a part of a multilayer neural network, which IS used to derive the
backpropagation algorithm.

LAYER L-2

processing element i

LAYER L-l

processing element j

LAYER L

processing element p

Figure A.I Part of a multilayer neural network
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oj =~t t e (k) oy/k)
oW N k=l p=l P oW

(A.3)

(A.4)

1. WEWpj p: processing element of the output layer, layer L
j: processing element of layer L-l

where neVk)
fl.]
f[.]

sum of all weighted inputs to processing element p

processing function of processing element p

derivative of the processing function of processing element p

2. WEWji j: processing element of layer (L-l)

i: processing element of layer (L-2)

iL

with oik)=!,[netj(k)]L op(k)wpj
p:l
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3. WEwih i: processing element of layer (L-2)
h: processing element of layer (L-3)

So in general:

with oj(k)=f'[netj(k)]L oj(k)wjj
j=l

(A.5)

where q

r

processing element of layer 1-1
processing element of layer 1
output of processing element q

When r is an processing element of a hidden layer:

0r(k)=f'[netr(k)] L 0s(k)wsr
s=l

(A.6)

where s processing element of layer 1+1

When r is an processing element of the output layer:

(A.7)

To clarify the backpropagation algorithm Narendra and Parthasarathy [12] give a

blockscheme in which this backpropagation of the error is displayed.
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APPENDIX B Model of a water-vessel

In figure B.l is a schematic view of a water-vessel given.

h

Figure H.I Model of the wakrvessel

¢.
1

¢o

h

A

V= A.h

input flow [m 3Is]

output flow [m3 Is]

water level [m]

area vessel [m2 ]

volume of water in vessel
[m 3]

cPo -cP =A dh
I 0 dt

The nonlinear relationship between 4>0 and h is given by Liebregts [2].

with Ro=3.97e8
R, =5.38e3
Do =0.02
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With formula B.1 one can derive the subjoined equation.

-RI Ro Ro=- {1- (l-4Do-)+4-h }
2R R 2 R2

o I I

=g [h]

So:

¢;(t) =A dh + g [h]
dt

Discretization:

dh II = h(kT+T) -h(kT)
dt =kT T

The difference equation is:

¢;(k) = A {h(k+ 1)-h(k)} + g [h]
T

or:

h(k+1) = ~¢i(k) +h(k) +fth(k)]

So in general:

h(k) =al h(k-1) +bl ¢i(k-1) +fth(k-1)]

a = 1I

Tb l =-
A

fth(k-1)] = T~ [1­
A 2Ro

(B.2)
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