EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Expression optimization for the APDL-compiler

Wijshoff, Marcel

Award date:
1992

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1348f69c-f66a-44d6-b1d1-f7b20565f7af

£ED 363

2.6&0

Expression optimization
for the APDL-Compiler.

By : Marcel Wijshoff.

Graduation report.
Coach : ir F.P.M. Budzelaar

Supervisor : prof.ir. M.P.]. Stevens
TUE, 18-2-92.

The faculty of Electrical Engineering Eindhoven University of Technology does not accept any responsibility regarding the contents of graduation reports.

Summary

The Digital Systems Group at the department of electrical engineering, Technical
University Eindhoven, is developing a compiler for the APDL-language. The compiler,
called APDL-compiler, has to deal with expressions which are not bound by any limit
regarding its size. We will introduce a method for the construction of a rulebasesystem,
that is used to reduce the size of expressions.

After an extensive literary search it was clear that, the subject was not dealt with as most
programmers belief that expressions are already simplified by the user. In our case
however this is not always true. The compiler itself could introduce a lot of expressions
that could be simplified to true of false, indicating a constant decision. This decision can
be made at compile time resulting in a general gain of storage-space and execution-time.
The constructed system consists of a group of small rulebases. The rules in these rulebases
are matched on the expressions we want to simplify. If there is a match the expression is
altered, but the algebraic meaning of the expression remains the same.

Each rulebase has a special task, so performing a specified mutation on an expression.
We constructed a group of rulebases that transform the target expression to a canonical
form called the leftsorted form. On this form we try to perform a reduction which results
in the decrease of the number of operators.

This reduction is based on the distributive property:
(a op, b) op, (c op, b) = (a op, ¢) op, b.

We see this property, used from left to right, reduces the number of operators with one.
We could use this property numerous times ending up with a form that not matches the
lefthand side form of the property. We could then use some simple reductionrules, based
on the Unity, Zero and Cancelation of Not-property, to reduce the expression even more.
To come to this canonical form there are some steps that must be taken first. We have to
get rid of minus and not-operators as they could block some of the steps in a later rulebase.
Minus operators are easily rewritten to a multiplication by the constant -1. Not-operators
are placed as close to the operand as possible. This results in a not-operator followed by
a variable. We will see this construction as a whole ‘new’ variable. As exclusive-or-
operators, when written out in an AND and OR, introduce another not-operator we have
to expand this XOR even before we process the not-operator.

Then we expand all expressions in the form of the righthand side of the distributive

property, to the form of the lefthand side, thus using this property the other way around.
For getting to the final canonical form we have to use a rulebase to sort the expression
onto a leftsorted form. This form simply defines that there may not be a same kind of
operator to the left of a dyadic operator. This rulebase uses mainly the associative and

commutative properties.

To construct the rulebasesystem we had to introduce a system which makes it easier to
detect in which order the rules must be placed and which method to use in applying the
rulebase. The rulebasesystem constructed in this way is able to deal with a variety of
expression as long as the input conditions are met. For this system there are only a few
expressions that could mess up the system. Most of those expressions could be simply

blocked by a rulebase which checks these input conditions.

Contents.

LIntroduction. i e -3-
1.1. APDL-expressions form.cciiiuinninienninrnen.n, -4-

1.2. Key ideas and definition. L., -4-

2. Basicdefinitions. -5-
2.1. Universal definition. il -5-

2.2. Definitions for our rulebasesystem. -6-

2.3. Termination, unambiguously and completion. -8-

3. Pattern recognition. i -9-
3.1. Matching a pattern on expressions. 0L -9-

3.2. Matching patterns on an expression., -10 -

3.3. Expressionlevels. i i, -12 -

4. Rewriting. e -13 -
41. Fromequationtorule. i .. -13 -

4.2. From equations to rulebase, theory. -15 -

4.3. Consequence of a reWrIite.cvuriienenennenennenennn. -17 -
5.Basicequations. i e -19 -
6. The theoretical background. i -22-
6.1.Collapsing.ttt e -23-
6.2.50rting. e e -26 -

63. Acanonical form. il i -27 -

6.3.1. Left sorted canonical form. -29-

6.4. EXpansion. e e -29-

6.5. Introduction of constants. o i L. -30 -

6.6. Removing monadic operators.ol - 30 -

6.6.1. Register expressions.c.viuiiiiiiinnn... -31-

6.6.2. Integer eXpressions.cuiiniiiiiiaaiaan.. -32-

7. Possibilities for implementation o oLl -33-

7.1. How to order therulebase. -33-

7.01.1. Definitions. i i i -33-

712. Theproblems. i, -35-
713.Dependencies.t - 36 -

7.2. Global Rulebase ordering. i - 48 -

7.3. Constructing a rulebase for minus reduction. -50 -

7.4. Constructing a rulebase for not reduction/shifting. -52 -

7.5. Constructing a rulebase for constant introduction. -53 -

7.5.1. Integer expressions.ciiiiiiiiaienaaa -53 -

7.5.2. Register expressions.ttt - 54 -

7.6. Constructing a rulebase forexpand. - 55 -

7.6.1. Integer expressions. i, - 55 -

7.6.2. Register expressions.couitiinneniaa.. - 58 -

7.7. Construction of a sort algorithm., - 59 -

7.7.1. Integer expressions.ciiiiiiiiianiaaan - 60 -

7.7.2. Register expressions.c.cititiriinininnn. - 61 -

7.8. Construction of rulebase, resulting in a canonical form. - 64 -

7.9. Construction of the collapse rulebase. - 66 -

7.9.1. Construction of thetable., - 66 -

8. Practical pointof view. i - 69 -
8.1.Rulebase structure. i i - 69 -

82. Subsortindetail. i -72-

9. 5UMmMAry. i e e -76 -
9.1. Integer expressions. i i e -76-

9.2, Register expressions il i e -77 -

10. Conclusions. i i e -79 -
11. Recommendations. e e - 81 -
12.References. i e -82-

Appendix 1 : Program source code

Appendix 2 : Rulebase source code

1. Introduction.

The Digital Systems Group of the department of electrical engineering, Technical
University Eindhoven is developing an APDL-compiler. The source language of this
APDL-compiler is a PASCAL like language.
The source-language of this compiler could hold assignments like:

"var := expression;"
or conditional statements like:

"if expression] == expression2 then ... else ...;".

This source text could be compiled and produce a program. The compiler introduces some
expressions itself. We thus get a program with a lot of expressions. If we run this program
every expression is evaluated. An expression consists of elements which have to be known
at that point of the program. If we try to evaluate an expression during compilation we

could encounter elements which are not known, such as variables.

We could however try to simplify an expression as much as possible, so that the program
will have less complicated expressions to evaluate during the running of this program.
This will results in a faster program. A simpler expressions mostly means a smaller
expressions so the program will decrease in size also.

This could even result in an evaluate of the condition expressionl == expression2 during
compilation. This condition then results in an unconditional if-statement, which could
either mean the part after ‘then’ is used or the part after “else’, so the other part which is

not used could simply be deleted from the program.

We can "optimize" an expression by rewriting the original expression ‘a’ to an equivalent
expression ‘b’. One problem is the term "optimal”, because an expression is only optimal

in a certain context, e.g. "2*a’ could be more optimal than ‘a+a’ if **’ is more efficient than

1,1

+.

We assume here that an optimal expression is the expression with the least number of

operators as possible.

1.1. APDL-expressions form.

An expression looks like a tree with monadic and dyadic operator @

nodes and terminals. In this tree every nonterminal is an operator, / \
while the terminals are of the constant or variable type, e.g. the IEI @
expression: a + (b * ¢) looks like figure 1. / \
Due to this dynamic structure it is easy to alter an expression in any
way we like. figure 1

1.2. Key ideas and definition.

The key idea is a set of rewrite rules, which are descriptions of sets of expressions and
their replacements.

E:a set of (linguistic, algebraic, symbolic) objects. (patterns)

R:a set of rules for which (s —; t): s,t € E, a binary "reduction” relation —; on E.

We write s — t instead of (s,t) € —»; where possible.

It could be possible that s —» t — q and therefore we note this as s -* g.!

We further introduce an ordering > such that for two patternssand t,s > t means
that pattern s has more operators than t.

Our aim is thus: s 5* tand s > t and this in such a way that t would be identical to
a constant, which could lead to decisions now made at compile time, and so lead to an
optimization of the program code. It could be possible that an expression is only partly

rewriteble to a smaller expression, but this would also be an improvement.

1We could now make a set of rules like :
st 1.
toq 2.

note 1 : we could introduce a third rule : s = q 3. We see that two transformations are then possible on the same expression which results in two
different new expressions. We see that now the order of the rules is thus important because the rule which is placed first will be the one which
is used while the second one is notl.)

note 2 : swapping rule 1 and 2 makes the set of rules miss the conversions 5t > q.

-4-

2. Basic definitions.

2.1. Universal definition.

We define:
P : a set of all linguistic, algebraic, symbolic objects. (we call these patterns).

Examples: { “a const’ , “an expression’ ,‘a and b’ , “a const + a’, ...} €P.

r : a binary "reduction” relation — on P. s - t € 7 (s,t € P and (s=t)=true) we call a rule.
We can, using such a rule, alter an expression s in an expression t.

Examples : ‘a + 0 - a’, ‘a const or true — true’, ‘1 — a const’ are rules.

R : a set of rules, and call this a rulebase. (Each rulebase is assigned an arbitrary unique
name.)
Example:

rulebase example: {

‘a+0 - a’ ,
‘a const or true - true’ p
"1 > a const’ }

This is of course just an example rulebase. We want to show that there are no

constrains to the contents of a rulebase.

E : a set of linguistic, algebraic, symbolic objects. (expressions).

Note: ¢ £ P if and only if e € E.

2.2. Definitions for our rulebasesystem.

We introduce here also a distinction between two types of expressions: an Integer
expression, which returns an integer-type result, and a Register expression which returns

a register-type result.

An expression is a string that is accepted by the following DFA:
Exp: var.
I const.
I Mon-op,Exp.
I dyadicoperator,Exp,Exp.
Var: name.
i name[exp].
Mon-op: ‘- | '+ | rev | not.
Dya-op: " 1'+ "™ lorland I xor | > | '< |’= | >=" | '<=' | '>" | '/,
Of course checking on the correctness of the expression is done, but that is the task of the

parser. We will in our part only consider valid expressions.

We have to restrict the definition of a rulebase, so it is useful to us:
R : an ordered set of rules which is called a rulebase. (Each rulebase is assigned an

arbitrary unique name.)

We have now restricted rulebase R € R to an ordered set of rules. The appearance of the
rules is sequential. The rules don’t necessarily have to be mutual exclusive. The order of

the rules is thus very important. We will deal with this problem of order thoroughly later.

The rules are ordered: s,—t;..s.>t,.

(e is the number of rules in the rulebase).

If we also make it possible for one rulebase R, to call another rulebase R, we can redefine

a multi-related rulebase-system M:

M : a set of rulebases R, (i € N) € R which have the possibility to call upon each other.
(R,:calR,).

We have to introduce some command-words here in a rulebase to realize this special call
function. (m and c stand for main and called rulebase, c and m do not have to be different
rulebases, so it gives the possibility for recursion).

We see M is not an ordered set. A rulebase € M is called by another rulebase by name,
which is the reason for unique names for rulebases. Therefore it’s not needed to order the

set M. One special rulebase is reserved however to be used as a start rulebase.

Advantages:

- We can avoid useless matching of patterns which don’t occur anyway in an expression.

- We could see every rulebase as a procedure. The start rulebase could be seen as the
main program, while it is calling the "procedures” (rulebases). We can see the
resembles in modern computer languages, making it possible to use this

construction of the rulebase as a very flexible tool.

2.3. Termination, unambiguously and completion.

We cite Mohan and Srivas [11]: ‘In any programming formalism, it is desirable that a
function definition satisfies three properties:
P, : Evaluation of terms invoking the defined functions on basic operator term
argument must terminate.
P, : The definition must be unambiguous,i.e., every evaluation of the same term
must yield the same result.
P; : The definition must be complete,i.e.,evaluation must be possible for every

invocation of the defined function on basic operator term arguments.’

Ad.P;: In our multi-related-rulebase-system we use sequential rulebases. We thus have to
satisfy property P, for every rulebase separately and thus fulfil the property P, for
the whole system.

Ad.P,;: As our system is based on a sequential matching procedure, there is only one
possible way an expression is processed to reach the end of the system. Therefore

P, is always satisfied.

Ad.P;: As we will see later we rewrite every expression to a canonical form, which is, if
possible, unique for a group of expressions which have the same algebraic
meaning. From that point on, the rewrite procedure is thus the same for every

expression of that group. So P; is thus satisfied.

We have to keep these properties in mind as we construct our rulebasesystem.

3. Pattern recognition.

We want to make a rewrite system that recognises certain patterns in an expression. We
can, if we have recognised such a pattern, act upon it and alter the expression to
something we think is more useful. We will see that a pattern could be used to recognise
more than one expression, which will lead to a reduction of the number of patterns. We
will also see that different patterns can recognise the same expression, which could cause

some problems regarding determinism, but we will deal with this problem later.

3.1. Matching a pattern on expressions.

The input of the expression-optimization is of course, an expression. Our rulebase M,
however, is constructed basicly of patterns. We have to find a way to map a pattern on

an expression.

Although E is a subcollection of P it is possible to project every p e Ponee E.

Vee E,dpe P:Projlp) =¢;

It is frequently possible to project p on more than one e, so on a subset of E.

IV cE 3Ipe P:Projp)=V;

This process of projecting p on e successfully is called matching.

Concluding from the above there could exist a subset V of E which could be matched by
a single pattern p of P successfully.

An example:

p =’A const’;

e ="0;

e, ="'1;

e="2;

Here), ¢, and e, are all matched with p.

3.2. Matching patterns on an expression.

Matching can be done at more than one level; we can see an expression in different ways
(we look with a specific depthrange to it).

For example the expression: ‘true or false’ could be matched with:

‘an expression’ @
‘an expression’ ‘or’ ‘an expression’ (b
‘an expression’ ‘or’ ‘a constant’ ©
‘a constant’ ‘or’ ‘an expression’ (d)
‘a constant’ ‘or’ ‘a constant’ (e
‘an expression’ ‘or’ ‘false’ o'
‘true’ ‘or ‘an expression’ 4]
‘a constant’ ‘or’ ‘false’ (h)
‘true’ ‘or ‘a constant’ (@)

‘true’ ‘or’ ‘false’ ()

We see that one single expression can be matched by many different patterns.

Some of these patterns are useless for matching this expression, although we could for
instance use (b) to simplify the two expressions on both sides first and then, as a result,
simplify the whole expression by matching with (a). We note that the order in which the

rewrite rules are placed is very important.

In the example we prefer (f) and (g) and do not need (h) because:
H U@ = (h;

Further note the order of the example: if we use (a) we don’t need the rest because (a) >

(b..h), (a) gives a matching before b..h can do.

! Only a few patterns can make a match that will lead to a simplification of the expression. Only the last 5 (f..) can distinguish that the
expression is a possible candidate for simplification. A match in (e) could lead to an evaluation which could simplify the expression as well.

-10 -

It is further important to note the change the rewrite rule implies. If a rule converts an
expression to another expression this new one can still match another rule in the same
rulebase. We have to take this possibility into account and act upon it. This possibility
could be wanted or not. This is depending on the situation.

One possibility could be to start the rulebase over again, another is to exit the rulebase,

doing nothing further at this stage.

We conclude that the subset V; and V of E, which could be match by p; and p; of P, don’t
have to be disjunct.

In the graph, which is an example, there are 3 patterns involved:
pl : ‘a const’ and TRUE
p2 : FALSE and TRUE

p3 : TRUE and ‘a const’

»
.3
and 4 expressions: /O\

el : 3 and TRUE 2

e2 : FALSE and TRUE
e3 : TRUE and 4 E
e4 : TRUE and TRUE. figure 2

We can imagine the expression space as a plane. The patterns are projected on it as a
shade from a point projected by a light source.

We can see that indeed some patterns match more than one expression for example in the
area of el there could also be: 4 and TRUE’,’5 and TRUE’ and so on.

Also there are some expressions like e2 and e4 which are matched by more than one

pattern (e2 by p1 and p2, e4 by p1 and p3.)

-11-

3.3. Expression levels.

Expressions can consist of more subexpressions, e.g., the expression a + b consist of two
subexpressions: a,b.

In this way we can distinguish different levels in expressions.

An expression like (a + b) + c has an operator level range of 2, we have to go through 2
levels if we want to reach the last operator.

While searching a tree for a special pattern, we scan, with a pattern, through several levels.
In the example above we scan through two levels. Sometimes this could be more or less.
Example: (a + b)) + ¢ is an expression which could be matched twice with the pattern

a + b, once matching x + ¢ (with x=a+b), and once on the subexpression a+b itself.

-12-

4. Rewriting.

4.1. From equation to rule.

Rewriting is based on the property of two expressions having the same algebraic meaning,

stated in an equation.

s =t {steE}

If we have such an equation, we could construct two rules:

{steE }: s=t & st Atos;

Mostly only one rule is desired, so:

{steE L s=t = st V t—s;
In this way we can construct a directed rule.
We call the source s of a rule the lefthand side of a rule. We now define a function that
we will need later:
LHS(r)=siffr:s oz t.
RHS(r)=tiffr:s —ogt.
Note: we only have a rule here which converts an expression into another, not a pattern.
This implies that we have to make a rule for every possible mutation of an expression.
We can however also try to pack more than one rule into a set of rules that have a
common part, using patterns. We can then use this common part and try to make a more

common rule that will process the complete set at once.

Consider a group(set) G of rules r, (i € [1.N]).

InG : e LHS(r,) (¢ € E).
InG : if g = g => r,=r, for all i,k € [1..N] which implies:RHS(r;)=RHS(r,) for all
ik € [1.N].

Forpe P : Proj(p) = ¢, for all i £ [1..N] and Proj(p) doesn’t match outside the group G.

If these 3 conditions are satisfied we can replace G with only one rule containing p for all
es.

Note 1: these considerations are also true if we take a peP instead of e€E.

Note 2: ¢; can be a subexpression of a whole lefthand side of a rule.

-13 -

An example: equations: 0*1 = 0 (1

0*2 = 2
0*3 = 0 3
(4..n)
0*a = 0 (n+1)
rules: 0*1 - 0 (1
0*2 - 0 2
0*3 - 0 3
(4..n)
0*a - 0 (n+1)

Rule (1) to (n) can be put into a group G and then the numbers 1 till n in the rules can be
replaced by each other. For instance, if we take rule (3) and put the 3 of this rule on the
place of the 1 in rule (1), we get again rule (3). If we assume n is the biggest integer
possible in an expression we can take this group G together with the rest of the rules
to: 0 * ‘a const’ - 0 (1)

0*a - 0 (n+1)
We can again take these two rules together and construct one rule instead:

0 * ‘expression’— 0 1)
In this way we can reduce the number of rules to a minimum. Rewriting can now be

defined as applying rules so that the outcome of the rewrite is (sub)optimal.

-14 -

4.2. From equations to rulebase, theory.

We want to have a method to convert a set of equations to a set of (directed) rules. In
literature we can find some methods to extract a ‘complete’ rulebase out of a set of
equations.

We define for this purpose Eq : a set of equations.

One method for creating a rulebase R out of a set of equations Eq is the one designed by
Knuth and Bendix’70 (see H.Ait-Kaci & M.Nivat p39 [19] for further details).

We use the following inference rules which form a standard completion procedure:

(1) Orient: (EqUis=t}L,R) - (Eg,RUs—>1t) if: s>t

(2) Deduce: (Eq,R) F (EgUs=thR) if: s~ u—t.

(3) Delete: (EqUis=s}R) + (Eq,R)

@) Simplify: (EqUs=thR) + (EqUu=thR) if: s> u.

(5) Compose: (EqRUs—>t) + (EqRUs—ub) if t— u.

(6) Collapse: (EqRUs—>th) + (EgU=t,R) if: s—, U by rule I>r e R withsvl

The symbol »denotes the specialization ordering, iff some subterm of s is an instance of I, but

not vice versa.!

(1) Orient turns an equation st that is orientable (s > t) into a rewrite rule. Since 1" is
greater that 1 for any reduction ordering (or an infinite derivation would be
possible), the equation 1'&1 can only be oriented it the direction 1—1.

(2) Deduce adds equational consequences to, E but only those that follow from back-to-
back rewrites s «— u and u —t. For example, the rules x.x—1 and 1.x—x can both
be applied to the term 1.1. The first rewrites this term 1, from which the new
equation 1"&1 can be deduced. As we will see, only consequences of certain ‘critical’
peaks need to be considered.

(3) Delete removes a trivial equation s—s. An equation x.1&x.1, for example, would be
candidate for deletion.

(4) Simplify rewrites either side of an equation se&t. For example, given a rule 1.x—x, an

1 : . .
If there is rewrite rule r applied to s and the result is t then t is an instance of s.

-15-

equation 1.1-1 would be replaced by 1&1.

(5) Compose rewrites the right-hand side t of a rule s—t, if possible. For example, given
a rule x™—x, the rule (x.1).1-x™.1 would be replaced by (x.1).1-x.1.

(6) Collapse reduces the left-hand side of a rule s—t and turns the result into an equation
uot, but only when the rule I-r being applied to s is smaller in some sense (

embodied in ») than the rule being removed. In practice, we use the (proper
specialization ordering as b In the ordering, s »1if a subterm s is an instance of I(

but not vice-versa). For example, a rule x".y—x.y collapses to x.y<x.y in the
presence of a rule x—x. The age of the two rules may also be taken into account

when each left-hand since in an instance of the other, making older rules smaller.

We write (Eq,R) | (Eq',R") to indicate that the pair (Eq’,R’) can be obtained from (E,R) by
an application of an inference rule. A (possible infinite) sequence (EqoRy) (Eq,R) ... is
called a derivation from (Eq,R,). The limit of a derivation is the pair (Eq™,R™) of the set
UiNyEq; of all persisting equations and the set Uin,R; of all persisting rules.

A completion procedure is a program that accepts as input a set of equations Eqg,
a Rewrite system Ry, and reduction ordering > containing R;, and uses the above inference
rules to generate a derivation from (EqyR,). We say that a completion procedure fails for

a given input, if Eq” <> 0. A completion is correct, if R is complete and Eq™ = 0.

This concludes the discussion of the theory. This procedure will produce a rulebase which
is not ordered, that is all the rules are placed into a random order. The rulebase source-
patterns thus have to be disjunct, e.g., if an expression is tried to be matched, there is at
most one pattern that will match the expression. However, we want a rulebase that is
matched sequentially, so some patterns don’t have to be disjunct. Furthermore, we have
a system with multiple rulebases, which is not so in the method above.

The theory above is constructed upon an ordering that we sometimes do not follow.
The definitions above are nevertheless useful for construction of a rulebase. We will
therefore partly use this method. We will also introduce a method that will deal with the

problem of ordering rules in a rulebase and rulebases themselves.

-16 -

4.3. Consequence of a rewrite.

We have to consider the consequences of a rewrite. A rewrite alters the structure of the
expression tree. Mostly the level range of the rewrite, so the levels of the alteration is
equivalent to the operator level range. We have to consider that if a rule, consisting of a
pattern and its rewrite pattern, is applied, the levels under it alter too. So if a rewrite rule
is applied to a certain expression we have to keep in mind that the levels in the operator
level range also change.
An example:

The expression: ((a + b) + ¢) *d

The rule: (@ + b) *c — (@ * ¢) + (b *) : (displayed in figure 3)

Appliance:
(@+b)+c)*d -
((@b)*d) + (c*d) -
(@*d)+®*d) +(c*d). 0|
=
We see that at first we couldn’t apply the rule to the a,b,d é?}_ . JQ
couple. If however, we had applied it to the (a+b)cd g gure 3

couple first, we could.

We altered the expression in a lower level by using the rewrite rule. This second rewrite,
could result in a rewrite even lower.

This makes it likely to make a rulebase a top-down design, working from the root to the
leaves.

In the figure we see again that the expression in a lower level changes as we apply a rule
like this.

If, however, we do a rewrite at a level below, this could mean that, at the current level,
now a pattern could be matched which couldn’t be made if we didn’t make the rewrite
at the lower level.

A pattern that has an operator level range greater than one, so is depending on more than

the current level, could be matched after the lower levels are rewritten.

-17 -

An example:
The expression: ((a + b) *¢) * d

Therule:@a+b)*c—o(@*c) + (b *) : (the same as above)

Appliance:
((@a+b)*c)*d N
@*a+(b*c)*d) -

(@*a)*d)+((b*c)*d).

We can see that in this case we first have to apply the rule to the a,b,c couple and as a
result we can use it again to the (a*c),(b*c),d couple, but this last is at a higher level. So
using the first (top-down) technique we had not found the second rewrite. This makes
it likely to use the bottom-up design in a rulebase, working from the leaves to the root.
In the figure we see this also: changing the current level has consequences in the levels

above.

Concluding, we have to use rules, which also have to be aware of alterations in the lower
and upper levels. With each rule we introduce in a rulebase, we have to consider the
consequences of the rewrite to the levels below and above. We will deal with this problem

later.

-18 -

5. Basic equations.

A rulebase is always based on an algebraic foundation. In our system we only take the

most simple equations based on some simple algebraic properties:

1 the Associative property. A.
2 the Distributive property.(left and right). D.
3 the Commutative property. C.
4 the Unity property of one. u.
5 the Zero property of 0. Z.
6 the cancelation of NOT (symbol of not: =). N.
7 the expansion of XOR. X.
8 the De Morgan rule. M.
9 the mInus rules. L

10 the Evaluation of constants. E.

-19 -

Equations: (for the following equations, “op’ is a symmetrical operator !)

(aopb)opc=aop(bopc).
(@+b) * c=(a*xc) + (b* o).
c A @V b)=@V oA ®dV o).
c V @A b)=@aA o)V A o).
(a op b)=(b op a).
axl=a.

aAl=a.

aV1i=1.

a®1=-a.

ax0=0.

aA0=0.

aV0=a.

a®0=a.

a+0=a.

~-a=a.

=1=0.

=0=1.
a®b=(@A-b)V(-aAb)
-(aVb)=—aA-b.
-~(aAb)=—~aV-b.
a-b=a+-b

-a=ax-1

C, /1anyop//C,=C,

NoCccanNouo»

N e Y

Z Z Z

w

2R)

From these simple equations we can deduct some equations that are obvious to us but are
quite timeconsuming if we have to deduct them with only the basic rules, e.g., we will try
to construct a new equation with --a. Note that we, humans, mostly know which way we
want to go. If the outcome of such a deduction is not clear, it could take some extensive

effort even done by a computer. Note that these equations are not directed.

—-a =
-(-@)) = ()
(-(@))*-1 =(I)
(@*-1)*1 =(A)
a*(-1*-1) = (E)
a*1 =(U)
a

We now deduced the equation --a = a. There are other ways to come to the same result

-20 -

but there are, however, also some ways to come to an equation like for example ~a=—-a.
The following deductions are used frequently and therefore done here only once and we

can refer to them later.

aA-a= (if a=1) aV-as= (if a=1)
1A-1=) 1V=1= N
1A0=0 Z) 1V0=1 2)
alA-a= (if a=0) aV-a= (if a=0)
0A-0= (N) 0V-0-= (N)
0A1=0 (9)) 0V1=1 L)
concluding: aA-a=0 concluding: aV-a=1
aAa= (Z) aVa= (9))
@vVoA@vVo) = DO) @A1NV@AD= (D)
aV(OA0)= (z) aA@V1D-=)
aVo= (z) aA1= (8)
a a

-21-

6. The theoretical background.

The expressions offered to our rewrite system are of a variety of forms. Some of these
expressions however have the same mathematical meaning. Our aim is as mentioned
before, to reduce the number of operators in an expression, and if possible to reduce an

expression to a constant expression.

To get an impression on the number of
operators during the rewrite process, we
look at figure 4, and see on the left side
that a whole group of expressions is first

forced to a canonical form, which is fairly

unique. This gives an expression fewer

possible forms which in its turn reduces

the number of rules in a rulebase.

Then this expression is further processed figure 4

using a collapse mechanism discussed later.

On the right side we see that an expression could gain on the number of operators in the
first part towards the canonical form, but later it will loose some operators as well. Mostly
the number of operators at point e1” is less that el. E1’ as the canonical form mostly holds
more operators then el”, as is shown in the figure. Note that the expression could have
local minimums regarding the number of operators, but we have to avoid seeing these

points as points where the expression could no longer be reduced.

This strategy results in some steps toward the canonical form, using different rulebases
after each other. After a canonical form is reached there is a group of rulebases that
reduces the number of operators step by step. Then the results are evaluated to search for
some expressions that can still be reduced.

We will first handle the part where the number of operators is reduced. We then know
what input conditions there are for this part, which are the output conditions of the part
which produces the canonical form. We thus handle the part before construction of the
canonical part after the collapse part. It’s a sort of working back from end to the beginning

of the process. This is due to in and output conditions that will be handled in a later
chapter.

6.1. Collapsing.

The equations we use to reduce the number of operators are based on the distributive
properties:
(@a+b) * c=(@*c) + (bx o). D,
cA@Vb=@VcA®Vc. D

2

cV@Ab=@AoV bAc). D,
These properties are used from the righthand side to the lefthand side. Using these
properties the number of operators will diminish by one each time. We call this collapsing.
One can consider a random search for these properties to use them on an expression but
it is more effective to rewrite the expression into a canonical form first.

Further it is efficient to take the most common variable/subexpression in the whole
expression and make this variable/subexpression the variable/subexpression that is taken

out of the parenthesis first. We will call this the common variable.

Proof: Assume there is a most common variable a, which is n times in the expression
while variable b is m times in the expression (m < n). If we take a out of
parenthesis we gain maximal n-1 number of operators. If we take b out of
parenthesis, we gain m-1 number of operators.

We can now consider tree cases:
1 all bs are in subexpressions where as are too.
2 there are some bs that are in a subexpression with no as.

3 all the bs are in subexpressions that contain no as.

Case 1:
Let us assume we take b out of parenthesis, so we have a subexpression
connected to b with m subterms. So now we can take a2 in the subterm out
of parenthesis, and we can take a out of parenthesis outside of the subterm
from b.
Total gain: m-1 (b) + m-1 (a inside) + n-m-1 (2 remaining) = m+n-3.
If we take a out first (gain: n-1) we have all the bs inside the subterm and
so we can take out m bs (gain: m-1).

Total gain: n-1 + m-1 = n+m-2.

-23-

Case 2:
We again try to take out b first.(gain: m-1), then we assume that there are
r as in the subterm of b so we can take them out too (gain: r-1). Then we
can still take out as outside the subterm (gain: n-r-1).
Total: m-1 + r-1 + n-r-1 = n+m-3.
If we take out a first (gain: n-1) and then take out the remaining bs in the
subterm of a (gain: r-1), we can still take out m-r bs outside the subterm
(gain: m-r-1).

Total: n-1 + r-1 + m-r-1 = n+m-3.

Case 3:
We take out b again first (gain: m-1) and in the subterm there are no as,
so outside the subterm we can take out a completely (gain: n-1).
Total: m-1 + n-1 = n+m-2.
Taking out 4 first has no consequence for the consideration above.

Total: n+m-2.

As we can see taking a out first has only an effect in case 1. In the other two cases it
doesn’t matter which we take first.
As the aim is to minimise the number of operators we consider this method a good one.
Furthermore we have to consider the possibility that if we have taken out a variable out
of parenthesis, we can update our expectations about what variable will make the most
gain now. This means that the above presentations can be reconsidered.

Assume we have p variables 4; (i€ [1..p]). Variable g, occurs Oli] times. We take

a;, out of parenthesis:
Vi:O[lm] =O[i];

If we have taken a,, out of parenthesis we have to consider the most frequent
variable again. (While taking a,, out of parenthesis we have to update O[m]).
We continue this process until there are no more variables left that are considered
gaining anything.

Totally we have gained at this level:

Gain=Y | (numberofthe currentlymost frequent var) - 1
In this way we each time achieve the maximal gain.

-24-

In the subterms (subexpressions) we see a new but similar expression which can

be dealt with in the same way as described above.

Using this property we are assured we fulfil the goal of a maximal gain.

Notel: to use this property we have to make sure that the two subexpressions in question
have to be adjacent. This is something we have to take care of in advance. We call

this sorting.

Note2: we also have to satisfy the condition that the variable in question is the most right

one of the expression.

Note3: To minimise the search for a matching pair of subexpression we assume a

canonical form.

-925-

6.2. Sorting.

As stated in the collapse-chapter we want to make two nodes, in which the same variable
is present, adjacent. This means we have, in some way, shift these two nodes towards each
other, and make the collapsing possible. We call this sorting. We sort out some subtrees
so they become adjacent. If we want to sort, we first have to prove the property: (‘op’ is

a symmetrical operator)

(a op b) op ¢ : a,b, and ¢ can appear in any order.

Proof: (6 possible permutations)

(@aopb) opc=(C)

(b op a) op ¢ = (A) 2
bop (aopc) = (O
b op (c op a) = (A) 3
(bop c)opa=(C)
(cop b) op a = (A) 4

cop (@opb) =(C)
cop (bopa)=(Cof4)
aop (copb)

6]

Note that ‘op’ is the same operator each time.

If we have a tree of operators which are the same and if they are symmetrical operators
we can sort them in any way we want using the property mentioned above. It states that
we can exchange the position of two subexpression (a,b,c in the above property) if we

want to.
This method is used to make two subexpressions adjacent, and so satisfying the condition

1 stated in the previous chapter.

This method can also be used to sort a subexpression and so satisfying condition 2 also.

-26 -

Again we have to satisfy a few conditions before we can use this property.
1. - a canonical form to speed up the search through a tree and reduce the number
of rules used.
2. - subexpressions are already sorted to speed up the variable match here.
3. - The variable in question must be known (chosen in advance).
4. - We have to eliminate monadic operators as much as possible.

From all above we conclude that a canonical form is essential.

6.3. A canonical form.

We want an expression as a canonical form to reduce the number of mutations of an
expression, that is the number of possible forms that an expression can appear in.

E.g.: a+ b+ ¢+ d can be represented in several forms:

(a+b)+(c+d) 1)
a+(b+(c+d)) 2
(a+b)+c)+d (3)
(a+(b+c)+d 4
a+({(b+c)+d) ()

Graphical it looks like figure 5.

+b)+(c+td) &
(atb)+(c é)[/ \@
E]& %@ E/ %E

© ®,
N
o N o

(a+(b+c))+d a+((b+c)+d)

®
7z 7y
=] (9]
@byopd o 6*’@ g
0 ®
s 2N

©)
A%

20"
(]
figure 5

a+(b+(c+d))

Eﬁ%

[e]

-927-

If we see the number of '+ as n we could express the number of mutations of a single

expression, M(n), as follows:

M 0)=1
M 1)=1
n-1
M@®=YM (pPM (n-1-p) {for:n>1}
p=0
We see that indeed:
M@B) =

MOMQ)+MIMMD)+M@2M(©O) =
M(0) (MOM1)+M(1)M(0)} + M(IM() + (MOM(1)+M(1DM(0)} M(0) =
1.{1+1} + 1.1 + {1+1}.1 = 5.

The number of mutations of an expression The number of mutations of an expression

A L 4 bt

il

Y I XX EEEE R R 2 D]
FEri IS

number of mutations
(Thousands)
LOG (number of mutations)

i

Number of +'es Number of '+'es
figure 6 figure 7

In the two figures above we see that the number of mutations is exponentially related to

-

the number of operators. The left one is used to indicate the rapid increase as we increase
the number of operators. The right one is placed to show how fast the relation increases

even on a logarithmic scale.

In the example stated earlier, this means that if we could reduce this expression, we had
to have at least five patterns to match this expression and rewrite it to another. This could
be more if we consider the variables incompatible and so in each tree we could set a
variable at four different places, giving a total number of mutations: 5 * 4! = 5! = 120. This
increases even more if the total number of operators increases, so for 4 operators we
already have already 14 * 5! = 1680 possibilities, for 5: 42 * 6! = 30240.

To reduce the number of patterns we have to match, we declare the left sorted pattern as

the canonical form. This is a specially defined form in which the operators are placed in

- 28 -

the tree.

If we first rewrite all expressions to this form we reduce the patterns in the rulebase from
that point on.

Of course the number of mutations due to the variables are still present. This number is
related to the number of operators (n): the number of mutations due to variables is (n+1)!,

if all variables are disjunct. This is of a smaller order then M(n).

6.3.1. Left sorted canonical form.

We now define the left sorted canonical form and refer to it as the canonical form in the

future. The following definitions only apply to dyadic operators.

1 The operatortype of a lefthand side of a dyadic operator is not the same as the

operatortype of the dyadic operator itself.

2 If there are any constants in a expression (at the current level !) they have to be as far
to the right as possible. This simplifies the search in a tree; we can detect a constant

and skip it, remaining a constant free expression at this current level !
In the example at the beginning of the chapter, number 3 is the canonical form
((@+b)+c)+d). If for example b was a constant, the canonical form would be:

(@+c)+d)+b) L.

For an optimal effect of the main equation (collapse) we first have to expand an expression

to a form that also contributes to the canonical form.

6.4. Expansion.

Expand means using the distributive property to make an integer expression a ‘sum’ of
‘products’, and a register expression a ‘or’ tree of “and’ trees. (we do not regard XOR now

because of its special characteristics and we already eliminated this operator.)

1there are still 3! = 6 mutations possible due to the variables ac and d.

-29 -

@+b) xc =(@x*xc)+®dxc). (1)
@VbAc =@VADBV @
@Ab)Vc =@AcV DA @)

We use these properties now from the lefthand side to the righthand side.

We immediately notice that this property used from left to right increases the number of
operators by one each time. This is against the first main aim of this system.

We can defend this step by assuming that in the main collapse part the optimal solution
is found. If the original expression is the optimal expression we would find this expression

again as result of our system.

6.5. Introduction of constants.

As we saw the collapse rulebase expects that there is at least one constant at every node.
This calls for a rulebase addconst, which takes care of this problem. It is simply a rulebase
which checks if there is a constant at the most right place of a subexpression and if not,
it introduces a multiplication with 1 for an integerexpression and a and with 1 for a
registerexpression. Note that this has the opposite effect of sort, as it introduces a constant,

while sort tries to get rid of it.

6.6. Removing monadic operators.

Here we encounter the first difference between an integer expression and a register
expression.

In integer-expressions we only have to deal with monadic operators from the type minus,
while with a register expression we come across more types of monadic operators such as

not and reverse type.

-30-

6.6.1. Register expressions.

In register expressions we could encounter monadic operators, which are to be removed
or at least be pushed as far as possible down the tree towards the operands.

Here we assume that the register operator reverse type is already as close to the operand
as possible, We can easily introduce some rules, equivalent to the not operator, to push
them down as well. For the not operator type we use the "De Morgan” property, and the

distributive property.

-(aand b) ==-aor -b (1)
-(aorb) ==-a and -b 2

We have to start at the root of an expression and work our way to the leaves, pushing the
not operator out in front of us. This because the result of the current level is of great

importance in the levels below.

Example:
—~((aorb)orc =(using 1)
~(aorb)and —c =(d)(using 1)

(-aand -b) and -c.
(d) indicates we are going down one level, and we find the nof operator again, so we use
the rules again at this level.

We introduce a simple rule that takes care of multiple nots after each other using N,.

=3 =a 3

-31-

6.6.2. Integer expressions.

Monadic minus operators and also dyadic minus operators can be eliminated using the

property:

-a =a*-1. n
a-b =a+b*-1 (2)
Proof:
(1) is an obvious result of equation I,.
@ a-b =(I)
a+-b = ()
a+b*-1.

It doesn’t matter at which point we start (root or leaves) as long as we check each part
of the tree, because the result of this step is not used in a lower or higher level as is not
so with the register expression.
If we start at the root, and we see a monadic operator, type minus, we use equation (1)
to transform it. We then get an expression (called a in (1)), which has to be processed, and
a constant expression -1, which is not processed. We see that even if we encounter:

--a, we only see -(b), with b=-a, so:

b*-1 (=-a*-1)and then one level down:

@*-1)*-1.
This multiplication of -1*-1 will be dealt with later, in the sort part, so we leave it for now,

but can mention that it is simply reduced to 1.

-32-

7. Possibilities for implementation .

We will now, as part of the implementation, first handle the problem of ordering a
rulebase, which is a significant problem for rulebase design and implementation. We will
then proceed investigating the order of the rulebases themselves.

This gives a method we can use to implement rules in a rulebase. We will do so with the
rules we already found in the theoretical part, in the order in which they appear in the

process of expression reduction.

7.1. How to order the rulebase.

We wonder if there is a mechanism for ordering a rulebase or at least describe a method
of ordering a rulebase.

As we recall, the rulebase is sequential scanned until we have a match of the lefthand side
of a rule and transform it to the righthand side of the same rule. After that we continue
to scan the rulebase from the next rule on (sometimes we don‘t, so skip the rest of the

rulebase, but that is an exception).

7.1.1. Definitions.

A rulebase has the following specialties in it:

- Mostly, the lefthand sides (s) of all the rules are disjunct to each other.

- If we have two rules r; and r; then if i<j this indicates that rule r; will be placed before
r; in the rulebase.

This results in:
Rulebase ORDERED {
s; -t (r)
5 -t (r)}
We notice:

- If an expression matches s; the expression is rewritten to a form of t;.

-33-

- If an expression matches s, this could be the result of the expression itself which had
the proper form as it entered the rulebase or rule i has transformed the expression
so that it now can match rule j.
The connection between these two rules is obvious. If r; produces a form that will match
s; or a subexpression of s, this rule must be placed first.
For example:
Rulebase EXAMPLET1 {
--a - a (D
a+(b+c) - (a+b)+c 2}
Rules (1) and (2) are disjunct. The question is why do we have to place (1) before (2). First
we see that if expressions a,b or c in (2) are of the form (—a) we still match rule (2) so this
is NOT the reason (1) is placed before (2).
(1) Is placed before (2) for the part (b + c) that could be of the form: —(b + ¢) which will
be handled by (1) so it is matched by (2), so an expression like ‘a + —(b + ¢)’ will be
handled correctly. Note that rule (1) is used in a different (lower) level then (2). We thus
have to use this rulebase bottom-up, working an expression form the leaves to the root,
or in expressionterms form the inner parenthesis to the main expression.
As an example we want to investigate a simple rulebase used to push down the NOT
operator to the operands as much as possible. The rules use in this rulebase are: (C stands

for a constant)

—=a - a (1)
-(a+b) — -a*=b 2
-(a*b) — =a +-b 3)
a*111.. — a 4
a+ 111.. - 111.. (5)
a * 000.. — 000.. (6)
a + 000.. - a @
C*a —»a*C (8)
C+a —a+C 9
C+C - C (10) (C on RHS is evaluated C)
Cc*C - C (11) (C on RHS is evaluated C)

-C - C (12) (C on RHS is evaluated C)
Note: the list order is arbitrary.

-34-

We can divide a pattern in subpatterns like:

S; = s %8y or
Sy + Sp or
i

E.g: s, =--a;s;=-a;s; =a. (note:s,;;=¢t)so

5) = 78 = "S-

s;=-(a+b);s;=a+b;sy; =a sy,=bso

S; = 78y = sy + Sy).

We introduce an other definition here: s; = s;_supplementing the number of zeroes to the
number of levels (in the expression/pattern) minus 1. So:

5100 = 75130 = —Syy;. In this way it’s easier to indicate the level we are operating. If the
index is smaller than another we are in a higher level than the other. So the smaller the

index, the higher the level will be.

7.1.2. The problems.

We have to distinguish two problems here.
1. In which order do we place the rules in the rulebase ?
2. Which level is dealt with first ?

The second problem is a question whether to use a bottom-up or a top-down method.
Bottom-up: we start at the leaves, work our way to the root, so the lowest level is dealt
with first. In concreto this means, subpatterns with a higher index are dealt with first.

Top-down is the other way around. Here the subpatterns with the lowest index are dealt

with first. The only problem now is which method do we use.

-35-

The first problem is more complicated. We have to recognize if a consequence of one rule
on another is in this level, in a level below, or in a level above (a higher level). A problem
is that some rules only strip things off, but do not alter the expression basicly, e.g., rule
(1) only strips off the two not operators, but leaves the rest of the expression intact. We
could consider leaving this rule, as we come to the ‘a’ part two levels down anyway (as
indicated by s,;; = t,o). The problem lies in the consequences for this step in rule (2). If s,
is of the form s,, then one level down we get a match on rule (2) so an expression like
~=(a+b) will be transformed to —(~a * -b), if rule (1) used it will become (a+b) directly,
which we can not guaranty if we use an other order in these rules. So we have to consider
the possibility that if this rule is not used (first), what rules will be used, even at another

level.

7.1.3. Dependencies.

We see the problem is very complex. We will try to make a matrix, of the effects of some
rules over others.

We have some possibilities.

-1 Effect of rule is in the current level, on other rule. X
-2 Effect of rule is on a Lower level, on other rule. L
-3 Effect of rule is on a Higher level, on other rule. H
-4 Possible use of another rule on another level pIxIL{H]
-5 Warning: rule could result in an Endless loop ! E
-6 Hazard: master rule could match something directly as does slave Z

-7 No effect on other rule.

We could express these possibilities in mathematical terms, using the —, ., relation. This
special relation tries to match a pattern on another pattern. We have defined a method to
match expressions on patterns but we now see these patterns as an expression. To indicate

the difference we use the -, operator’.

1
note that ~—a =, abuta =, . ~a!

-36-

X 18 ek t; (will only be of influence for top-down.).

but not s; —pa.n Si-

PL @ 8 Dman su |l sp | s3..and no ’x’.

Sj match s, (i <k<i+ 100..) and no 'x’".

PH : sy | 85 | s5.. —nua tand no ’x.

Sk Pmatch t; (j <k <j+ 100..) and no ‘x'.
L B sl _>mmch til I tlz I ti3 ree
S; match t, (i <k<i+ 100..).
H : t] > match sj‘l I Siz | Sig e
E * 8 could match t] and sj could match ti'
Y 5 nawch sj and Si “no match S;.

We could encounter combinations of these possibilities.

If we order the rules so that a dependent rule is used after the master rule, we get an
ordered rulebase. In the matrix the xs have to be under the diagonal, e.g., if rule (3) is
master over (4) (4 dependant of 3) we mark the place in the matrix (4,3) with a x (under
(3,3)). The situation could occur that an x is on the diagonal, which indicates that a certain
rule is dependant on itself. The rule could then be constructed to call upon itself until no
match occurs any more, e.g., rule (1) is such a case: s;;; = t;, which indicates that an
expression like ‘~---a’ will be handled in two steps of rule (1) resulting in ‘a’. The
problem here is that if we use this rule bottom-up, we encounter ‘~—a’ first (part of
‘~--ma’), rewrite it to ‘a’ and later, two levels up, we encounter ‘~—a’ again rewriting it
to ‘a’. We see here that the strategy (bottom-up / top-down) has influence on the

rulebase.

If we have a L in the matrix this indicates that this master rule could result in a match on

a lower level, on that particular dependent rule, so the rulebase for the master rule should

-37-

be used in the top-down method, to give the opportunity to match the dependent rule,
e.g., rule (2) rewrites an expression like ~(-a+b) to (——a*-b). Now we can use rule (1) one
level down on the —~~a part to rewrite it to a*~b. Thus rule (2) used before (1) makes it

possible to use rule (1) in a lower level, so indicated by an L at (1,2).

If an H occurs in the matrix this is a result of a master rule making it possible to use the
dependent rule on a higher level, so this master rule should be used in the bottom-up
method, so the master rule will be used before the dependent rule in a lower level, e.g.,
rule (5) produces a 111... string which in its turn can be used in rules (4) and (5) again,

which is one level higher again. We indicate this with an H in the matrix.

All the entries with a “p[L | H} have to be in the same method. So if at (2,1) there is a "pL’
in the matrix, this indicates that 1 must be performed in the same top-down sweep as 2,
because if 1 is not used before 2 at this level, so in the same sweep, 2 could be used in a
level down, before 1 at this level in the bottom-up sweep, e.g., an expression like ~~(a+b),
we first use rule (2) (after on level down step) so we get —~(—a*~b). Note we didn’t
encounter rule (1) because we get that one on the way back (bottom-up). To bring this one
to a good end we have to use rule (3) again one level up, getting ~—~a+--b and now we
can use rule (1), again one level down and resulting in a+b. We thus have a very weird

run, up and down level, several times to bring this one to a good end.

The E is a special case only to indicate that a rule is dangerous if we use it to call a
rewrite, e.g., rule (8) and (9) are never ending if they call themselves on an expression like
110+010 or 101*011.

A hazardous situation occurs if two source patterns are almost alike, e.g., ‘a + const’ and
‘a + 1’. The target pattern doesn’t even care in those cases. Here ‘a + 1’(=i) will match on
‘a + const’ (=j). If we thus place rule j before i we get a situation that an expression like
in rule i will not be handled, because rule j does all the rewriting, and so, assuming that

the rule completely alters the expression, puts rule i out of business.

-38 -

To get a good understanding of these indications some of them are represented as graphs
for the dependencies of the first 3 rules, as they are the main rules of the rulebase-

example:

rule 1

&
(>)

COJEC:0,
L

d

(>
&
(9

d

figure 8 : Original rules

figure 10 : Higher dependencies figure 11 : Lower dependencies

As an example to explain the graphs we look at figure 10 (higher dependencies). We see
with rule 3 that the s;,, part is marked. The text at the right corner of the rules states H2.
This means that the t)y, part matches the s, so there is a higher dependency of rule 2 in
3. This is then indicated by an H on the (3,2) spot.

For another example we look at figure 11 (lower dependencies). Here, in rule 2 the ty;,
part is marked. The indication is L3. This means that s,y will match t,;; and so cause a L

on the (3,2) spot also indicating a lower dependency.

-39-

Note that the definitions of the indications are limited. We do not look at the sy, part ('a’)
as this indicates a “an expression’ type that will match anything. The only exception is the
case if the ‘a’ is the only part of a pattern. Therefore rule 1 is a special case and the t, is
used in indication. We didn’t make a figure of this case as it is obvious that ‘a’ (t,) will
match anything.

We will make a indication table of these first tree rules.

ilio | 1 2 3 I
1 X
L L L
2 X L
L L H
3 X L
L H L

We first notice that in all the cells, there is an L. This suggest strongly that we use a top-
down method for the 3 rules. Further are they at least downwards dependant on each
other which indicates that it is a good idea to put them together in one rulebase, top-down
method.

As we can see in the rule 1 column, this rule is dependant on all the others, including
itself, and has therefore be implemented as a recursive rule. It calls upon itself provided
that it makes a match. After that the expression no longer has the form of s, and so we can
continue. We can now erase the xs form the table.

The possible rules are done before the lower level, so they can be erased also.

ibio \ 1 2 3

Rule 2 could give erase to a hit on a higher level for rule 3, as rule 3 also does on rule 2,

but this could only be possible if the original expression looks like =—(a v b). This =~ part

-40 -

however is handled by rule 1, so it never occurs. We can not get this in the table. We,
humans, have to decide this. We can see that this gives reason to the assumption that this
procedure is not to be automated yet.
We will try to reconstruct an expression which will cause all this trouble. H(2,3) is a result
of a rewrite of s,. s, is rewritten to t, which will match s,,. We have thus s; = [t; = naeh S,
and s, = =s;, and so s, = —t, and concluding: s, = -5, = ~(~(a * b)) (which will match s,
so it doesn’t occur).
We will refer to this procedure as backtracking, as it is used after we have taken a decision
about the method (top-down / bottom-up).
We can now erase the Hs from the table as they are not applicable any more. We get a
clean rulebase, only Ls in the table, so it is OK to use this rulebase, top-down, all rules
together in one rulebase. Sometimes it could be possible that some of the Hs stay in the
table. To avoid applying the rulebase over and over again, we can suggest two possible
solutions:

1 Use some rules on the way backup (bottom-up method).

2 Introduce a rule which takes care of this particular situation.
This second solution could, however, alter the entire rulebase, which is not always desired.

In every case we have to repeat the whole procedure of making a table, to construct the
final rulebase.

We will now look at the backtracking part again.

For this purpose we will introduce a new definition here. We can for every rule define an
area in the expression space E in which all the expressions are situated which may be
offered to the rule. This part of the expression space we call the input expression space
IES. After a rule there could be areas which are no longer present after the rule. We call
this the output expression space OES.

We saw that some rules make the input space smaller, that is some expressions do no
longer exist at the current level after we have applied a certain rule. This shows as we look
at rule 1 of the example. The IES before this rule can be denoted as E the whole expression
space. After rule 1 (recursively !) we have thus an OES of E/{~~a}, that is the original
expression space without an expression that will match ~-a. We have to note that this is
at the current level !

We thus see that after rule 1 we have an IES for rule 2 which is the output space of rule
1: E/{-—a}.

-41 -

After 2 we thus have E/{—a,~(a+b)}, after 3 E/{-—a,~(a+b),~(a*b)}.

Using backtracking we can find an input expression that causes the H in the dependency
table namely ——(a*b) which, as is now obvious, not in the input expression of rule 2 and
3. We can therefore wipe out the Hs in the table.

Note that the above is only permitted if we already have determined the order of the
rules. We use backtracking to confirm our choice of top-down. If for some reason we don’t
get to a conformation we thus have to reconsider our choice we made, or introduce a rule
that will take care of this situation. As a result of introducing a new rule we have to start

the whole process over again.

We are now using all the rules from the example and try to construct a rulebase. We have
to note that all the above steps represent an enormous amount of time, but we have filled
the table any way.

We shuffle the rule order to get a nonprejudiced matrix. We then are going to sort the
matrix. Sorting is done as follows:

We start with a top-down design. We can now forget the Hs in the matrix as we do not
have the possibility to use these dependencies in any way.

We first make a dependency vector diagram. Here the arrows indicate a dependency. A
pL indicates we have to use the source rule of the arrow before the target rule, because
else the target rule will hit first, not giving the source rule a chance to do its job as we
want it to.

Rules which have their whole column filled with xs we mark with a square, because in
top-down, we have to call them recursively. We can then forget the whole column of xs
and so simplify the vector diagram. We just can start with any rule, and work our way
trough. After we have made the draft diagram, we rearrange it so we can draw some

conclusions from it.

-42 -

We can then rearrange the matrix according to the diagram.

]lT' 9 12 1 4|1 8|7 | 5 3 6 2 11 1 10
T N | HpH | x b H H pL | HpH | x | HpH
12 H | HpH | x X H L H L |HpH | x | HpH
4 | pH | x | x| x | HpH | pL pH | x pH
8 HpH| x | N | x H pL H HpH | x | HpH
7 x| pH | x X HpH| pL | pH | x pH
5 x| pH | x x | HpH pL | pH | x pH
3 x | H| x L HL X
6 pPH | x | x | x pL | HpH pPH | x pH
2 H X X HL L X
11 HpH | x X H pL H HpH | x | HpH
1 X X L L X
10 HpH | x X H H pL | HpH | x | HpH

First we have to determine which rules are used top-down, and which are used bottom-
up. If a rule has a L on its diagonal, this indicates that the rule has some dependency of
itself on a lower level. It is therefore logical to use this rule in a top-down method. On the
other hand, if a rule has an H on its diagonal, this means it is best used in a bottom-up
method.

A rule with a x on its diagonal, and mostly along the whole column, indicates a
dependency on the current level and therefore the rule has to be used recursively anyway.
We therefore clear this column of its xs, as we reconstruct the rule with such a recursive
rewrite command, instantaneously.

We now have tree groups of rules, A for top-down, B with bottom-up, and C for which
we don’t know (yet).

In the example we get:

A:23;B:56,1011,12; C: 1,4789

D indicates rule p being recursive. The reason for this special case is because this rule

-43 -

strips off two levels of an expression, and by doing so it skips the part of the matching
process before it. It in a way steps into a ‘new’ level, e.g., (rule 1) =——-a is match as
==(--a) and rewritten to ——a. but if no rewrite occurs this ‘new’ expression --a is not
matched by all predecessors and so a part could be missed as we see in this example. If
we use the bottom-up method we match from the inner part to the outer. We could find
thus ——a first not even knowing that the expression still holds two not operators above it.
Now the expression is processed properly. As we have already placed this rule in the top-
down part, we only have the solution of a rewrite command. This could be fairly local as
this rule (1) is the only rule to be called again.

As we can see in the table, rules 2 and 3 are dependent on rule 1, indicated by the L on
the row of rule 1, on a lower level. Further, the pL on the column of rule 1 indicates that
rule 1 must be performed before rules 2 and 3 on a higher level. Concluding that rule 1
belongs to group A.

We have to notice the special rule 12, which is lower and higher dependent on some other
rules. We therefore place this rule twice. One in group A and one in group B.

From the xs in the columns of rule 8 and 9, we see that rules 4,5,6, and 7 are dependant
so, rules 8 and 9 must be before them. No further restrictions are made to these two rules.
We can put them either in group A or (at the beginning of) group B. Placing them in
group B automatic places 4 and 7 also in B as they must be after 8 and 9. This has the
advantage that rule 4 and 7 don’t have to be recursively rewritten because the ‘a’ part of
the rule was already processed (bottom-up method). This in turn could speed up the
rewrite process, as the number of recursive rewrites diminishes.

We get now thus:

A: 12,312, ; B: 4,5,6,7,89,10,11,12. ; C: empty.

As we remember we can split a rulebase in a top-down and a bottom-up part, using the
recursive rewrite command. We now have thus a A group (top-down) and a B group (

bottom-up). We can so reorder the table correspondingly.

N| o] v =] @ ooll'g," w| N »—-II
—
N
w
f—
)
(]
ve)
=N
«
o
|
f—
o
—
—
ek
N

x | pL HpH N|x| H H | x | HpH | HpH | HpH
X pL| pH | x x | HpH x| pH | pH pH
x | pL pH x | x | HpH x | pH pH pH
X pL| pH | x X HpH | x | pH pH pH
x | pL pH x | x HpH | x | pH pH pH
10| x| pL HpH X H H x | HpH | HpH | HpH
11 || x pL | HpH X H H x | HpH | HpH | HpH
12| x| L | L | HpH H| x H H x | HpH | HpH | HpH

We now have to sort the groups A and B so they behave as we expect of the rulebase.
Group A: Rule 1 is recursive rewritten so we can forget about the xs in that column. Also
the xs in column 4 and 7 are not important for this group now. The Hs in the row of rule
12 are taken care of by using rule 12 twice.

The rules have no dependencies and so the rules may be mixed in order providing they
stay in group A.

Group B: Here we can also disregard the xs on the columns 1,4 and 7 as they are no
longer effective (in a bottom-up method the dependencies are no longer important as
mentioned before). The rules 8 and 9 must be before 4,5,6 and 7 as we have seen before.
This is also confirmed by the fact that the xs are under the diagonal. The only problem
now is that the rules 10 and 11 have possibilities on rules 8,9,4,5, and 7. We therefore place
these two rules before 8,9,4,5,6 and 7. This results in the final table.

-45-

I:I 11 2 3 12 10 11 8194 5 6 7| 12
T x| L L X X
2 || x| L [HL H| x X
3 ||x|HL | L H X X
12 | x| L L | HpH | HpH | HpH H | x H H x | HpH
T x | pL HpH | HpH | HpH X H H x | HpH
11 || x pL | HpH | HpH | HpH X H H x | HpH
8 || x pL | HpH | HpH | HpH [N X H H x |HpH
9 || x| pL HpH | HpH | HpH N[x H H x | HpH
4 |[x pL | pH pH pH | x x | HpH x | pH
5 || x| pL pH pH pH x | x | HpH x | pH
6 |l x pL| pH | pH | pH | x X HpH | x | pH
7 || x| pL pH pH pH X | x HpH | x | pH
12 | x| L | L | HpH | HpH | HpH H| x H H x | HpH

We note also that all ps are also below the diagonal as are all the xs and thus the problem
is solved. Further we have all the Ls in the top-down part (1-12) and all the Hs in the

bottom-up part (12-7), so this criterion is satisfied as well.

- 46 -

As a result we thus get the following rulebase:

rulebase EXAMPLE1:
{
--a —> REW a
-(a+b) — -a*-b
~(a*b) — -a+-b
=C - C
RECURSIVE_REWRITE
C+C - C
c*C - C
C*a —>a*C
C+a —»>a+C
a*111. - a
a+ 111. - 111.
a * 000.. — 000..
a + 000.. - a
-C - C

}

- 47 -

(1
)]
3
(12) (C on RHS is evaluated C)

(10) (C on RHS is evaluated C)
(11) (C on RHS is evaluated C)
8)
)
4)
(5)
(6)
@)
(12) (C on RHS is evaluated C)

7.2. Global Rulebase ordering.

If we want to order the rulebases, we have to use more or less the same rules as ordering
the rulebase internally. Every rulebase can be described as a simple description, with an
input expression space (IES) and an output expression space (OES).

For every rulebase there is an input condition, which could be described as an input
expression space. We thus have to meet this input condition of the input expression space
of the rulebase.

As we look for example at the push-not-rulebase, we see it lacks input conditions, or at
least non that can be overcome easily, e € E | e = registerexpression. Therefore we could
place this rulebase anywhere in the master rulebase, and call it on the only condition that
the expression is of the registerexpression type. The output expression space however is
in the area where there is no not-operator before another operator. The only thing after an
not-operator is an operand or a constant. The output expression space also shows this:

E/{--a,~(a*b),~(a+D),integerexpression}.

For every rulebase we could set up a set of expression spaces, one for input, one for

output.

Masterrulebase:
IES: E.
OES: E.

We see that for the masterrulebase there are no limitations.

PushNotRulebase:
IES: E/{integerexpression.}.
IES: E/{--a,~(a*b),~(a+b),integerexpression.}.

As we already knew, this rulebase only limits the expression space more as preparation

for other rulebases.

PushMinusrulebase:
IES: E/{registerexpression.}.
IES: E/{-a,a-b,registerexpression.}.

Also here we have a rulebase that only limits the expression space for further rulebases.
Note : IESPushNotRulebase U IESI’ushMinusrulebase = IESMasterrulebase = E.

- 48 -

ExpandRulebase:

IES: E/{--a,~(a*b),~(a+b),-a,a-b}.
OES: IES/{(a+b)*c,a*(b+c),(a or b)and ¢, a and(b or c)}
SortRulebase:
IES: E/{--a,~(a*b),~(a+b),-a,a-b,(a+b)*c,a*(b+c),(a or b)and c,
a and(b or ¢)}
OES: IES / {a op(b op ¢),C op a,(a op C)op b, Cop C }

{note : op is still a symmetrical operator}
As we can easily see we are still narrowing the expression space. We work to a canonical

form.

We now come to a rulebase Subsort which is a rulebase that can not be described with
these parameters. This is due to the use of a algorithm that can not be described as a
rulebase we defined.

We will however try to characterise it with an OES, but this can not cover all the
possibilities. We will indicate this.

TESq peort = OESs,

OES; oot = OESs,,, / { @’+b+a’} (' marks the busy variable).

note that description is this is not complete.

We indicate that if there were two busy variables in an expression and they could be
placed in such a way that they could be adjacent, they would have been. An expression
like a’+b+a’ would therefore not be in the OESg,.. Also an expression like a’+b+c+a’
would not be in it. We could think of thousands of other expressions which would not be
in the OESg e It is thus not possible to describe them in a way as we did before.

It is therefore also not possible to describe the whole rulebase in terms of expression
spaces. The rulebase selects parts of an expression which are to be treated with an

specially designed algorithm that will be discussed later.

As the OES,;,.« could not be described, the IES
described as they follow upon the subsort rulebase.
The OES of both these rulebases could be described in words: " If the rulebases use all

&y and IES.ig could also not be

simpli

-49 -

their possibilities, there will only be one reference of a variable in the expression'. There
are of course expression for which this is not true, e.g., (@*b)+(b*c)+(c*a) will only come

to: a*(b+c)+(b*c). That is why we used: ‘all their possibilities’.

As we can see it is impossible to describe the IES and OES clearly. We will therefore only
indicate them as well in words.

It is easy to see that:

IESsimplify = IEsboolalg = OESg,peort

This is only partly true as simplify only deals with integer expressions and boolalg only
deals with register expressions.

OESsiumy = OES;oiaiz With the same restrictions as with the IES.

The OES holds only expressions with the least number of operators which is possible to
achieve with the used method.

7.3. Constructing a rulebase for minus reduction.

We have to construct a rulebase for minus operator reduction (to zero !).
The used properties are:
-a =a*-1

a-b =a+b*-1

So the rules we want to use first are:
-a —a*-1 D.
a-b —>a+b*-1 2.
Resulting in a table like:

iLio 1| : 2 i

1
note that this is only true for expressions for which this is possible anyway.

- 50 -

From the table we conclude that there are no dependencies here so we simply construct

the table as we like, e.g., top-down:

-a —Sa*-1 (orient) (1.
a-b —2a+b*-1 (orient)).
REWRITE,CURRENT. (recurs the tree) 3).

Here we have an example of not following the rules for deducting a rulebase defined by
Knuth and Bendix’70 (see H.Ait-Kaci & M.Nivat p39 [19]). The orient inference rule (1)
states s > t. In both cases of the above properties this is not true. Nevertheless we
construct the rule, keeping in mind, that if this expression is still present at the end of the

process, we have to reverse the process. So implode minus introduces the following rules:

a*-1 > -a (4).
a+b*-1 —>a-b (5).
a*-1+b > b-a (6).

Resulting in the following table.

ibio ‘ 4 5 6
_—
4 - pL pL

5 - - -

6 - - -

The only thing we have to be sure of is that rule 4 is used at a certain level before 4 and

6 on a lower level. The simplest solution is to use them top-down:

a*-1 —-a (orient) (4).
a+b*- —a-b (orient) (5.
a*-1+b —>b-a (orient) (6.
REWRITE,CURRENT. (recurs the tree) .

Note we have to use more rules here. Rule (6) is for a special case: if the -1 part is
contained in the most left part of an expression.

Rule (6) is a result of rule (5) and the commutative property. We could deduce this rule
also from a simplify step using Knuth and Bendix’70 [19].

-5 -

We could change the order of the rules here a bit. For instance we could place rule (6)
after (7) but in the form of: -a + b — b - a. This because we then have to consider the fact
that rule (4) was already applied so all multiplications with minus 1 are then converted

to a monadic minus operator with the rest of the expression under it.
A few examples. (later steps are already shown).

--a = (a*1)*1 - a*(-1*-1) » a*1 - a.

-a*3 - (a*-1)*3 - a*(-1*3) - a*-3 (note -3 is a constant as it is).

7.4. Constructing a rulebase for not reduction/shifting.

Using some register properties we can construct some properties which result in shifting

a not operator.

(1) : =—a=a nN)

() : =(aA\b)=—aV-b M)

(3) : ~(aVb)=—aA-b M)

(4) : =~(afDb)= X)
=((aA-b)V(-=aAb))= M)
(~@A-b)N=(=aAb))= M)
(=aV--bA--aV-b)= (N)
(~aVb)A@V-b)= (D)
((=aVb)Aa)V((~aVb)A-b)= (D)
(=aAa)VBAa)V(=aA-b)VBA-b)= (=xAx=0)
0V(bAa)V(=aA-b)VO= (2)
OV Aa)V(=aA-b)= ©
(bAa)V(=aA-b)V0O= Z)
(bAa)V(=aA-b)= (@)
(@AbV(=aA-b)= (N)
(= (=a)Ab)V((=a)A-b)= (x)
-aDb.

Resulting in the following rules:

=g a 1
=@aAb)> -aV-b (2)
-@Vb)—> -aA-b @3)
-@®b)—> -a®b @)

These are the basic rules for pushing a not operator to the operands. In this way we clear

every level of an expression of not operators by moving them down one level. In the next

-5 .

recursive step we find it back and try to push it again until we can’t any more.
Only rules (1) and (4) are reducing the number of operators. The other two (2) and (3)

must be reversed if no improvement has occurred.

~aV¥Y-b- =(@Ab) (2b)
(cV—va)V-vb—>(OcV(—=aV—-b)—> cV-(aAb) (2c)
-aA-b—>-(@Vb) (3b)

(cAwa)A-wb—)mc/\(-a/\—-b)—) cA-@Vb) (B

The rules (2¢) and (3c) are derived as shown. The only way these rules can be used is, if
C is not a not expression.

These rules have to be applied from the leaves to the root, thus the reversed order of the
push rules. We call this part ‘implode_not'.

7.5. Constructing a rulebase for constant introduction.

The introduction of constants as described introduces some problems, as it is not
depending on a presence of a constant but a ‘not presence of’ a constant. Our rule thus

has to be more suggestive as the other rules.

7.5.1. Integer expressions.

We want to introduce a constant to the most right side of all productterms. This implies
a rule like:

a * 'not a const’ — a*’notaconst’ *1. (D.

note 1: We may not use this recursively, as this would cause an introduction of a 1 each
second invocation, which is not wanted.

note 2: We have to label the whole expression "a * ‘not a const”" so we can refer to it if we
have a hit. (we denote a label by "L:" and a reference by 'L’) We can thus denote
rule 1 by:

L:(a¥not a const’) - L*1. (1.

-53-

From note 1 we can conclude that we can use this rule only by calling it from another rule:
a + L'not a const’ — a+ call rule (1) L. (2).

We have to use a third rule to take care of the recursion, as rule (2) must be called also

on the ‘a’ part. This however may not only be in case of a hit of rule (2) thus:
a+b — rewrite: (@) + b. 3.

note 3: We only rewrite the ‘a’ part, not the b part.
note 4: We could take rule 1 and 2 together to:

a + L:(@a*not a const’) - a+L*1 4).

but we would still need rule (1) to deal with the last one of a or tree. We thus get only 3

rules: 1,3 and 4.

The advantage over using rules 1,2,and 4 is that we don’t need another rulebase, while
rule 2 calls rule 1,which is not the current rulebase. We would therefore need another
rulebase for rule 1.

The order of these two rules is not important as rule 4 only adds something to an
expression only once, while rule 3 takes care of getting from one level to another. The

method top-down, or bottom-up is not important here.

7.5.2. Register expressions.

With register expression we have the same problem as with integer expressions,and thus

only the rules are somewhat different.

aVb — (rewrite:a)Vb. (1).
aVL:(bA'notaconst) —» aV(LA11..)).
L:(bA’notaconst’) - LAI1L. 3).

We can easily see the analogy in these rules.

-h4 .-

7.6. Constructing a rulebase for expand.

7.6.1. Integer expressions.

equations ¢ Eq:
a*(b+c) = a*b + a*c. (1)

(a+b)*c = a*c + b*c. (V)

Problem: which local strategy do we use ?
There are two solutions:

1. introduce a mechanism which keeps track of alterations and act upon it.

2. Start at the leaves, work to the root, and make sure the expression we leave behind
is already expanded. (no match can be made in this part of the tree any more). Then
if there is a match at this level that leads to an alteration, walk down tree again to
the leaves until the alteration has no effect anymore.

An example.
The triangles represent parts of an expression tree. White areas are not yet visited. The
procedure finishes if all parts are ready or not hit occurs. Ready means that the sub tree

has the desired form, and not hit indicates that in that part there is no match, so the

pattern we search for to be simplified is not found.

172771 No hits
% Is belng checked
B Ready

bottom up design

figure 13

The left (top-down) method tests part 1 (1), and finds nothing, goes on to part 2 and

-55-

finds a suitable pattern, which is altered. (2) Part 2 is altered and it is necessary to check
part 1 again. Due to the alteration in part 2, there is now a match in part 1 (which has of
course an overlapping match in part 2). Now the alteration is made to part 1 and we do
the step to part 2 again. Check it, and find nothing to be simplified, continue to part 1
again (we don’t check part 1 as part 2 altered nothing). Then check out part 3 and exit (3).
The right (bottom-up) method walks down the tree to the leaves first. In the coming back
part it starts checking. (1) As it hits something in part 2 it alters part 2. Then part 3 is
checked first (2). Then part 1, changing it and checking part 2 again, but no hits are made,

so we exit (3).

/
7\

y

%
top down desig

©ZZ2 Checked but not hit
W7 |s being checked
E==1 Ready

Checked but not hit
Is being checked
EZ] Ready

bottom up design

figure 14 ' figure 15

We look at the same example again, but now in the case that part 3 also alters during the
walk. The begin and end figures are the same although in the left figure, the final step
isn’t displayed because it's the same as on the right. We now see instantaneously that the
first method is more complex than the second one. We see that the second method doesn’t
check part 1 first as part 1 is dependant on part 2 and 3. Therefore it is logical to use the
second bottom-up method, because less checking is done. Further more there is no special
mechanism needed to signal a alteration. We simply apply the rulebase again to the

subexpressions if the root of a certain expression alters.

1part 1 is not checked now !

- 56 -

We could also try the Table method:

“ o " 2 ‘ 3
2

L (2% L (2x)
H H

3 L 2x) L (2%
H H

We could use one of two methods (top-down or bottom-up) as we have Hs and Ls.

As we backtrack we will find that the input expression space is not limited enough to rule
out some possibilities as we had with the shift-not rulebase.

Therefore we have to take all the Ls and Hs into account, e.g.

L (1,1): a*((b+c)+d) -, a*(b+c)+a*d -, a*b+a*c+a*d.

H (1,1): a*b*(c+d) —, a*(b*c + b*d) —, a*b*c + a*b*d.

Introduction of more rules would lead to an endless explosion of rules, as some rules are
recursive, e.g., as we saw above with H(1,1) we could try to introduce this reduction as
a new rule. But then what to do about: a*b*c*(d+e), which would introduce another rule.
This could go on forever.
We could, however, try to solve this more elegantly. We use a bottom-up method solving
the problems with the Hs in the table. We now only have to take care of the Ls. This could
be handled by the rewrite command. If we have a hit on one of these 2 rules, and thus a
rewrite, we could use this hit to rewrite the whole expression again, calling the current
rulebase. In this way we go lower in the expression again until no more hit occurs and the
lower dependency stops.

Using these considerations we can construct the following rulebase.

rewrite_recursively’ (1)
a*(b+c) — rewrite:(a*b)+rewrite:(a*c)? 2
(a+b)*c — rewrite:(a*c)+rewrite: (b*c)® 3)

As we look at these rules we note that in the rewrite after a hit, it is not necessary to walk

]This rule results in walking to the leaves first

2We only rewrite (and go down again (we were going up)) if we had an hit at the current level .

3see above,

-57-

to the leaves again. Therefore we need two rulebases. One called the main, as described
above, and one which only holds the rules (2) and (3), called the small rules. The rewrite
in the main is thus calling the small, but small is only calling itself. In this way the small
will finish when there is no more pattern match. This will speed up the process, because

fewer matches are tried.

An example: ((b) is backup out of recursion)

(a+b)*c*d — (1)
(atb)*c,d - (1)
atb,c,d - ™
a,b,c,d- (b
atb,c,d - (b)
(atb)*c,d - (3)
a*c,b*,d - (b
((a*c)+(b*c))*d — 3
(@*o)*d , (b*d)*d — (b)
(@*b)*c)+((b*c)*d) — (exit).

7.6.2. Register expressions.

Register expressions are handled the same. We use the same properties, and by using the
same theory we can also construct a rulebase simply.

Only the + is swapped with “or’, and the * is swapped with the ‘and’.

jbio 2 3
e | N R
—_———
2 L (2x) L (2x)
H H
3 L (2x) L (%)
H H
rewrite recursive 1
aA(Vc)— rewrite:(aAb) V rewrite:(aAc) ¥
(@aVb)Ac— rewrite:(alAc) V rewrite:(bAc) 3

for the rewrite command again a new small rulebase

~58 -

7.7. Construction of a sort algorithm.

The aim is, as mentioned earlier, to use the properties:

Dy: (aop,b)op,c=(aop,c)op,(bop,c)
Dy cop,(aop,b)=(aop,c)op,(bop,c)

These properties are formed to rules from righthand side to lefthand side.

Note that if we use the commutative property on the lefthand side of the second property
we get the first property.

Concluding we say that property D, and D, are equivalent if op, is a symmetrical operator,
and in our case it is. As this is a requirement for the property D, and D, to work we can

combine these two properties to the rule:
(aop,c)op,(bop,c) — (aop,b)op, ¢ M

We now have only one rule, but we have to note that the lefthand side of this rule only
matches expressions with one main operator (op,). The pattern must be extended using

the associative property to:
{rop,(aop,c)op,(bop,c) — {rop,(aop,b)}op,c 2

We assume, as always, that op, and op, are symmetric operators.

As we see it is needed that for rule (1) and rule (2) there are some variables or expressions
(represented by c in the rules) that are the same, and at the exact place. It's therefore
needed to sort an expression again to ensure that the above is the case.

We now have to select the most common variable, which is represented in the most
subexpressions. If we want to make such a decision, we first have to scan the expression
and make a count of the present variables. We can also count in which subexpression the
variable is present, and so minimising the search/scan time. If we have selected the most
common, and so the most likely variable we can use the above rules.

We work from the root to the leaves, but first ‘subsort’ the subexpressions.

-59 -

For these global rules we could already try to construct a table:
1 2

LH LH

2 LH LH

The Hs are not desired here! We want to use these rules and assume that there is no
higher level. Therefore we get a table with only Ls that indicates a top-down method.

7.7.1. Integer expressions.

We so find a tree consisting of a sum tree of producttrees. We thus first ‘subsort’ the
producttrees using the sorting properties again. These state that a tree of the same
symmetrical operators can be arranged in any order we like. The selected variable is
placed at the most right place possible.

We now have all subexpressions of the form:

1. selected_var or
2. selected_var * const or
3. rest * selected_var or
4, rest * selected_var * const.

We see we have 4 appearances of this expression. As this pattern is present twice in the
rules above we get a total number of rules:

2 (rules) * 4 (left-side) * 4 (right-side) = 32 rules.
We could diminish this by introducing a const multiplication of 1 (U,). We reduce the
appearances of the product to 2: possibility 1. and 3. are not possible any more. We so

reduce the number of rules to: 2*2*2 = 8.

We see that we now get a rule like:
@*c*CP+*c*C) o {@*CP+b*Cl*c (D

r+@*c*C)+b*c*C)or+{@*C+b*Cl*c)]

In these rules the 8 mutations are realised leaving out parts a and b respectively, or both.

- 60 -

We encounter an other problem. If we want to use this rule recursively, we leave the busy
var (in the rule above represented by c) not in the right form. We want that every
product has one constant at the left side, but with the ¢ part we don’t have this. Therefore

we alter the right hand side of the rules that inserts an one.
@*c*CH+b*c*"C)->{@*CH+d*CRI*c*1 (D
T+@*c*C+b*c*C)or+{@*CH+d*Cl*c*1 2

Note that the gain we have now is zero: the number of operators is the same on the left-
and right-hand-side. We have to admit that the last operator could be considered a
dummy.

We can see the right-hand-side is again a part of the left-hand-side:

M:x*c*1 ;@:r+x*c*1l.(wesee{@*C)+®d*C)lasx)

We can thus use this part again in a recursive rewrite immediately, not using an other

rulebase, until we run out of busy variables.

We have to note that the gain now is not 1 as we first wanted but 0. This is not a bad

thing as we later strip of the multiplication by one, gaining 1 operator after all.

A special case occurs if both a and b are nonexistent so the rule (1 of the 8) is:
€*CP+c*C-{CH+C*c*1.

We can now evaluate {(C)) + (C)} immediately and substitute it on the place of the one.

We get: (c* C) + (c * C)) - c * EVALUATE({(C)) + (C)}

7.7.2. Register expressions.

Here the same considerations are made as in the integer trees. We want to make a sum
tree of product trees. The difference is that a variable or subexpression can be present as
the plain variable (a) or as its negation (not a).

We now have several representations for a subexpressions. The difficulty of a non rewrite

is also possible.

-61 -

If we have for example an expression like:

(aAb)V(cAb) (1)
(aAb)V(cA-b))
(aA-b)V(cAb) 3)
(@aA-b)V(cA-b) @)

We can easily verify that only (1) and (4) can be rewritten. (2) and (3) can only be
rewritten in some special cases such as a=true or c=true.

As we remember that a and -a are considered two different variables we can also strip of
rule (4) as the —(-a) case doesn’t occur, and this leaves use with only one main rule (1) as
in the integer-tree case.

Here we introduce a variable true to be a good constant to be added if there is no constant
expression in a subtree using the property U,.

We have to take care of another special case. This is very important because these special
cases could wipe out an entire subexpression making the simplification much easier.

The rules used are:

aAa - a
aA-a - false ()
aVfalse > a @3)

We use rule (2) to reduce a whole subexpression to false and as this false is part of a
sumtree, we can use rule (3) and eliminate the subexpression completely.

Rule (1) is only used to minimise the number of variables. Leaving (1) out, so not
minimising this expression, and losing one operator, and later gaining it by getting it out

of parenthesis, is not a good practice. Why leaving it while you can gain now ?

-62 -

The main rules are:

1 = true (can be seen as all ones).

r V (aAcAC) V (bAcAC) — 1 V{(aAC)) V (bAC)IcAT (1)
(@aAcAC)) V (bAcAGC) — {(@aAC)) V (bAC)IcA1)
Specials:
(cAC)) V (bAcAC) = {(C)) V (bAC)}AcA1

— {(bA1)VC}AcA(C,VC) (3)
(cAC)) V (cAC) — {(C)) V (CHIAcA1

- cAC,VC) @

We didn't quote all the rules as they are of the same form as the ones above. From rule
(3) we can easy derive 3 others, leaving out b instead of a, and placing a rest part r as in
rule (1). We thus get 3 rules extra. Further, form rule (4) we can derive a rule including
the rest part, giving one extra rule. We get a total of: 2 + 4 + 2 = 8 rules as said before. We
note that two constant expressions together are simplified, returning one new constant
expression.

We further note the rewrite of rule (3) and derivations. Here we can use a rule we can’t

use in integer expressions namely:
(aAb)Vc — (aVc)A(bVc) (a)

In integer rules this rule would look like:
(a*b)+c—o(a+c)*(b+c)which it NOT true (unless c = 0)!.

The only thing we gain by using this rule (a) in (3) above is the that we kick constants that

are not 1 out of the lower levels. This could make it easier evaluating an expression on a

lower level.

-63 -

7.8. Construction of rulebase, resulting in a canonical form.

Also in the expand rulebase we have to match over more than one level so we again
encounter the problem of which local strategy we have to use.

As in the expand rulebase we now also use the strategy of bottom-up, and if a rewrite
occurs we follow the results down the tree again until we find a canonical form again.
We recall the aim again here. Canonical: left sorted form, if any constant expression then

this is the most right as possible one.

Property:
aop(bopc) = (aopb)opc A,

Here op is a symmetrical operator, and the two ops are of the same type.

Rulebase:
Rewrite-current (1)
aop(bopc) — rewrite: (aopb)opc (2
(constl op a) — (aop constl) (3)
(a op constl) op const2 - a op evaluate:(const1 op const2) 4)
(aopconstl)opb) — (aopb)op constl (5)

The last 3 rules take care of any constant expression in an string of symmetrical operators.
Note the order in which these rules are placed.

Rule (1) descents down the tree to the leaves. Rule (2) uses the given property to make a
leftsorted tree. (The rewrite is only done on this rule, so we make a special rulebase only
containing rule (2)). The other rules (3..5) are only used once, assuming that the tree is
already in a leftsorted form.

Rule (3) only takes care of any expression only having two subexpressions, which is an
constant expression. The constant is put to the right only if op is a symmetrical operator.
If this expression is part of a bigger expression, so this is a leave of an expression, we need
rule (4) and (5) on a higher level.

Rule (4) assumes that there is a leftsorted structure from this level down, and detects that

- 64 -

there are two constant expressions that could be combined to one.
Rule (5) is one step behind rule (4). The reason is that an expression that hits on rule 4 also
hits on 5, but not necessarily the other way around. For instance: expression (a + 3) + 5
hits on both, (a + 3) + b only on rule (5). Swapping the rules, gives in the end the same
effect, but it is not necessary to rewrite (a+3)+5 to (a+5)+3 and that to a+8 if it can be done
in one step: (a+3)+5 — a+8. using rule (4).
The thought behind rule (2) is it to leave a leftsorted tree behind, and if there is a change
at the current level, we have to go back and retrace this change until it has no effect at the
levels below the change.
We see that rule (3) is based on the commutative property, while rules (2),(4) and (5) are
based on the associative property.
We can extend our rulebase with a rule concerning relational operators:

const1 relop a - a reversed_relop const1 (6)
We see that we here have to alter the operator. We reverse the relational operator in the
same step as we reverse the operator. For instance 3>a can be rewritten to a<3 as '<’ is

the reverse of ’>’.

- 65 -

7.9. Construction of the collapse rulebase.

The construction of the collapse rulebase was not easy. We had to construct a mechanism
that numbered the node, so we could identify every node as part of table where the
number of variables are kept.

Furthermore we had to introduce some commands to manipulate a table which looks like

this:
| | not mark nodel node2 node3
var 1

var 2

var 3

- the not field indicates if, in case of a register tree, the variable is present as a not variable
of as a normal variable.

- the mark field is used to keep track of the variables already dealt with or not. It also
indicates which variable is processed at the moment.

- the node number fields are used to indicate the number of occurrences a variable has
under a certain node, for instance (a*a)*a, where the underlined node keeps the

node number, the entrance at ‘a’ is 3.

Further there are some special fields containing the number of nodes, variables, and for

direct access, the number of the variable currently processed, the busy variable.

7.9.1. Construction of the table.

The table is constructed in a normal sweep through the tree. We assume it is a OR tree of
AND trees (register expression), or and SUM tree of PRODUCT trees (integer
expression).

We go down a tree, which is left sorted, stepping down left until we don’t find another

- 66 -

OR or SUM operator. While we step down, we look to the right and see an AND or a
PRODUCT operator, which gets a node number, placed in the table. The tree for which
this AND or PRODUCT operator is the root, we scan for variables that are also entered in
the table.

After this sweep we can count the total appearances and the spread of a variable. The
spread is used to indicate in how many different nodes each variable is present. In this
way we can easily determine the busy variable that is the most likely variable to get a big

gain on operators.

Then the tree is ‘subsorted’. This is also a scan of the tree down the leftside until there are
no more OR or SUM operator. We then look at the right side wether this subexpression
contains the busy variable. If not we skip the node, else we take out the OR or SUM
operator completely with its right subexpression, and place it on the new root expression
that holds the output of the procedure. The rest of the original expression is restored so
we can go on with the procedure. After we reached the end of the original expression we
simply place the rest part of the original expression, which doesn’t hold any busy
variables, to the end of the new root expression. We now have an new root expression
which from top to bottom holds first all the subexpressions with the busy variable and

then the part with no busy variable.

What happens if we use a rule like:

r+(b*a)+(c*a) - r+(b+c)*a

This means that all the variables in the ‘b’ and ‘c’ part are from the current level not
interesting any more and have to be eliminated from the table. Furthermore, the two
multiplications are reduced to one, which indicates that two node entries in the table have
to be reduced to one. It is fairly easy to see that the new node can have either one of the
old numbers of the nodes reduced, while the other one can be made completely empty.
Also the only entry left for the remaining node is the busy variable (‘a’).

All the other variables, contained in ‘b’ and ‘¢’ are out of scoop for the current level. They
will appear again in the part under the variable ‘a’. This can, however not be done
immediately, because in the ‘r’(est) part, there could still be an ‘a’ that can be processed
with the rule above at the current level.

Concluding we have to keep track of the number of busy variables. If this number

- 67 -

becomes less than two, thus one or zero, this means the variable has the whole part under
it that is possible, or the variable is reduced completely out of the expression. We need
thus a mechanism to detect this. This is done during the table update reducing two nodes

to one.

After we have detected an end of reduction for the busy variable, we have to call the
procedure for the rest part, for which the table is still true, and the part under ‘a’, the (ex)
busy variable. For this part under the (ex) busy variable we have to construct a new table,
and as we remember the rulebase is processed from left to right, we can assume the rest
part is already finished.

All this leads to a construction using at least 3 rulebases.

- One containing the reduction rules as in the example above. We use the command
rewrite after we have matched a certain pattern to call the second rulebases, we call

“loop’.

- The second rulebase “loop’ checks first if all the variables are processed, which leads to
an end of this part of the reduction process.
If this is not so we have to check if in the new expression, the busy variable is
ready, so no more reduction is possible with this one. If so, we call, for the 'r'(est)
part rulebase one. This after we have selected a new busy variable, and a subsort,
which brings this variable in the position so it can be processed. (to select the new
variable we need a fourth rulebase but we skip this part for simplicity). For the part

under ‘a” we have to call rulebase tree.

- The third rulebase calls an inititiation of the table, and then it does the same as for part

’t’(est) in rulebase two.

The three (four) rulebases are, although they are short, quite complex constructed.

- 68 -

8. Practical point of view.

8.1. Rulebase structure.

We will now look again at the structure of a rulebase to get an impression of it seen from
a practical point of view.
As we recall from the introduction, we have an expression that looks like a normal
algebraic expression. In APDL we represent an expression as a tree. This means that an
operator is followed by its operands. We could compare this with a prefix coded
expression, e.g.,

a+(b*c) is represented by: +a*bc, but

(b*c)+a isrepresented by: +*bca.
A rulebase consists of patterns, which must be matched against an expression. This brings
the problem of matching a pattern in normal algebraic form, with an expression in prefix
notation form. To overcome this problem, all rules (patterns) are represented in a prefix
notation also. Further is every operator, split into two parts. One parts states which
operator type it is, so a monadic- or a dyadic operator, while the second part defines the
operation the operator represents. A source pattern is directly followed by the
targetpattern. We will place a remark between them to separate them for us humans.
As the program is written in the progam language C We will place these remarks
between ’/* and "/’ as is usual in the C). In this way a rule like:
"2+ (a'b*C1) + (c*p*C2) 5 z+ (a*Cl1 +c*C2)*b* 1"
orin prefix ‘++ z*abCl ®™cbC2 s +z**+*aCl1*cC2b1’, looks like:

- 69 -

" DYADOP,INTADDOP,

DYADOP,INTADDOP,
EXP1, /*z*/
DYADOP MULQP,
DYADOP MULTOP,
EXP2, /*a*/
EXP3, /*b*/
CONST1, /*C1*/
DYADOP MULOP,
DYADOP MULQOP,
EXP4, /*c*/
ISEXP3, /*isitalsob?*/
CONST2, /*C2*/
/* to: now comes the target expression */
DYADOP,INTADDOP,
EXP1, /*z*/
DYADOP MULOP,
DYADOP MULOP,
DYADOP,INTADDOP,
DYADOP MULOP,
EXP2, /*a*/
CONST1, /*C1*/
DYADOP MULOP,
EXP4, /*c*/
CONST2, /*C2*/
EXP3, /*b*/
INT1, /*1*/
END, /* marks end of a rule */*

We see that for a human it is quite difficult to read such a rule. That is why we made a
habit of it to place a remark at the top of a rule that states the rule in readable form, and
some remarks in the rule where needed.

For changing the expression level, we normally use the rewrite command. This command

calls an rulebase, stated by name after the command and the expression that is used there

-70 -

after. An example: If we want an expression like a + b to be rewritten by a rulebase

examplel, we get in the rulebase the following line:

* DYADOP,INTADDOP, /*+*/
EXP1, /*a*/
EXP2, /*b*/
/*to*/
REWRITE,EXAMPLE?2, /* call rulebase EXAMPLE2 */
DYADOP,INTADDOP, /*+*/
EXP1, /*a*/
EXP2, /*b*/
END, /* end of rule */

4

We see we first have to get a match to get a call on an other rulebase.

If we want to use rules at different levels we have to have a method for getting up and
down one level in an expression.

We can only call down, as this is the way an expression is build. Going up means first

getting down to the leaves. We will show how this is done.

MONADOP,EXP1, /* to */ MONADOP,
REWRITE,CURRENT,EXP1,
END,

DYADOP,EXP1,EXP2, /* to */ DYADOP,
REWRITE,CURRENT,EXP1,
REWRITE,CURRENT,EXP2,
END,

The keyword ‘CURRENT is used to call the current rulebase again. Using these two rules
we can get to the leaves of an expression tree. We note the possibility of placing these
rules at the beginning of a rulebase or at the end having the effect of using the rest of the
rules from the leaves to the root or the other way around.
As we use these rules in almost every rulebase we call these two rules:

Recursive_rewrite.

-71-

8.2. Subsort in detail.

We will look at the subsort procedure
again, but now in more detail. The aim
of this rulebase is to make the select
variable, the ‘busy var’, adjacent.

From the sort rulebase we get an
expression tree that is left sorted. This
looks like
mentioned in Figure 16. We have already

means an expression
made an output expression pointer
which will hold the output expression
from this procedure. The star marks the
subtree with the variable we want to sort
to the right. Note that the aim is to set

these variables to the right only.

In Figure 17 we already moved a pointer
from the input expression pointer to the
node which holds the marked variable to
the right, called the aux pointer. Further
we have put a tmp pointer to the node
just above of the aux pointer. We will
now take out the node, pointed to by the
aux pointer completely and place it in
the output expression.

As we see in Figure 18 we first clip out
the selected node from the input
expression. Note that for this we need
the tmp pointer. This already completes
the part on the input expression. We
thus don’t need the tmp pointer anymore

and will see it no more.

7 N\

Input expression Output expression
\ ® \
2\
@
2RS
@ 1.
2
Figure 16
Input expression Output expression
NN
@
7 N\
@ 2.
7 N\
Figure 17
Inwtm< Output expression

Figure 18

-72-

In Figure 19 we see that we will now
start implanting the marked var plus
node into the outputexpression. We will
first take over the rest of the output
expression by pointing with the left side
of the marked node to the rest of the
output expression. We will there after
insert the marked node completely in the

output expression by taking the

outputexpression and point it to the
marked node (Figure 20). The result can be reordered so we can see the result

clearly(Figure 21).

Figure 21

lnp-nw-lm Output expression hww-dm Output expression

\/\ \W\

/\ /\

Figure 22 Figure 23

We will assume we found another marked node and this one is placed also on the
outputexpression (Figure 22). We will now append the rest of the input expression at the
end of the output expression. Therefore we first place a tmp pointer to the end of the

outputexpression (Figure 23).

-73-

RN hmm\mm WM\@\
| . '
o VRN
/®\ 8. 7N 9.

Figure 24 Figure 25

We then simply replace the null pointer (initial setting of the outputexpression) with the
inputexpression-pointer (Figure 24).
In this way we created an outputexpression that has the marked nodes at the beginning

of the expression and all the marked nodes are adjacent (Figure 25).

Oulput expression Input

|

Output expression

7

@i
7

NS

N

'/®\ /®

10. 11.

4

Figure 26 Figure 27

We will look at one special case, but there are more. The marked expression is not at the
right side of a node but on the left side (Figure 26). We simple swap the left and righthand
side of this node as the node represents a symmetrical operator, and we thus get an
expression (Figure 27) which is simply used with the method mention before.

Another special cases occurs when the first node holds a constant expression to the right.
In this case we store this node completely with a pointer defined specially for holding
constants. We then process the rest of the expression as we described and at the end insert
the constantexpression at the beginning of the outputexpression, which leads again to en

expression with first a constant expression and then the rest.

- 74 -

Of course there are more special case, such as an expression with only one variable or just
a constant expression. These however can be dealt with fairly easy at the beginning of the
procedure. In the rulebase which calls this procedure, we have to call it on the AND and
Product trees first, and so sorting the busy var to the right. After this is done we call the
procedure again on the OR and SUM trees. Information about the marking of a node, we
could simply be extracted of the table made before.

Register expressions are special treated regarding the complement of variables as they are
placed as near as possible to the variable itself. After the situation in Figure 22 we
therefore select the complement of the busy var and repeat the whole process on the input

expression.

-75.

9. Summary.

We have now handled all the parts of the rulebasesystem. To get an impression of the
whole system we will mention the parts here in the order they appear in the rewrite

process.

9.1. Integer expressions.

- Eliminate all minus operators converting them to a multiplication with -1.

- We then expand the expression to a SUM tree of PRODUCT trees.

- While there are variables left not processed:

- Rewrite all to a canonical form. (left sorted).

- Introduce the required constants for rule reduction.

- Then find out the most common variable. (busy variable).

- Make the busy var the right most var in the tree and sort all busy vars in the

subexpression to that side too.

- Use the rules:
z+(x*a*Cl)+(y*a*Q2)>z+({(x*Cl1)+(y*C2)) *a
- use this rule as long as there are any subtrees left with this busy var, if no more

left: rewrite z and subtree of a separately.
- Try to remove the constants introduced earlier.
- Try to reverse some expansions that did not result in a simplification.

- rewrite ends.

For the register expressions it is pretty much the same.

- 76 -

9.2. Register expressions

- Eliminate all nof / reverse operators, by pushing them to the operands as far as possible.

We can then look at a variable with such a prefix as one new variable.
- We then expand the expression to a OR tree of AND trees.
- While there are variables left not processed:
- Rewrite all to a canonical form. (left sorted).
- Introduce the required constants for rule reduction.
- Then find out the most common variable. (busy variable).

- Make the busy var the right most var in the tree and sort all busy vars in the
subexpression to that side too. Search for the complement of the busy var and place

it as second to the right. We will use this later.

- Use the rules:
z or(x and a and Cl)or(y and a and C2)-z or(x and C1)or(y and C2)and a.
- use this rule as long as there are any subtrees left with this busy var, if no more
left: rewrite z and subtree of a separately.

With the register algebra there are some special cases concerning cancellations:

alAo -0 1)
a1 —->a (2
aAa —a (3
ahk-a -0 @
aVvo —a (5
aVi -1 (6)
aVa —>a (7
aV-a -1 (8

We could use these last rules at the beginning of the simplification process also,
saving time and processing time. We have, however, keep in mind the number of
mutations we could encounter, searching for these special cases. If we are at the
point were we have an canonical form, we can wait for the collapse part and work
form the inside, where these special cases are more accessible anyway, because of
the strip-off of the variables, leaving the constants.

- Try to remove the constants introduced earlier.

- Try to reverse some expansions that did not result in a simplification.

- Rewrite ends.

-78 -

10. Conclusions.

The definitions made for rulebases, the process of matching and rewriting are clear. This
enlarges the insight in matching and rewrite problems.

We can only present one heuristic solution to the rewriting / reduction problem, as this
is a NP-complete problem.

We try to catch as many expressions as we can but there will always be some expressions

that have simpler forms than our rulebasesystem will produce.

We have introduced a method for ordering a rulebase. The construction of the dependency
table could be automated and the group forming could be left to computers as well. Some
decisions are still to be made by humans however, because the computer can’t overlook

a rulebase’s task.

The rulebase system is very efficient in rewriting more or less all the offered expressions,
to a simpler form if this is possible. It is therefore useful for compilers and other processes
that work with expressions. The only restriction to an expression is that it is offered in the
described dynamic structure, or it has to be transformed into such a form. The APDL-
compiler does transform any expression into this desired dynamic structure.

Every rewritesystem has some weak points, as it is a heuristic solution. These weak points
can be taken care of easily in the rulebasesystem by introducing some special treatments

for the expressions which course the problem.

In the rulebasesystem with multiple rulebases, it is simple to introduce new command-
words, which can be used as a name for a new rulebase, but also to implement some
rewrite-routines that are not possible in the rulebasesystem itself. There are no limitations
to the use of new command-words.

The rulebase is simple to use and, if desired, could be expanded for future use. This could
also be of benefit for other applications.

Our rulebase system is working, although it sometime takes a lot of time expanding,
especially XOR expressions. It could be of benefit to try to implement rules that simplify
XOR expressions first before they are expanded to AND and OR expressions, because
every XOR expandation introduces two times as much operands as there are in the

original expression.

-79 -

The system will reduce most expressions to constant expressions if possible. This is the
first goal for this system, as the compiler can then eliminate some parts of the program

that is compiled. This will always be of benefit, also to other applications.

- 80 -

11. Recommendations.

This system is based on a static number of rules, that are used sequentially. It could be of
use to store every reduction, if successful, so it could be reproduced later. We could now
create a dynamic rulebase, and it would look more like artificial intelligence. We could
start with this system, although modified for the learning of new ‘reduction rules’. The
process of learning would be the storing of input expressions and evaluate the output
expressions against it. If the system finds a reduction worth will this ‘new rule’ is kept in

the system.

The advantages of this system are that it could reduce very complex expressions very
quickly if recognized. If a user has some sort of habit of bringing up the same expression
repeatedly, we could keep a profile rulebase for this user. Such a profile rulebase is a sort
of preference rulebase, that is checked before the ‘normal’ rulebase is used. This could
increase the power of a reduction system, as the more frequently used expressions are

recognized immediately and reduced with only one step.

The disadvantage of such a system could be that the number of rules explodes, so not only
more computerstorage space would be needed, but also more computerpower, as the
matching process would take much more time. These could however be controlled with
a limited learning period. Or a more efficient reduction selection, e.g., rules with a gain
of only one or two would not be admitted in the profile rulebase, but rules with more gain
would.

Expressions which look like each other are not recognized although they could be reduced

in a very similar way.

Another problem is the order of the rulebase. We have brought up some suggestions for
ordering a rulebase but we have to decide what strategy to follow, and how to order the
rules. Only very simple rulebases could be the result of automated rulebase ordering. I
think that it is possible to make a sort of preselection program, which could help

extensive. It could construct the table, and order the rules into groups.

-81-

12. References.

[1] L.Aiello : Using meta-theoretic reasoning to do algebra.5" Conf an automatic deduction
(ed:Bibel) (RC:DBC 80 AUT) 1980, p1-12.

Contents : Experiments with FOL, showing improvements in proofs.

[2] J.C.Beatty : An Axiomatic Approach to Code Optimization for Expressions.] ACM 19(4)
(Oct 72) 613-639.
Contents : For parallel computers, only one reference to a variable, minimal

delay(parallel) , minimal code generation as Sethi and Ullman.

[3] G.A.Blaauw : Optimization of Relational Expressions Using A Logical Analogon. IBM
J RES Develop Vol 27 no 5 (Sep 83) 497-519.

[4] B.Buchberger : Algebraic Simplification. Computer Algebra. Symbolic and Algebraic
Computation. (RC: CAC 82 COM).
Contents : Problem, definitions , Canonical simplification, reduction, critical
pairs(Knuth- Bendix).

[5] B.F.Caviness : On Canonical Forms and Simplification.] ACM Vol 17 no 2 (Apr 70) 385-
396.

Contents : Canonical forms,decidebility,exponential expressions.

[6] KM.Chilukuri : Function definitions in term rewriting and applicative
programming.Information and control 71 (1986) 186-217
Contents : Normal forms, rewrite rules, formal description, conditional defs,

transformations between formalisms.
[7] J.P.Fitch : On Algebraic Simplification. Computer] Vol 16 no 1 23-27.

Contents : Brief review, compactification , intelligibility , identity (=0 ?) ,

Classification of transformations, proof of canonical forms.

-82-

[8] D.J.Frailey : Expression Optimization Using Unary Complement Operators. Sigplan
Notices Jul 1970 67-85.
Contents : Search for redundancy in a easily detectible way. Complement operators.
(-a -> a(comp -)), canonical forms, common subexpressions detection (in different

expressions !). Cancelling (a-a , x/x etc). Detecting complements.

[9] P.A.V.Hall : Optimization of Single Expressions in a Relation Data Base System. IBM
] RES Develop (May 76) 244-257.

[10]]-M Hullot : Canonical forms and unification. 5* Conf an automatic deduction (ed:Bibel)
(RC:DBC 80 AUT) 1980, p318-334.

Contents : K&B deduction, T-unification, some improvements.

[11] CK.Mohan and MK Srivas : Function definitions on Term Rewriting and Applicative
Programming. Information and control 71, p186-217 (1986).

Contents : (Un)conditional Term Rewriting, guaranteed termination.

[12]].Moses : Algebraic Simplification : A Guide for the Perplexed. Comm ACM Vol 14 no
8 (Aug 71) 527-537.
Contents : Guide, Substitution methods , Class subdivisions, labelling according to

Brown, Expression swell , canonical simplifiers (with unsolvables !).

[13] J.E.Sammet : Bibliography 11. Computer Reviews (ACM) Jul-Aug 1866 B1-B31.

[14] J.E.Sammet : Introduction to Formac. IEEE Trans on Elect Computers Aug 1964 386-394.
Contents : Description of FORMAC.

[15] J.E.Sammet : Survey of formula Manipulation. C ACM vol 9 no 8 (aug 66) 555-569.

Contents : Integration differentiation, simplification. Refers to FORMAC and
MATHLAB. Global function of different systems. BIBLIOGRAFY.

- 83 -

[16] J.E.Sammet : Formula Manipulation by Computer. Advances in Computers Vol 8 47-102.
(E: DAC 63 ADV).
Contents : Summary of FORMAC.

[17] R.G.Tobey : Automatic Simplification in Formac. Proc - FJCC 1965 37-53.
Contents : Rules for the use of FORMAC, derivations.

Only rules could be interesting.

[18] R.G.Tobey : Experience with FORMAC Algorithm Design. Comm ACM Vol 9 no 3 (Aug
66) 589-597.
Contents : FORMAC.

Books
[19] H.Ait-Kaci & M.Nivat : Resolution in algebraic structures vol 2 Rewrite techniques,
89 Ac.Press (W:BDD89 RES).

Contents : Rewrite techniques : theory.
[20] R.v.Book : Formal Language Theory.

[21] S.D.Danielopoulos : Algebraic Simplification in fortral , 84.

Contents : Makes tuples and simplifies canonical.

[22] P.A.V.Hall : Optimization of Single Expressions in a Relation Data Base System. IBM
] RES Develop (May 76) 244-257.
Contents : Only some rules but restricted to dbases.

[23] M.]Jantzen : Confluent String rewriting , 88 . (RC : DBN 99 JAN).
Contents : Compiler directed substitution.

[24] J.P.Jouannaud : Rewriting techniques and applications, 87 Ac.Press (W:DBF 87 REW

).

Contents : Rewrite techniques : theory.

-84 -

[25]].W.Klop : Term rewriting systems from Church_Rosser to Knuth-Bendix and beyond.
Computer Science/Department of software technology Rep:CS-R9012, May-1990.
Contents : A short survey covering abstract rewriting, Combinatory Logic,
orthogonal systems, strategies, critical pair completion, and some extended rewriting

formats.
[26] A.Middeldorp : Modular properties of term rewriting (W:DBN 90 MID). 1990.

[27] E.W.Ng : Symbolic and Algebraic Computation.(RC: DGP 79 SYM) EUROSAM ‘79, An
International Symp. Marseille, France June ‘79.

Contents : Mostly practical application on simplification.

[28] Proceedings of the 1977 MACSYMA Users’conference (NASA). (RC: DPG 77 MAC).
More writers.
Contents : Several applications for MACSYMA.

[29] R.Socher : Simplification and reduction for automated theorem proving , 90. (CM :
APD 90 SOC).

Contents : Boolean Simplification.

[30] W.Wulf : Fundamental Structures of computer Science (RC book). 549-564.

Contents : Substitution and parameter matching.

-85 -

1
| File appendix.l Created at 11:35sm on Tuesday, Februari 4, 1992 wijshoff Fage 1 of 9 |
- TT !
1 t| 0| #define MAXVARS 20 /* ps no checking is done t */

{ 7| 9l #define MAIUWODES 50 /* ps no checking is done I */]
{ ! 0] #define MARL) /* marked field */ |
| 1] 0| Kdefine SPREAD 1 /* spreadfunction = how many nodes ccntain var */

|] 2| #define MALD z /* how many times a var is present in the total exp */

| 5] 0] #define MIINIODE MAIIML /* first free ncde number */

| 7| ©| #define marked count{MARK] /* countarr[?) = marked used */ |
| a| 0] #idefine spread count{SFREAD] !
| 2| ©| #define CLEAR 0 |
| 0] 0] #define BUST 1 |
{ 11} o] 4define DONE 2 |
| 2] of |
| 11| 9| typedef struct counttypestruct counttype;

| 14] ©]| struct countarrstruct

|l 7| { '
| 1w 7] chax *varname ; /* pointer to name of var */

{ 7] 7 int notflag : /* flag which indicates a var as a not var (register expression only

l (I A l
)] 7| int count[MAXNODES]; /* arvay of nodes, indicating the number of occurences */

|) 7 Yi /% 0 ie a markfield , 1 is the main rcot expressien, 2... are |
| | | subnodes * }
| 20| 2] struct counttypestruct |
| 9 { |
| M2 struct ccuntarrstruct countarr[MAXVARS]; /* ae array of vars */ |
] o3 int countnum; /* number of vars in table */

[R YT | int node; /* number of nodes in table */ |
|]| int hus:rvar: /* the bussy wvar *~

B RIRT l
1 7] o) [
| 2] 9| typedef struct expstatstruct expstat:

{ 2] ©] struct expstatstruct

IR I { |
[BERY BT imlebasetype *rulebase, *ruleptr;

[o S | enpress lonnode *expl, **parentexpl,

| 3w “expl, **parentexp?,

| EEREYELT “exp3, **parentexpl,

| r5]1e| “expd, **parentexpd, [
| e *censtl, **parentconstl, !
[PR R *const2, **parentconst2: |
| 3] 3 int nodel,nodeZ,node3,node4,nn,killnode;

| £l /* un = nodenumber for rebuild , commands PUSHNN,POPHMN*/ |
{ 31 int exptent,expzent,exp3cnt,expdont, constlent, const2ent;

| v 3] operatortype opl,op2,cpd;

[12| 3 ¥ I
| 13] 0]]
{4 3 int mat:h_hits; /* used to count the hitrate on match */

§ s int match_trys; /* used to cuont the hitrate on match try’s */ |
[Y Y| int notflag; /* used to signal a set/reset on matching two vars | for a and la */ |
{ 47| 3] /* these 31 are declared extern in header, for use in reducexp.c */ |
|] v |
1] 3] int hit = FALSE; /* gleobal flag to indicate a hit of a rule */

| se] 3 int alllhad = FALSE; /* global flag used to indicate if all vars are processed * |
1 s counttype *cntarr = MULL; 7% global pointer to table */ |
1 51 2 int decreasevar = 0 /* used to count the number of reductions to update table * i
{ na) oy int gize = 2; /* used to remember the number of hits are in a register * '

{ e o3 int flag = FALSE; |
[55 2] |
] ".’3‘ l'l ,‘4“*"#“»4--ﬁ.A..~».4,**.*-1*+».»:e-ﬁ&*.*«***«*.&&*.&.*.&*»¢¢+-’v4w-t++++¢**+*A.ﬁ**&‘¢14».44&.*‘-4A&Ava.aa:*xA-*&&.h.AA.‘-kl*A,- |
1 "7 11 * printtable : prints the list (taple) nothing else '

l v"ul 'l e e T I I T o T O T T T R R R T Al R I ‘
bosapup |
| w0 void print_tablei counttype *~onntarvptr o

LY IS B [
| s2] o] Rdefine IIRTOUT debugfile |
1 &1 2| int ne, g |
| o4] %1 iosprintf(HRCOUT,” vars : %d , nodes : 3d . busyvar : 3d ¢ %Zs 10",

{ nsl1n) countarrpty-scountnam,

| esping countarrptr-~nede, I
| ool countaryvptyr-rbhasyvan, }
E R RAS countarrpty-scountars{ comtarrptr-lusyvar] . varname) ; |
e |
a1 iosprintf(HRCOUT, " "y |
| i JI for { nn = 0 ; no < countarrptr->ncde ; nott)

1 e os iosprintf(MRCOUT, " %2d ",no):

1 il 3 Losprint£(MRCOUT, ".\n"); |
i 7 n |
| S 1 |

appendix.l Created at 11:35am on Tuesday, Februari 4, 1992 wijshoff Page 2 of 9

[e o . e - e . — e e — - —— e . o o . i " S o o o k. o o e o — o —— . . e . — . e ——— —— —

A

\

.:].__-‘, l
00|
10|
102
1021}
104|
105])
106
7]
inn|
1ﬂg|
11u|
1L

ST S B)

DN N

i S R (K 8

R SRS S Iy %)

for (var = 0 ; var < countarrptr->countnum ; var++)
{
Losprintf(MRCOUT," var %2d (%2s) (not : %d): ",
var,
countarrptr->countarr{var].varname,
countarrptr->countarr[var].notflag);
for t no = 0 ; no < countarrptr->node ; no++)
tosprintf(MRCOUT, " %2d ",countarrptr->countarr{var).count[no)};
iosprintf (MRCOUT,".\n");

}
}

/'.‘.""P*&*‘:‘:* b A F A F A SR A A AL P AL R L AL T AR AL P A A AL A AL AT RS A A A A AT A A A AL AT L AR AL L F LT E LA T A ARSI A I IR AR LR AL bbb
* hoolean areequalvars{expressionnode *expl , expressionncde *curexp); *
* test Lf two vars are egqual *
AA P A IR TR RS A AR R A N A P A R TR AR IR AR AR AR AR R A RS AT AR LA R AR A RN R A RRARA P S AL AR PR ARTRNA AR AR RR A A AR, b
k/

boolean areegualvars(expressionnode *expl , expressionnode *curexp)

{

]
i

MONADICOPEPATOR &8
MONADICOPERATOR)

if (curexp -> nodetype
axpl ~> nodetype
return

{ curexp -> exp.monadicoperator.operator == expl -> exp.monadicoperator.operator } &

areegualvars{expl -> exp.monadicoperator.subexpression,curexp —-> exp.
monadicoperator. subexpressiony);
Lf { curexp -> nodetype == VAR && expl -> nodetype == VAR)
return (cursxp -> exp.var.refvar == expl -> exp.var.refvar };
return FALSE;
}

/‘ﬁit*t,‘:f:ﬁ*h*****ﬁw**ﬂttk*k**ﬁt*******x****kk*.****t’l’lf.t********ﬁ***ﬂ*******kt****‘ﬁ**t*ﬁﬂ%i‘.*f.’*ﬁ*

* A

isbusyvar: returns true of false if in a expression
LA A2 A R s AR T R R e R e R P e R S RIS R A AR RS AR R R R e E

‘./'
int isbusyrar(expressionnode *curexp , counttype *countarrptr,int notf)

{

if { «<urexp -> nodetype == MONADICOPERATOR && curexp -> exp.monadicoperator.operator ==
HOTOP)
return isbusyvar(curexp->exp.monadicoperator.subexpression,countarrptr,tnotfj;
return { curexp ~> nodetype == VAR
&& curexp ->exp.var.refvar -> elemname == countarrptr—>countarr{countarrptr->busyvar)
. varname
&& countarrptr->countarr(countarrptr->busyvar}.notflag == notf);

}

R R A Rk A kAR R A AR AR T A KRR I IR R A AR A AR R KK AR IRE F AR AR AR AR EARR KR AR RN RRRK AR AT AR KKK AN A FF Rk

* v

countvar : count var in expression and puts them in list allocated also and return as a
* pointer to this list *

AR E R AR K R A AR AR A AT A A A AR AR AR AR A AR A A A AR R A R A A A A AR AR A AR AN AL A ARRRAAA AT AR R AR NIRRT kA Ak ok ok Fkhkar ok ok
x/
counttype ‘*countvar{expressionnode *curexp !
¢
operatortype savedyadop = NULL;
int var,node;
counttypr *countarrptr;

*

/% test if table exist, if not create one, should be created although */

if (cntarr == NULL) cntarr = mmalloc(counttype); /* make first list */
if { cntarr == IULL) fatalerror{"conldn’'t alloc countarray { “);
countarrpty = cntarr;
* init *o zerc */
for (vax = Q : var < MAXKVARS ; var++)

{

countarrptr -> countarr([var].notflag = FALSE;
countarrptr ~-> countarr{var}.varname = NULL;

for + node = 0 ; node < MA{IIODES ; node++) countarrptry -> coantarr{var).countfnede] = 0;
}

countarxptr -> node = MIBIIODE; /* init *

countarrptr -> countnum = 9; S oinde ¢S

countarrptr -> busyvar = 03 /* init *7

if (curaxp->nodetype == MCIADICOFERATOR)
{

return countvar{(curexp -> exp.monadicoperator.subexpressionj;

o

File appendix. Created at 11:35am on Tuesday, Februari 4, 1992 wijshoff Page 3 of 9
—
| 47]1z) }
1 1an} 0]
| ras| 2] savedyadop = curexp -> exp.dyadicoperator.operator ;
| 150] 2} curexp -r nodenumber = MAIN ;
{ ts1] o}
[152(2| while (curexp->nodetype == DYADICOPERATOR && curexp -> exp.dyadicoperator.operator ==
| { | savedyadop)
IRLETIET I
{ 154 4] curexp -> nodenumber = MAIN ; /* number them too */
[Y| curexp -> exp.dyadicoperator.righteipression -> nodenumber = countarrptr -> node;
{ 196 4 countlocalvar{curexp -> exp.dyadicoperator.rightexpression , countarrptr,FALSE);
| t57] 4] countarrptr -> node++ ; /* next node */
| 150] 4| /* for (var = 0 ; var < MAXVARS : var++) countarrptr -> countarr|var].count|[countarrptr —»
| | | node) = 0; */
| 159] 4| curexp = curexp -> exp.dyadicoperator.leftexpression;
| teo| 4] }
{ 161] 2} /% last node on left */
| 162 4 curexp -> nodenumber = countarrptr -> node;
{ 163] 4} countlucalvar{curexp , countarrptr, FALSE};
| 184 4 countarrptr -> node++; /* next node */
[1n5] 4 /* for (var = O ; var < MAXVARS ; var++) countarrptr -> countarr(var).ccunt{countarrptr ->
| | | node] = 0; */
| 16| ¢| return countarrptr;
| t67] of)
| aen] of
l l(;?l ljl I T A N T R R A A A R T A A R A A A A I T R E A A A AR AN R A I A KA XA AT LT A A AL A IR T * A AT A S ek Fdk
| v7o] 1] * countlowal : count localy vars in expression and puts them in the list pointed by *
I ‘7.|| 1.| A AR RS SRS R LS EE SRS Sl RS R EE SR R RIS RS R RS EEE Rt R RS RS A
{ w7z} | s
| 173] ©| countlocalvar(expressionnode *curexp , counttype *countarrptr, int notflag)
{17a] 2|«
| 1791 2} int i, fonnd;
| 17n| nl
] 173} o
| IURAZ ey switch (curexp->nodetype)
| v 4 (
| 100] 4| case MONADICOPERATOR : if (curexp->exp.menadicoperator.operator == NOTOP)
| 1ny| 3z notflag = TRUE ; /* set notflag */
| wz)z7] curexp->exp.monadicoperator.subexpression~>nodenumber = cureip->
| | | nodenumber:
[BRAEE | countlocalvar(curexp->exp.monadicoperator.subexpression,countarrptr,
| | | notflag);
| 1ra|27]) break;
| 1r5] 4| case DVADICOPERATOR : curexp->exp.dyadicoperator.leftexpression->nodenumber = curexp->
| | | nodenumber:
| 1m6(27] curexp->exp.dyadicoperator.rightexpression->nodenumber = curexp->
i | | wodenumber;
| B7}27] countlocalvar(curexp->exp.dyadicoperator.leftexpression,countarrptr,
| | | notflag);
| e8]27] countlocalvar(curexp->exp.dyadicoperator.rightexpression, countarrptr,
| | | notflag);
{ 1ma]27] break;
{ rLo0] 4| case COISTANT : break ; /* no count */
| a1 4 case VAR ¢+ for (£ = 0, found = FALSE ; 1 < countarrptr -> countnum ; 1++)
| 192]121) if (curexp -> exp.var.refvar -> elemname == countarrptr ->
{ { conntary(L). varname &&
| 121)39) countarrptyr -> countarr(i].netflag == notflag }
| taa] {
| 1235]38] countarrptr -> countarr[i).count[countarrptr -> node]++;
| 196]3n| found = TRUE;
| 127 3n| breal::
| ran|as))
[12af2e| if (tfeound
{ 20u]3z] '* new war found -~ init all above to zero *
| ceLsz) {
| anzfaz| countarrpty -~ countarr[-countarrptr -~ countnum}.varname = curex
{ | | -> exp.rar.refvar -> elemname;
| 2oz countarrptr -> countarr{countarrptr -> countnum].netflag =
{ | | netflag:
| nafy] countarrptr -> ceuntarr(countarrptr -> countnum].count|
| | | countarvpty -> node} = 1;
| es)az| countarrptr —> countarr[countarrptyr -> countnum].marked = CLEAP:
{ 206] 22 countarrpty > countnum++;
[7]z }
| zos|2e| break;
[EREAY Y| default : fatalerror(" Countvar :unknown type "):
[T 1

File appendix.! Created at 11:35am on Tuesday, Februwari 4, 1992 wijshoff Page 4 of 9 |

|

———— ——— e ———
o b :

¥

10]
2] 2
2120 0
212 o
2041 L
215] 1
216 1
217] ©

241] 30|
742|25]
2431 0]

I E R e RS A T RS2 R RS SR SR A RS R R R SRR A RS S R A R R R R R T A AR R R TR RS SRR TSR RS R LR R N
sortarray sort array on keyl, 1 and 2 , returns countarrptr *
A A AP AL AT R A AT PR A AT LI R A AR AR A AT AT RT AR AT AR S A IR AR T AL APRAP S S AR b P S A b L bR A AR R AP LR S b dd s &

»/

ortarray(int keyl , int Xey2 , counttype *comntarrptr)

* count nm points to unused place so we use it as tmp */
int 1,1,k;
for (1 = 0 ; 1 < countarrptr -> countnum ; 1++}
for ¢ 4 = i+1 ; j < countarrptr -> countnum ; j++)
if { countarrptr -> countarr[i].count{keyl] < ccuntarrptr -> countarr[j].count|
keyi] V!
(countarrptr ~-> countarr([i].count[keyl] == ccuntarrptr -> countarr{j).
count{keyil &%
countarrptr -> countarr(i}.count(keyZ] < countarrptr -» countarr[j].
count (key2{)
{ /* swap them */
countarrptr -» countarr{countarrptr -> countnum]).varname = countarrptr
-> countaxx{i].varname;
countarrptr -> countarr(countarrptr -> countnum].notflag = countarrptr
-> countarx[i].notflag;

countarrptr -» countarr([i].varname = countarrptr -> countarr[j].varname;
countarrptr -> ccuntarx[i].notflag = ccuntarrptr -> ccuntarr{j].nctflag;

countarrptyr -» countarr{j].varname = countarrptr -> countarx[countarrptr
-~ countnum].varname;

countarrptr -> countarr(j}.notflag = countarrptr -> countarr{-ocuntarrptr
-» countnum].nctflag;

for (k=0 ; ¥k < countarrptr -> node ; J4+)
{
countarrptr -> countarr[countarrptr -> countnum].count{k} =
countarrptr -> countarr(i].count(k];
countarrptr ~> countarr{i].count[K] = countarrptr ->
countary[ji.count{ky;

countarrptr -> ccuntarr[j].count{k]
countarx{countarrptr -> countnum].count(k];

}

countarrptr —>

/k*ﬂw***k*?*ﬁﬁﬂ#*t****t*********ﬁwt***ﬁ*!*k**********Q*********t**%****kﬁ*********ﬁ****t**ﬁ**f!
* make _gloabl_count : makes undate on main count in list *countarrptr (doesn’t clear marks)
AER A A E TR A F R AT R AR R T AR AR R R IR R A AP AR A AR AR TR AR I AR AR TR A AR IR AREIA AR AA AR R AR AA T AP R AT AL
"

make_global_count(counttype *countarrptr)

(

int no,rar;
for { var = 0 : var < countarrptr -> countnum ; var++)
{
countarrptr -> countarr(var).count[MAIN] = O;
countarrptr -> countarr{var].count{SFREAD) = 0;
for ' no = MINNODE ; no < conntarrptr -> node ; nott)
!
Lf 1 countarrptr -> countarx[var].count{no] l= O

{

countarrptr -> countarr[varl.count[MAIN] += countarrptr -> countarr([varl].count|no]

countarrpty -> countarr(-ax].count| SPPEAD]++:
}

}

B i L R T T N O L T T T o

- +

select _-rar : select war (next clear --ar), if only cone ref glip
TELAKE AL AL LRI TR A AA T AR A L A A A AR AN RPN P AP T RSP A R LR AL L P A A I AL A A AT T AR ST A AR AR T LA A A RN AR RS AT kb b Ak LS

wnid gelect var{ counttype *countarrptr !
{
Int i;
for t 1 =0 ; i < countarrpty -> countnum ; i++)
i€ (countarrptr -» countarr[i).marked == BUSY) countarrptr -> countarx(i].marked =

M e e e e ————— ——_——— ——————————— e —————————

File appendix.l1 Created at 11:35am on Tuesday, Februari 4, 1932 wijshoff Fage 5 of 9

v

I o
| T 1 1
| | | DouE:; |
1 275] 3 |
| 276 7] if ¢ countarrptr -> countarr[0].marked == CLEAR) countarrptr -> countarr[0}.marked = BUSY; |
| 2771 7] else |
| 271y { |
| z79]11] if (countarrptr->countarrf{countarrptr->busyvar).marked == BUSY)

[BECIREY] countarrptr->countarr|countarrptr->busyvar].marked = DONE;

| 2oy for (1 = 0 ; 1 < countarrptr -> countnum && countarrptr -> countarr{i).marked == DOIE |
| IERREEIN] I
| 11] if { i = countarrptr -> countpum)

| 20} { |
| 20| countarrptr -> countarr{i].marked = BUSY; |
| Zﬂl countarrptr -> husyvar = i; I
| 20| if (countarrptr -> countarr[i].spread < 2 &5 countarrptr -> countarr{i].

| | count[MAINMN| < 2) /* only one or none (*/ |
{ 23} 1 f
| 273} countarrptr -> countarr[i].marked = DONE; /* mark it as done */

| 23 select_var(countarrptr }; /* try next */

I 21|) |
| 20| } I
| 12| else

{ 20| allhad = TRUE; |
| 121 } l
{ of)

l OI /«'ﬂﬁ&‘.‘,‘.kkk.‘:‘*‘h*Rﬁi**k**tti'*ﬁﬁ****k*****ﬁﬁ‘.'.‘»'k****f**ﬁ****t***t'#’ﬁ*t****‘*ﬁkf!k*****t**’ﬁQ**k*ﬁ%ﬁ |
| 1| * newnoderint nodel , int node2 , expressionnode *outexp , countarrptr }; *

| Y] * Xills two nodes (1 and 2 } in table and replaces them with one { only busy var entrance) *

| 1| * we asum2 that nodel delivers the overal new operator and thus the nevw node number B

I Jl TA A A AN LA A L L LA L R AT AR R I A A R A A AR A A R A X A A AR AR A AR R A AN R A A AR AR AR LIRS AL R A A AN A AR T AR AR LS L Ao kS L l
[yoow |
| 0} newnode(int nodel , int node2 , expressionnode *outexp , counttype *countarrptr) |
[S |
{ 3 int var; |
| 1 for (var = O ; vor < countarrptr -> countnum ; var++)

i 9| { I
| 7| conntarrptr -> countarr{var).count[nodel] = O; |
| a countarrptr -> countarr(var}.count[node2] = O; |
1 5) |
| | countarxpty -> countarr[countarrptr->busyvar].count[nodel] = 1}

| 3 outexp --> nodenumber = nodel; /* take over node number */ |
| ny |
i 3 wake_global_count(cntarr);

| 0| |
| k| if (comntarrptr -> countarrfcountarrptr->busyvar].spread < 2)]
|] hit == TRUE; i
i ST |
I 2] |
' ()‘ /*t*****ﬁ****k**t*ﬂi*k.*’.i’lt***t’**ﬁttkt*ﬁ*k**'tﬁ*ttt***'{**t**tﬂ*****'i’l*****tﬁiﬁ**ﬁw******ﬂ'ﬁ** '
| 1] * decrease_var : gets one busy var of list, { because of reduction) but also kills another *

| 1] * node : so If we decrease a var we loos 1 node { set all to 0) , and we put only one var *

| 1] * on the other one. e.g. z + (a*x*Cl) + (b*x*C2) -> z + {((a*Cl + b*C2))*x . |
{ 1| * we kill node ’'a’, 'b’ wil be new x { only x is present), update globals >

| ,_' E AR K A AN A AR A N AR R A AR A A AR R AR A A R AR R A I AR I NI NI AF AN AR A AN I I A A A kA AW kR ARk hF kb Ak l
| oo |
| N} int decrease_var(expressionnode *curexp , counttype *countarrptr)}

| Q] A |
| o int vav;

| 2| Int busynode; |
| 5] 1f (curexp -> nodetype == DYADICOPEPATCP | |
l | { I
| 1 busynede = curexp -> nodenunker; |
| | for var = ¢ @ var < countarrety -> counthum &% countarrptr -- countarr{var].marked I= |
| | BUST ; var++); |
|)11 Lf (var I= countarrptr -> countnum) fatalerrouvi” decrease --ay finds no BUSY —ar ");

| xs) o |
| x30|11) countarrptr -> countari{var}.count{busynode) --;

| RREA RS Y conntarrptr —> countarr[var].count{MAIl] --; |
[NERLI RSN if ¢ countarrptr -> countarr[-rari.count{busynode) == 0 1 ‘* more vars in current unde * |
1 I |
| v 7y {

|] 17 countarrptr -> countary(wvar}.count{busyncde] --:

[EEAR Y| countarrptr -» countarr{var].marked = DOLE; |
|2) I
[IREREERY| } J
| a0]
| 5] 2| g I
t - 1 1

Fille appendix.l Created at 11:35am on Tuesday, Februvari 4, 1992 wijshoff Page 6 of 9

T 1

LEEY R |

"7' (‘\' /"'.""“.“!"".'*“.":.‘:".'*,‘.'ﬁ,‘!*f.'f‘:ﬁtﬁﬁ#!t‘t***t*(ﬁt‘.?‘%*.‘.’**t‘&**!k&%#ﬁﬁltt******f!”tt‘ifr‘fﬁﬁ*********ﬁﬁﬁﬁ’.ﬁ"ﬁ**&
148 1| * getvarname: get maln name out of an expression { returns -> varname) *
-lyj’:ll |I ERAAA KA AR TR A AR IR R R A T A A A A AR A AR AN E AR AR RA L AT ARAARNAN I AARN AT ARARAAXNAAARRARRARARARAKNRA T ARNRNR AKX AN R R R A& xR
el NN B

EXT R NG|

2] 0] char *getvarname(expressionnode *curexp, int *notflaq)

%3 of «

154 1 while (curexp -> nodetype == MONADICOPERATOR |} curexp -> nodetype == DYADICOPERATOR)

155] 15| {

IDG116] 1f { curexp -> nodetype == MOUADICOFPERATOR)

157 | 26| {

156 27] if (curexp -> exp.monadicoperator.cperator == (operatortype) HOIDP)

*notflag = TRUL;
curexp = curexp -> exp.monadicoperator.subexpression;
}
if (curexp -> nodetype == DYADICOPERATCR)
{ /* if right is const then take left way else right way */
if (curexp —-> exp.dyadicoperator.rightexpression ~> nodetype ==
CONSTANT)
curexp = curexp -> exp.dyadicoperator.leftexpression ;

else
curexp = curexp -> exp.dyadicoperator.rightexpression @

ELd Dol |)
vinl1e| }
ARAN L
1zl 3 if (cuvexp -> nodetype != VAR)
7] 7| fatalerror(" getvarname didn’t encounter var where 1t chould 17}
174 3 else return curexp -> exp.var.refvar -> elemname;
s) I

vIe| o
]]7’ (\l /'h.‘.ﬂf:ﬁ*w‘.’ﬁ*%*t**ﬁttﬁﬁi**ﬂ'*ﬁ‘h*tt*ttﬂﬁﬁt**‘hﬁkt‘k'ﬁﬂﬂtﬁﬁﬁt**,‘:*t**ﬂﬁ&ﬁﬁkt*‘hﬁ****.‘:**ﬁﬁﬁttt**t**kt*v‘*,‘

a .

el ot
ENAU I
mof 0

sortsubtree : sort the tree in a particular way : als the same vars next to each other
R R e e e e e e R s e S E e A s R R RS e

1] 0| expressionnode *sortsubtree(expstat *curstat , counttype * countarrptr , int second)

m2] 2 f
ELEY B express tonnode *curexpression = NULL;
my| o2 enpress {onnode *auxexpression = HULL;

express .ionnode *hackexpression = NULL;

expressionnode *newrootexpression = NULL , *constexpression = WNULL;
char *tmpl,*busyvarname; /* pointers to names to compare them */
int i,d.notflag,busyvarcount, constsaved = FALSE , nodeno;
operatorxtype savedyadop = NULL;

|

|

[

[

|

]

|

|

|

£l curexpression = curstat -> expl;

] curstat -> expl = MNULL;
|
|
|
|
:
|
|
|
!
!

‘* gortnd, so now we continue :we take all busy var to right */

+
I
)
0
(s

if var we want to sort ls present else skip */
ame = countarrptr -> countarr{ccuntarrptr->busyvar].varname;
busyvar-ount = countarxptr -> countarr[countarrptr->busyvar].count{curexpression -> nodenuuber}

: nodeno = curexpression -> nodenumber;
Jﬂoll

1]
d01) '* there are situations where this number can nct be found t e.g ta < b) and (b < a) *
anz) o0
0] 3 /* selction : if no busy in current node or if local = glcbal Fi7iciiiTviTvresses *
IEE N I |
ann| 3 1f ¢ busyvarcount == 0) return curexpression;
doa| o
KERIA B] * save first operatcr to check if the tree is ended and there is ansther dyadep * 7/
S| 1y if (-urexpression -> nedetype == DYADICOPERATOR
EARRN ¥ saedyadop = curexpression -> exp.dyadicoperator.operator;
110] 1) alse return curexpression;
Tev]] “ only cne var possible, check for const if yeturned *
BRI

+

,
RE IS
A 3

| handle conet te pat them in constenpression and append it at the end

{ constsared = FRLSE; /* init */

| 1f ¢ ~surespressicn - exp.dyadicoperator.rightexpressicn ~> neodetype == COISTANY
1

congtexpression = curexpression ; /4 ~-> *——-const *;

- s

curexpression = curexpression -> exp.dyadiccperator.leftexpressien ; ,/* rest */

- —— . —— e — ——— —— — e —— i 8. i —— — — it o —— — . o, LA o o ot T Ay, i, el e s i i e T i — e it i S — T—— —— — i oo — — ——— — — — e i | e s oy S

File appendix.l Created at 11:35am on Tuesday, Februari 4, 13922 wvijshoff Tage 7 of ¢
T 1

1349] 6] constsaved = TRUE;

120] 6| }

az1] 2|

1z2] 3] /* check 1f this is also still part of legal tree */

423| 1] if | cuvexpression -> ncdetype == DYADICOPEPATOP. && savedyadep I= curexpression -> exp.
| | dyadicoperator.cperator)

az4] 7| if + constsaved == TRUE)

1512 return constexpression;

126] 7] else

1271 9| {

1im) 7| cnrexpression —-> nodenumber = nodeno;

49| 9] raturn curexpression;

REIL | }

10 0f

4321 3] awxexpression = curexpression ;/* init */

432 0|

134] 3| while(auxexpressicn -> nodetype == DYADICOPEPATOR && anxexpression -> exp.dyadlcoperator.
| | operator == savedyadop && busyvarcount > 0)

135] 13 (

435)13] notflag = FALSE;

437112 notflag = FALSE;

13013 1f { getvarname(auxexpression -> exp.dyadicoperator.rightexpression , ¬flag)

13¢] 18| == countarrptr -> countarr{countarrptr->busyvar}.varname &&

440(18| notflag == countarrptr -» countarr|[countarrptr -> busyvar].notflag !

BUREEY| {

19221
14321

[1
44d|11|
ERA Ry
J4ﬁ|"l|
41724
ERLTERY|
a2
JW0|34|
1|2t
152) 241
LA Y|
15424
15510}
156 zd
457 24|
19|24
ana)zaf
460) 24|
63|21}
462 13|
463|21]
464]13]
ass] 7|
466] 0o}
A
ARA] LN
4u9|10|
4700 10]

[
s
1714
A73|104|
INRYEN]]

[
AT 14
17n|1g|
177|112
RIVEE] pobes
Uik Beled
Jnn{gg

[}
myjcz|
1] 22|
RUENRE:]|
Jn{l[g'
ans| e
a6} 1e|
m7|in|
4ng|1a|

L] L

busyvarcount--;
if « busyvarcount < O) fatalerror (" trying to set mere chars then there
are{la) "):

1f (auxexpression == curexpressicn) /* gtill first */
{
auxerpression = auxexpression -> dyadleftexp;
curexpression -> dyadleftexp = newrcotexpression;
newrootexpression = curexpression;
curexpression = auxexpression;
}

else /* somewhere in between */
{
backexpressicn = curexpression;
while (backexpression -> dyadleftexp != auxexpression)

backexpression = backexpression -> dyadleftexp;

backexpression -> dyadleftexp = auxexpression -> dyadleftexp;
auxexpression -> dyadleftexp = newrootexpression;
newrooteypression = auxexpression;
auxexpresslon = backexpression;

}

else
auxexpression = auxexpression -> dyadleftexp;
} /* while */
/* we have to check last elem on left leaf of tree (we only checked right) */

if ¢ (busyvarcount > 9)) /* must be one left */
{
notflag = FALSE ;
Lf (getvarname(aunxeypression , ¬flag) == countarrptr -> countarrfceountarrptr->
husyvay].varname &&

notflag == countarrptr -> countary([countarrptr -> busyvar].notflag)
{
busyvarcount--;
if (busyvarcount - ©) fatalerror(” trying tc give more busy vars then there are
1"y
1€ (aunexpressicn == curerpression v ouly curexo left ©
{
if newrcoterpression = ILL
{
hackexpressicn = newroctexpression:

while (bhackeypression->dyadleftexp (= INULL \backerpression =
haclexpres;:ion->dyadleftenp;
backexpression -> dyadlefteir = curexpressicn;

}
else newrootexpression = curexpression;
}
alse
{
backexpression = curexpressicn;

while { hackexpression~>dyadleftexpl=auxeipressicn)backexpression=

L e e ——— e L

"R 18|
L 1

backexpression->dyadleftexp = curexpression;

1
; 1le appendix.l Created at 1l:35am on Tuesday, Februari 4, 1992 wiishoff Page 8 of 9 |
i T {
| | | backexpression->dyadleftexp;
| aralia| hackexpression -> dyadleftexp = backexpression -> dyadrightexp;
| 1rofie] backexpression -> dyadrightexp = auxexpression;
| 421]1a| auxexpression = backexpraessioen ;
| 22119 if (auxexpression == curexpression) /* only curexp left */
| zz| (|
| 27| if (newrootexpression == NULL) newrootexpressicn = curexpression;
| 72| else
| 25| { I
| a=7|25) backexpression = newrootexpression;
| o] while (backexpression->dyadleftexp != NULL)backexpression =
| | | hackenpression-rdyadleftexp;
| 4225 backexpression -> dyadleftexp = curexpression; |
| =nefz2s] } |
| ootz } |
| s02]18] else
| so3jzzy { |
| "oa)z2z) backexpression = curexpression;
| =nsi22| while { backexpression->dyadleftexpi=auxexpression)backexpression= |
| | | backexpression->dyadleftexp; |
| sec|z2| backexpression -> dyadleftexp = auxexpression —> dyadleftexp;]
| so7(z22| auxexpression ~> dyadlefteyp = newrootexpression;
| nenlzz| nevrootexpression = auxexpression:
| soelzz| backexpression = newrootexpression; |
| sz while (backeypressicn->dyadleftexp != HULL ‘backexpressicn =]
i] | backexpresuion~>dyadleftexp;
| s11])22] backexpression -> dyadleftexp = curexpressicn;
[=re2lzz] } !
[5t¥1a] } !
| 5114 } |
[Y N ETY | '
{ ~te] 71 elsa |
| 51710} ! |
| sin)inj if (newrootexpression == NULL) printf("™ NULL | n"); |
| nislio]| Lf newrootexpressicn -> nodetype == DYADICCPERATCR)
AT { |
1 4] hacliexpression = newrootexpression;
| 14 while (backexpression->dyadleftexp = HULL)
| B3| bacliexpression = haclexpression->dyadleftexp;
l 0 |
| 4] backexpression ~-> dyadleftexp = curexpression; |
| 4 } |
| 01|) |
| | |
| 3 /* we want to set p and not p adjacent so we call subsort again */
| 1 /* this only if curexp and newrootexp are not the same , else they are already adjacent */
| of |
| 3] if (newrootexpressicn l= curexpression && second == 0)
| 7] if ¢+ newrootexpression->nodetype == DYADICOPERATOR &&
| 2 newrootexpression->exp.dyadicoperator.operator == AlIDOP)
| 5 { I
| o int oldbusyvar,newbusyvar:; |
| 5] expstat tmpcurstat;
| < /* gearch new busyvar if any */ |
| M| oldbusyvar = countarrpty -> busyvar;
| 5 for (newbusyvar = oldbusyvar + 1 ;
| 4| countarrptr -> counntarr[newbusyvar].varname |= busyvarname $& |
| 5z | newbhusyvar < countarrptr -> countnum: {
| =12y nevbusyvar++);
| "1a|15] if ¢ !t t newbusyvar >= countarrptr -~ countaum ||
{ na5)L5) countarrptr ~> countarr|nevbnsyvar].cceuntlnedens) == 01 1 % pot found ¢ |
| 54ae { |
| =47[19] * new we mark oldbuwey rax ag DOIE 1 temp v and select newbusyvar ae husy *
| ~anjin| conntarrptr —> countarr|oldbusyvar].marked = DONE: |
| wan]as| countarrptl -> countary[newbusyvar].marked = BU3Y;
| =s0)g| conntarrptr -> busyar = newvbugyvar; |
| nnr)n| * gave pointer above cnyewp * !
| muofan baclkexpression = newrcoteicressicn;
[ssaftag hile | backexpression--dradleftexp != curexpression)
| w5a]50] backexpressicn = bhackexpression->dyadleftexp:
Pl ol |
| so6] e <% eort gubtree with not cperator eup * |
| 57 tmpenrstat.expl = curerpression:
| =ee|m) curexpression = scrtsubtree(&tmpcurstat , ccuntarrptr , 1 1; /* 1 = detect
| | vecursion |
| |
1)

; File appendix.l Created at 11:35am on Tuesday, Februari 4, 1992 wijshoff Fage 9 of 2
! T

{ 56074

| sex]jan| /* reset to old settings */

| se2]1r| countarrptr -> busyvar = oldbusyvar;

| »63|18| countarrptr -> countarr[oldbusyvar].marked = BUSi;

| ss4}1n) countarrptr -> countarr|[newbusyvar].marked = CLEAR;

| 565 0

| s6o{1m| }

| "67]1s])

| ag@' ﬁl

{ new] 3] /* 1f const save before we set it back */

| s70] 2] if { constsaved == TRUE)

| =71] & {

| 7721 o constexpresgion -> dyadleftexp = newrootexpression:

| 573] 8| newroctexpression = constexpression;

| =11 Al }

| 575t of

1 570 2f if (second t= 1)

| s77] %] {

{ =279] 3 if (neurcotexpression->nodetype == DYADICOPERATOR &&

| =79 7 neuvrcotexpression->exp.dyadicoperator.operator == ANDOF &&

| san| Ay comntarrptr -> countarr[countarrptr->busyvar].count{nodeno) > 0)

{ su1) {

| noz[13 decreasevar = 0; /* init */

| se3|13] if (debuglevel & 0x8) iosprintf(debugfile,"\n[BOOLAND : ");

| 584]13] newrootexpression = rewriteexpressioninewrootexpression,boclandrules};
| sesi12 deccmpileexpression(debugfile, newrootexpressien);

| srefoy iogprintf{debugfile,"\n"):

| wn7]13| /* update table */

| sanj1y if (decreasevar > 0)

| ~rafi9) /* decrease_var holds number of busyvar are reduced *;

] G?O[l?l countarrptr -> countarr{countarrptr->busyvar].count{nodeno] —-= decreasevar;
| »01|a) malie_global_count(countarrptr);

| s2z]asd decreasevar = 0;

| o2a]e3] }

{ s 6|)

| 5us] o] 1f (nodeno > MAXMODES !! nodenc < ©) lesprintf (debugfile,"\n EPRCR2 Ill : nodeno = %d \n",
{ | | nodenoy;

| noef 4 newvrootexpression -> ncdenumber = nodeno;

| 527] o

| 527] 2| if (noden: > MAXIIODES |! nodeno < O)} icsprintf (debugfile,"\n ERROR3 tI! : nodeno = 3d \n",
| | | nodenoj;

[9] of

| soof 2] return newrcotexpression;

| oeotf o]y

| cozy o

’ 603] 0‘ /Rk****k**é*Qﬁ*********w*wtﬁﬁ**********ﬁ***ﬁtt******w*********k*******k#rt/

{ s0a| o

| 603] 0| /* makes a constant with all zero/ones lengts same as most left expression in
| s06] 31 criginal expl , 1 is O for all zero’s, 1 for all ones 11 */

{ ¢07] 0| expressionnode *regall(int i)

| eon] 3| {

| s09| 2} oxpressionnode *auxexpression = constructexpressionnode();

{ ~1n] Y if (size 1= 0

| 6v1] 7| {

| ewz) 7| auxexpression->sign = UNIKNOWH;

| s13] 7] auxaexpression->complement = FALSE;

[ova] 7] aunaxpression->reduced = 0;

{ w1s] 0|

| »a] 7 if ¢+ i == 0) auxexpression->constval = reg_constructi size , ZEPD , NOFORMAT 1:
| v17] 7 else auxexpression->constval = reg vonstruct: size , ONE , [OFORUAT) ;
| s 0|

[sva] 7| aurnerpressicon-~restype = congstructtyper)

[o

| | auxexpressicn->nodetype=COHSTAIT;

{ | anxexpression->restype~~type = REQ;

| | auxeipression—->restype->typ.regq.size = zize;

| | anxexpression->restype->typ.req.repform = [IOFOPMAT:

| |

i I !

| | else fatalerror(regall(Qs 1) : nct a reg type tc construct ");

| | return auxexpressicn:

AR

N

| I

(I

e e e e e e e e e e . — ——————_——— ——_———

15] 0
46| 3
17' 0
LEd I
o
“”I n|
se| o]
KT
N
Saf o
“SI 7
nel 2
w7
wu| o
".':n' e
l.c»l 2
XX R
t' hi

ACONST , ACOHST, \

File appendin.? Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 1 of 35
T T
Ll B B ittt e
bedl a1 |
al 1] module name : rulebase
1 3 creation date : 20/06,19
Wl histoxy from veduce expression, only rulebase to prevent
al1a| vecompilation of rulehase + files.
7119 16/07/91
AR RT introduced ability to use different rulbases.
u' u'
1] 0| L14,/08/91 ¢ HMNew made : -a -—> a * -1 tl and all rules are now addapted !
up o
1] module mady by Marcel Wiishoff , copied from reduceyp.c !
0] o
L] 3 purpose
_[l,l l_ll
1] | the rulebase consists of two parts:
174 R} * a yle-based rewrite system
m] o) * a heuristic terw combining system
1] o]
o) 0| HEW RULEBASE SYSTEM 1 16/07/91
KSR LAST VEPATE : 04,02 792.
ot
| for morre see rulbase.h !
)
O */
|
N #include "def.h"
nl
2al 0] #define MOD_PULEBASE
| | Kinclude “vulebase.h”
oo
1p o o MACRO for rncursive decent in tree, uses current rulebase */
3t | #define RECURSIVE_REWRITE(A) ASOP1,MOMNADOP,ANYOP,EXP1,MONADOF ,OFP1,REWRITE, (A),EXP1,END,ASOPL,
| | DTXADOF,ANFOR,EXPL,\
t]2a) EXP.,DYADOP,OP1,REWRITE, (R),EXP1,REWRITE, (A) ,EXP2Z, EIID, ASOP1, TRIADOP,
| | MIEOP,EXPL, |
1) 26 EXF2,EXP3,TRIADOP,CP1,REWRITE, (A) , EXP1, REWRITE, (A) ,EXP2Z, REWRITE, (A),
| | EXP3,ELD
] o) D S
oo
W 0| #¥define EVALUATE_COMHSTS ASEXP1,MONADCP, ANYOP , ACONST, EVALUATE , EXP1,EXIT,END,ASEXF1, DYADOR , ANYOP,

EVALUATE ,EXFP1,EXIT,END,ASEXF1, TRIADQOP , ANYOF , ACONST , ACONST , ACOIIST,

EVALUATE EXPL1,EXIT, END

#define REY REWRITE,SIMPLIFY,REWRITE, SORTSUBTREE, REWRITE, SCRT
#3efine REWREG REWRITE, BOOLALG, REWRLTE, SORTSUBTREE, REWRITE, SORT

rulebasetype masterrules({] =

{

EXP1,RESET_FLAG,EXP1,END,

S -

reset flag used for recursion 1*/

ASEXF1,REGEXP, REWRITE,
EXFANDEOR, /* used to simplify xor
EXE L, END,

expressions

ASELPL, INTEXF , REWRITE,
FHIFTHIIVS,
EXP I EMD,

ASETF), PECEIF, REWRITE,
SHIETHEO,

EXF) EID,

ERE U, PPINT EXFL, END,

EIr ., PEWRITE,
ELEANY,

ELFL EID,

E{P\ ,FRINT, EXP1,EHND,

SFP1,PEWRITE,

.

!
I
!
|
!
I
|
I
!
I
I
|
!
!
I
I
|
|
!
!
I
|
|
|
|
[
I
I
|
||
|
|
|
I
I
|
I
I
!
I
|
|
I
I
|
[
!
I
|
|
I
f
!
!
|
|
|
1
|
|
|
I
|
I
I
I
f
|
|
I
I
I

[

=
A e be

P

[O IS IS I S)

-
Pl

ASEX{F1, INTEXP, REWRITE,
INPLODENMINUS,
EXPL,EID,

N N D 4

appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 2 of 3%
T
) SORT,
7| EXP L, EHD,
3
7 EXPL,FRINT,EXF1,END,
o
3 ASEXP1,NCONST ,EXP1,EXIT,END,
c)l
EX| /* {nstert const in and tree’s to limit mutations */
71 EXP !, REWRITE,
7 INSERT_COUST,
7 EXF L, END,
A
I CPEMNTE _TABLE,END,
o
3| /* make a count for sort sub tree */
3 MAIKE_VAR_COUNT,END,
0O
Bl PRINT_TNABLE, END,
|
7 I ASEXP1, IFHOTALL HAD,
3 REWRITE , SORTSUBTREE,
7| EXP1,END,
i
7] EXPt,PRINT,EXP1,END,
" |
k]| INITHIT, END,
o]
71 ASE:P1,PEGEXP, PEWRITE,
k1| BOOLMALG,
7 EXPL,END,
all
H INITHIT.EID,
of
7 ASEXP), IMTEXF, REWRITE,
1 SIMPLIFY,
7 EXP!,END,
(I
70 HPL,PRINT,EXF1,END,
0o
7] ASEP1,REGEXP, REWRITE,
3 IHUPLODEPEG,
7 EXP1,END,
0 |
o
3 NSEXFL, IF_SET_FLAG,
1 /* test if flag set anywhere which results in a rewrite */
3 PEWRITE ,MASTER, EXP1,
3 AI1IT,END,
Eh| /* call the whole bunch again , and EXIT t*/
o]
0} /* dont need this ,but we re-use the name to
4] make some small rules stick regarding ¢ and 1 */
7| ASEXP1, INTEXP, REWRITE,
k| IMPLODETHT,
71 EXP1 ,END,
1)'
el
7 EXP\,PRINT,EXF1,END,
o
H| ASEP1,REGELF,
1| PEWRITE . TUPLODENOT,
3 REWRITE, SORTNOT,
| EXP1,EID,
!
!
[
|
|
1

CXFP L, FRINT,EXFL,ELD,

3 KILL_TARLE,EID,

1l| /-"rl‘.‘:*ﬁ\‘.*‘&R‘:*.‘.'/‘rﬂ:k‘Rﬁ*Rﬂi*‘vQ‘\‘*ﬁ*ﬁ*#ﬁ."*‘:*iA?"‘cﬁﬁﬁ*(’**ﬁ.‘r-ﬁ‘.‘:“ﬁﬁ*fﬁ#*#Q.‘r,‘:‘:*h .
ki EfD
3| ¥

1] rulebasetype dummy[= {

{ S

File appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 3 of 35
]‘ ; 1)i '1"‘..ﬂ'khk&&!‘.ﬁﬁtﬁ.&‘hﬁ****‘h".*i*ﬁﬂﬁ*h’»‘:t***ﬁ*ﬁkh&#’.‘:*h***t*****ﬂ*ﬁ**&**’kﬁﬁﬁ****/
1i2)23]
150] 3| END} ;
151] of
152} 0]
lsjl 0‘ ly!kﬂﬂﬁ*ﬁ*********%’*ﬂﬁ'i*******it*tﬁ****ik*******ﬁ*****!*****ﬂiﬁﬂﬁﬁtﬁ*******ﬁ**k***ﬁ***k*h'ﬁﬁ!
154| 1| rulebase shiftminus shifts a minus down *o the operands and *
155 1| * inserts constants / simple rules on comsback N
'r‘,",l _'l AR AR AR AN AR AL A AR AR A KR RRAR A AR AR R AR RAA A AR N R AR A AR I A A A RAA A AR AR TR IR AR TR A AR A AR AR A ARk S
157] o
15| 0] xrulebasetype shiftminusrules(]} =
a3 {
1eo] of
1611 23| S - a ex oA -1 v/
162] 3] MOHALDOP . HINUSOP,
a3 9 EXP1,
1654 3| /* rewrite to */
165(2 DYADOP, HIBLTOP,
166110} EXF1,
ta7] 10} hml,
1| 3 ElID,
1ea] |
LIPAL) | fFa~-h o => a4 (bt ¥/
171 3 DYADOP , TITSUBOP ,
172] &) EXP1,
173)) EXP2,
174 3| /*Equivalent to:*/
1751 1| DYADOP , THTADDOF ,
176 &) EXP1.
177 4| DIADOP,HULTOP,
173 2| EXF2,
i) a IITHL,
180} 3 END,
1] of
[N I 1 RECURSIVE_REWRITE(CURRENT) ,
113 3]
1mnal 3| EVALUATE_COIISTS,
vas| 0|
RRCIEY B EHD
187] };
tang of
”3':]' 0’ /*‘.‘.".‘:**t‘,‘.t*‘."."*t',‘.-*ﬁiﬂ******ﬂﬁﬁﬁﬁk*****‘.‘:**ﬁﬁ*ii****.‘:‘k**t*tﬂ‘.‘:**&f****."*a*ﬁ&f*‘ki
tan] 1| * rulebase EXPANIDXOR *
,'_.y]_l l' *.‘.*ﬁ*,ﬁr‘.'-ﬁ"&**‘.‘:*****Qﬁ*ﬁ**.ﬁ‘hw**‘h**ﬁ*ﬁ*****t*t*ﬂth*********&**ﬁﬁ’.**x‘.’**,‘.’*ﬁ**ﬁ/
122| 0| rulebasetype expandxorrules[] =
23] 3| (
194 3| DIADOP, XOROP,
195] 9] EXF1,
1o S| EXP2,
197] 3| FA - B
12a0] 3| DYADOP, OROP,
1au] S| DYADOP , ANDOP,
2000 7| MONADOP, NOTOP ,EXP1,
201 7| EXF,
=02 s DYADOP, AlIDOF,
03] 7| EXP L,
1 7 HOUADOF , NOTOF , EXP2,
205 4] END,
L“Jﬁl "'

7] | PECYRSIE_REWRITE(CVRREIT) ,

EID,

yi
u1:| 0 B e T T L R
213] 1| * rulebase SHIFTHOT et
214 1] * pushes 'not’ in boolean tree down to operants *
LG 1I L E LS A b e LA b e R A kb A b Db R AR A p b L b e AL AL b At A b b dd e 4 AR s LA LA

215 0] rrnlebasetype shiftnotrnles(] =

20 {
210t) "t expanding xor's her at once tIl -,
EANN T oA ner b o-=> (a and tb) or (la and by *
200] # deesp’t ocour any more

K DIADOF , IOROF,

5 xra,

I

- I

223) 5 EXF2,
|

L e e e e e e e ——————— e ————— ———— e e e e e e e e e —————— —————— e —————_—————— e

]

i [S N S . Dobvond b HEI B 3o N SEPEMCIED BN R

Flle appendin.2 Created at 11:37am on Tuesday, Februari 4, wiishoff Page 4 of 35
1 ¥
ERANIAY|
225] 2| DIADOP,OROP,
226] 5| DYADOP, ALIDOP
227 1| EXPL,
pictil vl | MOWADCP , IOTCP ,EXF2,
zzo| | DiADOY, ANDOF
P | MOMADOP , HOTOP ,EXP1,
200 7| EXP2,
23z] 3 EID,
23 o ¢/
73 3| /* sort operands for monadic operators: REVERSE NOT a --> NOT REVERSE a */
215] 3 HMOIIADCF . REVERSEQP
295) 6] HOHADCP , HOTOE ,
237 2| EXPL,
238| 3 J*Equivalent to:*/
R | REWRITE, CURRENT , MONADOP , NOTOP,
z40| 6} HONADOP , REVERSEOP,
241] 2| EXFL,
2421 3| EHD,
AR VIRV

rx REVERSE REVERSE & --> a %/
PIONADOP , REVERSEOP ,

HOIIADOFE , REVERSEOF,

EXPL,

/*Eguivalent to:*/
PEWRITE, CURPENT,
EXP1,
EtiD,

20 %/

i HOT HOT a --> a */
HONADOF , 110TOF,

MOHADOP , HOTOP,

EIF1,

J*Equivalent te:*/
REWRITE,CVYRRENT,
EXF1,
END,
28 *

I

J* HOT (a relop b) --> a comprelop b */
MONADOP . HOTCP,
A3QP), DYADOF , RELOP,

EXP1,

EXP2,
/*Equivalent to:*/
DYADOP , COMPRELOP1 ,

EXP1,
EXr2,
END,
40 t/

St t{a AND h) --> ta OR b */
HONADOF , HIOTOF ,
DYADND , ANDOP,
EXPL.
EXrz,
J*Equivalent to:* -
DINDCE, ORCF,
HMUAOT, HOTOF , EXF L,
MNOUTALOR (IDTOF , EXP2,

St tta OR by ~==> ta AND tb b
HOUADOER 110TCOP,
DYADOE, 0PQP,
EIF1,
EXF2,
S* Equi-alent to */
DIADOE, AIIDCF,
HOMNAICE, 110TOP, EXNP1,
HOHANOP , 1IOTOP , EXP2,
ElD,

1

Tile sppendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 5 of 35 |
T .

ir.u3| ol Sr 70 8 |
sor] o] |
302 2| PECURSIVE_PEWRITE(CURRENT), I
03] of |
3ng] 0| /* on way back eval const */ |
3054 0| |
6| 2 EVALUATE_CONSTS, |
7| 1| J
na| 3| /* sort operands for symmetrical dyadic operators: |
wa| 8] const op a --> a op const */ |
110] 1| ASOP1,D7ADCP, STHOP, |
w1} | COnsT, |
11z] 5| EXP2. |
103 3 /*Equivalent to:*/ |
34| 3 DIADOP, 0P, |
1s) 5| ERPZ, I
3e] 6 consry, |
7] 3| END, |
1| o] {

119] 3} /* aand B1...1b ——> a ¥/ |
]y DIADOF, ANDOF,]
21 o ExP1, |
w2 Al RECALLOIIES, [
123] 4| J*Equivalent to:+/ |
2244 3| EXF1, |
325] 9 ElD, |
6] of |
127 3| /* a and #0...0b --> §0...0b */ |
REL Y] DYADOP, ANDOF, I
o) 6| EXP, |
1ol ol ASEN'1, I
1) 6] REGALLZEROES, |
CES IR | (*Equivalent to:*/ |

13] 4] Exel, |
1] 3 EXIT,EHD, |
138| u) |
336] 1| /* aor #l...1b —-> #1...1b */ |
37| 1] DYADOP,nROP, |
1r| 6| EXF, |
9] 6 ASEXF1, |

un| &) REGALI.OHES, |
AERN IR /*Equivalent to:r*/ i
EREIIET EXP1, |
133 2| XIT,EINY, [

lllhl’ l| '
EEAY N /* aor #0...0b ~-> a ¥/ |
6| 1 DYADOP , ('ROP, |
147] 6 EXP1, |
EPLINNS REGALLZEROES, |
el 3| /*Equivalent to:*/ |
mop 3 EXP1, |
1| 3 EHD, |
152] 0| !
3] 3| EUD |
JLYYIRY): |
qt;r,l nl (
356] 0| |
1%7] 0} rulebasetype sortrule[] = |
LTI { I
[T |
0] Q) % soxrt left t : exp T (¢ T d) ——> { exp T <) 7 A4 (wheve i= s3m op]
w1 ASOP1, DYADOP, STMOD, |

wizf a| EXrL,]

w6 9) DIADDE, IS0P1, |

tha{10] RFZ, }

W5 [1| EXF3, |

RIS 11 yeurite recursive to */ |
Wil o PEWRI'TE , "URBENT, |
360} 3] UIALOE, R Y, |
wal o« DIALE,OF1, |
| EXFL, |
AR AN I EXFZ, |
172 &) ENF?} |
173] 4| END, |
e 4| END |
17"|) }i |
1 |

- . o o A — e e et e o k. — ——— - — i — —— —— T 7 T o o i, oo . b, S T i S — — T S o ot s i e S s s i o . P s i, o) A T ket o s . k. M el tln v M o, ki s S S

1

File appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 6 of 35 |
- —

376 0|

_\7']' llI ’f"‘:.‘".*kk.‘:‘:"*Q:‘:**‘k:‘ﬁ'ﬁ*2#******t*ﬁ*ﬁ&*ﬁﬁ***,‘-".*ﬁ******k?kﬁ*&ﬁ#***.‘:ﬁ*‘k*%,‘:fﬁ

37| 1| * rulebase SORTRULES -

379] 1] * rules for sorting trees intc left sorted position
] 1] ¢ we aply rules a long as it is nessasary on one node hefore

PRI T

M1} 1| * we recurse into depth t so after one node is frocessed

an2| 1| * eon the »ight node there is no longer the same opperator

M2 1| * as the root 1. >
]R4I]' ".*‘h!i***r*ﬁf***ﬁ***f.,Q9:fﬁﬁ*t**t***&h**ﬁt*****k.‘:****‘.‘.’t**&**#ﬁ*******ﬁ*‘v'/'
\s| 0|

w6l 0] rulebasetype sortrules{] =

w7 {

] 3

w3 /* initfal sortrule

320] 6] sort left ! : exp 7 (c 7 d) ——> (exp ? ¢) T d (where ? is sym op)*/
3':"].' 3| ASOP1,DYADOP, STMOP,

w2 A EXP1,

93| A| DYADOP, ISOP1,

324 10] EXPp2,

9510 EXP3,

196] 0] /* 1l revrite recursive to */
)97} 0| REWRITE,SONTRULE,

|
|
|
|
|
|
I
|
|
J
|
|
|
I
l
|
|
|
|
|
|
[

ELETI DYADOP, 0P,

a9 G| DIADUF ,OF L,

100] 2| ElP1,

101 2| w2,

1wz o} EXF3, [

ana| 4| ElD, |

dnal o

105 3| RECURSIVE REWRITE(CURRENT), |

106] 0| |

AT 3| /* evalunate dyadop with constantes */ !

see| g ASEXNF1,DTADOF, ANYOF , ACONST , ACONST , EVALUATE , EXP1, EXIT, END, !

,|(.u| nl |

REALY]| ,# sort operands for symmetrical dyadic operators:

1 8 const op a —-> a op const */

112] 2} ASOP1,DTADOP, STHOP, |

are % COHSTL, |

114] 4| EXFZ, |

15| 3| /*Eqnivalent to:*/ [

anf 3 DYADOP,OP1, |

117} 6| EXPZ,

1n} 6] consTL, '

43| 3 END, |

120] of |

421] 3 /* (a ? constl) ? const2 --> a ? (constd = constl ? const 2) , ? is symop */

122] 3| ASOP1,DYADOP, STMOP, |

423] 6| DYADOF, ISOP1, |

124] 9| EXP1,COMST1, |

4251 | consTz, I

426 3 /* rewrits to */

1271 1} DYADOP,0P1,

1zr| &) EXF1. |

129] 8| EVALUATE, DYADOF ,OP1, !

| n| COISTL, {

111 8 ConsTZ,

132 3} ElID, [

193] nj |

434 2af /R0 expl T oo) T expZ --> (expl T expz) T ¢ */

1| ASOP1,DYADOP, STHOR, |

ain| & DiADOE, TSOPY, J

R REY EXF1, |

1)1y COlSTY,

A1 s vE2, |

140] 3 St oegu

111] 1) DIADOF, 0P,

IR DYADOE, 0L, !

13310 EXF1,

IRRYREY| EXrz, ‘

aas| & congry, !

1] Ay END, |

117 o

ranf 3 ‘* const relop exp --> exp revrelop congt *¢

119 1| ASOF1,DiADOP, RELCF, |

150] 4] COHSTY,

151 & EXP1.
i

File appendix.z Created at Lll:37am on Tuesday, Februari 4,

1992

wijshoff

Page 7 of 35

T
1521 3 S to *

153] 3} DYADOP, REVRELOP1,

154) &) EXFL,

155 &) CcousTl,

A56] 3] EUD,

457 of

LTI | END

159] 13 Vi

w0l o

fllf_ll 1|' /('****tk**‘k‘.’tﬁttﬁ**1‘:.‘:*1‘:*‘**tti******‘httt**t*tttkttt*******ﬁtt**?«******t*tti
a62| L] * rulehase EXPANDRULES *
161 1| * rules only to expand tree to a canonical form : *
LN N {ath*. . .) + (a*h*..) + { sum of products ! *
!(‘T:II ll &#kﬁ&'&*tkﬂt‘,ﬁ*ﬂﬁ*tﬂﬁt*t***‘kﬁ*ttkt*t**t*‘h**ﬁt**t***ﬂ**t****ﬁ*ﬁ#lﬂi*t*f;tﬁ*!/
166] 0] rulebasetype expandrules(] = (

157| n|

16m] 4] RECURS [VE_REWRITE(CURREHNT) ,

a2 nf

0| 1| /* do not svap [; else two rules are needed */

171] 3] /* a*ib+c) -> a*b+c*a EXFAND -/

772 DYADCF, I'ULTOP,

173] 7| EXP L,

474 7| DYAOF, IIITADDCE,

175] 10| EXP2,

7610 EXP1,

177] 3 7/t TO *,

17| 1] DYADOQR, TIITADDOP,

a7a| 5| REWRITE, EXPANDINT,

mo| 7] DYADOF , MULTOP,

mng EXF1,

anz|in| Eir2,

03] s PEWRITE, EXPANDINT,

anq| 7 DIANCP MULTCP,

15| 10| EXPI,

186 | 10| XF3,

ant] 1| ElID,

4nnl 3|

o) o]

a0} 1 /* (a+hr*c -> a*c + b*c EXPAND */

491) 3} DYADOP , JHILTOP,

492 7| DTADRCE , INTADDOF,

197|1n| BXF1,

410 EXFZ,

1an] 7| EXP3,

6] 3| JETO %

371 3 DYADOP , TNTADDOP,

ae| 5| BREWRITE, EXPANDIHT,

400] 7| DYARQP ,MULTOP,

00| 11] EXP/L,

s0l) 11| EXP3,

w0z| S| REWRITE, EXPANDINT,

03] 7| DIAIOF, MULTOP,

sod|1l] EXP2Z,

sn5i11 EXP1?,

506] 4| EUID,

w07z
aon| a
‘}"l‘:.v' ,1|
sl 7|
“o 7|
a12] 10|
w110}
nta| 4
A IR Y
s1a] 5|
nil 7
GR | 10 |
stof

v, ,|' v‘l
N |
worfae]
ARRIRO|
sy 4
s25] 0
'.;?:Z’,-’l Jl
27 Jl

1 1

/* a and (
DIADOE , AIIDOP,
EXP!,
DYANOP, OPOP,
TRPZ,
EXP3,
/F o to
DTALOF , OROF,
REWRY'TE , EXPAHDPEG,
DYANOP , ANDOF,
LAF1,
BaPD,

BEWPITE, EXPAIDPEG,

DINMOF, ALIDOF,
RIFY,
EEP3,
ENp,
/4 ¢ aorb) and ¢ ~-> a and ¢ or b and ¢ == EXPAND bool

DTADOE, AlIDOP,

b orc) --> aand b or a and ¢ == EXPAND bool*:

Ay

I
|
|
|
I
!
!
|
I
|
I
!
I
I
I
|
I
|
[
f
I
!
[
I
|
|
|
|
!
|
l
|
|
|
!
|
I
I
|
I
|
|
I
I
I
|
|
!
|
I
|
I
|
!
I
I
|
I
!
|
l
|
I
|
{
I
I
I
i
[
!
I
|
|

wijshof £

Page 8 of 35

- ——— e ——— — ———— — . — i ——— — —— —— = ——— T S —. —— A S S —— — i G S A — i ——— —— T — —— At T S — ————— ——— — —— . ——— — v S———

¥ile appendix.2 Created at ll:37am on Tuesday, Februari 4, 1992
T 71
s2a| 7§ DIADCP, OROP,
g2e) 0| LXPA,
530f 10| EXP2,
53] 7] EXP1,
w32] 4| /* ko */
wa2| 4| DYADROP, OROP,
54| 5] REWRITE , EXPANDREG,
535 7| DIAIOF, AlIDOF,
RIBAN nXP1,
537100 EXP1,
sa| 5| PEWRITE, EXPANDRES,
s39| 7| DYANOP, AlDOP,
G400 EXP2,
XS Rt] EXP3,
471 4| ElD,
543 0}
saa| 4 EVALUATE_COMSTS,
s45) 0|
na6{ 4} END };
a7 0
r_',JB‘ ()l ,l'f*tf!!.‘.**‘.‘:"'f.‘**:‘:.‘:t*#;‘:*ﬂ*9:‘.wﬁtﬁtii*ﬂ‘ﬁ***:‘:r‘kttatt**i**ﬁt*rt**tﬁ***ﬁtﬁf‘:*ﬁ****
49| U} * rulebase EXPANDINTRULES >
550] 1] + ints only *

5'_"_]‘ J‘I ﬁttt*,‘!ﬁ'&ﬂ‘-’*ﬂkﬂﬁ-ﬁ**ﬁ*****.‘:***f*’***iiif.**iﬁ*****i*«‘:***ﬁ*k**ﬁ‘:*ﬂrﬂﬁii‘:**i?:ﬁt,(

5521 n| rulebasetype expandintrulest} =

5% 1|

nod | 1| /* do not swap 1 else twe rules are needed */

55 '| 3| /* a*{lrtc) -> a*b+c*a EXPAHDINT */
Il YTADOFR , UILTOP,

ner7) EXP L,

w00] 7| DIADOF, INTADDOF ,

s5a] o) HREZ,

senf 1| BXP3,

a3 FAGS (VIR

62| 3 DYADOP, TUTADDOP,

nadl 5| PEWRITE,CURRENT,

564) 7] DYAROP , HULTOP,

565 | 10| BXP1,

""IIHI EXFZ,

US| REWRITE, CURREUT,

a6a| 7| DIADOP ,MULTOP,

569 10| EXP1,

S0 Le| NP3,

71 4| END,

s72| 1|

5731 o]

574 2| /* (atbi*c -> a*c + b*c EXPAMD INT*/

5751 1 DIADOP,MULTOP,

576] 7] DYADOP, IHTTADDOP,

s77]10) 2XP1,

578 10] EXP2,

5‘»'?'| 7 EXFP3,

shnl 1] I (AN

a8l 3 DYADOE , THTADDOF,

I B | REWRITE; CURRENT,

SA] 7| DTAROP, MULTOP,

ned| 11 EXFY,

L Ny nP3,

sas) S| PEWRITE, CURRENT,

587 7) DIANOF , MULTCE,

ey EXP2,

a1t EXP?,

w4y EUD,

saL| 4 END),

w30

j',«]ll (\l Pl e e e B i

1] 1] * rulebase EXFANDRESPULES *

nestotf * RECH only *

(;';;!_;I l’ il e i e e R it I e i T R I T T R

527] o] xulebasetype erpandregrules{]) = {

".tnn' u|

s /aand (borc) ~->aand b or a and ¢ == EXFAND bool* "’

annl sl DYADOT . ANDOE,

o) 7| EXF1,

I | DYADUP , OROF,

]| EXP2,
]]

File appendix.?2

Created at 11:37am on Tuesday, Februari 4, 1992

wijshoff

Page 2 of 35

—_—_—— e — T e e et e ="

7
r.u,x" _y»-_n'

6O5 |
GOG|
07|
GOR|

1!
1|
5

!

50|10
y;]_nl |n|

n11|
612

5

wl
7

a13]10]
B4

615
c1a|
"17]
618|
[RN '

4|
3] '
41
1

?

620]10|
621]10]

[Sedd|

[Sed|

nzay
R3]

P
2]

-
"

7

611 | 10 |
63z 10|

=33
KT
A3n]
6]
6137
GREY|
639
Ada |
Gt
642
LR}
n34]
645]
€46 |
647
aan |
649
6501

GG I
67|
668
l;l;';vl

ﬁinl

4|
|)|

1|

||'

EXP2,
J* to %y
DIADOE ,OROF,
PEWRITE , CURRENT,
DYAIOP, AMDOF,
EXF1,
EXPZ,
REWRITE, CURRENT,
DYADROFR , AHDOF,
EXP1,
SKP3,
ENp,
/* (aorhb) and ¢ ~—> a and ¢ or b and == EXPAND hool */
DYADOP , AHDOP,
DTADOP, OPOP,
EXP1,
EXFZ,
EXP?,
i* to
DIADCFE ,CROP,
REWRITE , CURRENT,
DYADOP , ADOP ,
LXF1,
EXpz,
REWRITE, CURREUT,
DYADOE , AIIDCP,
rXpP2,
BXP3,
EIID,

END };

IR AR T A AL R A R A A AR R AN IR I A RA AR E AR E AR I KA IR AR AR A RRE SN LA ALk

&

rulebase INSERT_CONST *
inserts constantes in and tree 's *

ERKF A E AR T A IR E AR A AR AR KR A AR R KRR A AR KA ALK RARNARRAKNK KA RE A A KK/

rulebasetype insert_construles[] = {

/%

/*

walk down a OR tree left sides and if the first right factor of
tree underlying AND tree is not a const then inser one :
a and 111..

a —->

register */
/* a or b ——> REW a or check if b has to be added with 1 */
DYADCP, UROP,
EXP1,
EXP2,
/t to *
DYADOF, OROF,
REWRITE , CURREIIT, EXP1,
REWRITE, CHECK_COMST,EXP2,
EXLT,
END,

integer */

it a + Jn —=> BEW a ,

DIADCE, THITAPDOP,
EXPL,

EXP2,

S A o *

DYNDOF, THTADDOF,
PREWRITE , CURPENIT, FiP1,
REWRITE, CHECU_COUST,EXFP2,

EIT,

EHp,

check b +/

hoth *.

* testing last one
EXF L,
','_.. to
PEWPRITE , CHECY _COMST,ENP1,

XIT,

Enp,

END } ;

—

{ File appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 1O of 35
! T

1 Gﬂnl Q'

‘ ,l;nj_l (_|l EALEL A AL REREEERE AL MEMARREELA LALLM LML ERAAL LR AL S
| s22] 1| * rulebase CHECK_CONST -
| ﬁu"l [1 ".'.‘.',‘:-.‘.'f'f:‘rf"""t**‘:“:ﬁ'f(:‘r‘k*".'*ﬂ:ﬂ:‘,‘:‘.&‘,‘,*%.‘!»‘:9.".‘(1‘:*\‘.:“,r**:‘-",‘:.‘r'ﬁ'*‘&‘%*****:‘:ﬂ"‘:ﬁ‘.'"-'-':‘"-‘-"h"*""-‘-’v,’
{ s514] 0| rvulebasstype checli_construles[} = {

[5| 4

| &A6] O] /* both register and integer */

| o1y af /* if constante ! exit at once */

| neni 1] ASEXP1,ACONST,

| prol 4 /* 1o */

{ 620] 4 EXF1,

| earf 1 EXIT,

| sz} 1) END,

| s3] o]

| rod] 0] /* register */

{ nas| 4| /* a and const ~-> a and const ~-> gnit */

| c96| 4| ASEXP1,

| e27] 4 DYADOP , ANDOP,

| tys] 7| EXP,

| a99] 7| RCONST,

| 700] 1] PR L R

| 01| 4] EXP1,EXIT, /* quit without doing anything */

| 702] 4 END,

| 703} o

[701 0| /* {iuteger */

| ion| 4 /* 8 * const --> a * const -> quit */

| won] 4] ASENPL,

| 707 4 DYADOP , MULTQP,

(] | E4P,

| 7021 7} ACONAT,

EITINY BT S

[7] 9y EXEL,EXIT, /* and exit */

| 71z o EID,

[703

| 704 2] /¢ reglster */

| 75 4 ASEXP1,SAVESIZE,REGEXP, /* could cause errcormessage in

| 710 v debug file if not regexp */
(ARSI R =RV

[T DYADOE . AHDOP,

| 112 7] EXFL,

| 720] 7| PEGALLOIES

| 72n) a EXIT, /* quick exit */

| 7z22] 4 END,

| 123 v

[724} 0] /* interget ie all thats left t */

| 7251 4} EXPL,

| 7251 4} /* to x/

{ 727] 4} DYADOP , MUILTOP,

| 728] 7] EXPL,

| 729] 7 Ty,

| 7] 4 ElD,

| 1] 9]

| 7az] 4| END)Y ;

| 73] o

I]'j"l UI AR LA AS AL REESEESE AR RS s ER e R e R R e LR S
| 735) 1| * rulebase BIOLAND !
| 737{ 1| * expects only and tree called in last part of subsort *
| 7vi] 1 * doesn’t decent tree ! , cnly if hit *
l 739' ! bl okl A A AR R A A A A A A A A AR R A AL Ak AR R T A AR AR AR, SRR A AR A s &
{ 739) of rulebasetype boolandrules(] = {

[7] 1

I 71|| nl ‘x

| /42 o] 10 ta and a --> 00,

| 703 o] 11 a and la --> 00,

] 744' o

| a5 o] 13 { xand a) and ta ——> 00,

| 7] o) 1S t ® and ta) aund a —-> 00,

IRERII

I 742 o) 16 a and a - a

| IR Sl IEAY I g { x and a) and a - and a

| 7ﬂn| ul »

[750]

| 752 3 FUSHIN, B0, /* save current ncde number *

[of

| 792] 1 RECURSIVE_REWRITE(CURRE{IT) ,

I 755‘ M

1

i File appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 11 of 3
{ T T

jo7se| 3| EVALUATE_COISTS,

| 7s7) e

| 750 3| % COHST and A -> A and COIST */

AN W ASIODEL,

| 1) 3 DYADOPR, AUIDOFR,

| 751] %] COMSTL,

| 62| %) EXr1,

| 763] 3 R s B

| i54f 3} FUTNCODEL,

| 765] 3} DYADUP , AUDCE,

| ise] S| EXP1,

| 767] =) ConsTt,

| 168] 3 END,

| 7:{.5), n|

| 710l) 7% (A and COUST) and B -> (A and B) and CONST */
| 771 2| ASHODEY.,

{ 7721 1 DIADOP, AJIDOF,

| 773] 9| DYADOP, AHDOP,

| 774 7| EXFL,

| 77$| 7| CONRTY,

| i76] 5| EXP2,

| 777 3] ST+

| 779 73 PUTHODE !,

I o179l 3 DYADOF, AHDOF

| 780] 5) PUTIOREL,

AL | DIADOY, ANDOP,

| inz2| 7| EXE L,

| 771 “| Py

| 7na] s CONSTY,

| inn] 2| END,

l ’;n(;l nl

| anr| 4 /* (z and a) and a --> z and a */

{ 78n] 3| ASHMODEL

| 7ol 3| DYADOP, MIDOE,

| 20| & DYADOP , ANDOP ,

| 7ut] 2] EXPZ,

| wz] o EPY,

| 72} s RESET_MOTFLAG, /* init for matching vars */
| 794 6] I5VARY,

| 725 3| J* TO * !

ALY DECREASE_VAR,

| a7 3 REWRITE,CURRENT,

| 79m] 6| FUTHCDEL,

| 799] s DYADUP, AHDOP,

| nool 2| EXPZ,

| g0y o E:P1,

| mo2| 3| EHND,

| ozl 3

| rad] 3} /* (z and a) and la --> 00... */

| 8os] i| ASFKILLHODE, /* save nodenoc to update table */
| moc| 3 DYADOF , ANDOF,

| A7 1»| DYAD)OP , AUDOE,

| 1)) EXP,

| noglLo| BYFL,

[BRI | PESET_NOTFLAG, /* init for matching vars */
| ALt s MOUADOE , HOTOP , SAVESIZE, ISVARY,

| s1z| 2| A R

| o) o FILL_UIODE, /* veest wvarcount in table *~

| nea| 1 SET_FLAG, /* flag set to use mastexr again */
| nis| s RECALLZIERCES,

[BRARES Y EXIT,

| neif oy END,

| f".‘.'l |)|

(IRAER A oty oapd ta) oand a - an. -

| nzo| 3 ASKILLIIDE,

| wor] 2 DYADCF , AHDOP,

| 2] Ay DIADOE , ANDOP,

(AR AT ERP.

| woajen] HOUADOE , IOT2F EXE L,

| Rl oS SET_MOTFLAG, /* init for matching vars °
[RARI | SAVESIGE,

| vz o AR,

|) 3 I T

| nze) 9] KILL_HODE,

| maot o SET_FLA¢, '* flag set tc use master agailn */
| A3L) 6 REGALLZERQES,

1

i File appendix.2 Created at 11:37am on Tuesday, Februaril 4, 1992 wijshoff Page 12 of 135
f———

| 232 3| EXIT,

| eax) 3| ElD,

{ 83|]

] masy 3 /* 1a and a —=> 00... */

{ B} 1 ASLILLIODE,

| 2371 2 DYADOP, ADOP,

| o] 6| HOlADCE , 1IOTOF , EXF1,

| »rav| S| SET_IIOTFLAG, /* init for matching vars */

| sae] 5| SNVESIZE, 1SVARL,

| rit] 2 /* toi)

| =az2) 1 ¥ILL_NODE.

| maay 3} SET_FLA, /* flag set to use master again */

{ rid] & PEGALLZEROES,

| RS 3| EXIT,

| mae| 3| EID,

| nai] of

| B4n| 3| /* a and ta --> 00... */

| =49] 3 ASKILLMODE,

{ ann) DIADOF, ANIDOP,

{ n51| s Exe1.,

| oozf s SET_VMCTFLAG, /* init for matching vars */

| R F\l HMOHANOF , HOTOP,

| a54] 2| SAVESIZE,ISVAR1,

| #55] 4] /*Equivalent te:*/

| A6l 9| KILL_NONE,

| Rs7] 2 SET_FLA3, /* flag set to use master again */

(EOLT YIS REGALLZEROES,

| nsaf | EID,

| H(_;n] n|

| mer] oo

| arz| 3| J* a NDa-->a */

| =s3f 3| ASHODEL.

| 2o 2 DIADCP, ALIDCE,

| aen] o EXP1.

| neal) PESET_MNOTFLAG, /* init for matching vars */

| na7]) ISYAr1,

| ner| 1 /*Egquivalent to:*/

| new| 3 DECPEASE_VAR,

| 2701 1 FUTHIODE Y,

| »72] nf EXP1,

| w7z Y END,

| v73] 2|

{ a74] 3 FOPHI, EIID,

| »75| 9}

| »76) ©| EXP1,PRIUT.EXP1,END,

| 877] o]

| =78] 3| EMND };

| »72| 0]

| »8¢| 0

| |yl o)

' f}l}zl nl //k.‘ﬁ**.iw,l.-v_w'.vﬂﬂQ****ﬁﬁwwwwﬁ-**ﬁ**ﬁ*****ﬂit*wttww*ﬁQ*i*ﬁ**w****wwﬂiii
{ #22] 1| * rulebase BOOLLOOP *
l Hﬂd' ll A A R R o A R A A R R A A AR A A R AR AR AL AR R AL R TR R AR AR R AR F AT A AN,
[Aa5| 0] rulebasetype bocllooprules[] = {

| Bra] o]

| Ba7| Kb EXF1,FRINT,EXPL1,END,

| nan| ol

| naof af ASEXP1, IFALL_HAD',EXP1,EXIT,END,

| nan| 4|

{ no1| 3 /% 4 cases z or (..x.. and yt=vready) and T) ~-> yew z (new -ar) and rew x (unew table)
| noz|a1e] z or (yt=ready) and T) -~ rew T | new rar |
| maz)ey| (..%.. and yi=ready) and 7 1 - ot onew table)
' 1:7’5?J|."fl' { yi=readit and ¢) -~ et *
[monf o

| vus) 1 St T oer %.- and y and C } --> Rew T or t Rew x and y and <) *
| na7| ASHODE L

| wor| 3 DIALOE, OPOF,

| o] s EXr).,

| ono| o] DIADCE,AIDOP, 7+ number den’t care hecause of vebuild anyway *
[oae) sy LTADOE, ANDOP,

| mozpur] EXFZ,

IRLATERN Exe:,

|] 8] ASCONETL, IFHIT, /* new busy wav selected, hit flag set ! *-
[=20%5] 3 J* to

1 ann| 7| PUTHODE ©,

| 207 2 DYADOFR, OROP,

C

Flile appendlx.2 Created at 11:37am on Tuesday, Februari 4, 1992 wiljshoff Page 13 of 35
T T

wor| o o« PEWRITE, BOOLALG, REWRITE , SORTSUBTREE ,EXF1,

anol | DIADOP, ALIDOF,

wing 9 DYADOFR, AIIDOE,

wi1] 9| REWPITE, IIIITBOOL,EXP2, /* sort , subsort .. */

Atz @ ENF2, /* ready so leave Lt */

13| & CONSTL,

ELE N I END,

q]q' o|

atel 3y /*zor ((yand C) --> Rew z or (y and C) */

il ASHODEL,

E l_ﬂ| | DYADOP , ROP,

ara) B EXP1,

wan| A DYADOP, BIIDOR,

22111 EXP3,

92211 ASCONSTL,IFHIT, /* new busy var selected, hlt flag sst [*/

oz3| 3 /% to */

a24| v FUTHODEL,

225] 1| DYADOP , OROF,

26| 0 REWRITE , BOOLALG, REWRITE, SORTSUBTREE ,EXF1,

27| A DYADOF, ANDOP,

ERALI IR ExXp3, /* ready so leave it */

ane| 2| cousTy,

winf 2 END,

ajr] o

waz2] 3 St ...x... and y and €) -—> ¢ Pew x and y and C) */

SRET Y DYADOF , ANDOF,

EREN IR DYADO) , ANDOP,

ws| 7| EXP!,

aw| 7] EXE,

A7) s| ASCQUIRTL, IFHIT, /* new busy var selected , hit flag set t*,

wowm|oa 't to *

UW?I]| DYADOR, RIIDOE,

w10] 6} DIADF , ANDOF

AR IR PEWRITE, INITBCOL,EXF1, /* soxt , subsort .. */

adr| 2| EXP2, /* yeady so leave it */

add| 6| CONSTL,

a3 END,

v..|v;| ()l

ER IRy I SEXF1, TFALL_HAD,EXF1,EXIT,EHD,

217} r_\l

24R) 1 ASEXP1, IFHIT,REWRITE, LOCALBOOL, EXP1,EXIT,END,

949' n|

QSU| 1| ASEXP1, TFALL_HAD,EXF1,EXIT,END,

261 0|

w52 4 EXP1, REWRITE, BOOLALG,EXF L,END,

253 «f

asya| 3 END };

255] 0]

?!'—‘GI (l, R R R R R R R R R s AR A s R s R R R e 2

257] 1| * rulebasetype LOCALBOOL *

C"_]ﬂl Jl ﬁ*%*#**tﬁ‘!ﬁ****ﬁ**ﬁ****ﬂ*ﬁ\’.*Q*****\‘:\‘:****ﬂ’ﬁ**t****ﬂtﬁ************ﬂﬁﬁ#ﬁ**/‘

ana] of rulebasetype localboolrnles(] =

RUSAN IR {

ALY | EXP1,FRINT,EXF1,END,

'u‘.'.j' (\I

Y] 4] SELECT_VAR,END,

'u).ll "-l

ELSE IR | ASEXNPL, TFALL_HAD,EXP1,EXIT,EID,

wan| o

w7l 7 EXP1,

el 1) REWRITE . 30RT,

LT B EXE L END,

'1‘71‘»' l')l

a7 e,

972 3] REWRITE . 5ORTSUBTREE,

w7y 7 EXFL,EI'D,

71| 7

R | ASEXF L, INTEXF, REWRITE,

a3 BOOLAL®,

w17l 7| EXP U END,

':x[f_x| n-|

SR IR END)

'.'IY’(\' u,

’5":",, l\l .,‘.'t“:,"f’ﬁ'x‘.,‘!,‘r-Etf“'ﬁ“—'*\’..‘*&**‘.‘:*f***ﬁ.‘:*’:ﬁﬁ,‘:**.‘.’\"ﬁ*\’k&?*ﬁ*‘,‘:*t**t*%"&ﬁﬁﬂfﬁ*t*‘?{ﬁ%tﬁ?‘!’

7] o] ¢ yulebasetype INITBOOL *

rm\l 1_| b b e A e R R e e L e e e s S a2 L
1

| 1000]
J 0ot
11002]
| 100z
| toca|
| tos|
J1oo6]
1007
j1non|
{1009
{1010
||u]J|
{ronz|
RN
[RIUET
o]
||ouﬂ
proany
I 1009y

foz]
11021
froza]
{1025
| raze]
jroz7)
| 1028
| 1029
{Lo30]
j1021
{toazy
{1033
[RRAKEY]
Lo
[RDEL|
11037
[RGELRY
'[ujg'
l[ndo'
101
| toa2d
[1o13]
| |
{ ot
| RIAR ST
froan)
{ |
[REAEA

| I

nl
AL}
UI
o]
Q|
ol
Ll

{
Q'
lq
ul

!
0|

II”I"IGJI

[rovafez

ltnﬁﬁ'ﬁ)

| 1ns|ne

[RGM F

|
|
|
|
|
|
!
!

f
] File appendix.2 Created at 11:37am on Tuesday, Februarl 4, 1992 wijshoff Page 14 of 35
| T 7T

{ 24| 0] rulebasetype inithboolrules|] =

| @25{ 3) {

{ we&| o

| 9n7] 1} EXP1,PRIIIT,EXP1,EUD,

{ ong) of

| a8a| 3 | EXF1,REYRITE,EXFAND,EXF1,END,

| 290f of

i o] 1 EXP1,REURITE, SORT,E{P1,END,

| =ez] v

I ' 1%

| ASEXP1,REGEXP, REWRITE,

| IISERT_CCNST,

| EXP1,ElID,

|

[

|

MAKE_VAR_COMIT, END,
PRIIT_TABLE,END,
EXF1,PRINT,EXFL,END,
ASEXP1, IFMOTALL_HAD,
REWRITE , SORTSUBTREE,
EXPL,END,
EXP1,REWRITE,
BOOLALY,
EXP1,END,

END);

R Rt R g R

* rulebase BCOLBALGRULES *

* special rulebase for bhoolalgebra *
LER AR SRS AL AR SRR E RS RS R R RS R R R RS R R R AR RS SEE E RS E AR R R R R R SR L RS R

.

rulebasetypre boolalgrules(] = {
INITHIT, EXD,
EXP1,FPRINT,EXP1,EUD,
#include "relop.inc"”
/k
First we introduce a const to every and node if non present
and assume this 1s done in the master routine : insertconst
In this way we aviod, the nonsense rules and mutations,
We reduce the number of mutations by 4 111t And the ta /a combination

is nov a gpecall case |

tlain two rnles now

LA t band aand cl } or { ¢ and a and ¢Z)} --> { t bandcl y or { ¢ and c2 } ' and a
a

II: dort bandaandcl }or { c and a and 2 } ==>d ox (¢ b and ¢1 } or { ¢ and ¢2 } ' and
We oniy have mutaicns conserning the h's and c¢’s so 4 mutlons of these 2 rules makes 8 rules

R R R R AR L e s s L R R R R R R L R R PR R R T

Alh LA A A AAN LR EASL

not e All regs may ke of lenght

0
a

ar oa,x,y,T1,CI 0 reuln]

10 I xand aand C1) or { y and a and CZ 1+ -—> it x and €1) ox { v and CZ 1) and
a and 11..)
N ! aand Cl v or + ¥y and a and €2 ——> 111 €1)V or { yand ©2 V) and
a and 11..)

t { yor €L) and (CL or CCZ v}
angd a anpAd 11

|
-
|
|
|
I
]
!
I
!
|
i
I
!
|
!
I
I
I
|
,
I
l
I
I
|
|
|
!
!
|
|
I
I
I
{
|
!
I
|
I
!
I
I
!
|
I
:
I
|
!
!
:
|
I
!
|
[
|
I
|
I
[
I
|
|
:
I
|
[
!

|
| ¥ite appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 15 of 35
t T

josa| ez ({ yer Cl) and a and C3

{Los4] o

{1055 of 42 (% and a and C1) or (a and C2) --> {({ x and T1) or (C2)y and
1 [| 2 ana 11 }

frogia]es as akbove ftif1

|ws7|ns { { x or €2) and a and C3

jrosr| 1

Jrose| o] 13 (a and C1 } or {(a and C2) --> {t Cl) or { Cz) and
{ | a and 11.. }

!

|

|

[

|
| tsn] s3] \ .
Jrocajes| evaluat this and place it left
(GERS S| a and (eval : Cl ox C2)
{roas) of
{1ea] o] so zor (xand aand Cl) or (y and a and C2) --> z or {(¢{ x and Cl) or (y and C2)) and
{ | | 2 and 11.. }
| to6s] o 51 z oxr (aand C1)} or (y and a and C2) ——> z or {((1) or { y and C2)} and
| [| a and 11.. }
|1066| 0| 52 z or { » and a and C1) or (a and C2) --> z or {((x and C1) or { CZ) and
| } | aand 11.. }
[1067] of 53 Z or a and C1) or (a and C2) --=> z or {(({ Cl) or { Cz 1) and
{ | | aand 11..)
{rosa]a3f \
[1o6a}s6| evaluat this and place it left
|1e70]s7] zor (aand { eval : Cl cxr C2)

[ro7e] o

"117;“ (vl A2 ARAARRAR CAE A AR AL AR RN AP AR IR AR R RN AN KA TR AR LR AR AR AR AAK AR AR AR KA NAA LA AP KA AAARKAARKAARRAR AL AR XA AL A Ak khh
l l I LR EE TS TR R B

{1071] Some specall cases :

"_4\)._[[nl

{1078 of as (la Yy or (y and a and C2) --> {0t la) or (¥y and TC 1)}

¥
! I
|toie] o] a7 (ta) or |(a and C2) ——> {0 la) or | C2 1)}
[1077] o
frodin] of so (x and ta and C1) or { a) - {({ » and €1 } or (a 1))
7o} of su { ta and C1) or (a) - [Cl) or { a ED
‘lrl“\ﬂl), v_)‘
fumy] of 53 { ta) or (y and a) —=> Lt ts) or (¥)V}
|waz] o] 54 (2 and ta Yy or (a } = {{(x) or | ta 1)}
| w3 ol 55 (la) or | a) —-=> {0t 1) or | ta 1}
I
{rond] o]
{nes) of 61 z 01 { fa) or { y and a and C2) ——> z or {((la) or { y and C2)}
| |

oG] 0| 63 z oxr | la)y or | a and C2) ~—> z or {({ ta) or (c2)y}
{roa7] of

|1oea] 0] 65 z or (x and ta and C1 } or (a) ==> z or {({ % and C1 } or { a 11}
|1089| o &7 z or | ta and C1) or { a y ==> z or {((Cl) or (a 1}
|La00] of

[10921) of 69 z or ta) or (¥y and a) =-=> z or {({ ta) oxr (¥ M}
{1o22] o) 70 z or (x and la) or { a) ==> z or {((x } or { la 1))
{1093 of 71 z or | ta) or (a) -=> z or {((1) or | ta Y1}
| I 1 -> 1

I Ny | r_1|

frews| o] 95 [a) or (y and la and €2) -—> {64 a) or { y and C2 11}
[roos] o] a5 { a y or { ¥y and la and C2) ——> {11 a) or { y and CZ)1}
[roa7] of a7 (a) or { ta and C2 > 1 a) or (CZ)
',ngnl 4_\|

Prowa] o] so (» .and a and C1) or ¢ Ia } -—> {1y % and ©1) or ¢ la)1}
jrien] of 51 i a and C1) or | ta ! —— (e Cl) or ta (RN
{rioy]ad]

{110z2] o) 52 (a2) or { v and ta) —— i a Vor (1)
[1100] o] 54 f % and a Voo 12) _— [FN oy o 1a (R
Jriad| of 58 (a) ox | ta] - { a) or ¢ la 1)}

| [- 1
11105 of

frioa) o] &y z or a) or (v and ta and €2) --=> T or {1t a) or 1y and C2 1)}
Jvo7) o] s z or a) or t ta and C2) --& ¢ or (! a) or CZ oy
[1ror|sn

[vimve] of 68 2 or t 3 and a and Cl 1 ov o ta t ——> T or fif x and C1 1 or | 12 [N
[1e1e] o a7 z or | a and CL § or (2 { -=-~ T or (! C1 } or ¢ ta by
Jrits) o)

(I Al AT) z ou a bor (v and ta) ==> z or Al 2) or ¢ v R
frrea] o) 70 z or xoand a) ox ot ta) == z or {1 x%) or ta)}
frard| of 71 z or | a '} or | ta) ~=> Z or {({ a) or la v}
[I - !

[1215] 0|
i 1)

i Fi{le avpendix.2 Created at 11:37am on Tuesday, Fehruari 4, 1992 wiishoff Page 16 of 35
|

ij‘[}}i _‘Ii AAAAANAAAN L AAAL A AAANAAAAAAAARAAAKRARAAKNAR A AR KA AAXRAAAARRAAFARARAAANRAA AR A XA NAAAAAAA A F AR A A A AR A S AE AR
1 ' ' IZ XA ERE S S S RN

"117| (\I /,’0: FEAX TR F L ANN AL L AT LR LN]‘Ew IMFLA”‘I‘ LA R R AR EE RS R RS S S R E SRS */

jram] o] /a0 ({ xand a and Cl) or { y and a and C2) --> {((xand C1) or (y and C2))
| | | and a and 11.. } */

{1134] 2| DIADOP,OROP,

|1Lze) 1l ASNODE1,

frizn) 4 DYADOP . AHIDOF,

frazzy 7| DYAIOF , AHDOP,

Jrezafoo] EXP2,

| Lrza]10] EXP1,

Jrvizn] 7] COMSTL,

|riza] 1) ASIIODE?,

frzt 4] DYADOP, AIDOP,

|riza| 7] DTIADQF , ANDOP,

jreza|in] EXP3,

Frisofiny PESET_INOTFLAG, /* init for matching vars */

| tL3a) 1] ISvAaR1,

freaz) 7| COHST2,

[RERRTIN] FAS (OB
|1134] @ REWRITE,BOOLLOOF,
[1135] 3 HEWIICDE ,
IRRELYINY | DYADOP , NHDOP ,

|3137) 1§ DYADOF , AHLOP,
{1138 &} DYADOP, CROP,

[1139 9f D{ADOP , ALDCF,
|10z EXF2,
[t1aa]17] CONSTL,
jivaz] of D7ADOP , ANDOP,
froavgez] EXF3,
Jrraafaz| CONSTZ,
{L145] A EXPL.

Jriae| 4] REGALLUNES,

(KRR] | EID,

[RRELIIEY |

{1ia2] o] /7~ 41 (aand C1 }) or (y and a and C2) ~-> {0t Cl)or (yandC2z)
| I | and a2 and t1.. }
[NI N (yor ClL) and a and C3 == (C1
] |] ex €2 s
ftin1] 2 DYADOF,OROF,

frisz) 4| ASHNOULET,

[REATIEY| DYADOP, AlIDOP,
[1as4] 7| EXF1,

J1155) 7 CONSTL,

{risnf 4 ASNOLE:?,

|1157] 4 DYADOP , AHDOP,
j1isA] 7 DYADOP, ANDOP,
j1r59] | EXP3,

[RRXSa B RESET_NOTFLAG, /* init for matching vars */
{Lisa]o] ISVARL,
[rre2] 7| COIT2,

jrwea] 1 /% TO %

{1164 O REWRITE,BOOLLQOF,
frisst 3 NEWIIODE ,

[3166] 3] D'YADCP, AIDOP,
{Ls7] 4] DYADOP, AlDOP,

| reea| 4 DYADOP, ORCF,
[rasate2| NP3,
Jrein] ey COLIST,
[RERAN I | EXr1,

IR eS| EVALUATE,

[RERSIIEL | DIADOE, OROF,
IRANEY M| coNaT,

IRRIRA Y| NS,

{L1rs] 3] EUIL,

jrers| o)

oyl o -+ 32 t ¥ and a and <1 1 ox 2 and €I v --> (e x and C1) or | CIon
{ | | and a and 11.. 1

[y o]eo] t Xovr CZ) and a and €3 == 1 7L ov
| | 1 e o
| vane] 2| DIADDE, OROF,

|||m| || ASHINDE Y,

Jriea] a1y DIADOF . ALDOF,
[RAR I | DYARQF, ANDOF,

[11ing]10) EYXPZ2,

j s EXP1,

t i 1

L
i ¥ile appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wiliishoff Page 17 of 35
| T
||1'.1(»[7 CONSTA,
[ERR=0A I ASHODE?,
frine] 4 DIADOP, ANDOP,
[RRRARE I RESET _IIOTFLAG, /* init for matching vars */
{vmo] 7 YSYARL,
[re=a] 7 CONisT2,
{1z 3 S0

REWRITE, BOOLLOOP,
HEWIQDE ,
DYADOP , AIIDOP,
DYAL2P, AIMDOP,
OYNADOF, OROE,

wps
nke,

CONSTZ,
EXP1,
EVALUATE,
D{ADOF , OROF,
CONST1,
CONST2,
END,

i+ 43 { a and C1) or f a and C2 } -—> {((Cl) or ! Cc2)
and a and L.. }
s and eval cl oxr €I *,
DIADOP, ONCP,
ASHODE 1,
DIADOP . ANDOP,
Apn,
CONSTL,

T
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
!
|
|
|
|
|
]
|
|
|
|
|
| ASUODE::,
{
|
|
}
|
|
|
[
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1 |1|
1215 CYADDE , AIDOE,
PESET NOTFLAG, /* init for matching vars */
ISVARY,
COolLT2,
S SR
REWRITE, RONLLOOP,
HEWNODE .
DYADOF , AMIDOP,
EXP1,
EVALUATE,
DYADOFP,OROF,
COUST1,
COMST2,

/* 50 zor (xand a and Cl) or { vy and a and C2) --> z or {({(¥ and C1) or (y and C2 1
end a and 11.. } */
ASHNCDE3,
DYADOP, OROP,
DTIADOP ,OROF,
ENP4.
SHODEL,
DIADROFE, ALIDOF,
NYADQP , AHDCE,
XEZz,
EXP1,
CONSTL,
ASHODE2,

DYANDP, RIIDOF,
DYADOR, ANDOF,
EXF3,
[R RESET_IQTITLAG, * init for matching vars *
[BRELY R I=vapl,
frazifung CONSTZ,
[1ol 3 S To
{t244| 2| REWRITE, BOCLLOOR,
1] FUTHODE Y,
Rl DYADCQE, *POF,
| EXP4d .
iy HEWHODYE ,
{121 1 DYADOE, MNHDOF,
: | DIALOE, ADOR,
| vine] 4| DYADOF , OROF,
| 12571z DYADOF, ANDCE,
(ARSI RA] EXPZ,
Prazmas| COlSTY,
[L} 1

e ——_-— — e o e ———————————— e —_————_————_——_—_—_—_——————— —— ——_————————— e —————_——— e —————————

Flle appendix.2 <Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Fage 18 of 35

T

12 DYADCR, ANDOP,
1% EXP3,
15 CONST2,
a EXF1,

5 REGALLOIES,

I END,

ol

0] /* st z or | aandCl) or (y and a and C2) -=> z or {((Cl) or (v and CZ))

f and a and 11.. } */

Z | ASHODE3,

2| DIADOP,OROP,

t DYADOF, OROF,

6] EXP4,

7 ASIFDEL,

71 DYADOP , ANDOP,
1] EXFL,
10 COusT1,

7| ASHUDEZ,

71 DIADOP, AHDOP,

T8 10| DYADOP , AHDOF,
ECTRE]| EXP3,

] 12 RESET_NOTFLAG, /* init for matching vars */
2] 83y ISVAR1,
| COMST2,

k]| FAR (sIL
| REWRITE, RONLLOOP,
1 PUTHODE 3,
1 DYADOF , OROP,
A EXP4.
Bl HEWHNODE ,
K| DYADOP , NNIDOP,
4 DYADOF, ALIDCE,
s DYADP,OROP,
z EXP3,
12 CONsSTY,
| EXF1,
4] EVALUATE,
d DIADOP, OROP,
ol CONSTY,
Lzan| A CousTZ,
[EEERI]| END,
l R | (3] I
Jrzos] of S+ 52 zoxr (xand a and Cl } or (aand C2) --> z or {{({ x and Cl) or {(c2 N
| | | and a and 11..)} */
[rzo2] ASIIODES3,
{1303] 2] DYADOP,OROP,
| 1304 4] DYADOP,OROP,
| 1305 6] EXP4,
| 1306] 7] ASHODED,
[r7] 7] DYADOP, ANDOP,
| war|ng DYADOP , ANDOP,
| 1309] 13 EXP2,
[130)y ENP1,
| Lartjand CONSTL,
|rvez) 7 NSIINDEZ,
RETRI | DYAIXOP, ANDOP,
| vara) 1o RESET_MOTFLAG, /* init for matching vars *,
| 134n]an] T5VAR1,
{v16]10) CoNST2,
frau7y 3 prTO
| 12| 0} REWRITE, BOOLLOOF,
| rae] 2 PUTHODE 1,
R DYADOF , OPOF,
| EiFP4
1| REWRITE, BOOLLOOP,
1 HEWLIOLE ,
2] DIDDOE, AIIDOF,
1] DYIALY, ANDOP,

| DIADE,OROF,
| EXPZ,
| CONST2,
| bia IR

4] EVATIATE,
] DYADUF,OROP,
| CONGTL,
| CONsTZ,
I

1~ 1
| Flle appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 19 of 35 |
! 1 —
Jraza| | ElID, |
[raas] o] '
| L3as] o) 54 7z or | a and C1) or (a and €2) --» z or {((Cl) or (c2) |
| I} and a and 11.. } S |
[1397] =] ASDORED, |
[#¥38] 2] DYADOR,OPOE, |
[RREEI Y L{ADOF , ORCP, |
120) ENP4,]
feaer] 7| ASHODEL, |
| yaaz] 7] DYALUF , BIDOF, |
REEEIRW EXP1, |
{virafin] COUSTL, |
yaas) 7| ASIINDEZ , I
REEI I DYAIIP, ANDOT, |
| v o) RESET_IIOTFLAG, /* init for matching vars */ |
{1118 10] ISVARL,

[vasa]io] COST2, |
[1350] 3 P I |
11354} 0| REWRLITE,BOOLLOOF, |
f1a52] 1| PUTHODEL, |
[ERLRIEEY! DTADOP, OROP, |
1354 5| EXP4, |
{1355 ©| PEWRITE,BOOLLOCP,

J1356] 1) HEWNODE , |
[1357] 3| DYADOF, AMDOP, |
{rasn| &) EXFL, |
1359 &l EVALVUATE, I
[1w0] n) DYADOE, OROF, |
{tanr]an] CONSTL,

jracejre] colsTZ, }
{12e2] 2 EUD,

[136a) o] |
[Adn5] 0] ,ewarawessrsssssnnsawss EYD OF 1IEW IMSERTED EART , lIOW THE SPECIAL CASES CA!l FOLLOW #**++s<=sxs
[Laec] of |
| vy 3y * eypr) relepl exp2 opl sxp2 relop2 expl --> |
(LA] enjrl relepl expZ opl expl reverserelop? expZ */ |
[RRGEI R ASOP 2, DYADOP, BNTOF,

|10 &) AZ0OP, DIADOP , RELOP,

frvin] of LiF1, |
[1vrs]) EXEZ, |
J1371] »] S0P A, DYADOP , RELOP,

[La74] =) 15ERPZ, |
[1275] 2] 1SEXP1, |
[REELS | SrEquivalent to:¥/ |
1ra7v) 3| DIADOP,0P3, I
|1378] & DYADOP,OF2,

[1379] 9| EiP1, |
[130] 9 Exp2, |
|13e1] &f DYADOP, REVRELOF1,

|1z o EXPL, [
j1383] 9 EXF2, |
[Lane] 3y vID, |
Jres] o) |
| e} 3 /* expl relepl exp2 dyadlcgop expl relop2? exp2 --> special case 1 */ |
[1an7] 1| AZOP1, DIADOP, LOGOP, |
RRGETIA DYADOP, RELOP,

| tam2]| 2| EXP L, TUTEXP,

| yeo] @ EXr2, !
|t i ASQF 1, DTADCP , RELOF, |
| IHEXREYL, |
Pt : IHENP2, |
(REREY I CUEgulvalent test, |
[N | SPECCNSEL,EXFY EINP2, '* These last tuo entriez lisz+t the uge -f Tpecase L *]
Jrn] 1) ElIL, |
[vyai) ol !
(IR I - ex)pl relepl intconstl dyadlogep expl releopl inteonstl -—> special case 2 s {
[raa) vy ASOF |, LVIADOP, LOGOF, I
frioa| s ASOF.., DYADOE, RELOP, |
J 1] =) FL, [
[1] 9 ASCOMISTT, THTCONST,

[vinz] g ASOF t, DYADOF , RELOF, i
Jraoa] o I7ENFL, |
friong oy ASCOUSTZ, ITCONST,

| r406] v AEquivalent to:s/ |
jraez] 3| SPECCASEZ2EXR1,COIISTL,CONST2, /* These last two entries list the nse of SpecCase 2 ! |
| van| v END, |
[} 1 i)

—
| Fila appendin.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page ZI0 of 35

T
| Lao| 2|

{raun] 3y it expl relopl regeonstl dyadlogop expl relopz regconst2 --> special case 3 */
| t421] 2] ASQP1,DYADOP, LOGOF,

[vi12] 5] SOF:, DYADOP, PELOP,

jrivs 2 EXP1,

[ra14] 24 A3COISTL , REGCONST,

(1115 &) ASOP 3, DYADOP, RELOP,

l 1a16) 2| ISEXPL,

| tar7} <] ASCOIIST2, REGCOHST,

|La1g] 3 /*Equivalent to:*/

j e 3 SPECCASYEJ,EXP1,CONST1,CONST2, /* These last two entries list the use of SpecCase 3 I */
(ERELIRE] EDD,

fre2n] 7

AREY Y| EHD_VAR, END,
jLizal o)

| 1424} 3| EHD }:

[1425 |

2 f R R R R R R e e R R S E e A
201 0

{1127] 1| * rutehasetype SIMLOCPRULES *
]JJZH| 1] LR R R S R N e R R e e AR AR R I Al R e
{11z2] 2] rulebasetype simlooprules(] =

fra] 2| {

[veadg s

| a3z 3 EXP1,PRINT,EXF1,END,
| L 33| oy
[EERRY Y| ASEXFL,IFALL_HAD,EXF1,EXIT,END,

[RE RN B

[REEL Y ST oA LX) Py *Cl) -~> Rew z + ({(Rew x) * y * Cl) */
[1137] M ASHODE1,

{raan] 3] DYADOF, THTADDOF,

RN Y| EXP1.

Jr440] 6| DIADCE,HULTOP,

[EEERN -] DYADOP , MULTOP,

pruaz|sa EXPZ,

[REERIERY| EXP3,

IEREYY IR ASCONST1, IFHIT, /* new busy var selected */
fraan)) /* to *

j14an) 3] FUTHODEL,

[rass| 1 DYADOP, LIITADDOP,

[raan] w| REWRITE, SIMPLIFY, REWRITE, SORTSUBTREE,EXP1,
[1442] 6] DIADUF, MULTOF,

[ris0] o DYADOP , MULTOF,

[445010 REWRITE, INIT,EXP2, /* sort , subsort .. */
{ra5z)y EXE3, /* simpleso leave it */
{11453] = o0lsT1,

Jranadg] 2 END,

{1455 a

[14561 2| /*Z 4 1y *Cl)-—>Rewz+ (y*Cl)*/

{1457 7| ASHODE1,

|1458] 7] DIADOF, T1ITADDOP,

| tana] s EXP1,

fraa0] o] DYADOP, IULTOP ,

jraer n| EXrz,

| vanz| oy SCCSTY, IFHIT, /* new busy var selected */
[EICEN]| /* o

| 1164 2| PUTIIODE!,

jrans| 3| DIADOP, [NTADDOF,

| ta6G] 6| REWRITE, SIMFLIFY, REWRITE, SORTSUBTREE ,EiF L,
{ri67] o) DYADOP, HULTOF,

frinng n EXrz, /* simplesc leare it *+¢
| L] o CONSTL,

[RERLIENT END,

[tarnf o

[REXFA IR
J1173] o]
Jraray v P B I S A A oh B B D o1 A S I A Bl N B

from) oy DEADOE IMLTOF,

frrre] s DIRDOT, HULTOR,

[1277] 7] Erp L,

|} 7 EXE:,

[| ASCONSTL, TFHIT, * new busy -tar selected *

prineg) cE obe o

fraoo] DYADOFR , 1ULTOR,

j1an) 5 DYADOY, MILTOP,

| RESZEN A REWRITE, INIT,EXP1, /* sort , subsort *

(RRCET IR EXE:, /* simpleso leave it */
1

File appendix.2 Created at 1l1:37am cn Tuesday, Februari 4, 1992 wiishoff Page 2! of 35

—_———

EXFL,REVRITE, SIMPLIFY,EXP1,END,

|tans} s} COMST!.,
{ra96] 3 END,
lldn?i n|
[RE LY I ASEXP1, TFALL_HWAD,EXF1,EXIT,END,
[1303] 0]
| vana] | ASEXP1, TFHIT, REWRITE, LOCALSIM,EXP1,EXIT,END,
[1998]]
[149z] 2| ASEXPL, IFALL_HAD,EXF1,EXIT,END,
{via] o
|

fraogp s
J1yast of

| taun] o] 7+ ASEXPL,IFHOTALL_HAD,REWRITE,CURPENT,EXF1,END, */
| Laa7] o]

| vaan| 2 EID)}

||./|"J',)' n'

llﬁqnl n' R R R L R R R R R & R R R R R L e

f1sn1] 1] * rulebasetype LOCALGIM *
"50:' |l ARAAE N AT A T P Ak e e r r P A I AR AT AR AR T AR TR TN T AL A AT AL F A A AT TR A I, AP L Lo r s /
|50 0| rulebasetype localsimrules[] =

|1504] 3] {

jisos] 1| SELECT_VAR,END,

[1s0n] o

faso7] 3 SE a4) e oa w)

frsoe| 1| DYADOP, THTADDOP ,

|L1509] 6] EXP!.INTO,

[EACLCU R | S to v/

(REXS NI EXP1,ELNY,

Jtotz] o

[1=a3) 2 JE a0 —e> 0 v/

(EIEI I ASKILLIIUDE,

t
llﬁlﬁt 1
e

DYADOF . 1{ULTOF,
Xp1, 1110,

[EAI VAT P oto ok
[KILL_HOVLE,
|5 2 o, EXLT, END,
|1520] o

ASEXF1,IFALL_HAD,EXF1,EXIT,EHD,

EX¥!,
REWRITE, 3ORTSUBTREE,
EXP1,EIID,

ASEXF1, INTEXP, REWRITE,
SIMPLIFY,
EXP(,END,

EHD };

SE R IR R AR KA A AR TR XA R AR AR A A KA AR KA AN AR AR R AN AR R AR AR A AR R R kR A h kot

rulebasetype IMIT
E AT AT I AL AR AR AR A A AN IR A A RAN A AR R A IAN T L RA AR AT R AR RA AT A IAN N AR IR AR RN

tulebasetype initrules(]) =
éXPl,REWRITE.EXPAND,EXPl,EHD,
EYP1,REVRITE, SOPT,ENP1, EUD,
UAI'E_VAR_COUIT, END,

EXPL,PRIIT,EXFL ,END,

freas) of
fraant 7| ASEI'E L, TFIYDTALL_HAD,

[EMEXA I REWRITE . SORTZUBTREE,

| 1eae] 7 EXp' END,

| rsas] 2

| 1550} 7 ASENFL, IUTEZF , REWRITE,
[ion1] 2 SIWFLIF™,

juns] 7 EXFP L, ElD,

|75 »
|1551] 1
ll5wﬁ| 0

|lgqu| 0 R I R A R O R T I

|
|
|
|
|
|
|
| END }
|
|
|
|
|
[]

|lﬁﬁ7| 1 b unlebasetype FINLIFYRULES *

[REEAZSY * this rulebase defines the rewrite rules fov ewpressicn *

[ton9] 1L “ simplification. the rulebase is applied to an expression *

!JWGOI 1 Y using revriteexpression(), which resides in module rewritesx. -
1

r
} File

froag)ng
[rean]ts|

1
appendin. 2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshof¢€ 9
|
ij_-_;,;li '.{ B R e R e L A R A R R S A AR A SRR A R L AR RS) i
{1562 0] vulebasetype simplifyrules{]} =
{1ae1] 4] { I
[1504] 4| |
(RIS Y| RESET _MOTFLAG, TUITHIT,EBHD, /* reeeting to avoid problems */
jraen| 4 |
(RN N | EXF1,FRINT,EXPL, EUD, |
fro6a] o |
[1569] 3| /* const op a --> a op const */
| 15702 3] ASOP1,DIADOF, STHOP, |
{1571 «| COMSTY, |
{1572] 6| EXP2. |
j1572] 3 it to |
jieTa| 3 DIADOP, 0P, [
f1575] A} EXPZ, |
tLs7s) 6f CONSTL, |
[1577] 3] END, |
fus7e) o) |
{1579] 3 Sta sty —=> a) !
tse0] 3] DYADOP, THTADDOP, |
{1sal] s EXP1,INTO, [
{1582] 3 /* to %/ [
(EERTEET EXP1,EHD, |
{1584 0| |
{1oas] 2 JraEn cos 0 or)
{isna| 1y ASETLLIODE, |
{1507 3| DTADOF, IILTOF, |
Juseny g EXFL, IHTO, {
RA Y it to * [
{1500 3y KILL_IIODE, |
Jreee] x) INTO, EXIT, EMD, |
A |
1] o '* new made rules because constat insert ! only the rules stay]
1s01] o |
}l““ﬁl ﬂ{ 1 Z 4 *a*Cl4+y*tarC2 - Z 4+ (X *ClL+y*C2)y *ax]]
f1596) of 2 Xt arcCl4y *anrC2 - (x*Cl+y*CZ)*ar*l i
[1597] n |
jramel of 2 Z 4+t a v L+ a * C2 - z +{ x*Cl+ Cz) *ar*1
|15 0] 3 % a*Cl+ a* C2 -—> { x * Cl + C2) *a*1 |
I]t;'_)nl o| |
{reon] o] s z + a*Clt+ vy *a+(C2 --> z+ (y*C2Z+ cl *a *] |
oz ol 6 a*Cl+y*a*C2 ——> ty*cz+ Cly *a~1 |
1601 0 |
jicoq] o} 7 z + a*Cl+ a*C2 ——> z + a * (C14C2) |
o] 0| a a*Cl+ a* Cz > a * (C1+C2) |
|te0e] 3 oxp2 expld expl Cl expd expl C2 |
{1607 o #/ |
{1600] n| |
jrona] o /* 1z 4+ x v atCl+y*a=*C2 -—> zZ+ (x*Cl+y*C2)*a*rlx |
j1ew] 3| ASHODE?, [
jrees] 3 DIADOF , THTADDOP,]
[rare] & DYADOP, TTADDOF, |
J1e13]) EXPZ, |
{reua) o AGHODE L, DYADOP , MULTOF [
RIS DYADOP , MULTOP, |
jLare| s EXP3, |
| 1e17] s NOTCCHST , EXFL, |
R AR CONSTL, ‘
{1619 6| ASNODEZ , DYADOP , MULTOP, |
d DYADOF , MULTOP , |
o ENP4, |
B 1SVARL, |
2| COUSTZ, |
- | fa t(j kS |
1| REWRITE.SIULOOE . !
| FUTHODE 1, !
| DIADOP, TIITADTOR , |
J EXP2, I
d UEWIIDE, |
| DTADOP, MULTOR, |
! DTADOF, MULTOE, |
| NTADOF, TITADDOF, |
| DEADOP, HULTOE, }
|
|
i

| tnan]y
1

— 1

EXF3,
CONST1,
DYADQP, MULTOF,

| File appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wiishoff Page 23 of 35

| T

[REERRRES] ENF4,
jicanie| COMSTZ,
| veaza] o] EXF1,

|1ran] aj TITC,

[1611] o) EWD,

|1642] v|

|H_'wl'_1| «)|

Jraaal oy

Jleas| o] 7+ 2 X “atCl+y*anr*C2 -—> (X *Cl+y*C2) *arl*
[1edn] 1) DYADOP, INTADDOP,
[1527 2| ASNODE1, DYADOE , MULTOP,
[1ean]z| DYADOP , MULTOP,
[RGERINA]] EXP3,
praan] s NOTCOWST,EXP1,
J stz TOHST1,
(RIS I | ASHONE2, DYADOP MULTOP,
[1653 = DADOF , HULTOP,
| 155a]12] EXFPd,
[1s55]02] ISVARL,
|L656] 9| COHST2,
|1657) 2 KA N
{1s59] 0| REWRITE,SIILCOP,
jres9] 6 HEWUODE ,
(LU | DIADOE, MULTOP,
Jteay| 7| DYADOF , MULTOP,
| renz| o] NYADOP, INTADDOP ,
R RS DYADOP , MULTOF,
[RARSEN KRN EXP3,
| 105 s CO{ISTA,
| rene] iz DTADOP , MULTOF,
| 1h67] 16 EXP4,
(RS- colsTz,
|16mu]10] EXP1,
[in70] 1 Iy,

P o] EmuD,

. u|
| 1672 of
[1n78] 6)
[1675) 0] 7+ Xz + x * a > Cl + a * C2 —— z 4+ (x YO+ Cz)+ a ¥ 1+
| 1e7R] 3 ASNCODEZ,
[1677] 3] DIADOF, UITADDOP,
[BAEL IS DYADOP, IITADDOF,
{ra7a] 9| EXPZ,
TR0 | ASNIODEL, DTADOP, MULTOF,
[RESAR R EeY | DYADOP , MULTOP,
jrenzfasy EXP3,
| 1e23(15] IJOTCOMST, EXP1,
[RES:ERR b | CONST1,
|1tsan| 6] ASHODE2 , DYADOP ,MULTOP,
{1686| 2| Ii5VARL,
jrem7| of CONSTZ,
|168R] 3 i* to *
{rean| o) PEWRITE,SINLOOP,
[RESEIA B PUTIIODE 1,
|tear] 3 DYADQF, [IITADDOP,
| te02] &) EXF2,
[REERY Y| HEWIIODE ,
[o] af DYADOE, HULTOP,
|1ens] 2| DIADOP, MULTOR,
freaatng NYADOP . IMTARDOP,
(REEPIREY DYRDOF , HULTOF,
[RURLFE | EXP2,
[RISRIREY | CONSTL.
| viee] 1z COHSTZ,
(RS A R BIFY,
[vio2] R ey,
|t o} EUD,
||’7u‘|| nl
[ries] ol
frimon] o =3 x4t C1 o+ a * C2 - Coa T+ Cz)t a bt/
{1307 ¥ DYADOR, THTADPDOE,
Jrinn] o ARIODEL, DTADCP , MULTCP,
(KRN | DTADOF , HULTOF,
[REAKIRAY EXF3,
Prroaas NOTCONST ,EXP1,
froveiusg CONsT1,
| i 1

T 1
] File appendix.z Created at l}:37am on Tuesday, Februari 4, 1992 wviishoff Page 24 of 35 |
b—— =
REART RS ASHODEZ , DYADOP ,MULTOPR, |
{170a] 9| ISVARL, |
Jr7as] 2| consTz, |
17161 3 AR R {
11717] ©] REWRITE,5JiLOOP,
J1718] 6] NEWIIODE,
11719] DYADUP , MULTOP, |
{ri20] i DYADUF , NULTOFE, |
{1721]10 DYADOF , INTADDOP |
[riz2]12] DYADOP , MULTOP,
[1723 15) EXP3, t
J1724) 15 CONSTL, |
{17273) CONST2, |
1726 EXF1, |
; T, |
|
Jrize] o |
|70 o /* 5z o+ a*Cl+y*a*C(C2 ——> z+ (v *C2 4+ CL) *a*17*/ |
11731] 2 ASNODE3. !
(1732 3] DYALOP, THTADDOP,
{v713] A DIADOP, IITTADDCF, [
[1i3a) 9| EXPZ, '
[1735] =} ASIIODEL, DYARCE , MULTOP, I
{1736 12 IDTCONST, EXP1, I
(1737(172] CONST1, |
|17 wm] 5| ASIIODE2, DYADOP , MNLTOP |
{traa] o DVADOF, HULTOF,
J17a0] 12| EXP4,]
Juranyszd ISVARL, |
{1712 9 cousTz,
{1704] 3] /to t |
{1744] 0| PEWRITE,SINLCCE,
[1745] 3 PUTHODE 1, }
{1796] 3] DYADOP , IITTADDOE, I
|v7a7] A EXP2, !
{Lran| &) HEWHODE, |
(RRZEII! DEADOE, HULTOP,
{170 8] DIADOP MULTOP, |
[st 1Y7ADOP, TNTADDOP |
11792 12| DYADOP, HULTOP, |
{ursa] 6] EXP4,
{1754 16| CousT2,
11755112] ConsTL, |
[1756] 10 £XP1, |
11757] ®) e, |
11758 o] EuD,
{1759] 0| |
[1760] 9] /*6 a*Cl+y *a*C2 > {y*C2+ T} *ar1 |
j1761] 2] OYADOP, TNTADDOP,
[v762] 9] ASIIODEL, DYADOP, MULTOE, |
IERGRERAY 1IOTCONST, EXP1, |
{17os] 1z COUSTL, |
{1765] A ASHONE2, DIADOP , MULTOF,
{1758] «| DYADCP , MULTOP, |
{17671 2] EXF4, I
11760]12] ISVARL, |
{rea| o CrONSTZ, |
{1770] 2} RS T !
117711 0| REWRITE, STILOOP, |
[y7i2] n) HEWIODE, |
||,3’7 \i 'f-l DTADOP IMULTOE, I
(1774 e} DIADOE, HULTOP, |
{1775119] "TADOE, IUTADDOE, |
{r76]02] DIADOE , HULTOE
11777116 EdP4, |
11778 16] consTz, |
IKEREIN CONSTL,
[rzee] e LXF1, !
1] ay e, ,
{170z] o] Fm,
oo o |
frivepoop 27z o+ ERR S a oz R n o+ A% CLeTIoy s I
IERELT IR AGIKIDED.
frima] 3 DYADOP, HITADDOE, |
Limvr] ol DYADF, TIITADDOF, |
[tran] o EIF2, |
[{ 1]

1
| €ile appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wiishoff Page 25 of 35
T — ¥ 1
[1799] 2] ASUIODEL, DYADOP , MULTOF,
f1790)12) UOTCONST, ENP1,
Ji7at]1z] CONST1,
[1792] = As11ODE2, DYADOP, MULTOP,
[r7as(izy 15VARY,
11744| 2 | COlISTZ,
ALY I VAN 1- B
|IIUﬁ| 0f REWRITE,SINLOOP,
[ERENANE]| FUTHODE },
Jr7om] 3| DYADCP, THTADDOP,
[REAEN I EXP2
{1ron| o) HEWHNODE,
| 1eoa| 5 DIADOP , HILTOR,
|1n0| n| EXr1i
{102 7} EVALUATE,
||nn4||r| DYADOP , THTADDOF,
| 1105] 144 COMSTL,
| 1006 16] COUSTzZ,
| tr07| o] END,
| tror| 0|
jtroal A /8 a - CL+ a * C2 -—> a * (Cl+C2) */

||_ﬂ_1_:_n| 1
[eey) 9
f1012]12|
KLERIRES
{sa] 9
s |1z
[REACT AP
[1117
{1mae] o
fanto]
[REET I

3
)
A
g
|m2y] o
|
|
]

2|
f1aea) <
[1ez3] 9
| 1oz 16
[nane
[1nz6] 4
fanze| o
[1m20| o)
firao) of
| vrae] o
|] &)
jraz| |

Jaaaf 2|
fre3al s
J1235] 6
|1236] 1)
|1837] o]
|13] 2|
[RE:R By
| tato] 5|
[1na1] s
fruszg 3
(EGEEN]
[REE YN
[1nas] =
||_n.1r;| 5
{1347])
|[nln| 3'
IREAE I R
[EALEIRY I
||n',1| nl
(RO
{1os3] 3
||n".4| o
|[Hﬁﬁ' ﬁl
frese] 1

IRLCP A BRE|
|1ui'.n| o
o] ol
| 1] ¥
[re) | 4
| Rl g
{1ara] 0]
[REIEY Y|

DYADOP, INTADDCP,
ASNODEL, DYADOP ,MULTCP,
HOTCONST ,EXP1,
COtISTY,
AZ[IODEZ , DYADOP , MULTQP,
15VARY,
CoNsT2,
/* to %
REWRITE, SINLOOP,
HEWINDE,
DYADNP ,MULTOF,
EXP),
ET'ALUATE,
DTADOP, INTADDOF,
COLIST,
consT?,
END,

i* RECURSIVE_REWRITE(CURRENT), */

S DIADOY, IIITADDCP,
NP1
EXPZ.
DYADOP, THTADDOP,
FEWRITE, CURRENT, EXP1,
EXrz,
END,

AGIMODEL ,

DYADOP, IITTADDOF,
EXP1,

COIIST 1,

/* to *

FUTHODE L,

DYADOP, TIITADDOE,
PEWRITE, CURREIIT,EIrF1,
CONSTL,

END,

ElD_VAR,EUD,

END
b

PAALNEARE S ERERP RN AP RARANRAR A A ARAA R AA AR R L L L R AP A2 2L LA RPARILIANALERALL LT ARR LN AL R ALK

' rulebage ADDSUBSORTTREE

Ll L LA At R AL S AL A L AL kAL kL

vulebasetype addscytsubtreerules| |=1
‘A ADU or oa MUL
rFosiant, x50,

ASUCDEL . DIADCF, INTADDOP,

[} { t

-

B e e R E T T L R Y

I
{ Fille appendin.2 Created at 11:37am on Tuesday, Februari 4, 1992

i

1
wiishoff Page 26 of 35 |
|

' T
|tnan| (S

(RG] IEA
|1an7] 1
|1ﬂ0n| 1
| tav] 6
Jwmol s
jra71]
{tR72] 0
{1273] 2
|1m7a) 2
|127s5] 2
j1a7a] o
fin7z| ow
[RRAKALY I
Jrere] 3
j1ono] o
|iput] o
|1eaz| 7
(RN
| tng |
{1m8s]|
| 12n6|
[tea7|
| taea|
{10on9]
| |_nL,ln|
| Rt J_'
[RLaMY|
[RURBI]
[REERY
j1nos|
| ee] 3
J1roi] 2
[1r0n] 3
[RLAREN IS
Jrzonl &
[1wor] 3
[0
Jraoa] o
|]'.un;l o
[L1a08] 7
{1906 @

2

'_

[= =T Ve T (S e e

-

| 1207}
f120n}
[1a90a] 2
froro] o

|rear]| o
[1212] 1
{1213] 1
|224] 0
IREE A Y
“u]_v:' ki
[RMEREIRY]
[reia] 2

2 ':'l 3

|[u7ﬁ| 1
[1az7] o

|l:

'n|

2o
110 a0]
jran]
|tz &
[yoa] 2
(KRN I
2] o
[RSR Y I
{1237] 7
from) o
|12 1)
||j.1 gnl n'
t |

EXP1, ‘* a ADD or a MUL Lf only one ADD to go */
EXP2, /* a MUL or a termipal */
VAR 1. N
FUTUODE ., DTADOE, INTADDROF,
REWRITE, CURRENT , EXP1,
REWRITE , MULSORTSUBTREE ,EXP2,
EHD,

/* IIMTEGER mul last one */
ASERP1,
DYADOP , HULTOR,
EXP,
EXP,
/% SORT IT +/
REWRITE , {ULSORTSUBTREE ,EXP1,END,

EXP (, PRINT,EXF1,END,

POPHNI, END,

EHND} ¢

A AR A SR E R R R R R e e AL R R A e R R R RS YIRS AR R S SRRt R e s s

* rulebase MUILSUBSORTTREE

AL A AL LA LA R R R AR RN AL AL R A AN A AR P R AN L LRI P LA AR R IR AN AR E b A ek p A Ak A kb A AL R AN,

rulebasetype mulsortsuktresrules(]={
PUSHINT, E1D,

/* check if INTEGER mul and proces if it is */
ASENPL,
DYADOTP, IWLTOP,
EXP,
EAF,
/* SORT IT */
SORTSUBTREE, EXF1,END,

EXF),PRINT,EXPY,END,
pPoPNM,L END,

END} ;

*

A A R R e AR R e e R e

* rulebase ORSUBSORTTREE

X Rk R h R kAR KRR R E AN R IR A KRR AN KA KT XK FRANRHIRKRAK A AR KA RN RN S KL R kIR NNk [

rulebasetype orsortsubtreerules{] ={
PUSHII, EHOD,

S* an MR or an AIID */

ASNODEL . DYADOP , QROP,
EXP), /* OR or AMID if only cne CR *,
EXIP2, ‘* AlID or terminal */

ER L

DUTIHIORE !, DYADDF , OPOP,
REWRITE,CYRREIT,EXF1,
REWRITE, ANDSORTZ!BTREE ,ELF 2,

B,

* PEZ AID tree last one */
ASEXFL,
DIADOP, AHIDOP,
EXF,
EJFP,
‘Y SORT IT -
REWRITE, AlDSORTSYBTPEE,EXF 1, EIID,

EXF L, FPIUT,EXFL,END,

POFRHIN, EIND,

*

I
[
|
I
|
I
I
I
I
!
I
I
!
I
I
I
I
I
I
|
!
I
|
|
{
I
|
!
}
I
I
I
!
|
|
|
I
|
|
|
I
I
|
I
I
I
|
I
!
|
I
I
|
I
!
I
I
|
I
!
f
[
[
|
|
I
!
[
I
!
I
|

! — 1
| Flle appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 27 of 35 |
] — -
RREENERT EMD)

[1eax] o]

I‘i)_’]‘ (\l ’/ﬁ"‘:"**!“'"“"!"*“:*ﬁ'.‘.’&*ﬁ',‘.’***,“:***ﬁ(*f:*#f,ﬁ,‘:.‘.":,‘."?."!’ﬂ*‘."*‘:‘:'Nﬁ‘k“.fﬁ“:‘.‘:“‘**‘f*ﬁ*"“".‘:‘.‘:‘.‘.‘Q*ﬁﬁ**ﬁ'&*‘k"’

|t244] 1| * rulebase XORSUBSORTTREE ¥

REEE:]
| twae|
| tase|
Jtas1]
| 152
J1asy]
frana)
famas)
| 195A]
J1257]
| tuss]
| tasy |
{1200
| raat)
fLoaz|
f 1]
[RASGEN
| 1965]
|19u6|
| raaT]
v
jLaro|
{1270
| ra71
[1a72]
[1973]
EEXEY
1197s]
p1a7a|
{1477}
[1a7R)|
[1279]
| taio]
| 1ony]
{19m2]
[1982)
{1ong|
| 14nn]
{1ena]
j19n7

[
L
|17
froan|
frnavy
| zono)
|"ln\1'
|
I 00y I

|

| B
I "cj\n‘,l
| ey
| 20
| ~o10]
RAERY!
)
fro e
| 2014}
2015
j 20151

D R R e R AR R R e R e e A R R PSS LR S

rulebasetype xorsortsubtreerules(] ={

PUSHHY, EHD,
(Al
4 /* an R or an AID */
3| ASHODE1 , DTADOF , XOROP,
“ EXP2. /* OP or AUD if only cne OR */
6 EXF1, /* BHD or terminal */
]I VAR TR
3| PUTHODE L, DYADOP, XOROP,
a| REWRITE,CURREIT,EXF2,
| SORT#UBTREE, EXF1,
E]| END,
9|
3] /% REG NID tree last one */
a1 EXPL,
3 /% SCRT IT */
wl SORTSURTREE EXF1,EUD,
0|
0' KA
| EXP1, PRINT,EXP1,EHD,
(4] 7
J' FCOFUN, EHD,
nl

1} EIDY ;

”l SRR AR A R A AR AR S AR IR AT N A R A AR KA XA NN I F AR AR AR AR AN KNE A KA AR R A YA A LR A RSP AN A A hkhk

1} * rvlebase BNDSUBSORTTREE *

|| LA AR R RS A R E AR e e R R RS R LN AT R A ARSI E RIS ARE RS AR E RS AR AR RRER S L LY

0} rulebasetype andsortsubtreerules[]={

|

[

|

!

|

|

|

I

|

|

|

[

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

[

|

|

|

|

|

1 PYSHINI, BN, |

0 I

3 /* check if and */ |
H| ASEXP1,

]

|

I

|

|

|

{

|

]

|

|

|

|

|

|

|

|

|

|

|

|

I

|

|

|

}

{

|

|

!

|

|

|

|

1) DTADOF, MIDOP,
a| i

EXF,

/* SORT IT */

SORTSUBTREE, EXP1,END,
EXP1,PRINT,EXP1,END,

POPHM, EIID,

ELID) ;

ﬂ' R e N e e e R TR S R

1} * rulebass SUBSORTTPEE *
1] * used to eort subtrees which are only =f ons dyadle operant *
1' A A A AR A AR A KA P AR AR R P A A A A F A A R AR S AR I A S A AT AR LR LS SR P AR R AP KRR A RN
0} rulebasetype sortsubtreerules{] = {

1

2 ‘* we erpect : 2 ADD or a OB , the main veot thing *

] FUSHIMI, ELID,

3|

at EXF1,FRINT,.EXFL,END,

o

1| SELECT AP, END,

ol

v ASEXFPL, [FALL_HAD,EXF),EXIT,ENC,

n|

] s firet geavch subtree I[ITECGEP ADD:

| AZUODE L, DYALOER , TUTADDCE

A EHFL. ‘* a2 ADD or a MUL if conly one BDD 7

EXFZ. ;% a ML or a terminal */

!

| PRI 1o B g
| FUTHIODE |, DYADOP , INTADDOP,
1

1
} File sppendixn.2 Createcd at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 28 of 35 |

[z017| o] REWRITE, ADDSORTSUBTREE,EXF1,
| roan) & REVRITE , HULSORTSUBTREE, EXP2,
{roral 3 EMD,
l ul
ozt 3 /* first search subtree REG OR */
proz22q 3 ASHODRE L, DYADOP, ORCP,
|.2023] EXPL, /* OR or AlID if only one OR */
| 2029 EXF2, /* AND cor terminal */
| 2025] FE ko wl
| o026 PUTHODE L, DYADOP, CPCF,
12 REWRITE,ORSORTSUBTREE,EXFl,
peir| 6] REWRITE , ANDSORTSUBTREE, EXF2,
fooze] ¥ END,
Jzo10) 4
jrotr] 3y /* first search Xor tree */
|zeaz| ASNODE1, DYADOF, OPOF,
|2033] 6] EXr2,
|2034| 5| EAPL,
t20as| 3| St TO v
{2035] 3 PUTNODE)., DYADOP, X0RCF,
y2037| 7} PEWRITE, XORSCRT3YBTREE ,EXP2,
f203] 7] SORTSUBTREE ,EXP1,
{aoaw] 2| EMD,
|z0an] of
| zoax| 2 /* Af only one node : AHD or MUL, exit after it It */
{20 0f
Jz043] 3] % firs% search subtree INTEGER mult*;
(SR EY I ASEXFL,ASNCDEL,
frogs) 2y DYADOR , OLTOP,
[IEARR LY Y EXP,
|zet7) = EXP,
J2oar| 2 ;% SURT IT #/

—

|

I

|

|

I

I

I

I

I

|

I

|

I

I

[

I

|

|

!

f

|

|

|

I

|

{

|

I

[

I

|

fzoan] 3 FUTHCDE? , REWRITE , INL3ORTSUBTREE , EXP1, EID, [
[znmo] 0| |
1 051]) ASEXF1,MSIODEL, |
{7052 2} OYADOR,AIDCE, {
[7051] | EXP, I
[2054] 6] EXP, |
|zusa] 2] /* SORT IT */ !
{1056 3| PUTHODE |, REWRITE , AlIDSORTSUBTREE, EXF 1, END, I
{2o57] of |
{zoss] 3 /* sort and tree */ {
{20501 3| ASEXP1,ASHODEL, |
|2060] 1 DYADOP, TNTADDOP, |
' [
|

|

|

I

I

|

|

I

|

I

|

|

|

|

|

I

|

I

|

}

|

|

I

|

!

I

!

|

]

|2061] 6 EXP,

|2062) & EXP,

| 7063 1) /* SORT IT */

jzon4| 3| SORTSUBTREE, /* is command now 1| */
{z0RS] 3| PUTHODE L ,EXF1,END,

I PUYCY T

joee7) 2] /* sort or tree */

[20n3) 1 ASENF1,ASHODEL,

{2060] 3 DYADOP, OROP,

{an70] &) EXF,

1070) & EXF,

|072] 3] % SORT IT */

| RAEA] Y | SORTSUBTREE, /* Is command now t */
j2071) 3| PUTHODEY ,EXFP1,END,

[z075] o)

|2oe] 3| * search sorted xor tree *’
|77} 1) ASEXP1,ASIODEL,

| ELEA | WIADUF , JIOROE,

| RSN Y EXF,

I .V_m‘n)' Y} EVF,

| zond] 3 SETO

Jzow2] 7Y PUTIFIDE , 3OPTSYBTREE, EXPY,
[BEARIAED BN END,

[zosr] o)

[IAlcl IR LXE1, CROT,EXF L, END,

|_"’("ll—ll_'\' 14 |

[IR B FORINL BN,

|§unn| (q

Proma) 1y ElL

[covef o] 3
[z o

|'>u)'.x;,‘v_| 4y|| A A R R L g R e R R g 2 2 202 e R T E TR e ST A
L | |

File appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 29 of 35
T
o] * rulebas: [[IPLODEREC >
AEEY * Inverse expand on regs ! d
)(l’:)_r,l 1 l+‘-é+:+:*.‘!+".‘"!k*é*:***.‘:k**wkﬁﬁ***k*ﬁﬁ**h*ﬁhﬁ*ﬁﬁw*ﬂ-ﬁ*ﬁhﬁ***h&**.ﬁ**ﬁ******ﬁ%ﬁk**t****'/
20061 0| rulebasotypre impleoderegrules(] = {
: 3
2 RECURSIE_REWRITE(CURRENT) ,

i sort coperands for symmetrical dyadic operators:
zonst op a --> a op const *
ASOF1,DYADOP, STMOP,
CONSTY,
EXP2,
/*Fguivalent to:t/
DYADOP,OFPL,
EXF2,
consrl,

4 KLY
2106} 3
6})Al\7| 3
. _1_(_\[:| [

|

|

|

|

!

|

i
|
[Redhads
]

|

I

|

|

!

|

!

[

[

paoaf o3 END,
Jziie| o
Jz111) 2 * A and R0...0b ——> §C...0b %/
J21a2] 2 DIADOE, NHDOF,
{21} s EXP,
[2104}) & ASEXr1,PEGALLZERCES,
z115) 3 /*Eguivalent to:*/
LA RT EXF1,
3 EXIT,Elh,
[l
3 i a or #0...0b ~=> a */
1 DYRDOP , OPOP,
&

N

PEGALLZEROES,
“*Equivalent to:*/
EXP1,

ED,

T oa e

Vas a or #1...1b -—> #1...1b */

-

|
|
1
|
|
|
|
|
!
|
|
|
{
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DYADQF, OROF , |
EXpP, I
ASER)I1,REGALLOUES, '
/*Equivalent to:*/ |
EXf1, |
ElD, |
|
!

|
|

|

|
|
|
|
|
|
|

|

[

|
|

|
|
|

|
|

|
!
|

|

|

|

|
|

|
|
|
]

|
AJ

/* a and #L...1b --> a */
DYADOP, AHDOP,
EXP1.
REGALLOIIES,
/*Egqulvalent to:*/
EXPL,
ElD,

END };

AR A R R R e L e

* rulebage IMPLODEIMT *

* raverse expand on ints
AR AL AR A R AL A AR AR AT AR E KRR AR AR KA AL R R A XA A AR AN A IR A A XL A AARKRAAAKRN B A AR AR A A kA kA kx [

T
|
|
]
|
!
|
|
|
I
|
|
I
!
|
|
|
[
|
|
|
|
|
|
|
|
|
|
| E{P1.
|
|
I
|
l
|
!
|
I
|
|
|
|
|
|
]
|
|
|
|
|
i
I
I
|
|
|
]

[2149] o
(R Y
(EAIN]| RECURSIVE_REWRITE(CURRENT) ,
[REANY IAL |

rulebasetype implodeintrules[] = {

IERNRY]| % conzt op a -—> a op const .
[2eia] ASOPL, DTADOF, STHOP,
[2955 »| Ccotsre,

(PRSI | Eirz.

[ras7) 3 R T

| 1asm) 3| DYADOP, P L,

[IEEACAI Y| E{FZ.

|m1en) o CONETY .

|16 2 EVD,

[2] o

| IRRECRE BT | Y@ oo
[ERE Y| DEALUE, LIITADRLOR,
[| EirL, Invo,
frrea]) L

[areq| 4 EXPLU,EN,

|,v_|_¢3|_l| ’J|

[— | i

L)

| ¥ile appendin.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 30 of 35
{ T T

l'{lﬁ'J' i| A A X N x> QS
1270 3 DINDOF ,1IULTOF,
{z171] 5] EXF1,IITTO,
{2172] 4] it oto %

|73 3 INTe, EXIT,END,
[2174) 0]

[2ris) Ay At L ~-> a %/
|2175) 3 DYADOP,IIULTOP,

(S RN Y | EXP1,INT1,
IEANLTIE] | /Y ot

[T] EXF1,END,

|21m0] 3]

[71111 o]

|2wz] 3 EVALUATY_COUSTS,

fzima] of
{z1nd] 3 EtD 3
21s] 2
‘/Vtt.ﬁ*.*,ﬁﬂ‘k*t.‘.'ﬁ‘k**ﬁ'**iittiiﬂ*‘.‘.ﬂﬂtt*ﬂﬂ**ﬂtt,‘t\.ﬁzﬁ-wﬁ*iﬂ**ttitﬂ****t******t*****t'ﬂ****
* rulebas= IMFLODEMIMUS *

pushes minus back up *
ﬁﬂﬂ****kﬁk********t*ﬁ*tt***Y!t*":**ii**‘.‘!t*tt**‘-“**ﬂ*t****t****t*.‘:ﬁ**t***ﬂ***ﬁ’******/

rulebasetype implodeminusrules[] = {

At -1y - - ax/
DYADOQF, IIULTOP,

ENr,

THeML,
it oto ¢
HONUADOP MIIWSOF,

ey,

END,

PECURSIVE PEWRITE(CUPPENT),

1

]

{

I

|

|

|

|

I

|

|

[

|

I

|

]

|

|

|

]

[

|

|

|

i

]

|

|

|

[

|

|

|

|

%

|

a4+ -h) -—>a-hb 2x 11/ |
DYADUP, LHTADDOE,)
EXF1, !
HMONARCE , HIHUSOF, !
EXP2, |

/* to */ |
DYADOP, THTSUBOP, |
EXPL, |
EXP2, |
EID, |
I

|

I

|

|

I

|

|

[

|

|

]

|

|

|

|

|

I

i

I

|

|

‘

I

[

}

|

)

U =-a)+ h—=>ba-at/
DYADOP, TNTADDOP,

MONANOP , MINUSOF,

BXp2,

ENP1,
it to *
DYADOP , TUTSUBOL,

EXP1,

EXPZ.
END,

R o R A R R R R T A R A A A A T R T LS F L AN AR E P AT A XA LS P R AR LT LA TR

* rulebase IMFLODENOT \
* pushes not bacs up *

AR A Rl R e e e e e L R S St L X 2)

0| rulebasetyre impledenotrules[] = ¢

QI
3| RECURSIVE _PEWPRITE(CYRRENT) ,
¢
1 J* ot 2 and b oor a and not B —-> 2 xor b ¢
1 DYADOP ,OPOP,
] DTADOF, AUDOF,
REALT A | LHADOR, 110TOQF
AT RS EXP1,
EBEIL)] EXPZ,
RS N Y| DIRDF,AIDOE,
Az IREXPY,
2293 HIODADOF , HOTOF,
R LR Bl ISEXPZ,
i 1

Created at 11:37am on Tuesday, Februari

4, 1992 wiishoff

Page 31 of 3%

f1un|
K m||
BRI |

S0
tr)m‘.l
sang|

BRI |

] l
o I
" |
“ l
wanapry
MR R

1
'l

v;'

a i

o of

RN |
A
R
n 1|
MY
BRI
He|
Ty
D
,311':1'
2020

3
o l
“© l
1
2
., ‘
“ ‘
I '
o
3

!
!
1

Equitalent tor*/
DYADOR , JIOROR,

EXPL.

EXp2,
Eip,

/% bk and not a or not b and a --> a xoxr b */
DYADOF, ORCF,
DIADOT AIIDCP,
MONADOP, NOTOP ,EXPY.,
EXPZ,
DYADOP, ANDOP,
IREXPY,
HMOIADOP, 110TOF , ISEXE2,
‘*BEquivalent to:*/
DYADOP, ICROP,
EXF1,
EXP2,
END,
* swapped also t ¥/
% ot b and a or h and not
DIADOF, OROF,
DYADOP , AHDOP,
EXFl,
11 UADOR , HOTOF ,EXP2,
DYADOP, AIDOP,
HONADOP , HOTOP , ISEXP1,
IZEXEZ,
Equivalent to:/
NYADOFE, IOROF,
EIPL,
EXFZ.
FND,

a ~-> a xor b */

-* a and b or not
DIADCF, ¢ 'ROT,
DYAD P, AMDOE,
EXF1,
EXPZ,
MOMALDP , HOTOP ,
DCADOP , OROP,
ISEXF1,
ISEXP2,
/*Equivalent to:*/
HOMADOE , HOTOP,
DYADOP, XOPOP,
EXP1,
EXPZ,

{a ox b) ~-> not (a xor b}

EHD,
 a an'l b or not th or a)
DYADOPR, OROP,
DYAL« P, ANDOP,
EXFL,
ENDRZ,
HOUAILOR , HOTOP,
DVYADOE, OROFE,
ISEXPZ,
13EXPYL,
J*Egquivalent to:*’
MNOMADROD . IOT2F,
DYAL e, KOROR,
EXR,
EXPZ,

-~-> not (a xoxr bj

EHND,

ta ot
DTADOD, ADDYT,
MR O NOTOR |
EXFL,
TERIAICE VI0TOF,
EXR2,
7t Bguiralent to: *
HOUADOE , IOTOR

th ===t + a | b

*/

T 1
{ File appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff FPage 32 of 35 |
I T !
j2az1]] DIADCE , OROP, |
j2322] 2§ EIPy, I
{2321] 9| EXP2, [
[2324] 3| EUD, |
{2325] of [
2326 3/ tat b -—>t (a&b) */ |
12327] 3] DYADOF, OROP,
{22320] 6] MOLIADOR , HOTOF,
{2329] 9] EAXP1,
|z330] &) HOUADLOR , HOTOF , |
[REERVEES EXP2, |
(ERRPY | /* Equivalent to: */ |
[2134] 3| MONADOR,1I0TOF, |
{2314] 6| DYADOP, AlIDOP |
[2235] 2} EXF1, |
[2338] 2] EXE2, |
{2337 3| END, |
(2338] 0| |
12332 2 J*(x&la)&ib-—> I(a!lb)&un*/ |
|2310] 3] DYADOP , ANDOP,
[2341] 6] DYADOP , ANDOP, !
{234z] 2| EiP1, l
fzaaa) af MOHADOP , NOTOP , EXP2, !
{2344] 6} HOUAINOE , NOTOF , EXP 3, |
J2245] 3§ /* tos */ !
{2116] 2 DYADOP, AHDOP, |
[2347] 6] MOUAIOP, HOTOP, |
[234] 9| D¥ADOP , OROP, |
1231912 EXP2, |
Jz350]12] EXP3, [
2251 6] EXP1, |
{2352 3 END, I
|z353] o] |
[RREETIRT 4wy ta) ttbh-——>1t (a&b) ! x*/
|nans] 1 DYALOP, OROP, |
jzana] 6| DYADOF , OROP,
|2357] © E1P1,
{2ase| of HMOUIADOP , NOTOP , EXP2, |
|z392] of MCHADCE , HOTOP EXP3, |
12160 3| /% to */ I
12361] 2| DYADOP, (OROP,
[2352] 6| HOIIAIOP , HOTOP ,
12262 9| DADOP , ANDOP, |
[2304] 12 EXP2, |
12365]12 EXP3, I
2366 6| EXF1, |
|2367] 3 END, |
|2369] 0| END); {
[2370] 0| |
|237l| Ol /'ﬁ**’.'ﬁt‘.‘.**‘**Qiiﬂi'iﬂﬁ****"ﬂﬁﬁﬁﬁﬁﬁ*ﬂ‘k***‘k**‘k**‘k‘k‘k*‘k‘k‘k‘k‘k‘k***‘k‘k*‘k**‘k*ﬁﬁﬁ*ﬁﬁﬁﬁ**"i |
|2372| 1]l * rulebase FREPROCESRULES * |
12373] 1| * not used yet * |
|'_)’{7/!' ll R*tii*‘:*‘k‘*ﬂ'ﬂ'ﬂtl*ﬁﬁ**t&((itkﬁktﬁﬁﬁ!i*k***k*kk**t*****kk**ki*******ki****kﬁihtﬁﬁﬁ/r' I
|2375] 0 |
|7376] 2| runlebasetype preprocesrules{] = { |
7177] 0|
}7173} ol :
[2372F o] /% from simpl */ |
| 13m0 2 /* (a +' constl) +* const2 --> a +* (constl +* const 21 * |
RIS Y ASOP1, DYALOE, SYHOP, I
|:82] 6| DIADOF, ISOPY, l
{2392] 2| EXP1,COUST, |
[2394] o] COLST2, |
|z3m9] 3| S% rewrlte to */ |
{=wms] 3| DIADOE ,OP1, |
123m7] 6| EXP1, |
R o EVALUATE, DYADOP, OF1, |
- " CONET1, |
| | CONST2, }
I 1| END, !
| n| |
|2 3 Attt hFCL) fC2 —=> a*xC2Z 4 (bt CLN2Y) tr
]2 3] DYALOP, HULTOP,
I 74 DiAROP, INTADDOP, |
J296) 11 EXP1, |
t L] | 1

File appendix.2 Created at 11:37am on Tuesday, Febrnari 4, 1992

wijshoff

Page 331 of 35

raanfrg
EEERIBE]

2400
{2d01]
| 2402
[2103)

)
[
I ™7
|2297] 11|
|
]
|

7|
3

3|
71

[2404] 10|
{z405]10]

j2400]

7|

| 2407 10|
| 408]10]
|za09 17
J7a10]16]
[EEERARY|

12912
j2413]
|2414]
|2115]
|2446]
|2407]
[2a18]
[1a19]
{2220}
j2a21

3|
i
3|

DYADOF , MULTOF,
EXP2,
COlIST1,
COnsT2,
VAN S IR
DYADOF , THTADDOF,
DIANOP, MULTOFR,
EXP1,
COIIST1,
DYARQP MULTOP,
EXP2,
IBVALUATE,
DYADOF HULTOP,
CONSTI,
COIIST2,

END,
/* ——a -=> a */
HOHADOP , HIRUSOP,
MOUADP , MINUSOP,
EXP1,
/Y to ¥/
EXP1,EMD,

'

rulehasetype sertnotrules[] = {

FRKRRAAAAAR A VAR AN AR AKAX A AR ARAKAKNNARAKAAAARKRAXAARNNARA KR AAKAR KN ARKAA X ARAR AR ARN K AR

* rulebase SORTHOTRULES
* nsed to sort all not variables/expression to the left side
* result : la and tb and tc and d and e aund £

*

*

*

R R LA R A R R R R A S E T R T P2 e s
/

l;m 41\' |

[2031]) 3] RECURSIVE_REWRITE{ CURRENT),
RERI Y|

{2a33] 3§ /* & and tb --> th and a */
| 2434 3] DTADOP, ASOF1,SYMOP,

|2435] 5| EXP1,

| 2436 & ASEXP2,MONADOP , HOTOP , EXP,
fz437| 3} /* to xS

je1ae] 3| DYADOP,OP1,

|743¢9] & EXP2,

| 7440] 6 EXF1,

IREES NI END,

|7442] 0]

{2440] 13| /* (aand b) and fc --> REW:(a and tc) and b */
jra44] 3| DYADOR, ASOP1, STMOP,

|2445} 6} DYADUP, 1SOP1,

| 2a45] 9] EXPL,

{2147 =] ASEXP2, MOTHOT,

| 2140] & ASEXP 3, HONADOR, HOTOP , EXP,
|29a9] 3] /* to 4,

[~anel 7| DYADOP, OP1,

|2an1) nf REWRITE, CURRENT,

Jrisz| 2| DIADOP,OF1,

(REERIRDY 2P,

AT R EXF3,

| 24557 5] EXE2,

| 2a56] 3 END,

| 24571 0] /* extra ont of expand xor */
[+49n] o] /* name doszen’t £it anymore
RN | now these are the simplifizaticon rules for :ox
"’-"1""” ol

[raca] 2 DYADOR , ;10ROF,

| 1n2] &) EXP1

|2463] 6 EXPZ.

| e ok ¢

[REISS IR DYADOP , TOROP,

] a6l 6| REWRITE,CURRENT, EXF1,
jo1s7] o EXF2.

[REAT R MY,

BRI Y

{270 4 INITHIT,END, /* reset hit flag */
IMEVARIEAL|

[2472) 4 /ta Rer a --> 0/

' L —

r
| File appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wiishoff Page 34 of 35
{ 7

[“113] 4] ASKILLIODE,

|ra7al 4 DTADQP . RORCP,

f2175] 7} EXPL,

{2176 7| PESET_MOTFLAG, /* init for matching vars */

f2a77) 7| SAVESIZE,

{2a78] 7| ISVARL,

|z172] 4] S* to xS

{24801 4| HIT,

|zaR1] 4] KILL_MODE,

IRZCEIRET REGALLUEROES,

|2a83] 4 EXIT,BID,

|7186] 4|
|2497) Y
| 241 7]
| 2489 7
{2190 7
|2a91(4
12492] 4
|2423| ¢
|2 494 4]
{2eas] 4]
| 2a96] n|
{2a97] 4}

jren] 4
{raa] 1
| 2000 7
Jzser] 7|
[2502] 7]
|znoa] 7]
[ERIARY I
|=50n] 1
IJWHRI 1]
|BEISrA Y|
{2mon| 4|
{2n09] o
|2500] 4|

fasu] 4
|omiz| 4
|zu1a] 7
|2514) 7§
P et A
|2514] 7|
[2517] 4|
J251m] 4
[n51v] 4

25|
"ﬂqn|1n|
AL o]
BT o] N
v:r;/‘g] "I
o] 4]
2515) 1
BT LY IR
’S47| 4|
2548 4

/* a xor not a ~-> 1 */
ASIILLIICDE,
DYADOP , XOROP,
EXpP1,
RESET NOTFLAG, /* init for matching vars */
HONADOP , HOTOP , SAVESIZE, ISVARL,
/* to */
HIT,
I'ILL_1INDE,
REGALL(WMES,
EXLT,EID,

/* MOT a xor a --> 0 */

ASKILLHODE,

DYADOF, XORCP,
MOMADOP, HOTOP, EXP1,
SET MOTFLAG, /* init for matching vars */
SAVESIZE,
ISVAR1,

/* to */

HIT,

KILL_TDE,

REGALLVNES,

EXIT,END,

/f ceife. HOT ...Be.. ==> 0 */
ASUILLIIODE,
DTADOP, XOROP ,
EXPL,
SET _MOTFLAG,
SAVIESIZE,
ISE:1P1,
/* to */
HIT,
KILL NODE,
REGALLZEROES,
EX1T,END,

/* 2 Xor a xer a --> z xor Q --> z */
DYADOP , XOROP,
DYADROP , XOPOP,
LXP2,
LXP1,
RESET_MOTFLAG, /* init for matching vars */
SAVESIZE,
ISVARL,
£ to ~»’/
DYADOF , XOROP,
EXp:,
REGALLZEROES,
END,
t oz 3y not A Mer a --> Z xor 1 ——> not = ¢
DYA[DOF , XOROP,
DYAOF , KOROF,
BXe2,
HNADOR , HIOTOF , EXPY,
SET MOTFLAG, /¢ init for matching vers *
ISVARL,
LR L
HONADROY JIOTOF EXF2, EILILY,

/% Z MOr A XOor not a ——> z ¥or 1 -~> net ¢ */
DYADCF , XOROP,

51807 ¢ !

—1
|r Fille appendix.2 Created at 11:37am on Tuesday, Februari 4, 1992 wijshoff Page 35 of 1%
T

anas] 7 DYANOE, XOROE,

SR | EXP2,

s5n1) 0| EXP1,

rsaz]| 7| PECET_IIOTFLAG, /* init for matching vars */
25813 7 [HEOUADOER , IOTOE, TSVARY,

2554 4 VIR <SR

2555| 1 HOUIADOR TIOTOF , EXP2 , END,

mGR| 0f

S 4| A Z ROY e .B... HOL . .8.e. ==> Z HOL O ~=> 7 */
3] | DIADOE , XOROF,
- ! | DYAIOP , XOROP,

: 0 EXF2,

256300 2P,

wehel 7 FESET_NOTFLAG, /* init for matching vars */
20631 7 ISERPL,

2564| 4 R 1T

25601 4 EXP2,EHD,

2566] 3 ASEXF), (FHIT,REWRITE, CURRENT ,REWREG,EXP1, END,

2567| 3 END };

3 (4]

A
P
be]

U U A

o ——— . i o e A i . i e o i S o i n, B, . A i T T o, T — o, i . e o S, i e . S e i . et e et s i S e, e e et e . s e e e i e e . e e T e A s o P e it e . e, i A

	Voorblad

	Summary

	Contents

	1 Introduction

	2 Basic defintions

	3 Pattern recognition

	4 Rewriting

	5 Basic equations

	6 The theoretical background

	7 Possibilities for implementation

	8 Practical point of view

	9 Summary

	10 Conclusions

	11 Recommendations

	12 References

	Appendix 1

	Appendix 2

