
 Eindhoven University of Technology

MASTER

Data structures and VLSI

Bink, J.M.

Award date:
1991

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b018754b-db48-4323-ad2b-bbe002371e8d

£T)-.J21

S-8?-/;(

Eindhoven University of Technology
Department of Electrical Engeneering
Digital Systems Group (EB)

DATA STRUCTURES
and

VLSI

by J.M. Bink

Master Thesis Report
Supervision: Prof. Ir. M.P.J. Stevens.

Ir. L.P.M. Benders.

Eindhoven, August 1991

The Department of Electrical Engineering of Eindhoven University of Technology does not accept any
responsibility regarding the contents of student project and graduation reports.

------------------------ Summary--

Summary
For the description of problems, many high level description languages are known.
Most of these languages are software languages. An easy way to describe problems
is to use abstract data types, but then the translation to hardware is difficult. If we
could find a hardware implementation for often used data types, it would become
much easier to translate the problem description to hardware implementation.

I have searched in literature for data structures, which are often used for the
description of problems. These data structures are described just like abstract data
types. Research is done to software structures, used for the implementation of these
given data structures. I have also studied algorithms which are used with the data
structures (e.g. a search algorithm for trees). If we implement algorithms along with
the data structures, faster implementations can be found.

Then, two hardware memories (RAM and CAM) are described, which can be used for
the implementation of the data structures in hardware. The CAM can besides storing
information, also compare applied information with stored information. For some
structures, like the table, the set and some graphs, the CAM gives a faster
implementation than the RAM. There are also many CAM algorithms known for
searching, sorting etc. The CAM however, is much more complex (size CAM is 3 to
4 times the size of the RAM).

Finally I have started with the hardware description of the data structures. This is done
with the hardware description language VHDL. Because of the complexity and variety
of the subject, I have not yet finished this.

For each data structure, several implementations are possible. Which implementation
we should use depends on the use of the structure. Adding algorithms to the data
structures improves the performance.

--------------------- Tableofcontents--

Table of contents

1. Introduction .. 1

2. Data Structures .. 2
2.1. Arrays 2
2.2. Records 3
2.3. Linked lists .. 3
2.4. Lists .. 4

2.4.1. Stacks .. 5
2.4.2. Queues 6

2.5. Tables 6
2.6. Trees , 7
2.7. Sets. .. 8
2.8. Graphs .. 9

3. Software implementations and their complexity .. 11
3.1. Arrays 11
3.2. Records . 12
3.4. Lists. 13

3.4.1. Implementations . 13
3.4.2. Algorithms 15
3.4.3. Stacks .. 17
3.4.4. Queues 18

3.5. Tables 20
3.5.1. Implementations . 20

3.6. Trees .. 22
3.6.1. Implementations 23

3.7. Sets .. 26
3.7.1. Simple implementations .. 26
3.7.2. Advanced implementations 27

3.8. Graphs .. 32
3.8.1. Implementations .. 32
3.8.2. Algorithms 34

4. Basic hardware building blocks .. 37
4.1. RAM 37
4.2. CAM 38

4.2.1. CAM applications 44

ii

--------------------- Table ofcontents --

5. Hardware implementations , 45
5.1. VHDL .. 45
5.2. Array 47
5.3. Record. .. 47
5.4. Linked list .. 48
5.5. List 48

5.5.1. Stack . 49
5.5.2. Queue ., .. 50

5.6. Table .. 50
5.7. Tree , 51
5.8. Set. 52
5.9. Graph 52

6. Conclusions and recommendations .. 54

References .. 55

Appendix A " 57

iii

-----------------------Introduction--

1. Introduction
At the Digital Systems Group, Department of Electrical Engineering, Eindhoven
University of Technology, research is done to the traject of developing digital systems.
This is the traject of high level problem description to hardware implementation. If
possible, this traject has to be automated. One of the topics is the high level
description language, used for describing problems.

There are many ways to describe a problem, and there are many ways to implement
the solution. An easy way to describe problems is to use software data structures. The
main disadvantage of this solution is that these data structures are usually not known
in hardware implementations. So if we could find a hardware implementation of often
used data structures, it would become much easier to translate the problem
description to hardware implementation.

My task was, under supervision of prof.ir. M.P.J. Stevens and ir. L.P.M. Benders, to
inventorise the most commonly used data structures, and then I should try to find a
good hardware implementation.

First, I have studied the most commonly used data structures, and described these
like abstract data types.

Secondly I have studied software structures, used for the implementation of these data
structures. Using these software implementations, we can construct abstract data
types, which can be used for the description of problems. I have also looked for each
data structure for algorithms, which are often used with that data structure.

I have studied some hardware memories, like a RAM and a CAM, which can be used
for the implementation of the data structures in hardware.

Finally I have started with the hardware description of the data structures. Because of
the complexity and variety of the subject, I haven't finished this. There is for every data
structure a behavioral description. A structural description still have to be made. This
should be done by someone else.

1

----------------------Data structures---

2. Data Structures
When we want to solute a problem, it is useful to have some predefined data
structures, which makes it easy to describe the problem. This chapter is an overview
of the most fundamental data structures, with a set of operations, used for the
description of problems.

We study the elementary data structures array, record and linked list. We consider
lists, which are sequences of elements, and two special cases of lists: stacks, where
elements are inserted and deleted at one end only, and queues, where elements are
inserted at on end and deleted at the other. Then we study tables, which is often used
for the conversion of types. We study trees, which is a collection of elements with a
hierarchical structure. We also study sets, which is closely related to the mathematical
notion of a set. Finally we study graphs, which are often used for problems arising in
computer science, mathematics, engineering, etcetera. We can use graphs to
represent arbitrary relationships among data objects. We consider the basic data types
(boolean, char, integer and real) known.

2.1. Arrays

An array is a collection of objects, all of the same type - called e/ementtype - and
indexed by a linear ordered set of values - called the index set. The members of the
index set are all of the same type, called the index type. There is a one-to-one
correspondence between the value of the index type and the object of each array
element. An array is often denoted as

A: array[i f , •• ,inlof elementtype;.

An array is a linear store, which has a finite number (n) of places with indexes i, with
in each array element A[/] an object of the type elementtype. Elementtype can be of
any type. The following operations are defined:

RETRIEVE(A,i,c): This operation reads element i of array A and assigns it to value c.
This is often denoted as c := A[/). This operation is not defined if i ~ if
or if i ~ in'

UPDATE(A,i,c): This operation assigns the value c to element i of array A. This often
denoted as A[/] := c. This operation is not defined if i ~ if or if i ~ in'

2

--------------------- Data Structures--

2.2. Records

A record is a collection of objects, which may be of a different type, with for each
object an identifier. There is a one-to-one correspondence between the record
identifiers and the record elements. A record is often denote as

R = record
id1: type1;

idn: typen;

end;.

Each record has a finite number of identifiers idn, with each identifier connected to an
object of any type. We can define the following operations on the data structure
record.

RETRIEVE(R,id,v): This operation assigns to v the value of the component of R, which
is identified by id. This is often denoted as v := Rid. This operation is
not defined if the type of v is not equal to the type of Rid, or if id is not
in R.

UPDATE(R,id,v): This operation assigns the value vto component id of record R. This
is often denoted as Rid: = v. This operation is not defined if the type of
v is not equal to the type of Rid, or if id is not in R.

2.3. Linked lists

In computer science, there are many applications in which the number of objects is
changing dynamically. If we use for these applications static data structures, such as
arrays or records, it would lead to inefficient use of memory space, and bad
operations. So, it is useful to have a dynamic data structure.

Linked lists are the simplest form of dynamic data structures. A linked list is a list of
pairs, each consisting of an element and a pointer, such that each pointer contains the
address of the next pair. A pointer is simply a variable that holds as its value an
address of another element. Each such pair is represented by a record. The following
operations are defined:

CLEAR(LL): This operation makes the linked list LL to be an empty list.
INSERT(LL,p,x): This operation creates a new record, fills it with data x, and links it on

position p in linked list LL. If position p does not exist, this operation is
not defined.

DELETE(LL,p): This operation relinks linked list LL in such a way, that the record on
position p in the list is no longer a member of list LL. If position p does
not exist, this operation is not defined.

3

--------------------- Data structures---

RETRIEVE(LL,p,x): Gives variable x the value of the data stored on position p of linked
list LL. If position p does not exist, this operation is not defined.

NEXT(LL,p): This function returns the boolean true if there exist an element p + 1 of
linked list LL, otherwise it returns false.

In figure 2.1. we see that the operations INSERT and DELETE are just a relinking of
the pointers.

Figure 2.1. (a)lnsert and (b) delete operation on linked list.

2.4. Lists

Mathematically, a list is a sequence of zero or more elements of a given type (which
we generally call the elementtype). We often represent such a list by a comma
separated sequence of elements

where n ~ 0, and each a, is of type elementtype. The number n of elements is said to
be the length of the list. Assuming n ~ 1, we say that a1is the first element and an is
the last element. If n = 0, we have an empty list, one that has no elements. An
important property of a list is that its elements have an ordering according to their
position on the list. We say a, precedes a,+ 1for i = 1,2, ... ,n-1, and a, follows ai-1 for
i = 2,3, ... ,no We say that the element aj is at position i.

There is another ordering, which is often used. That is an ordering on the 'magnitude'
of the elements. Then, Iaj I :!> Iaj +1I.A list ordered by position we call 'unordered' and
a list ordered by magnitude we call 'ordered'. On the data structure 'unordered' list we
can define a set of operations. This is not a unique set of operations, but we try to
give a complete set.

4

--------------------- Data structures---

CLEAR(L): This function causes L to become an empty list.
END(L,p): The function END(L) will assign to p the position following position n in

a n-element list L. Note that the position END(L) has a distance from the
beginning of the list that varies as the list grows or shrinks, while other
positions have a fixed distance from the beginning of the list.

INSERT(L,p,x): Insert x at position p, moving elements at p and following positions to
the next higher position. That is, if L is a1,a2, ... ,an then L becomes
a1,a2, ... ,a,r1,x,ap' •• , ,an' If pis END(L), then L becomes a1,a2, ... ,an,x. If
list L has no position p, the result is undefined.

LOCATE(L,p,x): This functions returns the position of x on list L. If x appears more
than once, then the position of the first occurrence is returned. If x does
not appear at all, then END(L) is returned.

RETRIEVE(L,p,x): This function returns to x the element at position p on list L. The
result is undefined if p = END(L) or if L has no position p.

DELETE(L,p): Delete the element at position p of list L. If L is a1,a2, ... ,an' then L
becomes a1,a2, ... ,a,r1,aj?+ l' ... ,an' The result is undefined if L has no
position p or if p = END\L).

FIRST(L,p): This function returns to p the first position on list L. If L is empty, the
position returned is END(L).

EMPTY(L): Return true if list L is empty, return false otherwise.
FULL(L): Return true if list L is full, return false otherwise.

With this set of operations it is possible to describe all possible manipulations on
'unordered' lists. If we want to define an 'ordered' list, we have to replace
INSERT(L,p,x) by INSERT(L,x). Element x is inserted 'in order' and not on position p.

2.4.1. Stacks

A stack is a special list in which all insertions and deletions take place at one end,
called the top. Other names for a stack are "pushdown list", and "LIFO" or "Iast-in-first
out" list. The intuitive model of a stack is a pile of poker chips on a table, books on a
floor, or dishes on a shelf, where it is only convenient to remove the top object on the
pile or add a new one above the top. We can define here a set of basic operations.

CLEAR(S): This function causes S to become an empty stack. This operation is the
same as for general lists.

TOP(S,x): Return to x the element at the top of stack S. If, as is normal, we identify
the top of a stack with position 1, then TOP(S,x) can be written in terms
of list operations as RETRIEVE(S,FIRST(S),x).

POP(S,x): Delete the top element of the stack, that is, DELETE(S,FIRST(S)).
Sometimes it is convenient to implement POP as a function that returns
the element it has just popped. Then, we don't need the function
TOP(S).

5

--------------------- Data structures---

PUSH(S,x):

EMPTY(S):
FULL(S):

Insert the element x at the top of stack S. The old top element becomes
next-to-top, and so on. In terms of list operations this operation is
INSERT(S,FIRST(S),x).
Return true if S is an empty stack; return false otherwise.
Return true if S is a full stack; return false otherwise.

2.4.2. Queues

A queue is an other special list, where items are inserted at one end (the rear) and
deleted at the other end (the front). Another name for a queue is a "FIFO" or "first-in
first-out" list. The operations for a queue are similar to those for a stack, the substantial
differences being that insertions go at the end of the list, rather than the beginning,
and that the traditional terminology for stacks and queues is different. We shall use the
following basic operations on queues.

CLEAR(O): Makes queue 0 an empty list.
FRONT(O,x): This is a function that returns the first element on queue O. FRONT(O,x)

can be written in terms of list operations as RETRIEVE(O,FIRST(O),x).
ENQUEUE(O,x): This function inserts element x at the end of queue O. In terms of list

operations, ENQUEUE(O,x) is INSERT(O,END(O),x).
DEQUEUE(O,x): This function deletes the first element of 0; that is, DEQUEUE(O,x)

is DELETE(O,FIRST(O». It is also possible to combine FRONT and
DEQUEUE in a single operation. Then, we don't need the operation
FRONT.

EMPTY(O): Returns true if and only if 0 is an empty queue.
FULL(O): Returns true if and only if 0 is a full queue.

2.5. Tables

A table is a collection of keyed records, with for every record a unique key. When we
want to retrieve a record, we look in the table for the key. If the key is found, that
record is retrieved. Sometimes there is used a translation mechanism on the key for
computing the address of the record. The following operations are defined:

CLEAR(7): Makes table T to be an empty table.
INSERT(T,id,x): Inserts data x with identifier id in table T. If id already exist in table T,

the data connected with id is replaced by x.
DELETE(T,id): Deletes the record with key id from table T. If id is not a MEMBER of

table T, nothing happens.
RETRIEVE(T,id,x): Returns the data to x from the record with key id, from table T. If

id is not a MEMBER of table T, nothing happens.
MEMBER(T,id): Returns TRUE if the record with key id is in hash table T.
FULL(7): Returns true if table T is full; returns false otherwise.
EMPTY(7): Returns true if table T is empty; returns false otherwise.

6

--------------------- Data Structures--

2.6. Trees

A tree imposes a hierarchical structure on a collection of items. A tree is a collection
of elements called nodes, one of which is distinguished as a root, along with a relation
("parenthood") that places a hierarchical structure on the nodes. A node, like an
element of a list, can be of whatever type we wish. We often depict a node as a
character, a string or a number with a circle around it. Formally a tree can be defined
recursively in the following manner.

1. A single node by itself is a tree. This node is also the root of the tree.

2. Suppose n is a node and T1,T2 , ••• ,Tk are trees with roots n 1,n2 , ••• ,nk ,

respectively. We can construct a new tree by making n be the parent of nodes
n 1,n2 , ••• ,nk• In this tree n is the root and T1,T2 , ••• ,Tk are sub-trees of the
root. Nodes n 1,n2, ••• ,nk are called the children of node n.

Sometimes it is convenient to include among trees the null tree, a "tree" with no nodes,
which we shall represent by •. It is possible to define an order on the nodes of a tree.
Then, all the children of a node are assigned a different order. This depends on the
implementation of a tree. In a graphic representation of a tree, the children of a node
are usually ordered from left to right (see figure 2.2.).

./'~.
/\ /\

4 6 8 10

/1\
878

Figure 2.2. Graphic representation of a tree.

The ancestors of node n are defined as following: If node n is the root of a tree, then
it has no ancestors. Else, the parent of n and all the ancestors of the parent of n are
ancestors of n. The descendants of node n are: If node n is a leaf of a tree, it has no
descendants. Else, the children of node n and all the descendants of the children of
n are descendants of n.

We can associate a label, or value, with each node of a tree, in the same way as we
associated a value with a list element. That is, the label of a node is not the name of
the node, but an object that is "stored" at the node. Now we shall present several
useful operations on trees. As with lists, there are a great variety of operations that can
be performed on trees. Here, we shall consider the following operations:

7

--------------------- Data structures---

CLEAR(D: Makes T the null tree.
PARENT(T,n,x): This function returns to x the parent of node n in tree T. If n is the

root, which has no parent, • is returned. In this context, • is a "null
node", which is used as a sign that we have navigated off the tree.

LEFT CHILD(T,n,x): Returns to x the child of node n in tree T with the lowest order,
- and returns • if n is a leaf, which has no children.

RIGHT SIBLlNG(T,n,x): Returns to x the right sibling of node n in tree T, defined to be
- that node m with the same parent p as n such that m has the lowest

ordering, following n in the ordering of the children of p.
LABEL(T,n,/): This function returns to I the label of node n in tree T. We do not,

however, require labels to be defined for every tree.
CREATE(T,i,T1,T2, ••• ,TI,/): This is an infinite family of functions, one for each value

of i = 0,1,2, CREATE makes a new node r with label I and give it
i children, which are the roots of trees T1,T2 , .•• ,TI, in order from the
left. The tree T with root r is returned. Note that if i = 0, then r is both a
leaf and the root.

ROOT(T,x): This function returns to x the node that is the root of tree T, or • if Tis
the null tree.

There are special trees, such as binary trees, AVL trees, B-trees and tries, which often
have a special set of operations. See also [AH083], [COR90], [MAN89] and [WAR90].
These operations are usually combinations of operations described above. However,
it can be useful to define for each data structure its own operation set.

2.7. Sets

As we said before, the set is the basic structure underlying all mathematics. A set is
a collection of members (or elements); each member of a set either is itself a set or
is a primitive element called an atom. All members of a set are different, which means
no set can contain two copies of the same subset. We can denote a set of atoms by
putting curly brackets around its members. A set with only the members 1, 3 and 4
is denoted as:

{1,3,4} or {1,4,3} or {4,3,1 } etc.

Sometimes, atoms are linearly ordered by a relation, usually denoted by "<". In that
case, a linear order < on a set S satisfies two properties:

1. For any a and b in S, exactly one of a < b, or b < a is true.
2. For all a, b, and c in S, if a < band b < c, then a < c (transitivity).

We can give a set of operations on the data structure set, but this is not a unique set.

8

--------------------- Data structures---

UNION(A,B,C): This operation takes the set-valued arguments A and B, and assign the
result AU B to the set variable C.

INTERSECTION(A,B,C): This operation takes the set-valued arguments A and B, and
assign the result A nB to the set variable C.

DIFFERENCE(A,B,C): This operation takes the set-valued arguments A and B, and
assign the result A - B to the set variable C.

CLEAR(A) : Makes the null set to be the value for set variable A.
MEMBER(A,x): Takes setA and object x, whose type is the type of elements of A, and

returns a boolean value - true if x E A and false if x f A.
INSERT(A,x): Makes element x a member of set A. That is, the new value of A is

A U {x}. Note that if x is already a member of A, INSERT(x,A) does not
change A.

DELETE(A,x): Removes element x from set A, Le., A is replaced by A - {x}. If x is not
in A originally, DELETE(x,A) does not change A.

ASSIGN(A,B): Sets the set value of set variable A to be equal to the value of set
variable B.

EQUAL(A,B): This function returns the value true if and only if sets A and B consist of
the same elements.

MIN(A): This function returns the smallest element in set A. This operation may
only be applied when the members of the parameter set are linearly
ordered.

MAX(A): This function returns the greatest element in set A. This operation may
only be applied when the members of the parameter set are linearly
ordered.

2.8. Graphs

Directed and undirected graphs are models for representing arbitrary relationships
among data objects. A directed graph (digraph for short) G consists of a set of nodes
N and a set of edges E. The nodes are also called vertices or points; the directed
edges could be called arcs or directed lines. A directed edge is an ordered pair of
nodes (n,m); n is called the tail and m the head of the edge. The directed edge (n,m)
is expressed by n .. m (figure 2.3).

n 1-------4 m

Figure 2.3. A directed graph.

9

---------------------- Data structures---

The nodes of graph G are used to represent objects, and the arcs or directed edges
are used to represent relationships between objects. Common operations on this data
structure are:

INSERT NODE(G,n,/): Makes a new node n with label I in graph G. This node is not
- connected to graph G.

INSERT EDGE(G,n,m,/): Creates in graph G a directed edge from node n to node m
- which has the label I. This operation is undefined if n or m are no nodes

of graph G.
DELETE NODE(G,n): Deletes node n from graph G. There are no edges between

- node n and the rest of graph G.
DELETE EDGE(G,n,m): Deletes in graph G the directed edge between node nand

- node m. Both nand m are elements of the set nodes of graph G, else
this operation has no effect.

RETRIEVE EDGE(G,n,m,/): This function returns to I the label of the directed edge
- between node n and node m in graph G. If there is no edge between n

and m or these nodes are not in G, this function returns the null label •.
RETRIEVE NODE(G,n,/): This function returns to I the label of node n in graph G. If

- node n is not in G, then the null label • is returned.
CLEAR(G): Makes G to be a graph with no nodes and no edges (null graph).

We represented only the directed graphs, because the undirected graphs can be
implemented as directed graphs. An undirected edge can be represented as two
directed edges in the opposite direction. See figure 2.4.

Figure 2.4. Undirected graph.

In this chapter we gave a definition of the data structure, and an overview of the
(basic) operations on that data structure. It isn't always possible to define a 'best' set
of operations for a data structure, but we tried to give a complete set of operations.
It is possible that an other set of operations gives an easier or faster implementation.
It is also known that a set of operations can be optimal for one problem, but not for
another problem. For more information about data structures and algorithms see
[AH083], [COR90], [MAN89], [SED88], [STU8S], [WAR90] and [WUL81]. In the next
chapter, we will give some commonly used software implementation, and some
algorithms used on these data structures.

10

------------Software implementations and their complexity-

3. Software implementations and their
complexity

If we look at the most commonly used software languages, we see that only a few
data structures are available (e.g. array, record, pointer). The other structures have to
be implemented with these available structures. If all discussed data structures would
be available for the programmer, it would be much easier to implement solution for a
problem. For that reason, many languages support abstract data types. This are
modules, which contain a data structure with its predefined operations. Then, if they
use these modules, they have all data structures available.

This chapter gives an overview of the software implementation of the data structures.
With every data structure we have given its characteristics and possible mappings to
elementary structures (arrays, records and linked-lists). For every mapping, we discuss
the complexity of the predefined operations, and we examine algorithms, which are
often used with the data structure.

3.1. Arrays

An array is a row of elements of the same type. The size of the array is the number
of elements in the array. This size must be fixed. The array is a storage type that is
direct accessible, Le. we can retrieve or update every single element of the array in a
fixed time. In almost every software-language the array is a predefined data type. For
the implementation of the array no extra memory space is necessary, but the size and
type of the array should be defined before use. Because the array is a direct
accessible storage type, the predefined operations 'RETRIEVE' and 'UPDATE' have
a complexity O(c) (table 1).

Table 1: Array characteristics

ARRAY

Operations Complexity

UPDATE O(c}

RETRIEVE O(c}

Access Direct

Size Fixed

c = constant

11

------------Software implementations and their complexity

Arrays cannot be used to store elements of different types (or sizes), and the size of
an array cannot be changed dynamically.

3.2. Records

A record is a list of elements of different types. The exact combination of types has to
be defined before use. The storage size of a record is known in advance. Records are
a predefined type in many programming languages. Each element of a record can be
accessed in a fixed time. This is often done using an indirection. The names of the
record elements are stored in a table with the same number of elements, such that for
each element the table contains its starting location. This table is automatically created
by the compiler. The characteristics of an array are listed in table 2.

Table 2: Record characteristics

Record

Operations Complexity

UPDATE O(c)

RETRIEVE O(c)

Access Direct

Size Fixed

c = constant

Like an array, the size of a record cannot be changed dynamically, but we can store
elements of a different type in it.

3.3. Linked lists

Linked lists are the simplest form of dynamic data structures. Each element is
represented separately, and al/ elements are connected by pointers (see figure 2.1).
A pointer is a variable that holds as its value the address of another element.

There are two major drawbacks to the linked list representation. First it requires more
memory space. There is one additional pointer per element. Secondly, if we want to
look at the, for example, 30th element, we start at the beginning and look at 29
pointers, one at a time. With arrays, we make a simple calculation and find the 30th
element quickly. The characteristics of the linked list are listed in table 3.

12

------------Software implementations and their complexity-

Table 3. Linked list characteristics

I Linked list I
Operations Complexity

CLEAR O(c)

INSERT O(n)

DELETE O(n)

RETRIEVE O(n)

NEXT O(c)

Access Sequential

Size Dynamic

c =constant, n =number of elements In linked-list.

The data structures array, record and linked list and pointer are the basic data
structures, and are predefined in many programming languages. They are used in a
wide range of applications. The following data structures are more complex can be
created by a mapping to the basic data structures,

3.4. Lists

A list is a sequence of elements with a certain ordering. Lists are a particularly flexible
structure because they can grow and shrink on demand, and elements can be
accessed, inserted, or deleted at any position within a list. Lists arise in applications
such as information retrieval, programming language translation, and simulation.

Lists have a certain ordering. The ordering defined in chapter 2 was an ordering by
position. In algorithms however, there is often an ordering by 'magnitude', Then, the
insertion of an element is not on a fixed position, but on a place where it fits by its
magnitude. The first, we will call an 'unordered' list (The list is ordered by position, but
the 'magnitude' of the elements is unordered), and the second an 'ordered' list.

3.4.1. Implementations

For the implementation of lists, there are two methods commonly used. That is, the
list is mapped on an array, or the list is mapped on a linked list (see figure 3.1). The
advantage of the first method is that all elements are direct accessible, but the size of
the list has a fixed upper bound. The advantage of the second method is that the size
of the list has no upper-bound, but the access to the list is sequential.

13

------------Software implementations and their complexity-

1 find element

2 aecond element

last element

mllXlength

<a)

Last

lit

(b)

Figure 3.1. (a) Array and (b) linked list implementation of a list.

A third mapping, which is used very little, is interesting for a mapping to hardware.
This method is called a cursor implementation, and simulates the linked list
implementation (see figure 3.2). The list is mapped on an array, which contains record
elements. The first record entry contains the data, while the second entry contains an
index (cursor) to the next array entry of the list. The head of the list is stored in a
separate variable, while a second list contains the available array elements.

ARRAY

1

I~~~
available 10

6

7

8

9

10

b 7

e •
6

8

a 1

4

c 9

•d 2

3

element next

Figure 3.2. Cursor implementation of a list.

14

------------Software implementations and their complexity

All three representations make it possible to implement the operations. The
characteristics are given in table 4.

Table 4: List characteristics

List

Complexity

Implement. Array Linked list

Operation Ordered Unordered Ordered Unordered

CLEAR O(c) O(c) O(c) O(c)

INSERT O(n) O(n) O(n) O(n)

LOCATE 0(109 n) O(n) O(n) O(n)

RETRIEVE 0(109 n) O(c) O(n) O(n)

DELETE O(n) O(n) O(n) O(n)

FIRST O(c) O(c) O(c) O(c)
END O(c) O(c) O(c) O(c)

EMPTY O(c) O(c) O(c) O(c)

FULL O(c) O(c) - -
Access Direct/Seq. Direct/Seq. Sequential Sequential

Size Fixed Fixed Dynamic Dynamic

c = constant, n = number of elements In list.

For the LOCATE and RETRIEVE operation of the sorted array implementation, a
search algorithm (binary search) is used.

3.4.2 Algorithms

The two major problems for lists are -- search an element and -- sort the list. Several
algorithms have been developed for these problems, which will not be discussed, but
the use and complexity will be given.

For 'unsorted' lists or lists implemented by a linked list, searching for an element is
only possible by a linear search.

For an 'ordered' list implemented by an array, there are several algorithms known for
searching. Often used algorithms are:

- Linear search: The algorithm inspects all elements of the list, one by one, for a
searched element and decides whether the element is found. The
complexity is O(n). This algorithm is used when the list contains few
elements (n is small).

15

------------Software implementations and their complexity-

- Binary search: The algorithm looks at the element in the middle position of the list.
If the searched element is smaller than the middle element, than it is
positioned in the first half of the list, else in the second half. Then we
repeat this search with the half (sub)list that contains the element etc.
The complexity of this algorithm is O(log n). This algorithm is used when
the list contains much elements (n is big).

- Interpolation search: This algorithm guesses by interpolation the position of the
searched element. If the searched element is smaller than the element
on the guessed position (pivot), the operation is repeated on the first
part of the list, else on the second part. This operation is repeated until
the search is successful, or the element is not in the list. The complexity
of this algorithm is O(log log n). This algorithm is only this good if the
elements are uniformly distributed (Le. equally distributed). Otherwise,
the binary search is just as good or even better than interpolation
search.

Several algorithms are known for the sorting of an 'unordered' list, which is
implemented by an array. Often used algorithms are:

- Radix sort: (Bucket sort) The elements of a list are retrieved and then sorted in a
number of buckets, depending on a part of the element. For example,
if we want to sort numbers from 100 to 999, we can sort first on the first
digit and put the resulting lists in buckets. Then we know that the first
bucket contains a list with the elements form 100 to 199. We continue
the sorting by looking to the next digit, etc. The complexity of this
method is O(nk), where n is the number of elements and k is the
number of search iterations. This method is not 'in place' Le., there is
extra storage necessary.

- Insertion sort: This algorithm divides the list in two parts, a sorted part and an
unsorted part. Then it takes the first element of the unsorted and inserts
it on it's correct position in the sorted part. This algorithm has the
complexity 0(n2

) and is 'in place'.

- Selection sort: This algorithm divides the list also in two parts. It takes the maximum
unsorted element and adds it to the beginning of the sorted list. The
algorithm is 'in place' and the complexity is 0(n2

).

- Merge sort: This algorithm splits the list into two equal or close-to-equal parts. Then,
each part is sorted recursively. Finally, the two sorted parts are merged
(sorting by picking each time the smallest element of both lists, Le. the
first element of one of the lists) into one sorted list. The complexity of
this 'divide and conquer' algorithm is O(n log n). This is good, but the
algorithm is not 'in place', and it is difficult to implement.

16

------------Software implementations and their complexity-

- Quicksort: This algorithm is also a 'divide and conquer' algorithm. We do not divide
the list in two equal parts, but we choose element value (pivot). The
elements of the list are swapped, so that all elements smaller than the
pivot are in the first part of the list and elements larger than the pivot are
in the second part of the list. Then the algorithm is applied to both
subparts. Finally all element will be sorted. If we choose the pivot well
(the parts should be equal) than we have an algorithm of complexity O(n
log n). If we choose the pivot bad, it goes to O(n2

).

We should keep in mind, that we can use these algorithms for all data structures
thatwhich use a list, implemented by an array. For an exact description of these
algorithms, you should see [AH083] , [SED83], [MAN89] and [WAR90].

3.4.3. Stacks

The stack is a special list in which all insertions and deletions take place at one end,
called the top. Because the stack is a list, any list implementation can be used for a
stack. The restrictions of the stack make it much easier to implement a stack in
software. The stack is usually mapped on an array, with an extra variable to hold the
end of the list. It is also possible to map a stack on a linked list, with a cursor to the
top element, but this encounters less frequently (see figure 3.3.).

maxlength

:
I ftmelement

aeoond element

2

1 lut element

lOp

Ca)

(b)

Figure 3.3. (a) Array and (b) linked list implementation of a stack.

17

------------Sottware implementations and their complexity

The characteristics of the stack are presented in table 5. Normally spoken, the access
to a linked list structure is sequential, but we only insert and retrieve elements at the
front of the list, and so we need only one access to insert or retrieve an element.
That's why the access to the linked list in this case is called direct. The linked list
implementation is more difficult to implement, and it uses per element additional
storage space.

Table 5: Stack characteristics

I Stack I
Complexity

Operation Array Linked list

CLEAR O(c) O(c)

TOP O(c) O(c)

POP O(c) O(c)

PUSH O(c) O(c)

EMPTY O(c) O(c)

FULL O(c) -
Access Direct Direct
Size Fixed Dynamic

c = constant.

Stacks are used for controlling the recursive procedures in programming languages.
Stacks are automatically created and destroyed by the host of the process, store state
data and other data temporarily, while another (or the same) process is called. After
finishing the called process, the stopped process can continue in its old state by
retrieving it's state data from the stack. Stacks are also often used in language
compilers implementations.

3.4.4. Queues

A queue is another special list, where the items are inserted at one end of the Iist(the
rear) and deleted at the other end of the list (the front). As for stacks, any list
implementation is possible for queues, but we can take advantage of the fact that
insertions are only done at the rear and deletions are only done at the front. We can
keep a pointer (or cursor) to the first and last element of the list. This makes it possible
to implement the operations on the queue much more effective.

18

------------Software implementations and their complexity

We can implement the queue with an array and a linked list. We use a circular array,
to make optimal use of the memory space. Both implementations are shown in figure
3.4. The characteristics of the queue are found in table 6.

Mexlenth
1

Q,f'OIlt

........'-----'+----1 ., I +----1 a2 I =P
Q.front

(b)

Figure 3.4. (a) Circular array and (b) linked list implementation of a queue.

Table 6: Queue characteristics

I Queue I
Complexity

Operations Array Linked list

CLEAR O(c) O(c)
FRONT o(c) O(c)
ENQUEUE a(c) a(c)
DEQUEUE a(c) a(c)
EMPTY a(c) a(c)
FULL a(c) -
Access Direct Direct
Size Fixed Dynamic

c = constant.

Queues are mostly used as buffer between two processes, which communicate with
each other.

19

------------Software implementations and their complexity-

3.5. Tables

A table is a list of records with two different fields, Le. the key field and the data field.
Tables are mostly used for converting data of one type to another type. For example,
we can think of a video memory, with for every pixel (=position) an intensity and a
colour. The key is the pixel position and the data is the colour and intensity. The key
of every record is unique, which makes it possible to identify every record of the table.
The table is addressed by the key of a record, so if we want to retrieve a record with
key K, then we have to look in the table for the record with key K.

3.5.1 Implementations

There are several software implementations for a table. The first one is a mapping to
an array of records. It is also possible to map the table to a linked list of records. Both
implementations are shown in figure 3.5.

1

2

I

I)
malenglh

Key Data

(a)

LuI------'

(b)

Figure 3.5. (a) Array and (b) linked list implementation table.

For every INSERT, DELETE, RETRIEVE and MEMBER operation we have to search
the whole list, so the complexity of most of the operations is D(n), which is not good
for a table (tables are often used for fast reference). But there is an other
implementation technique, called hashing. Then, the key is translated by a translation
function to an address. We call such a translation function a hash function. It can
occur that the computed address does not contain the record being sought, but an
other record with a different key. When this happens, a search of other addresses is

20

------------Software implementations and their complexity

required, and this is known as rehashing. It is important that the hash function satisfies
the following properties:

1. They compute rapidly.
2. They produce a random distribution of index values.

It is difficult to find a perfect hashing function. To find a good hashing function, it is
necessary to know all possible keys and the available memory space in advance. With
a hash table it is possible to retrieve and insert records in a fast way.

There are two implementations of hashing, open or external hashing and closed or
internal hashing. In figure 3.6. (a). we see the basic structure for open hashing.

o
11-----;

8·1 ,,=------,..,,-1
Bucket table

(a)

heal - 3 0
h(b) - 0 1
h(c) -4 2

h(d) - 3 3
4
6
8
7

(b)

b

a
c
d

•••
•••

•••

Figure 3.6. (a) Open hashing and (b) closed hashing.

The input set (keys) is divided in a finite number of classes. The partitioning is done
by a hash function h(x), which computes the bucket number 0..8-1 where the record
is stored. Each bucket contains a pointer to a linked list, containing records. We need
a constant amount of time to find the bucket, and a small amount of time to find the
record in the linked list. For a good performance, we have to choose a hash function
that gives a random distribution of elements over the buckets, and the number of
buckets 8 has to be greater than n/2.

The closed hashing structure is simpler (figure 3.6.(b», but the hashing strategy is
more complicated. Now if we want to insert an element and we have computed the
address of a record, it is possible that this address is occupied by an other record.

21

------------Software implementations and their complexity

Then we have to rehash and find an other place where we can store the record. We
can use a rehash function or use a simple strategy by picking the first free place. This
last strategy is used in the example of figure 3.6.(b).

If next an element is not on its computed address, we have to look at the addresses,
until an empty place is reached. If in the meanwhile an element is deleted, it is possible
that we reach an empty place, before we reach the searched element. That is why we
have to mark places of deleted elements. For a good performance, we have to choose
a good hash function, and the size of the table should be greater than 1.1 *8. See also
[AH083], [KOH87]. The characteristics of each implementation, and the complexity of
the operations is given in table 7.

Table 7: Table characteristics

Table

Complexity / representation

Implementation Array Linked Open Closed
list hashing

.
hashing

.
CLEAR O(c) O(c) O(B) O(B)

INSERT O(n) O(n) O(c+n/B) O(c+ 1/(1-n/B)
DELETE O(n) O(n) O(c+n/B) O(c+ 1/(1-n/B)
RETRIEVE O(n) O(n) O(c+n/B) O(c+ 1/(1-n/B)
MEMBER O(n) O(n) O(c+n/B) O(c+ 1/(1-n/B)
FULL O(c) - - O(c)

EMPTY O(c) O(c) O(c) O(c)

Access Sequential Sequential Direct/Seq. Direct/Seq.
Size Fixed Dynamic Dynamic Fixed

c = constant, n = number of elements In table•
• B = number of buckets (open) c.q. size of hash table (closed).

3.6. Trees

A tree imposes a hierarchical structure on a collection of items. Familiar examples of
trees are organization charts. Trees are used to analyze electrical circuits and to
represent the structure of mathematical formulas. Trees also arise naturally in many
different areas of computer science. For example, trees are used to organize
information in database systems and to represent the syntactic structure of source
programs for compilers.

22

------------Software implementations and their complexity-

3.6.1 Implementations

There are many different variants of trees, and each tree has its own optimized set of
operations. But first of all, we'll discuss some implementations of the tree defined in
chapter 2. These implementations are mostly a mix of an array and a linked list
implementation, to make the operations as effective as possible.

We suppose that the nodes are named 1,2,3,..,n. This numbering can be random, but
we suppose that we start numbering with number 1 and stop with number n for a tree
with n nodes.

The array implementation of a tree uses the property that each node has a unique
parent. The parent of every node is stored in an array. The root, which lacks a parent,
will point to a null node. With this representation the operation PARENT, which looks
for the parent of a node, can be executed in fixed time. A path going up the tree, that
is, from node to parent to parent, and so on, can be traversed in a time proportional
to the number of nodes on the path. We support the LABEL operator by adding
another array L, such that L[i] is the label of node i, or by defining the elements of
array A to be records consisting of an integer (cursor) and a label. An example of
such an implementation is given in figure 3.7.

2/'~3
/\ /\

4 5 9 10

/1\
678

(8)

(b)

Figure 3.7. (a) A tree and its (b) parent pointer representation.

Such a parent representation does not facilitate operations that require child-of
information. Given a node n, it is expensive to determine the children of n, and the
implementation does not specify the order of the children of the node. Thus.
operations like LEFT CHILD and RIGHT SIBLING are not well defined. We could
impose an artificial order, for example, by-numbering the children of each node after

23

------------Software implementations and their complexity

numbering the parent, and numbering the children in increasing order from left to right.
Then the operations LEFT_CHILD and RIGHT_SIBLING are defined. The operations
PARENT, LABEL, ROOT and CLEAR are also defined, but the operation CREATE can
not be implemented with this structure. This implementation can't represent multiple
trees, which is necessary for the operation CREATE.

An important and useful representation of trees is to form for each node a list of its
children. The list can be represented by any of the methods suggested in paragraph
3.4., but because the number of children of each node can vary, the linked-list
representations are often more appropriate. Figure 3.8. suggests how the tree of figure
3.7.(a) might be represented.

I bela panter

21 '>I 3 I • I
-~41 5 I • I-r-..

• 91 "I 101 • 1
-I---i 6 I 71 8 1• 1

•
•
•
•
•

header

Figure 3.8. Linked-list representation of a tree.

An array of header cells is indexed by the nodes, and each cell contains the label of
that node and a pointer to a linked list of child nodes. If a node has no children, then
a nil pointer is used. The root is stored in a separate root field. With this representation
it is easy to implement the operations LEFT CHILD, LABEL, ROOT and CLEAR. The
operations RIGHT SIBLING and PARENT are more difficult to implement, and the
operation CREATE-can not be implemented. An extra operation should be defined to
build the tree.

The data structure described above can't create large trees from smaller ones, using
the CREATE operator. The reason is that all trees have a separate array of headers
for their nodes. For example, to implement CREATE(T,2,1,T2 ,T2) we would have to copy
T, and T2 into a third tree T and add a new node with label I and two children - the
roots of T, and T2•

If we wish to build trees from smaller ones, the representation of nodes from all trees
should share one area. This can be done by adding an array with pointers to the root
of every tree. If we want to implement the RIGHT_SIBLING operation effectively, we

24

------------Software implementations and their complexity

have to add pointers to the right sibling element in the tree. This representation is
given in figure 3.9.

A T , • 3 0 •/\ 2 • 4 B 3
B C 3 , 4 C •I 4 2 • A •

0 5 6
treellst 7

(a) 8
--r------'

available

n
n •

left- parent label right
child sibling

(b)

Figure 3.9. (a) A tree and its (b) left-child, right sibling implementation.

With this representation it is easy to implement all defined operations. There are many
special trees, each for a special purpose, and all with its own operation set. Usually,
trees are used to store information, which has to be searched for certain elements.
They are also used for the implementation of other data structures, like sets. The
characteristics of the implementations and the complexity of the operations are given
in table 8.

Table 8: Tree characteristics

Tree

Complexity / representation

Operations Parent Linked list Left child-
pointer Righfsibling

CLEAR O(n) O(n) O(c)
PARENT O(c) O(n~ O(c)
LEFT CHILD - O(c) O(c)
RIGHT SIBLING - - O(c)
LABEL O(c) O(c) O(c)
CREATE - - O(c)
ROOT 0(109 n) O(c) O(c)
Access Direct Direct/seq. Direct
Size Fixed Dynamic Fixed/Dynamic

c =constant, n =number of nodes In tree.

25

------------Software implementations and their complexity

There are some well known algorithms for trees. The depth-first search (dfs) and the
breadth-first search (bfs) are some often used search algorithms. These algorithms are
also used with graphs (a tree is a very special kind of graph), and are discussed in
section 3.8. See also [AH083] , [COR90], [MAN89] and [SED88].

3.7. Sets

The set is a very often used data structure, often with only a subset of operations.
Using this knowledge, we can define several representations for a set.

3.7.1. Simple implementations

The best implementation of a set structure depends on the operations to be performed
and on the size of the set. When the set consists of a small 'universal set' whose
elements are the integers 1,oo,N for some fixed N, then we can use a bit-vector
(boolean array) implementation. The set is represented by a bit vector in which the lh
bit is true if i is an element of the set. The major advantage is that MEMBER, INSERT,
and DELETE operations are performed in fixed time by directly addressing the
appropriate bit. UNION, INTERSECTION, and DIFFERENCE can be performed in a
time proportional to the size of the universal set. Also the other operations can be
executed in a constant amount of time. The main disadvantage of this implementation
is that all elements must be in a small, predefined universal set.

It should be evident that sets can be represented by lists, where the items in the list
are the elements of the set. If we use a linked list, it uses, unlike the bit-vector
representation, space proportional to the size of the set represented, not the size of
a universal set. Moreover, the list representation is more general since it can handle
sets that need not be subsets of some finite universal set.

When we have operations like INTERSECTION on sets L1 and L2 represented by lists,
we have several options. If the universal set is linearly ordered, then we can represent
a set by a sorted list. With unsorted lists we must match each element on L 1 with each
element on L2 , a process that takes O(n2

) steps on lists of length n. But if we use
sorted lists, this operation takes only O(n) steps. On the other hand an insertion in an
unsorted list takes only O(c) steps (if we insert at end of list), while an insertion in a
sorted list takes O(n) steps.

Another representation is the hash table. The set-element is stored in the key field, and
the data field will be empty. The operations INSERT, DELETE, and MEMBER will be
executed in a constant amount of time, but other operations can not be implemented.
The characteristics of the implementations discussed above are given in table 9.

26

------------Software implementations and their complexity-

Table 9. Set characteristics (1)

Set

Complexity 1 representation

Implement. Bit- Ust - Alray Ust • Unked list Hash table-

Operation vector· Ordered Unordered Ordered Unordered Open Closed

UNION O(N) O(n) O(n~ O(n) O(n~ - -
INTERSECTION O(N) O(n) O(n~ O(n) O(n~ - -
DIFFERENCE O(N) O(n) O(n~ O(n) O(n~ - -
CLEAR O(n) O(c) O(c) O(c) O(c) O(B) O(B)

MEMBER O(c) 0(109 n) O(n) 0(") O(n) O(c+n/B) O(c+ 1/(1-n/B)
INSERT O(c) O(n) O(n) O(n) O(n) O(c+n/B) 0(c+1/(1-n/B)

DELETE O(c) O(n) O(n) O(n) O(n) O(c+n/B) O(c+ 1/(1-n/B)
ASSIGN O(N) O(n) O(n) O(n) O(n) - -
EQUAL O(N) O(n) O(n~ O(n) O(n~ - -
MIN O(N/n) O(c) O(n) O(c) O(n) - -
MAX O(N/n) O(c) O(n) O(c) O(n) - -
Access Direct Dlr./Seq. Dlr./Seq. Sequent. Sequent. Dlr./Seq. Dlr./Seq.
Size Fixed Fixed Fixed Dynamic Dynamic Fixed Dynamic

• N =maximal set size, n =number of set elements
- see note table 7.

3.7.2 Advanced implementations

We will now introduce some data structures for sets that permit a more efficient
implementation of common collections of set operations. These structures however,
are often more complex and are often only appropriate for large sets. All are based
on various kinds of trees, such as binary search trees and balanced trees.

Binary search tree implementation of sets

A representation of a set can be given by a binary search tree, a basic data structure
for representing sets whose elements are ordered by some linear order (denoted by
'< '). This structure is useful when we have a set of elements from a universe so large
that it is impractical to use the elements of the set themselves as indices into arrays.
A binary search tree can support the set of operations INSERT, DELETE, MEMBER
and MIN, taking on the average O(log n) steps per operation for a set of n elements.

A binary search tree is a tree in which the nodes are labelled with elements of a set.
The important property is that all elements stored in the left subtree of any node x are
all less than the element stored at x, and all elements stored in the right subtree of x
are greater than the element stored at x. This condition, called the binary search tree

27

------------Software implementations and their complexity

property, holds for every node of a binary search tree, including the root. Figure 3.10
shows two binary search trees representing the same set of integers.

10

/~
6 14

'" / '"7 12 18

/
16

Ca)

Figure 3.10. Two binary search trees.

16

/~
14 18

/
6

"'-10

/"'-
7 12

(bl

Suppose a binary search tree is used to represent a set. The tree property makes
testing for membership in the set simple. To determine whether x is a member of the
set, first compare x with element r at the root of the tree. If x = r, we are done, the
element is found. If x < r, then x can only be in the left subtree of r, if x > r, then x can
only be in the right subtree of r. Then we repeat this operation on the left, c.q. right
subtree.

The operation INSERT is easy. We have to compare the element x with a node
element. If the node element equals x, then x is already in the set. If x is smaller than
the node element, then we have to repeat this comparison with the element of the left
child. If there is no left child, then that is the position, where x has to be inserted. This
is also true for the right child.

MIN is also easy to implement. We only have to search in the tree for the first left child
node that has no left child. Using this, the operation DELETEMIN is also easy. We
replace the element found with MIN, by its right child.

The operation DELETE is implemented by using DELETEMIN. When we want to delete
element x, we have to locate this element. If it is found, we delete it and replace it by
the minimal element of its right sub tree (if exist). In figure 3.11 we see an insertion of
6 and a deletion of 10 in the tree of figure 3.10.(a).

10

/~
5 14

'" / '"7 12 18

/
e 15

Ca>

12

/~
5 14

'" '"7 18

/
15

(bl

Figure 3.11. Tree 3.10(a) after insertion of 6 (a) and after deletion of 10 (b).

28

------------Software implementations and their complexity

A binary search tree is mostly implemented by linked records. The implementation of
the tree of figure 3.10. (a) is given in figure 3.12.

Figure 3.12. Binary search tree implementation.

If we insert a sorted list into a set, we don't get a balanced binary tree, but a chain of
nodes, so the complexity of the operations would be O(n). If we assume a random
input sequence, we have a complexity O(log n).

Balanced tree implementation of sets

Another implementation is the balanced tree. This representation has as advantage
that the execution of the operations has a time of O(log n) worst case. There are many
implementations of balanced trees, such as the 2-3 tree, the AVL-tree, the B-tree etc.
One of the balanced tree implementations is the '2-3 tree'. A 2-3 tree is a tree with the
following two properties.

1. Each interior node has two or three children.
2. Each path from the root to a leaf has the same length

We shall consider a tree with zero nodes or one node as special cases of a 2-3 tree.

We represent sets of elements that are ordered by some linear order <, as follows.
Elements are placed at the leaves; if element a is to the left of element b, then a < b
must hold. We shall assume that the ordering of elements is based on one field of a
record that forms the element type; this field is called the key. For example, elements
might represent information about students, and the key field might be 'id-number'.

At each interior node we record the key of the smallest element that is a descendant
of the second child. If there is a third child, we record the key of the smallest element
descending from that child as well. Figure 3.13. is an example of a 2-3 tree.

29

Figure 3.14. Insertion of 10 in 2-3 tree.

------------Software implementations and their complexity-

Figure 3.13. A 2-3 tree.

Observe that a 2-3 tree representing a set of n elements requires at least 1 + log3n
levels and no more than 1 + 10g{1levels. Thus, path lengths in the tree are O(log n).

To test membership of a record with key x, we just have to move down the tree and
compare x with the keys stored at the internal nodes. If x < first key, then we go to
the first sub tree. If there is a second node key and if first key ~ x < second key, then
we search the second subtree. If second key ~ x, then we search the third tree. When
x equals one of the node keys, we know that x is a member of the set, and we don't
have to search further. So testing membership takes O(log n).

To insert elements, we proceed at first if we were testing membership of x in the set.
However, at the level just above the leaves, node's children do not include x. If that
node has only two children, we simply make x the third child of that node, placing the
children in proper order, and adjusting the keys of the node.

Suppose, however, that x is the fourth child of the node. We cannot have a node with
four children, so we split the node in two nodes, giving the first new node the two
smallest elements and the second new node the other two. Now we have to insert an
extra node among the parent of the node, just as the insertion at the leaf level. One
special case occurs when we wind up splitting the root. Then we create a new root,
whose children are the two nodes into which the old root was split. This is how the
number of levels increase. In figure 3.14. an example is given of an insertion.

30

------------Software implementations and their complexity

When we delete a leaf, we may leave its parent node n with only one child. If that
node n is the root, delete the node and lets its lone child be the new root. Otherwise,
if the parent p of node n has another child, adjacent to n on either the right or left, and
that child of p has three children, we can transfer the proper one of those three to n.
Then, n has two children and we are done. If that adjacent node has only two children,
transfer the lone child of n to that adjacent node and delete node n. Should parent p
now have only one child, repeat all the above recursively. An example of a deletion is
given in figure 3.15.

Figure 3.15. Deletion of 7 in a 2-3 tree.

This 2-3- tree is one of the many implementations of balanced trees. This tree can
easily be extended to, for example, 2-3-4 trees. They all have in common that the
maximal time needed for execution of the operations is O(log n). In table 10 an
overview of the characteristics is given.

Table 10. Set characteristics (2)

Set

Complexity / representation

Operation Binary search tree Balanced tree

CLEAR O(c) O(c)

INSERT 0(109 n) - O(n) 0(109 n)

DELETE 0(109 n) - O(n) 0(109 n)

MEMBER 0(109 n) - O(n) 0(109 n)

DELETEMIN 0(109 n) - O(n) 0(109 n)

MIN 0(109 n) - O(n) 0(109 n)

Access Sequential Sequential

Size Dynamic Dynamic

c = constant, n = number of elements In set.

For more information about set representations, trees etc. see [AH083], [COR90],
[MAN 89], [SED88] and [WAR90].

31

------------Software implementations and their complexity-

3.8. Graphs

Graphs, representing relationships among data objects, are used for problems arising
in computer science, mathematics, engineering etc. This paragraph presents the basic
structures that can be used to represent graphs. Also some algorithms are given,
which are often used on graphs.

3.8.1 Implementations

When we look at a graph, we should see a difference between a directed and an
undirected graph. However, an undirected graph can be represented by a directed
graph (figure 3.16), so the representation can be the same. This makes the graph
structure more general.

Figure 3.16. Directed and undirected graph.

Adjacency matrix implementation of graphs

The appropriate choice of data structure depends on the operations that will be
applied to the edges and nodes of the digraph. One common representation for a
digraph is the adjacency matrix. Suppose the nodes are in {1 ,2, .. ,n}. The adjacency
matrix is an n x n matrix of edge labels, where A[iJl is the label of the edge from node
i to node j. If there is no edge between two nodes, there should be a special nil-value
in the matrix. There should also be a list with the nodes that are present at that
moment (with their node labels). Figure 3.17 shows such an implementation.

u b _ v node label 1 234
l 1 l 2 'm '0'f'-' b "H 2 v 2 b •

3 w 3 • b

• • • • 4 x 4. b

b
adjacency matrix

}--oJ .H
xC 4 I 3)w

'-" b

Figure 3.17. Digraph with adjacency matrix representation.

32

------------Software implementations and their complexity

In the adjacency matrix representation the time required to access an element of an
adjacency matrix is independent of the number of nodes and the number of edges.
This representation is useful in those graph algorithms in which we frequently need to
know whether a given edge is present and what's its label is. The main disadvantage
of using an adjacency matrix is that the matrix requires n2 storage even if the digraph
has less than n2 edges. So if we have a sparse adjacency matrix, we can better use
another representation.

Adjacency list implementation of graphs

Another common representation for a digraph is called the adjacency list
representation. The adjacency list for node i is a list, in some order, of all edges
adjacent to i. We can represent the graph by an array with all nodes and their labels
(if the node exists), with a pointer from every node to the adjacency list for that node
i. The adjacency list representation of a digraph requires a storage proportional to the
sum of the number of nodes and the number of edges (n + e). This representation
is often used when the number of edges is less than n2

. However, a potential
disadvantage of the adjacency list representation is that it may take D(n) time to
determine whether there is an edge from node i to node j, since there can be D(n)
edges on the adjacency list for nodes i. Figure 3.18 shows such an implementation.

8
node lebel

a
1 0u
2 v

J;
3 w

c b 4 x

d
w

Figure 3.18. Graph with adjacency list representation.

In table 11 are given some characteristics of the two implementations.

33

------------Software implementations and their complexity-

Table 11. Graph characteristics

Graph

Complexity / representation

Operations Adjacency matrix Adjacency list

CLEAR O(nl
) O(c)

INSERT NODE O(c) O(c)

INSERT EDGE O(c) O(n)

DELETE NODE O(n) o(nl
)

DELETE EDGE O(c) O(n)

RETRIEVE NODE O(c) O(c)

RETRIEVE EDGE O(c) O(n)

Access Direct Direct/Seq.

Size Fixed Dynamic

c =constant, n = number of nodes In graph.

3.8.2 Algorithms

There are many algorithms that are used on graphs. We make a difference between
algorithms for directed and undirected graphs, because each of these two types of
graphs has its own use. First we give some algorithms for directed graphs. We won't
explain the algorithms in detail, we will just explain the problem, give the name of an
often use algorithm, and give the complexity of that algorithm.

- Single source shortest path problem: Consider a directed graph in which each edge
has a non negative label, and one node is specified as the source. When
there is no edge between two nodes, the label is 00. Our problem is to
determine the cost of the shortest path from the source to every other
node, where the length of the path is the sum of the costs of the arcs on
the graph. To solve this problem we use a greedy technique, often
known as Dijkstra's algorithm [AH083], [MAN89], [SED88]. The
algorithm works by maintaining a set S of nodes whose shortest
distance from the source is known. At each step we add to S a
remaining node n whose distance to S is as short as possible. When S
includes all nodes, then the solution is known. If we use an adjacency
matrix representation for the graph, the running time is O(n2), but if the
number of edges e is much smaller than n2

, we might better use an
adjacency list representation for the digraph, and a priority queue
representation for the nodes not yet selected in S. This gives a running
time of O(e log n).

34

------------Software implementations and their complexity-

- All-pairs shortest paths problem: Find the shortest distance from any node to every
other node. We could solve this with Dijkstra's algorithm, taking every
node once as the source. This would take a running time of O(n3

), or if
e is much smaller than n2

, then it would take O(ne log n) time. There is
for this problem an other algorithm known, i.e. Floyd's algorithm
[AH083], [MAN89], [SED88]. This takes also O(n3) time.

- Transitive closure: Given a graph G = (V,E), the transitive closure C = (V,F) of Gis
a directed graph such that there is an edge (v,w) in C if and only if there
is a directed path from v to w in G. For this problem is developed an
algorithm by Warshall, called Warshall's algorithm [AH083], [MAN89],
[SED88] that is based on Floyd's algorithm. This algorithm has also
complexity O(n3).

- Depth-first search: (dfs) To solve many problems dealing with directed graphs
efficiently we need to visit the nodes and edges of a digraph in a
systematic fashion. Depth-first search is one important technique for
doing so. Depth-first search can be used for many other algorithms.
Suppose we have a digraph G in which all nodes are initially marked
unvisited. Depth first search works by selecting on node n of G as start
node, n is marked visited. Then each unvisited node adjacent to n is
searched in turn, using depth-first search recursively. If some nodes
remain unvisited, we select an unvisited node as a new start node. We
repeat this process until all nodes of G have been visited. This technique
is called depth first search because it continues searching in forward
direction as long as possible. We can use an adjacency list
representation for the graph and an array to mark nodes visited or
unvisited. The complexity is O(e), i.e the time to look to all edges
adjacent to all nodes. There are several algorithms based on the depth
first search. Some of them are:

- Depth-first spanning forest: During a dept first search traversal of a
digraph, certain edges, when traversed, lead to unvisited nodes.
The edges leading to new nodes are called tree edges and they
form a depth-first spanning forest.

- Test for acyclicity: testing whether a directed graph is cyclic or not.
- Topological sort: a process of assigning a linear order to the nodes of

a directed acyclic graph so that if there is a directed edge from
node i to node j, then i appears before j in the linear ordering.

- Finding strong components: finding a maximal set of nodes in which
there is a path from any node in the set to any other node in the
set (cyclic).

See also [AH083], [MAN89] and [SED83].

35

------------Software implementations and their complexity

Now, we give some algorithms for undirected graphs.

- Minimum cost spanning tree: A spanning tree is a free tree (Le. a tree with no
directions) that connect all nodes of the graph. The cost of a spanning
tree is the sum of costs of the edges in the tree. There are two popular
methods for finding the minimum cost spanning tree. The first is Prim's
algorithm [AH083], [SED88], which has a complexity of 0(n2

), and
Kruskal's algorithm [AH083], [SED88], which has a complexity of O(e
log e). If e is much less than n2

, Kruskal's algorithm is superior, although
if e is about n2

, we would prefer Prim's algorithm.

- Depth-first search: (dfs) This algorithm is the same as the depth-first search for
digraphs, but the implementation is simpler. The complexity is also O(e).

- Breadth-first search: (bfs) From each node n that we visit, we search as broadly as
possible by next visiting all the vertices adjacent to n. We repeat this on
all adjacent nodes of node n. This strategy can also be applied to
digraphs. The complexity of this algorithm is just as dfs O(e) [AH083],
[SED88].

- Articulation points and biconnected components: An articulation point of a graph is
a node n such that when we remove n and all edges incident upon n,
we break a connected component of the graph into two or more pieces.
A connected graph with no articulation points is said to be biconnected.
Depth-first search is particularly useful in finding the biconnected
components of a graph. The solution can be found in O(n + e) time, Le.
O(e) time if n < < e.

- Graph matching: If a graph is divided in two sets of nodes, with only edges between
nodes of the two sets, we can use this for 'matching problem'. For
example, we have a set of teachers, who give each one or more
courses, and we have a set of courses. Then, find the best match of
teachers with courses. The solution of this problem can be given in
O(ne) time.

For more information about data structures, their software implementation and
algorithms, see [AH083], [COR90], [MAN89], [SED88], and [WAR90].
In the next chapter we will look to basic hardware building blocks, in special to
physical memories, and their behaviour. These memories can be used to map the data
structures to hardware.

36

----------------- Basic hardware building blocks --

4. Basic hardware building blocks

We need some basic building blocks that we can use for the implementation of data
structures in hardware. Most building blocks, like adders, multipliers, registers,
counters, busses, etc are well described in the manuals of many hardware description
tools. We will not discuss those common building blocks, but only some very
important blocks, namely the memory structures.

Data structures store data in an easy way, so if we want to map these data structures
to hardware, it is necessary to know what kind of hardware memory structures there
are. For that reason, we'll discuss here two memory structures, namely the random
access memory (RAM) and the content addressable memory (CAM).

4.1 RAM

The random access memory is a memory what can be accessed by pointing to the
position (address) of the data word. It is possible to address every single data word
in the memory. That is why it is called a random access memory. There are two
versions of a random access memory, which are a synchronous RAM and an
asynchronous RAM. Looking at the internal structure of a RAM, we can split it up in
two parts, Le. the memory matrix and the control part (figure 4.1.). The control part
controls all the possible operations, the memory matrix stores the data.

RAM

I I

Date...Jn c=~I----'----"':::""":::"1

Address

.BAM

Memory
maIttx

R,..w Ca

Figure 4.1. Synchronous and asynchronous RAM.

37

----------------- Basic hardware building blocks -

The first RAM shown above is a synchronous RAM, which executes operations on the
first clock transition from '0' to '1'. There are no operations executed as long as the
line 'chip select' (CS) is low. If the line CS is high, then the following commands can
be executed:

read:
This operation is executed as the line R W is high. The data word at the
position of the address at address inpuf port ADDRESS is read from the
memory matrix and sent out to the output port DATA_OUT.

write:
This operation is executed as the line R W is low. The data word at the input
port DATA IN is written to the memory matrix at address given by the address
input port ADDRESS.

For an asynchronous RAM we have the same operations, but they are now executed
after a low to high transition of CS (not on a clock, because it's not available). For
more information on RAMs, see the data sheets of some RAMs.

4.2 CAM

An associative memory (content addressable memory) is a memory, in which the
access to the memory element information is based on a part of or all the information
stored in the memory element. We get access to the CAM by matching a part of the
information with a reference data (the key). If a memory word in the CAM has the
same contents as the key, this memory word is selected. In a conventional memory,
the access to the memory is based on the location (address) and not on its contents.
See also [L0075] and [KOH87].

We see that the only real difference between a RAM and a CAM is that for a RAM,
every element can be read and be written, and that a CAM memory also can compare.
An associative memory is much more complex than a conventional memory (size CAM
is about 3 to 4 times the size of a RAM), and for that reason more expensive.

To find a certain data word in the associative memory, a reference data word (key) is
stored in the match register of the memory. Then, this key is compared in parallel with
all data words in the memory, and just those words that 'match' with the reference
word, give a match sign in the association register. This match info can be converted
to an address of the first matching element. It is possible to compare just a part of the
key with the memory elements. A mask is placed (a bit pattern just as long as the key)
on the key, with 'cares'('1') and 'don't cares'('O'). Just those bits that 'care' (maskbit
= '1 '), are compared with the bits of the memory elements. It is possible that more
than one memory element match with the 'masked' key, then we have a 'multiple
response'. When a multiple response occurs, it is possible to read those addresses
consecutive. The basic structure of a CAM is given in figure 4.2.

38

----------------- Basic hardware building blocks --

IN

r-------,~~-~

Memory I I t
matIIx l I i

i J
- ~l:..-:l~'----l

"I
Mask register

T
I Match register

c::;l '1
J\.

Control logic
-v

OUT

Figure 4.2. The basic CAM structure.

An elementary CAM is build from the following blocks:

- Memory matrix: In this bit matrix the data is stored.
- Match register: This register contains the reference data, which has to be compared

with the data in the memory matrix.
- Mask register: This register contains data, which specifies what bit of the match

register has to be compared and which not.
- Full register: This register, with as many places as memory words, gives a 1

on position i if memory word i is written. This register indicates
whether a memory position contains useful data.

- Association register: This register, with as many places as memory words, gives a
1 on position j if the memory word on position j associates with
the key in the match register.

- Association logic: This block computes the addresses of the associative memory
words.

- Control logic: This block controls the all operations.

We can make a difference between several associative memory matrices, by the way
the handle the matching. There are 5 types of associative memory (see also figure
4.3.), i.e:

- Identifying memory (catalog memory): All bit places of a memory must be compared
to associate (no mask).

- Fixed tap memory: The memory has an associative part and a data part. The
associative part can be compared with the key, the data part can
only store data. All bit places of the associative part must be
compared to associate (no mask).

39

----------------- Basic hardware building blocks --

(a) catalog memory

1~Z ----J

(b) fixed tag memory

I~Z ----J

(e) partial tag memory

~ match bit, not masked

11 match bit, masked
(- don't cafe)

Dconventional data part

1
z

(d) fully associative memory

i fully associative memory Conventional memory

l~ coder Idecoder rN1 _
Z associative part I~__---,f data part

(e) hybrid associative memory

Figure 4.3. Types of associative memory.

- Partial tag memory: The memory has an associative part and a data part. For
association can be taken any subpart of the association part
(mask).

- Fully associative memory: All bits of the memory can be used for association, and
every subset of bits can be used for association (mask).

- Hybrid associative memory: A fully associative memory, linked together with a data
part. It is possible to link the CAM with the data part directly, but
it is better to code the association word to an address, and use
a data part a conventional RAM. The advantages of this method
are:

- We have the address of the word that associates.
- We can read a data word out of the data part with an

address, without using the associative part.

The model that we will use as model for the CAM, is based on the software model
developed by ir. A.C. Verschueren, and is given in [VER90]. The used model has a
few minor modifications, but the principle is the same.

The Contents Addressable Memory models a memory type where data words can be
addressed by comparing bits in these words with a given reference word. The memory
is fully synchronous, all commands are executed at the clock edge following their
issuing.

If a memory word matches the given 'match data' word in the bits that are ONE in the
'match mask' word, that memory word is said to be matching. Both 'match data' and
'match mask' are input ports. An output provides us information whether there are no

40

----------------- Basic hardware bUilding blocks -

matches, one match or more matches. An address output gives the first matching
address. A data output will provide the contents of the first matched memory word (all
ZEROes if no match is found). These outputs are synchronous to the clock (figure
4.4.).

Mset

Mres

Nmset

Nmres

Match data

Match mask

AddUn

CAM DatlLout

Numomw

Op_code Clk Cs

Figure 4.4. Block structure of the CAM.

Writing to the memory can be done at the first matching address, or to all matching
addresses at the same time. Writing is done with date on the input ports 'mset' and
'mres'. If we want to write a data word 'data' we just have to set mset equal to 'data'
and mres equal to non-'data'. The 'write all' function can also modify the non-matching
addresses with data from the input ports 'nmset' and 'nmres'.

We use set and reset ports, so that we can modify every memory word by bit. With
this mechanism we will be able to change every single bit in the memory, without
changing the other data.

Besides this, a standard address input can be added to read and write at addressed
locations (synchronous).

It should be mentioned, that the registration of which cells are filled and which not
should be done by the user him/herself, because there is no 'full register' in this CAM.
This can be done by reserving one bit for each cell as flag, which have to be set as
a cell is being filled and reset as a cell is being deleted.

The CAM recognises the following commands (op_code):

reset:
Fills the CAM with the user defined 'synchronous reset' contents at the next
clock, then executes the function 'match' to initialize the output ports. This
function overrules all other commands.

41

----------------- Basic hardware building blocks--

match:
Looks for the first memory word that matches with the 'match data' and 'match
mask' word.

Input ports: match data, match mask.
Output ports: numomw, addr out, data out.- -
This function uses the match mask and match data to check the contents of
the CAM. The contents of a cell 'match' when the bits in the cell that
correspond with ONE bits in the match mask word equal the corresponding bits
in the match data word (all other bits in the cell and the match data word are
don't care). The following events occur at the next clock:

The number of matches is counted and made visible at output port
numomw (00 = no matches, 01 = one match, 11 = multiple matches).
The data-out output will output contents of the first matched cell (with
lowest address). If no match is made, this output will carry the value O.
The address output will output the address of the first matched cell (The
size of the memory if no match is found).

wrfirst:
Writes the first matching word.

Input ports: match data, match mask, mset, mres.
Output ports: numomw, addr_out, data_out.

This function behaves like 'match' and adds the following:

The contents of the first matched cell are replaced at the next clock
using the formula:

contents: = (contents AND (NOT mres» OR mset

Thus, setting bit has higher priority than resetting bits. To set an element
to a certain data word data in, we have to make mset equal to data in
and mres equal to all ONE~ -

wrall:
Writes all the matching words. This command can change also the non
matching words.

Input ports: match data, match mask, mset, mres, nmset, nmres.
Output ports: numomw, addr_out, data_out.

This function behaves like 'match', and changes §11 matched cells like 'wrfirst'
using the formula:

42

----------------- Basic hardware building blocks -

contents: = (contents AND (NOT mres)) OR mset

In addition, all cells that do not match are replaced at the next clock using the
formula:

contents: = (contents AND (NOT nmres)) OR nmset

If we don't want to change the cells that do not match, we have to make nmset
and nmres equal to all ZEROes.

rdaddr:
Synchronous read command.

Input ports: addr in.
Output ports: numomw, data_out, addr_out.

This function lets the following events occur at the next clock:

The 'number of matches found' numomw is set to '01' if the address is
in range. Numomw is set to '00' if the address is out of range.
The output data out will output the cell contents for the addressed cell.
If the address lies outside the CAM addressing range, this output will
carry the value O.
The address output will output the input address.

wraddr:
Synchronous write command.

Input ports: addr in, mset, mres.
Output ports: numomw, data_out, addr_out.

The 'number of matches found' numomw is set to '01' if the address is
in range. Numomw is set to '00' if the address is out of range.
The contents of the addressed cell will be replaced by the data from the
'mset' and 'mres' input ports using the formula:

contents: = (contents AND (NOT mres)) OR mset

The output data out will output the cell contents for the addressed cell.
If the address lies outside the CAM addressing range, this output will
carry the value O.
The address output will output the input address.

When we execute a 'match' operation, it is possible that there is a multiple match. If
we want all addresses and/or data of these matching cells, we have to mark the cells

43

----------------- Basic hardware building blocks -

which match, but are not read yet. Therefore we also need to use one bit per cell.
Marking the cells that match can be done by executing a 'wrall' command, with for
all bits of nmset and mres all ZEROes, and for nmres and mset all ZEROes, except the
match mark bit, which should be ONE.

4.2.1 CAM applications

A lot of research is done on possible application of a CAM. We will give some possible
applications, but don't discuss them in detail. A survey of these applications and a
detailed description is given by [L0075].

We can divide the CAM applications in a few classes. That are:

Sorting
- Sorting a CAM (ascending or descending).

Searching
- Searching for a particular word
- Searching for the smallest word.
- Searching for the biggest word.
- Searching for a word that precedes to the key word.
- Searching for a word that follows on the key word.
- Searching for all words smaller than the key word.
- Searching for all words greater than the key word.
- Searching for all words between two key words.
- Searching for the word with the least Hamming distance to the key.

Matrix computations (only useful for sparse matrices)
- Adding matrices.
- Multiplying matrices.
- etc.

Graph algorithms
- Single source shortest path problem.
- Minimal spanning tree.
- etc.

Dynamic stack allocation (only useful with multiple stacks)

It is possible that some applications need extra storage, for example a RAM.

44

-------------- Hardware implementations in VHDL---

5. Hardware implementations in VHDL
In this chapter we give a short overview of possible hardware implementations of the
data structures. We will not give a detailed description, but only a few possibilities.
First, we give a short description of VHDL, a hardware description language, which is
used for the description of the hardware models.

5.1. VHDL

Quoting [L1P90], VHDL is a hardware description language which is standardized by
the IEEE in 1977 and is known as IEEE-1076. VHDL is technology independent, is not
tied to a particular simulator or value set, and does not enforce a design methodology
on a designer. It allows the designer to choose technologies and methodologies while
remaining in a single language.

VHDL supports behavioral description of hardware from the digital system level to the
gate level. One of the primary advantages of VHDL lies in the ability to capture the
operations of a digital system on a number of these descriptive levels at once, using
a coherent syntax and semantics across these levels, and simulate that system using
any mixture of those levels of description. It is therefore possible to simulate designs
that mix high-level behavioral descriptions of some subsystems with detailed
implementations of other subsystems in the model.

With VHDL, it is possible to have one behavioral description, with many structural (low
level) descriptions. This makes it possible to define several hardware implementations
with only one behavioral description. It is also possible to use 'generics', which makes
it possible to create 'generic cells', Le. building blocks of which the size, delay etc. at
can be defined at the moment we want to use a block.

These generic cells, together with the possibility to use several implementations of a
certain behavioral description, makes VHDL a good language to describe the data
structures. For more information of VHDL see [L1P90].

In appendix A are given the behavioral descriptions of the data structures at the digital
system level. The lower level implementations of these behavioral descriptions still have
to be described. This can also be done with VHDL, using self-defined building blocks
and connections between them.

The VHDL compiler of Mentor Graphics does not support generics, so the declaration
of these values is done in a package. Because it was not possible to assign binary
values to bit-vectors, we have used integers to test the behaviour.

45

--------------- Hardware implementations in VHDL--

For every data structure, there are several possibilities for the implementation in
hardware. All structures can be implemented using the following block schematic.

Data structure
r···_-..

j j

i I

Figure 5.1. Basic block structure.

It is possible to optimize some operations of certain data structures for execution
speed, using algorithms. For example, it is possible to optimize the search operations
in a set by using some search algorithms. This can be implemented in two ways. First,
we can add the algorithm to the data structure (figure 5.2.), but then the data structure
looses its generality. We can also create an algorithm, that uses the data structure
(figure 5.2.(b». This solution doesn't change the data structure, but it is not that fast
as the first solution.

~--_._-----~._'

i

!
i
ii .__._. . ._~

(a)

Figure 5.2. Data structures with algorithms.

f················----········---·······,, ,

(b)

We will give for every data structure the behavioral descriptions (appendix A), with
possibilities for the lower level implementations. It is possible that the definitions of the
signals of some blocks must change, for an easy implementation on lower levels, or
for an easy use on higher levels.

All data structures are described using generics, so it is possible to change the size
and the delay of the data structure.

46

-------------- Hardware implementations in VHDL---

5.2. Array

The block schematic of an array is given in figure 5.3.

Figure 5.3. Block schematic of an array.

The array is a one dimensional array with simple elements. The defined operations are:
retrieve and update. The array is a synchronous array, Le. the operations are executed
on the first clock transition from '0' to '1' and only if the enable input EN is '1'. The
operations are executed as defined in section 2.1. The VHDL behavioral description
is given in appendix A.

An array can be mapped on a RAM, by converting the indices to addresses
(subtracting 1 from the index).

5.3. Record

The block schematic of the record structure is given in figure 5.4.

En elk Op_cocIe

Figure 5.4. Block schematic of the record.

The record is a one dimensional record with simple elements. The defined operations
are: retrieve and update. The record is synchronous, Le. the operations are executed
on the first clock transition from '0' to '1' and only if the enable input EN is '1 '. The
operations defined on a record are given in section 2.2. The VHDL description is given
in appendix A.

47

-------------- Hardware implementations in VHDL--

If the identifiers of a record are integers from 1 to n, we can map a record simply on
a RAM, but if the identifiers are random, we will have to use a conversion table with
the addresses of the elements. This table can be implemented with a RAM and a
CAM. It is also possible to implement the record totally with a CAM. The CAM
implementations are faster, but the complexity is much higher.

5.4. Linked list

The block schematic of the linked list structure is given in figure 5.5.

D_out

Next_out
Ready
Full
Empty

Figure 5.5. Block schematic of the linked list.

This is a linked list with simple elements. The elements are identified by their position.
The operations which are defined are: clear, insert, delete, retrieve and next. The
linked list is synchronous, Le. the operations are executed on the first clock transition
from '0' to '1' and only if the enable input EN is '1'. At the beginning of an operation,
the output line READY goes to '0', and becomes '1' again after finishing the operation.
The output line NEXT OUT gives a '1' ifthere is a next position in the linked list. The
lines FULL and EMPTY give the status of the linked list. The exact definitions of the
commands are given in section 2.3. The VHDL description of this data structure is
given in appendix A.

The linked list can be mapped on a ram, using the cursor representation of figure 3.2.
It is also possible to map the linked list on a CAM, using per element a position
number. Locating the position in the CAM list is done in one clock cycle, but if we
insert an element in or delete an element from the list, we have to update the position
numbers of the elements following the inserted/deleted element. So, if we have
random insertions and deletions, the CAM is not much faster, only more complex.

5.5. List

The block schematic of a list structure is given in figure 5.6.

48

-------------- Hardware implementations in VHDL---

D_out

Pos_out
Ready
Fun

~"""'+-"""""II:"r---,Empty

Figure 5.6. Block schematic of the list.

This is a list with simple elements, and the elements are identified by their position. The
defined operations are: clear, insert, delete, retrieve, locate and end. The list is
synchronous, Le. the operations are executed on the first clock transition from '0' to
'1' and only if the enable input EN is '1'. At the beginning of an operation, the output
line READY goes to '0', and becomes '1' again after finishing its operation. The lines
FULL and EMPTY give the status of the list. The exact definitions of the commands are
given in section 2.4. The VHDL description of this data structure is given in appendix
A.

The array and the linked list representations of the list can be mapped on a RAM. As
mentioned, it is also possible to use a CAM implementation for the linked list. This
might be recommendable if we have to sort or search for elements. The CAM
implementation is much faster than the usual RAM implementations for sort and search
operations (if we use some sort or search algorithms for a CAM).

5.5.1. Stack

The block schematic for a stack is given in figure 5.7.

Stack

Full

Empty

En Clk Op_code

Figure 5.7. Block schematic of a stack.

The stack is a stack with simple elements. The defined operations are: clear, push,
pop and top. The stack is synchronous, Le. the operations are executed on the first
crock transition from '0' to '1' and only if the enable input EN is '1 '. All operations are
executed in one clock cycle. The lines FULL and EMPTY give the status of the stack.

49

-------------- Hardware implementations in VHDL--

The exact definitions of the commands are given in section 2.4.1. The VHDL
description of this data structure is given in appendix A.

The best implementation for a stack is a mapping to a RAM.

5.5.2. Queue

The block schematic of a queue is given in figure 5.8.

Queue

Full

Empty

Figure 5.8. Block schematic of a queue.

The queue is a queue with simple elements. The operations which are defined are:
clear, enqueue, dequeue and front. The queue is synchronous, Le. the operations are
executed on the first clock transition from '0' to '1' and only if the enable input EN is
'1 '. All operations are executed in one clock cycle. The lines FULL and EMPTY give
the status of the queue. The exact definitions of the commands are given in section
2.4.2. The VHDL description of this data structure is given in appendix A.

The best implementation of a queue is a mapping to a RAM.

5.6. Table

The block schematic of a table is given in figure 5.9.

Table

En elk Op_code

Figure 5.9. Block schematic of a table.

50

Member
Ready
Fun
Empty

-------------- Hardware implementations in VHDL--

The table is a table with simple elements. The defined operations are: clear, insert,
delete, retrieve and member. For the behavioral description, an unordered array is
used to represent the table. The table is synchronous, Le. the operations are executed
on the first clock transition from '0' to '1' and only if the enable input EN is '1'. At the
beginning of an operation, the output line READY goes to '0', and becomes '1' again
after finishing the operation. The line MEMBER becomes high if the key K_IN is an
element of the table. The lines FULL and EMPTY give the status of the table. The exact
definitions of the commands are given in section 2.5. The VH DL description of this
data structure is given in appendix A.

We can map the table structure to a RAM, but this gives us a slow implementation,
The hash table is easy to map to a CAM, because they have about the same
operations. This is a very fast implementation, but the complexity is much higher.

5.7. Tree

The block schematic of the tree structure is given in figure 5.10.

TJn T_oo1
LabeLout

LabeUn Node_out

NodeJn
Ready
Error

Un Fun
Empty

En elk Op_code

Figure 5.10. Block schematic of the tree structure.

The tree structure is a set of trees with simple elements. The defined operations are:
clear, parent, left child, right sibling, label, create and root. For the VHDL description,
the left child-right sibling representation is used with for every node an entry for the
parent,-the left chlid, the right sibling, the node label and the node number. This is
stored in separate arrays, linked together by cursors. -

The tree is synchronous, Le. the operations are executed on the first clock transition
from '0' to '1' and only if the enable input EN is '1'. At the beginning of an operation,
the output line READY goes to '0', and becomes '1' again after finishing the operation.
The lines FULL and EMPTY give the status of the tree. With the operation CREATE,
the tree names must be given serially on the tree input port. The exact definitions of
the commands are given in section 2.6. The VHDL description of this data structure
is given in appendix A.

51

-------------- Hardware implementations in VHDL--

It is possible to map a tree on a RAM, using the cursor implementation for the linked
list. It is also possible to map the tree to a CAM. In each CAM word we have to store
the node number, its label, its parent and its right sibling. This implementation is not
much faster than a good ram implementation.

5.8. Set

The block schematic of the set structure is given in figure 5.11.

S1Jn Dat,-out

S2jn Error
Ready

S3Jn Member
FuR

Data..ln Empty

En elk Op_code

Figure 5.11. Block schematic of the set structure.

The set structure is a set of sets, stored in an array with for each set a reserved part.
The sets are stored in order, so it will be easy to find the minimum and maximum
element of the set. The defined operations are: clear, union, intersection, difference,
member, insert, delete, assign, equal, min and max.

The set structure is synChronous, Le. the operations are executed on the first clock
transition from '0' to '1' and only if the enable input EN is '1 '. At the beginning of an
operation, the output line READY goes to '0', and becomes '1' again after finishing its
operation. The lines FULL and EMPTY give the status of the set. The exact definitions
of the commands are given in section 2.7. The VHDL description of this data structure
is given in appendix A.

All the software implementations mentioned in chapter 3.7. can be mapped to a RAM.
If we use a CAM (as a table), we can also implement all operations. The CAM has to
store the set name and the set element. This implementation is much faster as the
RAM implementation, but it is also more complex.

5.9. Graph

The block schematic of the graph structure is given in figure 5.12.

52

-------------- Hardware implementations in VHDL---

Node1

Node2

LabeLIn

En elk Op_code

LabeLout

Ready

N..op

Figure 5.12. Block schematic of the graph structure.

The graph structure is a graph with simple elements. The adjacency representation is
used for the VHDL description of the graph. The defined operations are: clear,
insert_node, insert_edge, delete_node, delete_edge, retrieve_node, retrieve_edge and
clear.

The graph structure is synchronous, i.e. the operations are executed on the first clock
transition from 'a' to '1' and only if the enable input EN is '1'. At the beginning of an
operation, the output line READY goes to 'a', and becomes '1' again after finishing its
operation. The line N OP gives a '1' if an operation can't be executed (out of range,
existence of edges eiC.). The exact definitions of the commands are given in section
2.8. The VHDL description of this data structure is given in appendix A.

The adjacency matrix and the adjacency list representations are easy to map on a
RAM. It is also possible to map the graph on a CAM, by storing in each CAM word the
elements node1, node2 and label. The node-label can be stored by using a null node
for node2. With this representation, we only use space proportional to the number of
edges. Most operations are just as fast as the adjacency matrix representation, only
the operation DELETE NODE is faster. If the matrix is a sparse matrix, we can best
use the adjacency list representation, or the CAM representation. For dense matrices
we can best use the adjacency matrix representation.

53

-------------- Conclusions and recommendations--

6. Conclusions and recommendations

I have described several data structures, with their software and possible hardware
implementations. If we create abstract data types (software) or generic building blocks
(hardware) for these data structures, we can use these data structures for the
description and solution of problems.

One data structure, the heap structure, is not covered. This structure for dynamic
memory allocation is so complex that it was not possible to look at it during my
graduation period.

It is possible to map all described data structures to a RAM. These implementations
are often not very fast. For the table, the set and some graphs, a faster implementation
is a mapping to a CAM, but this memory is more complex than the RAM (size is 3 to
4 times the size of a RAM).

It is possible to add algorithms (like search algorithms) to the data structures, which
improves the performance (execution speed), but which increases the size of the
hardware implementation.

The description of the hardware implementation of the data structures can be done
with VHDL. However, the VHDL compiler of Mentor Graphics does not support
generics, so it is not possible to create generic cells. The simulator of Mentor Graphics
is also not perfect. An other VHDL tool is welcome.

The behaviour of the data structure is described in VHDL, The structure of the data
structure still has to be described. This should be done by someone else.

A good example of the use of data structures would be welcome.

54

---------------------References--

References
[AH083] Aho A.V., J.E. Hopcroft, and J.D. Ullmann

DATA STRUCTURES AND ALGORITHMS
Addison-Wesley, Reading, MA, 1983.

[COR90] Cormen T.H., C.E. Leiserson, and RL. Rivest
INTRODUCTION TO ALGORITHMS
MIT Press, Cambridge, 1990

[KOH87] Kohonen T.
CONTENT-ADDRESSABLE MEMORIES, 2nd ed.
Springer-Verlag, Berlin, 1987.

[KRU87] Kruse RL.
DATA STRUCTURES AND PROGRAM DESIGN, 2nd ed.
Prentice-Hall, Englewood Cliffs, N.J., 1987.

[L1P90] Lipsett R, C. Scheafer, and C. Ussery
VHDL, HARDWARE DESCRIPTION AND DESIGN, 2nd ed.
Kluwer Academic Publishers, Boston, 1990.

[L0075] Loon J.M. van, G.J.W. van Nunen, and Th.P.C. Stoffele
TOEPASSINGEN VOOR EN EEN MODEL VAN EEN ASSOCIATIEF
GEHEUGEN
Eindhoven, Eindhoven University ofTechnology, Department of Electrical
Engineering, Digital Systems Group, 1975.

[MAN89] Manber U.
INTRODUCTION TO ALGORITHMS, A CREATIVE APPROACH
Addison-Wesley, Reading, MA, 1989.

[SED88] Sedgewick R
ALGORITH MS, 2nd ed.
Addison-Wesley, Reading, MA, 1988.

[STU85] Stubbs D.F., and N. Webre
DATA STRUCTURES WITH ABSTRACT DATA TYPES AND PASCAL
Brook/Cole Publishing Company, Monterey, Cal., 1985.

[WAR90] Ward S.A., and RH. Halstead Jr.
COMPUTATION STRUCTURES
McGraw-Hili, New York, 1990.

55

-----------------------References--

[VER90] Verschueren A.C.
IDASS FOR ULSI, VO.Dad
Eindhoven, Eindhoven University ofTechnology, Department of Electrical
Engineering, Digital Systems Group, 1990.

56

-----------------------Appendix A--

Appendix A

Appendix A contains the VHOL descriptions of the data structures. For the simulation
of these structures, buses are replaced by 'integer' lines, because I couldn't assign
values to binary buses with the simulator, 'Ouicksim'. I have also used packages for
the definition of 'generic' signals, which are not supported by the VHOL compiler
'HOL'. Packages are modules with the declaration of types, functions, procedures,
blocks etc.

For every data structure is given the VHOL description of the entity, with its behavioral
description, and the description of the package. These models are simulated with the
simulator 'Ouicksim'. The input files have the extension 'do'. The output of the
simulations is not given, because the simulator could not write it to a file (if I tried, the
simulator went 'down').

In the models of the data structures, all structures are mapped to arrays, because
pointers were not supported. Sometimes, the naming may be confusing, because
some arrays are named as ...ram.

57

File arraY_1d.hdl Created at 1:03pm on Thursday, August S, 1991 bink Page 1 of 1

USE std. standard. ALL;
USE std. mentor_base. ALL;
USE work.array-pkg.ALL;

-- This is a mentor graphics pakage.

Type declarations and constant declarations are in arrray-pkg. This is a one dimensional array
with simple elements. The operations RETRIEVE and UPDATE are executed on the first clock
transition from 0 to 1 and only when EN is high. The results are available on the D_OUT port after at
most one clock period.

RETRIEVE:
Input: index
Output: d_out

- The element with index 'index' is send to the output port 'd_out'.

UPDATE:
Inppt: index, d_in

- The element in the array with index 'index' is updated with data from the port 'd_in'.

ENTITY array_1d IS

GENERIC (
delay
num_ot_elements
element_length

) ;

PORT (

time:
pOSitive;
positive

J:

clk
en
op_code
index
d_in
d_out

IN
IN
IN
IN
IN
OUT

bit.;
bit;
array_mnemonic;
address;
data;
data

ARCHITECTURE behavior1 OF array_ld IS

TYPE ram_type IS ARRAY (address) ot data;

BEGIN

array_operation:PROCESS(clk)

VARIABLE ram

BEGIN
IF clk = '1' THEN

IF en = '1' THEN
CASE op_code IS

WHEN update => ram(indexl :. d_in;
WHEN retrieve -> d_out <= ramfindexl AFTER delay;

END CASE; -- opcode
END IF; -- en • '1'

END IF; -- clk = '1'
END PROCESS array_operation:

init,PP0CESS

ram(l) AFTER delay;

VARII\BLI:: ram

13EGIU
cl out
h'~i.t ;

EllD FROCESG init;

END behaVior 1;

58

file arraYJlkg.hdl Created at J: JOpm on Tuesday. July 2. 1991
i

bink Page 1 ot 1 IL-___...J

USE std.standard.ALL;
USE std. mentor_base. ALL;

PACKAGE arraYJlkg IS

-- This is a mentor graphics package.

CONSTANT delay
CONSTANT num_ot_elements
CONSTANT element_length

time
integer
integer

: .. 2ns:
:- 4 ;
:- 4 :

Generics
Generics
Generics

TYPE array_mnemonic
TYPE address
TYPE data
--TYPE data

END arraYJlkg;

IS (update. retrieve);
IS RANGE 1 TO num_of_elements:
IS RANGE 1 TO 2**element_length;

IS ARRAY (element_length-1 DOWNTO 0) OF bit;

This file contains the information, which should be implemented with
the GENERIC-clause in the queue entity. A generic has to be initialized
when a other entity uses this entity (module).

The type DATA should be a bit_vector(element_length-l DOWNtQ 0) ot bit.

This is an array with elements of the simple type (types which need only
one element ot memory to store it).

59

File record1.hdl Created at 11:52am on Thursday, August 15, 1991 bink Page 1 of 2

USE std.standard.ALL;
USE std. mentor_base. ALL;
USE work.record-pkg.ALL;

-- This is a mentor graphics pakage.

Type declarations and constant declarations are in record-pkg. This is a one dimensional record
with simple elements. The operations RETRIEVE and UPDATE are executed on the first clock transition
from 0 to 1 and only when EN is high. The operations are ready after at most one clock period.
The data (of different types: different lengths) will be stored in the least significant bits.

RE'l'RIEVE :
Input: id
Output: d_out

- The element with index 'id' is send to the output port 'd_out'.

UPDATE:
Input: id, d_in

- The element in the record with identifier 'id' is updated with data from the port 'd_in'

ENTITY record1 IS

GENERIC (
delay
num_of_elements
max_element_length

) ;

PORT (

tiJne;
positive:
positive

elk
en
op_code
id
d..in
d_out

);

END record1 ;

IN
IN
IN
IN
IN
OUT

bit;
bit;
array_mnemonic;
address;
data;
data

ARCHITECTURE behavior1 OF recordl IS

TYPE ram_type IS ARRAY (address) of data;

BEGIN

record_operation:PROCESS(clk)

VARIABLE ram

BEGIN
IF clk s '1' THEN

IF en s 'I' THEN
CASE op_code IS

WHEN update :> ramlidl :z d_in:
WHEN retrieve ~> d_out <- ramI id) AFTER delay;

END CASE; -- opcode
END IF; -- en = '1'

END IF; -- c lk = '1'
E~m PP0CESS record_operation;

inl t: PROCESS

VARIABLE ram

SEGur
d_out <= ramll1 AFTER delay;
tofait;

END PROCESS init;

END behavior1;

60

File record-pkg.hdl Created at 4:20pm on Tuesday, July 2, 1991 bink Page 1 or 1

USE std.standard.ALL;
USE std. mentor_base. ALL;

PACKAGE record-pkg IS

-- This is a mentor graphics pakage.

CONSTANT delay
CONSTANT num_of_elements
CONSTANT max_element_length

time
integer
integer

:- 2ns;
:- 4 ;
:= 4;

Generics
Generics
Generics

TYPE array_mnemonic
TYPE address
TYPE data
--TYPE data

END record-pkg;

IS (update, retrieve);
IS RANGE 1 TO num_of_elements;
IS RANGE 1 to 2**msx_element._lenath;

IS ARRAY (msx_element_length-1 DOWNTO 0) OF bit;

This file contains the information, which should be implemented with
the GENERIC-clause ln the queue entity. A generic has to be initialized
when an other entity uses this entity (module).

The type DATA should be a bit_vector(element_length-1 DOWNTO 0) of bit.

This is an record with elements of the simple type (types which need only
one element of memory to store it). The size of the record elements is
maximal length of the types of the record. We store the elements
beginning at the least significant bit of the record memory.

61

File linked_list.hdl Created at 3:35pm on Thursday, July 25, 1991 bink Page 1 of 3

USE std.standard.ALL.
USE std. mentor_base. ALL;
USE work. linked_l ist-pkg. ALL;

-- This is a Mentor Graphics package.

Type declarations and constant declarations are in linked_list-pkg. This is a linked list,
where the elements are identified by their position. The operations are started at the first clock
transition from '0' to '1', and only if the enable line EN is high. An operation is finished after
the READY line becomes high. The line EMPTY is '1' if the list is empty, the line FULL is '1' when
the list is full. The line NEXT_OUT is high, when there is a position following the current position
(by a retrieve and nxt operation).

CLEAR:

- This operation makes the linked-list an empty linked-list.

INSERT:
Input: pos, d_in

This operation inserst an element on position 'pos' in the list. If position 'pos' does
not ex ist, then noth ing will happen.

DELETE:
Input: pos
OUtput: d_out

- This operation will output the data on position 'pos' to output port 'd_out', and then
delete the element on position 'pos'. If position 'pos' does not exist, then nothing
will happen.

RETRIEVE:
Input: pos
Output: d_out

- This operation will output the data on position 'pos' to output port 'd_out'. If position
'pos' does not exist, then nothing will happen.

NEXT:
Input : pos
Output : next_out

- This operation will output 'true' to port 'next_out' if there is a next position to position
'pos', elsB 'false',

ENTITY linked_list IS

GENERIC (
delay
num_ot_elements
elementlength

I;

time;
positive;
positive

PORT (
elk
en
op_code
d_in
d_out
pos
next_out
ready
full
empty

) ;

IN
IN
IN
IN
OUT
!II
OUT
OUT
OUT
OUT

bit;
bit;
linked_list_mnemonic;
data;
data;
address:
bit;
bit;
bit:
bit

Clock
Enable input
Operation code
Data input
Data output
Pos it ion input
Is there a next position?
Is operation ready?
Is list full?
Is list empty?

ARCHITECTURE behaviorl OF linked_list IS

TYPE ram_type IS ARRAY (address) ot data:

62

File linked_list.hdl Created at 3:35pm on Thursday, July 25, 1991

BEGIN

list_operation:PROCESS(clk)

bink Page 2 Of 3

VARIABLE full_var
VARIABLE empty_var
VARIABLE eol-pos
VARIABLE eol-pos_var
VARIABLE ram
VARIABLE i

BEGIN

IF clk - '1' THEN
IF en - '1' THEN

boolean :- false;
boolean :- true;
address :- 0; -- Last position in list
integer :- 0;
ram_type;
address := 0:

This operation makes the list
an emp-:y list.

WHEN clear

WHEN insert

WHEN delete

-> eol-pos :- 0;
eol-pos_var :- 0;
empty_var :- true;
empty <- '1' AFTER delay;
full_var :- false:
full <- '0' AFTER delay;
next_out <- '0' AFTER delay;

=> IF fUll_var = false THEN
IF pos <- eol-pos THEN

FOR i IN eol-pos DOWNTO pes LOOP
ramli + 1) :- ram(i);

END LOOP:
ramlpos) := d_in;
eol-pos :- eol-pos + 1;
eol-pos_var :- eol-pos_var + 1;

ELSIF pos = eol-pos + 1 THEN
ram(pos) :- d_in;
eol-pos :- eol-pos + 1;
eol-pos_var :- eol-pos_var + 1;

END IF:
IF pos <- eol-pos THEN

empty <- '0' AFTER delay;
empty_var :- false;
IF eol-pos_var - num_of_elements

fUll_var :- true;
full <- '1' AFTER delay;

END IF;
END IF;

END IF;

-> IF empty_var = false THEN
IF pos <= eol-pos THEN

d_out <- ramlpos) AFTER delay;
FOR i IN pos+1 TO eol-pos LOOP

ramli - 1) :. ramI i\;
END LOOP:
eol-pos := eol-pos - 1;
eoi-pos_var :- eol-pos_var -1:
full_var :- false;
full <= '0' AFTER delay;
IF eol-pos - 0 THEN

empty_var := true;
empty <= '1' AFTER delay;

END IF:
END IF;

END IF;

-- List not full?
-- 'Pos'<last pos.
-- Move elements

up.

-- Insert data.

Pos = last pos.
Insert data.

-- Element inserted.

THEN -- List full?
Yes, change

-- full.

-- List empty?
Pos. in list.

Retrieve data.
-- Reposition elem.

-- Decrease last pos.

-- List empty?

WHEN retrieve => IF emptr_',ar • false THEN
IF fUll_var • true THEN

d_out <- ramlpos! AFTER deiay;
ELSIF pos <- eol-pos THEN

d_out <= ramlposl AFTER delay;

63

-- List not empty.
List full

or pos < last pes.

File linked_list.hdl Created at 3:35pm on Thursday, July 25. 1991

END IF;
IF pos < eol-pos THEN

next_out <- '1' AFTER delay;
END IF;

END IF;

bink Page 3 of 3

WHEN nxt => IF pos < eol-pos THEN -- Is there a next pOSition?
next_out <- '1' AFTER delay;

END IF;

END CASE; opcode
ready <- TRANSPORT '1' AFTER delay;

END IF;
END IF;

-- en • '1'
-- elk = '1'

END PROCESS list_operation;

reset_siqnals:PROCESS(clk)

BEGIN
IF clk = '1' THEN

ready <- '0';
next_out <- 'O'i

END IF;
END PROCESS reset_signals;

init:PROCESS

BEGIN
full <- '0' AFTER delay;
empty <= '1' AFTER delay;
next_out <- '0' AFTER delay;
wait;

END PROCESS init;

END behaviorl;

64

File linked_list-pkg.hdl Created at 1:20pm on Tuesday, July 2, 1991 bink Page 1 of 1

USE std.standard.ALL:
USE std.mentor_base.ALL;

PACKAGE linked_list-pkg IS

-- This is a mentor graphics package.

CONSTANT delay
CONSTANT nurn_of_elements
CONSTANT element length

t~e

integer
integer

:- 2ns,
.& 4,
:- 4,

TYPE linked_list_mnemonic
TYPE data
-- TYPE data
TYPE address

IS (clear. insert. retrieve.delete,nxt I ;
IS RANGE 0 to 2··elementlenqth - 1;

IS ARRAY (elementlenqth -1 DOWNTO 0) of bit;
IS RANGE 0 TO num_of_elements:

This file contains the informstion, which should be implemented with the
GENERIC-clause in the list entity. Because we implement the linked-list
in hardware, have have to give an upperbound for the length of the list.

nxt stands for the operation next, which is a reserved word.

The type DATA should be a bit_vector(wordlength-l DOwr~ 0).

This is a linked-list with elements of the simple type (types which need
only one element of memory to store it).

65

File list.hdl Created at 3:33pm on Thursday, July 25, 1991 bink Page 1 of 3

USE std. standard. ALL:
USE std. mentor_base. ALL;
USE work.list-pkg.ALL;

-- This is a Mentor Graphics package.

Type declarations and constant declarations are in list-pkg. This is a list, where the elements are
identified by their position. The operations are started at the first clock transition from '0' to '1',
and only if the enable line EN is high. An operation is finished after the READY line becomes high.
The line EMPTY is '1' if the list is empty, the line FULL is '1' when the list is full.

CLEAR:

- This operation makes the list an empty list.

INSERT:
Input: pos_in, d_in

- This operation inserts an element on position 'pos' in the list. If position 'pos' does
not exist, then nothing will happen.

DELETE:
Input: pos_in
Output: d_out

- This operation will output the data on position 'pos' to output port 'd_out', and then
delete the element on position 'pos'. If position 'pos' daes nat ~xist, then nothing
will happen.

RETRIEVE:
Input: pos_1n
Output: d_out

- This operation will output the data on position 'pos' to output port 'd_out'. If position
'pos' does not exist, then nothing will happen.

LOCATE:
Input : d in
Output : pos_out

- This operation will output the first position of element 'd_in' to port 'pos_out'. If there
is no element 'd_in' in the list. The first empty position is given.

END:

-This operation will give the position of the last element + 1 to port 'pas_out'.

ENTITY list IS

GENERIC \
delay
OIIID_of elements
element length

) ;

PORT (

time;
positive;
positive

clk
en
op_code
d_in
d_out
pos_in
pcs out
ready
full
empty

) ;

END list;

IN
IN
IN
IN
OUT
IN
OUT
OUT
OUT
OUT

bit;
bit;
list_mnemonic;
data;
data:
address;
address;
bit;
bit;
bit

66

File list.hdl Created at 3:33pm on Thursday, July 25, 1991

ARCHITECTURE behavior1 OF list IS

TYPE ram_type IS ARRAY (address) of data;

BEGIN

list_operat10n:PROCESS(clk)

bink Page 2 ot 3

VARIABLE tull_var
VARIABLE empty_vax
VARIABLE located
VARIABLE eol_addr
VARIABLE eOl_addr_var
VPJlIABLE ram
VARIABLE i

BEGIN

IF clk - '1' THEN
IF en .. '1' THEN

ready <= '0',
CASE op_code IS

boolean .• false;
boolean :- true,
boolean :. false;
address : = 1;
1nteger :. 1;
ram_type;
integer :. 0;

Indicates whether an element is found
First empty pos1t10n
Same, but then an internal variable.

WHEN clear

WHEN insert

WHEN delete

=> eol_addr := 1;
eOl_addr_vax :- 1;
empty_var :. true;
empty <- '1' AFTER delay;
fUll_vax :- false;
tull <= '0' AFTER delay;
pos_out <- eol_addr AFTER delay;

=> IF full_var = false THEN
IF pos_in < eol_addr THEN

FOR i IN eol_addr-l DOWNTO pos_in LOOP
ramli + 1) :- ramli);

END LOOP;
ram(pos_in) :. d_in,

ELSIF pos_in = eol_addr THEN
ramlPos_inl :- d_in;

END IF;
IF pos_in <. eol_addr THEN

empty <- '0' AFTER delay;
empty_vax :- false;
IF eOl_addr_var = num_of_elements THEN

fUll_vax :- true;
full <- '1' AFTER delay;

ELSE
eol_addr :- eol_addr + 1,
eol_addr_var :- eOl_addr_var + 1,

END IF;
END IF;

END IF;

=> IF empty_vax = false THEN
IF full_vax .. true THEN

d_out <= ramlpos_inl AFTER delay;
FOR i IN pos_in + 1 TO eol sddr LOOP

ramI i - 1) := ramI i);
END LOOP,
tUll_var :- false,
full <= 'a' AFTER delay;

ELSIF pos_in < eol_addr THEN
d_out <- ram(pos_inl AFTER delay;
FOR i IN pos_in+l TO eol_addr LOOP

ramli - 11 := ramI 11 ,
END LOOP,
eol_addr := eol addr - 1,
eOl_addr_var := eol_addr_7ar - 1,
IF eol_sddr .. 1 THEil

empty_var := true;
empty <= '1' AFTER delay;

END IF;
END IF;

67

This operation makes the list
an empty 11st, and returns the
first empty position leol_addr).

List not full?
'Pos'<last pos.
Hove elements up

Insert data.
Pos .. last pos.
Insert data.

Element inserted.

List full?
Yes, change
full.

No, incr.
eol_addr.

List empty?
L1st full.
Retrieve data.
Repos1tion elem.

List not full.

Pos. in list.
Retrieve data.
Reposition elem.

Decrease last pos.

L1st empti'7

File list.hdl Created at 3:33pm on Thursday, JUly 25, 1991

END IF;

WHEN retrieve => IF empty_var = false THEN
IF full_var a true THEN

d_out <- ram(pos_in) AFTER delay;
ELSIF pas_in < eol_addr THEN

d_out <a ramlPos_inl AFTER delay,
END IF,

END IF,

WHEN locate -> IF empty_var - false THEN
located :- false;
IF fUll_var = true THEN

FOR i IN 1 TO eol_addr LOOP
IF located = false THEN

IF ram(i) = d_in THEN
located :- true;
pOB_oUt <- i AFTER delay;

END IF;
END IF;

END LOOP,
ELSE

FOR i IN 0 TO eOl_addr-1 LOOP
IF located = false THEN

IF ram(i) a d_in THEN
located ,- true,
pas_out <= i AFTER delay;

END IF;
END IF,

END LOOP,
END IF,
IF located = false THEN

pos_out <- eol_addr AFTER delay;
END if;

ELSE
pos_out <= eol_addr AFTER delay,

END IF,

END CASE; opcode
ready <= TRANSPORT' l' AFTER delay;

END IF; -- en a '1'

END IF, -- elk - '1'

END PROCESS list_operation:

init:PROCESS

BEGIN
full <= '0';
empty <= '1',
ready <= '0',
pas_out <= 1:
d_out <= 0:
\'t'ait;

END PROCESS init;

END behavior!;

68

bink Page 3 of 3

List not empty.
List full

or pos < last pos.

List not empty.

List full.
Search element.
Element not found.
Compare elements.

First located pos.

List not full.
Search element.

-- Give size of list.

File list-pkg.hdl Created at 3:12pm on Wednesday, July 3, 1991 bink Page 1 of 1

USE std.standard.ALL;
USE std. mentor_base. ALL;

PACKAGE list-pkg IS

-- This is a Mentor Graphics pakage;

CONSTANT delay
CONSTANT num_ot_elements
CONSTANT element_length

time
integer
integer

:- 2ns;
:- 4;
:- 4;

Generic
Generic
Generic

TYPE list_mnemonic
TYPE data
-- TYPE data
TYPE address

END list-pkg;

IS (clear, insert, retrieve, delete, locate, f_e-p);
IS RANGE 0 TO (2··element_lengthl-1i

IS ARRAY (element_length - 1 DOWNTO 0);
IS RANGE 1 TO num_of_elements;

This file contains the intormation, which should be implemented with the
GENERIC-clause in the list entity.

The type DATA should be a bit_vectorlelement_length-l DOWNTO 0).

f_e-p (first empty position) has the same meaning as END (which is a reserved
word) .

69

File stacK.hdl Created at 3:40pm on Thursday, July 25, 1991 bink Page 1 of 2

USE std.standard.ALL;
USE std.mentor_base.ALL:
USE work.stack-pkg.ALL;

-- This is a Mentor Graphics package.

Type declarations and constant declarations are in stack-pkg. This a LIFO. The operations CLEAR,
PUSH, POP nad TOP are executed on the first clock transition from 0 to 1, and only when EN
is high. The operations are executed in one clock cycle.

CLEAR:

- This operation makes the stack an empty stack.

PUSH:
Input: d_in

- This operation inserts an element 'd_in' on the top of the stack.

POP:

- This operation will output the data on the top of the stack to port 'd_out' and then deletes
the element from the stack. The top of the stack is the element last inserted.

TOP:

- This operation will output the data on the top of the stack to output port 'd_out'.

ENTITY stack IS

GENERIC
delay
wordcount
wordlength

) :

tlJlle:
positive:
positive

PORT (
clk
en
op_code
d_in
d_out
full
empty

I;

END stack;

IN
IN
IN
IN
OUT
OUT
OUT

bit;
bit;
stack_mnemonic:
data:
data:
bit:
bit

ARCHITECTURE behavior1 OF stack IS

TYPE ram_type IS ARRAY ,0 TO wordcount - II of data;

BEGIN

stack_operation: PROCESS I elk)

VARIABLE fUil_var
VARIABLE empty_var
VARIABLE stacK_addr
VARIABLE ram

BEGIN
IF elk = '1' THEN

IF en - '1' THEN

boolean '2 false;
boolean :2 true;
integer :- 0:
ram_type;

70

FHe staCK. hdl Created at): 40pm on Thursday, July 25, 1991

WHEN clear -> stacK_addr :- 0:
empty_var :- true:
empty <= '1' AFTER delay:
full_var :- false:
full <- '0';

WHEN push -> IF full_var - false THEN
ramlstacK_sddrJ := d_in:
empty_var :- false:
empty <- '0' AFTER delay;
IF stacK_addr - wordcount-1 THEN

full_var :- true:
full <- '1' AFTER delay:

ELSE
stacK_addr :- stacK_addr + 1;

END IF:
END IF;

binK Page 2 of 2

WHEN pop

WHEN top

END CASE:

END IF:

-> IF empty_var - false THEN
IF full_var - true THEN

d_out <- ram(stacK_addr) AFTER delay:
full_var :- false;
full<- '0' AFTER delay:

ELSE
stacK_sddr :- stack_addr - 1,
d_out <= ram(stacK_addr) AFTER delay:
fUll_var := false:
full <- '0' AFTER delsy:

END IF:
IF stacK_addr = 0 THEN

empty_var :- true:
empty <- '1':

END IF:
END IF:

-> IF empty_var = false THEN
IF full_var = false THEN

d_out <= ram(stacK_addr - 11 AFTER delay;
ELSE

d_out <- ram(stacK_addr) AFTER delay:
END IF:

END IF;

opcode

en ~ '1'

END IF: clK = ' l'
END PROCESS stacK_operation;

init:PROCESS

BEGIN
full <= '0';
empty <= I I' ;
Haiti

END PROCESS init:

END behavior1:

71

File stacK-pkg.hdl Created at S,)7am on Wednesday, July), 1991

USE std.standard.ALL:
USE std. mentor_base. ALL ,

PACKAGE stacK-PKg IS

bink Page 1 of 1

CONSTANT delay
CONSTANT wordcount
CONSTANT wordlength

time
integer
integer

:w 2ns,
'w 4,
:- 4;

Generic
Generic
Generic

TYPE stacK_mnemonic
TYPE data
-- TYPE data

IS (clear, push, pop, topl;
IS RANGE 0 TO 12··wordlengthl-l;

IS ARRAY (wordlength - 1 DOWNTO 0);

This rile contains the inrormation, which should be implemented with the
GENERIC-clause in the stack entity.

The type DATA should be a bit_vector(wordlength-l DOWNTO 0).

72

File queue.hdl Created at 3:46pm on Thursday, July 25, 1991 bink Page 1 of 2

USE std.standard.ALL;
USE std.mentor_base.ALLi
USE ~ork.queue-pkq.ALLi

-- This is a Mentor Graphics package.

Type declarations and constant declarations are in queue-pkg. This is a FIFO. The operations CLEAR,
ENQUEUE, DEQUEUE, and FRONT are executed on the first clock transition from 0 to 1, and only
when EN is high. The operations are executed in one clock cycle.

CLEAR:

- This operation makes the queue an empty queue.

ENQUEUE:
Input: d_in

- This operation inserts an element 'd_in' at the end ot the queue.

DEQUEUE:
Output: d_out

- This operation will output the data at the front of the queue to output port 'd_out'. This is
the element that was for the longest time in the queue. (FIFO)

FRONT:
Output: d_out

- This operation will output the data at the front of the queue to output port 'd_out'.

ENTITY queue IS

GENERIC
delay
wordcount
wordlength

) ;

time;
positive;
positive

PORT (
clk
en
op_code
d_in
d_out
full
empty

) ;

END queue;

IN
IN
IN
IN
OUT
OUT
OUT

bit;
bit;
queue_mnemonic;
data;
data;
bit;
bit

ARCHITECTURE behaviorl OF queue IS

TYPE ram_type IS ARRAY 10 TO wordcount-ll of data;

BEGIII

queue_operatlon:PROCESS(clkl

VARIABLE fUll_var
VARIABLE empty_var
VARIABLE enque_addr
VARIABLE deque_addr
VARIABLE l:am

BEGIN
IF clk = '1' THEN

IF en - '1' THEN

boolean ,:
boolean :
integer :
integer :=

ram_type;

false;
true;
I).,
0:

73

File queue.hdl Created at 3:46pm on Thursday, July 25, 1991 bink Page 2 or 2

WREN clear -> deque_addr :- 0;
enque_addr :'" 0:
empty_vax :- true;
empty <- '1' AFTER delay;
rUll_var :- ralse;
rull <- '0' AFTER delay;

WREN enqueue -> IF full var - ralse THEN
ram(enque_addrl :- d_in;
enque_addr :- (enque_addr + 1) HOD wordcount;
IF enque_addr '" deque_addr THEN

rUll_var :- true;
rull <- '1' AFTER delay;

END IF:
empty_vax :- false;
empty <- '0' AFTER delay;

END IF;

WHEN dequeue -> IF empty_var '" ralse THEN
d_out <- ram(deque_addr) AFTER delay;
deque_addr :- (deque_addr + 1) HOD wordcount;
IF deque_addr '" enque_addr THEN

empty_var :- true:
empty <- '1' AFTER delay;

END IF;
rull_var :'" ralse:
full <- '0' AFTER delay;

END IF;

WHEN front

END CASE;

"'> IF empty_var - false THEN
d_out <- ram(deque_addr) AFTER delay;

END IF:

opeode

END IF; en = '1'
END IF; elk '" '1'

END PROCESS queue_operation;

1nit:PROCESS

BEGIN
rull <- '0':
empty <'ill' , l' ;
wait;

END PROCESS init;

END behavior1;

74

File queue-pkg.hdl Created at 9:07am on Wednesday, July 3, 1991

USE std.standard.ALL;
USE std. mentor_base. ALL;

PACKAGE queue-pkg IS

bink Page 1 ot 1

CONIITANT delay
CONSTANT wordcount
CONSTANT wordlength

time
integer
integer

.- 2ns;.- 4;
:- 4;

Generic
Generic
Generic

TYPE queue_mnemonic
TYPE data
-- TYPE dsta

END queue...,pkg;

IS (clear, enqueue, dequeue, trontl;
IS RANGE 0 TO (2**wordlengthl-1;

IS ARRAY (wordlength -1 DOWNTO 0);

This tile contains the intormation, which should be implemented with the
GENERIC-clause in the queue entity.

The type DATA should be a bit_vector(wordlength-1 DOWNTO 0).

75

Pile table.hdl Created at 10:38arn on Thursday, August B, 1991 bink Page 1 of 3

USE std.standard.ALL;
USE std.mentor_base.ALL;
USE work.table-pkg.ALL;

-- This is a Mentor Graphics package.

Type declarations and constant declarations are in table....Pkg. TIle operations CLEAR, INSERT, DELETE,
RETRIEVE and MEMBER are executed on the first clock transition from 0 to 1, and only when EN is high.
The output line READY is high at the next clOCk transition after finishing an operation. The output
line MEMBER is high when an element is in the table lafter an INSERT, you can see whether an element
is inserted or not)

CLEAR,

- This operation makes the table an empty table.

INSERT:
Input: k_in, d_in

- This operation inserts an element with key 'k_in' and data 'd_in' In the table.

DELETE:
Input: k_in
Output: d_out

- This operation will outpUt the data With key 'k_in' to output port 'd_out', and then
delete the element with key 'k_in'. If the key 'k_in' is not in the table, then nothing
will happen.

RETRIEVE:
Input: k_ln
Output: d_out

- This operation wilt Olltput the data with key 'k_in' to output port 'd_out'. If key
'k_in' does not exist, then nothing will happen.

HEMBER:
Input : k_in
Output : member

- TIlis operation will output 'true' to output port 'member' if the element with key 'k_in'
is in the table, else the output will be 'false'.

ENTITY table IS

GENERIC
delay
max_num_of_elements
key_length
data_length

) ;

time i
positive,
positive;
positive

PORT (
elk
en
op_code
k_in
f,_out
u_in
ri_C"tlt

Int?tntJer

ready
full
empty

) ;

END '.able;

IN
IN
IN
IN
OUT
III
OUT
OUT
OUT
OUT
OUT

bit;
bit;
table_mnemonic,
key;
key;
data;
data;
bit;
bit;
bit;
bit

Clock
Enable input
Operation code
Key input
Key output
Data input
Data output
Is element in table?
Is op~ration ready?
Is list full?
Is list '!!IIIpty?

ARCHITECTURE behaviorl OF table IS

76

File table.hdl Created at 10:38am on Thursday, August 8, 1991

BEGIN

list_operation:PROCESS(clkl

bink Page of 3

VARIABLE full_var
VARIABLE empty_var
VARIABLE located
VARIABLE eotJ'0s
VARIABLE k_ram
VARIABLE d_ram
VARIABLE i

BEGIN

IF cl~ - '1' THEN
member <- '0';

IF en - '1' THEN
ready <- '0';

boolean ,- false;
boolean ,- true;
boolean :- false;
integer :- 0;
key_ram_type:
data_ram_type;
integer :- 0;

Last position in table
Array with keys
Array with data

WHEN clear -> eotJl08 :- 0;
empty_var : - true;
empty <- '1' AFTER delay:
fUll_var :- false;
full <- '0' AFTER delay;
member <- '0' AFTER delay;

This operation makes the
table empty.

Key not yet in tablel
Table not full?

Table empty?
Yes, insert element.

No, table not empty
Key already in table?

WHEN insert -> IF empty_var ~ true THEN
k_ram(eotJ'0sl :~ k_in;
d_ram(eotJ'0sl :- din;
empty_var :- false;
empty <= '0' AFTER delay;
member <- TRANSPORT '1' AFTER delay;

ELSE
located ,= false;
FOR i IN 0 TO eot-pos LOOP

IF located - false THEN
IF k_in - k_ram(i) THEN

located :- true;
d_ramli) :- d_in;
member <- TRANSPORT '1' AFTER delay;

END IF;
END IF;

END LOOP;
IF located = false THEN

IF full_var = false THEN
eot-pos ,= eot-pos + 1;
k_ramleot-pos} := k_in;
d_ram(eotJ'0sl := d_in:
member <- TRANSPORT '1' AFTER delay;
IF eotJ'0s - max_num_of_elements - 1 THEN

fUll_var :- true:
full <= '1' AFTER delay;

END IF;
END IF:

END IF;
END IF;

delay;

WHEN delete => located :- false;
IF empty_var - false THEN

FOR i IN 0 TO eot-pos LOOP
IF located = false THEN

IF k_in = k_r!l1l1(i) THEN
k_out <- k_ramf il AFTER delay;
d_out <- d_ramlil AFTER delay;
located :- true;
k_ramfil := k_ramleot-P0sl;
d_raml i) := d_ramleot-P0sI:
member <= TRANSPORT '1' AFTER

77

-- Table empty?

-- Search for element

Move last element to position.
of deleted element

File table.hdl Created at lO:38am on Thursday, August 8, 1991

END IF;
END IF;

END LOOP;
END IF;
IF located = true THEN

IF eot-pos f= 0 THEN
eot-poe :- eot-poe - 1;
full_var :- false;
full <- '0' AFTER delay;

ELSE
empty_var :- true;
empty <- '1' AFTER delay;

END IF;
END IF;

-- Element deleted?

bink Page 3 ot 3

WHEN retrieve -> IF empty_var - falee THEN Table not empty.
located :- falBe;
FOR i IN 0 TO eot_pos LOOP Search for eiement

IF located - falee THEN
IF k_in - k_ramli) THEN

k_out <- k_ramli) AFTER delay;
d_out <- d_ramli) AFTER delay;
located :- true;
Member <- TRANSPORT '1' AFTER delay;

END IF;
END IF;

END LOOP;
END IF;

WHEN memb -> IF empty_var : false THEN
located :- false;
FOR i IN 0 TO eot-pos LOOP

IF located • false THEN
IF k_in - k_ram(i) THEN

k_out <- k_raml i) AFTER
d_out <- d_ram(i) AFTER
located :- true;
member <-= TRANSPORT ' 1 '

END IF;
END IF;

ENlJ LOOP;
END IF;

Element in table?
Same as retrieve.

delay;
delay;

AFTER delay;

END CASE; opcode
ready <- TRANSPORT '1' AFTER delay;

END IF;
END IF;

-- en =- '1'
-- elk - '1'

END PROCESS list_operation;

init:PROCESS

BEGIN
full <- '0';
empty <::II ' l' ;
member <- '0';
ready <~ , 0 1 i
',o{ait;

END PROCESS init;

END behavlol'l;

78

File table-pkg.hdl Created at 0:45pm on Thursday, July 4, 1991 bink Page 1 of 1

liSE std. standard. ALL;
USE std.mentor_baee.ALL: -- This is a mentor graphics package.

PACKAGE table.-plcg IS

CONSTANT delay time :- 208; Generic
CONSTANT max_num_ot eiements integer := 4 : Generic
CONSTANT key_length integer :. 4 ; Generic
CONSTANT data_length integer :- 4 : Generic

TYPE table_mnemonic
TYPE key
-- TYPE l(ey
TYPE data
-- TYPE data

END table-pkg ;

IS (clear, insert, delete, retrieve, membli
IS RANGE 0 TO 2--key_length - I:

IS ARRAY (key_length - I DOWNTO 0) ot bit;
IS RANGE 0 TO 2**data_length - 1;

IS ARRAY (data_length - 1 DOWNTO 0) ot bit:

nlis file contains the information, which should be implemented with the
GENERIC-clause in the table entity.

The type KEY shonld be a bit_vectorlkey_length - 1 DOWNTO 0).
The t1~e DATA shouid be a bit_vectorldata_length - 1 DOWNTO 0).

79 -------------------------

File tree.hdl Created at 1l:21am on Thursday, August 8, 1991 b~nk Page 1 of 5

USE std.standard.ALL;
USE std. mentor_base. ALL:
USE ~ork.tree-pkg.ALL;

-- This is a Mentor Graphics package.

Type declarations and constant declarations are in tree-pkg.
The trees are stored in an array, using the lett-child, right-sibling representation.
This is a tree ~ith the operations CLEAR, PARENT, LEFT_CHILD, RIGHT_SIBLING, RETR_LABEL, CREATE, ROOT
and RESET. The operations are started at the first clock transition from 0 to 1, and only ~hen

EN is high. An operation is finished ~hen the READY Signal becomes high.
It an operation Is executed incomplete, an ERROR is reported. When ~e execute
the operation CREATE, all tree names have to be different.

CLEAR:

- This operation makes the tree an empty tree.

PARENT:
Input: node_in
Output: node_out

- This operation gives the parent of node 'node_in' to output port 'node_out'. It 'node_in'
has no parent, the null node is sent out.

LEFT_CHILD:
Input: node.. in
Output: node_out

- This operation gives the lett-child at node 'node_in' to output port 'node_out'. It 'node_in'
has no lett-child, the null node is sent out.

RIGHT_SIBLING:
Input: node_in
Output: nOde_out

- This operation qives the right-sibling ot node 'node_in' to output port 'node_out'. If 'node_ln'
has no right-sibling, the null node is sent out.

LABEL:
Input; d in
Output : pas_out

- This operation will output the label at node 'node_in' to port 'label_out'.

CREATE:
Input: i in, label_in, t in
Output: t_out, node_out, label_out

- This operation creates trees ~ith root 'node_out', ~hich has label 'label_in' (-'label_out'), and
which has 'i_in' children. The children are the roots at the trees, 't_in' which are given serially
to input ports 't_in'. If 'i_in' is 0, then a single node is created. If 'l_in' Is 1, a tree ~ith

one child is created, etc. The name at the new tree is given on output port 't_out'.

ROOT:
Input: t_in
Output: node_out

- This operation will give the root of tree 't_in' to output port 'node_out'. It there Is no tree
't_ln' then the null node Is sent out.

ENTITY tree IS

GENERIC I

delay
num_ot sets
num_ot_elements-per_set
elementlenyth
nul_node
nul label

I;

time;
positive;
positi':e;
positive;
?

?

PORT (
clk IN bit;

80

file tree.hdl Created at 11:21am on Thursday, August 8, 1991 bink Page 2 of 5

en
op_code
t_in
t_out
label_in
label_alit
node_in
node_out
i_in
error
ready
full
eJIIpty

) ;

END tree;

IN
IN
IN
OUT
IN
OUT
IN
OUT
IN
OUT
OUT
OUT
OUT

bit;
tree_mnemonic;
tree_name;
tree name;
data;
data;
node_name,
node_name;
num_of_subtrees,
bit;
bit;
bit,
bit

ARCHITECTURE behaviorl OF tree IS

TYPE tree_ram
TYPE left_child_ram
TYPE parent_ram
TYPE label_ram
TYPE right_sibl1ng_ram
TYPE uaed_ram

BEGIN

tree_operation: PROCESS

IS ARRAY (1 TO max_num_of_trees) OF node_name,
IS ARRAY (1 TO maK_num_of_nodesl OF node_name;
IS ARRAY (1 TO max_num_of_nodesl OF node_name:
IS ARRAY (1 TO max_ntw_of_nodesl OF data,
IS ARRAY (1 TO max_num_of_nodesl OF node_name,
IS ARRAY (0 TO msx_num_of_nodes) OF bit,

VARIABLE tree_list
VARIABLE left_ch
VARIABLE parent_n
VARIABLE node_label
VARIABLE right_s
VARIABLE node used

VARIABLE available_nodes

VARIABLE node
VARIABLE temp_root
VARIABLE num_of_avail_nodes
VARIABLE num_of_avail_trees
VARIABLE i
VARIABLE j
VARIABLE ready_var
VARIABLE located

BEGIN

WAIT ON clk;
IF clk ~ '1' THEN

error <- 'O'i

IF en '1' THEN
J:eady <ZIt '0';

tree_ram:
left_chlld_ram;
parent_ram:
label_ram;
riqht_sibling_ram;
used_ram;

node_name:
node_name;
integer :m max_num_of_nodes,
integer := max_num_of_trees;
integer :- 0;
integer 'm 0;
boolean .= false;
boolean :- false;

Array with root of trees
Array w~th index of left child
Array with parent of node
Array with label of node
Array with right-sibling of node
Array with bit which indicates whether

node is used or not.

First node of list of empty nodes, linked
by cursors in the left_child array.

Number of available nodes
Number of available tree entries.

WHEIJ clear_tree => t_out <= t_in AFTER delay;
llode_out <- null_node AFTER delay;
label_out <- null_label AFTER delay;
IF tree_listlt_inl /- nUll_node THEN

node :- tree_listlt_inl;
ready_var := false;
WHILE ready_var = false LOOP

WHILE left_chI node, ,- null_node LOOP
node :. left_chlllode,;

END LOOP;
left_chI node, ;m available_nodes,
node_used(node) := '0';
available_nodes .• node;

81

-- Is tree ~mptyl

-- Go to lear

Add deleted leaf_node to
empty_list. 1I0tie not used
anymore.

FilQ trQe.hdl Created at 11:21am on Thursday, August 8, 1991 bink Page 3 ot 5

ntw_ot_avail_nodes :- num_ot_avail_nodes + 1:
IF right_s(nodel /- null_node THEN Is there a right neighbour7

node :- right_slnodel ;
ELSIF parent_n(node) !- null_node THEN Is there a parent?

node :- parent_n(nodel;
lett_ch(node) :- null_node;

ELSE --Ready?
node :- null_node;
ready_var :- true;

END IF;
END LOOP;
tree_Iist(t_in) :- null_node;
num_ot_avail_trees .,. num_ot_avail_trees + 1; -- Increase num ot free trees.

END IF;

WHEN parent => IF node_used(node_inl .. '1' THEN
node_out <- parent_n(node_ill/ AFTER delay;

ELSE
node_out <- nUll_node AFTER delay;
error <- TRANSPORT '1' AFTER delay;

END IF;

Node nsed?
Give parent or

-- error

-> IF node_usedfnode_inl - '1' THEN
node_out <- left_ch(node_in) AFTER delay;

ELSE
node_out <- null_node AFTER delay,
error <- TRANSPORT '1' AFTER delay,

END IF;

Node used?
Give lett child or

-- error

WHEN right_sibling -> IF node_usedfnode_1n) - '1' THEN
node_out <- right_sf node_in) AFTER delay;

ELSE
node_out <- null_node AFTER delay;
error <= TRANSPORT '1' AFTER delay;

END IF;

Node used?
Give right_sibling or

-- error

=> IF node_used(node in) = '1' THEN
label_out <- node_label(node_in) AFTER delay;

ELSE
label_out <- null_label AFTER delay;
error <- ~ISPORT '1' AFTER delay;

END IF;

Node used7
Give label or

-- error

-- Search to!.· empty tree.

-- num ot available nodes> O.

Put singl<, node in root of
tree

Create root/leaf tree.
Is there an empty tree?
Create node.

=> IF num_of avail_nodes /- 0 THEN
j :- 1;
i : .. i_in;
IF i - 0 THEN

IF nurn_of_avail_trees /= 0 THEN
node :- available_nodes;
available_node. :- left_ch(available_nodes);
ntw_of_avail_nodes :- num_of_avail_nodes - 1;
node_label(node) :- label_in;
node_used(node) :- '1';
parent_n(node) :- null_node;
left_chlnodet :- nUll_node;
right_s(nodel :- null_node;
located := false;
FOR J IN 1 TO max_num_ot_trees LOOP

IF located - false THEil
IF tree_Iist(jl - nUll_node THEN

located := true;
tree_Iistfj) :- node;
t_out <= j AFTER delay;
node_out <- node AFTER delay;
label_out <- label_in AFTER delay;
ntw_ot_avail_trees .• nurn_of avail_trees - 1:

END IF;
END IF;

END LOOP;
E:LSE

error <- TRANSPORT '1' AFTER delay;
END IF;

ELSE
node :- available_nodes;

Create tree with olle or ,n01e
children.

82

File tree.hdl Created at 1l:21am on Thursday, August 8, 1991

available_nodes := left_ch(available_nodesJ;
num_of_avail_nodes :- num_of_avail_nodes - 1;
t_out <- t_in AFTER delay;
l~bel_out <- label_in AFTER delay;
node_ollt <- node AFTER delay;
parent_ll(node, :- nllll_node;
node_used(node) :- '1';
node_label I node, :- label_in;
left_ch(node, :- tree_listlt_inl;
tree_listlt_in) :- node;
temp_root :- node;
node :- left_chlnode,;
WHILE j < i LOOP

WAIT ON clk;
IF clk = 'I' THEN

IF en - 'I' THEN
right_s(node, :- tree_listlt in,;
tree_list(t_in, :- nUll_node;
num_of_avail_trees :- n\~_of_avail_trees + 1;
parent_nlnodel :- temp_root;
node :- right_slnode,;
j :. j + 1;

END IF;
END IF;

END LOOP;
parent_nlnode' '. temp_root;

END IF;
ELSE

error <= TRANSPORT '1' AFTER delay;
END IF;

bink Page 4 of 5

WHEN root

=> available_nodes :- nUll_node;
FOR i IN max_num_of_nodes DOWNTO 1 LOOP

node_used(i) :- '0';
left_ch(i) :- available_nodes;
available_nodes :- i;

END LOOP;
FOR i IN 1 TO max_nllm of trees LOOP

tree_list(i) :- nUll_node;
END LOOP;
nUM_of_avail_nodes :- max_nuM_of_nodes;
num_of_avail_trees :- Max_num_of_trees;
t_out <- t_in AFTER delay;
node_out <- Ilull_node AFTER delay;
label_out <- nUll_label AFTER delay;

END CASE; -- op_code
ready <- TRANSPORT '1' AFTER delay;
IF num_of_avail_nodee - max_num_of_nodes THEN

empty <- 'I' AFTER delay;
full <- '0' AFTER delay;

ELSIF num_of_avail_nodee '"' 0 THEN
empty <- '0' AFTER delay;
full <- '1' AFTER delay;

ELSE
empty <= '0' AFTER delay;
fllil <= '0' AFTER delay;

END IF;

END rF; -- en = 'I'

END IF; -- clk • 'I'

END PROCESS tree_operation;

init: PROCESS

BEGIII
labpl_ollt <- Illlll_label;
node_out <- nUll_node;

83

File tree-pkg.hdl Created at 2:48pm on Friday, July 19, 1991 bink Page 1 of 1

USE stct.standard.ALL;
USE std. mentor_base. ALL;

PACKAGE tree-pkg IS

COlIm'ANT delay
COlISTAlrr msx_nUlll_of trees
CONSTANT maK_num_of_nodes
CONSTANT elementlength

-- This is a mentor graphics package.

time :. 2ns;
integer :- 4;
integer :- 8;
integer :" 4 ;

TYPE data
-- TYPE data
CONSTANT null_label

SUBTYPE tree_name
-- TYPE tree_name

SUBTYPE node_name
CONSTANT null_node

IS RANGE 0 to (2**elementlength) - 1;
IS ARRAY (elementlength -1 DOWNTO 0) ot bit;

: data :- 0;

IS integer RANGE 1 TO msx_nUlll_ot_trees;
IS ARRAY (210g maK_num_of_tr~s -1 DOWNTO 0) of bit;

IS integer RANGE 0 TO max_num_ot_nodes;
node_name:- 0;

This file contains the information, which should be implemented with the
GENERIC-clause in the set entity.

The type DATA should be a bit_vector(elementlength-1 DOWNTO 0).

85

rile set.hdl Created at 11:56811I on Thursday, August 8, 1991

USE std.standard.ALL;
USE std. mentor_base. ALL;
USE work.set-pkg.ALL;

bink Page 1 of 7

Type declara~ions and constant declarations are in set_pkg. The sets are stored in an array,
with for each set a reserved part. The sets are stored in order, so lhe operations MIN and MAX
may be applied. We assume that the sets are numbered from 1 TO num_of_sets. If the naming of
the sets is random, we have to use a table to map the names on the base address of the set.

This is a set with the normal set operations. The opera~i.ons are started at the first clock
transition from a to I, and only when F.N is high. An operation is finished when the READY signal
becomes high. If an operation is executed incomplete, an ERROR is reported. When we execute
the operations UNION, INTERSECTION and DIFFERENCE, all three set names have to be different.

CLEAR:

- This operation makes the set an empty set.

UNION:
Input: sl_in, s2_in, s3_in

- This operation takes the sets 'sl_in' and 's2_in' and assigns the result of the union
of 'sl_in' and 's2_in' to the set 's3'in'. 'sl_in', 's2_in' and 's3_in' have to be different;

INTERSECTION:
Input: sl_in, s2_in, s3_in

- This operation takes the sets 'sl_in' and 's2_in' and assigns the result of the intersection
of 'SI_in' and 's2_in' to the set '93'in'. 'sl_in', 's2 in' and 's3_in' have to be different.

DIFFERENCE:
Input: sl_in, s2_in, s3_in

- This operation takes the sets 'sl_in' and 's2_in' and assians the result of the difference
of 'sl in' and 's2_in' to the set 's3'in'. 'sl in', 's2 In' and '93_in' have to be different.

MEMBER:
Input: sl_in, d in
Output: member

- This operations will output 'true' to output port 'member' if element 'd_in' is in set 'sl_1n',
else the output becomes 'false'.

INSERT:
Input: sl_in, d_in

- This operation inserts an element 'd_in' in set 'sl_in'.

DELETE:
Input: s_in, d_in

- This operation deletes element 'd_in' from set Isl_in ' . If 'd_in ' is not in set 'sl in ' ,
nothing 101111 happen.

ASS1GN:
Input: sl_in, s2_in

- This operation will make set '51 ln' equal to set 's2 in'.

EQU1\L:
Input : 51 in, s2_in
OUlput : error

This operation will output 'false' to output port 'error' if set '51 In' is equal cO set '52 in',
else 'error' becomes 'true'.

lUll:
Input: 51_in
Output: d_out

- This operation will give the minimum .. lement of set 'sl_in' to output port 'd_out'.

MAX:

86

rile set.hdl Created at 11:56am on Thursday, August R, 1991 bink Page 2 nf 7

- This operation will give the maximum element of set 'sl_in' to output port 'd_out'.

ENTITY set IS

GENERIC (
delay
num_of_sets
num_of_elements-per_set
elementlength

) ;

time:
positive:
positive:
positive

PORT (
clk
en
op_code
sl_ln
s2_in
s3_in
d_ll\
d_out
error
member
ready
full
empty

) ;

END set;

IN
IN
IN
IN
IN
IN
m
OUT
OUT
OUT
OUT
OUT
OUT

blt;
bit;
set_mnemonic;
set_name:
set_name:
set_name:
data;
data;
bit:
bU:
bit:
bit:
bit

ARCHITECTURE behaviorl OF set IS

TYPE ram_type IS ARRAY 10 TO I Inum_of_el-per_set • num_of_sets)-I) J of data:
TYFE ram_eIements-per_set IS ARRAY (set_name) OF integer:

BEGIN

set_operation:PROCESS(clk)

VARIABLE Ilwn_of_el_set
VARIABLE located
VARIABLE equal_var
VARIABLE base_addr_sl
VARIABLE base_addr_s2
VARIABLE base_addr_s3
VARIABLE ram
VARIABLE i
VARIABLE 1
VARIABLE k
VARIABLE max_num_of_el-p_s

BEGIN

IF elk = '1' THEN
member <= '0' i

I:?rror <= '0':

IF r>n '1' THEtJ
read~." <= '0':

ram_elements-per_set;
boolean := false:
boolean .• talse;
integer :. 0;
integer :. 0;
integer := 0:
ram_type;
integer := 0:
integer := 0:
integer := 0;
lnteger .• num_of_el-per_set:

Array with elements per set
Is element in set?
Are elements equal?
base address ot set 1
base address of set 2
base address of set 3
Array tor simulating a RAM

WHEN clear

WHEN union

=> num_of_el_setlsl_inl := 0;
empty <= '1' AFTER delay;
full <= '0' AFTER delay:

=> IF 51_in m 52_ill
OR sl_in s3_in
OR 52 1n • s3_in
THEN

87

This operat10n makes the
set ~n ~mpty set

File set. hdl Created at 11: 56am on Thursday, August 8, 1991 bink Page 3 of 7

error <~ '1' AFTER delay;

e1. sl .. e1. s2
e1.93 :- e1.s1

e1. sl < e1. s2
e1.s3 :- e1.s1

el.s1 > el.s2
e1.sJ :- e1.s2

or

Set] is created by merging
setl and set2. (picking
each time the smallest el.
ot setl or 2, when we walk
trough both sets I. This ':'s
..asy because the sets are
ordered.

set3 is full?
OR (j < num_ot_el_set(s2_in)) THEN

1) • max_num_ot_el-p_s;
11 • max_num_of_el-p_s,
1) * max_num_of_el-p_s;

(sl_in
(s2_in
(53_1n -

ELSE
base_addr_sl :
base_addr_s2 :
base_addr_s3 .~

i 'S 0,
j :- 0,
Ie :~ 0:
WHILE (i < num_ot_ei_setlsl_inl I AND

(j < num_of_ei_set(s2_in)) AND
(Ie < max_num_of_91-P_SI LOOP

IF ram(base_addr_s1 + il < ram(base addr_s2 + jl THEN
ram(base_addr_s3 + k) :- ram(base_addr_s1 + i);
i :- i + 1;

ELSIF ram(baSe_addr_s1 + i) > ramlbase_addr_s2 + j, THEN
ram(base_addr_s3 + k) :- ram(base_addr_s2 + j);
j :- j + 1;

ELSE
ram(base_addr sJ + k) :~ ram(base_addr_s1 + i);
i:-i+1;
j :- j + 1;

END IF;
Ie : .. Ie + 1;

END LOOP;
WHILE (i < num_of_pl_setl 51_1 n II AND (k < max_n11m_of_el-p_s) LOOP

ramlbase_addr s3 + kl :~ ram(base_addr_s1 + il; add reHt of set1
i : - i + 1; to setJ
k :- Ie + 1;

END LOOP: or
WHILE (j < num_of_el_set(s2_inll AND Ik < msx_num_of_el-P_51 LOOP

ramlbase_addr s3 + k) :- ramlbase_addr_s2 + j); add re5t of set2
j :.. j + 1; to set 3
Ie :- k + 1;

END LOOP;
IF Ie ~ max_nlun_of_el-p_s THEN

IF (i < num_ot_el_set(sl_inl)
error <- '1' AFTER delay;

END IF:
END IF;
num_of_el_setls3_inl :- k;
IF num_ot_el_setls3_in) = msx_num_ot_el-p_s THEN

tull <- '1' AFTER delay;
ELSE

full <- '0' AFTER delay;
END IF;
IF num_ot_el set(s3 in) .. a THEN

empty <- '1' AFTER delay;
ELSE

empty <- '0' AFTER delay:
END IF;

END IF;

give status set3
set3 full?

-- set3 empty?

WHEN intersection -> IF 51 in ~ s2_in
OR s1_in .. 53_in
OR s2_in = s3 in
THEN

error <- '1' AFTER delay;

l?l. s2
:a el.sl

~l.sl ;;. -=1.52

"'I."J
el.s3ramI base_addr s3 + KI-

i :- i + 1 ;
j :z j + 1:
k :- le + 1 ;

ELSE
base_addr_s1 :- Is1_in - 11 • max_num_of_el-p_s; Set] is 'Oreated by merginq
base_addr_s2 :- (s2_in - 11 • max_num_ot_el-p_s: set1 and 5 .. t2. (picking
base_addr_s3 :~ IS3_in - 11 • max_num_ot_el-p_s: each timo the smallest ot.
i :s 0; ot setl or 2, when we ',<alk
j :- 0; trough both sets). This 1s
k : = 0: easy because the sets are
WHILE Ii < num_ot_el_setfs1_inl I AND Ij < num_ot_el_setls2_inl I LOOP --ordered.

IF ramlbase_addr_s1 + i) < ramlbase_addr_s2 + j) THEN el.s1 < el.s2
i:=1+1:

ELSIF ramlba5e_addr_s1 + i) > rami base adur s2 + jl THEH
j :- j + 1;

ELSE

88

file set.hdl Created at 11:56am on Thursday, August 8, 1991 bink PaQe 4 of 7

END IF:
END LOOP;
num_of_el_setls3_in) := k:
IF num_ot_el_setls3_inl 3 max_num_of_el-p_s THEN

full <- '1' AFTER delay;
ELSE

full <- '0' AFTER delay:
END IF:
IF nlm_of_el_setls3_inl = 0 THEN

empty <- '1' AFTER delay:
ELSE

empty <- '0' AFTER delay:
END IF;

END IF;

give status setJ
set) fu1l7

-- se 3 empty?

WHEN difference -> IF sl_in = s2_in
OR sl_in - s3_in
OR s2 in = B3_in
THEN

error <- '1' AFTER delay;

e1. sl > e1. 82
e1.s3 .= e1.s2

e1. sl < e1. s2
e1. s 3 : = e1. s 1

-- e1. sl = e1. s2

Set3 is created by merging
set1 and set2. Ipickiny
each time the smallest el.
of set1 or 2, when we walk
trough both setBI. This is
easy because the sets are
ordered.

or
set3 is full?

OR (j < num_of_el_8etI82_lnl' THEN

Is1_in - 1) * lllsx_num_ot_e1-p_s;
(s2_in - 1) * lllsx_num_of_el-P_8;
(BJ in - 1) * msx_num_of_el-p_s:

ELSE
base_addr_s1 :
base_addr_s2 :
base_addr_s3 :=
i :- 0;
j :- 0;
k :~ 0;
WHILE (i < num_of_el_set(sl_in)) AND

(j < num_of_el_setls2_in)) AND
(k < max_num_of_el-p_s) LOOP

IF ram(base_adUr_s1 + il < ram(base addr_s2 + J) THEN
ram(base_addr_s3 + k) := ram(base_addr_s1 + 1):
i :- i + 1:
k :- k + 1;

ELSIF ramlbase_addr_s1 + i) > ramlbase_addr_s2 + j) TItEN
ram(base_addr_s3 + k) := ram(base_addr_s2 + j):
j :- j + 1:
k :- k + 1:

ELSE
i:-i+1;
j :- j + 1:

END IF;
END LOOP;
WHILE Ii < num_of_el_set(sl_in)) AND Ik < max_num_of_el-p_s) LOOP

ramlbase_addr_s3 + kl := ram(base_addr_s1 + i): add rest of set1
i : - i + 1: to set3
k :- k + 1:

END LOOP: or
WHILE (j < num_of_el_set(s2_in)) AND (k < max_nlm_of_el-p_s) LOOP

ram(base_sddr_s3 + k) := ram(base_addr_s2 + j): add rest of set2
j :- j + 1: to set3
k :- k + 1:

END LOOP:
IF k - msx_num_of_el-p_s THEN

IF Ii < num_of_el_setls1_in))
error <= '1' AFTER delay:

END IF:
Elm IF;
num_of_el set/s3_inl := k;
IF num_of_el_setlsJ_inl = max_num_of_el-P_8 THEN

full <- '1' AFTER delay;
ELSE

full <= '0' AFTER delay;
END IF;
IF num_of_el_setlsJ inl = 0 THEN

empty <= '1' AFTER delay;
ELSE

empty <= '0' AFTER delay;
EnD IF:

END If:

gi7e status set J

set } full;'

-- set 3 empty?

WHEN memb => IF num_of el_setlsl_int = 0 THEN
empty <- '1' AFTER delay:
full <~ '0' AFTER delay:

set empty.
?ive stat118 set.

89

File set.hdl Created at 11:56am on Thursday, August 8, 1991

member <= TRANSPORT '0' AFTER delay;
ELSE

IF nurn of el_setlsl in) - max_num_of_el-P_9 THEN
full <= 'I' AFTFoR delay;
empty <- '0' AFTER delay;

ELSE
full <= '0' AFTER delay;
empty <- '0' AFTER delay;

END IF,
located := false,
base_addr_s1 :- (51_in - 1) • max_nUID_of_el-p_s;
FOR i IN base_addr_s1 TO

base_addr_sl + num_of_el_setlsl_1n) - 1
LOOP

IF located - false THEN
IF rami il = d_in THEN

located :- true;
member <- TRANSPORT '1' AFTER delay;

END IF;
END IF:

END LOOP;
END IF;

bink Page 5 of 7

set not empty
g1ve status set

-- Search element.

Element not found
Compare elements.
Element found.

-- Search element.

Element not found
Compare elements.
El. In set.

WHEN insert -> located := false,
base_addr_sl := lsl_in - 1) • max_num_of_el-p_s;
IF nUID_of_el_set(sl_inl i- 0 THEN

FOR i IN base_addr_s1 TO
base_addr_sl + num_ot_el_setlsl_inl - 1

LOOP
IF located = false THEN

IF rami i) = d_in THEN
located :- true;
member <= TRANSPORT '1' AFTER delay,

ELSIF ram(l) > d_ln THEN El. not in set
IF num_of_el_set(sl_inl < max_num_of_el-p_s THEN set not full.

FOR j IN base_addr_sl + num_of_el_setlsl_inl - 1 DOWNTO
base_addr_s1 + i

WHEN delete

LOOP
r!lDl(j+l) := ramI j) :

END LOOP;
ramlbase_addr_s1 + 1) :- d_in;
member <= '1' AFTER delay:
located := true:
num_of_e l_set(sl_in) :- num_of_el_set(sl_1n) + 1;

ELSE
located :- true,
error <- '1' AFTER delay;

FoND IF;
END IF;

END IF:
END LOOP;
IF located - false THEN

IF num_of_el_setls1_1n) < max_num_of_el-p_s THEN
ramlbase_addr_s1 + num_of_el_setlsl_inl I := d_ln:
num_ot_el_setls1_ill) := num_of_el_set(sl_inJ + 1;

ELSE
error <= 'I' AFTER delay;

END IF;
END IF,

ELSE
ramlbase_addr_s11 := d_in;
nnm_of_el_set(sl_inl := 1,

END IF,
IF num_of_el_setlsl_1nl = max_num_of_el-p_s THEN

full <= 'I' AFTER delay,
ELSE

full <= '0' AFTER delay;
END IF,
empty <= '0' AFTER delay,

=> IF num_of_el_set(sl_inl i= 0 THEN
located := false,
base_addr_51 :- Is1_in - 1) • max_nUID_of_el-p_s;
FOR i IN base_addr_s1 TO

90

Unable to Insert
e1. (set full).

no el. inserted.
"et not full.

s",t full.
-;1i":e status set

set not empty

Search element.

file set.hdl Created at 11:56am on Thursday, August 6, 1991 bink Page 6 of 7

LOOP
IF located = false THEN

IF ram(i) > d_in THEN
located :- true;

ELSIF ramI i) '" d_in THEN
FOR j IN i TO

base_addr_sl ~ num_ot_el_setls1_inl - 1

Elem. not f~und.

Compare elements.
Eism. not in set.
Element in set
Delete element

(ordered) .
LOOP

ram(j) :- ram(j+1);
END LOOP;
located :'" true;
num_of_e1_setls1_inl :- num_of_el_set(sl_lnl - 1;

END IF;
END IF;

END LOOP;
END IF;
IF num_ot_el_set(sl_inl - max_num_ot_el-p_s THEN

tull <- 'I' AFTER delay;
ELSE

full <- '0' AFTER delay,
END IF;
IF num_ot_el_setlsl in) = 0 THEN

empty <- 'I' AFTER delay,
ELSE

empty <- '0' AFTER delay;
END IF;

set full?
give status set

-- set empty?

WHEN assign => IF num_ot_el_setls2_in) 1= 0 THEN
base_addr_sl := (51_in - II • max_num_of_el_p_s;
basB_addr_s2 :. (s2_in - 1) • max_num_of_el-p_s;
FOR i IN 0 TO num_of_el_setls2_in) - 1 LOOP

ram(base_addr_s1 + il := ramtbase_addr_s2 +i);
END LOOP;

END IF;
nLll1_of_el_setls1_in) :- num of __el_set(s2 _in);
IF num_of_el_set(sl_in) - msx_num_of_el-p_s THEN

full <= 'I' AFTER delay;
ELSE

full <- '0' AFTER delay;
END IF;
IF nUDI_of_el set(sl in) '" 0 THEN

empty <- 'I' AFTER delay;
ELSE

empty <- '0' AFTER delay;
END IF;

Give setl the same
'Talues as set2.

set full?
give status set

-- set empty?

Decides whether
setl and set2 are
equal. Error:-'l'
if not equal.

-> base_addr_s1 :- (sl_in - 11 • max_nUDI_of_el-p_s,
baBe_addr_s2 :- (s2_1n - 1) • max_num_of_el-p_s;
equal_var :'" true:
IF nUDI_of_el_setlsl_in) - nUDI_of_el_setls2_ini THEN

IF nlw_of_el_setls1_in) 1- 0 THEN
FOR i IN 0 TO num_ot_el_setlsl_inl - 1 LOOP

IF equal_var • true THEN
IF ramI base_addr_s1 ~ i) i= ramI base_addr_s2 ~ 1) THEN

equal_var .= false;
EIID IF;

END IF;
END LOOP;

EIID IF;
ELSE

equal var := false:
END IF;
IF equal_'Tar = false THEtl

error <- 'I' AFTER delay;

WHEN equal

END IF;
IF num_of_el_setlsl_inl '" max_nlll1_of_el-p_s THEN

full <= '1' AFTER delay;
ELSE

full <= '0' AFTER delay;
END IF;
IF num_of el_set(sl in) '" a THEN

empty <- '1' AFTER delay;
ELSE

set full?
give status set

-- sP.t empty?

91

File set.hdl Created at 11:56am on Thursday, August e. 1991

empty <- '0' AFTER delay;
END IF;

-> hase_addr_s1 :- lsI_in - 1) ~ max_num_ot_el-p_s;
IF num_ot_el_setls1_in) /- 0 TIIEN

d_out <- ramlbase_addr_s1) AFTER delay;
ELSE

error <- 'I' AFTER delay;
END IF:
If num_of_el_setlsl_inl = max_num_ot_el-p_s THEN

full <- '1' AFTER delay;
ELSE

tull <- '0' AFTER delay;
END IF;
IF num_of_el_set(sl_inl • 0 THEN

empty <- '1' AFTER delay;
ELSE

empty <- '0' AFTER delay;
END IF;

-> base_addr_s1 := (sl_in - II ~ max_num_ot_el-p_s;
IF Ilum_of_el_set(sl in I /- 0 THEN

d_out <- ram(ba••_addr_81 + num_of_el_set(s1_inl
ELSE

error <- '1' AFTER delay;
END IF;
IF num_ot_el_set(s1_inl = maK_num_ot_el-p_s THEN

rull <- '1' AFTER delay;
ELSE

tull <- '0' AFTER delay;
END IF;
IF num_of_el_setls1 in) - 0 THEN

empty <= 'I' AFTER delay:
ELSE

empty <- '0' AFTER delay;
END IF:

END CASE; op_code
ready <- TRANSPORT '1' AFTER delay;

END IF; -- en - 'I'

END IF; -- clK = '1'

END PROCESS set_operation;

init:PROCESS

BEGIN
ftll.l <= '0';
empty <- ' l' ;
member <- 'O'i

ready <- ' 1';
error <- '0';
Wait;

END PROCESS init;

END behavior1;

92

binK Page 7 ot 7

Give to d_out the
min-element.

set tllll?
give status set

-- set empty?

-- Give to d_otlt the
max element.

- 1) AFTER delay;

set f.ull?
give status set

-- set empty?

File set-pkg.hdl Created at 1:45pm on Wednesday, July 17, 1991 bink Page 1 of 1

USE std. standard. ALL;
USE std. mentor_base. ALL;

PACKAGE set-pkg IS

-- This is a mentor graphics package.

CONSTANT delay time :- 2ns;
CONSTArIT num_or._sets integer .- 4;
CONSTANT num_of_el-per_set integer :- 4;
CONSTANT elementlength integer .- 4;

TYPE set_mnemonic IS \ clear, union, intersection, difference, memb, insert, delete, assign,
equal, min_el, max_ell;

SUBTYPE data
-- TYPE data

SUBTYPE set_name
-- TYPE set_name

END set-pkg;

IS integer I\ANGE 0 to (Z**elelDentlength) - 1;
IS ARRAY (elelDentlength -1 DOWNTO 0) of bit;

IS integer RANGE 1 TO nurn_of_sets;
IS ARRAY (210g num_of_sets -1 DOWNTO 0) of bit;

This file contains the information, which should be implemented with the
GENERIC-clause in the set entity.

The type DATA should be a bit_vectorlelementlength-1 DOWNTO 0).

93

File graph.hdl Created at 0:50pm on Thursday, August 8, 1991

USE std. standard. ALL;
USE std.mentor_base.ALL;
USE worle.graphyleg.ALL;

bink Page 1 of)

Type de~larations and ~onstftnt de~lArations are in graphykg. This is a grRph wi~h operat10ns TN~ERT,

DELETE and RETRIEVE. The operations are started at the first clo~1c transition from 0 to I, and only
when Ell is high. An operation is finished when the READY signal becomes high. If an operation can not
eKe~ute, a N_OP is reported. If there is no edge between two nodes, the null-label (0) is assigned to
that position. It an node is deleted, also the null label is assigned to that node. I have restricted
lhe model, by assymming that the nodes are always numbered from 1 to nUDI_of_nodes. If we ·.ant to nSllle
the nodes arbitrarily, we have to use a table to find the correct addresses.

CLEAR:

- This operation mues the graph an empty graph.

INSERT_NODE:
Input: node I , label_in

- This operation inserts a node 'nodel' in the graph and adds a label 'lable_in' to it. The
node is not connected with the rest of the graph.

INSERT_EDGE:
Input: node I , nodel, label_in

- This operation inserts a edge between node 'nodel' and node , nodel , in the graph and adds a
label 'la1Jle_in' to it. The nodes 'nouei' anu 'nodel' are both in the gL-aph.

DELETE NODE:
Input: nodel
Output: label_out

- This operation will output the label of node 'nodel' to output port 'label_out', and then deletes
the node 'nodel' from the graph. node 'nodel' is not connected to the graph.

DELETE. EDGE:
Input: nodel, node2
Output: label_out

- This operation will output the label of the edge betwAen node 'nodel' and node 'noide2' to output
port 'label_out', and then deletes the edge from the graph.

RETIUEVE_NODF. :
Input: nodel
Output: label_out

- This operation will output the label from node 'nodel' to output port 'label_out'. If no label is de
fined,

the nul label is send out.

RETRIEVE_EDGE:
Inpnt: nod~l, node2
Output: label_out

- This operation will output the label from the edge between node 'nodel' and node 'node2' to output p
ort

'label_out'. If no label is defined, the nul label is send out.

ENTITY grAph IS

GENEIlIC

POFlT I

I;

deiay
nUln_of nodes
max_Iabel_length
nui labei

time;
positive;
positive
7

elle
en
op_code
nodel

IN
IN
IN
IN

bit;
bit;
graph_mnemonic;
node_iu;

94

file graph.hdl Created at 0:50pm on Thursday, August 8, 1991 b1nK Page Z ot J

node2
label_1n
label_out
n_.op
ready

) :

END graph;

IN
IN
OUT
OUT
OUT

node_1d;
label_data;
label_data;
bit:
bit

ARCHITECTURE behaviorl OF graph IS

TYPE node_label_ram
TYPE matrix

BEGIN

IS ARRAY tnode_idl or label_data;
IS ARRAY (node_id, node_1d) of label_data;

qraph_operation:PROCESS(clkl

VARIABLE node_ram
VARIABLE adj_matrix
VARIABLE i
VARIABLE j
VARIABLE K
VARIABLE 1
VARIABLE exist_edge

BEGIN

IF C1K • '1' THEN
n_op <= '0';

IF en • '1' THEN
ready <- '0';

node_label_ram:
matrix;
node_1d:
node_id;
nOde_id:
nOde_id:
boolean;

Array with norie lablp.s.
Matrix with edge lables.
i, j , k and 1 are variables

used with loops. During II.

ioop : i = k and j = 1

Control variable for testing edge existence

WHEN clear -> k:- node_td'low;
FOR i IN node_id'low TO node_id'high LOOP

node_ram(k) :- nuL_label;
1:= node_1d'10w;
FOR j IN node_id'low TO node_id'high LOOP

adj_matrix(k,l) :- nUl_label:
IF j < node_id'high THEN

1:= 1 + 1;
END IF:

END LOOP:
IF 1 < node_id'high THEN

k :- k + 1:
END IF;

END LOOP:
label_out <- nuL_label AFTER delay;

WHEN ins_node -> IF node_ramlnodel) - nuL_label THEN
node_ramlnodel) :- label_in:

ELSE
n_op <- '1' AFTER delay;

END IF;

WHEN lns_edge => IF I node_ramI nodel) f= nul label AND node_rami nodeZI ,= nul label I THEil
adj_matrixlnodel, nodel) := label_in;

ELSE
n_op <- '1' AFTER delay;

END IF;

WHEfl del_node => IF node_ramI nodell := nuL_label THEN
eXist_edge := false:
k := node_id'low:
fOR i IN node_id'low TO node_id'hiqh LOOP

IF adj_matrixi nodel, 1;1 f. nuL_label THEN
eXist_edge := true;

END IF;
IF adj_matrix(k, nodel) f. nuL_label THEN

eXist_edge := true;

95

File graph.hdl Created at 0:50pm On Thursday, August 6, 1991

END IF,
IF eXist_edge = true THEN

n_op <= 'I' AFTER delay;
END IF;
IF i /- num_of_nodes THEN

k :- k + 1;
END IF,

END LOOP;
IF eXist_edge = false THEN

label_out <- node_ram(nodel1 AFTER delay,
node_ram(nodel) :- nuL_label;

END IF;
ELSE

label_out <- nul_label AFTER delay;
END IF:

blok Page J of J

WHEN del_edge => IF (node_rMl(nodel) /= nul_label AND node_ramlnode2) /= nuL_label I THEN
label_out <- ad1_matrix(nodel,nOdeZ) AFTER delay;
adJ_matrix(nodel, node2) :- nul_label;

ELSE
n_op <- 'I' AFTER delay,

END IF;

WHEN retr_node => label_out <- node_ram(nodell;
IF node_ram(nodell = nul_label THEN

n_op <= 'I' AFTER delay;
END IF;

WHEN retr_edge => IF (node ramlnodel) 1= nul_label AND node_ram/node2l /- nuL_label I THEN
label_out <= adj_matrix(oodel, 1I0deZ) AFTER delay;

ELSE
label_out <- nlll_label AFTER delay;
o_op <- 'I' AFTER delay,

END IF;

END CASE, opeode
ready <- TRANSPORT '1' AFTER delay;

END IF; -- en - 'I'

END IF, -- elk = '1'

END PROCESS graph_operation;

init:PROCESS

BEGIN
ready <:a '0';
"_Op <z: '0':
label_out <- nul_label;
wa1~;

END PROCESS init;

END behaviorl;

96

F1le graph-pkg.hdl Created at 5:04pm on Thursday, July 4, 1991 b1nk Page 1 of 1

USE std. standard. ALL;
USE std.mentor_base,ALL;

PACKAGE graph-pkg IS

-- This is a Mentor Graphics pakage;

CON~1\N'1' delay
CONSTANT num_of_nodes
COt/STAIrr max_label_length

time
Integer
lntegel."

,s 2ns:,.. 4:
:- 4;

Genertc
GE'lIer1c
Generic

TYPE graph_mnemonic
TYPE label_data
-- TYPE label_data
CONb~ANT nuL_label
TYPE node_id
-- TYPE node_1d

IS (clear,ins_node,1ns_edge,del_node,del_edge,retr_node,retr_edgel;
IS RANGE ° TO \Z"max_label_lengtlll-1;

IS ARRAY (element_length - 1 DOWtITO 0):
, label_data :. 0:
IS RANGE 1 TO num_ot_nodes;

IS ARRAY (... 7 DOWtITO 0);

This file contains the information, which should be implemented with the
GENERIC-clause 1n the 11st entity.

The type DATA should be a bit_vector(element_length-l DOWNTO 0).

97

	Voorblad
	Summary
	Table of contents.
	1. Introduction
	2. Data structures.
	3. Software implementations and their complexity.
	4. Basic hardware building blocks.
	5. Hardware implementations in VHDL.
	6. Conclusions and recommendations.
	References
	Appendix

