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Summary

Thomson—Rayleigh scattering is a method to measure the electron density n, electron
temperature T, and the neutral density n, locally in a plasma. This makes it possible to
study shock wave phenomena in expanding plasmas. The measurements are performed
on an argon plasma which expands from a cascaded arc into a vessel at low pressure.

A method is developed, using least mean square analysis, to calculate the three plasma
parameters accurate. The reached accuracy in n, is 1 — 4 %, for T, 2 — 4 % and for n, 10
—20 %, depending on the conditions.

A standing shock wave occurs in the electron and neutral density. The position of the
jump in T, occurs closer to the expansion than the jumps in ne and n,. This is probably
caused by current generation due to the strong pressure gradient in the first part of the
expansion. The current generation is calculated with the electron energy balance.
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1 Introduction

To understand the physical phenomena in expanding plasmas, knowledge of the most
important plasma parameters as densities and temperatures is essential. Combined
Thomson—Rayleigh scattering gives a means to measure three plasma parameters locally,
namely the electron density, electron temperature and the neutral density.

The aims of this work are:

— To develop a method and a Turbo Pascal program to fit Thomson—Rayleigh
scattering measurements. From the fits the plasma parameters can then be
calculated;

— Investigation on shock wave phenomena occurring in expanding plasmas.

A Thomson—Rayleigh scattering measurement consists of a Thomson component and a
Rayleigh component. The Thomson component accounts for the scattering on free
electrons, while the Rayleigh component reflects the scattering on bounded electrons of
neutral atoms and ions. In earlier days the plasma parameters were calculated with a
Thomson plot or directly from the scattered spectrum [1], [2]. A fit program is developed
to reach a higher accuracy in the determination of the plasma parameters [2], [3]. Also
deviations from a Maxwellian velocity distribution function for the electrons can easily
be studied. Connected with the fit program corrections for collective effects are
introduced, i.e. when the scattered spectrum depends on the collective behavior of
groups of electrons.

Most measurements done in this work show a shock structure in the plasma parameters.
Remarkable is that the jump in the electron temperature occurs earlier than the jump in
the electron and neutral densities. For normal shocks the position of the jumps is the
same [4]. Investigations on shock tubes show contradictory results. For example, in ref.
[5] the position of the jump in the electron temperature and the jump in the densities is
the same, while ref. [6] clearly shows a difference between the positions of the jumps. We
explain this difference by means of current generation due to the strong pressure
gradient in the first part of the expansion. The electron temperature then increases by
means of Ohmic heating. The current density can be calculated with the electron energy
balance.




Introduction 2

In chapter 2 the theory of scattering of electromagnetic radiation by a plasma is treated.
Beside scattering on individual electrons, the incoherent scattering, corrections for
collective effects are introduced. Chapter 3 discusses the cascaded arc set up and the
Thomson—Rayleigh scattering set up, present at the Plasma Physics Group of the
Physics Department of the Eindhoven University of Technology. Also the necessary
calibrations are considered.

The developed fitting method for the combined Thomson—Rayleigh scattering
measurements is treated, tested and discussed in chapter 4. In chapter 5 the theory of
shock waves is treated shortly as introduction for chapter 6.

Chapter 6 deals with the results of the scattering measurements. In particular the shock
structure of the expanding cascaded arc plasma is discussed.

The current density on the axis of an expanding plasma is calculated using the electron
energy balance. The energy balance and results are discussed in chapter 7. Finally in
chapter 8 the conclusions and some suggestions are given.



2 Scattering of electromagnetic radiation by a plasma

2.1 Introduction

When electromagnetic radiation strikes a charged particle, the oscillating
electromagnetic field of the radiation accelerates the particle in resonance with the
incident field. The accelerated charged particle will now act as a radiating dipole
oscillator and emits radiation [7]. See figure 2.1.

Time
Charge

@ VW, s

i Incident wave

®

Scattered
wave

®

‘@

Figure 2.1 Scattering of radiation by a free charged particle.

The spectrum of the scattered radiation depends on the electron density ng, electron and
ion temperatures T, and T; respectively, and also the neutral density ny. In this chapter
we derive expressions to calculate n,, T, and n, from the scattered spectrum.
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2.2 Scattering on a moving particle

We consider a charged particle moving with a velocity v. The incident electromagnetic
radiation with wave vector k; (|k;| = 27/);) is scattered by the charged particle. The
wave vector of the scattered radiation is k. See figure 2.2. Because the particle is
moving the scattered radiation will be Doppler—shifted.

‘d observer

Figure 2.2 Scattering geometry for scattering on a moving particle.

The scattered radiation is angle dependent. This dependency is shown in figure 2.3. The
radiation field is just that of a radiating dipole.

(a) (b)
v, dv/dt v, dv/dt
dV/ dt dv /dt
3
Iy
Figure 2.3 The angular variation of the radiation scattered by an accelerated charge.

(a) stationary charge; (b) charge moving with v // du/dt.
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At low velocities of the particles (v € c) the variation of the scattered radiation with
direction has the shape shown in figure 2.3a. At higher velocities (v < ¢) the radiation is
scattered more in the direction of v [7]. This is shown in figure 2.3b. We assume that no
relativistic effects are present, which means v ¢ c¢. By choosing an appropriate
wavelength of the incoming electromagnetic radiation in our experiment (A; = 532 nm)
no quantum effects occur. Then the following relation is valid:

ks| = ki (2.1)
We now define a scattering vector k, the shift in wave vector, as
k =k —k; (2.2)

See figure 2.4.

<) k

Figure 2.4 Definition of the scattering vector k.
From figure 2.4 we see that:

|k| = (k¢? + k;2 — 2kgk;cosd)1/2 (2.3)
This leads, together with equation 2.1 to

k| = 2k;sin(0/2) (2.4)
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The Doppler shift of the frequency of the scattered radiation is a result of two effects:
— The incident wave is "seen" by the charged particle at a Doppler—shifted
frequency, because the particle is moving with respect to the source of radiation.
— The particle has a velocity component in the direction of the observer which gives
a second Doppler shift.

With the definition of the shift in frequency, w, we have
w=ws—wi=(ks—ki)-v=k-v (25)

So the shift in frequency w is proportional to the component of the particle velocity in
the direction of k.

When the scattering particle is a free electron we speak of Thomson scattering.
2.3 Incoherent and coherent spectra

In the last paragraph we discussed the scattering on one charged particle. Now we look
at the situation in a plasma, which consists of more charged particles. Therefore we
introduce a scattering parameter o

1

o= -k’\_D (2.6)

with k from equation 2.4 and A the Debye length

Ap = Gk Te (27)

e’n,

We now consider two cases:
A
- B imin

wave "sees" the individual electrons, which appear free. In this case the scattered

7y € Ap, which means o € 1, we have incoherent scattering. The incident

spectrum reflects the shape of the electron velocity distribution (this is reasonable
from equation 2.5, which shows that w is proportional to the electron velocity
component which lies along k).
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A
-~ Hgmin
wave now interacts with shielded charges. The scattered spectrum therefore

5y 2 Ap, which means a > 1, we have coherent scattering. The incident
depends on the collective behavior of groups of charges.

In our Thomson scattering experiments we have a situation in between, i.e. a < 1 but
not a € 1. This case is more complicated then the case of incoherent scattering. The
shape of the scattered spectrum now depends on the scattering parameter o.

2.4 The scattered power spectrum

A general expression for the scattered power in a solid angle AQ) and in a frequency
range dws (= dw, equation 2.5) is given by [7]

Pidws = Py ng-L-AQ-g(8,4,)- S(k,w)-doy/dQ - dwg (2.8)

See figure 2.5. In our scattering experiments Pg/P; » 10714 (see paragraph 2.6). Py and P;
are the scattered and incident power respectively, L is the length of the scattering
volume (V = L-A) in the direction of k;, do;/dQ is the differential cross section for
Thomson scattering and S(k,w) the spectral density function for a low temperature
stable plasma. g(f,4,) takes into account the polarization of the incident radiation and
reflects the dependence on the angles 4 and ¢, (see figure 2.5):

g(8,6,) = 1 — sin?dcos?¢, (2.9)

with 6 and ¢, as defined in figure 2.5. In our case § = ¢, = 90° and thus g(6,¢,) = 1.
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observer

Figure 2.5 The scattering geometry in a plasma.

We now develop an expression for the spectral density function in the case of Maxwellian
velocity distribution functions for the electrons and ions. The one—dimensional
Maxwellian distribution function is given by:

flvy) = s 'exP(_Vx2/Vth,x2) (2.10)

th,x

with vy, 4 the thermal speed in the scattering plane of the electrons or ions.

Vih,x = (2kax/mx)1/2 (2-11)

with x = electrons or ions.
The spectral density function is now in the Salpeter approximation (i.e. it is possible to
separate out the properties of the electron and ion features) [7]

A A,

1
S(k,w)=m'{ p + p ] (2.12)
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where
Ag = exp(—x2)- [(1 + azz%‘?'RW(XiW + (a2z%t}-1w(xi))2]
1 1
m:T.)1/2
Ay = 2- [Bite) . exp(—x)- (a2 R(x))? + (02 Iw(x,))?
€e+1
T 2 T 2
lef? = [1 + a? [Rw(xe) + Z-T‘?-RW(xi)]] + [a2-IW(xe) + azZT‘?-IW(xi)]
i 1
(2.13)
with x, = kv‘:)h Xq kv‘: the scattering parameter a from equation 2.6, Z the

atomic number and Vih e and vip i from equation 2.11. In the above equations the
following assumptions are made:
— ngApd » 1, where n, is the electron density and Ap the Debye length;
— time variations are slow compared to the microscopic times wpe™!, vl and w;!
where wpe is the electron plasma frequency, v is the collision frequency for
momentum transfer and w; is the frequency of the incident radiation.

Rw(x) and Iw(x) are the real and imaginary parts of the plasma dispersion function:

Rw(x) =1- 2x-exp(—x2)h-J.zexp(p2)dp (2.14)

Iw(x) = 7/2.x-exp(—x?) (2.15)

In figure 2.6 the real and imaginary parts of the plasma dispersion function are shown.
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0 10 ) 320 40
20
— x
-0.25

Figure 2.6 The real and imaginary parts of the plasma dispersion function.

For an incoherent spectrum (a ¢ 1) we get

S(k,w) fe(w/k) (2.16)

a0~ "k

with fo(w/k) the one—dimensional Maxwellian distribution function of the electrons
(equation 2.10). So

19}

J "5 (k) du =J £ (w/k)d(w/k) = 1 (2.17)

- —w

with dwy = dw.
In our Thomson scattering experiments a is not much smaller than one, but @ < 0.3. In
this case we can neglect in equation 2.12 the terms proportional with a*, because the
error introduced by this simplification is smaller than 1 %. The equations 2.13 can now
be simplified to
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2
Ag ~ exp(—xg?)- [1 + a2Z%-Rw(xi)]
1

Ai ~ 0 (2.18)
2
le|2 [1 + azz%-Rw(xi) + az-Rw(xe)]

Substitution of equations 2.18 in equation 2.12 gives

T,
1+ a?Zg% Rw(x;)]?
1 [ T -
S(k,w) = -exp(—x¢?)- ‘
kT %vin o "1 + o225 Rw(x; ) + o?Rw(x,)?
1

(2.19)

By further simplification of the right hand side of the above equation (by expanding the
denominator as a series expansion and neglecting the a* terms) we get

(k) = 17z exp(-xe?)- [1 ~ 202 R ()] (2.20)

= Llw/k). [ _ 902 Rw(x,)]

Integration over wg gives

J "5k w)dug = 1 — 2 (2.21)

—

This looks as if we lose photons. However S(k,w) should also be integrated over k. Then
the result of the integral would be 1.

We now discuss the consequences of the two solutions equation 2.16 and equation 2.20
for the calculation of the electron density n, and electron temperature T,.
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a. Incoherent scattering (a € 1).

From the integration of the scattered power (equation 2.8) over wg, it can be shown for
incoherent scattering, with substitution of equation 2.17, that the scattered spectrum is
pure Gaussian. We then see that n, is proportional to the area under the Gaussian
profile (the total amount of Thomson photons). See also figure 2.7a.

The electron temperature T, is calculated from the one—over—e width of the Gaussian:
the width of the Gaussian where the signal is lowered to 1/e times the maximum signal.
We get from equation 2.10

%meve"’ = kae (2.22)

We also know w;/c = k; = 27/}, so differentiating gives
|dwj| = w= 27rc-§—)_‘2 (2.23)
1

Substitution of equation 2.4 and 2.5 in equation 2.23 then gives an expression for the
velocity of the electrons, with dA = A/, (the half one—over—e width):

— c A /e
Ve = 25in(0]2)" N (2.24)

Equation 2.24 substituted in equation 2.22 eventually gives an expression of T, as a
function of the half one—over—e width A),/e

— m,c? . 2
Te = 85in2( 072)kb/\iz (A’\l/e) (2-25)
With 6 = 90° this gives T, = 5243.68-(A);/¢)? where A}/, in nm.
b. & < 0.3 (collective effects).

We see that now the scattered spectrum has the shape of a corrected Gaussian according
to equation 2.20. This is shown in figure 2.7b for & = 0.3.
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(a) (b)
— Gaussian ——— Gaussian ---- Corrected
Gaussian
800 800
600 600 |
ool E ool
200 [ 200 |
° 0o
-2 2 -2 -1 o] 1 2
A) (nm)
Figure 2.7 The scattered spectrum around incident wavelength A; for incoherent

scattering (a) and a = 0.3 (b).

We see in the above figure that the scattered signal is depressed in the center and
broadend in the flanks of the spectrum in comparison with a true Gaussian. This leads of
course to somewhat different values of T, and n.. If & is not too large (0.3) T, will be
smaller and n, larger in comparison with analysis assuming incoherent scattering. The
exact equation to calculate ng is given in paragraph 3.4.

2.5 Rayleigh scattering

We now consider the scattering of electromagnetic radiation by bounded electrons of
neutral atoms and ions, which is called Rayleigh scattering. The expression for the
scattered power for Rayleigh scattering is similar to the one for Thomson scattering:
equation 2.8, with n, replaced by ny + #%n;. 32 Is the ratio between the differential cross
sections of the ions (i) and neutrals (n). For Argon [8]:

do, ;/df2 -
To-lgq = 67 = 0393 (2.26)
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The scattered power is given by
Psdws = Pi-(ng + f%n;)-L- AQ-S(k,w),- do/dQ- dws (2.27)

with do,/dQ the differential cross section for Rayleigh scattering. The ratio of the
differential Rayleigh and Thomson cross sections for Argon, for an incident wavelength
of 532 nm (the Rayleigh cross section is, in contrast with the Thomson cross section,
wavelength dependent), is [8]

do./dQ} 1
doy/dQ) — 143

(2.28)
The Doppler width of the scattered spectrum is proportional to m™/2, with m in this
case the mass of the atoms, so the width of the profile is negligible small compared to
Thomson scattering, which means

o

J mS(k,w)rdws = J f(w)dw =1 (2.29)

—w

with §(w) the Dirac delta function.

The scattered spectrum in the scattering experiments is thus a combination of scattering
by free and bounded electrons. In figure 2.8 a simulation of a scattering experiment is
given (see also chapter 4).

So from the scattered spectrum we can determine the electron density, electron
temperature and the neutral density, with the equations derived in this chapter.
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Figure 2.8 Simulation of a Thomson scattering measurement (ne = 5-10'9 m™3,
no = 1-10* m™ and T, = 17406.7 K).

2.6 Efficiency of Thomson scattering
The differential cross section for Thomson scattering is in the classical limit

doy/dQ = 1g2- (1-sin26cos2g,) (2.30)
where 1 is the classical electron radius:

- e? — .10-15
Te = W = 2.81-10 m (2.31)

So, in our case where § = ¢, = 90°, we get

doy/dQ = 7.9-10730 m? (2.32)
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The ratio of the integrated scattered power and the incident power (see equation 2.8)
gives the efficiency. The result is (including collective effects)

£ = np-(1 - 0?)-L-AQ-doy/dO (2.33)
1

where doy/d2 from equation 2.32) L = 1 mm and AQ = 0.021 sr. With n, = 11020 m™3

and a = 0.2 we get

P .

s 10714

p; ~ 10

which means that on 10! incident photons only one is scattered. This means that for
performing Thomson scattering, a high energy laser is necessary.

In this chapter we derived the basic equations to calculate from the scattering
experiments the plasma parameters ng, n, and T,. In the next chapter we discuss the
experimental set up, on which the scattering experiments are performed.
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3 Experimental set up

3.1 Introduction

The cascaded arc set up is shown in figure 3.1. The three most important parts of this
set up are:

— the plasma source, a cascaded arc;

— the vacuum vessel, into which the plasma expands;

— the diagnostics.

A plasma, generated by the cascaded arc, expands into the vessel (1) at low pressure
(0.01 — 1 torr). To reach low pressure, different pumps are used: two fore pumps, three
roots pumps (capacity 400, 1000 and 2000 m?/hr) and two diffusion pumps.

The length of the plasma column is equal to the distance between the anode plate of the
cascaded arc and the end anode both connected with the electrode support system (2).
The vessel is surrounded by eight Helmholtz coils (3) which can apply a magnetic field
parallel to the plasma jet.

In this chapter we discuss the cascaded arc briefly in paragraph 3.2, the
Thomson—Rayleigh scattering diagnostics (4) in paragraph 3.3 and the calibration
methods applied in this diagnostics in paragraph 3.4. Finally the effect of the laser on
the plasma is discussed in paragraph 3.5.
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10m
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Figure 8.1 The general plasma set up.
1. Vessel

2. Electrode support system: a. cascaded arc, b. end anode

3. Magnetic coils (water cooled)
4. Diagnostics
5. Viewing ports
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3.2 The plasma source

As a plasma source a wall stabilized arc is used (see figure 3.2). It consist of three
tungsten—thorium cathodes, eight copper plates (which are electrically insulated from
each other) and an anode plate. They are all water cooled. A voltage is applied between
the cathodes and the anode of the cascaded arc. Argon gas is injected in the central
channel of the arc. The gas is (partly) ionized by discharge between the cathodes and the
anode plate. In this way a plasma is created which expands into the vacuum vessel.
Plasma parameters as electron density ng, electron temperature T, neutral density ng
and heavy particle temperature T}, depend on the argon gas flow through the cascaded
arc, the current between the cathode and the anode and the pressure. The plasma
conditions used in this work are listed in table 3.1.

It is also possible to apply an additional voltage between the cathodes of the cascaded
arc and the end anode. The used electrical configurations are shown in figure 3.3. For a
more complete survey of the cascaded arc and the possible electrical circuits see [9].

Table 8.1 The plasma conditions used in the scattering experiments.

carrier gas argon

gas flow 3500 ml/min
nozzle 4 mm
Pbackground 0.3 torr
Lplasma jet 700 mm
Icasc 45 A
Ipla.sma jet 0—-45A
Ig 0—360 A
Vecasc 145V
Vplasma jet 0-170V
B 0-02T
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v

Figure 3.2 The cascaded arc.

(a)

cascaded arc

S

Figure 5.3

P

The electrical circuit connected with the cascaded arc and the end anode;
(a) the driving voltage is applied between the cathodes and the anode of the
cascaded arc, the end anode is electrically isolated;

(b) the cascade arc operates as described in (a) with an additional voltage
applied between the cathodes of the cascaded arc and the end anode.
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3.3 The Thomson—Rayleigh scattering set up

At the position of viewing port nr 3 in figure 3.1 the experimental set up for
Thomson—Rayleigh scattering is positioned. It is shown in detail in figure 3.4. The
position of the scattering plane is normal to the axis of the plasma jet.

VIEWING
DUMP
2 A Dl| ||D3
L(/L M\ LASER DUMP
plasma

’ al
Nd: YAG D2
S1
L2
L3
l HCR
DET | S3
54 HCR N
e LA S4
3 OMA
(<}
S
[HHERTIVATINAN, 2=
Figure 3.4 The experimental set up for Thomson—Rayleigh scattering ezperiments

(explanation see tezt).
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In figure 3.5 the cross section of the vessel is shown in more detail.

As a light source a frequency doubled Nd:YAG laser is used (DCR 11 Quanta Ray,
wavelength 532 nm, energy per pulse E = 0.15 J/pulse, pulse width 7 = 8 ns and
repetition frequency frep, = 10 Hz, further specifications are given in [10]). The laser light
passes two dichroic mirrors S; and S, to separate the second harmonic from the first
harmonic, which is dumped behind S; and S,. After this the laser light is focused in the
plasma, to a waist of 0.5 mm by lens L; (f = 500 mm). In the vessel tube T, several
diaphragms are installed (D,, D, and Dj) to diminish the stray light originating from
laser light scattering at the entrance window W, of the vessel. In the tube T, opposite to
the entrance window a laser dump is installed, which absorbs the incident laser light.
This dump consists of a glass plate NG3 under the Brewster angle.

T,

| ==4¢—viewing dump

Nd:YAG laser

P
W, T
T, laser dump
W, :ﬁ_ —
\\ %
Figure 3.5 Cross section of the wacuum wvessel, at the position of the

Thomson—Rayleigh scattering set up (viewing port nr 3).
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The 90° scattered light is observed through window W, and imaged one to one on the
entrance slit of the polychromator by two plano convex lenses L, and L; (both with
f =500 mm) and a mirror S4. In the tube T; opposite to the exit window a viewing
dump is installed to reduce the stray light from that direction.

The polychromator consists of a holographic concave grating (HCR) and a detector. The
HCR (special Jobin Yvon, 1800 lines/mm, Rowland geometry, radius of Rowland circle
500 mm, calculated dispersion on Rowland circle 1.11 nm/mm) disperses the scattered
light (wavelength selection). A solid angle of 2.5-1072 sr is reached by matching the
aperture ratio of lenses L, and L; to the aperture ratio of the HCR. The entrance and
exit angles of the polychromator are chosen such to achieve minimal astigmatism on the
Rowland circle for the used laser wavelength of 532 nm.

The detector consists of three parts: a gateable light amplifier (LA), an optical
multichannel analyzer (OMA) and a personal computer (PC) with an ADC plug in unit.
The photocathode (S20, quantum efficiency 12 % at 532 nm) of the LA (Fiber Optic
array, amplification 104, gating time 74,4, = 20 ns) is positioned on the Rowland circle.
Light which strikes the photocathode is amplified. The LA is gated with a pulse
generator which is triggered by the laser. Gating is necessary to minimize the plasma
light during a measurement. The amplified Thomson—Rayleigh signal is detected with
the OMA, which integrates the scattered signal during 1200 shots. It consists of a photo
diode array PDA (1024 pixels: width 25 ym, height 2.5 mm, EG&G Reticon photo diode
array RL1024S). The pixels are cooled with two peltier elements, which makes long
integration times possible [1]. With an ADC converter the analog signal is digitized
inside the personal computer PC. In this way the scattered signal is measured in ADC
counts. One ADC count corresponds to 3.4 photons according to [11].

With the diagnostics discussed, Thomson—Rayleigh scattering measurements can be
performed in expanding cascaded arc plasmas in axial and radial direction. For this the
position of the plasma can be changed by moving the cascaded arc and the end anode
independently in axial and/or radial direction. This has the advantage that the optics
remains fixed. For definition of the axial and radial directions in the plasma see figure
3.6.
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Figure 8.6 Definition of azial and radial directions in the ezpanding plasma.

3.4 Calibration methods

To determine correctly the three plasma parameters ne, n, and T, from the
Thomson—Rayleigh scattering measurements, three different calibrations have to be
performed. First an absolute calibration, to calculate the electron and neutral density,
second a wavelength calibration, to calculate the electron temperature and third a
relative calibration, to calibrate the different sensitivity of the pixels.

3.4.1 Absolute calibration

To calculate the electron and neutral density from the measured spectrum an absolute
calibration is performed. It consists of a Rayleigh scattering measurement (on pure argon
gas at a pressure of approximately 1.6 torr) under the same conditions as the
Thomson—Rayleigh scattering measurements.

The neutral density n, c,; corresponding to this Rayleigh calibration measurement is
calculated from

p= no,calka (3~1)

where p = 1.6 torr and T = 296 K (room temperature). The accuracy in the measured
pressure and temperature influences of course the calibration.
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The ratio of the integrated signal of the Thomson component of the measured spectrum
and the integrated Rayleigh scattering signal now gives the value of the electron density
ne. For pure argon gas the integrated Rayleigh scattering signal is (see chapter 2)

[01]
Leal = J Pg dws = Pi'no,cal'L'AQ'dUr/dQ'Tdet (3.2)

—

where Tge is the product of the transmission of the used optical components and the
detection efficiency.
The integrated signal of the Thomson component of the measured spectrum is (including

- collective effects)

[19])
Tpom = J P, tdus = Py-ng(1-a?)L- AQ-doy/dQ- Ty’ (3.3)

-

Because the Thomson and Rayleigh scattering measurements are done under the same
conditions, i.e. Tqet = Tget’, Ne is given by

I n do./dQ2
___r.h.nm._o.,.c.al.
Te =77 ., 1% do,/dQ (3.4)

In the same way the ratio of the integrated signal of the Rayleigh component of the
measured spectrum and the integrated signal of the Rayleigh calibration measurement
gives the neutral density.

The integrated signal of the Rayleigh component of the measured spectrum is

®
Irayl = J Ps rdws = Pi(no+A%n;)L- AQ-doy/d2- Tgey’ (3.5)

—o

With I, from equation 3.2, n; = n, (quasi neutrality) and Tge = Tget’, Do is given by

|
Ny = no,cal"ﬁ'ﬂ_ﬂzne (3.6)

where n, is calculated from equation 3.4.
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3.4.2 Wavelength calibration

The wavelength calibration is performed to calculate the electron temperature, which is
proportional to the square of the width of the Thomson component of the measured
spectrum (equation 2.24). Therefore the pixels of the OMA have to be calibrated with
wavelength. This is done by measuring the spectra of some gas discharge lamps. We used
Ne, Hg, Cs, Ar, Xe and Ti gas discharge lamps and the Nd:YAG laser. Afterwards the
observed spectral lines are identified with wavelength. The result of the wavelength
calibration is shown in figure 3.7.

As can be seen in this figure, a linear relation exists between wavelength and pixel
number. From a least mean square fit we find

A = a, + a; pixel number (3.7)

where A in nm, a, = 517.3 + 3.0 nm and a; = 0.02684 : 0.007 nm/pixel. The correlation
r = 0.9991.
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Figure 8.7 Wavelength calibration of the pizels.
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3.4.3 Relative calibration

Calibration of the pixel sensitivity is performed with a tungsten ribbon lamp (Osram,
type 17/G, nr. 1252, calibration certificate nr. 723.0307) under the same conditions as
the Thomson—Rayleigh scattering measurements. The spectrum of the tungsten ribbon
lamp is measured at one particular current through the ribbon (the radiance depends on
the temperature of the ribbon and thus depends on the current through the ribbon, we
choose a current of 14.00 + 0.01 A). The measured spectrum is shown in figure 3.8. With
the method described by [12] we can calculate the relative calibration. The Turbo Pascal
programs "T_rad", "T_waar" and "Radiant" (all written by M.C.M. van de Sanden)
are used for this aim.
Shortly the procedure is as follows:
— With "T_rad" the radiation temperature (at a current of 14 A) is calculated from
the specifications given by the calibration certificate.
— From the radiation temperature the true temperature of the ribbon is calculated
with "T_waar".

curent = 1402 +/— 001 A

3000

2000

counts

1000

400 500 600 700

pixel number

Figure 8.8 The measured tungsten ribbon lamp spectrum.
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— The intensity for a few wavelengths at one true temperature is calculated with
"Radiant". By fitting the result with a polynomial of order 3 we get the intensity as
a function of wavelength at one true temperature (belonging to a current of 14 A).

— From the wavelength calibration, discussed in paragraph 3.4.2, we know the pixel
numbers corresponding to the different wavelengths. So the relative calibration for
each pixel can be calculated by dividing the tungsten ribbon lamp measurement by
the calculated intensity.

Together with the absolute calibration (described in paragraph 3.4.1) and the
wavelength calibration (described in paragraph 3.4.2) the measured Thomson—Rayleigh
scattering measurements can be analyzed.

3.5 Influence of the laser on the plasma

In this paragraph we discuss two possible, laser induced, effects on the plasma. First
heating of the plasma in subsection 3.5.1 and second disturbance of the plasma by the
incident electric field in subsection 3.5.2.

3.5.1 Heating of the plasma by absorption of laser energy

An important restriction to the used laser is that it should not disturb the plasma.
Absorption of the laser energy by the plasma can give rise to an increase of the electron
temperature (inverse Brehmstrahlung). The laser energy can disturb the plasma also in
other ways, here we discuss only the heating of the plasma by absorption of laser energy
by the electrons. The increase is given by [8]:

t
AT, _ -4 D722 hy )] 1 [E
T, = S 107, T, a [1 —eXP[— kae]] 'q'Jo Lt

(3.8)

where n; = n,, Z = 1, gaunt factor gg = 1, cross section of the laser beam in the plasma
q = 7-(0.25-1073)2 = 1.96-10"" m?, laser power L = 1.88-107 J/s, frequency of the laser
fotons v = ¢/A; = 5.64-10! 5! and time t;, between 7 and 7e;, where 7, and 7,; are
the relaxation times for electron — electron and electron —ion momentum exchange. We
take the upper limit t;, = 7¢; = 2.76-105-T¢3/2/(nelnA.). For ng = 5-101* m™3 and T, =
2500 K we get t;, = 1.28-1071 s and AT,/T, = 4.86-10"% which means that the increase
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of the electron temperature, due to absorption of laser energy, is 0.12 K for T, = 2500 K.
This justifies the conclusion that heating of the plasma by absorption of laser energy can
be neglected.

3.5.2 Disturbance of the plasma by the incident electric field

The incident electric field should be small enough not to disturb the plasma, i.e. the
acceleration during one cycle of the electric field should be smaller than the thermal
speed in the scattering plane. This requires

eE; 9kyT,] /2
Ve = bl vip e = [—rﬁi"‘] (3.9)

where w; = 2mc/A; = 3.54.10% s71. The electric field is related to the incident power per
unit area by

Py i B2 3.10
A 2

where A = 1.96-10°7 m? the cross section of the laser in the plasma. With substitution of
equation 3.10 in equation 3.9 we get the condition

: 2
P_At < Eeﬂ_ugl,}hlaéns = 1.63-1013. T, (3.11)

with T, in K. For the Nd:YAG laser used in this work we find P;/A = 9.59-10!3 Js"'m2,
So for T, = 2500 K and all the electron temperatures measured in this work (1500 —
20000 K) the conclusion is justified that the influence of the incoming electric field is
negligible.
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4 Analysis methods of scattering measurements

4.1 Introduction

To calculate the electron density ng, electron temperature T, and the neutral density n,
from the scattering measurements a fit program has been developed. This program uses
a non-linear least mean square fit method based on the Levenberg—Marquardt algorithm
[14]. In paragraph 4.2 the theory of this fitting method is described. For all programming
details of the fit program, the reader is referred to the user guide [15]. Paragraph 4.3
treats the possible components of the model function, used in the fit program (described
in paragraph 4.2). Several tests performed on the fit program are explained and
discussed in paragraph 4.4.

4.2 Least mean square fit procedures with nonlinear models

We consider 32 model y = y(x,a) which depends nonlinearly on a set of M unknown
parameters ay, k = 1..M. With this model we want to fit a set of N data points (x;,y;)-
Usually N > M. We define the Chi Square function x2, which measures the agreement
between the data and the nonlinear model with a particular choice of the set of
parameters a, as

N vi = y(x,a)]?
¢ - . a
x¥a) = L [ T ] (4.1)
1=
with y; the ith data point, y(x;,a) the value of the model function at x; and o; the
standard deviation (uncertainty) of y;.
We determine the best fit parameters by minimization of x2. Close to the minimum the

x? function can be approximated by its Taylor series:

x¥(a)~y—-d-a+ {a:D-a (4.2)
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with 7 a constant: vy = x2(api,), d is an M-vector: d = -Vx%a)|, and
n

[D];; = 0x?*(a)/0a;0a| agiy MxM matrix (D is called the Hessian matrix: the second

partial derivative matrix of the x2 function at ay;,).

From equation 4.2 the gradient of x? is calculated as
Vx%(a)=D-a—d (4.3)

Here we made use of the fact that D-a = a.D. The gradient vanishes at ay;, obtained

from
D-a.min =d (44)
At the current point a.,, we have

D-acy, = Vx}(agyr) +d (4.5)

So when our current approximation ag,; is a good one (which means that ay;, — acy; i8
the finite step we have to take to reach the exact minimum), we get by subtracting of
equation 4.5 from equation 4.4

D-(apin — acur) = — Vx%(acur) (4.6)

On the other hand it is also possible that at a.,, equation 4.2 is a poor local
approximation to the shape of the function x?(a) that we are trying to minimize at ag,;.
In this case we take a step down the gradient Vx?(a.,;). This is called the steepest
descend method:

anext = acyr — constant- Vx*(acy;) (4.7)

where the constant is small enough not to exhaust the downhill direction.

To find ay;, with equations 4.6 and 4.7 we have to know the Hessian matrix D and the
gradient of y2. We can calculate these two because we know the exact form of x2
(equation 4.1).
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a. The gradient of x2 with respect to ay is:

aai _ g Z [ - y(x,,a)] Oy (x;,a) (4.8)

gi 6ak
with k = 1...M.

b. The components of the Hessian are the second partial derivatives of x:

22 N 1 [9y(xi.a) Oy(x;,8) 9?
=2l ot [l frfaa) gy, y(x, o) el

(4.9)
We now define:

B =% %‘f (4.10)

and the curvature matrix [@] with components:

5242
1= § s ga; = 4D (4.11)

We see from equation 4.10 that at the minimum £y (ayi,) = 0 for all k.

From equation 4.9 and 4.11 we see that a;; depends on both the first and second
derivatives of the model function with respect to its parameters. We ignore in further

discussion the second derivative term because of the following reasons:
— The second derivative term is zero in the linear case.

— When it is small enough compared to the first derivative term, it can be neglected:
for a good model the term [y; — y(x;,a)] in equation 4.9 should be the random
measurement error of each data point (positive or negative), which is not
correlated to the model. So the summation over i of the second derivative
multiplied with [y; — y(x;,a)] should give zero.
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Now we can write equation 4.6 and 4.7, with substitution of ¢ and [y defined in
equation 4.10 and 4.11, as

M

) ay)- 6a; = Oy (4.12)
respectively

fa; = constant- f§; (4.13)

with da; the increment a, o4t — a¢,r added to the current approximation agy;.

We know already that equation 4.12 is used close to the minimum and equation 4.13 far
from the minimum. Marquardt managed to combine the two equations in one equation
as follows:

First we look at the constant in equation 4.13. Considering dimensions the constant
should have a dimension of a;?, because x? is nondimensional (see equation 4.1) and f
has therefore a dimension of 1/a;.

When we now look at the curvature matrix [a] (equation 4.11) we see that only one
quantity exists with a dimension of a;2 1/ (the components of the curvature matrix
[a] have dimensions 1/a;a;). So this quantity should set the scale of the constant.

We additionally divide the constant by a nondimensional factor A because 1/ may be
too big. So equation 4.13 now becomes

6a) = lem-ﬂl (4.142)
or
Aoygy-bay = fy (4.14b)

Notice that aq; is always positive (equation 4.9 with the second derivative term set to
Z€r10).
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Now we can combine equation 4.12 and 4.14b when we define a new matrix [’] with
components:

ajj’ = ajj(l + )\)
ajk’ = ajk (J # k) (4.15)
So the final equation is:

M
L oy’ fay = fi (4.16)

At the limit A — 0 we get back equation 4.12 and at A — oo (o’ diagonally dominant)
we get back equation 4.14b.
Briefly, the Levenberg—Marquardt method is shown in a flow chart in figure 4.1.

Remarks:

— The minimization is ready when the stop condition is satisfied: if in n following
iterations the decrease in x?(a) is less than 0.1, stop iterating: the stop condition n
has to be given by the user.

— When the minimization is fulfilled the covariance matrix [C] = [o]™ is calculated.
The diagonal elements C;; of the covariance matrix give the squared uncertainties
of the fitted parameters a. We use as uncertainty of the fitted parameters the Root
Mean Square deviation, defined as:

chl square
Oeffective,j = \[ _T\I%NI— . ij (4.17)
for parameter a;.
The off-diagonal elements C;, (j # k) give the covariance of parameter a; with
parameter aj.
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Compute x%(a).
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Flow chart of the Levenberg—Marquardt fit method. The boz indicates one

iteration.
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We say that a measurement is fitted well if the value of the minimized x? function
is in the order of N — M, with N — M the degrees of freedom of the system. N is the
total amount of data points and M the total amount of parameters of the model
function. The measurement errors are normally distributed, with the measurement
error of one data point

. 1/2
o) = [-:z,,ﬁz] (4.18)

where the factor 3.4 arises because the photons obey the /N statistics and one ADC
count corresponds to 3.4 photons [11).

— An other method to say something about the quantity of the fit is looking at the
autocorrelation ac of the residue (measurement — fit) [16]. ac Is a number between
—1 and +1. If ac is zero then the residue is uncorrelated, if it is 1 (or —1) the
residue is completely correlated. We say that no systematics occurs in the residue,
when ac is approximately between —0.3 and +0.3. In this case the correct model
functions are used.

In the next paragraph we discuss an explicit expression for the model function used to fit
the scattering measurements with the analysis method here described.
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4.3 The model function to be used in the scattering experiments

In general a scattering measurement consist of three components:
— a background,
— a Thomson component, which is a convolution of the true Thomson component
with the apparatus profile; »
— a Rayleigh component, which has the shape of the apparatus profile.

Logically, the model function y(x,a) which is used to fit the measurements should consist
of three similar components. Here x is the wavelength and a the parameter set used in
the model function. The possible components of the model function are:

1 a linear background:

y(x) =29+ ar-x (4.19)

where a, is the offset and a, is the slope. Because the cooling of the pixels is not
constant, measurements do not have the same background. These differences are
taken into account by the linear background.

2 a Gaussian (used in the case of incoherent scattering):

3(x) = g2 exp [— [%éi] 2] (4.20)

where a, is the surface sum, a, is the position and a, is the half one—over—e width
of the Gaussian.

3 a Gaussian corrected for collective effects (used in the case where a is not very
small):

y(x) = ﬁ‘%—r-exp [— [E(__g?“h] 2] . [1 —2a?-Rw [x—;f‘i” (4.21)

where a,, a; and a, are the same as in 2 and Rw ’—(—-;%1] is the real part of the

plasma dispersion function given by equation 2.14. Notice that the scattering
parameter ¢ is a function of ay and a,.
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4 a measured component which reflects the scaled apparatus profile:
y(x) = ag-f(x — a4) (4.22)

where a, is a multiplier, a, is a shift in position and f(x) is the measured profile. In
our case f(x) is a measured apparatus profile.

The possible convolution of the function y(x) given in equations 4.20 or 4.21 with an
apparatus profile a(x) is calculated using Fast Fourier Transforms [14]. We call the
result s(x):

4w
s(x) = y(xpa() = | a(x,): y(x-xa)ixg (4.23)

—m

The model function is now a combination of the components given above. The fit
program is tested by fitting some simulations with different model functions. This is
described in the next paragraph.

4.4 Testing the fit program

In this paragraph we test the fit program. In subsection 4.4.1 we examine the apparatus
profile. In subsections 4.4.2 and 4.4.3 tests for incoherent scattering respectively
collective effects are discussed.

4.4.1 About the apparatus profile

A Rayleigh scattering measurement (which has a very small Doppler width) is broadend
to an apparatus profile of finite width, because the entrance slit of the polychromator is
not infinitely small. A Rayleigh scattering measurement, done under the same measuring
conditions as the Thomson—Rayleigh scattering measurements is shown in figure 4.2.
The only differences in the conditions are the used pressure of 1.6 torr (background
pressure in the vessel) compared with 0.3 torr for the Thomson—Rayleigh scattering
measurements and the gas temperature. We tested if the shape of the Rayleigh
scattering measurement changes under different pressures. Therefore Rayleigh scattering




Analysis methods of scattering measurements 39

measurements were performed under three different pressures, namely 0.3 torr, 1.6 torr
and 100 torr. From the results we can say that the shape of the Rayleigh scattering
measurements does not change under different pressures.
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Figure 4.2 A Rayleigh scattering measurement which serves as apparatus profile.

Examination of the above figure shows that the apparatus profile has an asymmetric
shape. We fitted the apparatus profile with a model function consisting of a varying
amount of Gaussians (1 — 3). The only reasonable fit was made by using a model
function which contained three Gaussians. Unfortunately the positions of the Gaussians
are such that, physically spoken, no conclusions can be drawn from this result. In
practice it means that, first, the Rayleigh component of a scattering measurement can
only be fitted well with a profile with the same shape as the apparatus profile, i.e. a
scaled Rayleigh scattering measurement. Second, the Thomson component of a
scattering measurement, which is a convolution of the true Thomson component with
the apparatus profile (normalized on a surface sum of one), can only be fitted well when
the convolution is calculated with the real apparatus profile and not with a
simplification as for example a Gaussian. This is made plausible in the next two
subsections.
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4.4.2 Tests for incoherent scattering

Six simulations of scattered spectra are made. They are all build up of a Gaussian (nr. 2
in paragraph 4.3) convoluted with a measured apparatus profile plus a scaled apparatus
profile (nr. 4 in paragraph 4.3). The first component reflects the Thomson component
and the second component the Rayleigh component of the scattered spectrum. The
parameters of the simulations are adjusted to the values of the electron temperature T,
and electron density n, given in table 4.1. T, is proportional to the square of the half
one—over—e width and n, is proportional to the surface sum of the Gaussian. The neutral
density n, is for all simulations the same (1-102! m-3). In figure 4.3 a picture of the six
simulations is shown. The chosen values of n, n, and T, are values which are to be
expected in the Thomson—Rayleigh scattering experiments.

Table 4.1 Simulations of scattered spectra (ny = 1- 10%t m™3).

Simulation n, (m3) T, (K)
5.1018 5802.23
2 17406.68
3 5.1019 5802.23
17406.68
5.1020 5802.23
17406.68
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Figure 4.8 Simulations of scattered spectra according to table 4.1.

The simulations are fitted in three different ways, with model functions with
components:
— a background plus two Gaussians;
— a background plus a Gaussian plus a scaled apparatus profile;
— a background plus a Gaussian convoluted with a measured apparatus profile plus a
scaled apparatus profile.

What is our aim to fit the simulations in these ways?

1 Examine if the three different fitting methods give essential differences in the
estimation of the plasma parameters ng, n, and T with regard to each other and in
comparison with the simulations.

9 Examine the time scale on which the three fitting methods operate.

We will see that large differences occur between the three fitting methods.
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1 The estimation of ne, ny, and T

The results of the different fitting methods are listed in table 4.2 on the next page. From
the table we can draw the following conclusions:

— Examining the relative differences of the plasma parameters between fit and
simulation for the three methods, we see that the relative differences for method 3
are significantly smaller than those of method 1 and 2. For electron densities of
5-101° m™3 and higher the difference between method 1 and 2 compared to method
3 becomes quite clear. Method 3 then gives within 1 % the correct values of the
plasma parameters in contrast with the first two methods. These methods give
considerable differences compared with the correct values from the simulations.
Apparently these methods can not clearly distinguish the Thomson and Rayleigh
component from each other when n, becomes of the order of n,. See the picture of
simulation 5 in figure 4.3.

— For very low values of n, (5-10!8 m™3) the results of the fits for method 3 are less
good then for higher ng values.

— From table 4.2 it is not so that simulations with smaller T, are better (or worse)
fitted than simulations with higher T,. To see this, compare the results of
simulations 1 and 2, 3 and 4, 5 and 6 with each other. The cause is that for smaller
T, the Thomson and Rayleigh components become more difficult to distinguish
from each other.

— The most difficult simulation to fit is simulation 2, where n, is very low and T, is
high. The relative differences in the plasma parameters between fit and simulations
are in the order of 10 % for all three fitting methods. We see from the picture of
simulation 2 in figure 4.3 that the Thomson component is so low that pixels close
to each other have the same amount of counts. The large relative differences are
then caused by round off errors. Fortunately, in our scattering experiments we do
not come even close to this situation of very low ng and high T.

From these conclusions we can say that the best fitting method is method 3, where the
model function consists of a background plus a Gaussian convoluted with an apparatus
profile plus a scaled apparatus profile. We have to notice also that the relative
differences between fit and simulation decrease with larger n,. So if n. is large the
plasma parameters ng, n, and T, are determined more accurate.
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Table 4.2

Fit results for the siz simulations in the case of incoherent scattering (The
relative differences are differences with regard to the true values of the

simulations. ).

Simulation 1 method 1 method 2 method 3
Ang/n, 8.4 % 1.2% 0.49 %
Ang/n, 74 % 0.2 % 0.095 %
AT,/ T, 8.5 % 10.0 % 22 %

Simulation 2 method 1 method 2 method 3
Ang/n, 143% 87 % 8.9 %
Ang/n, 6.3 % 6.4 % 6.3 %
AT./T, 5.2 % 17.6 % 14.6 %

Simulation 3 method 1 method 2 method 3
Ang/ne 0.24 % 0.45 % 0.16 %
Ang/n, 22 % 2.7% 0.79 %
AT,/ T, 11.0 % 107 % 1.7%

Simulation 4 method 1 method 2 method 3
Ang/n, 0.15% 0.57 % 0.36 %
Any/n, 6.2 % 0.058 % 0.043 %
AT,/ T, 1.9% 28% 0.35 %

Simulation 5 method 1 method 2 method 3
Ang/ne 40.8 % 0.66 % 0.10 %
Ang/n, 2900 % 29.9 % 5.5 %
AT./Te 32.6 % 105 % 0.84 %

Simulation 6 method 1 method 2 method 3
Ang/n, 0.13 % 0.20 % 0.009 %
Ang/n, 16 % 1.6 % 0.63 %
AT,/ T, 34 % 34 % 0.29 %

43
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2 Time scale on which the fitting methods operate

The time which is needed for the three methods to fit the simulations is shown in figure
44.
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Figure 4.4 Time scale on which the three fitting methods operate. The time shown is
the time needed to perform ten iterations (see figure 4.1).

The most simple form of fitting is method 1, where the only operation is adding the
three components. In the second method, a scaled measured apparatus profile is shifted
over the wavelength range to obtain a good fit. As it is a measurement, the apparatus
profile forms a discrete spectrum. This makes the use of a cubic spline interpolation
procedure necessary [14], which accounts for the extra calculation time. In method 3 in
comparison with method 2, also a convolution is calculated using Fast Fourier
Transforms [14]. This is the reason why this method is somewhat slower than method 2.

Summed up, method 3 is the most accurate fitting method, especially at n, values above
5-10!% m™3 which is the case in almost all our scattering experiments. At the same time,
however, method 3 is also the slowest fitting method. As the time scale, on which this
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method operates, is not exceptional big and because we want to analyze our
measurements as accurate as possible, we choose method 3 as fitting method for the
scattering experiments.

4.4.3 Test for collective effects

A simulation of a scattering measurement is made including collective effects. It consists
of a Gaussian corrected for collective effects (nr. 3 in paragraph 4.3) convoluted with a
measured apparatus profile plus a scaled apparatus profile. The plasma parameters
corresponding to this simulation are: ng = 1.7-102 m™3, n, = 3.6-102! m™3, T, = 3400 K
and o = 0.195.
The simulation is fitted in two ways, with model functions which consist of:
— a background plus a Gaussian convoluted with a measured apparatus profile plus a
scaled apparatus profile;
— a background plus a Gaussian corrected for collective effects convoluted with a
measured apparatus profile plus a scaled apparatus profile.
Again we examine the relative differences between the two fitting methods and the
simulation and the time scale on which the methods operate.

1 The estimation of ng, n, and T,
The results of the two fitting methods are listed in table 4.3.

Table 4.3 Fit results for the simulation in the case of collective effects (the variables
are the same as in table 4.2).

Simulation method 1 method 2
Ang/n, 28 % 0.033 %
Any/n, 6.4 % 0.56 %
AT./T, 36 % 0.13 %
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Conclusions:

— Method 2 gives approximately 10 times smaller relative differences between fit and
simulation than method 1.

— The improvements assert themselves in an increase in n, and n, and a (small)
decrease in T (in agreement with [2]). We can derive an general equation for the
correction in n, 1 as a function of ng j; and the correction in n |:

doy/dQ dag;/dQ
Ano = — [ dgr dQ + ﬂ2] 'Ane + a2dgr dQ'ne,H (4.24) .

where Ang = ng ;j — ney and An, = n, ;; — ng 1. In figure 4.5 the correction An, is
depicted versus ne f; for various Ang for & = 0.195.

o ----- 1018 —---= 5018 e 1019 ——— 5e19

10

correction in n, (1e21 m™)

0.00 0.20 0.40 0.60 0.80 1.00

Ny (1821 m™

Figure 4.5 The correction in ny | versus ne 11 for various Ane.

It appears that the correction in n,y can be appreciable in the parameter range of
the expanding cascaded arc plasma even when An, = 0, i.e. when the electron
densities obtained by the two methods are the same.

— The scattering parameter « is deliberately chosen 0.195, a value which is very near
to the o’s in the scattering experiments. From table 4.3 and figure 4.5 we see that
even for small a it is a significant improvement to use a model function which is
corrected for collective effects.
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2 Time scale on which the fitting methods operate

To correct a Gaussian for collective effects, an integral in the real part of the plasma
dispersion function has to be calculated (see equation 2.14). This calculation comes on
top of the other calculations already discussed in subsection 4.4.2. As a consequence the
calculation time is increased. This is shown in figure 4.6.

As in subsection 4.4.2 we choose accuracy above speed and thus use method 2 to fit the
scattering measurements.

/] method 1 method 2
800
600
9
o 400 +
£
200 r
0

Figure 4.6 Time scale on which the two fitting methods operate. The time shown is
the time needed to perform ten iterations (see figure 4.1).
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5 Shock wave theory

In this chapter the theory of shock waves is treated shortly as an introduction on chapter
6, where the experimental results are discussed. For a more complete survey of shock
waves see for example [17], [18], [19] or [20].

In paragraph 5.1 the Rankine—Hugoniot relations for a normal shock wave are treated.
Paragraph 5.2 considers mean free paths because these determine the thickness of the
shock. Also an expression for the position of the shock is given.

5.1 Rankine—Hugoniot relations for a normal shock wave

The laws of conservation of mass, momentum and energy form the basis for the
equations of flow of a gas. These laws can be applied to flow regions where the variables
undergo a discontinuous change. In our case the flow variables are the electron and
heavy particle (neutral atoms and ions) temperatures, the electron and neutral densities
and the electron and heavy particle temperatures.

A discontinuity can be regarded as the limiting case of very large but finite gradients in
the flow variables, i.e. the flow variables change rapidly across a region which is usually
very thin. Such discontinuities represent shock waves.

We apply the general laws of conservation of mass, momentum and energy to find the
unknown flow variables. The conservation of mass, momentum and energy through a
shock are described by the Rankine—Hugoniot relations. For a normal shock wave these
relations read (without a magnetic field)

p1iy = Paly (5.1)
P1 + p1uy? = Py + pau;? (5.2)
hy + fus? = hy + fuy? (5.3)

The left—hand side contains the flow variables in front of the shock and the right—hand
side contains the flow variables behind the shock.
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In equations 5.1 — 5.3 is p the mass density, u the velocity of the plasma, p the pressure
and h the enthalpy:

p = my(ne + 1) (5:4)

_In,m,w,
u——z'rxlrrxn—xvawh (55)

where the subscript x denotes electrons, ions and neutrals and wy, is the velocity of the
heavy particles (neutrals and ions). Here we assume that w; = wy = wy.
An expression for the enthalpy is derived by [21]:

1

= E[fy_’._leb(no + ne)Th + Ty":_lebneTe + neE“] (5.6)
where the ionization energy of the ground state E!* = 2.524.10718 J, the ratio of specific
heats ¥ = cp/c, and the assumption T; = T, = Ty, is made.

The equation of state is

p = pR(T}y + aTe) (5.7)

where the gas constant R = 8.315-107 Jmol"'K™! and the ionization degree a = h_niT'

€ 0
It is useful to express the ratios of densities, velocities, pressures and temperatures in a
shock wave in terms of the Mach number M; = u/c,, where the velocity of sound is

given by

.- [ 72]1/2 (5.8)
P

With a shock wave, across which the gas is compressed, the gas flows into the shock with
a supersonic velocity u; > ¢; (M; > 1) and flows out with a subsonic velocity u, < ¢,
(M; < 1). With v = 5/3 (for monatomic perfect gases) the following formulas can be
derived from the above equations:
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p2 = py- (1 +3/4-(1 - M?)/M2) (5.9)

up = up (1 + 3/4-(1 - M2)/M2) (5.10)
P = py- (1 + 5/4- (Mg — 1)) (5.11)
T, = Ty (1 + 3/16-(5M2/3 + 1)(M2 — 1)/M2) (5.12)

where T = Ty, + aT,.
Equations 5.9 — 5.12 show that the following inequalities are satisfied across a shock:

P2 > P1
Uy < Uy

P2 > Py (5.13)
Ty > Ty

Like the other variables the entropy S is discontinuous across the shock: S, > §;.

5.2 Thickness and position of a normal shock

a Mean free paths for momentum and energy transfer between the particles in a plasma

The thickness of a shock is determined by the mean free paths for momentum exchange
between electrons, ions and neutrals:

Aei = Tei* Vih,e (5.14)
Aii = Tii*Vin,i (5.15)
Aio = Tio* Vih i (5.16)

where 7¢;, Ti; and Ty, are the relaxation times of momentum transfer between electrons
and ions, ions and ions respectively ions and neutrals and the thermal velocity is
Vin x = (3kpTy/m,)/2 for species e (electrons) or i (ions). The relaxation times are given
by [22], [23]:
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T, 3/2
Tei = 2.755'105'}:%1Tc (5.17)
LYv/2( T, 13/2
e (2R o
Tio = 8.29-10“&@72 (519)

where the Coulomb logarithm InA. = In(9n.-47)p3/3) with the Debye length
Ap = (eokpTe/nee?)!/2 |

The mean free paths for energy exchange between electrons and ions and ions and
neutrals are

Aei® = Q%; Aei (5.20)
Aio® = Ajp (5.21)

Equations 5.20 and 5.21 give some information of the energy exchange between the
particles behind the shock.

b Position of the shock

The position of the shock in the electron and neutral densities can be calculated with an
empirical expression given by [24], [25]:

H=o067 [ %ﬁ ] Ve (5.22)
where xy is the location of the Mach—disk measured from the nozzle exit, d* is the
effective sonic nozzle diameter, p, the pressure at the nozzle exit and p, the background
pressure in the vessel. The Mach—disk forms the boundary between the adiabatic
expansion and the shock.

Equation 5.22 describes the location of the Mach—disk measured from the nozzle exit for
a free expanding plasma.

The shock wave theory treated in this chapter provides us with a basis to discuss the
experimental results in chapter 6.
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6 Experimental Results

In this chapter we discuss the results obtained from the experiments. First a general
introduction is given in paragraph 6.1. Detection limits, accuracy and reproducibility of
the scattering experiments are treated in paragraph 6.2, 6.3 and 6.4. The positions of the
Thomson components of the measurements are considered in paragraph 6.5. Paragraph
6.6 treats the distribution of the Chi Squares of all the fitted measurements. Systematic
differences between fits and measurements are discussed in paragraph 6.7. Finally
measurements of the plasma parameters ng, n, and T, on the plasma axis are presented
and discussed in paragraph 6.8.

6.1 General introduction

The Thomson—~Rayleigh scattering measurements done in this work have to be corrected
for stray light and calibrated before they are fitted by the developed fit program
discussed in chapter 4.

First each scattering measurement is accompanied with a vessel stray light
measurement. This vessel stray light is subtracted from the scattering measurement.
Second on the resulting spectrum a relative calibration is performed.

In figure 6.1 the axial dependence of the vessel stray light is depicted for the free
expanding plasma. As can be seen in the figure the vessel stray light increases
exponentially close to the nozzle exit due to scattering of the laser light on the nozzle.
On higher axial positions (50 mm and higher) the vessel stray light is approximately
constant (900 counts). Clearly it is necessary to correct the scattering measurements for
the vessel stray light.
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Figure 6.1 The vessel stray light as a function of azial position for the free ezpanding
plasma.

Remarks:

— the vessel stray light does not have the same shape as the Rayleigh calibration
measurements. This because the stray light comes from every corner of the vessel
while the Rayleigh signal comes only from the laser bundle;

— although the vessel stray light is very high close to the nozzle exit, we managed to
perform scattering measurements as close as 2 mm from the nozzle exit.

After this preparation the measurement is fitted with a model function consisting of
— a linear background,;
— a convolution of a Gaussian, if necessary corrected for collective effects, and a
measured apparatus profile. This component represents the Thomson component of
a measurement;
— a scaled apparatus profile which represents the Rayleigh component of a
measurement.
The apparatus profile which is used in the model function is a Rayleigh scattering
measurement on pure Argon gas, performed under the same conditions as the
Thomson—Rayleigh scattering measurements.



Ezperimental results 54

6.2 Detection limits

Measurements of the neutral density n, are limited by the amount of detected stray
light. In our experiments the level of the vessel stray light is about 900 counts (see figure
6.1). The statistical error related to this level is 16 counts, which is much smaller than
the reproducibility in the measured stray light (about 100 counts). Dust particles present
in the low pressure vessel cause the difference between the statistical error and
reproducibility. The latter sets the lower limit to measure n,.

A reproducibility of 100 counts corresponds with an electron density of 9.8 1017 m*3 and
a neutral density of 1.4.1020 m"3. Here the difference between electron and neutral
density is the relation between the differential cross sections for Thomson and Rayleigh
scattering given by equation 2.28. The level of 1.4.1020 m™3 with an accuracy of the same
order makes it possible to measure neutral densities as low as 2-102 m™ with an
accuracy of 50 %. With the same accuracy electron densities as low as 1.3-10'® m™3 can
be measured.

The second factor which limits the accuracy in the determination of n, is the electron
temperature, which is proportional to the square of the half one—over—e width of the
Thomson component of a measured profile. With a constant electron density the higher
the electron temperature the lower the contribution of the Thomson component to the
total signal in the central channel. This lowers the statistical error of the signal in the
central channel and thus leads to a higher accuracy in n,,.

The lower limit in the determination of the electron temperature is determined by the
half one—over—width of the measured apparatus profile. In our experiments this width is
about 16 pixels which corresponds to an electron temperature of approximately 1000 K.

6.3 Accuracy in the measurements

The errors in the plasma parameters ne, n, and T, can be divided in random and
systematic errors.
The random error in the electron density is determined by:

— shot noise in the signal (following Poisson statistics);

— instrumental noise due to the laser and the detector (+ 1 %);

— reproducibility of the plasma conditions (z+ 1 %).
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The systematic error in n, is determined by the relative and absolute calibrations. This
error is approximately 2 %.
Reproducibility of the plasma conditions is determined by:

— current through the cascaded arc;

— current drawn from the cascaded arc to the end anode;

— strength of the applied magnetic field;

— pressure in the vessel;

— argon gas flow through the cascaded arg;

— cooling of the vessel,

— instabilities in the plasma.

— X, ¥, z position in the plasma.
For the neutral density the random error is determined by the same factors as for the
electron density plus the accuracy in the vessel stray light signal. This last factor is the
most important one as the accuracy in the stray light is determined by the
reproducibility in the stray light. The systematic error is the same as for the electron
density.
For the electron temperature the random error is determined by the accuracy in the
width of the Thomson component of a measurement. The systematic error consists of

— the relative calibration;

— the wavelength calibration (+ 1 %);

— the analysis method. This means analysis with or without convolution procedures.

The errors in ng, n, and T, resulting from the fitting of the measurements with the
model function described in paragraph 5.1 is of the same order as the sum of random and
systematic errors here discussed. For n, the error is in the order of 14 % while the error
in T, is in the order of 2—4 %. For neutral densities above 2-1020 m™3 the error is in the
order of 10—-20 %.

As the electron density is proportional to the surface sum under the Thomson
component it is an integrated parameter. See also paragraph 3.4. This makes it
reasonable accurate. The electron temperature depends on the square of the half
one—over— width of the Thomson component of a measurement and thus is not an
integrated parameter. This explains why the error in T is bigger than the error in ne.
Finally, when in the analysis procedure of the measurements no collective effects are
included an extra systematic error in ng, n, and T, is introduced. The size of this error
depends on the scattering parameter. For an idea of this error see sub paragraph 4.4.3.
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6.4 Reproducibilities

The reproducibility of the measurements is determined by the laser, detector and the
reproducibility of the plasma conditions. In this paragraph we discuss first the
calibration measurements. Second the reproducibility in the scattering measurements is
treated.

a Calibration measurements

As the absolute calibrations depend strongly on the laser energy, they have to be
performed far more often than relative calibrations. So here we investigate only the
absolute calibration measurements.

An absolute calibration is a Rayleigh scattering measurement on pure Argon gas under
the same conditions as Thomson—Rayleigh scattering measurements. In paragraph 3.4.1
the principle of an absolute calibration is explained. From equation 3.4 and 3.6 we see
that these equations can be written as

— Ifhn
~ calibration 1?actorthom (6.1)

ne

and

1
9 _ ravl
n, + f%ne = calibration factorp,y) 2

where Iipop and I,y are the integrated signal of the Thomson respectively the Rayleigh
component of a measured spectrum. The calibration factor of the Rayleigh component is
1/143 times the Thomson calibration factor (equation 2.28).

In the past the calibration factors depended strongly on the period of day on which the
calibration measurements were performed. Before noon they were approximately 5 %
higher and after noon approximately 5 % lower compared with the average calibration
factor for one day. The cause of these differences is the laser energy stability and the
energy distribution in the laser beam. After revision of the laser the variations in the
calibration factors during one day are within 2 %.
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As stated in chapter 3, an absolute calibration measurement is a measure of the
apparatus profile. This apparatus profile is used in the fit procedure described in chapter
4. So, in principle, each scattering measurement has to be accompanied with an absolute
calibration measurement. From the practical point of view and from the measured
reproducibility of 2 % in the absolute calibrations it is sufficient to perform the absolute
calibration once in two hours.

b Scattering experiments

The reproducibility of the scattering measurements is checked for all measurement series
performed. Normally one measurement series is done in two or three days. To check the
reproducibility a few measurements are repeated on different times and days. Some
results are shown in table 6.1.

It appears, not only for the measurements shown in table 6.1, that the electron density
ne and temperature T, reproduce within their uncertainties. As the neutral density n,
depends on the level of the vessel stray light, the reproducibility for n, is not so good.

Table 6.1 Reproducibility of the measurements

z (mm) | measured on | ng (109 m"3) n, (1020 m3) Te (K)
28 10-1 2.020.10 48+14 1824 + 104
11-1 2.28 + 0.10 591+14 1697 + 75
50 10-1 2.49+0.10 2514 3013 + 125
11-1 2.53 £ 0.10 5314 3150 + 130

100 11-1

1220 u 3.25 + 0.14 83:14 2993 + 123
13.50 u 3.15+0.15 6.6 +1.4 2803 + 130
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6.5 Position of the fitted Thomson components of the measurements

In figure 6.2 for two conditions the position of the fitted Thomson components of the
measurements is depicted versus the axial position. In figure 6.2a the results for the free
expanding plasma are shown. In figure 6.2b the same condition as under 6.2a is depicted,
now with a magnetic field applied. The picture is a little suggestive as at lower axial
positions (4 — 60 mm) more measurements are performed compared to higher axial
positions (60 — 500 mm). More measurements performed at higher axial positions would
give the same spread in Thomson position as is seen for low axial positions. The spread
in the Thomson position is probably a result of laser beam pointing instability and
instability in the position of the lenses and mirrors of the detection optics during a day.
For the laser beam pointing instability we have 0.5 mrad. With a distance of 1 meter
from the center of the plasma jet to the entrance slit of the polychromator this can result
in a deviation of the Thomson position of 0.5 mm which corresponds to 20 pixels. As can
be seen in figure 6.2 the time integrated behavior is far more better than this maximum
deviation of 20 pixels (the measuring time is 1200 s).

(a) (b)
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Figure 6.2 Position of the Thomson components in the measurements: (a) for the free
ezpanding plasma and (b) for the same condition as under (o), now with a
magnetic field applied.
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From the data shown in the figure we can determine whether the Thomson position is
distributed normally. For a normal distribution 68.3 % of the measured positions has to
lie within ¢ from the mean value; 95.5 % has to lie within 2¢ from the mean value. For
the free expanding plasma the mean Thomson position is 533.29 pixels with a spread o of
0.71 pixel. 68.8 % Lies within ¢ and 96.9 % within 20 from the mean value.

The numbers for the free expanding plasma with a magnetic field applied are: mean
value of 533.54 pixels with ¢ = 0.44 pixel, 65.7 % lies with in ¢ and 94.3 % with in 2¢
from the mean value. This justifies the conclusion that the average position of the fitted
Thomson components of the measurements is normally distributed.

6.6 Distribution of the Chi Square function

The fitting method for our experiments is explained and discussed in chapter 4. In this
paragraph we examine the distribution of the Chi Squares of all the fitted measurements
performed in this work. See also [26].

The Chi Square is defined as (equation 4.1)

X2 = gl[y—i;fir (6.3)

where y; is the measured signal, f; is the fitted signal, o; is the noise in the measured
signal and N is the total amount of measured points.
The frequency distribution of the Chi Square values falling in discrete intervals should
be the theoretical Chi Square distribution when:

— the error distribution of the measurements is a normal distribution;

— the applied calibrations are correct;

— the used spectral density functions for the Thomson and Rayleigh components of

the measurements are correct.

The Chi Square distribution function is given by [27)

102) = Sehrraray-exp(-x2/2) (64)
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where n is the degrees of freedom, {(x?) the probability for a Chi Square value of x? and
I'(n/2) is the Gamma function. The probability P of a Chi Square with a value between
x2— A and x? + A is then

24+A
PO = [, e (65)

In figure 6.3 the distribution of Chi Squares is shown for the experiments and by using
equation 6.5. The degrees of freedom n for the two distributions is equal to the amount
of measured points minus the amount of parameters of the used model function for one
fit. In our case n = 301 — 7 = 294. In both cases A is taken 20. For the experimental
distribution all the Chi Squares of our measurements (with the same degrees of freedom)
were taken, in total 124.

- experimental theoretical
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Figure 6.8 Theoretical and ezperimental distribution of the Chi Squares.
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The 124 Chi Squares are collected from measurements done under different conditions.
The measurements are performed on a free expanding plasma, with or without a
magnetic field applied and with or without a current in the plasma jet. So in total four
conditions were measured.

In figure 6.3 we see that there are more large Chi Square values then expected from the
theoretical distribution. The peak of the observed Chi Square distribution occurs not at
x2 = 294, as is expected from the theoretical distribution, but at x? ~ 455. Also more
lower Chi Square values are observed than expected.

The observed differences between the theoretical and experimental Chi Square
distributions can be explained by:

— relative calibrations. The four measured conditions were spread over half a year.
Only before the first and last condition a relative calibration was performed. The
first relative calibration was also used for the second and third condition. As a
result a systematic deviation is introduced which increases the Chi Square values
for the second and third condition.

— stray light. Three conditions were measured with the same amount of vessel stray
light. However the last measured condition was done with reduced stray light. This
means that the Rayleigh component of the measurements is better determined for
the last condition. Of course this reduces the Chi Square values for this condition.
This conclusion may explain why more lower Chi Square values are observed than
theoretically expected.

— absolute calibration. In the model function of the fit program Rayleigh calibration
measurements are used as apparatus profiles. One Rayleigh calibration is used for
more than one measurement. This suggests that not always the correct apparatus
profile is used in the fit program. This increases the Chi Square values.

— the measurements error may not be normally distributed.

— deviations from a Maxwellian velocity distribution of the electrons. This means
that the used spectral density functions are not completely correct. As a
consequence the Chi Square values increase.
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6.7 Residue investigation

From the fitted measurements the residues are investigated. The residue is defined as
measurement minus fit. In figure 6.4 the summation over 31 residues is shown. The
residues are calculated from fitted measurements done on an expanding plasma with a
magnetic field applied and a current present in the plasma jet. The measurements were
performed on different axial positions.
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Figure 6.4 The summed residue of 31 measurements for an ezxpanding plasma with a

magnetic field applied and a current present in the plasma jet.

Clearly the residue is not randomly distributed. We assume that the systematics in the
residues can be explained by deviations from a Maxwellian velocity distribution function
of the electrons. From the residues a current density j,= eAnevy is calculated, where
An, denotes the deviation from Maxwell

. 1-104-1.10%9
j¢ = €-L(Ps — Peenter)*Yi* 311000 — (6.6)
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where p; is a pixel number, peenter 18 the pixel position of the fitted Thomson component
and y; is the signal (in counts) belonging to p;. A shift of one pixel corresponds to a
rotational velocity of approximately 1-10* m/s and 1000 counts correspond
approximately to a density of 1-10'® m™3. So equation 6.6 gives the mean azimuthal
current density. It should be noted that this calculation implies that the measurements
are not performed exactly on the plasma axis. The current density calculated with
equation 6.6 is now j, ~ 7.4-10* A/m? This result is a factor 10 smaller than the
azimuthal current density calculated by [9]. We have to note however that not all the 31
used measurements have the same contribution to the azimuthal current density. This
means that the azimuthal current density should not be calculated by dividing the total
sum in equation 6.6 by 31 but by a smaller number. As a consequence jg increases.
Second the conditions in [9] were not exactly the same (smaller nozzle, higher current
and lower argon gas flow through the cascaded arc and a stronger magnetic field).

6.8 Results of the scattering experiments

Two measured Thomson—Rayleigh spectra are shown in figure 6.5. In figure 6.5a a
spectrum measured at 60 mm from the expansion is depicted for the free expanding
plasma. The plasma parameters corresponding to the measurement are: ny = (3.65 =
0.18)-102% m3, n, = (3.2 + 1.4)-102® m™3 and T, = 3064 + 43 K. The scattering
parameter is 0.095 + 0.004. The influence of an applied magnetic field and a current
drawn from the cascaded arc to the end anode is shown in figure 6.5b. Here the position
is 90 mm from the expansion. The corresponding plasma parameters are: n, = (4.72 ¢
0.20)- 10 m™3 n, = (52 = 1.4)-10%® m™¥ and T, = 17112 : 467 K. In this case the
scattering parameter is 0.145 + 0.005.

Both the least mean square fit and the components of the used fit function are given in
the figure. The components of the fit function are: a Gaussian corrected for collective
effects representing the Thomson component, a scaled apparatus profile representing the
Rayleigh component and a linear background. The residue shown is 2 times magnified in
figure 6.5a and 5 times magnified in figure 6.5b.
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Figure 6.5 Two measured Thomson—Rayleigh spectra: (a) for the free ezpanding
plasma and (b) for the same condition as under (a), now with a magnetic
field applied and a current in the plasma jet.

The applied magnetic field and current in the plasma jet section in the second
measurement explains the large difference in the calculated electron temperatures.
The plasma parameters ng, n, and T, calculated from the Thomson—Rayleigh
measurements are shown in the figures 6.6 — 6.9 for 4 conditions:
— Condition 1: free expanding plasma, shown in figure 6.6.
— Condition 2: the same as condition 1, now with a current in the plasma jet. See
figure 6.7.
— Condition 3: the same as condition 1, with a magnetic field 'applied. See figure 6.8.
— Condition 4: the same as condition 1, with a magnetic field applied and a current
in the plasma jet. This condition is shown in figure 6.9.
The exact conditions are as indicated in the figure captions. All measurements are
performed on the plasma axis.
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Azial dependence of the plasma parameters for condition 1. Ezplanation
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Azial dependence of the plasma parameters for condition 2. Ezplanation
see text.
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Azial dependence of the plasma parameters for condition 3. Ezplanation
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Azial dependence of the plasma parameters for condition 4. Ezplanation
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From the figures 6.6, 6.7 and 6.9 we see that the measurements show not a normal
shock, i.e. the position in the jump of the electron temperature T, occurs earlier than the
jump in the electron density n, and neutral density n,. This is an important fact which
we explain in chapter 7 by means of current generation in the first part of the expansion.

General structure of the azial dependencies of ne, n, and T,

Figure 6.6, condition 1:

— The plasma expands in the vacuum vessel at low pressure: ng, n, and T, decrease
due to the expansion.

— In the electron temperature a jump occurs at z =~ 20 mm. The electron and neutral
densities are still decreasing. The jump can be explained by current generation due
to the strong pressure gradient in the first expansion part. This leads to Ohmic
heating [6]. See for this point further in this chapter and chapter 7.

— At z = 40 mm a standing shock wave occurs in the electron and neutral densities.

— Behind the shock subsonic relaxation occurs.

The neutral density is almost the same in the first three conditions (figures 6.6, 6.7 and
6.9). This implies that almost no ionization or recombination take place.

By applying a current in the plasma jet (condition 2) the electron temperature increases.
In this case the increase is about 1000 K with a current in the plasma jet of 45 A.This is
shown in figure 6.7. The increase in T, is logical because a current in the plasma jet
means Ohmic input. There are two visible differences in n, and n, compared to condition
1. First in the shock is the minimum in n, higher and the minimum in n, lower. This is
explained by compressing of the plasma in the shock. Second at high axial positions (300
— 500 mm) is n, lower compared to condition 1. See also the analytical expressions for
the axial dependence of n, given in Appendix A (equations A.3 and A.6). The reason for
the small decrease in n, is the current in the plasma jet which leads to a higher
ionization degree in the plasma (see page 72).

By applying a magnetic field in the plasma jet (condition 3) the plasma is pinched. Now
electrons are closer to each other compared to condition 1 and 2 due to the pinching.
This ipcreases the electron density and temperature. With a current in the plasma jet
(condition 4) this effect is even larger.




Hall parameter™
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From the figure and the analytical expressions given in Appendix A (equations A.3, A.6,
A.9 and A.12) we see that for condition 4 the neutral density decreases in the expansion
region faster than for the other conditions. In this region the neutral density decreases as
a consequence of expansion plus ionization.

The pinching is expressed by the Hall parameter which is equal t0 weTee, with the
cyclotron frequency we = eB,/mg and 7, the electron — electron collision time (7¢p =
Tei, €quation 5.17). This leads to a condition for magnetization of the electrons in the
plasma:

. InA
(weree) 1:&’—:;: 96191' 10 ﬁ?ﬂ <1 (67)

where p, is the electron cyclotron radius, Aee is the electron free path and InA. the
Coulomb logarithm. Under the influence of a magnetic field the electrons cover spiral
trajectories. When p, < Age the electrons cover more spirals between two collisions and
the electrons are magnetic confined. In this case we speak of pinching. In figure 6.10
(weTee)™! is depicted as function of the axial position for condition 3 and condition 4. The
applied magnetic field is 0.2 T. From figure 6.10 the conclusion is justified that the
strength of the applied magnetic field is large enough to pinch the plasma.
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Figure 6.10 Arial dependence of the inverse Hall parameter; (a) for condition 3

and (b) for condition 4.
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A measure of the jonization in the plasma is given by the ionization degree, which is
defined as

a=—>2e_ (6.8)

In figure 6.11 the ionization degree for the 4 conditions is shown.

From the figure it can be seen that the ionization degree increases in the shock, due to
the pinching of the plasma in the shock.

Also is seen that the ionization degree increases when a current is present in the plasma
jet. When a magnetic field is applied the ionization degree increases further, as expected.
The overpopulation factor of the ground state is

b, =1 6.9
where n; (= n,) is the density of the ground state and the Saha density ng is given by
the Saha equation [22}:

= [V a e[ B
BeBi [27rmekb T 3/7 P | kT, (6.10)

Nys

where n; = n, (quasi neutrality) and the statistical weights of the electrons ions and the
ground state are g = 2, g = 6 respectively g; = 1.The ionization energy
El* = 2.524-10718 J.

The overpopulation factor is shown in figure 6.12. From this figure we see that the
ground state is under populated (b; < 1) for conditions 1, 2 and 3. Only condition 4
shows an overpopulation of the ground state (b; > 1). This means that condition 1, 2
and 3 show a recombining plasma and condition 4 shows an ionizing plasma.
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In chapter 5 the equations of the free paths for momentum and energy exchange between
the electrons, ions and neutrals were given (equations 5.14 — 5.21). For condition 1 at
the beginning of the shock (z ~ 40 mm) with ny = 1.3-10'% m3, T, = 2600 K, InA, =
6.12, n, = 2.0-102° m™3 and T; ~ 2300 K equations 5.14 — 5.16 become:

Aei~ 1.6-10%m
M~ 1.2:10%m (6.11)
Ajo ~® 1.0:102m

So the following order is valid in the plasma:
Aei ® Aji € Ago (6.12)

This means that the electron — ion and ion — ion momentum exchange is very fast and
takes place on a scale of 0.1 mm. The ion — neutral exchange is slower and takes place
on a scale of 10 mm. So the ion -- reutral exchange determines the thickness of the
shock. As Aj, only depends on Ty and n, (equations 5.16 and 5.19) and because the
neutral density is approximately the same for conditions 1, 2 and 3 the thickness of the
shock remains constant for conditions 1, 2 and 3 (in condition 4 no shock occurs). This is
also seen in figures 6.6, 6.7 and 6.8.

The mean free path for energy exchange between electrons and ions is given by equation
5.20. For the values of n, and T, given above this becomes

dei€ & 5.8 m (6.13)

This means that on a plasma scale of 0.5 m there is not much energy exchange between
the electrons and ions. The consequence is that the electron and heavy particle
temperatures remain different or are decoupled after the shock if they are different in
front of the shock. Here we suggested that T; ~ T, ~ Ty. This is a fair suggestion
because the mean free path for energy exchange between ions and neutrals is the same as
for momentum exchange (equation 5.21), i.e. in the order of 10 mm:

Aio® & 1.0-102m (6.14)
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This means that the energy exchange between the ions and neutrals is very fast.

The magnitude of the jumps in the plasma parameters is determined by the
Rankine—Hugoniot relations. These equations were given in chapter 5 (equations 5.9 —
5.12) under the assumptions that w; = w, = wy and T; ~ T, ~ Ty, (no magnetic field
applied).

In table 6.2 the Mach number M, and the jumps in wy, p and Ty calculated with the
Rankine—Hugoniot relations are listed for condition 1 and 2. Point 1 is at z = 40 mm
and point 2 is at z = 60 mm.

Table 6.2 Results of the Rankine— Hugoniot relations for condition 1 and 2.

Condition 1 Condition 2
M, 1.7 1.2
Wh2/Wh1 0.5 0.8
T,/T, 1.7 1.2

From this table we see that the jump in the plasma parameters for condition 1 is larger
then for condition 2. We return to this subject in chapter 7.

The position of the shock in the electron and neutral densities can be calculated with
equation 5.22. In our 4 measured conditions the background pressure p,, = 40 Pa and the
effective nozzle diameter d* = 4.0 mm. The pressure at the nozzle exit is calculated from
the pressure balance. Here it is assumed that the temperature of the electrons equals the
temperature of the ions and neutrals and that n; = n, (quasi neutrality).

Values of the electron temperature, electron density and neutral density at the nozzle
exit are obtained from an analytical expression of the profile shown in figure 6.6. The
analytical expressions are given in Appendix A (equations A.1 — A.3). The pressure
balance then reads

Po = (2n, + no)'kae (6-15)
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The pressure p, can also be calculated from the sonic flow at the nozzle exit.

For condition 1, the free expanding plasma, py ~ 1.1-10* Pa. According to this pressure
the location of the Mach—disk is at xy ~ 43 mm. This result is in good agreement with
the location determined from the experiments: 40 mm. The little difference between the
calculated and observed location is explained by the large gradients in the temperature
and density profiles close to the nozzle. Therefore the extrapolated values to the position
of the nozzle exit are rough estimations.

We discussed already that for a normal shock the jumps in T, and the jump in the
densities ne and n, occur at the same position. However in our measurements we see a
significant difference in the position of the jump in T, compared to the jump in n, and
n,. This is also measured by ref. [6]. The explanation according to ref. [6] is current
generation due to the strong pressure gradient in the first expansion zone. This strong
pressure gradient is illustrated when we compare the pressure at the nozzle exit with the
pressure at the beginning of the shock. We saw already that at z = 0 mm p = 11400 Pa.
At the beginning of the shock (z ~ 40 mm) p = 7 Pa where the pressure is calculated
using the pressure balance p = ¥n,k,T, with the subscript x for electrons, ions and
neutrals and n, = . Thus in the first expansion zone (0 — 40 mm) we see a decrease in
the pressure of almost three orders.

In the next chapter we try to calculate the current density from the electron energy
balance to check the explanation given by ref. [6].
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7 Calculation of the current density

7.1 Introduction

In chapter 6 we saw that the position of the jump in the electron temperature occurs
closer to the nozzle exit than the jump in the electron and neutral density. As we
already discussed in chapter 1 and 6, the literature does not give an adequate answer to
this phenomenon. A possible explanation of the different positions in the T, jump and
the jump in the electron and neutral densities is given by [6]: current generation due to
the strong pressure gradient in the first section of the expansion. The generated current
then heats the electrons through Ohmic dissipation.

The purpose of this chapter is to check the explanation for the difference in positions of
the jumps proposed above for one measured condition. We do this for the free expanding
plasma by calculating the current density on the axis of the plasma jet. In all cases the
plasma is considered to be stationary.

The current density is given by

j = —eng(we — wy) (7.1)

where j is the current density and we p is the drift velocity of the electrons respectively
the heavy particles (neutral atoms and ions).
From equation 7.1 we see that we; has to be calculated first to determine j. In
paragraph 7.2 a model is presented to calculate j with the help of a simplified electron
energy balance. In the electron energy balance two other unknown plasma parameters
are present, namely the heavy particle velocity and the heavy particle temperature. A
possible way to calculate these two parameters is shortly considered in paragraph 7.3.
The following assumptions are made (see also chapter 5):

— the energy coupling between the ions and neutrals is strong: T; = Ty = T;

— a large friction between the ions and neutrals exists: w; = W, = Wy,.
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7.2 The Electron Energy Balance

The energy balance for the electrons reads for a stationary plasma [28]

v [ %nekaewe] + nekp TeV - We + [le:Vwe + V-qe = Q° (7.2)

where n,, we and T, are the density, velocity and temperature of the electrons. ky Is the
Boltzmann constant, Il, is the viscosity temsor, q. is the thermal heat flux of the
electrons and Q€ is the source term for the electrons. Il.:Vw, represents the viscous
dissipation, V-q, the heat conduction and Q¢ all other energy supplied to the electrons
by collisions with other particles. Q¢ consists of several terms, in general:

Q® = Qen® + Q3a® + Qp® + Qss® + Qonn® (7.3)

where:
Qen® represents the elastic energy exchange with the ions and the neutrals;
Q3q® is the energy loss due to collisional excitation/deexcitation and
ionization/three—particle recombination (energy loss term);
Qrpe represents the radiative recombination (energy loss term);
Qgs® represents the brehmstrahlung (energy loss term);
Qonm® represents the Ohmic heating of the electrons (energy gain term).

The calculation of all source terms is shown in Appendix B. Of these terms Q34%, Qfp®

and Qg® are small compared t0 Qgp® and Qgpp®. So the most important terms are [28],
[29]:

1
Qen® = —3°%;ne;e—hkb(Te —Th) = Qei® =

2
= —2.07-10"3InA ;575 Te — Tn) (7.4)
€
where - = L 4+ L with Te; from equation 5.17 and 7eq = 5.7-10!4/n,T3/10
Teh Tei Teo

according to [22].
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L 2
Qonm® = 7j+j = 3.31- 10'361nAcT%§77(we —w;)? (7.5)

where 7 = ﬁi’f_ei is the resistivity of the plasma.
In equation 7.2 now all the terms are known, so in principle the electron velocity on the
plasma axis, we, can be calculated.
In our model, consisting of the electron energy balance we suppose that:

— only the Ohmic heating 1is important. This 1is reasonable when

1073 (we — w;)2 % (Te — Th).

— the heat conduction and the viscous dissipation can be neglected;

— We » wj, which means that the current is carried by the electrons: j ~ —en w,.
The mass balance for the electrons reads with the assumption that recombination is of
no account:

v-(newe)=0—»v-we=—i‘-’£%ﬂe (7.6)

Substitution of equation 7.5 and 7.6 in equation 7.2 gives an expression for the current
density on the plasma axis:

. T,¥2 [T, 0n, 3ky OT
Jz—1z>8.83-1n/\c[ éng 0z  2e 0_ze] (7.7)

We do not use Ohms law to calculate j, because then we need to know the value of the
electric field. When j, is known From the electron momentum balance the generated
electric field can be calculated [9]:

1 ;
E,= _e_ne % + 7); (7'8)

In the right hand side of equation 7.7 all the variables are known. The derivatives of n,
and T, with respect to z are calculated from the analytical expressions for ne and T for
the free expanding plasma given in Appendix A (condition 1). The current density j,
calculated with equation 7.7 is shown in figure 7.1. The generated electric field is shown
in figure 7.2.
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Close to the nozzle exit the current density should be zero. The current density at z = 0
mm visible in figure 7.1 is explained from the form of the analytical expressions for T,
and ng given in Appendix A. The current density is generated by the exponents and the
decay of the exponents covering the first expansion region. The decay in the exponents
does not take into account that at z = 0 mm the gradients in Te and ne should be
smaller than calculated from equations (A.1) and (A.3) which would lead to a negligible
current density. The dashed curve in figure 7.1 represents the current density close to
the nozzle exit the way it should be.

In the picture we see current densities varying from — 1.5-10® A/m? to 2.0-103 A/m?.
The positive and negative current densities can be explained by convective cells. This is
demonstrated in figure 7.3.

OC
C

Figure 7.2 Convective cells round about the plasma azis.

The convective cells denoted with I account for the positive current density in figure 7.1.
The convective cells denoted with II represent the negative current density in figure 7.1.
From j, = —enewy, electron velocities of 10! to 10® m/s are calculated. Clearly these are
too small to neglect wy,.

We have to draw the following conclusion: the shape of the current density calculated
with the simplified electron energy balance looks reasonable. Because the calculated
electron velocities are small, however, it is not sufficient to assume that w, » wy. This
means that also the heavy particle velocity has to be determined to calculate the current
density. This implies also that the heavy particle temperature has to be calculated.

In the next paragraph we discuss a possible method to calculate wy, and Ty,.
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7.3 A method to determine the current density more accurate

In chapter 5 the conservation equations when crossing the shock, the Rankine—Hugoniot
relations (equation 5.9 — 5.12) were given. We saw that the jump in the plasma
parameters when crossing the shock is completely determined by the Mach number M,
before the shock.

From equation 5.9 M; can be calculated because p is known in front of and behind the
shock. Then wy; can be calculated from My = wy/c; and wy, from equation 5.10.

The heavy particle temperature behind the shock is determined from the pressure
balance, with the pressure equal to the background pressure:

p=Y nykpTx = Poackground = 40 Pa (7.9)

where the subscript x denotes electrons, ions or neutrals. Then with equation 5.12 the
heavy particle temperature before the shock can be calculated.

The heavy particle temperature on different axial positions from z= 0 mm to the
beginning of the shock can be calculated from the relation for adiabatic expansion:

% = constant (7.10)

where v = 5/3. Notice that this equation also follows from the electron energy balance
(equation 7.2) with Q¢ negligible on the first zone of the expansion (0 — 20 mm) and the
assumption of no viscous dissipation and heat conduction.

The heavy particle velocity is calculated from [17]:

Wh2=c02+2—7y_—1-%§-[1— [;)Lo]q 1] (7.11)
where ¢, is the velocity of sound (from equation 5.8) and p, and p, the pressure
respectively mass density on z = 0. Equation 7.10 is valid only for adiabatic expansion,
i.e. when equation 7.10 is valid.

The heavy particle velocity before the shock is determined by the total momentum
balance. On the plasma axis this reduces to:

mgy(n, + no)whﬂélzl = —g}z)—— (7.12)
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where p = ). nky Ty, with the subscript x for electrons, ions or neutrals. Equation 7.11
gives for the heavy particle velocity

(o) = wy2(z) ~ [+ 2 GBa (113)

Conclusion: the combination of the electron energy balance (equation 7.2), the equations
for adiabatic expansion (equations 7.10 and 7.11), the total momentum balamce~
(equation 7.13) and the Rankine—Hugoniot relations gives a means to calculate wy, Ty,
w, and from these values j on the axis of the plasma.
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8 Conclusions and suggestions

A fit program has been developed to determine the electron density ne, electron
temperature T, and neutral density n, more accurate than in the past. The following
conclusions are drawn

— By means of convolution procedures the accuracy in the calculated plasma
parameters is increased.

— Corrections for collective effects are introduced. It is proved that even for small
scattering parameters (a ~ 0.2) correction is necessary.

— From the conclusions given above the best model function used in the fit program
consists of a linear background plus a Gaussian, if necessary corrected for collective
effects, convoluted with a measured apparatus profile plus a scaled apparatus
profile. The first component reflects the background of a scattering measurement
(not the same for all measurements), the second component represents the
Thomson component of a scattering measurement and the third component
represents the Rayleigh component of a scattering measurement. The reached
accuracies are for n, 1 —4 %, for T, 2 —4 % and for n, 10 — 20 %.

Measurements on shock wave phenomena are performed. From the measurements we can
draw the following conclusions:

— The position of the jump in the electron temperature differs from the position of
the jumps in the electron and neutral densities in contrast with a normal shock.

— An explanation is given by current generation due to the strong pressure gradient
in the first part of the expansion. The current density is calculated using the
electron energy balance. The calculated current densities are in the order of
—1.5-10% A/m? to 2.0-10% A/m? and can be explained by convective cells around
the plasma axis.
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— The electron velocities calculated from the current density are too small to neglect

the heavy particle velocities in the electron energy balance. A method is given to
calculate correctly the heavy particle velocity and temperature and the electron
velocity on the axis of the plasma. From these values the current density can then
be calculated.

Suggestions:

— We gave a method to calculate the current density more correctly than was done in

this work. It is interesting to use this method in practice and deepen it.

The possibilities are present in the cascaded arc set up to use Fabry—Perot
interferometry. This is a diagnostic which measures the neutral and ion
temperatures and the axial and azimuthal ion velocities. Together with
Thomson—Rayleigh scattering this means that all the plasma parameters necessary
for the calculation of the current density are experimentally determined.

Together with Fabry—Perot interferometry Thomson—Rayleigh scattering
measurements give the possibility to compare the experimental determined current
density with the current density calculated with the model discussed above.

The accuracy in the neutral density strongly depends on the vessel stray light.
Therefore reduction of the vessel stray light is necessary to reach a better accuracy
in the neutral density. At the moment this is done by using anti—teflection coated
windows and a longer tube for the laser dump. The level of the vessel stray light
decreases to approximately 200 counts, which means an improvement of a factor 4.
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Appendix A

As stated before Thomson—Rayleigh scattering measurements were performed on 4
conditions:

— condition 1: a free expanding plasma,;

— condition 2: the same as condition 1, now with a current in the plasma jet;

— condition 3: the same as condition 1, with a magnetic field applied,;

— condition 4: the same as condition 1, now with a magnetic field applied and a

current in the plasma jet.

All measurements were performed on the axis of the plasma jet. In this appendix the
analytical expressions for n,, n, and T, derived from the measurements are given.
In these expressions is z the axial position in mm.

Condition 1

Te(z) = 8000-exp [— 1—%

e

4

+ 550-exp[__ [z 5050] 2] A1)

4
ne(z) = 9-102°-exp[— 7Z—§] + 4. 1019-exp[— %ﬁ] —4. 1019-exp[— [ﬁ] ] +

_ 65)2

+ 1-1019-exp[— [-21—065] ] (A.2)
ng(z) = 1-108-exp|— 72| + 1.1-102 — 4.4.102. 130 (A.3)
olZ) = PI—715 ‘ : zZ + 752 '
Condition 2

5
Te(z) = 6000- exp [— -l—f-] + 4200 exp {— 83—0] — 3000- exp [— [3—3] ] +

+ 450-exp - 5577 ] (A4)
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5
ne(z) = 7-102°-exp[— ﬁ] + 4-1019-exp[— ﬁ] —-4.8-1019-eXP[— [5—8} ]

300

no(z) = 5-1022-exp[— 42—5] +9-10% — 6.8-10%2 e

Condition 3

4
Te(z) = 4000-exp [— %] + 4700-exp [— T(Zﬁ] —1100-exp [_ [?g’] ] +

_ 2
+700-exp[-— z 50 ]

650

4
ne(z) = 8-102°-exp[— 42—5] + 2. 1020-exp[— 2—20—] —4.5- 1019-exp[— [ﬁ] ] +

- 2
+ 4-1019-exp[—LZ-—1—48—5)—]

200

no(2) = 6-10%2-exp|— g5] + 12107 - 6-102- 5 X

Condition 4

z 20
Te(z) = 2.1-104-exp[—-4—5—0] —4.1-104-m

!

ng(z) = 3-10%'-exp [— E] + 9-10'7-(590 — z)

(Y]

n,(z) = 3- 1022.exp[— Z} +3-10%0 — 1'4'1021'(z — 4218)2

~2.1017-7

+ 1327

90

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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Appendix B

The energy balance for the electrons reads for a stationary plasma [28]

V| SnekuTewe | + nkyTeF- we + i, + ¥-q, = Q° (A.13)
where [l.:Vw, represents the viscous dissipation, V-q, the heat conduction and Q¢ all
other energy supplied to the electrons by collisions with other particles.

In this appendix expressions are given for the heat conduction, viscous dissipation and
all the source terms occurring in the electron energy balance (equation A.13).

Heat conduction

The thermal heat flux q is [28]

. 10-10
C

From this the heat conduction is
10
V-q = - 13210 Alo [11,,5/2\721‘e + %Te3/2(VTe)2] (A.15)
On the plasma axis this becomes:

V'%=—1?121A10 1°[T52 e+_T 3/2[%%]2] (A.16)

Viscous dissipation

The viscous dissipation becomes on the plasma axis [28]

. -187 5/2 2
I,Vw, = — 3:72:10° 15T, wezz[gge] (A.17)

nelnA,

(]
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Source terms

Q% = Qen® + Qad® + Qmv® + Qss® + Qonn® (A.18)

where:
Qen® represents the elastic energy exchange with the ions and the neutrals;
Q3¢® is the energy loss due to collisional excitation/deexcitation and
ionization/three—particle recombination (energy loss term);
Qsp,® represents the radiative recombination (energy loss term);
Qgs® represents the brehmstrahlung (energy loss term);
Qonm® Tepresents the Ohmic heating of the electrons (energy gain term).

a Elastic collisions with tons and neutrals

Qei® = -3- _eneT_lkb(T T;)

2
= —2.07-10"3InAc575(Te — T) (A.19)
e
Qea® = —3- Esne_kb(T ~T,)
= —0.99-10"3n,n, T3/ 1(T, — T,) (A.20)

where InA, is the Coulomb logarithm, 7o; and 7¢, are the relaxation times for
momentum transfer between electrons and ions respectively electrons and neutrals; 7e; is
given by equation 5.17 and 7, is [22]

5.7-104
Teo = noTe3710 (A.21)

b Inelastic processes

Q34® = —nenysKy,0b.Ey,

= —2.60-10" 51—&,&)1 (A.22)
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where K, is the collision coefficient, E,, = 2.524-10718 J the excitation energy of the
ground state and éby = ny/ny — 1 the overpopulation of the ground state.

Qpp® = —n +An%kae
= —3.08-1074! n 2T /2 (A.23)

where n, = n, and A,; = ncK,? the radiative transition probability with K2 the

radiative collision coefficient.

Qg® = —1.80-10740n 2T, /2 (A.24)
2
Qoha® = i+ = 3.31- 10 %A o 572(We — W1)’ (A.25)

where n = E—%s?-j is the resistivity of the plasma.
€ el



