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Summary 

Thomson-Rayleigh scattering is a method to measure the electron density ne, electron 

temperature Te and the neutral density n0 locallyin a plasma. This makes it possible to 

study shock wave phenomena in expanding plasmas. The measurements are performed 

on an argon plasma which expands from a cascaded are into a vessel at low pressure. 

A method is developed, using least mean square analysis, to calculate the three plasma 

parameters accurate. The reached accuracy in ne is 1- 4 %, forTe 2- 4% and for n0 10 

- 20 %, depending on the conditions. 

A standing shock wave occurs in the electron and neutral density. The position of the 

jump in Te occurs closer to the expansion than the jumps in ne and n0 . This is probably 

caused by current generation due to the strong pressure gradient in the first part of the 

expansion. The current generation is calculated with the electron energy balance. 
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11ntroduction 

To understand the physical phenomena in expanding plasmas, knowledge of the most 

important plasma parameters as densities and temperatures is essential. Combined 

Thomson-Rayleigh scattering gives a means to measure three plasma parameters locally, 

namely the electron density, electron temperature and the neutral density. 

The aims of this work are: 

To develop a methad and a Turbo Pascal program to fit Thomson-Rayleigh 

scattering measurements. From the fits the plasma parameters can then he 

calculated; 

Investigation on shock wave phenomena occurring in expanding plasmas. 

A Thomson-Rayleigh scattering measurement consists of a Thomson component and a 

Rayleigh component. The Thomson component accounts for the scattering on free 

electrons, while the Rayleigh component reflects the scattering on bounded electrans of 

neutral atoms and ions. In earlier days the plasma parameters were calculated with a 

Thomson plotor directly from the scattered spectrum [1], [2). A fit program is developed 

to reach a higher accuracy in the determination of the plasma parameters [2], [3). Also 

deviations from a Maxwellian velocity distribution function for the electrans can easily 

he studied. Connected with the fit program corrections for collective effects are 

introduced, i.e. when the scattered spectrum depends on the collective behavior of 

groups of electrons. 

Most measurements done in this work show a shock structure in the plasma parameters. 

Remarkable is that the jump in the electron temperature occurs earlier than the jump in 

the electron and neutral densities. For normal shocks the position of the jumps is the 

same [4). lnvestigations on shock tubes show Contradietory results. For example, in ref. 

[5] the position of the jump in the electron temperature and the jump in the densities is 

the same, while ref. [6) clearly shows a difference between the positions of the jumps. We 

explain this difference by means of current generation due to the strong pressure 

gradient in the first part of the expansion. The electron temperature then increases by 

means of Ohmic heating. The current density can he calculated with the electron energy 

balance. 



Introduetion 2 

In chapter 2 the theory of scattering of electromagnetic radiation by a plasma is treated. 

Beside scattering on individual electrons, the incoherent scattering, corrections for 

collective effects are introduced. Chapter 3 discusses the cascaded are set up and the 

Thomson-Rayleigh scattering set up, present at the Plasma Physics Group of the 

Physics Department of the Eindhoven University of Technology. Also the necessary 

calibrations are considered. 

The developed fitting method for the combined Thomson-Rayleigh scattering 

measurements is treated, tested and discussed in chapter 4. In chapter 5 the theory of 

shock waves is treated shortly as introduetion for chapter 6. 

Chapter 6 deals with the results of the scattering measurements. In particular the shock 

structure of the expanding cascaded are plasma is discussed. 

The current density on the axis of an expanding plasma is calculated using the electron 

energy balance. The energy balance and results are discussed in chapter 7. Finally in 

chapter 8 the conclusions and some suggestions are given. 
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2 Scattering of electromagnetic radialion by a plasma 

2.1 Introduetion 

When electromagnetic radiation strikes a charged partiele, the asciilating 

electromagnetic field of the radiation accelerates the partiele in resonance with the 

incident field. The accelerated charged partiele will now act as a radiating dipale 

oscillator and emits radiation [7]. See figure 2.1. 

Time 

Q)~ Ch.arge 
I 

I 

I 

®: 

1 Incident wave 

Figure 2.1 Scattering ofradiation by a free charged particle. 

The spectrum of the scattered radiation depends on the electron density ne, electron and 

ion temperatures Te and Ti respectively, and also the neutral density n0• In this chapter 

we derive expressions to calculate ne, Te and n0 from the scattered spectrum. 
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2.2 Scattering on a moving partiele 

We consider a charged partiele rnaving with a velocity v. The incident electrornagnetic 

radiation with wave vector ki (I kil = 27r/ À i) is scattered by the charged partiele. The 

wave vector of the scattered radiation is ks· See figure 2.2. Because the partiele is 

rnaving the scattered radiation will be Doppler-shifted. 

1J 

observer 

Figure 2.2 Scattering geometry forscattering on a moving particle. 

The scattered radiation is angle dependent. This dependency is shown in figure 2.3. The 

radiation field is just that of a radiating dipole. 

(a) 

dv/dt 

Figure 2.3 

(b) 

v » dv/dt v, dv/dt 

dv/dt 

The angular variation of the radiation scattered by an accelerated charge. 

(a) stationary charge; {b} charge moving with v 11 dvldt. 
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At low veloeities of the particles (v « c) the variation of the scattered radiation with 

direction has the shape shown in figure 2.3a. At higher veloeities (v ~ c) the radiation is 

scattered more in the direction of v [7). This is shown in figure 2.3b. We assume that no 

relativistic effects are present, which means v « c. By choosing an appropriate 

wavelength of the incoming electromagnetic radiation in our experiment (Ài = 532 nm) 

no quanturn effects occur. Then the following relation is valid: 

(2.1) 

We now define a scattering vector k, the shift in wave vector, as 

(2.2) 

See figure 2.4. 

k· 1 

k 

Figure 2.4 Definition of the scattering vector k. 

From figure 2.4 we see that: 

(2.3) 

This leads, tagether with equation 2.1 to 

(2.4) 
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The Doppier shift of the frequency of the scattered radiation is aresult of two effects: 

- The incident wave is "seen" by the charged partiele at a Doppler-shifted 

frequency, because the partiele is rnaving with respect to the souree of radiation. 

The partiele has a velocity component in the direction of the observer which gives 

a second Doppier shift. 

With the definition of the shift in frequency, w, we have 

(2.5) 

So the shift in frequency w is proportional to the component of the partiele velocity in 

the direction of k. 

When the scattering partiele is a free electron we speak of Thomson scattering. 

2.3 Incoherent and coherent spectra 

In the last paragraph we discussed the scattering on one charged partiele. Now we look 

at the situation in a plasma, which consists of more charged partieles. Therefore we 

introduce a scattering parameter a 

1 
a= kÀn 

with k from equation 2.4 and Àn the Debye length 

We now consider t wo cases: 

(2.6) 

(2.7) 

- If 4m; Î ~(8/2) < Àn, which means a< 1, we have incoherent scattering. The incident 

wave "sees" the individual electrons, which appear free. In this case the scattered 

spectrum reflects the shape of the electron velocity distribution ( this is reasanabie 

from equation 2.5, which shows that w is proportional to the electron velocity 

component which lies along k). 
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- If 47rS~~(0/ 2 ) ~ Àn, which means a~ 1, we have coherent scattering. The incident 

wave now interacts with shielded charges. The scattered spectrum therefore 

depends on the collective behavier of groups of charges. 

In our Thomson scattering experiments we have a situation in between, i.e. a < 1 but 

not a « 1. This case is more complicated then the case of incoherent scattering. The 

shape of the scattered spectrum now depends on the scattering parameter a. 

2.4 The scattered power spectrum 

A general expression for the scattered power in a solid angle ~0 and in a frequency 

range dw5 ( = dw, equation 2.5) is given by [7) 

(2.8) 

See figure 2.5. In our scattering experiments P5/Pi ~ 10-14 (see paragraph 2.6). P5 and Pi 

are the scattered and incident power respectively, L is the length of the scattering 

volume (V = L · A) in the direction of ki, dut/ dO is the different i al cross sectien for 

Thomson scattering and S(k,w) the speetral density function for a low temperature 

stabie plasma. g( 0,</>0 ) takes into account the polarization of the incident radiation and 

reflects the dependenee on the angles 0 and </>0 (see figure 2.5): 

(2.9) 

with 0 and </>0 as defined in figure 2.5. In our case 0 = </>0 = 90° and thus g( 0,</>0 ) = 1. 
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Figure 2.5 The scattering geometry in a plasma. 
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We now develop an expression for the speetral density function in the case of Maxwellian 

velocity distribution functions for the electrans and ions. The onHimensional 

Maxwellian distribution function is given by: 

(2.10) 

with Vth,x the thermal speed in the scattering plane of the electrans or ions. 

(2.11) 

with x = electrans or ions. 

The speetral density function is now in the Salpeter approximation (i.e. it is possible to 

separate out the properties of the electron and ion features) [7] 

S(k,w) = k 112
1 

• (Ä +A) 
7r Vth,e I f 1.. I f 1 ... 

(2.12) 
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where 

(2.13) 

with Xe = k w , xi = k w , the scattering parameter a from equation 2.6, Z the 
Vth,e Vth i 

atomie number and Vth,e and Vth,i from equation 2.11. In the above equations the 

following assumptions are made: 

- neÀo 3 » 1, where ne is the electron density and Ào the Debye length; 

- time variations are slow compared to the microscopie times wpe-1, v-1 and w(1 

where Wpe is the electron plasma frequency, v is the callision frequency for 

momenturn transfer and wi is the frequency of the incident radiation. 

Rw(x) and Iw(x) are the realand imaginary partsof the plasma dispersion function: 

Rw(x) = 1- 2x·exp(-x2)·Jxexp(p2)dp 
. 0 

Iw(x) = 7r11 2·x·exp(-x2) 

(2.14) 

(2.15) 

In figure 2.6 the realand imaginary partsof the plasma dispersion function are shown. 
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--~) Jt 

Figure 2.6 The realand imaginary parts ofthe plasma dispersion function. 

For an incaherent spectrum (a « 1) we get 

S(k w) I = fe( w/k) 
' (}-10 k (2.16) 

with fe(w/k) the one--dimensional Maxwellian distribution function of the electrans 

(equation 2.10). So 

I ro S(k,w)dw5 =I 00

fe(wfk)d(wfk) = 1 
-m -m 

(2.17) 

with dw5 = dw. 

In our Thomson scattering experiments a is not much smaller than one, but a =::; 0.3. In 

this case we can neglect in equation 2.12 the terms proportional with a4, because the 

error introduced by this simplification is smaller than 1 %. The equations 2.13 can now 

be simplified to 



Scattering of electromagnetic radiation by a plasma 11 

(2.18) 

Substitution of equations 2.18 in equation 2.12 gives 

[1 + a2 Z~·Rw(xï)]2 
S(k,w) = k u/ ·exp(-xe2)·----::::T.-------=...~.....-_____ _ 

7r Vth,e [1 + a2Z;f7· Rw(x i ) + a 2Rw(Xe)J2 
1 

(2.19) 

By further simplification of the right hand side of the above equation (by expanding the 

denominator as a series expansion and neglecting the a4 terms) we get 

1 
S(k,w) = k 112 • exp( -xe2) · [1 - 2a2 · Rw(Xe)] 

7r Vth,e 
(2.20) 

Integration over w5 gives 

J ro S(k,w)dw5 = 1 - a2 
--m 

(2.21) 

This looks as if we lose photons. However S(k,w) should also be integrated over k. Then 

the result of the integral would be 1. 

We now discuss the consequences of the two solutions equation 2.16 and equation 2.20 

for the calculation of the electron density ne and electron temperature Te. 
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a. Incoherent scattering (a« 1). 

From the integration of the scattered power ( equation 2.8) over w5 , it can be shown for 

incoherent scattering, with substitution of equation 2.17, that the scattered spectrum is 

pure Gaussian. We then see that ne is proportional to the area under the Gaussian 

profile (the total amount of Thomson photons). See also figure 2.7a. 

The electron temperature Te is calculated from the one-over-e width of the Gaussian: 

the width of the Gaussian where the signalis lowered to 1/e times the maximum signal. 

We get from equation 2.10 

(2.22) 

We also know wïfc = ki = 27r{Ài, so differentiating gives 

d).. 
I dwïl = w = 27rC·p 

1 
(2.23) 

Substitution of equation 2.4 and 2.5 in equation 2.23 then gives an expression for the 

velocity of the electrons, with d).. = LlÀue (the half one-over-e width): 

- c ~ 
Ve - 2sin(0/2)" Àï 

(2.24) 

Equation 2.24 substituted in equation 2.22 eventually gives an expression of Te as a 

function of the half one-over-e width LlÀue 

(2.25) 

With (} = 90° this gives Te= 5243.68· (Ll>-. 11e) 2 where il>-. 11e in nm. 

b. a ~ 0.3 ( collective effects ). 

We see that now the scattered spectrum has the shape of a corrected Gaussian according 

to equation 2.20. This is shown in figure 2. 7b for a = 0.3. 
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Figure 2. 7 The scattered spectrum around incident wavelength Ài for incoherent 

scattering (a) and a= 0.3 {b}. 

We see in the above figure that the scattered signal is depressed in the center and 

braadend in the flanks of the spectrum in comparison with a true Gaussian. This leads of 

course to somewhat different values of Te and ne. If a is not too large (0.3) Te will be 

smaller and ne larger in comparison with analysis assuming incoherent scattering. The 

exact equation to calculate ne is given in paragraph 3.4. 

2.5 Rayleigh scattering 

We now consider the scattering of electromagnetic radiation by bounded electrans of 

neutral atoms and ions, which is called Rayleigh scattering. The expression for the 

scattered power for Rayleigh scattering is similar to the one for Thomson scattering: 

equation 2.8, with ne replaced by n0 + (32ni. {32 Is the ratio between the differential cross 

sections of the ions (i) and neutrals (n). For Argon [8]: 

du . dO = (32 = 0.393 
dur,n dO 

(2.26) 
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The scattered power is given by 

(2.27) 

with dO"r/dO the differential cross section for Rayleigh scattering. The ratio of the 

differential Rayleigh and Thomson cross sections for Argon, for an incident wavelength 

of 532 nm ( the Rayleigh cross section is, in contrast with the Thomson cross section, 

wavelength dependent ), is [8) 

d11 dO 1 
d11t dO = 143 (2.28) 

The Doppier width of the scattered spectrum is proportional to m -112, with m in this 

case the mass of the atoms, so the width of the profile is negligible small compared to 

Thomson scattering, which means 

J CD S(k,w)rdw5 = J CD t5(w)dw = 1 
-1I) -1I) 

(2.29) 

with t5(w) the Dirac delta function. 

The scattered spectrum in the scattering experiments is thus a combination of scattering 

by free and bounded electrons. In figure 2.8 a simulation of a scattering experiment is 

given ( see also chapter 4). 

So from the scattered spectrum we can determine the electron density, electron 

temperature and the neutral density, with the equations derived in this chapter. 
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Figure 2.8 Simulation of a Thomson scattering measurement (ne 

n0 = 1·1021 m-3 and Te= 17406.7 K). 

2.6 Efficiency of Thomson scattering 

The differential cross section for Thomson scattering is in the classicallimit 

where re is the classica! electron radius: 

e2 
r = = 2.81·10-15 m e 47rf m c2 o e 

So, in our case where (} = <Po = goo, we get 

dut/dO = 7.9·10-30 m2 

15 

(2.30) 

(2.31) 

(2.32) 
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The ratio of the integrated scattered power and the incident power (see equation 2.8) 

gives the efficiency. The result is (in cl u ding collective effects) 

(2.33) 

where dut/dO from equation 2.32, L = 1 mm and ~0 = 0.021 sr. With ne = 1·1020 m-3 

and a= 0.2 we get 

~ ~ 10 -14 
1 

which means that on 1014 incident photons only one is scattered. This means that for 

performing Thomson scat tering, a high energy laser is necessary. 

In this chapter we derived the basic equations to calculate from the scattering 

experiments the plasma parameters ne, n0 and Te· In the next chapter we discuss the 

experimental f::et up, on which the scattering experiments are performed. 
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3 Experimental set up 

3.1 Introduetion 

The cascaded are set up is shown in figure 3.1. The three most important parts of this 

set up are: 

- the plasma source, a cascaded are; 

- the vacuum vessel, into which the plasma expands; 

- the diagnostics. 

A plasma, generated by the cascaded are, expands into the vessel ( 1) at low pressure 

(0.01 - 1 torr). To reach low pressure, different pumps are used: two fore pumps, three 

roots pumps (capacity 400, 1000 and 2000 m3/hr) and two diffusion pumps. 

The length of the plasma column is equal to the distance between the anode plate of the 

cascaded are and the end anode both connected with the electrode support system (2). 

The vessel is surrounded by eight Helmholtz coils (3) which can apply a magnetic field 

parallel to the plasma jet. 

In this chapter we discuss the cascaded are briefly in paragraph 3.2, the 

Thomson-Rayleigh scattering diagnostics ( 4) in paragraph 3.3 and the calibration 

methods applied in this diagnostics in paragraph 3.4. Finally the effect of the laser on 

the plasma is discussed in paragraph 3.5. 
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lOm 

argon 
-----·-----·---·-·---·-·------·-···-···-··--·-

1 dcctroàc support 

1. li. 3. S. ~a.. 

Figure 3.1 The general plasma set up. 

1. Vessel 

2. Electrode support system: a. cascaded are, b. end anode 

3. Magnetic coils (water cooled} 

4. Diagnostics 
5. Viewing ports 
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3.2 The plasma souree 

As a plasma souree a wall stabilized are is used (see figure 3.2). lt consist of three 

tungsten-thorium cathodes, eight copper plates (which are electrically insulated from 

each other) and an anode plate. They are all water cooled. A voltage is applied between 

the cathodes and the anode of the cascaded are. Argon gas is injected in the central 

channel of the are. The gas is (partly) ionized by discharge between the cathodes and the 

anode plate. In this way a plasma is created which expands into the vacuum vessel. 

Plasma parameters as electron density ne, electron temperature Te' neutral density n0 

and heavy partiele temperature Th depend on the argon gas flow through the cascaded 

are, the current between the cathode and the anode and the pressure. The plasma 

conditions used in this work are listed in table 3.1. 

It is also possible to apply an additional voltage between the cathodes of the cascaded 

are and the end anode. The used electrical configurations are shown in figure 3.3. For a 

more complete survey of the cascaded are and the possible electrical circuits see [9]. 

Table 3.1 The plasma conditions used in the scattering experiments. 

carrier gas argon 

gas flow 3500 ml/min 

nozzle 4mm 

Pbaekground 0.3 torr 

Lplasma jet 700mm 

lease 45 A 

lplasma jet 0-45 A 

IB 0-360 A 

Vease 145 V 

V plasma jet 0-170 V 

B 0-0.2 T 
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/ 
cascade 
plate x 

z 

anode plug 

4mm 

·I-

boren nitride 

Figure 3.2 The cascaded are. 

(a) 

Figure 3.3 

(b) 

end anode 

--[p--- ~ 111111111 

~~ 
1 

The electrical circuit connected with the cascaded are and the end anode; 

(a) the driving voltage is applied between the cathodes and the anode of the 

cascaded arc1 the end anode is electrically isolated; 
{b) the cascade are operates as described in (a) with an additional voltage 

applied between the cathodes of the cascaded are and the end anode. 
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3.3 The Thomson-Rayleigh scattering set up 

At the position of viewing port nr 3 in figure 3.1 the experimental set up for 

Thomson-Rayleigh scattering is positioned. It is shown in detail in figure 3.4. The 

position of the scattering planeis normal to the axis of the plasma jet. 

L1 

VIEWING 
DUMP 

Dl D3 

I 11 

lil plasma 

Nd:YAG D2 

Figure 9.4 

L2 

L3 

IHCR 
I 

S4 IN 

S4 
OMA 

The experimental set up for Thomson-Rayleigh scattering experiments 

(explanation see text). 
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In figure 3.5 the cross section of the vessel is shown in more detail. 

As a light souree a frequency doubled Nd:YAG laser is used (DCR 11 Quanta Ray, 

wavelength 532 nm, energy per pulse E = 0.15 J fpulse, pulse width r = 8 ns and 

repetition frequency frep = 10 Hz, further specifications are given in [10]). The laser light 

passes two dichroic mirrors sl and s2 to separate the second harmonie from the first 

harmonie, which is dumped behind S1 and S2. After this the laser light is focused in the 

plasma, to a waist of 0.5 mm by lens L1 (f = 500 mm). In the vessel tube T 1 several 

diaphragms are installed (D 11 D2 and D3) to diminish the stray light originating from 

laser light scattering at the entrance window W 1 of the vessel. In the tube T 2 opposite to 

the entrance window a laser dump is installed, which absorbs the incident laser light. 

This dump consists of a glass plate NG3 under the Brewster angle. 

Nd:YAG laser 

~ 

Figure 3.5 

viewing dump 

plasma 

Cross section of the vacuum vessel, at the position of the 

Thomson-Rayleigh scattering set up (viewing port nr 3}. 
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The 90° scattered light is observed through window W 2 and imaged one to one on the 

entrance slit of the polychromator by two plano convex lenses L2 and L3 (both with 

f = 500 mm) and a mirror S4• In the tube T 3 opposite to the exit window a viewing 

dump is installed to reduce the stray light from that direction. 

The polychromator consistsof a holographic concave grating (HCR) and a detector. The 

HCR (special Jobin Yvon, 1800 linesfmm, Rowland geometry, radius of Rowland circle 

500 mm, calculated dispersion on Rowland circle 1.11 nm/mm) disperses the scattered 

light (wavelength selection). A solid angle of 2.5·10-2 sr is reached by matching the 

aperture ratio of lenses 12 and L3 to the aperture ratio of the HCR. The entrance and 

exit angles of the polychromator are chosen such to achieve minimal astigmatism on the 

Rowland circle for the used laser wavelengthof 532 nm. 

The detector consists of three parts: a gateable light amplifier (LA), an optical 

multichannel analyzer (OMA) and a personal computer (PC) with an ADC plug in unit. 

The photocathode (S20, quanturn efficiency 12 % at 532 nm) of the LA (Fiber Optie 

array, amplification 104, gating timeTgate = 20 ns) is positioned on the Rowland circle. 

Light which strikes the photocathode is amplified. The LA is gated with a pulse 

generator which is triggered by the laser. Gating is necessary to minimize the plasma 

light during a measurement. The amplified Thomson-Rayleigh signal is detected with 

the OMA, which integrates the scattered signal during 1200 shots. 1t consists of a photo 

diode array PDA (1024 pixels: width 25 p,m, height 2.5 mm, EG&G Reticon photo diode 

array RL1024S). The pixels are caoled with two peltier elements, which makes long 

integration times possible [1]. With an ADC converter the analog signal is digitized 

inside the personal computer PC. In this way the scattered signal is measured in ADC 

counts. One ADC count corresponds to 3.4 photons according to [11]. 

With the diagnostics discussed, Thomson-Rayleigh scattering measurements can be 

performed in expanding cascaded are plasmas in axial and radial direction. For this the 

position of the plasma can be changed by rnaving the cascaded are and the end anode 

independently in axial and/or radial direction. This has the advantage that the opties 

remains fixed. For definition of the axial and radial directions in the plasma see figure 

3.6. 
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y 

Figure 3. 6 Definition of axial and radial directions in the expanding plasma. 

3.4 Calibration methods 

To determine correctly the three plasma parameters ne, n0 and Te from the 

Thomson-Rayleigh scattering measurements, three different calibrations have to be 

performed. First an absolute calibration, to calculate the electron and neutral density, 

second a wavelength calibration, to calculate the electron temperature and third a 

relative calibration, to calibrate the different sensitivity of the pixels. 

3.4.1 Absolute calibration 

To calculate the electron and neutral density from the measured spectrum an absolute 

calibration is performed. It consists of a Rayleigh scattering measurement (on pure argon 

gas at a pressure of approximately 1.6 torr) under the same conditions as the 

Thomson-Rayleigh scattering measurements. 

The neutral density no.cal conesponding to this Rayleigh calibration measurement is 

calculated from 

(3.1) 

where p = 1.6 torr and T = 296 K (room temperature). The accuracy in the measured 

pressure and temperature influences of course the calibration. 
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The ratio of the integrated signal of the Thomson component of the measured spectrum 

and the integrated Rayleigh scattering signal now gives the value of the electron density 

ne. For pure argon gas the integrated Rayleigh scattering signalis (see chapter 2) 

Ical = J roPs,cdw5 = Pi·no,cal'L·LlO·do-r/dO·Tdet 
---1J) 

(3.2) 

where T det is the product of the transmission of the used optical components and the 

detection efficiency. 

The integrated signalof the Thomson component of the measured spectrum is (including 

collective effects) 

lthom = J roP5 ,tdW5 = Pi·ne(l-a2)L·LlO·do-tfdO·Tdet' 
---1J) 

(3.3) 

Because the Thomso~ and Rayleigh scattering measurements are done under the same 

conditions, i.e. Tdet = Tdet', ne is given by 

(3.4) 

In the same way the ratio of the integrated signal of the Rayleigh component of the 

measured spectrum and the integrated signal of the Rayleigh calibration measurement 

gives the neutral density. 

The integrated signalof the Rayleigh component of the measured spectrum is 

Irayl = J roPs,rdw5 = Pi(n0 +,82ni)L·LlO·do-r/dO·Tdet' 
---1J) 

(3.5) 

With Ical from equation 3.2, ni = ne (quasi neutrality) and Tdet = Tdet', n0 is given by 

(3.6) 

where ne is calculated from equation 3.4. 
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3.4.2 Wavelength calibration 

The wavelength calibration is performed to calculate the electron temperature, which is 

proportional to the square of the width of the Thomson component of the measured 

spectrum (equation 2.24). Therefore the pixels of the OMA have to be calibrated with 

wavelength. This is done by measuring the spectra of some gas discharge lamps. We used 

Ne, Hg, Cs, Ar, Xe and Ti gas discharge lamps and the Nd:YAG laser. Afterwards the 

observed speetral lines are identified with wavelength. The result of the wavelength 

calibration is shown in figure 3.7. 

As can be seen in this figure, a linear relation exists between wavelength and pixel 

number. From a least mean square fit we find 

À = a0 + a1• pixel number (3.7) 

where À in nm, a0 = 517.3 ± 3.0 nm and a1 = 0.02684 ± 0.007 nmfpixel. The correlation 

r = 0.9991. 
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Figure 3. 7 Wavelength calibration ofthe pixels. 
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3.4.3 Relative calibration 

Calibration of the pixel sensitivity is performed with a tungsten ribbon lamp (Osram, 

type 17 /G, nr. 1252, calibration certificate nr. 723.0307) under the same conditions as 

the Thomson-Rayleigh scattering measurements. The spectrum of the tungsten ribbon 

lamp is measured at one particula.r current through the ribbon ( the radiance depends on 

the temperature of the ribbon and thus depends on the current through the ribbon, we 

choose a current of 14.00 ± 0.01 A). The measured spectrum is shown in figure 3.8. With 

the methad described by (12] we can calculate the relative calibration. The Turbo Pascal 

programs "T_rad", "T_waar" and "Radiant" (all written by M.C.M. van de Sanden) 

are used for this aim. 

Shortly the procedure is as follows: 

With "T_rad" the radiation temperature (at a current of 14 A) is calculated from 

the specifications given by the calibration certificate. 

From the radiation temperature the true temperature of the ribbon is calculated 

with "T waar". 

(j) 
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ü 
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Figure 3. 8 The measured tungsten ribbon lamp spectrum. 
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The intensity for a few wavelengths at one true temperature is calculated with 

"Radiant". By fitting the result with a polynomial of order 3 we get the intensity as 

a function of wavelength at one true temperature (belonging toa current of 14 A). 

From the wavelength calibration, discussed in paragraph 3.4.2, we know the pixel 

numbers corresponding to the different wavelengths. So the relative calibration for 

each pixel can be calculated by dividing the tungsten ribbon lamp measurement by 

the calculated intensity. 

Tagether with the absolute calibration ( described in paragraph 3.4.1) and the 

wavelength calibration ( described in paragraph 3.4.2) the measured Thomson-Rayleigh 

scattering measurements can be analyzed. 

3.5 Influence of the laser on the plasma 

In this paragraph we discuss two possible, laser induced, effects on the plasma. First 

heating of the plasma in subsection 3.5.1 and second disturbance of the plasma by the 

incident electric field in subsection 3.5.2. 

3.5.1 Heating of the plasma by absorption of laser energy 

An important restrietion to the used laser is that it should not disturb the plasma. 

Absorption of the laser energy by the plasma can give rise to an increase of the electron 

temperature (inverse Brehmstrahlung). The laser energy can disturb the plasma also in 

other ways, here we discuss only the heating of the plasma by absorption of laser energy 

by the electrons. The increase is given by [8]: 

Ll Te 9 11 10-14 n i z2 f};ff [1 [ h V ]] 1 JtLLdt T = · . (k T )372"--:.1" - exp - k T ·-· e be v be qO 
(3.8) 

where ni = ne, Z = 1, gaunt factor grr = 1, cross section of the laser beam in the plasma 

q = 1r· (0.25 ·10-3)2 = 1.96·10-7 m2, laser power L = 1.88·107 J fs, frequency of the laser 

fotons v = cf À i = 5.64·1014 s-1 and time tL between Tee and Tei, where Tee and Tei are 

the relaxation times for electron- electron and electron -ion momenturn exchange. We 

take the upper limit tL = Tei = 2.76·105·Te312f(nelnAc)· For ne = 5·1019 m-3 and Te= 

2500 K we get tL = 1.28·10-10 s and ó.Te/Te = 4.86·10-5 which means that the increase 
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of the electron temperature, due to absorption of laser energy, is 0.12 K forTe = 2500 K. 

This justifies the condusion that heating of the plasma by absorption of laser energy can 

be neglected. 

3.5.2 Disturbance of the plasma by the incident electtic field 

The incident electric field should be small enough not to disturb the plasma, i.e. the 

acceleration during one cycle of the electric field should be smaller than the thermal 

speed in the scattering plane. This requires 

(3.9) 

where wi = 21rc/ À i = 3.54·1015 s-1. The electric field is related to the incident power per 

unit area by 

(3.10) 

where A = 1.96·10-7 m2 the cross section of the laser in the plasma. With substitution of 

equation 3.10 in equation 3.9 we get the condition 

(3.11) 

with Te in K. For the Nd:YAG laser used in this work we find Pi/A= 9.59·1013 Js-1m-2. 

So for Te= 2500 K and all the electron temperatures measured in this work (1500 -

20000 K) the condusion is justified that the influence of the incoming electric field is 

negligible. 
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4 Analysis methods of scattering measurements 

4.1 Introduetion 

To calculate the electron density ne, electron temperature Te and the neutral density n0 

from the scattering measurements a fit program has been developed. This program uses 

a non-linear least mean square fit methad based on the Levenberg-Marquardt algorithm 

[14]. In paragraph 4.2 the theory of this fitting methad is described. For all programming 

details of the fit program, the reader is referred to the user guide [15]. Paragraph 4.3 

treats the possible components of the model function, used in the fit program ( described 

in paragraph 4.2). Several tests performed on the fit program are explained and 

discussed in paragraph 4.4. 

4.2 Least mean square fit procedures with nonlinear models 

We consider a model y = y(x,a) which depends nonlinearly on a set of M unknown 

parameters ak, k = 1.. .M. With this model we want to fit a set of N data points (xi,yi)· 

Usually N > M. We define the Chi Square function x2, which measures the agreement 

between the data and the nonlinear model with a partienlar choice of the set of 

parameters a, as 

N 
x2( a) = E [Yi - y(xj,a)] 2 

i=1 (J i 
( 4.1) 

with Yi the ith data point, y(xi,a) the value of the model function at xi and ai the 

standard deviation (uncertainty) of Yi· 

We determine the best fit parameters by minimization of x2. Close to the minimum the 

x2 function can be approximated by its Taylor series: 

( 4.2) 
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with "f a constant: 'Y = x2(8min), d is an M-vector: d = -Vx2(a) I . and 
8mm 

[D)ij = Bx2( a)/ aaiaaj I~ . , a Mx M matrix (D is called the Hessian matrix: the second 
-unn 

partial derivative matrix of the x2 function at 8min)· 

From equation 4.2 the gradient of x2 is calculated as 

( 4.3) 

Here we made use of the fact that D· a = a· D. The gradient vanishes at 8min obtained 

from 

D·!ll · =d -unn ( 4.4) 

At the current point 8cur we have 

( 4.5) 

So when our current approximation 8cur is a good one ( which means that 8min - 8cur is 

the finite step we have to take to reach the exact minimum), we get by subtracting of 

equation 4.5 from equation 4.4 

( 4.6) 

On the other hand it is also possible that at 8cur equation 4.2 is a poor local 

approximation to the shape of the function x2( a) that we are trying to minimize at 8cur­

In this case we take a step down the gradient V x2( 8cur ). This is called the steepest 
deseend method: 

3.next = 8cur- constant· Vx2(8cur) (4.7) 

where the constant is small enough not to exhaust the downhill direction. 

To find 8min with equations 4.6 and 4. 7 we have to know the Hessian matrix D and the 

gradient of x2• We can calculate these two because we know the exact form of x2 

( equation 4.1 ). 
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a. The gradient of x2 with respect to ak is: 

N 
Qx: = _2 E [Y; - y(x;,a)J. 8y~x; ,a) 
aak i=1 ai ak 

( 4.8) 

with k = l...M. 

b. The components of the Hessian are the second partial derivatives of x2: 

(4.9) 

We now define: 

( 4.10) 

and the curvature matrix [a] with components: 

(4.11) 

We see from equation 4.10 that at the minimum ,Bk(amin) = 0 for all k. 

From equation 4.9 and 4.11 we see that akl depends on both the first and second 

derivatives of the model function with respect to its parameters. We ignore in further 

discussion the second derivative term because of the following reasons: 

- The second derivative term is zero in the linear case. 

- When it is small enough compared to the first derivative term, it can be neglected: 

for a good model the term [Yi - y(xba)] in equation 4.9 should be the random 

measurement error of each data point (positive or negative), which is not 

correlated to the model. So the summation over i of the second derivative 

multiplied with [Yi- y(xha)] should give zero. 
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Now we can write equation 4.6 and 4. 7, with substitution of akl and 13k defined m 

equation 4.10 and 4.11, as 

( 4.12) 

respectively 

óa1 = constant· 131 ( 4.13) 

with óal the increment anext - acur added to the current approximation acur-

We know already that equation 4.12 is used close to the minimum and equation 4.13 far 

from the minimum. Marquardt managed to combine the two equations in one equation 

as follows: 

First we look at the constant in equation 4.13. Consirlering dimensions the constant 

should have a dimension of ak 2, because x2 is nondimensional (see equation 4.1) and 13k 
has therefore a dimension of 1/ ak. 

When we now look at the curvature matrix [a] ( equation 4.11) we see that only one 

quantity exists with a dimension of ak2: 1/ akk (the components of the curvature matrix 

[a] have dimensions 1/aka1). So this quantity should set the scale of the constant. 

We additionally divide the constant by a nondimensional factor .À because 1/ akk may be 

too big. So equation 4.13 now becomes 

( 4.14a) 

or 

( 4.14b) 

Notice that a11 is always positive ( equation 4.9 with the second derivative term set to 

zero). 
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Now we can combine equation 4.12 and 4.14b when we define a new matrix [a'] with 

components: 

a .. '= a .. (1 +.X) JJ - JJ 

So the final equation is: 

M 
E aki'· 6a1 = {Jk 

1=1 

(j f k) ( 4.15) 

(4.16) 

At the limit À -+ 0 we get back equation 4.12 and at À -+ oo (a' diagonally dominant) 

we get back equation 4.14b. 

Briefly, the Levenberg-Marquardt methad is shown in a flow chart in figure 4.1. 

Remarks: 

- The minimization is ready when the stop condition is satisfied: if in n following 

iterations the decrease in x2( a) is less than 0.1, stop iterating: the stop condition n 

has to be given by the user. 

- When the minimization is fulfilled the covariance matrix [C] = [a]-1 is calculated. 

The diagonal elements Cjj of the covariance matrix give the squared uncertainties 

of the fitted parameters a. We use as uncertainty of the fitted parameters the Root 

Mean Square deviation, defined as: 

j eh i square 
O'effective,j = N _ M · C j j ( 4.17) 

for parameter aj. 

The off-diagonal elements Cjk (j 1 k) give the covariance of parameter aj with 

parameter ak. 
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Figure 4.1 

Give an initial guess for the 

set of fitted parameters a 

Take a modest value for ). 

(we take). = 0.001). 

WHILE 

DO ,----­ -- --------
I 
I 

Solve equation 4.16 for óa 

and evaluate x2( a + b'a) 

IF 

Calculate the covariance 

matrix (C] = [a]-1 

ELSE 

----- ...... 

Flow chart of the Levenberg-Marquardt fit method. The box indicates one 
iteration. 
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We say that a measurement is fitted well if the value of the minimized x2 function 

is in the order of N- M, with N- M the degrees of freedom of the system. Nis the 

total amount of data points and M the total amount of parameters of the model 

function. The measurement errors are normally distributed, with the measurement 

error of one data point 

. - [ .YL] 1/2 
(Jl - 3.4 (4.18) 

where the factor 3.4 arises because the photons obey the JN statistics and one ADC 

count corresponds to 3.4 photons [11]. 

An other method to say sarnething about the quantity of the fit is looking at the 

autocorrelation ac of the residue (measurement- fit) [16]. ac Is a number between 

-1 and + 1. If ac is zero then the residue is uncorrelated, if it is 1 ( or -1) the 

residue is completely correlated. We say that no systematics occurs in the residue, 

when ac is approximately between --0.3 and +0.3. In this case the correct model 

functions are used. 

In the next paragraph we discuss an explicit expression for the model function used to fit 

the scattering measurements with the analysis method here described. 
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4.3 The model function to be used in the scattering experiments 

In general a scattering measurement consist of three components: 

- a background; 

37 

- a Thomson component, which is a convolution of the true Thomson component 

with the apparatus profile; 

- a Rayleigh component, which has the shape of the apparatus profile. 

Logically, the model function y(x,a) which is used to fit the measurements should consist 

of three similar components. Here x is the wavelength and a the parameter set used in 

the model function. The possible componentsof the model function are: 

1 a linear background: 

( 4.19) 

where a0 is the offset and a1 is the slope. Because the cooling of the pixels is not 

constant, measurements do not have the same background. These differences are 

taken into account by the linear background. 

2 a Gaussian (used in the case of incoherent scattering): 

a [ [x -a] 2] y(x) = a/J7r' exp - a2 1 ( 4.20) 

where a0 is the surface sum, a1 is the position and a2 is the half one-over-e width 

of the Gaussian. 

3 a Gaussian corrected for collective effects ( used in the case where a is not very 

small): 

( 4.21) 

where a0, a1 and a2 are the same as in 2 and Rw[x ~2a 1) is the real part of the 

plasma dispersion function given by equation 2.14. Notice that the scattering 

parameter a is a function of a0 and a2. 
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4 a measured component which reflects the scaled apparatus profile: 

y(x) = a0·f(x-at) ( 4.22) 

where a0 is a multiplier, a1 is a shift in position and f(x) is the measured profile. In 

our case f(x) is a measured apparatus profile. 

The possible convolution of the function y(x) given in equations 4.20 or 4.21 with an 

apparatus profile a(x) is calculated using Fast Fourier Transfarms [14]. We eaU the 

result s(x): 

J
+rn 

s(x) = y(x)xa(x) = a(xa)·y(x-xa)dxa 
--m 

( 4.23) 

The model function is now a combination of the components given above. The fit 

program is tested by fitting some simulations with different model functions. This is 

described in the next paragraph. 

4.4 Testing the fit program 

In this paragraph we test the fit program. In subsection 4.4.1 we examine the apparatus 

profile. In subsections 4.4.2 and 4.4.3 tests for incoherent scattering respectively 

collective effects are discussed. 

4.4.1 About the apparatus profile 

A Rayleigh scattering measurement (which has a very small Doppier width) is braadend 

to an apparatus profile of finite width, because the entrance slit of the polychromator is 

not infinitely small. A Rayleigh scattering measurement, done under the same measuring 

conditions as the Thomson-Rayleigh scattering measurements is shown in figure 4.2. 

The only differences in the conditions are the used pressure of 1.6 torr (background 

pressure in the vessel) compared with 0.3 torr for the Thomson-Rayleigh scattering 

measurements and the gas temperature. We tested if the shape of the Rayleigh 

scattering measurement changes under different pressures. Therefore Rayleigh scattering 
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measurements were performed under three different pressures, namely 0.3 torr, 1.6 torr 

and 100 torr. From the results we can say that the shape of the Rayleigh scattering 

measurements doesnotchange under different pressures. 
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Figure 4.2 A Rayleigh scattering measurement which serves as apparatus profile. 

Examination of the above figure shows that the apparatus profile has an asymmetrie 

shape. We fitted the apparatus profile with a model function consisting of a varying 

amount of Gaussians (1 - 3). The only reasonable fit was made by using a model 

function which contained three Gaussians. Unfortunately the positions of the Gaussians 

are such that, physically spoken, no conclusions can be drawn from this result. In 

practice it means that, first, the Rayleigh component of a scattering measurement can 

only be fitted well with a profile with the same shape as the apparatus profile, i.e. a 

scaled Rayleigh scattering measurement. Second, the Thomson component of a 

scattering measurement, which is a convolution of the true Thomson component with 

the apparatus profile ( normalized on a surface sum of one), can only be fitted well when 

the convolution is calculated with the real apparatus profile and not with a 

simplification as for example a Gaussian. This is made plausible in the next two 

subsections. 
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4.4.2 Tests for incoherent scattering 

Six simulations of scattered spectra are made. They are all build up of a Gaussian (nr. 2 

in paragraph 4.3) convoluted with a measured apparatus profile plus a scaled apparatus 

profile (nr. 4 in paragraph 4.3). The first component reflects the Thomson component 

and the second component the Rayleigh component of the scattered spectrum. The 

parameters of the simulations are adjusted to the values of the electron temperature Te 

and electron density ne given in table 4.1. Te is proportional to the square of the half 

one-over-e width and ne is proportional to the surface sum of the Gaussian. The neutral 

density n0 is for all simulations the same (1·1021 m-3). In figure 4.3 a picture of the six 

simulations is shown. The chosen values of ne, n0 and Te are values which are to be 

expected in the Thomson-Rayleigh scattering experiments. 

Table 4.1 Simulations of scattered spectra (n0 = 1· 1021 m-3 ). 

Simulation ne (m-3) Te (K) 
1----• 

1 5·1018 5802.23 

2 17406.68 

3 5·1019 5802.23 

4 17406.68 

5 5·1020 5802.23 

6 17406.68 
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Figure 4.3 Simulations ofscattered spectra according to table 4.1. 

The simulations are fitted in three different ways, with model functions with 

components: 

a background plus two Gaussians; 

a background plus a Gaussian plus a scaled apparatus profile; 

a background plus a Gaussian convoluted with a measured apparatus profile plus a 

scaled apparatus profile. 

What is our aim to fit the simulations in these ways? 
1 Examine if the three different fitting methods give essential differences in the 

estimation of the plasma parameters ne, n0 and Te with regard toeach other and in 

comparison with the simulations. 

2 Examine the time scale on which the three fitting methods operate. 

We will see that large differences occur between the three fitting methods. 
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1 The estimation of ne, n0 and Te 

The results of the different fitting methods are listed in table 4.2 on the next page. From 

the table we can draw the following conclusions: 

Examining the relative differences of the plasma parameters between fit and 

simulation for the three methods, we see that the relative differences for methad 3 

are significantly smaller than those of methad 1 and 2. For electron densities of 

5 ·1019 m -3 and higher the difference between methad 1 and 2 compared to methad 

3 becomes quite clear. Methad 3 then gives within 1 % the correct values of the 

plasma parameters in contrast with the first two methods. These methods give 

considerable differences compared with the correct values from the simulations. 

Apparently these methods can not clearly distinguish the Thomson and Rayleigh 

component from each other when ne becomes of the order of n0 • See the picture of 

simulation 5 in figure 4.3. 

For very low values of ne (5·10 18 m-3) the results of the fits for methad 3 are less 

good then for higher ne values. 

From table 4.2 it is not so that simulations with smaller Te are better (or worse) 

fitted than simulations with higher Te· To see this, campare the results of 

simulations 1 and 2, 3 and 4, 5 and 6 with each other. The cause is that forsmaller 

Te the Thomson and Rayleigh components become more difficult to distinguish 

from each other. 

The most difficult simulation to fit is simulation 2, where ne is very low and Te is 

high. The relative differences in the plasma parameters between fit and simulations 

are in the order of 10 % for all three fitting methods. We see from the picture of 

simulation 2 in figure 4.3 that the Thomson component is so low that pixels close 

to each other have the same amount of counts. The large relative differences are 

then caused by round off errors. Fortunately, in our scattering experiments we do 

not come even close to this situation of very low ne and high Te· 

From these conclusions we can say that the best fitting methad is methad 3, where the 

model function consists of a background plus a Gaussian convoluted with an apparatus 

profile plus a scaled apparatus profile. We have to notice also that the relative 

differences between fit and simulation decrease with larger ne. So if ne is large the 

plasma parameters ne, n0 and Te are determined more accurate. 
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Table 4.2 Fit results for the six simulations in the case of incoherent scattering (The 
relative differences are differences with regard to the true values of the 

sim ul ations.). 

Simulatian 1 methad 1 methad 2 methad 3 

j.ne/ne 84% 1.2% 0.49% 

.::,. no/ no 7.4 '7c 0.2% 0.095% 

j.TefTe 8.5% 10.0% 2.2% 

Simulatian 2 methad 1 methad 2 methad 3 

D.ne/ne 14 3% 8.7% 8.9% 

j.no/no 6.3% 6.4% 6.3% 

j.Te/Te 5.2% 17.6% 14.6% 

Simulatian 3 methad 1 methad 2 methad 3 

j.ne/ne 0.24% 045% 0.16% 

D.no/no 2.2% 2.7% 0.79% 

~Te/Te llO% 10.7% 1.7% 

Simulatian 4 methad 1 methad 2 methad 3 

D.ne/ne 0 15% 0.57% 0.36% 

D.no/no 62% 0.058% 0.043% 

.::,. Te/Te 1.9% 2.8% 0.35% 

Simulatian 5 methad 1 methad 2 methad 3 

D.ne/ne 40.8% 0.66% 0.10% 

2,no/no 2900% 29.9% 5.5% 

2,Te/Te 32.6 <;{- 10.5% 0.84% 

Simulatian 6 methad 1 methad 2 methad 3 

j.ne/ne 0.13% 0.20% 0.009% 

j.no/no 4 6% 1.6% 0.63% 

.::,. Te/Te 34% 34% 0.29% 
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2 Time scale on which the fitting methods operate 

The time which is needed for the three methods to fit the simulations is shown in figure 

4.4. 
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Time scale on which the three fitting methods operate. The time shown is 

the time needed to pet"jorm ten iterations (see figure 4.1}. 

The most simple form of fitting is method 1, where the only operation is adding the 

three components. In the second method, a scaled measured apparatus profile is shifted 

over the wavelength range to obtain a good fit. As it is a measurement, the apparatus 

profile forms a discrete spectrum. This makes the use of a cubic spline interpolation 

procedure necessary [14], which accounts for the extra calculation time. In method 3 in 

comparison with method 2, also a convolution is calculated using Fast Fourier 

Transfarms [14]. This is the reason why this method is somewhat slower than method 2. 

Summed up, method 3 is the most accurate fitting method, especially at ne values above 

5·1019 m-3 which is the case in almost all our scattering experiments. At the same time, 

however, method 3 is also the slowest fitting method. As the time scale, on which this 
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method operates, is not exceptional big and because we want to analyze our 

measurements as accurate as possible, we choose methad 3 as fitting methad for the 

scattering experiments. 

4.4.3 Test for collective effects 

A simulation of a scattering measurement is made including collective effects. It consists 

of a Gaussian corrected for collective effects (nr. 3 in paragraph 4.3) convoluted with a 

measured apparatus profile plus a scaled apparatus profile. The plasma parameters 

corresponding to this simulation are: ne = 1.7 ·1020 m-3, n0 = 3.6·1021 m-3, Te= 3400 K 

and a= 0.195. 

The simulation is fitted in two ways, with model functions which consist of: 

a background plus a Gaussian convoluted with a measured apparatus profile plus a 

scaled apparatus profile; 

a background plus a Gaussian corrected for collective effects convoluted with a 

measured apparatus profile plus a scaled apparatus profile. 

Again we examine the relative differences between the two fitting methods and the 

simulation and the timescaleon which the methods operate. 

1 The estimation of ne, n0 and Te 

The results of the two fitting methods are listed in table 4.3. 

Table 4.3 Fit results for the simulation in the case of collective effects {the variables 

are the same as in table 4.2}. 

Simulation method 1 methad 2 

!:l.ne/ne 2.8% 0.033% 

!:l.no/no 6.4% 0.56% 

!:i Te/Te 3.6% 0.13% 
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Conclusions: 

Methad 2 gives approximately 10 times smaller relative differences between fit and 

simulation than methad 1. 

The improvements assert themselves in an increase in ne and n0 and a (small) 

decrease in Te (in agreement with [2]). We can derive an general equation for the 

correction in n0 ,1 as a function of ne,II and the correction in ne,I: 

( 4.24) 

where Llne = ne,II - ne,I and Lln0 = n0 ,n - n0 ,1. In figure 4.5 the correction Lln0 is 

depicted versus ne,II for various Llne for a= 0.195. 

.... 
N 
ill .... 

0 c 
,ç; 

c 
0 
·;:; 
u 
ill 
'-

0 
u 

--0 ----- 1e18 ----- 5818 .......... 1e19 --- 5819 

10~------------------------------------, 

6 

2 

-2 

-6 ----------------·-

----------------·-· 
_..-·-·-..-------

-10L_ ___ _J ______ _L ______ ~------L-----~ 

0.00 0.20 0.40 0.60 0.80 1.00 

Figure 4.5 The correction in n0 ,1 versus ne,n for various Llne· 

It appears that the correction in n0 ,1 can he appreciable in the parameter range of 

the expanding cascaded are plasma even when Llne = 0, i.e. when the electron 

densities obtained by the two methods are the same. 

The scattering parameter a is deliberately chosen 0.195, a value which is very near 

to the a's in the scattering experiments. From table 4.3 and figure 4.5 we see that 

even for small a it is a significant impravement to use a model function which is 

corrected for collective effects. 
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2 Time scale on which the fitting methods operate 

To correct a Gaussian for collective effects, an integral in the real part of the plasma 

dispersion function has to be calculated (see equation 2.14). This calculation comes on 

top of the other calculations already discussed in subsectien 4.4.2. As a consequence the 

calculation time is increased. This is shown in figure 4.6. 

As in subsectien 4.4.2 we choose accuracy above speed and thus use method 2 to fit the 

scattering measurements. 

600 

Q) 400 
E 

200 

~ method 1 

0 ~~~~~~--

ma method 2 

Figure 4-6 Time scale on which the two fitting methods operate. The time shown is 

the time needed to perform ten iterations {see figure 4.1). 
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5 Shock wave theory 

In this chapter the theory of shock waves is treated shortly as an introduetion on chapter 

6, where the experimental results are discussed. For a more complete survey of shock 

waves see for example [17], [18], [19] or [20]. 

In paragraph 5.1 the Rankine-Hugoniot relations for a normal shock wave are treated. 

Paragraph 5.2 considers mean free paths because these determine the thickness of the 

shock. Also an expression for the position of the shock is given. 

5.1 Rankine-Hugoniot relations fora normal shock wave 

The laws of conservation of mass, momenturn and energy farm the basis for the 

equations of flow of a gas. These laws can be applied to flow regions where the variables 

undergo a discontinuous change. In our case the flow variables are the electron and 

heavy partiele ( neutral atoms and ions) temperatures, the electron and neutral densities 

and the electron and heavy partiele temperatures. 

A discontinuity can be regarded as the limiting case of very large but finite gradients in 

the flow variables, i.e. the flow variables change rapidly across a region which is usually 

very thin. Such discontinuities represent shock waves. 

We apply the general laws of conservation of mass, momenturn and energy to find the 

unknown flow variables. The conservation of mass, momenturn and energy through a 

shock are described by the Rankine-Hugoniot relations. For a normal shock wave these 

relations read (without a magnetic field) 

(5.1) 

(5.2) 

(5.3) 

The left-hand side contains the flow variables in front of the shock and the right-hand 

side contains the flow variables behind the shock. 
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In equations 5.1 - 5.3 is p the mass density, u the velocity of the plasma, p the pressure 

and h the enthalpy: 

(5.4) 

(5.5) 

where the subscript x denotes electrons, ions and neutrals and wh is the velocity of the. 

heavy particles (neutrals and ions). Here we assume that wi = w0 = wh. 

An expression for the enthalpy is derived by [21]: 

(5.6) 

where the ionization energy of the ground state E1 + = 2.524 · 10-18 J, the ratio of specific 

heats 'Y = cp/Cv and the assumption Ti= T0 = Th is made. 

The equation of state is 

p = pR(Th + aT e) (5.7) 

where the gas constant R = 8.315 ·107 Jmol-1K-1 and the ionization degree a= n + ne no 
1t is useful to express the ratios of densities, velocities, pressures and temperatures in a 

shock wave in terms of the Mach number M1 = utfcb where the velocity of sound is 

given by 

(5.8) 

With a shock wave, across which the gas is compressed, the gas flows into the shock with 

a supersonic velocity u1 > c1 (M 1 > 1) and flows out with a subsonic velocity u2 < c2 

(M2 < 1). With 'Y = 5/3 (for manatomie perfect gases) the following formulas can be 

derived from the above equations: 
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(5.9) 

(5.10) 

(5.11) 

(5.12) 

where T =Th+ aTe. 
Equations 5.9 - 5.12 show that the following inequalities are satisfied across a shock: 

P2 > P1 

u2 <Ut 

P2 > Pt 
T2 > Tt 

Like the other variables the entropy S is discontinuons across the shock: S2 > S1. 

5.2 Thick:ness and position of a normal shock 

(5.13) 

a Mean free paths for momenturn and energy transfer between the particles in a plasma 

The thickness of a shock is determined by the mean free paths for momenturn exchange 

between electrons, ions and neutrals: 

Àei = Tei · Vth,e 

>.u = ru · Vth,i 

Àio = Tio · Vth,i 

(5.14) 

(5.15) 

(5.16) 

where reh rii and rio are the relaxation times of momenturn transfer between electrans 

and ions, ions and ions respectively ions and neutrals and the thermal velocity is 

Vth,x = (3kbTxfmx)112 for species e (electrons) or i (ions). The relaxation times are given 

by (22], (23]: 
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- 5 Te3/2 
Tei- 2.755·10 · lA ne n c 

.. - [!!!i] 1/2[ Th.] 3/2 Tu- T ·Tei me e 

where the Coulomb logarithm lnAc 

>.n = ( Eokb Te/nee2)112. 
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( 5.17) 

(5.18) 

(5.19) 

ln(9ne·47r.Xn 3/3) with the Debye length 

The mean free paths for energy exchange between electrans and ions and ions and 

neutrals are 

m· ). • f. - __!!!.1. • ). • 
e1 - 2m e1 e 

(5.20) 

(5.21) 

Equations 5.20 and 5.21 give some information of the energy exchange between the 

particles behind the shock . 

b Position of the shock 

The position of the shock in the electron and neutral densities can be calculated with an 

empirica! expression given by [24], [25]: 

x [nA ] 112 ~ = 0.67· Poo (5.22) 

where xM is the location of the Mach-disk measured from the nozzle exit, d* is the 

effective sonic nozzle diameter, p0 the pressure at the nozzle exit and Pao the background 

pressure in the vessel. The Mach-disk farms the boundary between the adiabatic 

expansion and the shock. 

Equation 5.22 describes the location of the Mach-disk measured from the nozzle exit for 

a free expanding plasma. 

The shock wave theory treated in this chapter provides us with a basis to discuss the 

experimental results in chapter 6. 
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6 Experimental Results 

In this chapter we discuss the results obtained from the experiments. First a general 

introduetion is given in paragraph 6.1. Detection limits, accuracy and reproducibility of 

the scattering experiments are treated in paragraph 6.2, 6.3 and 6.4. The positions of the 

Thomson components of the measurements are considered in paragraph 6.5. Paragraph 

6.6 treats the distribution of the Chi Squares of all the fitted measurements. Systematic 

differences between fits and measurements are discussed in paragraph 6. 7. Finally 

measurements of the plasma parameters ne, n0 and Te on the plasma axis are presented 

and discussed in paragraph 6.8. 

6.1 General introduetion 

The Thomson-Rayleigh scattering measurements done in this work have to be corrected 

for stray light and calibrated before they are fitted by the developed fit program 

discussed in chapter 4. 

First each scattering measurement is accompanied with a vessel stray light 

measurement. This vessel stray light is subtracted from the scattering measurement. 

Second on the resulting spectrum a relative calibration is performed. 

In figure 6.1 the axial dependenee of the vessel stray light is depicted for the free 

expanding plasma. As can be seen in the figure the vessel stray light increases 

exponentially close to the nozzle exit due to scattering of the laser light on the nozzle. 

On higher axial positions (50 mm and higher) the vessel stray light is approximately 

constant (900 counts ). Clearly it is necessary to correct the scattering measurements for 

the vessel stray light. 
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The vessel stray light as a function of axial position forthefree expanding 

plasma. 

- the vessel stray light does not have the same shape as the Rayleigh calibration 

measurements. This because the stray light comes from every corner of the vessel 

while the Rayleigh signal comes only from the laser bundle; 

although the vessel stray light is very high close to the nozzle exit, we managed to 

perform scattering measurements as close as 2 mm from the nozzle exit. 

After this preparation the measurement is fitted with a model function consisting of 

a linear background; 

a convolution of a Gaussian, if necessary corrected for collective effects, and a 

measured apparatus profile. This component represents the Thomson component of 

a measurement; 

a scaled apparatus profile which represents the Rayleigh component of a 

measurement. 

The apparatus profile which is used in the model function is a Rayleigh scattering 

measurement on pure Argon gas, performed under the same conditions as the 

Thomson-Rayleigh scattering measurements. 
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6.2 neteetion limits 

Measurements of the neutral density n0 are limited by the amount of detected stray 

light. In our experiments the level of the vessel stray light is about 900 counts (see figure 

6.1). The statistica! error related to this level is 16 counts, which is much smaller than 

the reproducibility in the measured stray light (about 100 counts). Dust particles present 

in the low pressure vessel cause the difference between the statistica! error and 

reproducibility. The latter sets the lower limit to measure n0 • 

A reproducibility of 100 counts corresponds with an electron density of 9.8·1017 m-3 and 

a neutral density of 1.4·1020 m-3. Here the difference between electron and neutral 

density is the relation between the differential cross sections for Thomson and Rayleigh 

scattering given by equation 2.28. The level of 1.4 ·1020 m -3 with an accuracy of the same 

order makes it possible to measure neutral densities as low as 2 · 1020 m -3 with an 

accuracy of 50 %. With the same accuracy electron densities as low as 1.3·1018 m-3 can 

be measured. 

The second factor which limits the accuracy in the determination of n0 is the electron 

temperature, which is proportional to the square of the half one-over-e width of the 

Thomson component of a measured profile. With a constant electron density the higher 

the electron temperature the lower the contribution of the Thomson component to the 

total signal in the central channel. This lowers the statistica! error of the signal in the 

central channel and thus leadstoa higher accuracy in n0 • 

The lower limit in the determination of the electron temperature is determined by the 

half one-over-width of the measured apparatus profile. In our experiments this width is 

about 16 pixels which corresponds to an electron temperature of approximately 1000 K. 

6.3 Accuracy in the measurements 

The errors in the plasma parameters ne, n0 and Te can be divided in random and 

systematjc errors. 

The random error in the electron density is determined by: 

- shot noise in the signal (following Poisson statistics); 

- instrumental noise due to the laser and the detector(± 1 %); 
- reproducibility of the plasma conditions (± 1 %). 
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The systematic error in ne is determined by the relative and absolute calibrations. This 

error is approximately 2 %. 
Reproducibility of the plasma conditions is determined by: 

current through the cascaded are; 

- current drawn from the cascaded are to the end anode; 

- strength of the applied magnetic field; 

pressure in the vessel; 

argon gas flow through the cascaded are; 

cooling of the vessel; 

instahilities in the plasma. 

- x, y, z position in the plasma. 

For the neutral density the random error is determined by the same factors as for the 

electron density plus the accuracy in the vessel stray light signa!. This last factor is the 

most important one as the accuracy in the stray light is determined by the 

reproducibility in the stray light. The systematic error is the same as for the electron 

density. 

For the electron temperature the random error is determined by the accuracy in the 

width of the Thomson component of a measurement. The systematic error consistsof 

the relative calibration; 

the wavelength calibration (± 1 %); 
the analysis method. This means analysis withor without convolution procedures. 

The errors in ne, n0 and Te resulting from the fitting of the measurements with the 

model function described in paragraph 5.1 is of the same order as the sum of random and 

systematic errors here discussed. For ne the error is in the order of 1-4 % while the error 

in Te is in the order of 2-4 %. For neutral densities above 2·1020 m-3 the error is in the 

order of 10-20 %. 
As the electron density is proportional to the surface sum under the Thomson 

component it is an integrated parameter. See also paragraph 3.4. This makes it 

reasonable accurate. The electron temperature depends on the square of the half 

on~ver-e width of the Thomson component of a measurement and thus is not an 

integrated parameter. This explains why the error in Te is bigger than the error in ne. 

Finally, when in the analysis procedure of the measurements no collective effects are 

included an extra systematic error in ne, n0 and Te is introduced. The size of this error 

depends on the scattering parameter. For an idea of this error see sub paragraph 4.4.3. 
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6.4 Reproducibilities 

The reproducibility of the measurements is determined by the laser, detector and the 

reproducibility of the plasma conditions. In this paragraph we discuss first the 

calibration measurements. Second the reproducibility in the scattering measurements is 

treated. 

a Calibration measurements 

As the absolute calibrations depend strongly on the laser energy, they have to be 

performed far more often than relative calibrations. So here we investigate only the 

absolute calibration measurements. 

An absolute calibration is a Rayleigh scattering measurement on pure Argon gas under 

the same conditions as Thomson-Rayleigh scattering measurements. In paragraph 3.4.1 

the principle of an absolute calibration is explained. From equation 3.4 and 3.6 we see 

that these equations can be written as 

n _ Itha~ 
e - calibrationactorthom (6.1) 

and 

n 2 - Irayf 
0 + {3 ne - calibrationactorrayl (6.2) 

where Ithom and Irayl are the integrated signalof the Thomson respectively the Rayleigh 

component of a measured spectrum. The calibration factor of the Rayleigh component is 

1/143 times the Thomson calibration factor (equation 2.28). 

In the past the calibration factors depended strongly on the period of day on which the 

calibration measurements were performed. Before noon they were approximately 5 % 
higher and after noon approximately 5 % lower compared with the average calibration 

factor for one day. The cause of these differences is the laser energy stability and the 

energy distribution in the laser beam. After revision of the laser the variations in the 

calibration factors during one day are within 2 %. 
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As stated in chapter 3, an absolute calibration measurement is a measure of the 

apparatus profile. This apparatus profile is used in the fit procedure described in chapter 

4. So, in principle, each scattering measurement has to be accompanied with an absolute 

calibration measurement. From the practical point of view and from the measured 

reproducibility of 2 % in the absolute calibrations it is sufficient to perferm the absolute 

calibration once in two hours. 

b Scattering experiments 

The reproducibility of the scattering measurements is checked for all measurement series 

performed. Normally one measurement series is done in two or three days. To check the 

reproducibility a few measurements are repeated on different times and days. Some 

results are shown in table 6.1. 

lt appears, not only for the measurements shown in table 6.1, that the electron density 

ne and temperature Te reproduce within their uncertainties. As the neutral density n0 

depends on the level of the vessel stray light, the reproducibility for n0 is not so good. 

Table 6.1 Reproducibility of the measurements 

z (mm) measured on ne ( 1019 m -3) no (1020 m-3) Te(K) 

28 10-1 2.02 ± 0.10 4.8 ± 1.4 1824 ± 104 

11-1 2.28 ± 0.10 5.9 ± 1.4 1697 ± 75 

50 10-1 2.49 ± 0.10 2.5 ± 1.4 3013 ± 125 

11-1 2.53 ± 0.10 5.3 ± 1.4 3150 ± 130 

100 11-1 

12.20 u 3.25 ± 0.14 8.3 ± 1.4 2993 ± 123 

13.50 u 3.15 ± 0.15 6.6 ± 1.4 2803 ± 130 
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6.5 Position of the fitted Thomson components of the measurements 

In figure 6.2 for two conditions the position of the fitted Thomson components of the 

measurements is depicted versus the axial position. In figure 6.2a the results for the free 

expanding plasma are shown. In figure 6.2b the same condition as under 6.2a is depicted, 

now with a magnetic field applied. The picture is a little suggestive as at lower axial 

positions ( 4 - 60 mm) more measurements are performed compared to higher axial 

positions (60 - 500 mm). More measurements performed at higher axial positions would 

give the same spread in Thomson position as is seen for low axial positions. The spread 

in the Thomson position is probably a result of laser beam pointing instability and 

instability in the position of the lenses and mirrors of the detection opties during a day. 

For the laser beam pointing instability we have 0.5 mrad. With a distance of 1 meter 

from the center of the plasma jet to the entrance slit of the polychromator this can result 

in a deviation of the Thomson position of 0.5 mm which corresponds to 20 pixels. As can 

be seen in figure 6.2 the time integrated behavior is far more better than this maximum 

deviation of 20 pixels ( the measuring time is 1200 s). 
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From the data shown in the figure we can determine whether the Thomson position is 

distributed normally. For a normal distribution 68.3 % of the measured positions has to 

lie within u from the mean value; 95.5 % has to lie within 2u from the mean value. For 

the free expanding plasma the mean Thomson position is 533.29 pixels with a spread u of 

0.71 pixel. 68.8 %Lies within u and 96.9% within 2u from the mean value. 

The numbers for the free expanding plasma with a magnetic field applied are: mean 

value of 533.54 pixels with u = 0.44 pixel, 65.7 % lies with in u and 94.3 % with in 2u 

from the mean value. This justifies the condusion that the average position of the fitted 

Thomson componentsof the measurements is normally distributed. 

6.6 Distribution of the Chi Square fnnction 

The fitting methad for our experiments is explained and discussed in chapter 4. In this 

paragraph we examine the distribution of the Chi Squares of all the fitted measurements 

performed in this work. See also [26). 

The Chi Square is defined as (equation 4.1) 

(6.3) 

where y i is the measured signal, fi is the fitted signal, O'ï is the noise in the measured 

signal and N is the tot al amount of measured points. 

The frequency distribution of the Chi Square values falling in discrete intervals should 

be the theoretica! Chi Square distribution when: 

the error distri bution of the measurements is a normal distribution; 

- the applied calibrations are correct; 

- the used speetral density functions for the Thomson and Rayleigh components of 

the measurements are correct. 

The Chi Square distribution function is given by [27) 

2 (x2rn-ll/2 2 f(x ) = 2n 2r(n/2)' exp( -x /2) (6.4) 
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where n is the degrees of freedom, f(x2) the probability for a Chi Square value of x2 and 

r(n/2) is the Gamma function. The probability P of a Chi Square with a value between 

x2 - ll and x2 + ll is then 

(6.5) 

In figure 6.3 the distribution of Chi Squares is shown for the experiments and by using 

equation 6.5. The degrees of freedom n for the two distributions is equal to the amount 

of measured points minus the amount of parameters of the used model function for one 

fit. In our case n = 301 - 7 = 294. In both cases ll is taken 20. For the experimental 

distribution all the Chi Squares of our measurements (with the same degrees of freedom) 

were taken, in total 124. 

- experimental BI theoretica! 

55 175 295 415 535 655 775 895 1015 1135 
Chi Sq.Jare 

Figure 6.3 Theoreticaland experimental distribution ofthe Chi Squares. 
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The 124 Chi Squares are collected from measurements done under different conditions. 

The measurements are performed on a free expanding plasma, with or without a 

magnetic field applied and with or without a current in the plasma jet. So in total four 

conditions were measured. 

In figure 6.3 we see that there are more large Chi Square values then expected from the 

theoretica! distribution. The peak of the observed Chi Square distribution occurs not at 

x2 = 294, as is expected from the theoretica! distribution, but at x2 ~ 455. Also more 

lower Chi Square values are observed than expected. 

The observed differences between the theoretica! and experimental Chi Square 

distributions can be explained by: 

- relative calibrations. The four measured conditions were spread over half a year. 

Only before the first and last condition a relative calibration was performed. The 

first relative calibration was also used for the second and third condition. As a 

result a systematic deviation is introduced which increases the Chi Square values 

for the second and third condition. 

- stray light. Three conditions were measured with the same amount of vessel stray 

light. However the last measured condition was done with reduced stray light. This 

means that the Rayleigh component of the measurements is better determined for 

the last condition. Of course this reduces the Chi Square values for this condition. 

This condusion may explain why more lower Chi Square values are observed than 

theoretically expected. 

absolute calibration. In the model function of the fit program Rayleigh calibration 

measurements are used as apparatus profiles. One Rayleigh calibration is used for 

more than one measurement. This suggests that not always the correct apparatus 

profile is used in the fit program. This increases the Chi Square val u es. 

the measurements error may not be normally distributed. 

- deviations from a Maxwellian velocity distribution of the electrons. This means 

that the used speetral density functions are not completely correct. As a 

consequence the Chi Square values increase. 
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6. 7 Residue investigation 

From the fitted measurements the residues are investigated. The residue is defined as 

measurement minus fit. In figure 6.4 the summation over 31 residues is shown. The 

residues are calculated from fitted measurements done on an expanding plasma with a 

magnetic field applied and a current present in the plasma jet. The measurements were 

performed on different axial positions. 

300 

100 

-100 

-300 

-500 ~~--~--~~--~--~~--~--~~--~~ 

Figure 6.4 

400 500 600 700 

pixel number 

The summed residue of 31 measurements for an expanding plasma with a 

magnetic field applied and a current present in the plasma jet. 

Clearly the residue is not randomly distributed. We assume that the systematics in the 

residues can be explained by deviations from a Maxwellian velocity distribution function 

of the electrons. From the residues a current density j<l>= eilnev <I> is calculated, where 

~lle denotes the deviation from Maxwell 

(6.6) 
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where Pi is a pixel number, Peenter is the pixel position of the fitted Thomson component 

and y i is the signal (in coun ts) belonging to Pi. A shift of one pixel corresponds to a 

rotational velocity of approximately 1·104 mfs and 1000 counts correspond 

approximately to a density of 1·1019 m -3. So equation 6.6 gives the mean azimuthal 

current density. It should be noted that this calculation implies that the measurements 

are not performed exactly on the plasma axis. The current density calculated with 

equation 6.6 is now je!>~ 7.4·104 A/m2. This result is a factor 10 smaller than the 

azimuthal current density calculated by [9). We have to note however that nat all the 31 

used measurements have the same con tribution to the azimuthal current density. This 

means that the azimuthal current density should nat he calculated by dividing the total 

sum in equation 6.6 by 31 but by a smaller number. As a consequence je!> increases. 

Second the conditions in (9] were nat exactly the same (smaller nozzle, higher current 

and lower argon gas flow through the cascaded are and a stronger magnet ie field). 

6.8 Results of the scattering experiments 

Two measured Thomson-Rayleigh spectra are shown in figure 6.5. In figure 6.5a a 

spectrum measured at 60 mm from the expansion is depicted for the free expanding 

plasma. The plasma parameters corresponding to the measurement are: ne = (3.65 ± 

0.18)·1020 m-3, n0 = (3.2 ± 1.4)·1020 m-3 and Te = 3064 ± 43 K. The scattering 

parameter is 0.095 ± 0.004. The influence of an applied magnetic field and a current 

drawn from the cascaded are to the end anode is shown in figure 6.5b. Here the position 

is 90 mm from the expansion. The corresponding plasma parameters are: ne = ( 4. 72 ± 

0.20)·1019 m-3, n0 = (5.2 ± 1.4)·1020 m-3 and Te = 17112 ± 467 K. In this case the 

scattering parameter is 0.145 ± 0.005. 

Bath the least mean square fit and the components of the used fit function are given in 

the figure. The components of the fit function are: a Gaussian corrected for collective 

effects representing the Thomson component, a scaled apparatus profile representing the 

Rayleigh component and a linear background. The residue shownis 2 times magnified in 

figure 6.5a and 5 times magnified in figure 6.5b. 
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Figure 6.5 Two mèasured Thomson-Rayleigh spectra: (a) for the free expanding 

plasmaand {b) for the same condition as under (a), now with a magnetic 

field applied and a current in the plasma jet. 

The applied magnetic field and current in the plasma jet section in the second 

measurement explains the large difference in the calculated electron temperatures. 

The plasma parameters ne, n0 and Te calculated from the Thomson-Rayleigh 

measurements are shown in the figures 6.6-6.9 for 4 conditions: 

- Condition 1: free expanding plasma, shown in figure 6.6. 

- Condition 2: the same as condition 1, now with a current in the plasma jet. See 

figure 6.7. 

Condition 3: the same as condition 1, with a magnetic field applied. See figure 6.8. 

- Condition 4: the same as condition 1, with a magnetic field applied and a current 

in the plasma jet. This condition is shown in figure 6.9. 

The exact conditions are as indicated in the figure captions. All measurements are 

performed on the plasma axis. 
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Figure 6.6 
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Figure 6.8 
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From the figures 6.6, 6. 7 and 6. 9 we see that the measurements show not a normal 

shock, i.e. the position in the jump of the electron temperature Te occurs earlier than the 

jump in the electron density ne and neutral density n0 • This is an important fact which 

we explain in chapter 7 by means of current generation in the first part of the expansion. 

General structure of the axial dependencies of ne1 n0 and Te 

Figure 6.6, condition 1: 

The plasma expands in the vacuum vessel at low pressure: ne, n0 and Te decrease 

due to the expansion. 

In the electron temperature a jump occurs at z ~ 20 mm. The electron and neutral 

densities are still decreasing. The jump can be explained by current generation due 

to the strong pressure gradient in the first expansion part. This leads to Ohmic 

heating [6]. See for this point further in this chapter and chapter 7. 

At z ~ 40 mm a standing shock wave occurs in the electron and neutral densities. 

Behind the shock subsonic relaxation occurs. 

The neutral dtnsity is almast the same in the first three conditions (figures 6.6, 6. 7 and 

6.9). This implies that almast no ionization or recombination take place. 

By applying a current in the plasma jet ( condition 2) the electron temperature increases. 

In this case the increase is about 1000 K with a current in the plasma jet of 45 A.This is 

shown in figure 6. 7. The increase in Te is logical because a current in the plasma jet 

means Ohmic input. There are two visible differences in ne and n0 compared to condition 

1. First in the shock is the minimum in ne higher and the minimum in n0 lower. This is 

explained by campressing of the plasma in the shock. Second at high axial positions (300 

- 500 mm) is n0 lower compared to condition 1. See also the analytica! expressions for 

the axial dependenee of n0 given in Appendix A ( equations A.3 and A.6). The reason for 

the small decrease in n0 is the current in the plasma jet which leads to a higher 

ionization degree in the plasma (see page 72). 

By applying a magnetic field in the plasma jet ( condition 3) the plasma is pinched. Now 

electrans are closer to each other compared to condition 1 and 2 due to the pinching. 

This ipcreases the electron density and temperature. With a current in the plasma jet 

( condition 4) this effect is even larger. 
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From the figure and the analytica! expressions given in Appendix A ( equations A.3, A.6, 

A.9 and A.12) we see that for condition 4 the neutral density decreases in the expansion 

region faster than for the other conditions. In this region the neutral density decreases as 

a consequence of expansion plus ionization. 

The pinching is expressed by the Hall parameter which is equal to WeTee, with the 

cyclotron frequency We= eBz/me and Tee the electron - electron callision time (Tee ~ 

T ei, equation 5 .17). This leads to a condition for magnetization of the electrans in the 

plasma: 

( )
_1 2L lnAc __!!e._ 1 We Tee = Àee = 9.69. 1015' Te 3/2 < (6.7) 

where Pe is the electron cyclotron radius, Àee is the electron free path and lnAc the 

Coulomb logarithm. Under the influence of a magnetic field the electrans cover spiral 

trajectories. When Pe < Àee the electrans cover more spirals between two collisions and 

the electrans are magnetic confined. In this case we speak of pinching. In figure 6.10 

(weTee)-1 is depicted as function of the axial position for condition 3 and condition 4. The 

applied magnetic field is 0.2 T. From figure 6.10 the condusion is justified that the 

strength of the applied magnetic field is large enough to pinch the plasma. 
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Axial dependenee of the inverse Hall parameter; {a) for condition 3 

and {b} for condition 4. 
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A measure of the ionization in the plasma is given by the ionization degree, which is 

defined as 

(6.8) 

In figure 6.11 the ionization degree for the 4 conditions is shown. 

From the figure it can be seen that the ionization degree increases in the shock, due to 

the pinching of the plasma in the shock. 

Also is seen that the ionization degree increases when a current is present in the plasma 

jet. When a magnetic field is applied the ionization degree increases further, as expected. 

The overpopulation factor of the ground state is 

b - --.!!.1 
1- fits (6.9) 

where n1 ( = n0 ) is the density of the ground state and the Saha density n1s is given by 

the Saha equat.ion [22]: 

(6.10) 

where ni = ne (quasi neutrality) and the statistica! weights of the electrans ions and the 

ground state are ge = 2, gi = 6 respectively g1 = 1. The ionization energy 

E1+ = 2.524·10-18 J. 

The overpopulation factor is shown in figure 6.12. From this figure we see that the 

ground state is under populated (b1 < 1) for conditions 1, 2 and 3. Only condition 4 

shows an overpopulation of the ground state (b1 > 1). This means that condition 1, 2 

and 3 show a recombining plasmaand condition 4 shows an ionizing plasma. 
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In chapter 5 the equations of the free paths for momenturn and energy exchange between 

the electrons, ions and neutrals were given (equations 5.14 - 5.21). For condition 1 at 

the beginning of the shock (z ~ 40 mm) with ne = 1.3·1019 m-3, Te= 2600 K, lnAc = 

6.12, n0 = 2.0·1020 m-3 and Ti~ 2300 K equations 5.14- 5.16 become: 

Àei ~ 1.6·10-4 m 

Àii ~ 1.2·10-4 m 

Àio ~ 1.0·10-2 m 

So the following order is valid in the plasma: 

(6.11) 

(6.12) 

This means that the electron - ion and ion - ion momenturn exchange is very fast and 

takes place on a scale of 0.1 mm. The ion - neutral exchange is slower and takes place 

on a scale of 10 mm. So the ion -- reutral exchange determines the thickness of the 

shock. As Àio only depends on Th and n0 (equations 5.16 and 5.19) and because the 

neutral density is approximately the same for conditions 1, 2 and 3 the thickness of the 

shock remains constant for conditions 1, 2 and 3 (in condition 4 no shock occurs ). This is 

also seen in figures 6.6, 6. 7 and 6.8. 

The mean free path for energy exchange between electrans and ions is given by equation 

5.20. For the values of ne and Te given above this becomes 

(6.13) 

This means that on a plasma scale of 0.5 m there is not much energy exchange between 

the electrans and ions. The consequence is that the electron and heavy partiele 

temperatures remain different or are decoupled after the shock if they are different in 

front of the shock. Here we suggested that Ti ~ T0 ~ Th. This is a fair suggestion 

because the mean free path for energy exchange between ions and neutralsis the same as 

for momenturn exchange ( equation 5.21 ), i.e. in the order of 10 mm: 

(6.14) 



Experimental results 75 

This means that the energy exchange between the ions and neutralsis very fast. 

The magnitude of the jumps in the plasma parameters is determined by the 

Rankine-Hugoniot relations. These equations were given in chapter 5 ( equations 5.9 -

5.12) under the assumptions that wi = w0 = wh and Ti ~ T0 ~ Th (no magnetic field 

applied). 

In table 6.2 the Mach number M1 and the jumps in wh, p and Th calculated with the 

Rankine-Hugoniot relations are listed for condition 1 and 2. Point 1 is at z = 40 mm 

and point 2 is at z = 60 mm. 

Table 6.2 Results ofthe Rankine-Hugoniot relations for condition 1 and 2. 

Condition 1 Condition 2 

P2/P1 2.0 1.3 

Mt 1.7 1.2 

Wh2/wh1 0.5 0.8 

P2/P1 3.4 1.6 

T2/Tt 1.7 1.2 

From this table we see that the jump in the plasma parameters for condition 1 is larger 

then for condition 2. We return to this subject in chapter 7. 

The position of the shock in the electron and neutral densities can be calculated with 

equation 5.22. In our 4 measured conditions the background pressure Poo = 40 Pa and the 

effective nozzle diameter d* = 4.0 mm. The pressure at the nozzle exit is calculated from 

the pressure balance. Here it is assumed that the temperature of the electrons equals the 

temperature of the ions and neutrals and that ni = ne (quasi neutrality ). 

Values of the electron temperature, electron density and neutral density at the nozzle 

exit are obtained from an analytica! expression of the profile shown in figure 6.6. The 

analytica! expressions are given in Appendix A ( equations A.1 - A.3). The pressure 

balance then reads 

(6.15) 
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The pressure Po can also he calculated from the sonic flow at the nozzle exit. 

For condition 1, the free expanding plasma, p0 ~ 1.1·104 Pa. According to this pressure 

the location of the Mach-disk is at xM ~ 43 mm. This result is in good agreement with 

the location determined from the experiments: 40 mm. The little difference between the 

calculated and observed location is explained by the large gradients in the temperature 

and density profiles close to the nozzle. Therefore the extrapolated values to the position 

of the nozzle exit are rough estimations. 

We discussed already that for a normal shock the jumps in Te and the jump in the 

densities ne and n0 occur at the same position. However in our measurements we see a 

significant difference in the position of the jump in Te compared to the jump in ne and 

n0 • This is also measured by ref. [6]. The explanation according to ref. [6] is current 

generation due to the strong pressure gradient in the first expansion zone. This strong 

pressure gradient is illustrated when we compare the pressure at the nozzle exit with the 

pressure at the beginning of the shock. We saw already that at z = 0 mm p ~ 11400 Pa. 

At the beginning of the shock (z ~ 40 mm) p ~ 7 Pa where the pressure is calculated 

using the pressure balance p = EnxkbTx with the subscript x for electrons, ions and 

neutrals and ne = . Thus in the first expansion zone (0 - 40 mm) we see a decrease in 

the pressure of almost three orders. 

In the next chapter we try to calculate the current density from the electron energy 

balance to check the explanation given by ref. [6]. 
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7 Calculation of the current density 

7.1 Introduetion 

In chapter 6 we saw that the position of the JUmp in the electron temperature occurs 

closer to the nozzle exit than the jump in the electron and neutral density. As we 

already discussed in chapter 1 and 6, the literature does not give an adequate answer to 

this phenomenon. A possible explanation of the different positions in the Te jump and 

the jump in the electron and neutral densities is given by [6]: current generation due to 

the strong pressure gradient in the first section of the expansion. The generated current 

then heats the electrans through Ohmic dissipation. 

The purpose of this chapter is to check the explanation for the difference in positions of 

the jumps proposed above for one measured condition. We do this forthefree expanding 

plasma by calculating the current density on the axis of the plasma jet. In all cases the 

plasma is considered to be stationary. 

The current density is given by 

(7.1) 

where j is the current density and we,h is the drift velocity of the electrons respectively 

the heavy particles (neutra! atoms and ions). 

From equation 7.1 we see that We,i has to be calculated first to determine j. In 

paragraph 7.2 a model is presented to calculate j with the help of a simplified electron 

energy balance. In the electron energy balance two other unknown plasma parameters 

are present, namely the heavy partiele velocity and the heavy partiele temperature. A 

possible way to calculate these two parameters is shortly considered in paragraph 7.3. 

The following assumptions are made (see also chapter 5): 

the energy coupling between the ions and neutralsis strong: Ti = T0 = Th; 

- a large friction between the ions and neutrals exists: wi = w0 = wh· 
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7.2 The Electron Energy Balance 

The energy balance for the electrans reads for a stationary plasma [28] 

(7.2) 

where ne, We and Te are the density, velocity and temperature of the electrons. kb Is the 

Boltzmann constant, I1e is the viscosity tensor, qe is the thr.rmal heat flux of the 

electrans and qe is the souree term for the electrons. Ile:Vwe represents the viseaus 

dissipation, V·~ the heat conduction and qe all other energy supplied to the electrans 

by collisions withother particles. qe consists of several terms, in genera!: 

(7.3) 

where: 

Qeh e represents the elastic energy exchange with the ions and the neutrals; 

Q3de is the energy loss due to collisional excitationfdeexcitation and 

ionization/three-particle recombination (energy loss term); 

Qrbe represents the radiative recombination (energy loss term); 

Qrre represents the brehmstrahlung ( energy loss term); 

Qohme represents the Ohmic heating of the electrans (energy gain term). 

The calculation of all souree terms is shown in Appendix B. Of these terms Q3de, Qrbe 

and Qrre are small compared to Qehe and Qohme· So the most important terms are [28], 

[29]: 

Q he= -3·!!!.e.n - 1-kb(T -Th) ~ Q .e = e mh ereh e el 

(7.4) 

where 1 - 1- + 1 with rei from equation 5.17 and Teo 
Teh Tei Teo 

according to [22]. 

5. 7 ·1014 /no Te 3/10 
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(7.5) 

where TJ = n ~'2 . is the resistivity of the plasma. 
e Te1 

In equation 7.2 now all the terms are known, so in principle the electron velocity on the 

plasma axis, Wez can be calculated. 

In our model, consisting of the electron energy balance we suppose that: 

- only the Ohmic heating is important. This is reasanabie when 

10-3• (we- Wï) 2 ) (Te- Th)· 

- the heat conduction and the viseaus dissipation can be neglected; 

- We) wb which means that the current is carried by the electrons: j ~-ene we· 

The mass balance for the electrans reads with the assumption that recombination is of 

no account: 

(7.6) 

Substitution of equation 7.5 and 7.6 in equation 7.2 gives an expression for the current 

density on the plasma axis: 

. _ T 3
1

2 [kb Te iJn 3kb 8Te] 
Jz- 128. 83·lnAc ene Bz- 2e oz (7.7) 

We do not use Ohms law to calculate jz because then we need to know the value of the 

electric field. When jz is known From the electron momenturn balance the generated 

electric field can be calculated [9]: 

(7.8) 

In the right hand si de of equation 7. 7 all the variables are known. The derivatives of ne 

and Te with respect to z are calculated from the analytica! expressions for lle and Te for 

the free expanding plasma given in Appendix A (condition 1). The current density jz 

calculated with equation 7. 7 is shown in figure 7 .1. The generated electric field is shown 

in figure 7.2. 
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Close to the nozzle exit the current density should be zero. The current density at z = 0 

mm visible in figure 7.1 is explained from the form of the analytica! expressions for Te 

and ne given in Appendix A. The current density is generated by the exponents and the 

decay of the exponents covering the first expansion region. The decay in the exponents 

does not take into account that at z = 0 mm the gradients in Te and ne should be 

smaller than calculated from equations (A.1) and (A.3) which would leadtoa negligible 

current density. The dashed curve in figure 7.1 represents the current density close to 

the nozzle exit the way it should be. 

In the picture we see current densities varying from- 1.5·103 A/m2 to 2.0·103 A/m2. 

The positive and negative current densities can be explained by convective cells. This is 

demonstrated in figure 7.3. 

J: :n: 

00 ------------
CJO 

Figure 7.2 Convective cells round about the plasma axis. 

The convective cells denoted with I account for the positive current density in figure 7.1. 

The convective cells denoted with 11 represent the negative current density in figure 7.1. 

From jz = -€neWez electron veloeities of 101 to 103 m/s are calculated. Clearly these are 

too small to neglect Wïz· 

We have to draw the following conclusion: the shape of the current density calculated 

with the simplified electron energy balance looks reasonable. Because the calculated 

electron veloeities are small, however, it is not sufficient to assume that We » wh. This 

means that also the heavy partiele velocity has to be determined to calculate the current 

density. This implies also that the heavy partiele temperature has to be calculated. 

In the next paragraph we discuss a possible methad to calculate wh and Th. 
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7.3 A method to determine the current density more accurate 

In chapter 5 the conservation equations when crossing the shock, the Rankine-Hugoniot 

relations (equation 5.9 - 5.12) were given. We saw that the jump in the plasma 

parameters when crossing the shock is completely determined by the Mach number M1 

before the shock. 

From equation 5.9 M1 can be calculated because p is known in front of and behind the 

shock. Then wh 1 can be calculated from M1 = whtfc1 and wh2 from equation 5.10. 

The heavy partiele temperature behind the shock is determined from the pressure 

balance, with the pressure equal to the background pressure: 

P = L nxkb T x = Pbackground = 40 Pa (7.9) 

where the subscript x denotes electrons, ions or neutrals. Then with equation 5.12 the 

heavy partiele temperature before the shock can be calculated. 

The heavy partiele temperature 011 different axial positions from z= 0 mm to the 

beginning of the shock can be calculated from the relation for adiabatic expansion: 

~=constant (7.10) 

where 'Y = 5/3. Notice that this equation also follows from the electron energy balance 

(equation 7.2) with Qe negligible on the first zone of the expansion (0- 20 mm) and the 

assumption of no viscous dissipation and heat conduction. 

The heavy partiele velocity is calculated from [17]: 

(7.11) 

where c0 is the velocity of sound (from equation 5.8) and Po and Po the pressure 

respectively mass density on z = 0. Equation 7.10 is valid only for adiabatic expansion, 

i.e. when equation 7.10 is valid. 

The heavy partiele velocity before the shock is determined by the total momenturn 

balance. On the plasma axis this reduces to: 

(7.12) 
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where p = E nxkbTx, with the subscript x for electrons, ions or neutrals. Equation 7.11 

gives for the heavy partiele velocity 

(7.13) 

Conclusion: the combination of the electron energy balance ( equation 7.2), the equations 

for adiabatic expansion (equations 7.10 and 7.11), the total momenturn balance 

(equation 7.13) and the Rankine-Hugoniot relations gives a means to calculate wh, Th, 

We and from these values j on the axis of the plasma. 
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8 Conclusions and suggestions 

A fit program has been developed to determine the electron density ne, electron 

temperature Te and neutral density n0 more accurate than in the past. The following 

conclusions are drawn 

By means of convolution procedures the accuracy in the calculated plasma 

parameters is increased. 

Corrections for collective effects are introduced. It is proved that even for small 

scattering parameters (a~ 0.2) correction is necessary. 

From the conclusions given above the best model function used in the fit program 

consists of a linear background plus a Gaussian, if necessary corrected for collective 

effects, convoluted with a measured apparatus profile plus a scaled apparatus 

profile. The first component reflects the background of a scattering measurement 

(not the same for all measurements), the second component represents the 

Thomson component of a scattering measurement and the third component 

represents the Rayleigh component of a scattering measurement. The reached 

accuracies are for ne 1-4 %, for Te 2-4% and for n0 10- 20 %. 

Measurements on shock wave phenomena are performed. From the measurements we can 

draw the following conclusions: 

The position of the jump in the electron temperature differs from the position of 

the jumps in the electron and neutral densities in contrast with a normal shock. 

An explanation is given by current generation due to the strong pressure gradient 

in the first part of the expansion. The current density is calculated using the 

electron energy balance. The calculated current densities are in the order of 

-1.5·103 Afm2 to 2.0·103 A/m2 and can be explained by convective cells around 

the plasma axis. 
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The electron veloeities calculated from the current density are too small to neglect 

the heavy partiele veloeities in the electron energy balance. A methad is given to 

calculate correctly the heavy partiele velocity and temperature and the electron 

velocity on the axis of the plasma. From these valnes the current density can then 

be calculated. 

Suggestions: 

We gave a methad to calculate the current density more correctly than was done in 

this work. It is interesting to use this methad in practice and deepen it. 

The possibilities are present in the cascaded are set up to use Fabry-Perot 

interferometry. This is a diagnostic which measures the neutral and ion 

temperatures and the axial and azimuthal ion velocities. Tagether with 

Thomson-Rayleigh scattering this means that all the plasma parameters necessary 

for the calculation of the current density are experimentally determined. 

Tagether with Fabry-Perot interferometry Thomson-Rayleigh scattering 

measurements give the possibility to campare the experimental determined current 

density with the current density calculated with the model discussed above. 

The accuracy in the neutral density strongly depends on the vessel stray light. 

Therefore rednetion of the vessel stray light is necessary to reach a better accuracy 

in the neutral density. At the moment this is done by using anti-reflection coated 

windows and a langer tube for the laser dump. The level of the vessel stray light 

decreases to approximately 200 counts, which means an impravement of a factor 4. 
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Appendix A 

As stated before Thomson-Rayleigh scattering measurements were performed on 4 

conditions: 

- condition 1: a free expanding plasma; 

- condition 2: the same as condition 1, now with a current in the plasma jet; 

- condition 3: the same as condition 1, with a magnetic field applied; 

- condition 4: the same as condition 1, now with a magnetic field applied and a 

current in the plasma jet. 

All measurements were performed on the axis of the plasma jet. In this appendix the 

analytica! expressions for ne, n0 and Te derived from the measurements are given. 

In these expressions is z the axial position in mm. 

Condition 1 

Te(z) = 8000·exp(- 1 ~] + 3200·exp(- 7~0]- 3100·exp[- (3~rJ + 

(A.1) 

(A.2) 

(A.3) 

Condition 2 

Te( z) = 6000 · exp [- 1 ~] + 4200 · exp [- 8~0] - 3000 · exp [- [ 3~] 
5
] + 

[ [
z - 55] 2] + 450·exp - 20 

(A.4) 
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(A.5) 

(A.6) 

Condition 3 

(A.7) 

[ 
(z - 55)2] + 4·1019.exp - 140 (A.8) 

(A.9) 

Condition 4 

(A.lO) 

(A.ll) 

-2·1011 ·z (A.12) 
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AppendixB 

The energy balance for the electrans reads for a stationary plasma [28] 

(A.13) 

where 1\:Vwe represents the viseaus dissipation, V· 'le the heat conduction and qe all 

other energy supplied to the electrans by collisions with other particles. 

In this appendix expressions are given for the heat conduction, viseaus dissipation and 

all the souree terms occurring in the electron energy balance (equation A.l3). 

Heat conduction 

The thermal heat flux 'le is [28] 

- - 1.82. w-1oT 5/2VT 
'le- lnA e e c 

(A.14) 

From this the heat conduction is 

V. n_ - - 1.82. w-1o [T 512V2T + QT 312(VT )2] 
'te - 1 nA e e 2 e e c 

(A.15) 

On the plasma axis this becomes: 

V. = _1.82. w-
10 

[T 5/2~2Te + QT 3/2[ ~Te] 1 'le lnA e z 2 e z c 
(A.16) 

Viscous dissipation 

The viseaus dissipation becomes on the plasma axis [28] 

n. - 3.72·1Q-18Te5/2 2[än )2 
•ae-Vwe-- n 2lnA Wez Bz 

e c 
(A.17) 
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Souree terms 

(A.18) 

where: 

Qeh e represents the elastic energy exchange with the i ons and the neutrals; 

Q3de is the energy loss due to collisional excitationjdeexcitation and 

ionization/ three-particle recombination ( energy loss term); 

Qrb e represents the radiative recombination ( energy loss term); 

Qffe represents the brehmstrahlung ( energy loss term); 

Qohme represents the Ohmic heating of the electrans (energy gain term). 

a Elastic collisions with ions and neutrals 

(A.19) 

Q e = -3. !!!e.n - 1-kb(T - T ) ea m er e o o eo 

(A.20) 

where lnAc is the Coulomb logarithm, rei and Teo are the relaxation times for 

momenturn transfer between electrans and ions respectively electrans and neutrals; rei is 

given by equation 5.17 and Teo is [22] 

5. 7 ·1014 
Teo = n T 3/lo 

o e 

b Inelastic processes 

(A.21) 

(A.22) 
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where K1+ is the collision coefficient, E1+ = 2.524·10-18 J the excitation energy of the 

ground state and ób1 = ntfn 15 - 1 the overpopulation of the ground state. 

(A.23) 

where n+ = ne and A+1 = neK+1<2J the radiative transition probability with K+1<
2l the 

radiative collision coefficient. 

where TJ = ~~ is the resistivity of the plasma. 
ne Tei 

(A.24) 

(A.25) 


