
 Eindhoven University of Technology

MASTER

A new graphics interface for the ARCS antenna- and RCS-measurement system

Geraets, A.G.

Award date:
1991

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ba21c82c-b9f0-4ae3-a842-22ee1f97e85f

t~
EINDHOVEN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING
Digital Systems Group

ANew Graphics Interface
for the .ARCS

Antenna- and RCS
Measurement Systen1

A.G. Geraets

C 0 ;,j'"t'1

5c?2b

11aster's Thesis

Supervisor: Prof. ir. 1v1.P.J. Stevens
Coach: Dr. ir. V.J. Vokurka
Date: january 1991 - october 1991

The department of Electrical Engineering of the Eindhoven University of Technology does
not accept any responsibility regarding the contents of graduation reports.

Abstract

This is a report about my graduation project carried out at the Eindhoven
University of Technology. It handles about the redesign of the graphics part
of the ARCS antenna- and RCS-measurement software package.

With this new software it is possible to graphically display data-files in many
ways: 2D cartesian, polar, 3D cartesian, contour, etc. Other features include
support of markers (interactive placable) and sup~ort of various output de
viced (plotters, printers and the XU display).

The program is an OSF/lVlotif application and makes use of many features
of the X \Vindowing System and the OSF/Motif \Vindowing Toolkit.

Although the application is designed after specifications of the antenna- and
RCS-measurement system, it should be usable for many other applications
too.

Acknowledgements

I wish to thank the following persons:

• My coach dr. Vokurka for making this graduation project possible and
his support during the project.

• Professor Stevens for his support during my graduation project.
• Paul Derks for finding bugs when I couldn't find them, and the con

versation resulting in many new ideas.
• Bert Schluper of March Microwave Systems B.V. for the many conver

sations and advice and support.
• Tony Richardson for writing plplot.
• Sergey Oboguev for giving me the solution to an irritating problem

with the XU color support.
• Many other persons on the internet answering questions in the

comp.windows.x and comp.windows.motif newsgroups.

III

Contents

1 Introduction
1.1 Antenna and Radar Cross Section measurements
1.2 ARCS Software package

1.2.1 Acquisition ...
1.2.2 Data analysis . .
1.2.3 Display software

2 Specification
2.1 Introduction .
2.2 Necessary functionality .

2.2.1 Opera.ting modes.
2.2.2 Supported output devices
2.2.3 Concurrency..
2.2.4 History of settings
2.2.5 Intera.ctive placable markers.
2.2.6 Device independency.
2.2.7 Plot types.

3 Implementation
3.1 Introduction
3.2 Concurrency.....
3.3 Application structure
3.4 User interface ..
3.5 Processing ...
3.6 Graphics library

4 Database for graphics application.
4.1 Introduction .
4.2 Description of the data in the database

4.2.1 Axis
4.2.2 Line types .
4.2.3 General..........

4.3 Description of the per plot data.
4.3.1 Single 2D cartesian graph

v

1
1
2
2
3
4

5
5
5
5
6
6
6
7
7
7

13
13
13
14
14
15
15

17
17
17
17
18
18
20
20

VI CONTENTS

4.3.2 Single 2D polar graph 20
4.3.3 Single 2D polar graph with "hole" 21
4.3.4 Double 2D cartesian graph vertically split 21
4.3.5 Double 2D cartesian graph horizontally split 21
4.3.6 Double 2D polar graph horizontally split. . . 21
4.3.7 2D cartesian and 2D polar graph horizontally split 22
4.3.8 3D cartesian graph 22
4.3.9 Contour graph without margin graphs 23
4.3.10 Contour graph with margin graphs 23
4.3.11 Polar contour plot 23
4.3.12 Polar contour plot with "hole" 23

4.4 Some random considerations 24

5 Implementation of markers 25
5.1 Introduction....... 25
5.2 Types of markers 25
5.3 Marker placement modes 26
5.4 Visual placement of markers 26
5.5 Positioning.... 27
5.6 Marker placement 28
5.7 !\1arker removal. . :30
5.8 Implementation.. 32

5.8.1 XlllocatorO 32
5.8.2 Xl1setmarkerO 33

6 Font Support 35
6.1 Introduction............... 35
6.2 The Hershey Font Set 36
6.3 The advantages of the Hershey font set 36
6.4 New position of the font support routines 37
6.5 Interface routines. 37

6.5.1 hershey..get..font..nameO 38
6.5.2 hershey_parse-string 0 38
6.5.3 hershey_draw_stringO. 39
6.5.4 hershey..free_stringO. 40

6.6 The internal workings 40
6.6.1 The hershey character and glyph data structures 40
6.6.2 The HersheyString data structure. 43

7 Styles 45
7.1 Introduction..... 45
7.2 The concept of styles. 45
7.3 Contents of a style. . 46

CONTENTS

7.4 Interface functions .
7.4.1 The StyleValues structure
7.4.2 dev_selectstyleO
7.4.3 dev_setstyleO
7.4.4 dev-@;etstyleO

8 The device drivers
8.1 Introduction .
8.2 The original device driver programming interface

8.2.1 Removed device driver interface functions
8.3 Extending the use of device capabilities
8.4 Overview of a.dded device driver interface functions

9 Description of the XII device driver
9.1 Introduction .
9.2 Refresh and resize .
9.3 Markers and device input

9.3.1 Device input

10 User Interface
10.1 Introduction .

10.1.1 XlI environment setup

11 Conclusions
11.1 X11 and OSFJMotif programming
11.2 Status of the project .

Bibliography

A Contour Literature
A.1 Introduction ..
A.2 Contour literature list

VII

46
46
47
48
48

49
49
49
51
51
52

53
53
53
54
54

57
57
57

59
59
59

61

63
63
63

Chapter 1

Introduction

This report describes the design of new graphics interface for the ARCS soft
ware package carried out as graduate work my study information technology.
The ARCS software is used heavily in the antenna laboratory of the Theo
retical Electrotechnology Group of the Eindhoven University of Technology.
However, one problem was the aging of the software as it was designed about
five years ago and the continuous modifications made a rewrite from scratch
of great parts necessary.

1.1 Antenna and Radar Cross Section measurements

Antenna's are used for information transmission thourgh a space. Before an
antenna can be used we generally want to know its behaviour. Therefore
we want to measure this behaviour. This can be done by measuring the
signal -sent by the antenna we want to measure- picked up by an antenna
with known characteristics which is (and visa versa), provided that it is
measured in an environment with known characteristics (e.g. positions of the
two antenna's and influence of signal reflecting/absorbing objects).

Because most antenna's are designed for relative great distances, measure
ment should also be carried out with a great distance between the two an
tenna's, to ensure the same shape of incoming/outgoing wave-front (flat),
in both real-world applications and measure-system. However this has some
disadvantages:

• Much space is needed for the measurement.
• The environmental influence on the measurent is difficult to measure.

The Compact Antenna Test Range (CATR) is often used to overcome these
problems. In a CATR, the so called far-field characteristics are simulated
with parabolic reflectors (these create a flat wave-front from a point-source).
Figure 1.1 shows the layout of such a CATR.

1

2 1. Introduction

1: Antenna (two for RCS
-measurements)

2: 1at reflector

3: 2nd reflector

4: Antenna or object

5: Absorbing walls

5 1

Figure 1.1: Compact Antenna Test Range

With Radar Cross Section (RCS) measurements, we measure the reflections
of the objects to be measured. From these measurements we can calculate
an image of the object, in which we can see the radar reflecting parts of the
object.

1.2 ARCS Software package

ACRS (Antenna and Radar Cross Section measurement system) is an inte
grated software package for antenna and/or RCS measurements. The package
includes:

• data acquisition
• data processing and analysis
• graphic data representation

1.2.1 Acquisition

The data acquisition program controls the RF system and the positioner
controller to perform measurements of RCS or power vs. frequency and/or
angle. Time-domain operations (range transforms and software gating) can
be performed on all measurement types, either in the receiver hardware or in
the computer. Computer time-domain transformations are performed concur
rently with the measurement, making gated measurements as fast as ungated
measurements.

Antenna measurement types are:

• Power "s. frequency and distance.
• Power vs. angle.

1. Introduction 3

• Antenna calibration (absolute gain or normalization).

Power vs. angel measurements record the antenna response vs. frequency
while moving the antenna in a sector or raster scan. The slew axis allows mea
surements with continuously rotating polarization. A real-time plot diplays
the measured signals during the measurement.

Power vs. frequency and distance measurements recore the antenna response
vs. frequency, and the (optionally) perform software gating and time-domain
transformations.

RCS measurement types are:

• RCS vs. frequency and down-range.
• RCS vs. angle.
• RCS imaging.
• RCS calibration (absolute RCS or normalization).

RCS vs. angle measurements record the target response vs. frequency while
moving the target in a sector or raster scan.

RCS imaging measurements are similar to RCS vs. angle measurements. The
acquisition parameters (angle step, angle span and number of frequencies)
are derived from the imaging parameters (cross-range cell-size and target
size).

RCS vs. frequency and down-range measurements record the response vs.
frequency, and then (optionally) perform software gating and time-domain
transformations.

Once an antenna or ReS calibration set is available, all subsequent mea
surements are automatically calibrated. Alternatively, uncalibrated measure
ments can be done. which can than be calibrated afterwards.

1.2.2 Data analysis

The ARCS software package includes several data analysis programs, which
can be used for both RCS measurements and antenna measurements. These
inlcude:

IMAGE performs ISAR imaging on data acquired vs. frequency and aspect
angle using various ,.,'indow functions and resolutions.

IMGATE allows modification of image data and then transforms to the
frequency and angle domain. Parts of the image can be removed or
isolated, and the resulting RCS is calculated. Furthermore the inten
sity of individual scatterers can be increased or reduced by a specified
number of dB's. Various gate shapes are available.

4 1. Introduction

TIME and GATE are programs that perform I-dimensional time-domain
transformations and gating, respectively, on data vs. frequency and
aspect angle.

FILMATH is a file mathematics program that allows adding, subtracting,
dividing and multiplying data files.

FILCOM combines 2 data files with overlapping frequency bands into 1 file,
for high resolution imaging.

SMOOTH is a program for data smoothing. It supports various averaging
methods.

THINOUT is a program for data reduction. It creates a subset from a large
dataset.

Furthermore. for RCS measurements, simulation programs are included that
calculate the RCS of targets consisting of points scatterers.

For radiation pattern analysis, a program is included to calculate gain,
beamwidth, sidelobe levels and positions, and null levels and positions.

1.2.3 Display software

The original display software consists of two programs -MENU2D and
MENU3D- which can display any I-D or 2-D cut from a data-file. Two
independent channels are a\'ailable for overlaying seperate data-sets (from
the same file or from different files).

Plot types supported by MENU2D are: cartesian, polar, horizontal split.
vertical split, and polar & cartesian combinations.

Plot types supported by MENU3D are: 3-D (\\'aterfall, isometric and dimetric
projections), contour (with or without margin plots) and polar contour.

The programs support a number of marker to mark interesting points in
the plots. The position of the marker can be diplayed absolute or relative
to another (reference) marker. Other marker functions are absolute maxi
mum/minimun and local maximum/minimum search.

Chapter 2

Specification

2.1 Introduction

The purpose of the graphics application is twofold:

• show data, produced by the ARCS antenna and RCS measurement
system, graphically,

• make some kinds of data input easier.

Graphics support is needed in the following applications:

stand alone graphics application
Mainly for graphics representation.

IMAGE
Graphics presentation and to specify several input values.

IMGATE
Graphics presentation and to specify a surface to be gated.

Because graphics functionality is needed in more than one program, it should
be modular, to make it easy to include in a program as a module.

2.2 Necessary functionality

The list of necessary functionality is determined from various sources:

• The current ARCS software.
• Conversation with users.
• The competitors.

The results follow.

2.2.1 Operating modes

Ideally the application must be able to be driven in a number of ways:

5

6 2. Specification

Graphical user interface (GUI)
The user can modify the settings of various parameters by (for exam
pIe) pointing and clicking with the mouse.

Batch-mode
If a batch of plots has to be made in the same way, its convenient to be
able to describe in a file what must be done to generate this output.
For this mode we need a description language to describe the settings,
to enable the user to modify them himself. (Of course there also must
be a possibility to capture the operations done interactively with the
GUI).

Command line interpreter (CLI)
Because we have a command language available (as a result of the
batch-mode), we can also use it for interactive input via a command
line interpreter1.

2.2.2 Supported output devices

The graphics application must be able to generate output for a range of
output-devices. The most important are:

• XlI display
• HPGL plotter (possibly different types)

• Laser-printer (HP-Laserjet; PostScript)

2.2.3 Concurrency

It must be possible to driver the output devices concurrently, i.e. if we started
a plot to a plotter, we must be able to continue working on the XlI display.

2.2.4 History of settings

Because the ARCS software is mainly used within laboratory environments,
it should be easy to change various settings of a graph. Also, it should be
easy to recall previous settings (e.g. if a the change did not result in the
desired effect). Furthermore it should be easy to select a number of default
(often used) values.

To hold this history of settings, some kind of a database is needed, which of
course, can also hold the current setting.

1. If life is a menu driven universe, how can we escape to a command line interpreter?

2. Specification

2.2.5 Interactive placable markers

7

The user must be able to place indicators (markers) at points of interrest
and, if necessary, get the values of those points. On interactive devices this
placement should also be interactive.

2.2.6 Device independency

The graph to be produced must be as independent of the output device as
possible, i.e. it should not be necessary to change many parameters in order
to display a graph on another device.

2.2.7 Plot types

The user must be able to represent some data in many ways. Therefore the
application should support various plot types. The next sections describe the
plot types that should be supported.

2D cartesian graph

The 2D cartesian graph is the most simple graph of all. Figure 2.1 show an
example of such graph. Many variations with the axes are possible, such as
for example a logarithmic distribution.

2D polar graph

A polar graph is often used if one of the axes represents an angle. Figure 2.2
show an example of a 2D polar graph.

2D polar graph with hole

If we want to show data of a ReS-measurement in a polar graph, we some
times want to make clear the connection between the shape of the object and
the measerement data. With a 2D polar graph with a hole, we are able to
do this by projecting the shape of the object in the hole, as can be seen in
figure 2.3.

3D cartesia,n graph

A 3D cartesian graph is often used to display a parameter as a function of
two variables. There are various methods to display this:

• waterfall

8 2. Specification

eo10-so 0 so
DEGREES

• • ~ · •
• • · •
• • · ·• • • • •
• · • • ·· • • • •·.. -.- p ••••

• · • · ·• · • • ·· • • • ·· • • • ·• • · · •· • · · •- · • • -I- •.•• - · p •••

• • · · ·· · · · ·• · • · ·
....L.. n. · i\ ·· •

• •. · .~
• • · ·• • · ·· · · • ·
(\ • • · ~· • ·• · ·· ·>.

"
• • · n• · ·· · · ·· · · · ·· · · · ·· • • • •I · · · · ·-25

-80

o

-20

Figure 2.1: Example of a 2D cartesian graph.

o ~o

•
-to 0

dB

Figure 2.2: Example of a 2D polar graph.

2. Specifica.tion

Figure 2.3: Example of a 2D polar graph with hole.

9

• dimetric
• isometric
• perspective

The perspective view is not very usefull for our application, because no values
can be measured from such a graph. Figure 2.4 shows one of the other 3D
representations. In the figure you can also see an object projected above the
graph to illustrate the source of the responses in the graph.

Contour graph

Another way to represent 3 dimensional data is with a contour graph, which
displays height lines. Figure 2.5 shows an examples of such a contour graph,
again with an object projected in the graph.

Contour graph with margin graphs

In a contour graph it is sometimes difficult to imagine the exact "heights".
Therefore it must be possible to place margin graphs along the sides of a
contour graph. These margin graphs can display a slice through the contour,
of for examples the maxima in one direction. Figure 2.6 showns an example.

10 2. Specification

~enz
w

~

/ / / / / / / /

-10 0
CROSS RANGE (FEET)

/ / / - -10
+10

_ +10

RANGE (FEET)

Figure 2.4: Example of a 3D cartesian graph.

.~

.3
D ('l

(dBs.)log Mag.....
.2 Max: -32.3236E

-35.00

liJ .1 --------- -~O.OO
(!) --- -~5.00

Z O. _.- -SO.OO
<{

--------- -55.00[[
I -.1
Z
~

0 -.2
D n

-.3
c.:,;

-.~
-.~

Figure 2.5: Examples of a contour graph with projected object.

2. Specification 11

(
)

(
........
,.)-
-

V

?
10 ,10

73 .. 5 8
AZIMUTH ANGLE

2o

I h f\ Jlr ,fl n

10

~ 20 "--=-I"::::::"~~~~~~*,,~....IQI~~~t

z
4(

~ 15

~
>
~ 10 4.:;;;~-J.-::>.,...,~+:...::o,.l.:-\-:...~-\J"1-\ \--\!iI"t-l

o
30 ~~E====j~~~~~iFm:=Rm

10

Figure 2.6: Contour graph with margin graphs

Polar contour graph

The polar contour graph is a combination of a polar graph and a contour
graph (figures 2.2 and 2.5).

Polar contour graph with hole

The polar contour graph with hole is a combination of a polar graph with
hole and a contour graph (figures 2.3 and 2.5).

Chapter 3

Implementation

3.1 Introduction

In the previous chapter a specification of the graphics application was given.
So the only thing which has to be done is to implement it.

For the moment we will drop the batch mode operation and the implemen
tation of a command line interpreter. \Ve will see later, that once we have a
working graphical user interface working on top of XlI, implementation of
these two operating modes is rather simple.

Because writing an X-application calls for a programming method called
event driven programming, most part of the application will already written
in such way, that we can easily implement commands for each single action.
\Vriting a command parser will take most part of the implementation of a
command line interpreter. To implement the batch mode, we must find a way
to automatically generate commands.

3.2 Concurrency

One way to achieve the desired concurrency is to start up an extra process
if we want output to another device. Just forking! the process isn't enough,
because the process is an XII application and contains a lot of data structures
that can no be shared by multiple processes and are difficult to clean up. The
method to use is to create a new process.

Somehow the newly created process must be able to take over all settings of
the original process. This can be done via a file. Because we already needed
a database for some other reasons, it shouldn't be too difficult to save that
database for use by the new process.

1. "Create a clone of the original process"

13

14 3. Implementation

User Interface

i r i
processmg database

1
plot library

i f i i
XlI HPGL HP-LJ
de\' drv dev drv dev drv

r ~ ~
XlI S

Figure 3.1: Block diagram of the implementation

Another way to achieve the desired concurrency is by exploring the event
driven nature of an XlI application and aU available XlI functions. The
handling of other devices can be done as workprocs. For an explanation of
this term, please refer to appropriate XlI literature.

3.3 Application structure

A structure for the application follows directly from the specifications. A
block diagram of this structure is shown in figure 3.1.

3.4 User interface

The user interface interacts with the user at the top level. It's main purpose
is to set-up the necessary XlI and Motif data structures and provide menus
by which the user can perform various commands:

• Set-commands: These commands only change some values in the
database. These can be subdivided in:

Settings that tell what to plot.
Settings that tell how to plot. Again these can be subdivided:

3. Implementation 15

* Device independent settings.
* Device dependent settings.

• Do-commands: These commands perform some kind of action, e.g.
plot a graph, place a marker and are passed to the processing.

3.5 Processing

The processing module is activated by the user interface (the user presses
the "go" button). Its tasks is it to gather all information it needs from the
database and then issues the appropriate function calls to the plot library to
draw a graph.

3.6 Graphics library

For the graphics library I adopted2 a public domain library writen by Tony
Richardson named plplot as described in [Ric90]. This library already con
tains a great deal of basic functionality needed to implement graphics appli
cation like we need.

Included in the library are (for example):

• Support for many devices.
• Top layer is device independent.
• Many different kinds of standard plots (2D, 3D).
• Plots highly configurable.
• Easy usable.

There are however some things missing from this library and thus have to be
added to it:

1. An Xll device driver. An Xterm device-driver, which uses the tek win
dow of an xterm terminal emulator is present, but this is insufficient
for our application.

2. Bidirectional devices. plplot only supports output-only devices, but
as we are making an interactive application, we also need input.

3. Markers. It is already possible to simulate them by "drawing the cor
rect lines," but we need more capabilities, such as dynamically moving
and removing.

4. Good font support. The standard font support is very poor, the inter
nals are completely undocumented and it is implemented on applica
tion level instead of on device driver level.

2. ''''hy reinvent the wheel?

16 3. Implementation

5. Some plot types which we need for our application:
• Polar plots
• Double plots
• Contour plots with margin graphs.

6. The device's capabillities are not fully explored. This can be improved
by changing the device driver interface.

7. Make it a little more device independent. I.e. it is the responsibility
of the user (application) to choose the right colors, so he must keep
track of the device he wants to output to: if it's a color device, the can
use different colors, but if it's a monochrome device, he should rather
use dashed lines, or lines of varying width.

How the library is enhanced and changed will be described in the next chap
ters.

Chapter 4

Database for graphics application.

4.1 Introduction

Although this chapter is a description of the database to be maintained by the
graphics application, it also gives a good overview of the desired functionality
of the complete application.

4.2 Description of the data in the database

The current settings of the graphics application should be maintained in
a database. For each setting a number of previous values should also be
maintained for the purpose of easy recalling these old values.

Data is maintained in the following structures:

4.2.1 Axis

Of an axis we want to record the following settings:

• Axis identifier: uniquely identifies this axis-parameter
(e.g. frequency).

• Start value
• Stop value
• Axis-type:

Linear distribution
Linear distribution of logarithmic values (dB-scale)
Logarithmic scale: with this axis-type the value of some other
elements (e.g. number of sub-ticks) will be useless.
Re part
1m part

• First tick yalue (default equal to the start value)

17

18 4. Database [or grapllics application.

• Scale automatic or manual. If scale automatic is chosen, the program
will calculate reasonable values for the number of (sub-)ticks from the
start- and stop-values, size of the font, etc.

• Tick value step (if not automatic): the step between two successive
major tick values.

• Tick value accuracy (if not automatic): number of significant digits.
• Number of sub-ticks per major tick (if not automatic).
• Unit (e.g. degree, Hz)
• Unit multiplication factor (automatic, Jl, m, none, k, M, G, etc.).
• Annotation (e.g. frequency, azimuth, magnitude). Default, this will be

the name of the axis (retrieved form the file), but it should be possible
to change it.

In addition we record some settings used if the axis serves as a level axis:

• Automatic calulation of levels or manual input.
• Number of levels.
• List of level-values in case the distribution is non-linear.

For axes in general we want to record:

• Font to use for unit on vertical axes.
• Font to use for unit on horizontal axes.
• Font to use for annotation on vertical axes.
• Font to use for annotation on horizontal axes.
• Direction of annotation (parallel/perpendicular) on vertical axes.
• Drawing style to use for axes.

4.2.2 Line types

Of a line type we want to record the style, which is mapped to an actual
color, line width, line pattern, etc. within the device driver.

Because this mapping from style to actual line properties can be changed by
the user (on a per device basis), we should probably also maintain per device
a database of these mappings, so the user is able to restore old values.

4.2.3 General

In general we want to record the following settings:

• Description of all known axes with their history buffers.
• Grid type:

Full grid on major ticks;
Only vertical or horizontal grid.
Full grid also in minor (sub-)ticks;

4. Database for graphics application. 19

Only ticks on non-empty axis-sides;
Also ticks on empty axis-sides;
No grid;
etc.

• Calibration of output to real-world measures: should a unit on an axis
be a real-world unit (i.e. 1 major tick/inch).

• Polar calibration of output to real world angles: in case an angle is
plotted against the angular axis of a polar plot, should the displayed
angle match the real-world angle.

• Grid type of polar graph:
(grid types to be defined).

• Placement of angle 0 in polar graphs (right, top, etc.).
• Should the angle of the polar graph be the same as the range of the

angle-axis (i.e. should the graph be a complete circle or only a pie).
• 3D representation:

waterfall;
dimetric;
isometric;
etc.

• Plot type:
Single 2D cartesian graph.
Single 2D polar graph.
Single 2D polar graph with "hole".
Double 2D cartesian graphs vertically split.
Double 2D cartesian graphs horizontally split.
Double 2D polar graphs horizontally split.
2D ca.rtesian and 2D polar graph horizontally split.
3D cartesian graph.
Contour plot without margin graphs.
Contour plot with margin graphs.
Polar contour plot.
Polar contour plot with "hole".

• Title and further annotation.
• Fonts to be used for title etc.
• Filename of a picture. This is the (2D or 3D) picture which should be

plotted:
On a contour graph (with or without margin graphs). This works
only if both axes display distance.
Above a 3D cartesian graph. This works only if both axes (of the
ground plane) displa.y a distance.
In the "hole" of a 2D polar graph.
In the "hole" of a polar contour graph.

20 4. Database for graphics application.

• Center (3D-)coordinates of picture (the point which must be posi
tioned in the center of the hole) in source coordinates (coordinates of
the file). In fact this is the inverted translation vector.

• Rotation angles of center picture: the angles through which the pic
ture should be rotated. Rotation takes place about the center of the
translated picture.

• Default scaling of center picture: the picture is scaled such that it fits
exactly within:

Prescale the picture so that it fits exactly within a rectangle en
closed by the center hole. (Only for graph with a hole.)
Prescale the picture so that it fits exactly within a rectangle which
encloses the center hole. (Only for graph with a hole.)
The scale factor of the picture is the scaling from picture coordi
nates to real world units (e.g. 10 picture units is 1 meter). This
can only be used for 3D cartesian and normal contour graphs.
Using this option implies that size size of the picture varies when
changing of the start- and/or stop-values of an axis.
No default scaling (scaling factor 1.0).

• Scaling of picture: scaling applied after the default scaling to make the
picture fit (for 'fine tuning').

• Extra options for picture display, e.g. draw as wire-frame; draw solid
(mentioning these options doesn't imply that these options will be
implemented).

4.3 Description of the per plot data

4.3.1 Single 2D cartesian graph

For a single 2D cartesian graph we want to record the following settings:

• Description of the axis on the left of the graph.
• Description of the axis on the rigth of the graph (default empty).
• Description of the axis on the bottom of the graph.
• Dependency between axes in the same direction (e.g. must ticks on

the rigth axis be on the same places as the ticks on the left axis). If
this dependency is selected, only the tick value step and the number
of subticks will be changed to match the other axis. The start- and
stop-values won't be changed.

• Size of the graph.

4.3.2 Single 2D polar graph

For a single 2D polar graph we want to record the following settings:

4. Database for graphics application.

• Description of the radial axis of the graph.
• Description of the angular axis of the graph.
• Size of the graph.

4.3.3 Single 2D polar graph with "hole"

21

For a single 2D polar graph with a "hole", we want to record the following
settings:

• Description of the ra.dial axis of the graph.
• Description of the angular axis of the graph.
• Relative size of the hole (fra.ction of the radius of the total graph).
• Size of the graph.

4.3.4 Double 2D cartesian graph vertically split

For a vertically split double 2D cartesian graph we want to record the fol
lowing settings:

• Description of the axis on the left of the bottom graph.
• Description of the axis on the left of the top graph.
• Description of the axis on the bottom of the graph.
• 'What axes of the two graphs must be coupled, i.e. have the same scale

(e.g. both left axes.). This is only valid for axes of the same parameter
type (e.g. two phase axes).

• Size of the graph.

4.3.5 Double 2D cartesian graph horizontally split

For a horizontally split double 2D cartesian graph we want to record the
following settings:

• Description of the axis on the left of the left graph.
• Description of the axis on the right of the right graph.
• Description of the axis on the bottom of the left graph.
• Description of the axis on the bottom of the right graph.
• What axes of the two graphs must be coupled, i.e. have the same

scale (e.g. both bottom axes.). This is only valid for axes of the same
parameter type (e.g. two frequency axes).

• Size of the graph.

4.3.6 Double 2D polar graph horizontally split

For a horizontally split 2D polar graph we want to record the following set
tings:

22 4. Database for grapllics application.

• Description of the radial axis of the left graph.

• Description of the angular axis of the left graph.

• Description of the radial axis of the right graph.

• Description of the angular axis of the right graph.

• What axes of the two graphs must be coupled, i.e. have the same
scale (e.g. both radial axes). This is only valid for axes of the same
parameter type (e.g. two angle axes).

• Size of the graph.

4.3.7 2D cartesian and 2D polar graph horizontally split

For a combined 2D cartesian/polar graph we want to record the following
settings:

• Description of the axis on the left of the cartesian graph.

• Description of the axis on the rigth of the cartesian graph (default
empty).

• Description of the axis on the bottom of the cartesian graph.

• Description of the radial axis of the polar graph.

• Description of the angular axis of the polar graph.

• Dependency between axes in the same direction (e.g. must ticks on
the rigth axis be on the same places as the ticks on the left axis) of
the cartesian graph.

• What axes of the two graphs must be coupled, i.e. have the same scale
(e.g. the right axis and the radial axis). This is only valid for axes of
the same parameter type (e.g. two angle axes).

• Ordering of the two graphs: cartesian left and polar rigth or reversed.

• Size of the graph.

4.3.8 3D cartesian graph

For a 3D cartesian graph we want to record the following settings:

• Description of the x-axis of the graph.

• Description of the y-axis of the graph.

• Description of the z-axis of the graph.

• Size of the graph.
• Should level-colors be used: the color of the graph is dependent of the

function-value (height). The levels used are the same as the contour
levels.

4. Database for graphics application.

4.3.9 Contour graph without margin graphs

23

For a contour graph without margin graphs we want to record the following
settings:

• Description of the x-axis of the graph.
• Description of the y-axis of the graph.
• Description of the level-axis of the graph.
• Representation: Filled or lines.
• Size of the graph.

4.3.10 Contour graph with margin graphs

For a contour graph with margin graphs we want to record the following
settings:

• The same items as mentioned for a contour graph without margin
graphs.

• Description of the the left axis of the top margin graph (default the
same as the level axis).

• Description of the the bottom axis of the right margin graph (default
the same as the level axis).

• Relative size of margin graphs. (E.g. 0.3 times the size of the contour
part.)

4.3.11 Polar contour plot

For a polar contour plot, we want to record the following settings:

• Description of the radial axis of the graph.
• Description of the angular axis of the graph.
• Description of the level-axis of the graph.
• Representation: Filled or lines.
• Size of the graph.

4.3.12 Polar contour plot with "hole"

For a polar contour plot with a "hole", we want to record the following
settings:

• Description of the radial axis of the graph.
• Description of the angular axis of the graph.
• Description of the level-axis of the graph.
• Relative size of the hole (fraction of the radius of the total graph).
• Representation: Filled or lines.

24 4. Database for grapllics application.

• Size of the graph.

4.4 Some random considerations

• A plot with Re/Im axes must be placed somewhere.
• In the positioning of the picture the order of operations (translation,

rotation) has to be reconsidered.
• When drawing polylines, an optimization can take place if some con

secutive parts have the same (horizontal or vertical) direction.
• When drawing a 3D cartesian graph, the ground plane is drawn if

the function value lies below it.
• In contour graphs the boundaries of the file are marked if these are

within the plotting area.
• A 3D plot with a circular (polar) base.
• User must be able to choose between use of automatic selection of

ranges in selected file or use of last selections made.
• After reading a data-file we build two lists:

1. List of primary parameters. This list includes:
Independent parameters
Monotonous increasing/decreasing parameters

2. Dependent parameters ("function values")
As we can see, it is possible for a parameter to be in both lists.

• Per parameter-type we keep a central history buffer of the last x cho
sen values (and possibly some default values). Every axis of a graph
keeps its current value local, but references to the central history
when choosing a new value. In this way we are able to have two axes
of the same parameter-type with different scales.

Chapter 5

Implementation of markers

5.1 Introduction

In the graphics application, the user must be able to place markers in the
graphs to indicate points of interest and, if necessary, get the values of those
points. At the moment, this functionality isn't present in plplot, so this has
to be added to it. For the time being it will only be implemented for the
XII device, because it will only be of use for interactive devices. However
the software must be able to display these markers also on non-interactive
devices, which is in general not very difficult.

5.2 Types of markers

The program has to support a number of different marker types. These are:

Single point
The marker indicates a single point in the graph. Some different
shapes must be available to represent the marker.

Vertical line
The marker indicates a single x-value in the graph.

Horizontal line
The marker indicates a single y-value in the graph.

Cross (Crosshair)
The marker indicates a single point or a combination of a single x

value and a single y-value. The marker is visualized by a vertical and
a horizontal line which extend to the boundaries of the graph. (This
marker type can be used in the contour plot with margin graphs,
where the horizontal and vertical lines indicate the position where
the graph is intersected to obtain the margin graphs.)

Rectangle
This marker indicates an area in the graph. (This marker type can
be used for example in the gating program to specify the gate.)

25

26 5. Implementation of markers

Diagonal line
With this marker we are able to simulate a marker in a 3 dimensional
graph. This marker will be the only one (among the other 2D types)
supported by the device driver, because the driver is 2D oriented and
doesn't know anything about 3D, it all has to be done at a higher
level.

Other marker types can be constructed by combining these marker types.

5.3 Marker placement modes

The placement of markers can be divided in the following way:

Automatic placement
The application itself decides where a marker has to be placed.

Interactive placement
The user decides where to place a marker. In this case the appli
cation may want to be able to adjust the exact placemenent to get
the markers exactly on data-points. There a two kinds of interactive
placement:
By value

The user specifies a numeric value to identify the position where
to place the marker. This placement method can be handled
mostly in the same way as automatic placement of markers,
because the data enters the graphic routines at a rather high
level.

Visual placement
The user specifies the position on the device where to place
the marker. If we use the Xll device, this will be done using
the mouse pointer (or cursor keys). Using this method, the user
must have real time feedback, i.e. the user must be able to move
the marker (and see it moving) by dragging the mouse pointer.

Because the interactive positioning by using the mouse pointer is the most
demanding method with respect to the marker placement routines we will
first concentrate on this method.

5.4 Visual placement of markers

To make the program ergonomically justified, the user must be able to move
and place markers at any time (as long as it makes sense).

5. Implementation of markers 27

With this type of placement the action stems from the (Xll) device driver
which gets the events from the X-server. Therefore the device driver must
be able to initiate a marker action, because polling of the device driver by
the upper layer is intolerable. However the upper layers are needed in the
placement process to calculate the exact position of the markers and to ad
ministrate the position of the markers (if we want to output the graph to
another device, we must be able to place the markers there on the same
places).

This calls for the use of callback functions: The upper layers register a func
tion to the device driver, which the device driver shall call whenever it gets
some placement events. The callback function in turn determines what to
do with that data. But of course there are restrictions in what the callback
function may do with the data: the handling of this data should be consistent.

To restrict the freedom op marker placement as litle as possible, there is
no direct coupling between the mouse position acquisition and the marker
placement within the device driver: the coupling should be done by the call
back function. By doing it this way, we have the possibility to place several
markers as a result of one position input (this is of use if we have for example
a contour plot with margin graphs). Also, we will then have the opportunity
to use the mouse input for other purposes.

5.5 Positioning

Besides the positioning with the mouse as described before, positioning must
also be possible with keystrokes, especially the cursor keys, to make the
program more user friendly. It's obvious, that by using cursor keys relative
positions are specified. Although it is possible to convert this to an absolute
position within the device driver, it's more flexible not to do so (and let
the callback function do it if necessary), because then we have an extra
functionality available: we have the possibility to interpretate the relative
positioning in another way, e.g. go to the next local maximum.

The device driver should not send all mouse movement events to the callback
function, otherwise moving the mouse through the graphics window should
generate a lot of calls of the callback function. In general we are only inter
ested in mouse motion events if one or more mouse buttons are activated. We
can solve this by using the following convention: the drivers starts calling the
callback function (supposed it is enabled) when one or more mouse buttons
are pressed and stops if they are all depressed.

If the callback function is able to determine which button(s) is (are) pressed,

28 5. Implementation of ma.rkers

it is able to react different upon them (e.g. when placing a rectangular marker
we can specify two corners, or we can specify a center point and an extend).
To be able to simulate this behaviour if the user uses the keyboard, we
generalize this idea:

Instead of the position of the mouse buttons, we pass a function number to the
callback function (which normaly correspondents with the button number)
and the state of that function:

start This is the first call with this function (mouse button just pressed).
When placing a marker: start placing the marker.

continue The same function as in the previous call is still activated (mouse
moved when mouse button still pressed). When placing a marker:
move the marker.

stop This is the last call (for the moment) with this function (mouse button
released). When placing a marker: freeze the marker at this position.

cancel This function has to be canceled (another mouse button is pressed
while the first was still down). \\Then placing a marker: remove the
marker or keep it on the place it was before the start of this function.

(For all these functions the will have to be keyboard equivalents.)

Now we can have only one button active, which limits the number of options
we have while operating the mouse. This should however not be a problem,
since overloading a few buttons with functionality isn't a good idea either.

It's imaginable that there are occasions in which we also want the callback
function to be called when the mouse pointer moves, but there are no buttons
pressed. For this case an option should be available in the function which
enables the calling of the callback function.

5.6 Marker placement

A marker is placed on the graph by calling a device driver function to which
we specify the marker type and the position (which includes the size). Because
we want the possibility to remove or move (which implies remove) a marker,
we must be able to restore the original contents of the graph at the position of
the marker. The most simple solution would be to redraw the complete graph,
but this isn't usable in this case because it would be to slow, especialy if we
want to move the marker real-time. Several other solutions come to mind:

• While drawing the graph to the screen, we also draw it to an of
screen pixmap (on which we don't draw any markers). If we have to
remove a marker, we copy this pixmap to the screen (and redraw all
other markers). In general, this method will still be relative slow.

5. Implementation of markers 29

• As in the previous solution we keep an of-screen pixmap, but we
only copy the regions which were hidden by the marker. This method
doesn't free us from the redrawing of all other markers, because we
might have overwritten some of them.

• We draw the markers using the exclusive-or function: all pixels which
are part of the marker are exclusive-ored with the marker pixel-value.
In this way, we can remove the marker by simply redrawing it (also
with exclusive-or). This method works only save if we don't draw
anything else in the graph without exclusive-or after we have drawn
something with exclusive-or. If we use color, we can't say much about
the resulting color, so it may be possible that the markers are not
very visible.

• We combine the previous methods:

If we are moving a marker, we use exclusive-or. In this case the
problem of visibility isn't as big as ''''ith a fixed marker, because
the user can see something moving. An advantage of using this
method is, that it's fast.

If we place a marker for a longer period, we draw it solid (and
use a copy from a pixmap to remove it) because the visibility is
better and we can give it a predetermined color.

If some part of the graph has to be redrawn, we copy that part of
the of-screen pixmap to the screen and redraw all solid markers
(they are not on the pixmap).
Redrawing of the exclusive-or marker would be a litle tricky
if we just restore a part of the graph, because we would erase
the ma.rker in the area which wasn't restored (redrawing an
exclusive-or marker erases itL unless we draw the marker only
in the region of the graph we restored. We won't have these prob
lems however, if we stick to the use of the exclusive-or markers
described here: We will always have at most one exclusive-or
marker active and we are using it (we hold a button down to
place it), so in normal condition we are not able to mess things
up.

In case the reader hasn't noticed yet: the last method is probably the best
one.

This leads to the following marker placement strategy:

• If we want to place a fixed marker, we draw it solid.

• If we want to interactively place a marker, we use the exclusive-or
mode, and at the moment we want to fix it at the current position
(we depress the mouse button) we draw the marker solid.

30 5. Implementation of markers

• If we want to reposition a fixed marker (which is drawn solid) in
teractive we use an exclusive-or marker to mark the new (moving)
position while the old (solid) marker is still in its place. If the user
fixes the marker in a new position, we remove the old solid marker
and draw it in the new position. If the user choses to cancel the re
placement, we only delete the exclusive-or marker and keep the old
solid marker in its place.

• The user must have the ability to point at a marker he wants to
repositon (or delete). In general we can not demand from the user
an exact positioning of the mouse pointer at the marker. Therefore
we will have to find a marker that is closest to the specified position
(or within a specified range).

5.7 Marker removal

It's no problem to remove a temporary marker: it's just drawn again. To
remove a permanent marker is a little more problematic, because we have to
restore the original contents in the part of the graph which was obscured by
the marker.

In X, the easiest way to do this, is to clear that part of the graph. The
X-server will send (as a consequence of the clear) an expose event for that
part of the window. This expose event is handled by the applications expose
callback function, which must be present in every X-application to handle
this kind of events resulting from other windows disapearing, etc.

To use this method effectively, it would be wise not de clear to much, because
this would result in flicker of parts of the display. Therefore we only clear the
exact lines of the marker, if possible. This results in clearing more than one
rectangle for some kinds of markers. \Ve can combine the resulting expose
events provided that the rectangles which are exposed do not overlap.

To make sure the exposed rectangles resulting from a marker removal do not
overlap, we will calculate these rectangles very precisely. Figure 5.1 shows
the rectangles to be cleared for the various markers (only the interesting
markers are displayed). In out calculations we use hw = line~idth instead of
the linewidth itself to ensure we don't miss part of the marker due to rounding
errors. The resulting rectangles are displayed as 4 coordinates representing
the start x and y values and the widht and height of the rectangles.

Vertical marker
This marker can be covered by one rectangle:

(x - hw), (ystart), (2 x hw + 1), (yend - ystart)

5. Implementation of markers 31

lw
I I

ystart -

I I - lwy- -
I I

xstart xend
yend -

I
X

lw lw
I J I I

- ystart - ystart

t:S=====~-yend

lw

I

xstart
I
X

- y

- yend
I

xend

lw
I

xstart
I

xend

Figure 5.1: Rectangles to remove a marker

Horizontal marker
This marker can also be covered by on rectangle:

(xstart), (y - hw), (xend - :rstart), (2 x hw + 1)

Cross marker
For this marker we need 3 rectangles to cover it completely:

(xstart), (y - hw), (xend - xstart), (2 x hw + 1)

(x - hw), (ystart), (2 x hw + 1), (y - hw - ystart)

(x - hw), (y + hw + 1), (2 x hw + 1), (yend - y - hw - 1)

Rectangle marker
For this marker we need not less than 4 rectangles to cover it:

(xstart -hw), (ystart-hw), (xend-xstart+2 x hw+1), (2 x hw+ 1)

(xstart - htv), (yend - hw), (xend - xstart +2 x hw + 1), (2 x hw + 1)

(xstart-hw), (ystart+hw+1), (2xhw+1), (yend-ystart-2xhw-1)

(xend-hw), (ysta7't+hw+1), (2 x hw+ 1), (yend-ystart-2 x hw-1)

32 5. Implementation of markers

5.8 Implementation

The marker placement and positioning code will be implemented in the device
driver and be accessible to higher levels via two functions:

XlllocatorO
Enables or disables the calling of the callback function on positioning
events from the X interface.

Xl1setmarkerO
Places (or removes) a marker on the drawing area.

The normal way of interactive placement of markers is to enable (with
X11locator0) the sending of positioning events to the callback function,
which calculates from the display position the (rounded) data position and
places on that position a marker (with Xl1setmarkerO).

5.8.1 XlllocatorO

The prototype of XlllocatorO is as follows:

typedef void (*callback)(int coord_mode,
int function, int
int x, int y)

status,
locatorCB;

void
Xl1locator(int mode, locatorCB callback);

mode
Should be one of the following:
LOC..DISABLE

Disables locator placement.
LOC-ACTIVE..EVENTS

Locator events are generated if mouse buttons are pressed, or
when operating keyboard.

LOCYASS IVE..EVENTS
Locator events are generated if mouse pointer IS within the
drawing area.

callback
The function that should be called whenever an event occurs.

coord...mode
Will be one of the following:
ABSOLUTE

The ;1: and y coordinates are absolute.
RELATIVE

The x and y coordinates are relative to the previous position.

5. Implementation of markers 33

function
The number of the activated button.

status
Will be one of the following:
START

This event starts a locator placement sequence.
STOP

This event ends a locator placement sequence.

CONTINUE
This event continues an already started locator placement se
quence.

CANCEL
This event cancels a locator placement sequence.

x
The x coordinate of the mouse pointer (can be absolute or relative).

y

The y coordinate of the mouse pointer (can be absolute or relative).

5.8.2 Xl1setmarkerO

The prototype of Xl1setmarkerO is as follows:

void
Xllsetmarker(int mkr, int mode, int mkr_type, int style,

char *detail, int x, int y,
int xstart, int ystart, int xend, int yend);

mkr
Specifies the marker which should be placed/removed.

mode
Specifies what should be done with this marker:

MKR-MODE..FIX
Place a fixed marker (draw the marker solid) on the specified
position. If this marker is already somewhere else, the old marker
should be removed.

MKR-MODLTMP
Place a temporary marker (draw the marker with exclusive-or)
on the specified position. This doesn't erase the fixed marker (if
present).

MKR-MODE...ERASE
Erase the specified marker, both the fixed instance and the tem
porary instance (if present).

34 5. Implementation of markers

MKR...MODE...ERASE_TMP
Erase the specified temporary marker.

mkr_type
Specified how the marker should look like. The following type are
defined:
MKR_CURRENT

Used on all calls except the first one for a specific marker: The
marker type is already specified in a previous call.

MKR-POINT
A point marker is placed on position (x, y). The shape of the
marker is specified as a string in the detail parameter, and is
respresented with hershey fonts (see 6).

MKR_VERTICAL
A vertical line between the points (x,ystart) and (x,yend).

MKRJIORIZONTAL
A horizontal line between the points (xstart, y) and (xend, y).

MKR_CROSS
A crosshair is placed, consisting of the lines
(x,ystart), (x,yend) and (xstart ,y), (xend,y).

MKR-RECTANGLE
A rectangle is placed with the points
(xstart,ystart), (xstart,yend),
(xend,yend), (xend,ystart).

MKR-DIAGONAL
A diagonal line is drawn between (xstart, ystart) and
(xend, yend) .

style
Specifies the style (see chapter i) in which the marker should be
drawn. This parameter is only used on the first call for a specific
marker of this function.

detail
Specifies the glyph to be used for a point marker. This parameter is
only used on the first call too.

coordinates
These specify the position where to place the marker. The use is
already described.

Chapter 6

Font Support

6.1 Introduction

In order to be able to anotate graphs, it must be possible to draw text in the
graphs. Therefore we need some kind of font support.

The plplot library already supports text in a limited way. The font support is
positioned in the device independent part of the device driver, as can be seen
in figure 6.1. This standard font support has some disadvantages however:

• The font data is only available in a binary file, without any docu
mentation of the format, other than the sources which read these
data.

• The font files always have to be present seperate of the application
and is loaded on demand by the application.

• The number of fonts/glyphs present is limited.

To overcome these limitations, I decided to reimplement the font support,
which has some other advantages too, which will be described later.

I font support
I
L _________

plot library

1
device drivers

Figure 6.1: Position of font support in the plplot library

35

36 6. Font Support

6.2 The He'rshey Font Set

The hershey font set is a set of (scalable) stroke fonts which were digitized by
Dr. A. V. Hershey while working for the U.S. Government National Bureau
of Standards (NBS). The set consists of more than 2000 glyph (symbol)
descriptions in vector format and can be grouped as almost 20 occidental
(english, greek, cyrillic) fonts (see table 6.1), 3 (or more) oriental (Kanji,
Hiragana and Katakana) fonts, and a few hundred miscellaneous symbols
(mathematical, musical, cartographic, etc.), see [Her].

6.3 The advantages of the Hershey font set

The Hershey fonts set has several advantages compared to other font sets:

• It's public available.

• "Sources" available, so it's possible to change and/or add glyphs.

• The format of the font sources is described clearly.
• Glyphs are fully scalable an transformable.

• The graphical quality of the glyphs is reasonable.

• They can be represented on every graphic device.

Because of the above mentioned advantages I choose to use this font set.
However there is one disadvantage: There a no support routines available, so
the have to be written.

Fonts with ASCII coding
Hershey-Script-Simplex Hershey-Italic-Complex-Small
Hershey-Script-Complex Hershey-Italic-Complex
Hershey-Roman-Plain Hershey-Italic-Triplex
Hershey-Roman-Simplex Hershey-Cothic-German
Hershey-Roman- Duplex Hershey-Gothic-English
Hershey-Roman-Complex-Small Hershey-Gothic-Italian
Hershey-Roman-Complex
Hershey-Roman-Triplex

Fonts with non-ASCII coding
Hershey-Greek-Plain Hershey-Cyrillic-Complex
Hershey-Creek-Simplex Hershey-Special-Math-1
Hershey-Greek-Complex-Small Hershey-Special-Math-2
Hershey-Greek-Complex

Table 6.1: Occidental fonts

6. Font Support

6.4 New position of the font support routines

37

As mentioned before, the original font support of plplot is positioned in the
device independent part of the library (figure 6.1). The main reason for this is
that the font support code is device independent and all device independent
code should be placed in the device independent part of the library. There
should be strong reasons to place it somewhere else.

I think there are such strong reasons to place it at device driver level. These
reasons are:

• Device specific optimizations are possible:
Some devices support download fonts: after a font is downloaded
to the device, a specific character can be referenced by its index.
Some devices can scale and/or transform characters.
On some devices, some fonts can be replaced by the device's
fonts.

• Glyphs can be used for markers: see the description of markers in
chapter 5

To prevent duplication of great parts of the font support routines, these
routines are available to all device drivers (see figure 6.2) and are not part of
one device driver.

6.5 Interface routines

The hershey library has four interface routines by which a device driver can
communicate with the library. These are:

hershey....get-font..name()
Returns the name of the specified hershey font.

hershey_parse_string()
Converts an ASCII string (with formatting commands) to an ab-

plot library

1 r

device drivers
t-- font support
I-------a

Figure 6.2: New position of font support routines

38 6. Font Support

stract data structure of type HersheyString.
hershey_draw_string()

Draws the contents of a HersheyString abstract data structure on
the device.

hershey-=free_st ring ()
Destroys a HersheyString abstract data structure.

6.5.1 hershey...get-=font-nameO

char *
hershey_get_font_name(HersheyFont font);

font
The font number of which the name is to be returned.

Return value
A pointer to a read only string in which the name is placed, or a
NULL-pointer if font is out of range.

This function converts a font id to the name of the font. The name is one of
the strings of table 6.1.

6.5.2 hershey_parse_stringO

HersheyString
hershey_parse_string(char *str, HersheyFont default_font,

int *xpos, int *ypos,
int *matrix, int scale);

str
The character string to be converted. The string is only used during
the function call, so it may be changed or freed after the call.

default-=font
The font to use if no other font is specified in the string itself.

xpos, ypos
Pointers to the x- and y-position where the string should be placed.
On return the end position of the string is written in them.

matrix
An array of four integers specifying the default transformation matrix
for this string. All points (xg, Yg) of all glyphs are transformed as
follows:

(

matrix[o]
10Q

matnX[2]
100

matrix[l]) ()10Q X g

matnX[3] Y
100 9

You can see the values should be multiplied by 100.

6. Font Support

scale

39

The default value of an extra scale factor applied to all points times
100. So if no extra scaling should take place, this value should be
100.

Return value
If non 0 this value should be used on every call to one of the hershey
library functions to specify this string. This value should never be
discarded, because is represents some dynamically allocated memory
which should first be freed with the appropiate function
(hershey_free_stringO). If the value is 0, some error occured in
this function and no space is allocated.

This function "compiles" a string with formatting commands into some in
ternal representation.

Formatting commands

At the moment, no formatting commands are defined yet. But they should
be defined for at least the following functions:

• Font selection
• Change transformation matrix
• Change scale factor
• Specify a glyph
• Sub- and superscript

6.5.3 hershey_draw_stringO

int
hershey_draw_string(HersheyString hershey_str,

int x, int y,
DevPolyLine func, void *funcdata);

hershey-str
Identifies the string to be plotted to the output device. This value
can be obtained by a call to hershey_parse_string.

x, y
An extra. offset in device coordinates to be applied to the complete
string.

func
A pointer to a. function to be used for drawing polylines. This func
tion is used to output the string. The prototype of the function is:
void
(*DevPolyLine) (void *funcdata, Point *pt, int npoints);

40 6. Font Support

funcdata
Pointer to a function defined data structure.

pt
Array of points which for a polyline and should be plotted.

npoints
The size of the pt array.

Return value
None.

funcdata
Pointer to a func specific data structure. It is passed as first param
eter to func.

Return value
One of the following values:
R-ERROR An error is detected.
R_SUCCESS No error detected, string plotted successfully.

Actually draws a string.

6.5.4 hershey...free_stringO

void
hershey_free_string(HersheyString hershey_str);

hershey-str
A return value of a previous hershey_parse_string 0 function call.
After a call to this function this value should not be used any longer.

Return value
None.

This function cleans up internal data structures of the hershey font library
which are in use for the string identified by the hershey_str value.

6.6 The internal workings

For a precise description, the sources are the best documentation. To make
these sources easier understandable, a description of various data structures
is presented here.

6.6.1 The hershey character and glyph data structures

The task of the hershey font library is to convert strings (with formatting
commands) to commands to the device to plot the corresponding glyphs. To
do this, the library contains the following data:

6. Font Support 41

hershey_data
An array which contains the actual description of all glyphs in (x, y)
coordinate pairs. The exact structure will be described later.

hershey-index
This is an array which maps the glyph number to an index in the
hershey_data array where the description of the glyph starts.

hershey..map
This is a two-dimensional array which is a per font map of a character
number to glyph number.

hershey_baseJine
The y offset of the base line for each font.

hershey_capJine
The y offset of the top of capital letters for each font.

hershey...font...name
The name of each font.

The connection between these data-structures is shown in figure 6.3 (I omit
ted hershey_cap_line which is equivalent to hershey_base_line).

chr

font

glyph

1 map font...name baseJine
I I

1 1
- -1-'- - - - - - - - -- - - --- f-- -- -I 1- - -- - - - - -- - - --

I I

I 1
I I
I I

index data

- - - --
- -- -

- - ---
- - - -

Figure 6.3: Relationship of hershey data structures

42 6. Font Support

Each glyph consists of a number of polylines, each polyline consists of a
number of connected points. The number of points per polyline and the
number of polylines per glyph are variable. Besides the polylines, each glyph
also defines a negative and positive x-extend, and per font a base-line and a
cap-line are defined. These parameters are shown in figure 6.4.

The format in which I obtained the hershey fonts, was not very compact and
efficient. Therefore I designed a new format to contain the above mentioned
data.

Polylines of variable length can be represented by the number of points form
ing the polyline, followed by the points (x and y coordinates) themselves. To
represent a number of polylines, we can place them after each other if we
are able to mark the end of the sequence. This can be done by storing the
number of polylines, but another solution is to finish the sequence with a O.
However, this could be seen as a new polyline, but this would represent a
polyline consisting of 0 points, which would be meaningless.

So the structure per glyph becomes:

• A negative x-extend. This determines the x-offset of the character.
Together with the following element, this also determines the width
of the character (extra whitespace between chara.cters is taken into
account).

• A positive x-extend.
• Repeatedly the following sequence (the end is marked by the 0)

The number of (:1', y) pairs that follow and should be connected
to ea.ch other.
The (;r,y) pairs.

• a to mark the end of the glyph.

cap line

(0,0)

• •

base line

neg x-extend pos x-extend

Figure 6.4: A hershey letter

6. Font Support 43

The descriptions of all glyphs are place in on array, hershey_data. To find
the data for a specific glyph, another array, hershey_index, has, for each
glyph, a start point. For practical reasons, the index array points to the first
polyline (starting with the number of points). Doing this, index 0 is not a
valid index and thus can be used for special purposes.

6.6.2 The HersheyString data structure

In order to be able to be more flexible in handling text, all text is first
converted to a data structere of type HersheyString which is a double linked
list of HersheyCharlnfo structures. This structure contains the following
parameters:

chr
The character of this element, if available.

font
The font in which the character should be represented, if available.

glyph
The glyph of this element. It is calculated from chr and font, or
directly specified.

matrix
A transformation matrix, consisting of four intergers.

scale
An extra scale factor.

xoffset, yoffset
An offset in hershey coordinates l which should be applied to all co
ordinates of the glyph before the transformation and scaling.

position
A vector in device coordinates, specifying the offset of the start of
this glyph to the start of the complete string.

height
A vector in device coordinates specifying the height2 of this glyph.
This vector points from baseline to the top of the glyph. The direction
is the transformed perpendicular line of the baseline.

width
A vector in device coordinates specifying the width of this glyph.
This vector points from the left of the glyph to the right, in the
direction of the baseline.

depth
A vector in device coordinates specifying the depth3 of this glyph.

1. The coordinat.e syst.em in which all glyphs are represented in the hershey_data array.
2. The distance between baseline and top of character.
3. The distance between bottom of character and baseline.

44 6. Font Support

The vector points from the bottom of the glyph to the baseline, and
the direction is the transformed perpendicular line of the baseline.

previous, next
Pointer to create a double linked list.

As can be seen, the size of the glyph is specified as a set of vectors: height,
width and depth. Because the glyphs can be rotated, only a (set of) scalar(s)
is not enough to specify the extends of the glyph. If a scalar size is required,
the length of the vector can be calculated.

Chapter 7

Styles

7.1 Introduction

In the original plplot library the characteristics of a line are specified by
three parameters:

• color
• width
• dashes

These parameters are passed to the device drivers. However, not all devices
have the same amount of colors, or an unlimited spectrum of widths. This
makes it difficult to make fully device independent applications. A solution to
this problem could be to let the device driver make some kind of automatic
mapping if a color or line width is not available. But I suppose everyone
knows Murphy, and this will always be the wrong mapping in the users point
of view.

7.2 The concept of styles

To overcome the device dependencies I changed the concept and introduce
styles.

• To the device independent part of the library, a style is an abstract
data type specifying some set of characteristics for each object drawn.
These characteristics can not be specified seperate, only as a set.

• To the device driver, a style is a set of device dependent character-
istics that can be used when drawing an object.

So in each device driver, the styles are mapped to object attributes (e.g.
color, width). Because this mapping is done in the device driver, it can be
different for each device driver. So aline which is magenta on one device, can
be green on another device.

45

46 7. Styles

By introducing styles, we eliminated all device dependencies in the upper
layers of the device drivers. However, now we don't have any control over
the characteristics of an object, which is undesirable. Therefore we add two
device driver funtions to set and get the device characteristics of a style. This
function changes only the style characteristics of one device.

Although we introduce a new device dependency in the library (setting a
style), this overcomes the device dependency problems, because the newly
introduced functions is normaly only used during startup, or on explicit re
quest of the user.

7.3 Contents of a style

A style can contain many attributes of an object. Currently the following are
included:

color
The color of the object.

linewidth
The width of the lines in a device specific unit.

line-style
Contineous, dashed or dottet lines.

font
Default font for text

font-size
Defa.ult size of text (scale parameter used for hershey fonts).

7.4 Interface functions

To support styles, three new functions were added to the device driver inter
face. These are:

dev_selectstyle()
Selects a style to be used in successive drawing functions.

dev_setstyleO
Change attributes of a style of this device.

dev-setstyleO
Get attributes of a style of this device.

7.4.1 The StyleValues structure

The functions dev_setstyle0 and dev_getstyle 0 both use a structure
to pass values.

*color;
line_width;
*dash_type;
*font_name;
font_id;
*matrix;
scale;

7. Styles

typedef struct {
char
int
char
char
int
int
int

} StyleValues;

color

47

A pointer to a string containing the colorname.
line_width

The width of the lines, in a device driver specified unit, often device
coordinates.

dash_type
A pointer to a string specifying the dashes (contineous, dashed, dot
ted, dash-dotted lines). The interpretation is device specific: some
devices only allow a choice from a limited set of dash-types, other
set allow one to specify the lengths of the various parts.

font...name
The name of the selected font. Is only used to retrieve the value, to
set a font, only the next element can be used.

font_id
A sequence number specifying the font.

matrix
An array of four intergers forming a 2 x 2 transformation matrix for
all text operations. The unit value is 100.

scale
The scale factor by which all text related coordinates are multiplied.
The unit is 100.

For a more precise description of the text related elements, see chapter 6
about font support.

7.4.2 dev_selectstyleO

void
dev_selectstyle(int style);

style
The number of the style to be selected for use in all successive drawing
function calls.

48

Return value
None.

7.4.3 dev_setstyleO

7. Styles

int
dev_setstyle(int style. StyleValues *stylevalues. int mask);

style
The number of the style to be changed.

stylevalues
A pointer to a structure containing the attibutes to be changed.

mask
A mask identifying what attributes are valid in the stylevalues
parameters and should be changed.

Return value
A mask identifying what attibutes were changed successfully. If this
value is equal to the mask parameter, aU attributes were changed
successfully, if the value is 0, no attributes were changed at all.

7.4.4 dev_getstyleO

int
dev_getstyle(int style. StyleValues *stylevalues. int mask);

style
The style number of which we want to get some attibute values.

stylevalues
A pointer to a structure in which the requested attribute will be
placed.

mask
A mask identifying what attributes are requested.

Return value
A mask identifying what attributes in the stylevalues structure are
valid. If the value is equal to the mask parameter, all attributes were
retrieved successfully, if the value is 0, no attributes were retrieved
at all.

The contents of the data structures to which is pointed to by elements of the
data structure should not be changed or freed.

Chapter 8

The device drivers

8.1 Introduction

The device drivers are a very important part of the plot-library. They are
responsible for an efficient use of the devices capabilities and should overcome
any deficiencies of the devices. The interface between the device driver and
the higher levels of the library (the device driver programming interface)
should ensure device independence.

8.2 The original device driver programming
interface

The standard device driver application programming interface of plplot has
the following functions (exerpts from plplot sources):

dey_setup
This routine to sets x and y resolution (dots/mm) and a: and y page
widths. Some device drivers may choose to ignore any or all of these.
A call to this routine is optional! If a particular driver requires any
of these parameters and they are not set by a call to dey_setup 0
then they should be prompted for in dey_inito. The user may call
this routine only once and it is called before any output generating
function calls.

dey_orient
Set plot orientation: landscape or portrait.

dey_select
Set graphics storage file pointer. Directs the device driver to redirect
all data to a file rather then the real device. This routine is also
optional. This routine must be called before any output generating
functions.

49

50 8. The device drivers

dev_init

Initialize device. This routine may also prompt the user for certain
device parameters or open a graphics file (see note). Called only once
to set things up.

dev-line
Draws a line between two points.

dey_clear

Clears screen or ejects page or closes file (see note).

dey_page

Set up for plotting on a new page. May also open a new a new
graphics file (see note).

dev_eop

End current page (flush buffers).

dey_tidy

Tidy up. May close graphics file (see note).

dey_color

Change pen color.

dey_text

Switch device to text mode.

dev..graph
Switch device to graphics mode.

dey_width

Set graphics pen width.

dev_cwin

Switch to command window.

dev_gwin

Sv,"itch to graphics window.

NOTE
Some devices allow multi-page plots to be stored in a single graph
ics file, in which case the graphics file should be opened in the
dev_initO routine and closed in dev_tidyO. If multi-page plots
need to be stored in different files then dey_page () should open
the file and dev_clearO should close it. Do not open files in both
dey_inito and dey_page 0 or close files in both dey_clear 0 and
dey _tidy (). The purpose of dey_text () is to allow the user to place
device-dependent characters on the graph. The user responsible for
positioning these characters. Its use is discouraged. dey_cwin 0 and
dey_gwinO are provided to allow the user to switch between a com
mand mode and a graphics mode. In command mode if0 to standard
input/output can be accomplished.

8. The device drivers

8.2.1 Removed device driver interface functions

51

Some of the functions mentioned above, will not be supported by new or
modified device drivers. These are:

dev_co1or
dev_width

These functions are superseded by the style funtions, as described in
chapter 7.

dev_text

dev....graph
These functions encourage the use of device dependent applications,
the graph mode will be the only mode.

dev_cwin

dev....gwin
This kind of switching should be done at another level (i.e. not by
the plot-library).

8.3 Extending the use of device capabilities

As stated before in section 3.6 the device's capahillities are not fully explored:
The only drawing function of the device driver interface is the single line
drawing function. Of course this is the basic one, and it can be enough. But
the performance can be increased if we make use of the capabilities most
devices have. \\ie achieve this by extending the device driver interface to
include some more powerfull functions. It is not necessary for all devices to
have these capa.bilities, because it can also be translated to more primitive
capabilities by the device driver.

To increase performance, the functions added are:

dev_po1y1ine
In addition to dev_line this function also draws lines. It can however
draw more lines in one call. This function is added for more than one
reason:

• Most lines to be plotted are joined with other lines.
• Most devices support such a function.
• It can easily be emulated by the device driver if it isn't supported

by the device.

• On some devices the result of one polyline is better than a series
of single Jines (because of rounding on vertices).

• Less data conversion has to take place.

52 8. The device drivers

dev-rectangle
This function draws a rectangle. This function is added for about the
same reasons as dev_polyline is added.

dev_arc

Draws (part of) a circle (or ellips). Again, such a function is sup
ported by many devices. The method to draw an arc whithout this
function is to draw many small line-segments (if a device doesn't sup
port arcs, the device driver will probably have to do this). Because
plplot must now also support polar plots, such a function will be
needed often.

8.4 Overview of added device driver interface
functions

To replace some removed functions, and to add extra functionality, the fol
lowing functions are new:

dev_polyline
dev_rectangle
dev_arc

See previous section.
dev_drawtext

This draws a text string on the device. Described in chapter 6.
dev_textextend

Calculate the dimensions of the specified string. Can be used to deter
mine the best position for a string (or to center a string). Described
in chapter 6.

dev_locator
Enable position input from the device, and specify the callback func
tion which is to be called whenever such input takes place. Described
in chapter 5.

dev_setmarker
Functions which handles all marker-related functionality, i.e. place
ment, movement and removal of markers. Described in chapter 5.

dev_setstyle
This function sets (changes) the properties of the specified style.
Described in chapter 7.

dev_getstyle
Retrieve the properties of a style. Described in chapter 7.

dev_selectstyle

Select the default style. Described in chapter 7.

Chapter 9

Description of the XII device driver

9.1 Introduction

The XU device driver is the most extended device driver of all, because it's
the only interactive device driver and because of the special nature of the
XII device: anything can happen anytime. So we must always be prepared
to redraw parts of the graph, obey resize request, accept input, etc.

Because programming and understandig XII isn't very easy, it is very difficult
to describe the internal workings of this device driver to someone who has
no experience in XII programming. Therefore this chapter is possibly a little
too difficult for the a.verage reader and I'll keep this chapter short. For a
complete description, the best description is the documented source.

The task of the XU device driver is not only to convert the device driver
interface functions to and from XU commands, but also to handle various
XU requests (e.g. refresh).

9.2 Refresh and resize

XU is a windowing system, in which a window can (partly) be obscured
by another window. It's the programs own responsibility to update the win
dow whenever requested. There are X-servers that support backing store. If
enabled, the server updates the exposed parts of the window itself. The appli
cation must however be able to do it itselve, because not all servers support
it, and if the server has not enough resources available, it can decide not to
do it anymore on any moment.

An often used method to update exposed regions of the window is to redraw
the window (parially or totally) from the original data. In our application,
this can be very time consuming and therefore unacceptable. V\'e can over
come this problem by maintaining a ba.cking store ourselves: a pixmap with

53

54 9. Description of the Xll device driver

the same size as the window is created and all objects drawn in the window
are also drawn in the pixmap. If an expose event is received, the exposed
region is copied from the pixmap to the window, resulting in a fast update.

A window can also be resized at any time. There are two possible responses
to such a resize event:

• Redraw the window with the appropriate scaling.
• Don't do anything, but wait till the user explicitly tells to resize and

redraw.

I choose for the last solution, because a user wants often make some other
modification before replotting the graph, and the redraw can take some time.
To make a resize a little more user friendly, some precautions are taken in
the user interface, see chapter 10.1.

If a resize occurs, the pixmap should be resized too, which is impossible.
Therefore we will have to destroy the pixmap and create a new one. Con
sequently we lose all data contained in the pixmap, and have to redraw the
complete window.

9.3 Markers and device input

The implementation of the markers and device input is already described in
chapter 5, so I will limit myself to mentioning some items.

9.3.1 Device input

There are two forms of device input: by mouse and by keyboard. Both are
implemented in another way:

Input via mouse

Input via a mouse is implemented with an event handler. To be able differen
tiate between a start of marker placement and a cancel, a little state machine
is used.

Input via. keyboard

Input via the keyboard is implemented with XlI action routines. Because the
only usable event is a keypress event, we are forced to use a state machine.

9. Description of the Xll device driver 55

Absolute positioning is not very intuitive when using a keyboard, therefore
the keyboard input gives always a relative position, which has to be trans
formed to an absolute position in a higher level.

56 9. Description of the Xll device dril·er

Chapter 10

User Interface

10.1 Introduction

The user interface is the top part of the application (see figure 3.1). It's task
is twofold:

• Set up the XII environment.
• Supply menu's to interact with the user.

At the moment only the first part is implemented.

10.1.1 XII environment setup

The setup consists of the standard start of an OSF/Motif application followed
by the creation of a DrawinArea widget within a ScrolledvVindow widget.
This last widget makes it possible to view the complete DrawingArea (in
which the graphs are plotted) even if the the window is made smaller, by
providing scrollbars.

Also a functions is provided to force a resize of the window. In fact it resizes
the DrawingArea widget to the current size of the ScrolledWindow widget.
After it has done this, a plplot library function is called to force the device
drivel' to do a resize too.

57

Chapter 11

Conclusions

11.1 X11 and OSF/Motif programming

Programming XII and OSF/Motif applications differs in many respects from
programming some other non-Xll application, because of it's event driven
structure. This requires quite a while to get used to, but once you get used to
it, it's a nicer kind of programming, because you are almost forced to make
the program modular.

Besides from the other program structure, programming XII and OSF/Motif
requires a lot of experience and programming practice. This is caused by
several reasons. First, the libraries consist of a couple of hundred functions,
which must be known by the programmer at least in such a way that he
knows there is a function that does something like that. Second, there are
often more posible solution to a certain problem. Most of these solutions
turn out to be very complex or inefficient. A programmer should avoid these
solutions.

11.2 Status of the project

The project turned out to be to big to complete in the available time. This
was partly caused by a slow start and partly by the complexity of Xll pro
gramming.

Things that have to be done are:

• database
• some minor extensions to the plplot-library
• extension of the user interface

The estimated time to complete this is a couple of months, provided it's
done by a programmer with experience in programming in unix, C, Xll and
OSF/Motif.

59

Bibliography

[Der91] Derks, P.G.M.J. A New User Interface for the ARCS Antenna
and RCS-Measurement System. Master's thesis, Eindhoven Uni
versity of Technology, Department of Electrical Engineering, oc
tober 1991.

[Her] A contribution to computer typesetting techniques: Tables of Co
ordinates for Hershey's Repertory of Occidental Type Fonts and
Graphic Symbols. NBS Special Publication 424.

[OSF89a] OSF/A-lotif Programmer's Guide: Toolkit, Revision 1.0, 1989.
Open Software Foundation, Eleven Cambridge Center, Cam
bridge, MA 02142.

[OSF89b] OSF/Motif Programmer's Reference Manua.], Revision 1.0, 1989.
Open Software Foundation, Eleven Cambridge Center, Cam
bridge, MA 02142.

[OSF89c] OSF/Motif Style Guide, Revision 1.0, 1989. Open Software Foun
dation, Eleven Cambridge Center, Cambridge, MA 02142.

[OSF90] OSF/Motif Release Notes/Porting Guide, Revision 1.0.A, 1990.
Open Software Foundation, Eleven Cambridge Center, Cam
bridge, MA 02142.

[Ric90] Richardson, Tony. The PLPLOT Plotting Library Programmer's
Reference Manual, Version 3.0, November 1990.

[Xma88a] X Manual Set. Volume 2: X Library Interface, first edition, 1988.
Addison-\iVesley Publishing Company.

[Xma88b] X Manual Set. Volume 3: X Intrinsics & Athena \Vidgeds, first
edition, 1988. Addison-Wesley Publishing Company.

[You90] Young, Douglas A. The X window system: programming and
applications with Xt / OSF/Motif edition. Prentice Hall, 1990.

61

Appendix A

Contour Literature

A.I Introduction

The contour algorithm implemented in the plplot library is not the most
efficient one. Therefore the idea was to implement a new algorithm. Unfor
tunately, there wasn't any time left to do this, but I already had done some
literature research, which I will present here.

A.2 Contour literature list

[Aki70] Akima, Hiroshi. A new method of interpolation and smooth curve
fitting based on local procedures. Journal of the ACM, 17(4):589
602, 1970.

[Aki74a] Akima, Hiroshi. A method of bivariate interpolation and smooth
surface fitting based on local procedures. Communications of the
ACM, 17(1):18-20, January 1974.

[Aki74b] Akima: Hiroshi. Algorithm 474: Bivariate interpolation and
smooth surface fitting based on local procedures. Communica
tions of the ACM, 17(1):26-31, January 1974.

[Aki78a] Akima, Hiroshi. A method of bivariate interpolation and smooth
surface fitting for irregularly distributed data points. ACM Trans
actions on .Mathematical Softwa.re, 4(2):148-159, 1978.

[Aki78b] Akima, Hiroshi. Algorithm 526: Bivariate interpolation and
smooth surface fitting for irregularly distributed data points.
ACM Trallsactions on Mathematical Software, 4(2):160-164,
1978.

[Ber76] Berry, G. Algorithm 92: The drawing of dashed lines. Computer
Journal, 19(4):361-363, 1976.

[BGS80a] Barr, Roger C., Gallie, Thomas M., and Spach, Madison S. Auto
mated production of contour maps for electrophysiology: II. Tri-

63

64 A. Contour Literature

angulation, verification and organization of the geometric model.
Computers and Biomedical Research, 13:154-170, 1980.

[BGS80b] Barr, Roger C., Gallie, Thomas M., and Spach, Madison S. Au
tomated production of contour maps for electrophysiology: III.
Construction of contour maps. Computers and Biomedical Re
search, 13:171-191, 1980.

[BH87] Brinkkemper, Sjaak and Hendriks, Harrie. A new algorithm for
contour-plotting. Internal report 100, Department of Informat
ics, University of Nijmegen, Toernooiveld, 6525 ED NIJMEGEN,
April 1987.

[BN64] Bengtsson, Bengt-Erik and Nordbeck, Stig. Construction of is
arithms and isarithmic maps by computers. BIT, 4:87-105, 1964.

[Br080] Brodlie, K.W., editor. Mathematical Methods in Computer
Graphics and Design. Academic Press, 1980. Conference.

[BZ85] Beatson, R.K. and Ziegler, Z. Monotonicity preserving surface
interpolation. SIAM Journal on Numerical Analysis, 22(2):401
411, April 1985.

[CLM69] Cottafava, G. and Le Moli, G. Automatic contour map. Commu
nications of the ACM, 12(7):386-391, July 1969.

[Cra72] Crane, C.M. Algorithm 75: Contour plotting for functions spec
ified at nodal points of an irregular mesh based on an arbitrary
two-parameter coordinate system. Computer Journal, 15(4):382
384, 1972.

[Day63] Dayhoff, M.O. A contour-map program for X-ray crystallography.
Communications of the ACM, 6(10):620-622, October 1963.

[DBV89] Dickinson, Robert R., Bartels, Richard H., and Vermeulen, Al
lan H. The interactive editing and contouring of empirical fields.
IEEE Computer Graphics and Applica.tions, 9:34-43, 1989.

[Ear85] Earnshaw, Rae A., editor. Fundamental Algorithms for Computer
Graphics. NATO ASI Series F: Computer and Systems Sciences
volume 17. Springer-Verlag, 1985.

[Eva74] Evans, D.J., editor. Software for Numerical Mathematics. Aca
demic Press, 1974.

[FN80] Franke, Richard and Nielson, Greg. Smooth interpolation of large
sets of scattered data. International Journal for Numerical Meth
ods in Engineering, 15(11):1691-1704, 1980.

[FRKA78] Faber, D.H., Rutten-Keulemans, E.W.M., and Altona, C. Com
puter plotting of contour maps: An improved method. Computer
& Chemistry, 3:51-53, 1978.

[GCR77] Gold, C.M., Charters, T.D., and Ramsden, J. Automated con
tour mapping using triangular element data structures and an
interpolant over each irregular triangular domain. In George,

A. Contour Literature 65

James, editor, Computer Graphics: Proceedings of SIGGRAPH
'77, pages 170-175, Summer 1977.

[LN79] Leipiila, T. and Nevalainen, O. A plotter sequencing system.
Computer Journal, 22(4):313-316, 1979.

[McC71] McConalogue, D.J. Algorithm 66: An automated french-curve
procedure for use with an incremental plotter. Computer Journal,
14(2):207-209, 1971.

[McL74:] McLain, D.H. Drawing contours from arbitrary data points. Com
puter Journal, 17(4):318-324, 1974.

[MeL76] McLain, D.H. Two dimensional interpolation from random data.
Computer JournaJ, 19(2):178-181, 1976. Errata to this article:
Computer Journal 19(4):384.

[Mer73] Merrill, R.D. Representation of contours and regions for effi
cient computer search. Communications of the ACAf, 16(2):69
82, February 1973.

[ML72] Mol', M. and Lamdan, T. A new approach to automatic scanning
of contour maps. Communications of the ACM, 15(9):809-812,
September 1972.

[Mor68] Morse, Stephen P. A mathematical model for the analysis of
contour-line data. Journal of the ACM, 15(2):205-220, 1968.

[Mor69] Morse, Stephen P. Concepts of use in contour map process. Com
munications of the ACM, 12(3):147-152, 1969.

[MR81] McAllister, David F. and Roulier, John A. An algorithm for
computing a shape-preserving osculatory quadratic spline. ACM
Transactions on Mathematical SoftlFare, 7(3):331-347, 1981.

[NP84] Ngai, Eugene C. and Profera, Jr., Charles E. Applications of bi
variate interpolation to antenna related problems. IEEE Trans
actions on Antennas and Propagation, 32(7):735-739, July 1984.

[Pow74] Powell, M.J.D. Piecewise quadratic surface fitting for contour
plotting. In Evans [Eva74], pages 253-274.

[Pre84a] Preusser, Albrecht. Computing contours by successive solution of
quintic polynomial equations. ACM Transactions on Mathemat
icaJ Software, 10(4):463-472, December 1984.

[Pre84b] Preusser, Albrecht. Algorithm 626. TRICP: A contour plot pro
gram for triangular meshes. ACAf Transactions on Mathematical
Software, 10(4):473-475, December 1984.

[Pre89] Preusser, Albrecht. Algorithm 671. FARB-E-2D: Fill area with
bicubics on rectangles - a contour plot program. ACM Trans
actions on ~MathematicaJ Software, 15(1):79-89, 1989.

[Sab80] Sabin, M.A. Contouring - a review of methods for scattered data.
In Brodlie [Br080], pages 63-86. Conference.

[Sab8.5] Sabin. 1\1.A. Contouring - the state of the art. In Earnshaw
[Ear85], pages 411-482.

66 A. Contour Literature

[Sch82] Schagen, I.P. Automatic contouring from scattered data points.
Computer Journal, 25(1):7-11, 1982.

[Sew88] Sewell, Graville. Plotting contour surfaces of a function of
three variables. ACM Transactions on Mathematical Software,
14(1):33-44, 1988.

[Sny78] Snyder, William V. Algorithm 531: Contour plotting. ACM
Transactions on Mathematical Software, 4(3):290-294, Septem
ber 1978.

[SS78] Schultheis, Hildegard and Schultheis, R. Algorithm 35: An
algorithm for non-smoothing contour representations of two
dimensional arrays. Computing. Archives for Informatics and
Numeral Computa.tion, 19(4):381-387, 1978.

[ST81] Sibson, Robin and Thomson, Graeme D. A seamed quadratic
element for contouring. Computer Journal, 24(4):378-382, 1981.

[Sut76a] Sutcliffe, D.C. An algorithm for drawing the curve f(x, y) = O.
Computer Journal, 19(3):246-249, 1976.

[Sut76b] Sutcliffe, D.C. A remark on a contouring algorithm. Computer
Journal, 19(4):333-335, 1976.

[Sut80] Sutcliffe, D.C. Contouring over rectangular and skewed rectan
gular grids - an introduction. In Brodlie [Bro80], pages 39-62.
Conference.

[War78] \Vard, Stephen A. Real time plotting of approximate contour
maps. Communications of the A.CM, 21(9):788-790, September
1978.

[Wat74] 'Watkins, Steven L. Algorithm 483: Masked three-dimensional
plot program with rotations. Communications of the ACM,
17(9):520-523, 1974.

[WP84] Wa.tson. D.F. and Philip, G.M. Systematic triangulations. Com
puter Vision, Grahhics and Image Processing, 26:217-223, 1984.

[Zyd88] Zyda. Michael J. A decomposable algorithm for contour surface
display generation. ACM Transactions on Graphics, 7(2):129
148, April 1988.

	Voorblad
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Specification
	3 Implementation
	4 Database for graphics application
	5 Implementation of markers
	6 Font support
	7 Styles
	8 The device drivers
	9 Description of the X11 device driver
	10 User interface
	11 Conclusions
	Bibliography
	Appendix A

