EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Template file for IDaSS to HDL-Verilog generation

Lin, X.

Award date:
1997

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6e9716bc-ec9b-43e7-94bf-5d3c3ba3ec46

T

Eindhoven University of tL!J Technology

Faculty of Electrical Engineering
Section of Information and Communication Systems

Master's Thesis:

Template file for IDaSS to HDL-
Verilog generation

X. Lin

Coach :Dr. Ir. A.C. Verschueren
Supervisor : Prof. Ir. M.P.J. Stevens
Period : March 1997 - October 1997

The Faculty of Electrical Engineering of Eindhoven University of Technology does not
accept any responsibility regarding the contents of Master's Theses

ICS - EB 666

Preface

This report contains the result of my graduation project carried out at the section
Information and Communication Systems, Faculty of Electrical Engineering of the

Eindhoven University of Technology.

I would like to thank Prof. Ir. M.P.J. Stevens for giving me the opportunity to do my
graduation project in the section Information and Communication Systems, my coach
Dr.Ir. A.C. Verschueren for his guidance. Last but not least, I would like to thank my
fellow students, and the other members of the section who made my project not only

instructive, but also very pleasant.

Abstract

This report describes an implementation of a converter for IDaSS (Interactive Design
and Simulation System) to Hardware Description Language Verilog. With IDaSS a

digital system can be designed and simulated interactively at Register Transfer Level
or higher level languages. With a Hardware Description Language, a real chip layout

of the digital system can be generated.

The converter consists of Verilog language optimized conversion instructions. The
file generated by the converter will be the input file for a Verilog simulator or silicon

compiler. The latter can generate files for manufacturing chip.

The complete IDaSS system will consist of several interconnected tools. Different
tools have been implemented successfully. The implementation details of the Verilog
converter, Expressions, Unary Operators and Binary Operators are the main subject

of this report.

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5
Chapter 6
References

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5

Introduction
1.1 IDaSS tools
1.2 IDaSS converters

Hardware Description Languages and Simulators
2.1 Introduction HDLs
2.2 HDL simulators

VHDL and HDL-Verilog
3.1 VHDL
32 HDL-Verilog

HDL-Verilog implementation

4.1 The layout of the template
4.1.1 Introduction template

4.1.2 The template sections

4.1.3 Expression optimization

4.2 Precedence level

4.3 Functions for Unary Operators
44 The Binary Operators

Instructions for the target language file generation

Conclusions and recommendations

Verilog precedence levels

Functions in Verilog code

Simulation and Implementation of Signed Multiply
Example of Verilog code for a shiftregister

The template file

~ s

oo

10
10
12

14
14
14
16
17
18
20
23

26
27
28
31
32
44

46
48

Chapter 1

Introduction

The Interactive Design and Simulation System (IDaSS) is a research project of the
section Information and Communication Systems (ICS) of the Faculty of Electrical
Engineering of the Eindhoven University of Technology. IDaSS is a graphics and text
based editing system to design and simulate digital systems at Register Transfer

Level (RTL) or higher level languages. IDaSS is built in the Smalltalk environment.

1.1 IDaSS tools

The complete system will consist of several interconnected tools. In figure 1, IDaSS
Help File contains the online help for the digital system designer. In a later version,
online help for the template file writer will be implemented. The template help file

template.txt will be converted into IDaSS help file.

IDaSS image file is an important file for a digital system designer. When IDaSS is
started for the first time, the technology file and the IDaSS$ help file will be
automatically attached to the image file. During a digital system design, a snapshot of
the design can be saved as an image file. It contains all parameters at the moment you
save the image. The next time, when the IDaSS system is started, this image will be

loaded and the IDaSS design session can be continued.

The Technology File describes IDaSS technology parameters: delays approximation,
definitions for RAM’s, ROM’s and other memories. The Log File Description is a
test vector file generator. It will generate a complete test environment from within

IDaSS containing test vector resulting from a simulation.

The Compass Template File tells IDaSS how to convert digital system design into
Compass compatible VHDL. In a later IDaSS version, the Verilog Template File will
be added to the system. It will enable conversion into Verilog. VHDL and Verilog are
Hardware Description Languages (HDLs). In this way, the template files allow
translation of IDaSS designs into the languages which are suitable for commercial

silicon compilers.

IDaSS IDaS$
Image File Help File
Verilog Technology
Template File File
IDaSS
Compass Core Log File
Template File Description
Smalltalk
Environment
DOS
Environment

Figure 1. The IDaSS software package

Many digital systems have been designed and simulated successfully with IDaSS
tools. Microprocessors, PCM telephone exchange switching matrix and Scaleable
‘Batcher-Banyan’ ATM switching matrix are designed. The IDaSS software package
can be downloaded from the website of the section ICS.

(http:/fwww.eb.ele.tue.nl/proj/idassfly.html).

1.2 IDaSS converters

VHDL and Verilog are chosen as the target languages for the IDaSS converters. The
converters will generate optimized files for different simulation and synthesis tools.
After this conversion, a synthesis tools will be able to generate the netlist of the
original digital system designed in IDaSS. Finally, the IC manufacture will be able to

produce the chips in cleanrooms.

The conversion control files are named Alien File Templates (AFT). The AFT for
IDaSS to Compass compatible VHDL is implemented. The AFT for IDaSS to
Verilog, containing the conversion of IDaSS Unary Operators and Binary Operators

is the main subject of this report.

IDaSS
/ Design \
Converter Converter
Verilog.aft Compass.aft
Verilog Compass
Tool box Tool box
Layout
Design.cif
Chip
Production

Figure 2. Steps from the IDaSS digital system design to chip production

In figure 2, the blocks describe the steps from an IDaSS digital system design to chip

production. The blocks are:

¢ IDaSS design : the digital systems designed in IDaSS

¢ Verilog.aft : the converter, the subject of this report

¢ Verilog Tool box : tools to generate design.cif file

¢ Compass.aft : the converter for Compass compatible VHDL
¢ Compass Tool box : tools to generate design.cif file

¢ Design.cif : the file for the IC manufacture

In the next chapter, starting with an overview of different HDLs, and then a
comparison between VHDL en Verilog. After this, the implementation of the

template file will be followed. Conclusions and recommendations will be given.

Chapter 2

Hardware Description Languages and
Simulators

2.1 Introduction HDLs

There are many Hardware Description Languages and Simulators on the market.
Some HDLs are public domain languages. Four of these HDLs which will be
described here are:

¢ VHDL

¢ HDL-Verilog

+ M

¢+ UDL/
VHDL (VHSIC-HDL) was started in 1981, based on the United States Department of
Defense’s Very High Speed Integrated Circuit (VHSIC) program. It was developed
by IBM and Texas Instruments in 1983. The first version of VHDL was released in
1985. It was standardized by IEEE in 1987 and was updated in 1993. Today it is
known as IEEE standard 1076. It is a public domain language.

HDL-Verilog was launched by Gateway in 1983. It has been used extensively since
then. After Cadence Design Systems, Inc. bought Gateway in 1989, verilog has been
used as the language of Cadence Verilog-XL simulator. Verilog became a public
domain language in 1990 and IEEFE standard 1364 in 1995. Currently many Verilog-
XL simulator licenses have been sold. Universities in the US and elsewhere teach and
research Verilog. By the way, a Verilog simulator of the Wellspring Solutions,

Veriwell, can be download from the website: http://www.wellspring.com

M is the language of the Lsim simulation system which is developed by Silicon
Design Labs, then by Silicon Compiler Systems, later merged with Mentor Graphics.
A lot of models and libraries have been written in this language. M is not a public

domain language.

UDL/ (Unified Design Language for Integrated Circuits) was started in the Japanese
LSI-Design Language Standardization Project in 1987. The purpose of UDL/ is for
VLSI designs to be compatible among semiconductor manufacturers, chip user, and

design centers.

VHDL and HDL-Verilog are public domain languages and are used worldwide. They
are industry-standard HDLs for chip design. They have been chosen as the target

language of the IDaSS converters.

2.2 HDL Simulators

There are various Simulators for Hardware Description Languages. For the same
HDL, many Logic Simulators with different performance and cost are available.

Examples of HDL Simulators are:

VeriBest (http://www.veribest.com)
FinSim

PureSpeed

SILOS-3 (http://www.simucad.com)
VeriWell (http://www.wellspring.com)
Viper

* & & & O o

VeriBest VHDL is a high performance simulation system for ASICs. SILOS-3
simulation environment supports the HDL-Verilog for simulation at different levels
of design abstraction with a good performance. The free version of Veriwell can
compile a limited lines of Verilog instructions. In the future, maybe, a powerfull

simulator is needed to simulate a converted complex digital system design in IDaSS.

Chapter 3

VHDL and HDL-Verilog

3.1 VHDL

In VHDL an entity is a substructure of a design and can be compiled into a working
library. An entity has two parts:
¢ An entity declaration which specifies the interface between a design entity and the

outside word.
¢ An architecture body which defines the function of a design entity.

All process statements within an architecture body are concurrent. A process

statement defines an independent sequential behavior of a part of the design.

There are three levels of abstraction for describing digital systems in an architecture

body:

¢ Behavioral-level (algorithmic level)
¢ Data-flow-level (RTL level)
¢ Structural-level (netlist level)

There are two basic data types: scalar and composite. Scalar types are: integer,
floating point, Boolean, bit, character and (physical) time. Composites are

constructed form scalar types. The user can also define own data types.

Compass (V8R4.7.0) compatible VHDL is used in our University to generate the real
chip layout.

10

To Compare the structure of VHDL with Verilog, this is an example of VHDL code:

-- This is the comment of the VHDL code

LIBRARY -- The library described here will be used.

ENTITY MyDesign IS -- Start with entity declaration which specifies the interface
PORT (CLK :IN DataType;

-- Other I/O connections of MyDesign

DATA : OUT DataType);

END MyDesign;
ARCHITECTURE ... OF MyDesign IS -- The function of the entity MyDesign
-- Behavior or structure of MyDesign
BEGIN

-- State, logic...
PROCESS (CLK)

VARIABLE var_name : DataType;

-- Other variables
BEGIN

-- This can be a statement
IF (CLK’event) and (CLK = ‘1)
e -- Execute this if the conditions is true
END IF;
END PROCESS ... -- This is the end of the process ...
END ...; -- OF MyDesign -- This is the end of MyDesign

-- The hierarchical perspective is:

-- This is the CONFIGURATION
-- This is the end of VHDL sample code

11

3.2 HDL-Verilog

In Verilog, a set of modules are used to describe a digital system. The modules are
reusable as a component and have an I/O interface with other modules. The
description of the function of the module can be structural, behavioral, or a mix. A
module in Verilog is equivalent to the combination of entity declaration and

architecture body of VHDL.

Processes are used to build concurrency in Verilog. With the keyword always, a
process can be designed. This process will continuously repeat itself. Using the

keyword fork-join, a concurrency within a processes can be constructed.

Four levels for describing digital systems inside the module are:

¢ Algorithmic-level (algorithm in high-level language)

¢ RTL-level (data flow between registers)
¢ Gate-level (logic gates and interconnections)
¢ Switch-level (transistors and interconnections)

In a module a function (between the keywords function and endfuction) can be
defined. A function is a logically connected piece of program, which returns exactly
one value by its name. A function will be executed without delay. In a module a task
(between the keywords task and endtask) can be defined. A task is a piece of program

with time controls.

Verilog has easy to use data types. With the keyword reg the register data type can be
defined. Another net data type is the data type wire which connects the signal of the
different modules. Data between the modules are connected with the interface type

input, output and inout.

12

This is a example of the Verilog code:

1/

// This is the comment of the Verilog code
1

module NameOfSubmodule;
endmodule

module MyDesign;

input [k:O]

output [m:0]

inout [n:0]

reg [p:0]

wire [q:0]

function Fx;

begin

if (Temp_var)
begin
end
end
endfunction
task Tx;

always @ (negedge CLK)

begin

end

endtask

always @ (posedge CLK)

begin

end

initial

begin
CLK =0; #1;
CLK = 1:#1;
$finish

end

endmodule

Var;

Data;
Bidir;
Temp_var;
CLK;

/IThis is the submodule
//The statements of the submodule
//The end of the submodule

// This is the start of the main module
// The interface specification

/Mnteger k,m,.n specify the range in bits

//Other declarations

/I A function to compute a result from its arguments without delay
// Input and output variables of the function can be defined here

// If Temp_var has at least one bit equals 1 then

// Instructions will be executed

//Other statements in the function block

// This is the end of the function Fx

/fTask with logically connected program may contain time control
// Input and output variables of the task can be defined here
//Always execute the statement each time

/fwhen CLK signal falling

//@ waits for an event to occur

//Here come the instructions

//Other statements in the task block
//This is the end of the task Tx

//Other statements in the main module

//Always execute the statement each time

/fwhen CLK signal rising

//@ waits for an event to occur

//Here comes the instructions

/Mnitial will execute the statement exactly once

/ICLK is low and wait for 1 unit of time

//Now rise the CLK so that the always @ block will be executed

//This is the end of The instructions

/fThis is the end of MyDesign

13

Chapter 4

HDL-Verilog implementation

The Alien File Template-Verilog (AFT-Verilog), is a text file. It contains instructions
to convert each of the IDaSS constructs and operators, It will generate Verilog code

directly from IDaSS. In this chapter the details of the implementation will be
described.

4.1 The layout of the template

4.1.1 Introduction

The template file contains all conversion rules from the source to the target. The

source is IDaSS and the target is Verilog.

SOURCE , TARGET
LANGUAGE | Conversion LANGUAGE
IDaSS rules HDL
SYSTEM VERILOG

Figure 3. The conversion rules from source to target

In the template file the comment will be given after a double quote. The template file
ends with the last line which is started with a *.”. If words or expressions have to be
written to the output file, a single quote will be used. With the command ‘cr’, a line
feed will be inserted. Together with the combination of the ‘markindent’ and

‘exitindent’ the desired layout of the output file can be generated.

The template has many sections. Each of those sections, we handled starts with ‘#
which will be followed by an identifier: Expression, UnaryOp and BinaryOp. Those
names indicate respectively the sections which handle:

¢ Expressions

¢ Unary Operators

¢ Binary Operators
The sections with the name Expression have many subsections. The combination of

the names will describe the function of the subsections.

The names of the subsection of the Expression are:

¢ conversion the conversion between data types

¢ typing the indication for different IDaSS values
¢ raiseprecedence to place braces

¢ root to generate the root of an expression

The sections with the name UnaryOp will convert all IDaSS Unary Operators. Each

unary operator has one source value type and the result value type.

The sections with the name BinaryOp will convert all IDaSS Binary Operators. A
binary operator has the left expression part and the right expression part. It has two

source value types and the result value type.

To generate the output file, passes are defined. Pass 0 is an initial pass, it is used to
generate the lists of separate piece of text to be inserted in backwards order,
temporary variables and functions for later passes. Pass 0 is also used to start the file
generation by calling the root subsection. For the file generation, the current ‘pass’ is

indicated with the ‘generate X’ with an integer ‘X’.

15

4.1.2 The template sections

In a section, different names are used as a subsection markers. After a subsection

marker, the contents of a subsection are defined.

‘Source’ and ‘Result’ are subsection markers. The source and result value types are:
constant, Reg_bit and reg_bit_vector. The constant has no bit width. A conversion
must take place before a bits operator can be used. Reg_bit contains one bit.
Reg_bit_vector contains at least 2 bits. Reg_bit_c and reg_vector_c are the

complement types.

‘inline code’ can have different meaning in different sections. In the binary operator
sections, an operator has two operands. The ‘par’ code indicates which part of the
operand and what is the precedence level of the section. The left part of the

expression of a binary operator has the index 1. The right part has the index 2.

For example: par / 5 means the left part expression of a binary operator and this
section has the precedence level 5. The Verilog precedence level are ordered from
low to high. It will be described late in this chapter. The list of the precedence level is

included in Appendix 1.

‘guard’ creates the condition for the execution of the section. If the expression of the

guard is not zero, then this section can be executed.

‘root’ generates the root of the expression. For example, Output <= InputA + InputB
is an IDaSS expression with root. It has two parts, the first part is the target
assignment * Output <=, the second part ‘ InputA + InputB’ is the top node of the
expression with the ‘+’ operator. There are also expressions with no root: For
example in: * IF InputA > InputB THEN instructions ...". In this expression there is

no target assignment.

16

4.1.3 Expression optimization

Optimal conversion means the reduction of the sub-expression tree. The expressions
are generated with different operations. The combinations of operators can generate
different expressions with the same result. Reducing the expression tree can be done
by forward operations. ‘forward’ removes the sub-expression tree which do not

generate output code. For example:

BasicExp. BasicExp.
reg_bit reg_bit
Root Root
Reg_bit ,|Reg_bit
[NoT] inA
Reg_bit_c
[DEC]
Reg_bit
inA

Figure 4. The reduction of the sub-expression tree

In this example, the ‘NOT’ operator generates the complement type of the variable
with one bit width. The ‘DEC’ operator decrements a value which for 1 bitis a
complement of that bit. The result of the two operations is not changed. The result

expression tree will be shorter.

Optimal conversion also means the reuse of the same construction in the different
level of the design. The different levels of the design can contain sub-level
schematics. These schematics may have the same IDaSS data structure. A link is

made between IDaSS data structure and the translated data objects.

The specific description about the sections will be found in the IDaSS manual file

template.txt.

17

4.2 Precedence level

The inline X indicates the precedence level of the section. The precedence level of the
subexpressions of the binary operator is given with ‘ par X Y’. With X is integer 1 or
2 depend on left or right part of the expression of the operator and Y the precedence

level.

IDaSS operators have different precedence levels compared to Verilog operators. An
expression will be scanned from left to right, and it will be executed in this order, if
there are no braces in it. If the braces are added to one part of the expression, this part

of the expression with braces will be executed first, then the rest of the expression.

To convert an IDaSS expression into Verilog, at first, all IDaSS operators in the
expression have to be converted in Verilog operators. If there isn’t any Verilog
operator with the same operation as IDaSS operator, special functions in Verilog
have to be constructed to carry out those operations. For example: a lot of Unary
Operators in IDaSS are converted with function that have been written in Verilog

language.

After IDaSS operators are converted into Verilog operators, the precedence level of
the operators are changed. This means each part of the expression with binary
operators must be checked regarding the precedence level and compared with the
Verilog precedence level. If the Verilog operator has a higher precedence level, then

braces must be put around that part of the expression.

18

An example:

¢ IDaSS expression AAB < 11

¢ First expression A && B will be generated in Verilog. This expression has the
inline level 2, because && operator in Verilog has precedence level 2. This is the
left part expression of the operator ‘ < °.

¢ The operator ‘ < ‘ in Verilog has precedence level 7. This is indicated by par 1 7.

Conclusion: inline is lower than par, braces must be put around it.

¢ Converted result in Verilog: (A && B)< 11

L 2

A list of HDL-Verilog operator precedence levels is included in Appendix 1.

19

4.3 Functions for Unary Operators

The unary operators are the operators with a single operand. IDaSS has powerful

unary operators. With these operators, bit vectors will be manipulated easily.

dec decrement value (subtract 1)
epty even parity bit

inc increment value (add 1)
Isomask least signficant one bit mask
lsone least significant one bit position
Iszmask least significant zero bit mask
1szero least significant zero bit position
maj majority gate

msomask most significant one bit mask
msone most significant one bit position
mszmask most significant zero bit mask
mszero most significant zero bit position
neg two’s complement negative

not complement bits (logical NOT)
onecnt count number of ONEs in word
ones generate all ONEs constant

opty odd parity bit

rev reverse all bits MSB <> LSB
width return number of bits in value
zerocnt count number of ZEROes in word
ZEeroes generate all ZEROes constant

Verilog has limited Unary Operators. Many functions have been constructed in
Verilog language to deal with Unary operators in the Verilog template file. Those

functions are tested with the Verilog simulator Veriwell.

The function for most significant one bit mask (msomask) will be described here. In
this example, the width of the bit vector is 8 bits. In the template file it will be
dependent on the variable. The expression ‘parl width’ will calculate the bit width of

the variable parl.

20

module fn_msomask; // This is the module fn_msomask

function [7:0] d2vMSOMASK;
// This is the start of the function d2vMSOMASK;
/I The simulation for most significant one bit mask test in HDL-Verilog

input [7:0] parl; // Test input
integer index;
reg (7:0] result; /1 Test result for output
reg found;
begin
result = 8'b00000000;
found = 0;
for (index = 7; index >=0; index =index - 1)
begin
if (~found && parl[index]==1)
begin
result[index]=1;
found=1;
end
end
d2vMSOMASK-=result; // This is the output of the test result
end
endfunction // This is the end of the function d2vMSOMASK;
initial
begin

$display ("function (d2vMSOMASK) = %b", d2vMSOMASK(8'b01000000));

/I Calling the function and display the result, when parl = 01000000
end

endmodule // This is the end of the module fn_msomask

After this function is tested with the simulator Veriwell. It is rewritten for the

template file to generate msomask function:

21

#UnaryOp msomask

" Most significant one mask priority on bit vector uses function:
sources 'reg_bit_vector'
result 'reg_bit_vector'
function
' " markindent
‘function [(parl width - 1) decimal *:0] d2vMSOMASK;’ cr
‘input [* (par] width - 1) decimal *:0] parl;’ cr
cr
* // Equivalent of an IDaSS most significant one mask priority’ cr
* // (msomask) operator on a * (parl width) decimal * bits word.” cr
cr
‘integer index;’ cr
‘reg [(parl width - 1) decimal *:0] result;’ cr
‘reg found;’ cr
‘begin’ cr
result =" ((par] width zeroes) width) decimal ’’b’ (par1 width zeroes) binary *;’ cr
found =0;’ cr
for (index =’ (parl width - 1) decimal “; index >=0 ; index =index-1) cr
begin’ cr
¢ if (~found && parl[index]==1)" cr
begin’ cr
result[index]=1;" cr
found=1;" cr
end’ cr
end’ cr
* d2vMSOMASK=result;’ cr
‘end’ cr
‘endfunction // function d2vMSOMASK’ cr
exitindent cr cr
inline 30
generatefunction
'd2vMSOMASK' (par] width) decimal '(' markindent par 1 O exitindent ')’

"

Verilog programs for other Unary Operators is included in Appendix 2.

22

4.4 The Binary Operator concatenation

Each IDaSS binary operator has two operands. This is the list of binary operators.

They are converted into Verilog operators.

+ add

- subtract

* unsigned multiply

*p right hand signed multiply
+* left hand signed multiply
+*+ signed multiply

A logical AND

~N logical NAND

Vv logical OR

~V logical NOR

>< logical XOR

<> logical XNOR

= unsigned ‘equal’
~= unsigned ‘not equal’

< unsigned ‘less than’

<= unsigned ‘less than or equal’
=< unsigned ‘less than or equal’

> unsigned ‘greater than’

>= unsigned ‘greater than or equal’
=> unsigned ‘greater than or equal’
+=+ signed ‘equal’

+~=+ signed ‘not equal’

+<+ signed ‘less than’

+<=+ signed ‘less than or equal’
+=<+ signed ‘less than or equal’

+>+ signed ‘greater than’

+>=+ signed ‘greater than or equal’
+=>+ signed ‘greater than or equal’

The template file sections for these operators is included in the appendix 5. Each
binary operator has many sections. Many sections are dealing with the optimization
of the conversion. In this subchapter, optimization of the concatenation operation

will be described.

23

The concatenation operator in Verilog are ‘{ , }’. To concatenate two variables, like
A and B, it will be done with the expression ‘{A,B}’ directly. But it is a problem,

when one of these expression already contains an concatenation operation.

For example, If C is the concatenation of A and B, the concatenation of C and D will
be: ‘{C,D}’, and the result of the nested concatenation will be ‘{{A,B},D}’. This
means more concatenation operators do the same operation. Because C is only a
temporary expression and not the final expression for the output file, only a *,” is

needed here, there is no need to insert ‘{’ and ‘}’. The correct result is ‘{A,B,C}’.

In general the expression ‘{...{{{A,B},C},D},...}" is generated instead of
{..A,B,C,D,...}.

To solve this problem, temporary variable type concat_miltbit is introduced. The rule
of the correct expression generation will be: Insert only ‘,” if the result type is a

concat_mltbit type.

There are 6 different source types: reg_bit, reg_bit_vector, concat_mltbit, reg_bit_c,
reg_bit_vector_c and concat_mitbit_c. There are 18 possibilities. The 18 sections for

the implementation of the concatenation operator are describled in the table.

24

Source type1
Pari

source type2
par2

result type

concat_miltbit

concat_mitbit

concat_mitbit

concat_mitbit

reg_bit_vector

concat_mitbit

reg_bit_vector

concat_mitbit

concat_mltbit

reg_bit_vector

reg_bit_vector

concat_mitbit

reg_bit

concat_miltbit

concat_mltbit

reg_bit

reg_bit_vector

concat_mitbit

concat_mitbit

reg_bit

concat_miltbit

req_bit_vector

reg_bit

concat_mltbit

reg_bit

reg_bit

concat_mithit

concat_miltbit_c

concat_mitbit_c

concat_mitbit_c

concat_mitbit_c

reg_bit_vector_c

concat_miltbit_c

reg_bit_vector_c

concat_mitbit_c

concat_mltbit_c

reg_bit_vector_c

reg_bit_vector_c

concat_mitbit_c

reg_bit_c

concat_milthit_c

concat_miltbit_c

reg_bit_c

reg_bit_vector_c

concat_mithit_c

concat_mitbit_c reg_bit_c concat_miltbit_c
reg_bit_vector_c reg_bit_c concat_mltbit_c
reg_bit_c reg_bit_c concat_mitbit_c

Table 1 Implementation of the concatenation operator in the template file.

Example: the result type is a concat_mlibit type, insert only *,” between the sources.

#BinaryQp ,

“start of the new section

" Concatenation between vectors:
sources 'concat_mltbit' 'concat_mltbit'
result 'concat_mltbit

n

*“ two source expressions
“result is temporary type concat_mltbit,

inline 30
par 10 par20

“precedence level of the section
“only ‘,” is needed here

25

Chapter 5

Instructions for the target language file
generation

Starting the AFT-Verilog is done from the menu of any schematic window in any
IDaSS session. Entry miscellaneous, followed by alien file template... and attach new
template, then HDL-Verilog template can be chosen. By the way, if an other AFT is
loaded in the IDaSS session, like AFT-Compass, then this template file has to be

removed first from the RAM of the computer with the same menu entry.

It is also possible to attach the template automatically during the startup of the
IDaSS. The files delivered with the IDaSS system package, a file is named idass.cnf.
In this file the line ‘template= Verilog.aft’ has to be added to load the template
automatically. Load the template AFT-Verilog may take a minute on a Pentium

machine. It will use about a half megabyte of the memory.

26

Chapter 6

Conclusions and recommendations

In this report a converter is constructed to generate Verilog code directly from IDaSS.
Functions have been implemented to convert [DaSS unary operators and binary
operators into Verilog language. Verilog language optimized instructions have been

implemented to generate the output file.

The converter, the file Verilog.aft, is a large text file. Beside the sections that
contains the work described in this report, (Expression, Unary and Binary Operators
Conversion, totally approximately half the size of Verilog.aft), also contains other
code. These code has to be modified. The conversion of the IDaSS keyword
operators in Verilog statement will be the next challenge after which the actual

building blocks of IDaSS can be converted.

27

References

[Lee 97]

[Smi 97]

[Gol 96]

[Tom 96]

[Han 95]

[Pont 95]

[ABK 94]

[Ber 94]

James M. Lee
Verilog Quickstart.
Dordrecht: Kluwer, 1997. + 1 diskette (3.5”).

Smith, D.J.

HDL basic training: top-down chip design using Verlog and VHDL.
EDN [European Edition], Vol:41 1996 Iss:22, p. 103-4, 104, 110, 112.

Golze, U.
VLSI Chip Design with the Hardware Description Language VERILOG:

an introduction based on a large RISC processor design.
Berlin: Springer, 1996. + 1 diskette (3.5”).

Tomson, P.
VHDL for hardware design.
Dr. Dobb’s Journal, Vol: 21 1996 Iss: 6, p. 46,48,50,53,55,86.

Hannan, J.

Operational semantics-directed compilers and machine architectures.
ACM Transactions on Programming Languages and Systems,
Vol: 16 1994 Iss: 4, p.1215-47.

Pont, J.F.

A converter from IDaSS design file to synthesizable VHDL.
Eindhoven University of Technolgy, Faculty of Electrical Engineering,
Section of Information and Communication Systems, Eindhoven,
Netherlands, 1995 Master thesis report ICS-EB 589.

Anderson, P. and D. Bolton, P. Kelly.
Paragon specifications: structure, analysis and implementation.
Future Generation Computer Systems, Vol: 10 1994 Iss: 1, p. 137-48.

Berman, Victor.

Standard Verilog-VHDL interoperability.

In: Proceedings of the 1994 International Verilog HDL Conference.
Los Alamitos, CA. IEEE, Computer Society Press, 1994. p 2-9.

28

[CoTh 94]

[SKKK 94]

[HuQu 93]

[Mag 93]

[SGC 93]

[SST 93]

[Wal 93]

[BHK 91]

Coumeri, Sari L., and, Donald E. Thomas.

Benchmark descriptions for comparing the performance of verilog and
VHDL simulators.

In: Proceedings of the 1994 International Verilog HDL Conference.

Los Alamitos, CA. IEEE, Computer Society Press, 1994. p 37-42.

Sankarshanan, P.N. and H. Kobayashi, P.Kukkal, H. Kanbara.
VHDL, verilog-HDL, and UDL/I-feature description and analysis.

IEICE Transactions on information and systems,
Vol: E76-D, 1993 Iss: 9, p. 1055-65.

Huaiming Sun and Qun Liang.

A theory of automatic logic programming based on second order term
rewriting technique.

IFIP Transactions A [Computer Science and Technology,

Vol: A-19 1992, p. 165-76.

Maginot, Serge.

Evaluation criteria of HDLs: VHDL compared to Verilog, UDL/1 & M.
In: European Design Automation Conference EURO VHDL 92.

Los Alamitos, CA. IEEE, Computer Society, 1992. p 746-751.

Schafers, M. and U. Golze, E. Cochlovius.
Verilog-HDL models of a large RISC processor.
In: Proc. 4® EUROCHIP Workshop, Toledo, 1993. p. 242-246.

Sternheim, E. and R. Singh, Y. Trivedi.
Digital design and synthesis with Verilog-HDL.
Automata Publishing Campany, Cupertino, CA., 1993.

Wall, D.W.

Experience with a software-defined machine architecture.

ACM Transactions on Programming Languages and Systems,
Vol: 14,1992 Iss: 3, p. 299-338.

Bolton, D. and C. Hankin, P. Kelly.

An operational semantics for Paragon: a design notation for parallel
architectures.

New Generation Computing, Vol: 9, 1991 Iss: 2, p. 171-97.

29

[Con 91] Conner, D.
Logic-synthesis tools speed ASIC designs
EDN, Vol: 35 1990 Iss: 19, p. 97, 99-100, 102, 104, 106.

[ThMo 91] Thomas, D.E. and P. Moorby.
The Verilog hardware description language.
Boston: Kluwer, 1991.

[BaRe 90] Balou, A.T., and A.N.Refenes.
Designing a parallel object-oriented compiler target language (TOOL).
Microprocessing & Microprogramming.Vol: 30, 1990 Iss: 1-5 p. 457-66.

[Mey 90] Meyer, E.
Test raises questions about VHDL/Verilog interoperability.
Computer Design, Vol: 29,1990 Iss: 3, p. 30, 34, 38.

[Ver 90-1] Verschueren, A.C.
IDaSS for ULSI (Manual).
Eindhoven University of Technolgy, Faculty of Electrical Engineering,
Section of Information and Communication Systems, Eindhoven,
Netherlands, 1990.

[Ver 90-2] Verschueren, A.C.
An object oriented design and simulation system for VLSI.
Microprocessing & Microprogramming, Vol: 30, 1990 Iss: 1-5, p. 241-6.

[Wen 90] Wendt, A.L.
Fast code grneration using automatically-generated decision tree.
SIGPLAN Notices, Vol: 25, 1990 Iss: 6, p. 9-15.

[Wat 89] Waters, R.C.
Program translation via abstraction and reimplementation.

IEEE Transactions on Software Engineering,
Vol: 14,1988 Iss: 8, p. 1207-28.

30

Appendix 1 Verilog precedence levels

level 0 ? : (ternary)

level 1 I (logical OR)

level 2 && (logical AND)

level 3 | (bitwise OR)

level 4 A (bitwise XOR) A~ (bitwise XNOR)

level 5 & (bitwise AND)

level 6 == (equal) === (equal also x,z) = (not equal) == (not equal also z, x)
level 7 < (less) <= (less or equal) > (great) >= (great or equal)
level 8 << (shift left) >> (shift right)

level 9 + (addition) - (subtraction)

level 10 * (multiplication) / (division) % (gives remainder)

level 11 ! (logical NOT) ~ (bitwise not)

Table 2. HDL-Verilog standard operator precedence levels (low to high):

31

Appendix 2 Verilog program

module fn_lsomask; // This is the module fn_Isomask

function [7:0] d2vLSOMASK;
// This is the start of the function d2vLSOMASK
// Simulation for least significant one bit mask test in HDL-Verilog

input [7:0] pari; /l Test input
integer index;
reg [7:0] result; /] Test result for output
reg found;
begin
result = 8'b00000000;
found = 0;
for (index = 0; index <= 7; index =index + 1)
begin
if (~found && pari[index]==1)
begin
resultlindex]=1;
found=1;
end
end
d2vLSOMASK=result; // This is the output of the test result
end
endfunction // This is the end of the function d2vLSOMASK
initial
begin

$display ("function (d2vLSOMASK) = %b", d2vLSOMASK(8'b11101110));

// Calling the function and display the result, when par1 = 11101110
end

endmodule /! This is the end of the module fn_lsomask

32

module fn_l[sone; // This is the module fn_lsone

function [7:0] d2vLSONE;
// This is the start of the function d2vLSONE
/I Simulation for least significant one bit position test in HDL-Verilog

input [7:0] part; /l Test input
integer index;
reg [7:0] result; // Test result for output
reg found;
begin
result = 8'b00000000;
found = 0;
for (index = 0; index <= 7; index =index+ 1)
begin
if (~found && pari[index]==1)
begin
result=index;
found=1;
end
if (~found) result=8;
end
d2vi. SONE=result; /[This is the output of the test result
end
endfunction /l This is the end of the function d2vLSONE
initial
begin

$display ("function (d2vLSONE) = %d", d2vL SONE(8'b00000100));

// Calling the function and display the result, when par1 = 060000100
end

endmodule // This is the end of the module fn_Isone

33

module fn_lszero; // This is the module fn_lszero

function [7:0] d2vLSZERO;
// This is the start of the function d2vLSZERO
/I Simulation for least significant zero bit position test in HDL-Verilog

input [7:0] part; // Test input
integer index;
reg [7:0] result; // Test result for output
reg found;
begin
result = 8'b00000000;
found = 0;
for (index = 0; index <= 7; index =index + 1)
begin
if (~found && par1[index]==0)
begin
result=index;
found=1;
end
if (~found) resuit=8;
end
d2vLSZERO=result; // This is the output of the test result
end
endfunction /l This is the end of the function d2vLSZERO
initial
begin

$display (“function (d2vLSZERO) = %d", d2vLSZERO(8'b11111011));

// Calling the function and display the result, when part = 11111011
end

endmodule // This is the end of the module fn_Iszero

34

module fn_Iszmask; // This is the module fn_Iszmask

function [7:0] d2vLSZMASK;
// This is the start of the function d2vLSZMASK
// Simulation for least significant zero bit mask test in HDL-Verilog

input [7:0] part; // Test input
integer index;
reg [7:0] result; // Test result for output
reg found,
begin
result = 8'b00000000;
found = 0;
for (index = 0; index <=7; index =index + 1)
begin
if (~found && pari[index]==0)
begin
resultlindex]=1;
found=1;
end
end
d2vLSZMASK=result; // This is the output of the test result
end
endfunction // This is the end of the function d2vLSZMASK
initial
begin

$display (“function (d2vLSZMASK) = %b", d2vLSZMASK(8'b01011111));
// Calling the function and display the result, when par1 = 01011111
end

endmodule // This is the end of the module fn_Iszmask

35

module fn_maj_even; // This is the module fn_maj_even

function [1:0] d2vMAJ;
// This is the start of the function d2vMAJ
// The simulation for majority gate even test in HDL-Verilog

input [7:0] pari; // Test input

integer index,cnt0,cnt1;

reg [1:0] result; // Test result for output
begin

result = 2'b00;

cnt0=0;cnt1=0;

for (index = 0; index <= 7; index =index+ 1)
if (par1[index]==1) cnt1=cnt1+1;

else if (pari[index]==0) cntO=cnt0+1;

if (cnt1==cnt0) result=2'b00; // No majority

if (cnt1>cnt0) result=2'b10; //' 1 majority

else result=2'b01; // 0 majority

d2vMAJ=result; // This is the output of the test result
end

endfunction // This is the end of the function d2vMAJ
initial

begin

$display ("function (d2vMAJ) = %b", d2vMAJ(8'b11101010));
// Calling the function and display the result, when par1 = 11101010
end

endmodule /l This is the end of the module fn_maj_even

36

module fn_maj_odd; // This is the module fn_maj_odd

function d2vMAJ;
// This is the start of the function d2vMAJ
/l The simulation for majority gate odd test in HDL-Verilog

input [6:0] part; // Test input
integer index,cnt0,cntd;
reg result; // Test result for output

begin

result =0

cnt0=0;

cnt1=0;

for (index = 0; index <= 6; index =index +1)
if (par1{index]==1) cnt1=cnt1+1;

else if (par1[index]==0) cntO=cnt0+1;

if (cnt1>cnt0) result=1; /1 One is majority

else result=0; // Zero is majority

d2vMAJ=result; /l This is the output of the test result
end

endfunction // This is the end of the function d2vMAJ
initial

begin

$display ("function (d2vMAJ) = %b", d2vMAJ(7'b1110100));
// Calling the function and display the result, when par1 =1110100
end

endmodule // This is the end of the module fn_maj_odd

37

module fn_msomask; // This is the module fn_msomask

function [7:0] d2vMSOMASK;
/l This is the start of the function d2vMSOMASK;
// Simulation for most significant one bit mask test in HDL-Verilog

input [7:0] part, // Test input
integer index;
reg [7:0) result; // Test result for output
reg found;
begin
result = 8'b00000000;
found = 0;
for (index = 7; index >= 0; index =index-1)
begin
if (~found && pari[index]==1)
begin
resultfindex]=1;
found=1;
end
end
d2vMSOMASK=result; /l This is the output of the test result
end
endfunction // This is the end of the function d2vMSOMASK;
initial
begin

$display (*function (d2vMSOMASK) = %b", d2vMSOMASK(8'001000000));
/1 Calling the function and display the result, when par1 = 01000000
end

endmodule // This is the end of the module fn_msomask

38

module fn_msone; // This is the module fn_msone

function [7:0] d2vMSONE;
// This is the start of the function d2vMSONE
// Simulation for most significant one bit position test in HDL-Verilog

input [7:0] part; /f Test input
integer index;
reg [7:0] result; /! Test result for output
reg found;
begin
result = 8'b00000000;
found = 0;
for (index = 7; index >= 0; index =index - 1)
begin
if (~found && pari[index]==1)
begin
result=index;
found=1;
end
if (~found) result=8;
end
d2vMSONE-=result; // This is the output of the test result
end
endfunction // This is the end of the function d2vMSONE
initial
begin

$display ("function (d2vMSONE) = %d", d2vMSONE (8'001000000));

// Calling the function and display the resuit, when par1 = 01000000
end
endmodule // This is the end of the module fn_msone

39

module fn_mszero; // This is the module fn_mszero

function [7:0] d2vMSZERO;
// This is the start of the function d2vMSZERO
/I Simulation for most significant zero bit position test in HDL-Verilog

input [7:0] part; // Test input
integer index;
reg [7:0] result; / Test result for output
reg found;
begin
result = 8'b00000000;
found = 0;
for (index = 7; index >=0 ; index =index-1)
begin
if (~found && par1{index]==0)
begin
result=index;
found=1;
end
if (~found} result=8;
end
d2vMSZERO=result; // This is the output of the test result
end
endfunction // This is the end of the function d2vMSZERO
initial
begin

$display (“function (d2vMSZERO) = %d", d2vMSZERO(8'b10111011));

/ Calling the function and display the result, when part = 10111011
end

endmodule /l This is the end of the module fn_mszero

40

module fn_mszmask; // This is the module fn_mszmask

function [7:0) d2vMSZMASK;
// This is the start of the function d2vMSZMASK
// Simulation for most significant zero bit mask test in HDL-Verilog

input [7:0] part; // Test input
integer index;
reg [7:0] result; // Test result for output
reg found;
begin
result = 8'b00000000;
found = Q;
for (index = 7; index >= 0; index =index - 1)
begin
if (~found && pari[index]==0)
begin
resultfindex]=1;
found=1;
end
end
d2vMSZMASK=result; // This is the output of the test result
end
endfunction /l This is the end of the function d2vMSZMASK
initial
begin

$display ("function (d2vMSZMASK) = %b", d2vMSZMASK(8'b10111010));

// Caliing the function and display the result, when par1 = 10111010
end

endmodule // This is the end of the module fn_mszmask

41

module fn_onecnt; // This is the module fn_onecnt

function [7:0] d2vONECNT;
J/ This is the start of the function d2vONECNT
// The simulation for count ones in a word test in HDL-Verilog
input [7:0] part; /l Test input
integer index;
reg [7:0] cnt; // Test result for output
begin
cnt=0;

for (index = 0; index <= 7; index =index + 1)
if (par1[index]==1) cnt=cnt+1;

d2vONECNT=cnt; // This is the output of the test result

end

endfunction // This is the end of the function d2vONECNT
initial

begin

$display ("function (d2vONECNT) = %d", d2vONECNT(8'b11110011));
// Calling the function and display the resuilt, when par1 = 11110011

end
endmodule /l This is the end of the module fn_onecnt
module fn_zerocnt; /l This is the module fn_zerocnt

function [7:0] d2vZEROCNT;
// This is the start of the function d2vZEROCNT
// The simutation for count zero bits in a word test in HDL-Verilog

input [7:0] part; /l Test input

integer index;

reg [7:0] cnt; /l Test result for output
begin

cnt=0;

for (index = 0; index <=7; index =index +1)
if (par1[index]==0) cnt=cnt+1;

d2vZEROCNT=cnt; // This is the output of the test result

end

endfunction // This is the end of the function d2vZEROCNT
initial

begin

$display ("function (d2vZEROCNT) = %d", d2vZEROCNT(8'b10110001));

// Calling the function and display the result, when par1 = 10110001
end

endmodule // This is the end of the module fn_zerocnt

42

module fn_epty;

function d2vEPTY;

input [7:0] pari;

integer index;
reg result;
begin

result=1;

// This is the module fn_epty

// This is the start of the function d2vEPTY

// The simulation for even parity test in HDL-Verilog
/l Test input

// Test result for output

for (index = 0; index <= 7; index =index + 1)

result=result*pari[index};

d2vEPTY=result;
end
endfunction

initial
begin

// This is the output of the test result

{// This is the end of the function d2vEPTY

$display ("function (d2vEPTY) = %d", d2vEPTY(8'b10111110));

end
endmodule

module fn_opty;

function d2vOPTY;

input [7:0] part;

integer index;
reg result;
begin

result = 0,

// Calling the function and display the result, when par1 = 10111110

// This is the end of the module fn_epty

// This is the module fn_opty

// This is the start of the function d2vOPTY

{/ The simulation odd parity bit test in HDL-Verilog
// Test input

// Test result for output

for (index = 0; index <= 7; index =index + 1)

result=result*par1i[index];

d2vOPTY=result;
end
endfunction

initial
begin

// This is the output of the test result

// This is the end of the function d2vOPTY

$display (“function (d2vOPTY) = %d", d2vOPTY{8'b11100000));

end
endmodule

// Calling the function and display the result, when par1 = 11100000

// This is the end of the module fn_opty

43

Appendix 3 Simulation and
Implementation of Signed Multiply

// The simulation for muttiply_signed function in Verilog
module multiply; // This is the module multiply

function [7:0] multiply_signed;

input [3:0] I // Test input
integer index;
reg [3:0] result; // Test result for output

reg [3:0] lowbit;
reg [4:0] accy;

begin
accu = 5'b00000;
for (index = 0; index <= 3; index =index + 1)
begin
if (rlindex] ==1)
begin
if (index == 3)
accu=accu - {I[3],1};
else
accu= accu + {I[3],!};
end
lowbit {index] = accu [0];
accu={accu(4],accu[4:1]};
end

result={accu[3:0],lowbit};

multiply_signed=result; // This is the output of the test result

end

endfunction // This is the end of the function multiply_signed;
initial

begin

$display (“function (multiply_signed) = %b", multiply_signed(4'00001,4'b0001));

// Calling the function, display the result, when | = 0001 and r=0001

end
endmodule // This is the end of the module multiply_signed

44

“ This is the implementation of sighed multiply function in Verilog

“function [((par1 width) + (par2 width) -1) decimal :0] multiply_signed;’ cr
cr
“This is the signed multiply function for HDL-Verilog
cr
‘input [' (par1 width - 1) decimal “:0] par1; cr
‘input [' (par2 width - 1) decimal :0] par2;’ cr
‘integer index;’ cr
‘reg [' ((par1 width) + (par2 width) -1) decimal :0] result;’ cr
‘reg [(par1 width - 1) decimal *:0] lowbit;' cr
‘reg [(par1 width + 1) decimal ":0] accu;’ cr
cr
‘begin’ cr
‘accu = ((par1 width) + 1) decimal “'b’ (((par1 width) + 1) zeroes) binary ;' cr
‘for (index = 0; index <=' (par1 width - 1) decimal *; index =index + 1) cr
‘ begin’ cr
*if (par2[index] ==1) cr
begin’ cr
if (index == (par1 width - 1) decimal)’ cr
accu= accu - {par1 [' (par1 width - 1) decimal ‘], par1};’ cr
else’ cr
accu= accu + {pari [’ (par1 width - 1) decimal 1], part};’ cr
end’ cr
end’ cr
lowbit [index] = accul[0];’ cr
accu={accu[’ (par1 width) decimal ‘], accu[’ (par1 width) decimal ":1]};" cr
end’ cr
‘result={accu[’ (par1 width - 1) decimal ":0], lowbit};" cr
‘multiply_signed=result;’ cr
‘end’ cr
‘endfunction // function multiply_signed;’ cr
cr

¢
¢
5
¢
‘
3
‘
s
‘
¢

45

Appendix 4 Example of Verilog code for
a shiftregister

// This is a example of a shiftregister

n

module vshftregi; //The name of the module Verilog shiftregister
integer [7:0] tel;

reg clock,reset;

wire [7:0] X_im;

wire [7:0] X_out;

reghl reghl(clock,reset,X_in,X_out);

initial
begin
reset=0;#2;reset=1;#2;//reset=0;#1;
$display ("INITIAL after reset=1 X_out value= %b", X_out);
$display (" ");
for (tel=1; tel<=25; tel=tel+1)
begin
clock=0; #1;clock=1;#1;
$display ("Clock X_out value= %b", X_out);
$display (" "Y;
end
$finish;
end
endmodule

// Register

module reghl (clock,reset,X_in,X_out);
input clock,reset;

input [7:0] X_inm;

output [7:0] X_out;

reg [7:0] d2vCONTENTS;

reg [7:0] d2vOUT,;

reg d2vCTRL;
reg d2vTESTH1, d2vTESTZ;
reg d2vCURRSTATE;

wire [7:0] X_out=d2vOUT,;

46

task Tsk_left;
d2vOUT=d2vCONTENTS << 1;
endtask

task Tsk_right;
d2vOUT=d2vCONTENTS >> 1;
endtask

always @ (posedge reset)
begin

d2vOUT=8'000010000;

Sdisplay ("Reset d2vOUT waarde= %b", d2vOUT);

d2vCTRL=0;

d2vCURRSTATE =0; //ST_left

$display ("Reset d2vCTRL waarde= %b", d2vCTRL);

$display ("Reset d2vCURRSTATE waarde= %b", d2vCURRSTATE);
end

always @ (posedge clock)
begin

d2vCONTENTS=d2vOUT;

d2vTEST1=d2vCONTENTS[7];

d2vTEST2=d2vCONTENTSJ[0];

case (d2vCURRSTATE)

0: begin //ST_left
if (d2vTEST1==1'b0) begin
d2vCTRL=0;
d2vCURRSTATE = 0; end //ST_left
else begin
d2vCTRL=1;
d2vCURRSTATE = 1; end //ST_right

end

1: begin /ST_right
if (d2vTEST2==1'b0) begin
d2vCTRL=1;
d2vCURRSTATE =1; end //ST_right
else begin
d2vCTRL=0;
d2vCURRSTATE =0; end // ST_left

end
endcase

if (d2vCTRL==1)
Tsk_right;
else
Tsk_left;
end
endmodule //This is the end of the module shiftregister

47

Appendix 5 The template file

48

‘reg ' myname tabto 21 ; // Original |IDaS$S temp var' cr

! ‘Template' file for generating HDL-Verilog” root
“ directly from within IDaSS. attachseparatelist
. generatetempvars

insertseparatelist
" ' ' markindent target myname ' ='

: Expressions Igl;eneratetree ', exitindent cr

" inline 31

fBasicExpression Operator Irlnyname

Assigning single bit to output: ftTempExpression Operator

guard (prototype width = 1A Assigning direct single bit to temp var:

prototype isUNK)
guard (prototype width = 1 A

result 'reg_bit' withroot prototype isUNK A

* issimple)

root "

attachseparatelist result 'reg_bit' noroot

insertseparatelist "

' *markindent target generateattached 7 ' =' inline 31

generatetree ;' exitindent cr generatetree

#BasicExpression Operator #TempExpression Operator

“ Assigning single constant bit to output: " Assigning single constant bit to temp var:

guard (prototype width = 1 A guard (prototype width = 1 A
prototype isUNK not) prototype isUNK not)

result 'reg_bit' noroot result 'reg_bit' noroot

root inline 30

' ' markindent generateattached 7 * =' cr (prototype) decimal

' ' (prototype) decimal ;' exitindent cr
. #TempExpression Operator
#BasicExpression Operator "

" Assigning calculated bit vector to temp var:
* Assigning bit vector to output: !

guard (prototype width > 1 A

guard (prototype width > 1 A prototype isUNK A

prototype isUNK) issimple not)
result 'reg_bit_vector' withroot result 'reg_bit_vector' withroot
root tempvar 0
attachseparatelist ‘reg [’
insertseparatelist (prototype width - 1 width: 8) decimalleft
' ' markindent target generateattached 7 ' =' .0]’ myname tabto 54 *; // Original IDaSS temp var’ cr
generatetree exitindent ';' cr "
* root
#BasicExpression Operator attachseparatelist
" generatetempvars
" Assigning constant bit vector to output: insertseparatelist
" ' * markindent target myname ' =
guard (prototype width > 1 A generatetree '}’ exitindent cr

prototype isUNK not) y

inline 31

result 'reg_bit_vector' noroot myname
root #TempExpression Operator
' ' markindent generateattached 7' =' cr "
' ' (prototype width) decimal “’b’ (prototype) binary *;’ * Assigning direct bit vector to temp var:

exitindent cr

guard (prototype width > 1 A
#TempExpression Operator prototype isUNK A

" issimple)

" Assigning calculated single bit to temp var: "

" result 'reg_bit_vector' noroot
guard (prototype width = 1 A "

prototype isUNK A inline 31
issimple not) generatetree
result 'reg_bit' withroot #TempExpression Operator
tempvar 0 * Assigning constant bit vector to temp var:

49

guard (prototype width > 1 A
prototype isUNK not)

result 'reg_bit_vector noroot

inline 30
(prototype width) decimal ”’b’ (prototype) binary

#TempExpression Operator

" Assigning constant to temp var, dummy entry, as this
* will never be actually called:

guard (prototype width = 0)
result ‘constant’ noroot

inline 30
(prototype) decimal

#BasicExpression ControlCase
" Assigning calculated single bit to test:

guard (prototype width=1A
issimple not)

result 'reg_bit' withroot

tempvar &00000010
‘reg d2vTEST' (INDEX1) decimal
tabto 21 '; // Test variable' cr
root
IF (pass = 0)
THEN
attachseparatelist
generatetempvars
target 'dummy' generatetree
ELSE
IF (pass = 4)
THEN " For use in CASE..IS.. :
'd2vTEST' (INDEX1) decimal
ELSE " Actual expression insertion:
insertseparatelist
' *markindent
target 'd2vTEST' (INDEX1) decimal ' ='
generatetree ;' exitindent cr
ENDIF
ENDIF

inline 31
'd2vTEST' (INDEX1) decimal

#BasicExpression ControlCase
" Assigning direct single bit to test:

guard (prototype width =1 A
issimple)

result 'reg_bit' noroot

root

IF (pass = 4)

THEN * For use in CASE..IS.. :
generatetree

ENDIF

inline 31

generatetree

#BasicExpression ControlCase
* Assigning calculated bit vector to test:

guard (prototype width > 1 A

50

issimple not)

result ‘reg_bit_vector' withroot

tempvar &10
reg [’
(prototype width - 1 width: 8) decimalleft
0] d2vTEST' (INDEX1) decimal tabto 54 *; // Test
variable’ cr
root
IF (pass = 0)
THEN
attachseparatelist
generatetempvars
target 'dummy' generatetree
ELSE
IF (pass = 4)
THEN " For insertion in CASE..IS.. :
'd2vTEST' (INDEX1) decimal
ELSE
insertseparatelist
' ' markindent
target 'd2vTEST' (INDEX1) decimal ' ='
generatetree ';' exitindent cr
ENDIF
ENDIF

inline 31
'd2vTEST' (INDEX1) decimal

#BasicExpression ControlCase
" Assigning direct bit vector to test:

guard (prototype width > 1 A
issimple)

result 'reg_bit_vector' noroot

root

IF (pass = 4)

THEN " For use in CASE..IS.. :
generatetree

ENDIF

inline 31

generatetree

#TempExpression ControlCase
" Assigning calculated single bit to temp var:

guard (prototype width = 1 A
prototype isUNK A
issimple not)

result 'reg_bit' withroot

tempvar O
'reg ' myname tabto 21'; // Original IDaS$S temp var' cr

root

attachseparatelist
generatetempvars
insertseparatelist

' ' markindent target myname ' ='
generatetree ;' exitindent cr
inline 31

myname

#TempExpression ControlCase
" Assigning direct single bit to temp var:

guard (prototype width = 1A
prototype isUNK A

issimple)
result ‘reg_bit' noroot

inline 31
generatetree

#TempExpression ControlCase
* Assigning single constant bit to temp var:

guard (prototype width =1 A
prototype isUNK not)

result 'reg_bit' noroot

inline 30
(prototype) decimal

#TempExpression ControlCase
* Assigning calculated bit vector to temp var:

guard (prototype width > 1 A
prototype isSUNK A
issimple not)

result 'reg_bit_vector' withroot

tempvar 0
reg [’
(prototype width - 1 width: 8) decimalleft
0]’ myname tabto 54 *; // Original IDaSS temp var’ cr

root

attachseparatelist

generatetempvars

insertseparatelist

' * markindent target myname ' ='
generatetree ;' exitindent cr

inline 31
myname

#TempExpression ControlCase
* Assigning direct bit vector to temp var:
guard (prototype width > 1 A

prototype isUNK A
issimple)

result 'reg_bit_vector' noroot

inline 31
generatetree

#TempExpression ControlCase
" Assigning constant bit vector to temp var:

guard (prototype width > 1 A
prototype isUNK not)

result 'reg_bit_vector' noroot

inline 30
(prototype width) decimal *’b’ (prototype) binary

#TempExpression ControlCase

" Assigning constant to temp var, dummy entry, as this
* will never be actually called:

guard (prototype width = 0)

result 'constant' noroot
"

51

inline 30
(prototype) decimal

#BasicExpression CommandCombiner

* Method for writing out the command combiner
expression
* tree for a single bit combined command channel:
guard (prototype width =1 A

issimple not)

result 'reg_bit' withroot

tempvar O
‘wire d2vINTCMD' tabto 21 '; // Combined internal
command channel' cr

root
IF (pass = 7)
THEN " For source lists:
'd2vINTCMD!
ELSE
generatetempvars
' ' markindent target 'd2vINTCMD ='
generatetree ;' exitindent cr
ENDIF

inline 31
'd2vINTCMD’

#BasicExpression CommandCombiner

“ Method for writing out the command combiner
expression
" tree for a multi bit combined command channel:
guard (prototype width > 1 A

issimple not)

result 'reg_bit_vector' withroot

tempvar 0
‘wire [’
(prototype width - 1 width: 8) decimalleft
‘:0] d2vINTCMD '’ tabto 54 *; // Combined internal
commands channel’ cr
root
IF (pass =7)
THEN “ For source lists:
'd2vINTCMD'
ELSE
generatetempvars
' ' markindent target 'd2vINTCMD ='
generatetree ;' exitindent cr
ENDIF

inline 31
'd2vINTCMD'

#BasicExpression CommandCombiner

* Method for writing out the command combiner
expression
" for a single bit command channel which is directly for-
* warded from either an internal or external control
" channel:
guard (prototype width = 1 A

issimple)

result 'reg_bit' noroot

root
generatetree

inline 31

generatetree
#BasicExpression CommandCombiner

" Method for writing out the command combiner
expression
" for a multi bit command channel which is directly for-
* warded from either an internal or external control
" channel:
guard (prototype width > 1 A

issimple)

result 'reg_bit_vector' noroot

root
generatetree

inline 31
generatetree

ftTempExpression CommandCombiner
Assigning calculated single bit to temp var:
?uard (prototype width = 1)

:esult ‘reg_bit" withroot

tempvar 0
‘reg ' myname tabto 21 '; // Command combiner temp
var' cr

root

attachseparatelist

generatetempvars

insertseparatelist

* ' markindent target myname ' ='
generatetree ';' exitindent cr

inline 31
myname

fTempExpression CommandCombiner
Assigning calculated bit vector to temp var:
9uard {prototype width > 1)

:esult 'reg_bit_vector' withroot

tempvar O
reg ['

(prototype width - 1 width: 8) decimalleft

*:0] myname tabto 54 *; // Command combiner temp
var' cr

root

attachseparatelist

generatetempvars

insertseparatelist

' * markindent target myname * ='
generatetree ;' exitindent cr

inline 31
myname

#BasicExpression CommandTest

“ Check commands in an ‘IF..." construct.

“If pass 6 or 7 is used for a multi-bit source, the LHS
(6)/RHS (7)

“ will be writeen out separately (for conversion in a
CASE ...):

result ‘reg_bit' noroot

root

52

markindent generatetree exitindent
#BasicExpression CommandValue

* Method for writing out a command value expression
* tree for a single bit constant value:

guard (prototype width=1A
prototype isUNK not)

result 'reg_bit' noroot
" Called with 'generatevalue':

root
(prototype) decimal

#BasicExpression CommandValue

* Method for writing out a command value expression
* tree for a multi bit constant value:

guard (prototype width> 1 A
prototype isUNK not)

result 'reg_bit_vector' noroot

" Called with ‘generatevalue’:

root
(prototype width) decimal “'b’ (prototype) binary

#BasicExpression CommandValue

" Method for writing out a command value expression
“ tree for a single bit value input on a connector:

guard (prototype width =1 A
prototype isUNK)

result ‘reg_bit' noroot

" Called with 'generatevalue’:

root
markindent generatetree exitindent

#BasicExpression CommandValue

" Method for writing out a command value expression
" tree for a multi bit value input on a connector:

guard (prototype width > 1 A
prototype isUNK)

result 'reg_bit_vector' noroot
" Called with 'generatevalue':

root
markindent generatetree exitindent

#BasicExpression CaseTest

“ Check CASEs in an ‘IF..." construct.

“To remove the (=1'b1) conversion, call this expression
with pass 1

“ (which is handled in the conversion tree node):

“

result ‘reg_bit' noroot

root
markindent generatetree exitindent

#BasicExpression ValueParameter

* Needed to insert (slice) of value parameter input for a
system

parameter (like a reset value for a register):
guard (prototype width = 1)

:esult ‘reg_bit' noroot

Called with 'generateparameter’:

root
markindent generatetree exitindent

#BasicExpression ValueParameter

" Needed to insent (slice) of value parameter input for a

system
* parameter (like a reset value for a register):

guard (prototype width > 1)
result 'reg_bit_vector' noroot
" Called with ‘generateparameter':

root
markindent generatetree exitindent

#Expression Conversion

* From concat_mitbit into reg_bit_vector:

sources ‘concat_mitbit'
result 'reg_bit_vector'

inline 30
{par10y
#Expression Conversion

* From concat_mitbit_c into reg_bit_vector_c:

sources ‘concat_mitbit_c'
result ‘reg_bit_vector_c'

inline 30
{par10°Y

#Expression Conversion

" From single bit into complemented single bit:

sources 'reg_bit'
result 'reg_bit_c'

inline 11
‘~(" markindent par 1 11 ‘)’ exitindent

#Expression Conversion

" From complemented single bit into single bit:

sources 'reg_bit_c'
result ‘reg_bit'

inline 11
~(" markindent par 1 11 ')’ exitindent

#Expression Conversion
.

* From bit vector into complemented bit vector:

sources 'reg_bit_vector'
result ‘reg_bit_vector_c'

inline 11
'~(' markindent par 1 11 ‘Y exitindent

53

#Expression Conversion
* From complemented bit vector into bit vector:

sources ‘reg_bit_vector_c'
result 'reg_bit_vector'

inline 11
'~(" markindent par 1 11 ')’ exitindent

#ExpressionTypes conversion
" True constants (the 'inline’ is dummy here):

guard (prototype width = 0)
result ‘constant'

inline 31
(prototype) decimal

#ExpressionTypes conversion
* Single bit values:

guard (prototype width = 1)
result 'reg_bit'

inline 30
(prototype width) decimal *'b’ (prototype) binary

#ExpressionTypes conversion

" Multi-bit values:
guard (prototype width > 1)
result 'reg_bit_vector'

inline 30
(prototype width) decimal ’b’ (prototype) binary

#Expression raiseprecedence
N

sources 'reg_bit'
result ‘reg_bit"

inline 30
‘(" markindent par 1 0 exitindent ')’

#Expression raiseprecedence

sources ‘reg_bit_c'
result ‘reg_bit_c'

inline 30
‘(" markindent par 1 0 exitindent ')’

#Expression raiseprecedence

sources 'reg_bit'
result 'reg_bit'

tempvar 1

'reg d2vTEMP' (INDEX) decimal

tabto 21 ; // Inserted to raise precedence’ cr
separate

' d2vTEMP' (INDEX) decimal ' =' cr

' *markindent par 1 0 exitindent ;' cr

inline 31

generatetempvars

generateseparate

'd2vTEMP' (INDEX) decimal

#Expression raiseprecedence
"

sources ‘reg_bit_c'
result ‘reg_bit_c'

tempvar 1
'reg d2vTEMP' (INDEX) decimal
tabto 21'; // Inserted to raise precedence’ cr

separate

' d2vTEMP' (INDEX) decimal ' =' cr

' "markindent par 1 0 exitindent '’ cr
inline 31

generatetempvars

generateseparate

'd2vTEMP* (INDEX) decimal

#Expression raiseprecedence
“

sources 'reg_bit_vector
result ‘reg_bit_vector'

inline 30
‘(" markindent par 1 0 exitindent ')’

#Expression raiseprecedence
.

sources 'reg_bit_vector_c'
result 'reg_bit_vector_c'

inline 30
‘(" markindent par 1 0 exitindent *)'

#Expression raiseprecedence
"

sources 'reg_bit_vector'
result 'reg_bit_vector'

tempvar 1
‘reg [’

(par1 width - 1 width: 8) decimalleft

*:0] d2vTEMP’ (INDEX) decimal tabto 54 *; // Inserted
to raise precedence’ cr

separate

' d2vTEMP' (INDEX) decimal ' =' cr

' "markindent par 1 0 exitindent ;' cr
inline 31

generatetempvars

generateseparate

'd2vTEMP' (INDEX) decimal

#Expression raiseprecedence
.

sources ‘reg_bit_vector_c'
result ‘reg_bit_vector_c'

tempvar 1
‘reg [’

(par1 width - 1 width: 8) decimalleft

*:0] d2vTEMP’ (INDEX) decimal tabto 54 *; // Inserted
to raise precedence’ cr

separate

' d2vTEMP' (INDEX) decimal ' =* cr

' "markindent par 1 0 exitindent ;' cr
inline 31

generatetempvars

generateseparate

'd2vTEMP' (INDEX) decimal

#Expression root

54

" Single bit result:

sources 'reg_bit'
result 'reg_bit'

root

targetassignment cr

' *markindent par 1 0 exitindent
inline 31

generateroot

#Expression root

" Bit vector result:

sources 'reg_bit_vector'
result ‘reg_bit_vector’

root

targetassignment cr

' ' markindent par 1 0 exitindent
inline 31

generateroot

" UNARY OPERATORS

#MacroFor UnaryOp

naming
‘returnprioritycount’
“

contents
markindent
IF (par1 width > 2)
THEN
IF (par1 width - par1 width log2 = 1)
THEN
‘o'
ELSE
‘' (({(par1 width - par1 width log2) zeroes) width)
decimal *’b’ ((par1 width - par1 width log2) zeroes)
binary
ENDIF
', count }'
ELSE
‘count’
ENDIF
exitindent

#UnaryOp dec
* Decrement on bit vector done with add:

sources 'reg_bit_vector'
result ‘reg_bit_vector'

inline 9

par19'+'cr

((par1 width ones) width) decimal "’b’ (par1 width ones)
binary

#UnaryOp dec

" Decrement on single bit equals NOT operator:

sources ‘reg_bit'
result ‘reg_bit_c'

forward 1
#UnaryOp dec

" Decrement on single bit equals NOT operator:

sources 'reg_bit_c'
result ‘reg_bit'

forward 1
#UnaryOp epty
“ Even parity on a single bit, done with NOT:

sources ‘reg_bit'
result 'reg_bit_c'

forward 1

#UnaryOp epty
" Even parity on a single bit, done with NOT:

sources ‘reg_bit_c'
result 'reg_bit'

forward 1

#UnaryOp epty
" Even parity on two bits, done with NOT XOR:

sources 'reg_bit_vector'
guard (par1 width = 2)
result 'reg_bit_c'

inline 4
par 1 31'[0]~cr
par131'[1])

#UnaryOp epty

" Even parity on > 2 bits, uses function:
sources 'reg_bit_vector'

guard (pari width > 2)

result 'reg_bit'

function

' ' markindent

‘function [’ (par1 width - 1) decimal 0] d2vEPTY;' cr
‘input [(par1 width - 1) decimal :0] part;’ cr

cr

* // Equivalent of IDaSS even parity (epty) operator’ cr
' /lon a’ (par1 width) decimal ‘ bits word.’ cr

cr

‘integer index;’ cr

‘reg result; cr

‘begin’ cr

‘ result=1;"cr

* for (index = 0; index <=" (par1 width - 1) decimal *;
index =index +1) cr

' result = result ~pari(index]; cr

* d2vEPTY=result; cr

‘end’ cr

‘endfunction // function d2vEPTY’ cr

exitindent cr cr

inline 30

generatefunction

'd2vEPTY" (par1 width) decimal '(* markindent par 1 0
exitindent 'y’

#UnaryOp inc

* Increment on bit vector done with add:

sources 'reg_bit_vector'
result 'reg_bit_vector'

inline 9
par19'+'cr

55

((1 width: par1 width) width) decimal "'b’ (1 width: par1
width) binary

#UnaryOp inc

" Increment on single bit equals NOT operator:
sources 'reg_bit'
result ‘reg_bit_c'

forward 1

#UnaryOp inc

* Increment on single bit equals NOT operator:
sources 'reg_bit_c'
result 'reg_bit'

forward 1

"#UnaryOp log2

" Log2 operator, never seen here - always returns
constant...
.

#UnaryOp Isomask

* Least significant one mask priority on single bit is
removed:

sources 'reg_bit'
result ‘reg_bit'

forward 1

#UnaryOp Isomask

" Least significant one mask priority on single bit is
removed:

sources ‘reg_bit_c'

result 'reg_bit_c'

forward 1

#UnaryOp Isomask

" Least significant one mask priority on bit vector uses
function:

sources 'reg_bit_vector'

result 'reg_bit_vector'

function

‘ ’ markindent

‘function [’ (par1 width - 1) decimal :0] d2vLSOMASK;’
cr

‘input [' (par1 width - 1) decimal ":0] pari; cr

cr

* // Equivalent of an IDaSS least significant one mask
priority’ cr

‘ I/ (Isomask) operator on a ' (par1 width) decimal ' bits
word.’” cr

cr

integer index;’ cr

‘reg [(par1 width - 1) decimal :0] result; cr

‘reg found;’ cr

‘begin’ cr

‘ result =' ((par1 width zeroes) width) decimal “'b’
(par1 width zeroes) binary *;’ cr

* found =0;" cr

* for (index = 0; index <= (par1 width - 1) decimal ;
index =index + 1) cr

‘ begin’ cr

¢ if (~found && parifindex]==1) cr

* begin’cr

¢ resultfindex]=1;" cr

found=1; cr
end’ cr
end’ cr
d2vLSOMASK=result;" cr
‘end’ ¢cr
‘endfunction // function d2vLSOMASK’ cr
exitindent cr cr

s
¢
s
‘

inline 30

generatefunction

'd2vLSOMASK' (par1 width) decimal '(' markindent par
1 0 exitindent *)'

#UnaryOp Isone

" Least significant one bit pos priority on single bit is
done with NOT:

sources 'reg_bit'
result 'reg_bit_c'

forward 1

#UnaryOp Isone

" Least significant one bit pos priority on single bit is
done with NOT:

sources 'reg_bit_¢'
result 'reg_bit’

forward 1
#UnaryOp Isone

" Least significant one bit pos priority on bit vector uses
function:

sources 'reg_bit_vector'
result ‘reg_bit_vector'

function
" * markindent
‘function " (par1 width - 1) decimal .0] d2vLSONE;’ cr
‘input [(par1 width - 1) decimal *:0] par1; cr
cr
* /I Equivalent of an 1DaSS least significant one bit
position’ cr
* J/ priority {sone) operator on a ' (par1 width) decimal
bits word.” cr
cr
‘integer index;’ cr
‘reg [’ (par1 width - 1) decimal “:0] result;’ cr
‘reg found; cr
‘begin’ cr
* result = ((par1 width zeroes) width) decimal b’
{par1 width zeroes) binary ;' cr
‘* found =0; cr
* for (index = 0; index <=' (par1 width - 1) decimal *;
index =index +1) cr
' begin’ cr
¢ it (~found && pari[index]==1)' cr
begin’ cr
result=index;’ cr
found=1;' cr
end’ cr
if (~found) result =’ (par1 width) decimal *;’ cr
end cr
' d2vLSONE-=result;' cr
‘end’ cr
‘endfunction // function d2vLSONE’ cr
exitindent cr cr

inline 30

generatefunction

'd2vLSONE' (par1 width) decimal '(' markindent par 1 0
exitindent ')’

56

#UnaryOp Iszero

" Least significant zero bit pos priority on single bit is
removed:

sources 'reg_bit'
result 'reg_bit'

forward 1

#UnaryOp Iszero

" Least significant zero bit pos priority on single bit is
removed:

sources 'reg_bit_c'
result 'reg_bit_c'

forward 1

#UnaryOp Iszero

" Least significant zero bit pos priority on bit vector
uses function:

sources 'reg_bit_vector’

result 'reg_bit_vector'

function

' ' markindent

‘function [(par1 width - 1) decimal :0] d2vLSZERO;'
cr

‘input [(par1 width - 1) decimal :0] par1;’ cr

cr

‘ // Equivalent of an IDaSS least significant zero bit
position’ cr

'/l priority (Iszero) operator on a’ (par1 width) decimal
* bits word.’ cr

cr

‘integer index;’ cr

“‘reg found; cr

‘reg [(par1 width - 1) decimal :0] result;’ cr

‘begin’ cr

' result =' ((par1 width zeroes) width) decimal ”'b’
(par1 width zeroes) binary *;’ cr

¢ found =0;' cr

* for (index = 0; index <=" (par1 width - 1) decimal *;
index =index + 1) cr

* begin’ cr

* if (~found && pari[index}==0)' cr
' begin’cr

‘' result=index; cr
' found=1;cr
' endcr

‘if (~found) result =’ (par1 width) decimal *;’ cr
end’ cr

‘ d2vLSZERO=result;’ cr

‘end’ cr

‘endfunction // function d2vLSZERO’ cr
exitindent cr cr

‘

inline 30

generatefunction

'd2vLSZERO' (par1 width) decimal ‘(' markindent par 1
0 exitindent ')’

#UnaryOp Iszmask

* Least significant zero mask priority on single bit uses
NOT:

sources 'reg_bit'
result 'reg_bit_c'

forward 1

#UnaryOp Iszmask

" Least significant zero mask priority on single bit uses
NOT:

sources 'reg_bit_c'
result 'reg_bit'

forward 1
#UnaryOp Iszmask

" Least significant zero mask priority on bit vector uses
function:

sources 'reg_bit_vector'

result 'reg_bit_vector'

function
' * markindent
‘function [’ (par1 width - 1) decimal .0 } d2vLSZMASK;’
cr
‘input [(par1 width - 1) decimal ;.0] par1;’ cr
cr
' J/ Equivalent of an 1DaSS least significant zero mask
priority' cr
'/ (Iszmask) operator on a ' (par1 width) decimal ' bits
word.' cr
cr
‘integer index;’ cr
‘reg [(par1 width - 1) decimal ":0] result; cr
‘reg found; cr
‘begin’ cr
‘ result =" ((par1 width zeroes) width) decimal “’b’
(par1 width zeroes) binary ;' cr
* found =05 cr
* for (index = 0; index <= (par1 width - 1) decimal *;
ndex =index + 1) cr
begin’ cr
if (~found && parifindex]==0) cr
begin’ cr
resultflindex]=1;’ cr
found=1;" cr
end’ cr
end’ cr
d2vLSZMASK=result;’ cr
end’ cr
‘endfunction // function d2vLSZMASK’ cr
exitindent cr cr

inline 30

generatefunction

'd2vLSZMASK' (par1 width) decimal ‘(" markindent par
1 0 exitindent ')’

#UnaryOp maj
" Majority operator on a single bit is removed:

sources 'reg_bit'
result 'reg_bit'

forward 1

#UnaryOp maj

" Majority operator on a single bit is removed:

sources 'reg_bit_c'
result 'reg_bit_c'

Iowvard 1

fUnaryOp maj

Majority operator on an ODD number of bits:
sources 'reg_bit_vector'

guard (par1 widthA1=1)
result ‘reg_bit'

57

function

' ' markindent

‘function [(par1 width - 1) decimal “:0] d2vMAJ;’ cr
‘input [(par1 width - 1) decimal ":0] pari;’ cr

cr

* // Equivalent of an IDaSS majority (maj) operator on a

(par1 width) decimal * bits’ cr
* J/ word. The odd number of bits gives a single bit
result.’ cr
cr
‘integer index,cnt0,enti;’ cr
‘reg result;’ cr
‘begin’ cr
* result =0; cr
cnt0 =0;’ cr
cnt1 =0; cr
* for (index = 0; index <=" (par1 width - 1) decimal *,
index =index + 1) cr
' if (par1[index]==1) cnti=cnt1+1;" cr
' else if (pari[index]==0) cntO=cnt0+1;’ cr
‘if (cnt1>cnt0) result=1; // 1 majority’ cr
' else result=0; // 0 majority’ cr
¢ d2vMAJ=result;’ cr
‘end’ cr
‘endfunction // function d2vMAJ’ cr
exitindent cr cr

inline 30

generatefunction

'd2vMAJ' (par1 width) decimal ‘(' markindent par 1 0
exitindent ')’

#UnaryOp maj
" Majority operator on an EVEN number of bits:

sources 'reg_bit_vector'
guard (par1 widthA1=0)
result 'reg_bit_vector'

function

' ' markindent

‘function [' (par1 width - 1) decimal *:0] d2vMAJ;’ cr
‘input [(par1 width - 1) decimal *:0] pari;’ cr

cr

‘ // Equivalent of an IDaSS majority (maj) operator on a

(par1 width) decimal ‘bits’ cr
' // word. The even number of bits gives a two bit
result.’ cr
cr
‘integer index,cnt0,cntt;’ cr
‘reg [1:0] result;’ cr
‘begin’ cr
‘ result = 2"b00;’ cr
' cnt0 =0;"cr
' ent1 =0;"cr
* for (index = 0; index <=’ (par1 width - 1) decimal ',
index =index +1) cr
‘i (parifindex]==1) cnt1=cnt1+1; cr
¢ else if (par1[index]==0) cnt0=cntO+1;’ cr
¢ if (cnt1==cnt0) result = 2”b00; // No majority’ cr
*if (cnt1>cnt0) result = 2”b10; // 1 majority’ cr
' else result = 2”b01; // 0 majority’ cr
' d2vMAJ=result;’ cr
‘end’ cr
‘endfunction // function d2vMAJ’ cr
exitindent cr cr
inline 30
generatefunction
'd2vMAJ' (par1 width) decimal ‘(' markindent par 1 0
exitindent ')’

#UnaryOp msomask

" Most significant one mask priority on single bit is
removed:

sources 'reg_bit'

result 'reg_bit'

forward 1

#UnaryOp msomask

" Most significant one mask priority on single bit is
removed:

sources 'reg_bit_c'

result 'reg_bit_c’

forward 1

#UnaryOp msomask

" Most significant one mask priority on bit vector uses
function:

sources 'reg_bit_vector'

result 'reg_bit_vector'

function
' ' markindent
‘function [’ (par1 width - 1) decimal .0]
d2vMSOMASK;' cr
‘input [' (par1 width - 1) decimal .0] pari;’ cr
cr
‘ // Equivalent of an IDaSS most significant one mask
priority’ cr
' // (msomask) operator on a’ (par1 width) decimal *
bits word.’ cr
cr
‘integer index;’ cr
‘reg [' (par1 width - 1) decimal .0] result;’ cr
‘reg found; cr
‘begin’ cr
‘ result =" ((par1 width zeroes) width) decimal *"’b’
(par1 width zeroes) binary *;’ cr
* found =0; cr
* for (index =" (par1 width - 1) decimal *; index >=0 ;
index =index-1) cr
' begin’ cr
if (~found && pari[index]==1)" cr
begin’ cr
result{index]=1;' cr
end’ cr
end' cr
d2vMSOMASK=result;’ cr
‘end’ cr
‘endfunction // function d2vMSOMASK’ cr
exitindent cr cr

inline 30

generatefunction

'd2vMSOMASK' (par1 width) decimal ‘(' markindent par
1 0 exitindent ')’

#UnaryOp msone

" Most significant one bit pos priority on single bit is
done with NOT:

sources 'reg_bit'
result 'reg_bit_c'

forward 1
#UnaryOp msone

" Most significant one bit pos priority on single bit is
done with NOT:

sources ‘reg_bit_c'

58

result ‘reg_bit'

forward 1

#UnaryOp msone

" Most significant one bit pos priority on bit vector uses
function:

sources reg_bit_vector'

result 'reg_bit_vector’

function
' " markindent
‘function [(par1 width - 1) decimal ‘:0] d2vMSONE;’ cr
‘input [(par1 width - 1) decimal :0] par1;’ cr
cr
* // Equivalent of an IDaSS most significant one bit
position’ cr
* // priority (msomask) operator on a’ (par1 width)
decimal
* bits word.” cr
cr
‘integer index,’ cr
‘reg [' (par1 width - 1) decimal “:0] result;’ cr
‘reg found;’ cr
‘begin’ cr
‘ result =" ((par1 width zeroes) width) decimal b’
(par1 width zeroes) binary ;' cr
* found =0; cr
* for (index = (par1 width - 1) decimal ; index >=0;
index =index -1) cr
' begin’ cr
¢ if (~found && pari[index]==1) cr
begin’ cr
result=index;’ cr
found=1;" cr
end’ cr
if (~found) result =’ (par1 width)} decimal *;’ cr
end’ cr
d2vMSONE-=result;’ cr
‘end’ cr
‘endfunction // function d2vMSONE’ cr
exitindent cr cr

i
¢
i
‘
‘
‘
‘

inline 30

generatefunction

'd2vMSONE' (par1 width) decimal (' markindent par 1 0
exitindent ')'

#UnaryOp mszero

" Most significant zero bit pos priority on single bit is
removed:

sources 'reg_bit'
result ‘reg_bit'

forward 1
#UnaryOp mszero

" Most significant zero bit pos priority on single bit is
removed:

sources 'reg_bit_c'
result ‘reg_bit_c'

forward 1

#UnaryOp mszero

" Most significant zero bit pos priority on bit vector uses
function:

sources 'reg_bit_vector'
result ‘reg_bit_vector'

function
' ' markindent
‘function [' (par1 width - 1) decimal ;0] d2vMSZERO;’
cr
‘input [(par1 width - 1) decimal ":0] par1;’ cr
cr
‘ J/ Equivalent of an 1DaSS most significant zero bit
position’ cr
* // priority (mszero) operator on a’ (par1 width)
decimal * bits word.’ cr
cr
‘integer index’ cr
‘reg [' (par1 width - 1) decimal “:0] result;’ cr
‘reg found;' cr
‘begin’ cr
* result =" ((par1 width zeroes) width) decimal ’b’
(par1 width zeroes) binary *;’ cr
' found =0; cr
' for (index =" (par1 width - 1) decimal ‘; index >=0 ;
index =index -1} cr
‘ begin’ cr
if (~found && par1[index]==0) cr
begin’ cr
result=index;’ cr
found=1;" cr
end’ cr
if (~found) result = (par1 width) decimal *;’ cr
end' cr
d2vMSZERO=result;’ cr
‘end’ cr
‘endfunction // function d2vMSZERO' cr
exitindent cr cr

intine 30

generatefunction

'd2vMSZERO' (par1 width) decimal '(' markindent par 1
0 exitindent ')’

#UnaryOp mszmask

" Most significant zero mask priority on single bit uses
NOT:

sources 'reg_bit'
result 'reg_bit_c'

forward 1
#UnaryOp mszmask

" Most significant zero mask priority on single bit uses
NOT:

sources 'reg_bit_c'
result 'reg_bit'

forward 1

#UnaryOp mszmask

* Most significant zero mask priority on bit vector uses
function:

sources 'reg_bit_vector’
result 'reg_bit_vector'

function

' " markindent

‘function [' (par1 width - 1) decimal :0] d2vMSZMASK;’
cr

‘input [' (par1 width - 1) decimal :0 | par1;’ cr

cr

* /] Equivalent of an IDaSS most significant zero mask
priority’ cr

* // (mszmask) operator on a ' (par1 width) decimal *
bits word.’ cr

cr

‘integer index;’ cr

‘reg [(par1 width - 1) decimal *:0] result;’ cr

‘reg found; cr

‘begin’ cr

* result =’ ((par1 width zeroes) width) decimal ”'b’
(par1 width zeroes) binary ;" cr

* found = 0; cr

* for (index =" (part width - 1) decimal *; index >=0;
index =index -1) cr

' begin’ cr

' if (~found && parifindex]==0)' cr

‘ begin’cr

* resultfindex}=1; cr
' found=1; cr
‘ endcr

' end cr

' d2vMSZMASK-=result; cr

‘end’ cr

‘endfunction // function d2vMSZMASK’ cr
exitindent cr cr

inline 30

generatefunction

'd2vMSZMASK' (par1 width) decimal '(markindent par
1 0 exitindent ')’

#UnaryOp neg

* 2's complement negate on bit vector done with NOT
and add:

sources 'reg_bit_vector_c'
result ‘reg_bit_vector'

inline 9

par19'+'cr

((1 width: par1 width) width) decimal "'b’ (1 width: par1
width) binary

#UnaryOp neg

" Negate on single bit is removed:

sources 'reg_bit'
result 'reg_bit'

forward 1
#UnaryOp neg
" Negate on single bit is removed:

sources ‘reg_bit_c'
result 'reg_bit_c'

forward 1
#UnaryOp not
* On single bit values:

sources 'reg_bit'
result 'reg_bit_c'

forward 1
#UnaryOp not
* On single bit values:

sources 'reg_bit_c'
result 'reg_bit'

forward 1
#UnaryOp not

* On complete bit vectors:

sources 'reg_bit_vector
result 'reg_bit_vector_c'

forward 1
#UnaryOp not
" On complete bit vectors:

sources 'reg_bit_vector_c'
result 'reg_bit_vector'

forward 1
#UnaryOp onecnt
" Count number of %1 bits in a single bit is removed:

sources 'reg_bit'
result 'reg_bit'

forward 1
#UnaryOp onecnt
* Count number of %1 bits in a single bit is removed:

sources 'reg_bit_c'
result ‘reg_bit_c'

forward 1

#UnaryOp onecnt

" Count number of %1 bits in bit vector needs function:

sources 'reg_bit_vector'
result 'reg_bit_vector'

function
' *markindent
function [’ (par1 width - 1) decimal :0] d2vONECNT;’
cr
‘input [’ (part width - 1) decimal :0] pari; cr
cr
' // Equivalent of an 1DaSS count number of ones
(onecnt) operator’ cr
‘ I/ on a’ (par1 width) decimal ‘ bits word.’ cr
cr
‘integer index,count;’ cr
‘begin’ cr
count =" ((par1 width zeroes) width) decimal b’
(par1 width zeroes) binary ;" cr
* for (index = 0; index <= (par1 width - 1) decimal *;
index =index +1) cr
‘if (parifindex]==1) count=count+1;' cr
‘ d2vONECNT=count;’ cr
‘end’ cr
‘endfunction // function d2vONECNT’ ¢r
exitindent cr cr

.

inline 30

generatefunction

'‘d2vONECNT' (par1 width) decimal ‘(' markindent par 1
0 exitindent ')’

#UnaryOp ones

" Generate constant one bit:
sources ‘constant’

guard (par1 =1)

result 'reg_bit'

inline 30

o

#UnaryOp ones

60

" Generate field of constant ones:
sources 'constant’

guard (pari > 1)

result 'reg_bit_vector'

inline 30
((par1 ones) width) decimal "’b’ (par1 ones) binary

#UnaryOp opty
" Odd parity on a single bit, removed:

sources 'reg_bit'
result 'reg_bit'

forward 1

#UnaryOp opty
" Odd parity on a single bit, removed:

sources 'reg_bit_c'
result 'reg_bit_c'

forward 1
#UnaryOp opty
* Odd parity on two bits, done with XOR:

sources ‘reg_bit_vector'
guard (par1 width = 2)
result ‘reg_bit'

inline 4
par131'0]~cr
par 1 31 '[1)

#UnaryOp opty
" Odd parity on > 2 bits, uses function:

sources 'reg_bit_vector'
guard (pari width > 2)
result 'reg_bit'

function

' ' markindent

‘function [’ (par1 width - 1) decimal :0] d2vOPTY;’ cr
‘input {' (part width - 1) decimal ":0 | par1;’ cr

cr

* // Equivalent of an IDaSS odd parity (opty) operator’
cr

' /fona’ (par1 width) decimal * bits word.’ cr

cr

‘integer index;' cr

‘reg result;’ cr

‘begin’ cr

' result =0;’ cr

¢ for (index = 0; index <=’ (par1 width - 1) decimal *;
index =index + 1) cr

' result = result Apari[index];’ cr

* d2vOPTY=result; cr

‘end’ cr

‘endfunction // function d2vOPTY’ cr

exitindent cr cr

intine 30

generatefunction

‘d2vOPTY' (par1 width) decimal (' markindent par 1 0
exitindent ')’

#UnaryOp rev

* Reverse all bits in a word, removed for single bit:

sources 'reg_bit'
result 'reg_bit'

forward 1

#UnaryQOp rev
" Reverse all bits in a word, removed for single bit:

sources 'reg_bit_c'
result 'reg_bit_c'

forward 1

#UnaryOp rev

" Reverse all bits in a bit vector:

sources 'reg_bit_vector’
result 'reg_bit_vector'

inline 3

IRl

FOR (par1 width - 1)
DO

par 1 31 [' (FORCNT - 1) decimal] ,'
IF (FORCNTA3=0)
THEN
cr
ELSE

ENDIF

ENDFOR

par 131 '[' (par1 width - 1) decimal '
oy

#UnaryOp rev
" Reverse all bits in a bit vector:

sources 'reg_bit_vector_c'
result 'reg_bit_vector_c'

inline 3

FOR (par1 width - 1)
DO

par 1 31 ' (FORCNT - 1) decimal] ,'
IF (FORCNT A3 =0)
THEN
cr
ELSE
ENDIF
ENDFOR
par 1 31 (par1 width - 1) decimal '}’
"y
"#UnaryOp width
* Check width of a word, never seen here...
#UnaryOp zerocnt

" Count number of %0 bits in a single bit is done with
NOT:

sources 'reg_bit'
result ‘reg_bit_c'

forward 1
#UnaryOp zerocnt

" Count number of %0 bits in a single bit is done with
NOT:

sources 'reg_bit_c'

61

result 'reg_bit'

forward 1

#UnaryOp zerocnt
" Count number of %0 bits in bit vector needs function:

sources 'reg_bit_vector'
result 'reg_bit_vector'

function

' "' markindent

‘function [(par1 width - 1) decimal .0 | d2vZEROCNT;’
cr

‘input [* (par1 width - 1) decimal ":0] par1;’ cr

cr

‘ // Equivalent of an 1DaSS count number of zeroes
(zerocnt) operator’ cr

‘ //ona’ (par1 width) decimal ‘ bits word.’ cr

cr

‘integer index,count;’ cr

‘begin’ cr

* count =’ ((par1 width zeroes) width) decimal "’b’
(par1 width zeroes) binary *;’ cr

* for (index = 0; index <=' (par1 width - 1) decimal ;
index =index +1) cr

* if (par1[index]==0) count=count+1; cr

* d2vZEROCNT=count;’ cr

‘end’ cr

‘endfunction // function d2vZEROCNT’ cr

exitindent cr cr

inline 30

generatefunction

'd2vZEROCNT' (par1 width) decimal ‘(' markindent par
1 0 exitindent ")’

#UnaryOp zeroes

" Generate constant zero bit:
sources ‘constant'

guard (par1i =1)

result ‘reg_bit'

inline 30
e

#UnaryOp zeroes

* Generate field of constant zeroes:
sources ‘constant’

guard (part > 1)

result 'reg_bit_vector'

inline 30
((par1 zeroes) width) decimal “’b’ (par1 zeroes) binary

" BINARY OPERATORS

#MacroFor BinaryOp

naming
'multiply_signed'

contents
‘function [((par1 width) + (par2 width) -1) decimal :0]
multiply_signed;’ cr
cr
“This is the signed multiply function for HDL-Verilog
cr
‘input [' (par1 width - 1) decimal .0] par1;’ cr
‘input [(par2 width - 1) decimal “:0] par2;’ cr
‘integer index;’ cr

‘reg [((par1 width) + (par2 width) -1) decimal 0]
result;’ cr

‘reg [' (par1 width - 1) decimal “:0] lowbit;’ cr

‘reg [(par1 width + 1) decimal “:0] accu;' cr
cr

‘begin’ cr

‘accu = ((par1 width) + 1) decimal ’b’ (((par1 width) +
1) zeroes) binary ‘;’ cr

‘for (index = 0; index <=’ (par1 width - 1) decimal *;
index =index +1) cr

' begin’ cr

' if (par2[index] ==1)" cr
begin’ cr

if (index ==" (par1 width - 1) decimal ‘) cr
accu= accu - {parl [' (par1 width - 1) decimal

‘l, par1};’ cr

' else’ cr

accu= accu + {par1 [(par1 width - 1) decimal

‘l, par1};’ cr

) end’ cr
end’ cr
lowbit {index] = accu[0};’ cr
accu={accu[’ (par1 width) decimal '], accu[' (par1
width) decimal “:1]};" cr

‘end cr

‘result={accu[’ (par1 width - 1) decimal “:0], lowbit};’ cr

‘multiply_signed=result;’ cr

‘end’ cr

‘endfunction // function multiply_signed;” cr
cr

#MacroFor BinaryOp

naming
'‘gentempvar1’

contents
‘reg’
IF (par1 width > 1)
THEN
‘" (par1 width - 1 width: 8) decimalleft .0 |’
ENDIF
‘d2vTEMP’ (INDEX) decimal ';’ tabto 54

#MacroFor BinaryOp

naming
‘gentempvar2’

contents
reg’
IF (par2 width > 1)
THEN
‘[’ (par2 width - 1 width: 8) decimalleft :0]’
ENDIF
'd2vTEMP’ (INDEX) decimal ; tabto 54

#BinaryOp +

" Add bit vectors, standard work:
sources 'reg_bit_vector' 'reg_bit_vector'
result ‘reg_bit_vector'

inline 9
par19'+'cr
par 2 10

#BinaryOp +
“ Add bit vector and non-zero constant:

sources 'reg_bit_vector' ‘constant’
guard (par2 ~=0)
result ‘reg_bit_vector'

inline 9
par19'+'cr

62

(par1 width) decimal ™'b’ (par2 width: par1 width) binary
#BinaryOp +

" Add bit vector and zero constant, removed:

sources 'reg_bit_vector' 'constant'
guard (par2 = 0)
result 'reg_bit_vector'

forward 1
#BinaryOp +

" Add bit vector and zero constant, removed:

sources 'reg_bit_vector_c' ‘constant’
guard (par2 = 0)
result 'reg_bit_vector_c'

forward 1
#BinaryOp +

" Add non-zero constant and bit vector:

sources ‘constant’ 'reg_bit_vector'
guard (pari ~=0)
result 'reg_bit_vector'

inline 9

(par2 width) decimal ’b’ (par1 width: par2 width) binary
'+er

par2 10

#BinaryOp +

* Add zero constant and bit vector, removed:

"
sources 'constant' ‘reg_bit_vector'

guard (pari =0)
result 'reg_bit_vector'

forward 2

#BinaryOp +
" Add zero constant and bit vector, removed:

sources ‘constant’ 'reg_bit_vector_c'
guard (par1 =0)
result 'reg_bit_vector_c'

forward 2
#BinaryOp +
* Add single bit values, converted to XOR:

sources 'reg_bit' 'reg_bit’
result ‘reg_bit’

inline 4
par14'~cr
par25

#BinaryOp +

" Add single bit and Constant %0, removed:
sources 'reg_bit' ‘constant’

guard (par2 = 0)

result 'reg_bit'

forward 1

#BinaryOp +

" Add single bit and Constant %0, removed: ‘

" #BinaryOp -
sources 'reg_bit_c' 'constant’ "
guard (par2 = 0) * Subtract bit vector and non-zero constant:

result 'reg_bit_c' "

b sources 'reg_bit_vector' ‘constant’

forward 1 guard (par2 ~=0)

" result 'reg_bit_vector'

#BinaryOp + "

° inline 9

" Add single bit and Constant %1, converted to NOT: par19'-'cr

- (par1 width) decimal "’b’ (par2 width: par1 width) binary
sources 'reg_bit' 'constant' "
guard (par2 = 1) #BinaryOp -

result 'reg_bit_c' "

" " Subtract bit vector and zero constant, removed:

forward 1 "
" sources 'reg_bit_vector' ‘constant’
#BinaryOp + guard (par2 = 0)

result 'reg_bit_vector’
" Add single bit and Constant %1, converted to NOT: *

forward 1
sources 'reg_bit_c' 'constant' "
guard (par2 =1) #BinaryOp -

result 'reg_bit'
‘ * Subtract bit vector and zero constant, removed:
forward 1 .

sources 'reg_bit_vector_c' ‘constant’
#BinaryOp + guard (par2 = 0)

) result ‘reg_bit_vector_c'

* Add Constant %0 and single bit, removed: "

forward 1
sources ‘constant' 'reg_bit' .
guard (par1 =0) #BinaryOp -
result ‘reg_bit’ .
" " Subtract constant and bit vector:
forward 2 -
* sources ‘constant’ ‘reg_bit_vector'
#BinaryOp + result 'reg_bit_vector'
" Add Constant %0 and single bit, removed: inline 9
" (par2 width) decimal “’'b’ (par1 width: par2 width) binary
sources ‘constant' 'reg_bit_c' ‘-ter
guard (pari =0) par210
result 'reg_bit_c' "
" #BinaryOp -
forward 2 "
" * Subtract single bit values, converted to XOR:
#BinaryOp + "
‘ sources 'reg_bit' 'reg_bit'
" Add Constant %1 and single bit, converted to NOT: result 'reg_bit'
sources ‘constant’ 'reg_bit' inline 4
guard (par1 =1) par14'~Ncr
result 'reg_bit_c' par25
forward 2 #BinaryOp -
#BinaryOp + " Subtract single bit and Constant %0, removed:
" Add Constant %1 and single bit, converted to NOT: sources 'reg_bit' ‘constant’
- guard (par2 = 0)
sources ‘constant' ‘reg_bit_c' result 'reg_bit'
guard (pari =1) .
result 'reg_bit' forward 1
forward 2 #BinaryOp -
#BinaryOp - * Subtract single bit and Constant %0, removed:
" Subtract bit vectors, standard work: sources ‘reg_bit_c' ‘constant’
" guard (par2 = 0)
sources 'reg_bit_vector' 'reg_bit_vector' result 'reg_bit_c'
result 'reg_bit_vector' "
b forward 1
inline 9 "
par19'-'cr #BinaryOp -

par 2 10

63

* Subtract single bit and Constant %1, converted to
NOT:

sources 'reg_bit' ‘constant’
guard (par2 =1)
result 'reg_bit_c'

forward 1
#BinaryOp -

“ Subtract single bit and Constant %1, converted to
NOT:

sources 'reg_bit_c' ‘constant’
guard (par2=1)
result 'reg_bit'

forward 1

#BinaryOp -
" Subtract Constant %0 and single bit, removed:

sources ‘constant' 'reg_bit'
guard (parl =0)
result 'reg_bit'

forward 2

#BinaryOp -

" Subtract Constant %0 and single bit, removed:

sources 'constant' reg_bit_c'
guard (par1 =0)
result 'reg_bit_c'

#BinaryOp -
" Subtract Constant %1 and single bit, converted to
NOT:

sources ‘constant' ‘'reg_bit'
guard (parl =1)
result ‘reg_bit_c'

forward 2
#BinaryOp -

* Subtract Constant %1 and single bit, converted to
NOT:

sources ‘constant' 'reg_bit_c’
guard (pari=1)

result 'reg_bit'

forward 2

#BinaryOp *

“ Multiply unsigned on single bits, result can only be 0
or1:

sources ‘reg_bit' 'reg_bit'
result 'reg_bit_vector'

inline 30

10, cr

'(" markindent par 1 5 exitindent ' &' cr
"* markindent par 2 6 exitindent ')}’
#BinaryOp *

“ Multiply unsigned bit vectors:

64

sources 'reg_bit_vector' 'reg_bit_vector'
result 'reg_bit_vector'

* Assume the standard library supports this:

inline 10
par110'*cr
par2 11

#BinaryOp *

" Multiply unsigned single bit & constant,
* constant value 0 would not be visible here:

sources 'reg_bit' 'constant’
guard (par2=1)
result 'reg_bit'

forward 1

#BinaryOp *

" Multiply unsigned single bit & constant,

* constant value 0 would not be visible here:
sources 'reg_bit_c' 'constant’

guard (par2 = 1)

result 'reg_bit_c'

forward 1
#BinaryOp *

" Multiply unsigned bit vector & constant,

" constant value 0 would not be visible here:
sources 'reg_bit_vector' ‘constant’

guard (par2 =1)

result 'reg_bit_vector'

forward 1

#BinaryOp *

" Multiply unsigned bit vector & constant,
* constant value 0 would not be visible here:

sources 'reg_bit_vector_c' '‘constant'
guard (par2 =1)
result 'reg_bit_vector_c'

forward 1
#BinaryOp *

* Multiply unsigned bit vector & constant (> 1, 2**N),
" constant value 0 would not be visible here, this one
" can be converted into a shift left:
sources ‘reg_bit_vector' ‘constant'
guard {par2>1A

((par2 width: par1 width) onecnt = 1))
result ‘reg_bit_vector'

inline 30
par131'{['
(par1 width - (par2 width: par1 width) Isone - 1)
decimal
IF (par1 width - (par2 width: par1 width) Isone > 1)
THEN "0’
ENDIF
‘1)cr
IF (par2 = 2)
THEN 0}
ELSE (((par2 width: par1 width) Isone asBIC zeroes)
width) decimal *’b’ ((par2 width: par1 width) Isone
asBIC zeroes) binary ‘Y

ENDIF
#BinaryOp *

" Multiply unsigned bit vector & constant (> 1, ~= 2**N),
" constant LSB is %1:
sources 'reg_bit_vector' 'constant’
guard (par2>1A
((par2 width: par1 width) onecnt > 1) A
(par2 at: 0))
result 'reg_bit_vector'
tempvar 1
‘reg ’ tabto 21
‘[(par! width +
(par2 width: par1 width) msone width: 8) decimalleft
‘:0] d2vTEMP’ (INDEX) decimal *; // For unsigned
vector/constant multiply’ cr

separate
¢ d2vTEMP’ (INDEX) decimal * =’ cr
‘" markindent par 110 **'cr
((par2 width: (par2 width: par1 width) msone asBIC + 1)
width) decimal “'b’ (par2 width: (par2 width: par1 width)
msone asBIC + 1) binary

; I/ Active constant bit range only..." exitindent cr

" Remove excess bits with slicing:

inline 30

generatetempvars

generateseparate

‘d2vTEMP’ (INDEX) decimal ‘ [’ (par1 width - 1)
decimal * 0]

#BinaryOp *

* Multiply unsigned bit vector & constant (> 1, ~= 2**N),
" constant contains LS zeroes:
sources 'reg_bit_vector' ‘constant’
guard (par2>1A
({(par2 width: par1 width) onecnt > 1) A
(par2 at: 0) not)
result ‘reg_bit_vector'

tempvar 1
‘reg ’ tabto 21
T
(par1 width + (par2 width: par1 width) msone -
(par2 width: par1 width) Isone width: 8) decimalleft
':0] d2vTEMP’ (INDEX) decimal *; // For unsigned
vector/constant multiply’ cr
separate
' d2vTEMP' (INDEX) decimal ' =" cr
' *markindentpar110' ™ cr
((par2 from: (par2 width: par1 width) isone asBIC
to: (par2 width: par1 width) msone asBIC) width)
decimal *’b’ (par2 from: (par2 width: par1 width) Isone
asBIC
to: (par2 width: par1 width) msone asBIC) binary
", /] Active constant bit range only..." exitindent cr

" Remove excess bits with slicing and append constant
zero(es):

inline 30

generatetempvars
generateseparate
'd2vTEMP' (INDEX) decimal

(par1 width - (par2 width: par1 width) Isone - 1)
decimal

IF (par1 width - (par2 width: par1 width) lsone ~= 1)

THEN 0’

ENDIF

65

‘1. cr
IF (par2 at: 1)
THEN 0}
ELSE ((({(par2 width: par1 width) isone asBIC +1)
zeroes) width) decimal *’b’ (((par2 width: par1 width)
Isone asBIC +1) zeroes) binary 'Y
ENDIF

#BinaryOp *

" Multiply unsigned constant & single bit,

" constant value 0 would not be visible here:
sources ‘constant’ 'reg_bit'

guard (par1 =1)

result ‘reg_bit'

forward 2

#BinaryOp *

" Multiply unsigned constant & single bit,

" constant value 0 would not be visible here:
sources ‘constant’ ‘reg_bit_c'

guard (pari =1)

result 'reg_bit_c'

forward 2
#BinaryOp *

" Multiply unsigned constant & bit vector,

" constant value 0 would not be visible here:
sources ‘constant' 'reg_bit_vector'

guard (par1 =1)

result 'reg_bit_vector'

forward 2

#BinaryOp *

" Multiply unsigned constant & bit vector,
" constant value 0 would not be visible here:

sources ‘constant’ ‘reg_bit_vector_c'
guard (par1=1)
result ‘reg_bit_vector_c'

forward 2

#BinaryOp *

* Multiply unsigned constant (> 1, 2**N) & bit vector,
" constant value 0 would not be visible here, this one
" can be converted into a shift left:
sources ‘constant' 'reg_bit_vector'
guard (pari>1A

((par1 width: par2 width) onecnt = 1))
result ‘reg_bit_vector'

inline 30
pari1 31'(['
(par2 width - (par1 width: par2 width) Isone - 1)
decimal
IF (par2 width - (par1 width: par2 width) Isone > 1)
THEN “0'
ENDIF
"1 er
IF (par1 = 2)
THEN 'Oy
ELSE (((par1 width: par2 width) Isone asBIC zeroes)
width) decimal “’b’ ((par1 width: par2 width) Isone
asBIC zeroes) binary 'Y’
ENDIF

#BinaryOp *

" Multiply unsigned constant (> 1, ~= 2**N) & bit vector,
* constant LSB is %1:

sources 'constant' 'reg_bit_vector'

guard (par1>1A
((par1 width: par2 width) onecnt > 1) A
(par1 at: 0))

result ‘reg_bit_vector'

tempvar 1
‘reg ’ tabto 21
‘[’ (par2 width +
(par1 width: par2 width) msone width: 8) decimalleft
‘:0] d2vTEMP’ (INDEX) decimal *; // For unsigned
constant/vector multiply’ cr
separate
* d2vTEMP' (INDEX) decimal ‘ =" cr
* " markindent
((par1 width: (par1 width: par2 width) msone asBIC + 1)
width) decimal b’ (par1 width: (par1 width: par2 width)
msone asBIC + 1) binary
& x CI'
par 2 11 exitindent '; // Active constant bit range only...’
cr

" Remove excess bits with slicing:

inline 30

generatetempvars

generateseparate

‘d2vTEMP’ (INDEX) decimal * [’ (par2 width - 1)
decimal ‘:0 1

#BinaryOp *

" Multiply unsigned constant (> 1, ~= 2**N) & bit vector,
* constant contains LS zeroes:

sources ‘constant’ 'reg_bit_vector'
guard (pari>1A
((par1 width: par2 width) onecnt > 1) A
(par1 at: 0) not)
result 'reg_bit_vector'
tempvar 1
‘reg ’ tabto 21
(par2 width + (par1 width: par2 width) msone -
(par1 width: par2 width) Isone width: 8) decimalleft
':0] d2vTEMP’ (INDEX) decimal ; // For unsigned
constant/vector multiply’ cr

separate
' d2vTEMP' (INDEX) decimal ' =' ¢r
"' markindent
((par1 from: (par1 width: par2 width) Isone asBIC
to: (par1 width: par2 width) msone asBIC) width)

decimal "’b’ (par1 from: (par1 width: par2 width) Isone
asBIC

to: (par1 width: par2 width) msone asBIC) binary
cr
par 1 11 exitindent '; // Active constant bit range only...'
cr

»

* Remove excess bits with slicing and append constant
zero(es):

inline 30
generatetempvars
generateseparate
'd2vTEMP' (INDEX) decimal
L
(par2 width - (par1 width: par2 width) Isone - 1)
decimal
IF (par2 width - (par1 width: par2 width) Isone ~= 0)

66

THEN "0’

ENDIF

‘1, er
IF (par1 at: 1)
THEN ‘oY
ELSE ((((par1 width: par2 width) Isone asBIC +1)
zeroes) width) decimal *'b’ (((par1 width: par2 width)
Isone asBIC +1) zeroes) binary ‘Y
ENDIF

#BinaryOp *+

* Multiply right hand signed only on single bits, result
can only be

"Oor-1:

sources 'reg_bit' 'reg_bit'

result 'reg_bit_vector'

tempvar 1

expandmacro 'gentempvari’ ", // For RHS signed
multipy on bits' cr

separate
' d2vTEMP' (INDEX) decimal ' =' cr
' ' markindent

par15'&cr

par 2 6 exitindent ;' cr

inline 3

generatetempvars
generateseparate

{ d2vTEMP' (INDEX) decimal *’ cr
‘d2vTEMP’ (INDEX) decimal '}’

#BinaryOp *+
" Multiply RHS signed bit vectors:

sources 'reg_bit_vector' 'reg_bit_vector'
result ‘reg_bit_vector'

tempvar 1
‘reg ’ tabto 21
‘[’ (par! width + par2 width width: 8) decimalleft
‘:0] d2vTEMP’ (INDEX) decimal *; // For RH signed
multiply’ cr

* Use signed multiply defined in ‘extra_functions’

package. Add

" extra '0' bit to LHS to force it positive:

separate

setglobal %100

* d2vTEMP’ (INDEX) decimal * =’ cr
multiply_signed(’ markindent

‘{0, par 130}, cr

par 2 0 exitindent ;' cr

* Remove excess bits with slicing:

inline 30

generatetempvars

generateseparate

‘d2vTEMP’ (INDEX) decimal ' [’ (par1 width + par2
width - 1) decimal “:0)

#BinaryOp "+

" Multiply RHS signed constant & single bit,
" constant value 0 would not be visible here:

sources ‘constant’ 'reg_bit'
guard (pari=1)
result 'reg_bit'

forward 2

#BinaryOp "+

" Multiply RHS signed constant & single bit,
" constant value 0 would not be visible here:

sources ‘constant’' 'reg_bit_c'
guard (parl =1)
result ‘reg_bit_c'

forward 2

#BinaryOp "+

" Multiply RHS signed constant & bit vector,
" constant value 0 would not be visible here:
sources ‘constant’ 'reg_bit_vector'

guard (parl =1)

result 'reg_bit_vector'

forward 2

#BinaryOp "+

" Multiply RHS signed constant & bit vector,
" constant value 0 would not be visible here:

sources ‘constant’ 'reg_bit_vector_c'
guard (part =1)
result 'reg_bit_vector_c'

forward 2
#BinaryOp "+

" Multiply RHS signed constant (> 1, 2**N) & bit vector,
" constant value 0 would not be visible here, this one
" can be converted into a shift left:
sources ‘constant’ ‘reg_bit_vector’
guard (par1>1A
((par1 width: par2 width) onecnt = 1))
result 'reg_bit_vector'

inline 30
par 131 ("
(par2 width - (par1 width: par2 width) Isone - 1)
decimal
IF (par2 width - (par1 width: par2 width) Isone > 1)
THEN “:0'
ENDIF
‘1. er
IF (par1 =2)
THEN ‘0
ELSE (((par1 width: par2 width) Isone asBIC zeroes)
width) decimal "’b’ ((par1 width: par2 width) Isone
asBIC zeroes) binary ‘Y
ENDIF

#BinaryOp *+

" Multiply RHS signed constant (> 1, ~= 2**N) & bit
vector,
* constant LSB is %1:

sources ‘constant' 'reg_bit_vector'

guard (pari>1A
((par1 width: par2 width) onecnt > 1) A
(par1 at: 0))

result 'reg_bit_vector'

tempvar 1
‘reg [’

(par2 width + (par1 width: par2 width) msone +1
width: 8) decimalleft

*:0] d2vTEMP’ (INDEX) decimal tabto 54 *; // For RH
signed constant/vector multiply’ cr

67

" Use signed multiply defined in 'extra_functions'
package. Add

" extra '0' bit to constant to make it positive:

separate

setglobal %100

* d2vTEMP’ (INDEX) decimal ‘ = cr

' multiply_signed(’ markindent

((par1 width: (par1 width: par2 width) msone asBIC + 1)
width +1) decimal *’b’ (par1 width: (par1 width: par2
width) msone asBIC + 1 + 1) binary

Ler

par 2 0 exitindent *); // Active constant bit range only...’
cr

" Remove excess bits with slicing:

inline 30

generatetempvars

generateseparate

'd2vTEMP’ (INDEX) decimal ‘ [’ (par2 width - 1)
decimal ' :0]

#BinaryOp "+

* Multiply RHS signed constant (> 1, ~= 2**N) & bit
vector,
* constant contains LS zeroes:
sources ‘constant' ‘'reg_bit_vector'
guard (par1i>1A
((par1 width: par2 width) onecnt > 1) A
(par1 at: 0) not)
result ‘reg_bit_vector'

tempvar 1
‘reg [’

(par2 width + (par1 width: par2 width) msone asBIC -

(par1 width: par2 width) Isone asBIC + 1 width: 8)
decimalleft

‘.0 1 d2vTEMP’ (INDEX) decimal tabto 54 ; // For RH
signed constant/vector multiply' cr
" Use signed muitiply defined in 'extra_functions'
package. Add
" extra '0' bit to constant to make it positive:
separate
setglobal %100
* d2vTEMP’ (INDEX) decimal ‘ =' cr
* multiply_signed(’ markindent
0," ((part from: (par1 width: par2 width) Isone asBIC

to: (par1 width: par2 width) msone asBIC) width)
decimal "’b’ (par1 from: (part width: par2 width) Isone
asBIC
to: (par1 width: par2 width) msone asBIC) binary

‘Y, er
par 2 0 exitindent ‘); / Active constant bit range only..."
cr
infine 30
generatetempvars
generateseparate
'd2vTEMP' (INDEX) decimal

(par2 width -1 - (par1 width: par2 width) Isone asBIC)
decimal
“0],cr
IF (par1 at: 1)
THEN 0}
ELSE (((part width: par2 width) Isone asBIC zeroes)
width) decimal “’b’ ((par1 width: par2 width) Isone
asBIC zeroes) binary ‘}'
ENDIF

#BinaryOp +*

" Multiply left hand signed only on single bits, result can
only be
“Qor-1:

sources 'reg_bit' 'reg_bit’
result ‘reg_bit_vector’

tempvar 1
expandmacro ‘gentempvari'’; // For LHS signed
muiltipy on bits' cr

separate
' d2vTEMP’ (INDEX) decimal ' =' cr
' "markindent

par15'&' cr

par 2 6 exitindent ;' cr

inline 3

generatetempvars
generateseparate

{ i2vTEMP’ (INDEX) decimal ‘' cr
'd2vTEMP’ (INDEX) decimal '}’

#BinaryOp +*
" Multiply LHS signed bit vectors:

sources 'reg_bit_vector' 'reg_bit_vector'
result ‘reg_bit_vector'

tempvar 1
‘reg ’ tabto 21
‘[’ (part width + par2 width width: 8) decimalleft
*:0] d2vTEMP’ (INDEX) decimal *; // For LH signed
multiply’ cr

" Use signed multiply defined in ‘extra_functions'
package. Add
" extra '0' bit to MS side of RHS to force it positive:

separate

setglobal %100

* d2vTEMP’ (INDEX) decimal * =’ cr
multiply_signed(’ markindent par 1 0, cr

{0, par 1 30 '});" exitindent cr

" Remove excess bits with slicing:

inline 30

generatetempvars

generateseparate

‘d2vTEMP’ (INDEX) decimai ' [’ (par1 width + par2
width - 1) decimal *:0]

#BinaryOp +*

" Multiply LHS signed single bit & constant,
" constant value 0 would not be visible here:

sources 'reg_bit' 'constant’
guard (par2=1)
result ‘reg_bit'

forward 1
#BinaryOp +*

* Multiply LHS signed single bit & constant,
" constant value 0 would not be visible here:
sources 'reg_bit_c' ‘constant'

guard (par2 =1)

result 'reg_bit_c'

forward 1

#BinaryOp +*

68

" Multiply LHS signed bit vector & constant,
* constant value 0 would not be visible here:

sources 'reg_bit_vector' 'constant’
guard (par2=1)
result 'reg_bit_vector'

forward 1
#BinaryOp +*

* Multiply LHS signed bit vector & constant,
* constant value 0 would not be visible here:
sources 'reg_bit_vector_c' ‘constant

guard (par2=1)

result ‘reg_bit_vector_c'

forward 1
#BinaryOp +*

* Multiply LHS signed bit vector & constant (> 1, 2**N),
* constant value 0 would not be visible here, this one
* can be converted into a shift left:
sources ‘reg_bit_vector' ‘constant'
guard (par2>1A
((par2 width: par1 width) onecnt = 1))
result 'reg_bit_vector'

inline 30
par1 314"’
(par1 width - (par2 width: par1 width) Isone - 1)
decimal
IF (par1 width - (par2 width: par1 width) Isone > 1)
THEN "0’
ENDIF
‘1) cr
IF (par2 = 2)
THEN ‘0O
ELSE (((par2 width: par1 width) Isone asBIC zeroes)
width) decimal *’b’ ((par2 width: par1 width) Isone
asBIC zeroes) binary 1}’
ENDIF

#BinaryOp +*

" Multiply LHS signed bit vector & constant (> 1, ~=
2**N),
" constant LSB is %1:

sources 'reg_bit_vector' ‘constant’

guard (par2>1A
((par2 width: par1 width) onecnt > 1) A
(par2 at: 0))

result 'reg_bit_vector'

tempvar 1
‘reg’ tabto 21

‘[’ (par1 width +

(par2 width: par1 width) msone +1 width: 8)
decimalleft

‘:0) d2vTEMP’ (INDEX) decimal ‘; // For LH signed
vector/constant multiply’ cr

" Use signed multiply defined in 'extra_functions'
package. Add
* extra '0' bit to MS side of constant to make it positive:

separate
setglobal %100
¢ d2vTEMP’ (INDEX) decimal ‘ =" cr
* multiply_signed(’ markindent par 1 0, cr
‘0’ ((par2 width: (par2 width: par1 width) msone asBIC
+ 1) width) decimal *’b’ (par2 width: (par2 width: par1
width) msone asBIC + 1) binary
‘); // Active constant bit range only...” exitindent cr

* Remove excess bits with slicing:

inline 30

generatetempvars

generateseparate

‘d2vTEMP' (INDEX) decimal * [’ (par1 width - 1)
decimal ' :0]

#BinaryOp +*

" Multiply LHS signed bit vector & constant (> 1, ~=
2"N),
" constant contains LS zeroes:

sources 'reg_bit_vector' 'constant’

guard (par2>1A
({par2 width: par1 width) onecnt > 1) A
(par2 at: 0) not)

result 'reg_bit_vector'

tempvar 1
‘reg ' tabto 21

(par1 width + (par2 width: par1 width) msone asBIC -

(par2 width: par1 width) Isone asBIC + 1 width: 8)
decimalleft

‘:0] d2vTEMP’ (INDEX) decimal ‘; // For LH signed
vector/constant muitiply’ cr

" Use signed multiply defined in 'extra_functions'
package. Add
" extra ‘0’ bit to MS side of constant to make it positive:
separate
setglobal %100
* d2vTEMP’ (INDEX) decimal ‘ =' ¢r
* multiply_signed(’ markindentpar10 ‘cr
‘0’ ((par2 from: (par2 width: par1 width) Isone asBIC
to: (par2 width: par1 width) msone asBIC) width)
decimal “’b’ (par2 from: (par2 width: par1 width) Isone
asBIC
to: (par2 width: par1 width) msone asBIC) binary
*}; /1 Active constant bit range only...’ exitindent cr

inline 30
generatetempvars
generateseparate
'd2vTEMP' (INDEX) decimal
L
(par1 width -1 - (par2 width: par1 width) Isone asBIC)
decimal
“0],cr
IF (par2 at: 1)
THEN ‘0y
ELSE (({par2 width: par1 width) Isone asBIC zeroes)
width) decimal "’b’ ((par2 width: par1 width) Isone
asBIC zeroes) binary '}’
ENDIF

#BinaryOp +"+

" Signed multiply on single bits, result can only be 0 or
1:

sources ‘reg_bit' 'reg_bit'
result 'reg_bit_vector'

inline 30

{0, cr

'(' markindent par 1 5 exitindent ' &' cr
' markindent par 2 6 exitindent ')}’

#BinaryOp +*+
" Multiply signed bit vectors:

sources 'reg_bit_vector' 'reg_bit_vector’

69

result 'reg_bit_vector'

* Uses special function defined in 'extra_functions'
package:

inline 30

setglobal %100

'multiply_signed(' markindent par 1 0*,' cr
par 2 0 exitindent ‘)"

#BinaryOp A
" Logical AND between single bits:

sources 'reg_bit' 'reg_bit'
result ‘reg_bit'

inline 5
par15'& cr
par26

#BinaryOp A
“ Logical AND between bit vectors:

sources 'reg_bit_vector' ‘reg_bit_vector'
result 'reg_bit_vector'

inline 5
par15'&'cr
par 2 6

#BinaryOp A

* Logical AND between single bit & constant %1,
removed:

sources ‘reg_bit' ‘constant’
guard (par2 =1)
result 'reg_bit'

forward 1
#BinaryOp A

* Logical AND between single bit & constant %1,
removed:

sources 'reg_bit_c' 'constant’

guard (par2 =1)

result ‘reg_bit_c'

forward 1

#BinaryOp A

* Logical AND between bit vector and Constant (not
%11..41):

sources 'reg_bit_vector' ‘constant'
guard (par2 asBIC < par1 width ones asBIC)
result 'reg_bit_vector'

inline 5
par15‘& cr
(part width) decimal "'b’ (par2 width: par1 width) binary

#BinaryOp N

“ Logical AND between bit vector and %11..11
Constant, removed:

sources 'reg_bit_vector' ‘constant’

guard (par2 asBIC = par1 width ones asBIC)
result 'reg_bit_vector'

forward 1

#BinaryOp A

" Logical AND between bit vector and %11..11
Constant, removed:

sources 'reg_bit_vector_c' ‘constant'
guard (par2 asBIC = par1 width ones asBIC)
result 'reg_bit_vector_c'

forward 1

#BinaryOp A

" Logical AND between Constant %1 & single bit,
removed:

sources ‘constant' ‘reg_bit'
guard (parl =1)
result ‘reg_bit'

forward 2

#BinaryOp A

" Logical AND between Constant %1 & single bit,
removed:

sources ‘constant' 'reg_bit_c'
guard (par1 =1)

result 'reg_bit_c'

forward 2

#BinaryOp A

" Logical AND between Constant (not %11..11) and bit
vector:

sources ‘constant’ 'reg_bit_vector'
guard (par1 asBIC < par2 width ones asBIC)
result 'reg_bit_vector'

inline 5

(par2 width) decimal *’b’ (par1 width: par2 width) binary
‘&'cr

par26

#BinaryOp A

" Logical AND between %11..11 Constant and bit
vector, removed:

sources ‘constant' 'reg_bit_vector'

guard (par1 asBIC = par2 width ones asBIC)
result 'reg_bit_vector'

forward 2

#BinaryOp A

" Logical AND between %11..11 Constant and bit
vector, removed:

sources 'constant’ 'reg_bit_vector_c'

guard (par1 asBIC = par2 width ones asBIC)
result ‘reg_bit_vector_c'

forward 2

#BinaryOp ~A

" Logical NAND between single bits:

sources 'reg_bit' 'reg_bit'
result ‘reg_bit'

inline 11
‘~(‘ markindentpar 1 5' &' cr

70

par 2 6 ‘)’ exitindent
#BinaryOp ~A
" Logical NAND between bit vectors:

sources 'reg_bit_vector' 'reg_bit_vector'
result 'reg_bit_vector'

infine 11

‘~(" markindent par 15 ' &' cr

par 2 6 ‘)’ exitindent

#BinaryOp ~A

" Logical NAND between single bit & constant %1,
becomes NOT:

sources 'reg_bit' ‘constant'
guard (par2 =1)
result 'reg_bit_c'

forward 1

#BinaryOp ~A

" Logical NAND between single bit & constant %1,
becomes NOT:

sources 'reg_bit_c' ‘constant’
guard (par2 =1)
result 'reg_bit'

forward 1
#BinaryOp ~A

" Logical NAND between bit vector and Constant (not
%11..11):

sources 'reg_bit_vector' ‘constant'
guard (par2 asBIC < par1 width ones asBIC)
result 'reg_bit_vector'

inline 11

‘~(* markindent par 15 ' &' cr

(par1 width) decimal b’ (par2 width: par1 width) binary
‘)" exitindent

#BinaryOp ~A

" Logical NAND between bit vector and %11..11
Constant, becomes NOT:

sources 'reg_bit_vector' ‘constant’
guard (par2 asBIC = par1 width ones asBIC)
result 'reg_bit_vector_c'

forward 1

#BinaryOp ~A

* Logical NAND between bit vector and %11..11
Constant, becomes NOT:

sources reg_bit_vector_c' ‘constant'

guard (par2 asBIC = par1 width ones asBIC)
result 'reg_bit_vector'

forward 1

#BinaryOp ~A

" Logical NAND between Constant %1 & single bit,
becomes NOT:

sources 'constant' 'reg_bit’
guard (pari =1)

result ‘reg_bit_c'
forward 2
#BinaryOp ~A

" Logical NAND between Constant %1 & single bit,
becomes NOT:

sources ‘constant' 'reg_bit_c'
guard (parl =1)
result 'reg_bit'

forward 2
#BinaryOp ~A

" Logical NAND between Constant (not %11..11) and
bit vector:

sources ‘constant’ 'reg_bit_vector'
guard (par1 asBIC < par2 width ones asBIC)
result ‘reg_bit_vector'

inline 11

‘~(* markindent (par2 width) decimal 'b’ (par1 width:
par2 width) binary ' &' cr

par 2 6') exitindent

#BinaryOp ~A

" Logical NAND between %11..11 Constant and bit
vector, becomes NOT:

sources ‘constant' 'reg_bit_vector'

guard (par1 asBIC = par2 width ones asBIC)
result 'reg_bit_vector_c'

forward 2

#BinaryOp ~A

* Logical NAND between %11..11 Constant and bit
vector, becomes NOT:

sources 'constant’ 'reg_bit_vector_c'

guard (par1 asBIC = par2 width ones asBIC)
result 'reg_bit_vector'

forward 2

#BinaryOp V

" Logical OR between single bits:

sources 'reg_bit' 'reg_bit'
result 'reg_bit'

inline 3
par13'l'cr
par24
#BinaryOp V

* Logical OR between bit vectors:
sources 'reg_bit_vector' 'reg_bit_vector'
result 'reg_bit_vector'

inline 3
par13'l'cr
par24
#BinaryOp V

" Logical OR between single bit & constant %0,
removed:

71

sources ‘reg_bit' ‘constant’
guard (par2 =0)
result ‘reg_bit’

forward 1

#BinaryOp V

* Logical OR between single bit & constant %0,
removed:

sources 'reg_bit_c' ‘constant'
guard (par2 =0)

result 'reg_bit_c'

forward 1

#BinaryOp V

" Logical OR between bit vector and Constant (not
%00..00):

sources ‘reg_bit_vector' 'constant'

guard (par2 ~=0)

result ‘reg_bit_vector'

inline 3

par13'l'cr

{par1 width) decimal *'b’ (par2 width: par1 width) binary
#BinaryOp V

" Logical OR between bit vector and %00..00 Constant,
removed:

sources ‘reg_bit_vector' ‘constant'
guard (par2 =0)

result 'reg_bit_vector'

forward 1

#BinaryOp V

" Logical OR between bit vector and %00..00 Constant,
removed:

sources 'reg_bit_vector_c' 'constant’
guard (par2 =0)

result 'reg_bit_vector_c'

forward 1

#BinaryOp V

" Logical OR between Constant %0 & single bit,
removed:

sources ‘constant' 'reg_bit’
guard (par1 =0)
result 'reg_bit'

forward 2
#BinaryOp V

" Logical OR between Constant %0 & single bit,
removed:

sources ‘constant' 'reg_bit_c'
guard (pari =0)
result 'reg_bit_c'

forward 2

#BinaryOp V

* Logical OR between Constant (not %00..00) and bit
vector:

sources ‘constant’ 'reg_bit_vector'
guard (parl ~=0)
result 'reg_bit_vector'

inline 3

(par2 width) decimal *'b’ (par1 width: par2 width) binary
"fer

par24

#BinaryOp V

" Logical OR between %00..00 Constant and bit vector,
removed:

sources 'constant' 'reg_bit_vector'
guard (parl =0)
result 'reg_bit_vector'

forward 2

#BinaryOp V

" Logical OR between %00..00 Constant and bit vector,
removed:

sources 'constant' 'reg_bit_vector_c'
guard (par1 =0)

result ‘reg_bit_vector_c'

forward 2

#BinaryOp ~V

* Logical NOR between single bits:

sources ‘reg_bit' ‘reg_bit’'
result 'reg_bit'

inline 11

‘~(“ markindent par 1 3" I' cr

par 2 4 ‘Y exitindent

#BinaryOp ~V

* Logical NOR between bit vectors:

sources 'reg_bit_vector' 'reg_bit_vector'
result 'reg_bit_vector'

inline 11

‘~(“markindent par 13" [' cr
par 2 4 ‘)" exitindent
#BinaryOp ~V

" Logical NOR between single bit & constant %0,
becomes NOT:

sources 'reg_bit' ‘constant’
guard (par2 =0)

result ‘reg_bit_c'

forward 1

#BinaryOp ~V

" Logical NOR between single bit & constant %0,
becomes NOT:

sources 'reg_bit_c' ‘constant’
guard (par2 =0)

result 'reg_bit'

forward 1

#BinaryOp ~V

72

" Logical NOR between bit vector and Constant (not
%00..00):

sources 'reg_bit_vector' ‘constant’
guard (par2 ~=0)
result ‘reg_bit_vector'

inline 11

‘~(*markindent par 13" ['cr

(par1 width) decimal b’ (par2 width: par1 width) binary
Yy exitindent

#BinaryOp ~V

" Logical NOR between bit vector and %00..00
Constant, becomes NOT:

sources 'reg_bit_vector' 'constant’

guard (par2 = 0)

result 'reg_bit_vector_c'

forward 1

#BinaryOp ~V

* Logical NOR between bit vector and %00..00
Constant, becomes NOT:

sources 'reg_bit_vector_c' 'constant’
guard (par2 = 0)
result 'reg_bit_vector'

forward 1
#BinaryOp ~V

" Logical NOR between Constant %0 & single bit,
becomes NOT:

sources ‘constant’ 'reg_bit'
guard (par1 =0)
result 'reg_bit_c'

forward 2
#BinaryOp ~V

* Logical NOR between Constant %0 & single bit,
becomes NOT:

sources ‘constant’ 'reg_bit_c'
guard (par1 =0)
result 'reg_bit’

forward 2

#BinaryOp ~V

" Logical NOR between Constant (not %00..00) and bit
vector:

sources ‘constant' 'reg_bit_vector'

guard (par1 ~=0)

result ‘reg_bit_vector'

inline 11

'~(‘ markindent (par2 width) decimal *’b’ (par1 width:
par2 width) binary ' I' cr

par 2 4 *) exitindent

#BinaryOp ~V

* Logical NOR between %00..00 Constant and bit
vector, becomes NOT:

sources ‘constant' 'reg_bit_vector’

guard (par1 =0)

result ‘reg_bit_vector_c'

forward 2
#BinaryOp ~V

" Logical NOR between %00..00 Constant and bit
vector, becomes NOT:

sources 'constant’ 'reg_bit_vector_c'

guard (par1 =0)
result 'reg_bit_vector'

forward 2

#BinaryOp ><
" Logical XOR between single bits:

sources ‘reg_bit' 'reg_bit’
result 'reg_bit'

inline 4
par14'~ecr
par25

#BinaryOp ><
" Logical XOR between bit vectors:

sources 'reg_bit_vector' ‘reg_bit_vector'
result 'reg_bit_vector'

inline 4
par14'Acr
par25

#BinaryOp ><

" Logical XOR between single bit & constant %0,
removed:

sources 'reg_bit' 'constant’
guard (par2 =0)

result ‘reg_bit'

forward 1

#BinaryOp ><

" Logical XOR between single bit & constant %0,
removed:

sources 'reg_bit_c' ‘constant'
guard (par2 =0)

result ‘reg_bit_c'

forward 1

#BinaryOp ><

" Logical XOR between single bit & constant %1,
becomes NOT:

sources 'reg_bit' ‘constant'
guard (par2=1)

result 'reg_bit_c'

forward 1

#BinaryOp ><

* Logical XOR between single bit & constant %1,
becomes NOT:

sources 'reg_bit_c' ‘constant'

guard (par2 =1)
result 'reg_bit'

73

forward 1
#BinaryOp ><

" Logical XOR between bit vector and Constant (not
%00..00
“or%11..11):

sources 'reg_bit_vector' 'constant’
guard (par2 ~=0A

(par2 asBIC ~= par1 width ones asBIC))
result 'reg_bit_vector'

inline 4
par14'~cr
(par1 width) decimal ”’b’ (par2 width: par1 width) binary

#BinaryOp ><

* Logical XOR between bit vector and %00..00
Constant, removed:

sources 'reg_bit_vector' ‘constant’
guard (par2 =0)
result 'reg_bit_vector'

forward 1
#BinaryOp ><

" Logical XOR between bit vector and %00..00
Constant, removed:

sources 'reg_bit_vector_c' 'constant’
guard (par2 = Q)
result 'reg_bit_vector_c'

forward 1

#BinaryOp ><

* Logical XOR between bit vector and %11..11
Constant, becomes NOT:

sources 'reg_bit_vector' 'constant'
guard (par2 =0)

result 'reg_bit_vector_c'

forward 1

#BinaryOp ><

" Logical XOR between bit vector and %11..11
Constant, becomes NOT:

sources ‘reg_bit_vector_c' 'constant’
guard (par2 = 0)

result 'reg_bit_vector'

forward 1

#BinaryOp ><

" Logical XOR between Constant %0 & single bit,
removed:

sources 'constant’ ‘reg_bit'
guard (par1 =0}

result 'reg_bit'

forward 2

#BinaryOp ><

* Logical XOR between Constant %0 & single bit,
removed:

sources ‘constant' 'reg_bit_c'

guard (par1=0)
result 'reg_bit_c'

forward 2
#BinaryOp ><

" Logical XOR between Constant %1 & single bit,
becomes NOT:

sources "constant' ‘reg_bit'
guard (pari=1)
result 'reg_bit_c'

forward 2
#BinaryOp ><

* Logical XOR between Constant %1 & single bit,
becomes NOT:

sources ‘constant’ 'reg_bit_c'
guard (parl =1)
result 'reg_bit'

forward 2
#BinaryOp ><

" Logical XOR between Constant (not %00..00 or
%11..11) and
* bit vector:
sources ‘constant' ‘reg_bit_vector’
guard (parlt ~=0A

(par1 asBIC ~= par2 width ones asBIC))
result 'reg_bit_vector'

inline 4

(par2 width) decimal b’ (par1 width: par2 width) binary
'Ner

par25

#BinaryOp ><

* Logical XOR between %00..00 Constant and bit
vector, removed:

sources ‘constant' 'reg_bit_vector'
guard (par1 =0)
result 'reg_bit_vector'

forward 2
#BinaryOp ><

" Logical XOR between %00..00 Constant and bit
vector, removed:

sources "constant' ‘reg_bit_vector_c'
guard (pari =0)
result 'reg_bit_vector_c'

forward 2

#BinaryOp ><

" Logical XOR between %11..11 Constant and bit
vector, becomes NOT:

sources ‘constant' 'reg_bit_vector'

guard (par1 asBIC = par2 width ones asBIC)
result 'reg_bit_vector_c'

forward 2

#BinaryOp ><

74

" Logical XOR between %11..11 Constant and bit
vector, becomes NOT:

sources ‘constant’ ‘reg_bit_vector_c'
guard (par1 asBIC = par2 width ones asBIC)
result 'reg_bit_vector'

forward 2
#BinaryOp <>

* Logical XNOR between single bits (done with NOT
XOR):

sources 'reg_bit' 'reg_bit'
result 'reg_bit_c'

inline 4
par14'~cr
par25

#BinaryOp <>

" Logical XNOR between bit vectors (done with NOT
XORY):

sources 'reg_bit_vector' ‘reg_bit_vector'
result 'reg_bit_vector_c'

inline 4
par14'~cr
par25

#BinaryOp <>

" Logical XNOR between single bit & constant %0,
becomes NOT:

sources 'reg_bit' 'constant’
guard (par2 =0)
result 'reg_bit_c'

forward 1

#BinaryOp <>

* Logical XNOR between single bit & constant %0,
becomes NOT:

sources 'reg_bit_c' 'constant'
guard (par2 = 0)
result ‘reg_bit'

forward 1

#BinaryOp <>

" Logical XNOR between single bit & constant %1,
removed:

sources ‘reg_bit' ‘constant'
guard (par2 =1)
result 'reg_bit'

forward 1

#BinaryOp <>

" Logical XNOR between single bit & constant %1,
removed:

sources 'reg_bit_c' ‘constant’
guard (par2=1)
result 'reg_bit_c'

forward 1

#BinaryOp <>

" Logical XNOR between bit vector and Constant (not

%00..00

"or %11..11), uses XOR with complement of Constant:

sources ‘reg_bit_vector' 'constant'
guard (par2 ~=0A

(par2 asBIC ~= par1 width ones asBIC))
result 'reg_bit_vector'

inline 4
par14'~er

(par1 width) decimal ’b’ ((par2 width: par1 width}not)

binary
#BinaryOp <>

* Logical XNOR between bit vector and %00..00
Constant, becomes NOT:

sources 'reg_bit_vector' 'constant’
guard (par2 =0)
result 'reg_bit_vector_c'

forward 1
#BinaryOp <>

" Logical XNOR between bit vector and %00..00
Constant, becomes NOT:

sources 'reg_bit_vector_c' ‘constant'

guard (par2 =0)

result 'reg_bit_vector'

forward 1

#BinaryOp <>

" Logical XNOR between bit vector and %11..11
Constant, removed:

sources 'reg_bit_vector' 'constant'

guard (par2 asBIC = par1 width ones asBIC)
result 'reg_bit_vector'

forward 1
#BinaryOp <>

" Logical XNOR between bit vector and %11..11
Constant, removed:

sources 'reg_bit_vector_c' 'constant’

guard (par2 asBIC = par1 width ones asBIC)
result ‘reg_bit_vector_c'

forward 1

#BinaryOp <>

" Logical XNOR between Constant %0 & single bit,
becomes NOT:

sources ‘constant' 'reg_bit'
guard (par1 =0)

result 'reg_bit _¢'

forward 2

#BinaryOp <>

" Logical XNOR between Constant %0 & single bit,
becomes NOT:

sources 'constant' ‘reg_bit_c'
guard {par1 =0)
result 'reg_bit'

75

forward 2
#BinaryOp <>

" Logical XNOR between Constant %1 & single bit,
removed:

sources 'constant’ 'reg_bit'
guard (part=1)
result ‘reg_bit'

forward 2

#BinaryOp <>

" Logical XNOR between Constant %1 & single bit,
removed:

sources ‘constant' 'reg_bit_c'
guard (parl =1)
result ‘reg_bit_c'

forward 2

#BinaryOp <>

" Logical XNOR between Constant (not %00..00 or
%11..11) and
" bit vector (complements constant and uses XOR):

sources ‘constant' 'reg_bit_vector'
guard (parlt ~=0A

(par1 asBIC ~= par2 width ones asBIC))
result 'reg_bit_vector'

inline 4
(par2 width) decimal *’b’ ((par1 width: par2 width) not)
binary " ' cr
par25s

#BinaryOp <>

" Logical XNOR between %00..00 Constant and bit
vector, becomes NOT:

sources ‘constant' 'reg_bit_vector'
guard (par1 =0)
result 'reg_bit_vector_c'

forward 2

#BinaryOp <>

* Logical XNOR between %00..00 Constant and bit
vector, becomes NOT:

sources ‘constant' 'reg_bit_vector_c'
guard (part =0)
result 'reg_bit_vector'

forward 2
#BinaryOp <>

" Logical XNOR between %11..11 Constant and bit
vector, removed:

sources ‘constant' 'reg_bit_vector'

guard (par1 asBIC = par2 width ones asBIC)
result 'reg_bit_vector'

forward 2

#BinaryOp <>

* Logical XNOR between %11..11 Constant and bit
vector, removed:

sources ‘constant’ 'reg_bit_vector_c'
guard (par1 asBIC = par2 width ones asBIC)
result 'reg_bit_vector_c'

forward 2
#BinaryOp =

" Unsigned compare equal single bit & constant %1,
removed:

sources 'reg_bit' 'constant’
guard (par2 =1)
result 'reg_bit'

torward 1
#BinaryOp =

* Unsigned compare equal single bit & constant %1,
removed:

sources 'reg_bit_c' 'constant’
guard (par2 =1)
result 'reg_bit_c'

forward 1
#BinaryOp =

" Unsigned compare equal single bit & constant %0,
made into NOT:

sources 'reg_bit' 'constant’
guard (par2 =0)
result ‘reg_bit_c'

forward 1
#BinaryOp =

" Unsigned compare equal single bit & constant %0,
made into NOT:

sources 'reg_bit_c' 'constant'
guard (par2 =0)
result 'reg_bit'

#BinaryOp =

" Unsigned compare equal constant %1 & single bit,
removed:

sources ‘constant' 'reg_bit'

guard (par1 =1)

result 'reg_bit'

forward 2
#BinaryOp =

" Unsigned compare equal constant %1 & single bit,
removed:

sources 'constant' 'reg_bit_c'

guard (parl =1)

result ‘reg_bit_c'

forward 2

#BinaryOp =

" Unsigned compare equal constant %0 & single bit,
made into NOT:

76

sources ‘constant’ ‘reg_bit'
guard (par1t =0)

result ‘reg_bit_c'

forward 2

#BinaryOp =

* Unsigned compare equal constant %0 & single bit,
made into NOT:

sources ‘constant' 'reg_bit_c'
guard (par1 =0)

result 'reg_bit'

forward 2

#BinaryOp ~=

" Unsigned compare not equal single bit & constant
%1, made into NOT:

sources 'reg_bit' ‘constant’
guard (par2=1)

result 'reg_bit_c'

forward 1

#BinaryOp ~=

" Unsigned compare not equal single bit & constant
%1, made into NOT:

sources 'reg_bit_c' ‘constant’
guard (par2 =1)

result 'reg_bit'

forward 1

#BinaryOp ~=

* Unsigned compare not equal single bit & constant
%0, removed:

sources 'reg_bit' ‘constant’
guard (par2 = 0)

result 'reg_bit'

forward 1

#BinaryOp ~=

* Unsigned compare not equal single bit & constant
%0, removed:

sources 'reg_bit_c' 'constant’
guard (par2 =0)

result 'reg_bit_c'

forward 1

#BinaryOp ~=

" Unsigned compare not equal constant %1 & single
bit, made into NOT:

sources ‘constant’ 'reg_bit'
guard (pari=1)

result 'reg_bit_c'

forward 2

#BinaryOp ~=

* Unsigned compare not equal constant %1 & single
bit, made into NOT:

sources 'constant' 'reg_bit_c'

guard (par1=1)
result ‘reg_bit'

forward 2
#BinaryOp ~=

" Unsigned compare not equal constant %0 & single
bit, removed:

sources ‘constant' 'reg_bit'
guard (par1=0)
result 'reg_bit'

forward 2

#BinaryOp ~=

* Unsigned compare not equal constant %0 & single
bit, removed:

sources 'constant' 'reg_bit_c'
guard (par1 =0)
result 'reg_bit_c'

forward 2
#BinaryOp <

" Unsigned compare below between single bits, made
into AND/NOT:

sources ‘reg_bit_c' 'reg_bit'
result ‘reg_bit'

inline 5
par15'&' cr
par26

#BinaryOp <

" Unsigned compare below single bit & constant %1,
made into NOT:

sources 'reg_bit' 'constant'
guard (par2 =1)
result ‘reg_bit ¢'

forward 1

#BinaryOp <

" Unsigned compare below single bit & constant %1,
made into NOT:

sources 'reg_bit_c' 'constant’
guard (par2 =1)
result ‘reg_bit'

forward 1

#BinaryOp <

" Unsigned compare below constant %0 & single bit,
removed:

sources 'constant' 'reg_bit'
guard (par1 =0)
result ‘reg_bit'

forward 2
#BinaryOp <

* Unsigned compare below constant %0 & single bit,
removed:

sources "constant' 'reg_bit_c'

77

guard (par1 =0)
result 'reg_bit_c'

forward 2
#BinaryOp <=

" Unsigned compare below or equal between single
bits, made into NAND/NOT:

sources 'reg_bit' 'reg_bit_c'
result 'reg_bit'

inline 11
‘~(" markindent par 15 ' &' cr
par 2 6 ‘) exitindent

#BinaryOp <=

* Unsigned compare below or egual single bit &
constant %0, made into NOT:

sources 'reg_bit' ‘constant’

guard (par2 =0)
result 'reg_bit_c'

forward 1
#BinaryOp <=

" Unsigned compare below or equal single bit &
constant %0, made into NOT:

sources 'reg_bit_c' 'constant’
guard (par2 =0)
result 'reg_bit'

forward 1

#BinaryOp <=

" Unsigned compare below or equal constant %1 &
single bit, removed:

sources ‘constant' 'reg_bit'
guard (part =1)
result 'reg_bit'

forward 2
#BinaryOp <=

" Unsigned compare below or equal constant %1 &
single bit, removed:

sources ‘constant' 'reg_bit_c'
guard (parl =1)
result 'reg_bit_c'

forward 2

#BinaryOp =<

" Unsigned compare below or equal between single
bits, made into NAND/NOT:

sources 'reg_bit' 'reg_bit_c'
result ‘reg_bit'

inline 11

‘~(markindent par 15 ' &' cr
par 2 6)’ exitindent
#BinaryOp =<

* Unsigned compare below or equal single bit &
constant %0, made into NOT:

sources 'reg_bit' ‘constant’
guard (par2 =Q)
result 'reg_bit_c'

forward 1

#BinaryOp =<

" Unsigned compare below or equal single bit &
constant %0, made into NOT:

sources ‘reg_bit_c' ‘constant'
guard (par2 =0)
result 'reg_bit'

forward 1
#BinaryOp =<

* Unsigned compare below or equal constant %1 &
single bit, removed:

sources ‘constant’ 'reg_bit'
guard (pari =1)
result ‘'reg_bit'

forward 2
#BinaryOp =<

" Unsigned compare below or equal constant %1 &
single bit, removed:

sources 'constant' 'reg_bit_c'
guard (parli=1)
result ‘reg_bit_c'

forward 2

#BinaryOp >

" Unsigned compare above between single bits, made

into AND/NOT:

sources 'reg_bit' ‘reg_bit_c'
result ‘reg_bit'

infine 5
par15'&'cr
par2 6

#BinaryOp >

* Unsigned compare above single bit & constant %0,
removed:

sources ‘reg_bit' ‘constant’
guard (par2 =0)
result ‘reg_bit'

forward 1
#BinaryOp >

" Unsigned compare above single bit & constant %0,
removed:

sources ‘reg_bit_c' ‘constant'
guard (par2 =0)
result 'reg_bit_c'

forward 1

#BinaryOp >

* Unsigned compare above constant %1 & single bit,
made into NOT:

78

sources ‘constant’ 'reg_bit'
guard (pari=1)
result 'reg_bit_c'

forward 2

#BinaryOp >

* Unsigned compare above constant %1 & single bit,
made into NOT:

sources 'constant’ 'reg_bit_c'
guard (par1i=1)
result 'reg_bit'

forward 2

#BinaryOp >=

* Unsigned compare above or equal between single
bits, made into NAND/NOT:

sources 'reg_bit_c' 'reg_bit'
result 'reg_bit'

inline 11
‘~(‘ markindent par 1 5' &' cr
par 2 6 ')’ exitindent

#BinaryOp >=

* Unsigned compare above or equal single bit &
constant %1, removed:

sources ‘reg_bit’ ‘constant’
guard (par2 =1)
result ‘reg_bit'

forward 1
#BinaryOp >=

" Unsigned compare above or equal single bit &
constant %1, removed:

sources 'reg_bit_c' ‘constant’
guard (par2=1)
result 'reg_bit_c'

forward 1
#BinaryOp >=

" Unsigned compare above or equal constant %0 &
single bit, made into NOT:

sources 'constant’ 'reg_bit'
guard (parl =0)
result 'reg_bit_c'

forward 2

#BinaryOp >=

" Unsigned compare above or equal constant %0 &
single bit, made into NOT:

sources ‘constant’ ‘reg_bit_¢'
guard {par1 =0)
result 'reg_bit'

forward 2
#BinaryOp =>

* Unsigned compare above or equal between single
bits, made into NAND/NOT:

sources 'reg_bit_c' 'reg_bit'
result ‘reg_bit'

intine 11
‘~(* markindent par 1 5' &' cr
par 2 6 ‘)’ exitindent

#BinaryOp =>

" Unsigned compare above or equal single bit &
constant %1, removed:

sources 'reg_bit' ‘constant’
guard (par2 =1)
result 'reg_bit'

forward 1
#BinaryOp =>

" Unsigned compare above or equal single bit &
constant %1, removed:

sources 'reg_bit_c' ‘constant’
guard (par2=1)
result ‘reg_bit_c'

forward 1

#BinaryOp =>

* Unsigned compare above or equal constant %0 &
single bit, made into NOT:

sources ‘constant’ ‘reg_bit'
guard (par1 =0)
result 'reg_bit_c'

forward 2
#BinaryOp =>

" Unsigned compare above or equal constant %0 &
single bit, made into NOT:

sources ‘constant’ ‘'reg_bit_c’
guard (parl =0)
result 'reg_bit'

forward 2
#BinaryOp +=+

" Signed compare equal single bit & constant %1,
removed:

sources 'reg_bit' ‘constant’
guard (par2 =1)
result ‘reg_bit'

forward 1
#BinaryOp +=+

" Signed compare equal single bit & constant %1,
removed:

sources 'reg_bit_c' ‘constant’

guard (par2=1)

result ‘reg_bit_c'

forward 1

#BinaryOp +=+

* Signed compare equal single bit & constant %0,
made into NOT:

79

sources 'reg_bit' 'constant’
guard (par2 =0)
result ‘reg_bit_c'

forward 1

#BinaryOp +=+

“ Signed compare equal single bit & constant %0,
made into NOT:

sources 'reg_bit_c' ‘constant'
guard (par2 = 0)
result ‘reg_bit'

forward 1
#BinaryOp +=+

* Signed compare equal constant %1 & single bit,
removed:

sources ‘constant' 'reg_bit'
guard (pari =1)
result 'reg_bit'

forward 2
#BinaryOp +=+

" Signed compare equal constant %1 & single bit,
removed:

sources 'constant' 'reg_bit_c'
guard (par1 =1)
result 'reg_bit_c'

forward 2
#BinaryOp +=+

" Signed compare equal constant %0 & single bit,
made into NOT:

sources ‘constant' 'reg_bit'
guard (par1 =0)
result 'reg_bit_c'

forward 2

#BinaryOp +=+

* Signed compare equal constant %0 & single bit,
made into NOT:

sources ‘constant' 'reg_bit_c'
guard (pari =0)
result ‘reg_bit'

forward 2
#BinaryOp +~=+

" Signed compare not equal single bit & constant %1,
made into NOT:

sources 'reg_bit' '‘constant’
guard (par2=1)
result 'reg_bit_c'

forward 1

#BinaryOp +~=+

" Signed compare not equal single bit & constant %1,
made into NOT:

sources 'reg_bit_c' 'constant’

guard (par2 = 1)
result 'reg_bit'

forward 1
#BinaryOp +~=+

" Signed compare not equal single bit & constant %0,
removed:

sources 'reg_bit' 'constant’
guard (par2 = 0)
result 'reg_bit'

forward 1

#BinaryOp +~=+

" Signed compare not equal single bit & constant %0,
removed:

sources ‘reg_bit_c' 'constant'
guard (par2 =0)
result 'reg_bit_c'

forward 1
#BinaryOp +~=+

" Signed compare not equal constant %1 & single bit,
made into NOT:

sources ‘constant’ 'reg_bit'
guard (parl =1)
result 'reg_bit_c'

forward 2

#BinaryOp +~=+

" Signed compare not equal constant %1 & single bit,
made into NOT:

sources ‘constant' 'reg_bit_c'
guard (parl =1)

result ‘reg_bit'

forward 2

#BinaryOp +~=+

" Signed compare not equal constant %0 & single bit,
removed:

sources 'constant’ 'reg_bit'
guard (pari =0)

result 'reg_bit'

forward 2

#BinaryOp +~=+

" Signed compare not equal constant %0 & single bit,
removed:

sources 'constant' 'reg_bit_c'
guard (parl =0)

result 'reg_bit_c'

forward 2

#BinaryOp +<+

" Signed compare less than between single bits, made
into AND/NOT:

sources 'reg_bit' ‘reg_bit_c'
result ‘reg_bit'

inline 5
par15'&'cr
par26

#BinaryOp +<+

* Signed compare less than single bit & constant %0,
removed:

sources 'reg_bit' 'constant’

guard (par2 = 0)

result ‘reg_bit'

forward 1

#BinaryOp +<+

" Signed compare less than single bit & constant %0,
removed:

sources 'reg_bit_c' ‘constant'
guard (par2 =0)
result 'reg_bit_c'

forward 1

#BinaryOp +<+

" Signed compare less than constant %1 & single bit,
made into NOT:

sources 'constant’ 'reg_bit'
guard (parli =1)
result 'reg_bit_c'

forward 2
#BinaryOp +<+

* Signed compare less than constant %1 & single bit,
made into NOT:

sources ‘constant' ‘reg_bit_c'
guard (par1=1)
result ‘reg_bit'

forward 2
#BinaryOp +<=+

" Signed compare less than or equal between single
bits,

* made into NAND/NQOT:

sources ‘reg_bit_c' ‘reg_bit'

result 'reg_bit’

intine 11

‘~(‘markindent par 15' &' cr

par 2 6 ‘)’ exitindent

#BinaryOp +<=+

" Signed compare less than or equal single bit &
constant %1,

" removed:

sources ‘reg_bit' 'constant’

guard (par2 = 1)

result ‘reg_bit'

forward 1

#BinaryOp +<=+

* Signed compare less than or equal single bit &
constant %1,
" removed:

sources 'reg_bit_c' 'constant’
guard (par2=1)
result ‘reg_bit_c’

forward 1

#BinaryOp +<=+

* Signed compare less than or equal constant %0 &
single bit,
® made into NOT:

sources 'constant' 'reg_bit'
guard (parl =0)
result ‘reg_bit_c'

forward 2

#BinaryOp +<=+

" Signed compare less than or equal constant %0 &
single bit,

" made into NOT:

sources 'constant’ 'reg_bit_c'

guard (par1 =0)

result 'reg_bit'

forward 2

#BinaryOp +=<+

" Signed compare less than or equal between single
bits,

" made into NAND/NOT:

sources ‘reg_bit_c' 'reg_bit'

result ‘reg_bit'

inline 11
‘~("markindentpar 15'&' cr
par 2 6)’ exitindent

#BinaryOp +=<+

" Signed compare less than or equal single bit &
constant %1,

" removed:

sources 'reg_bit' ‘constant’

guard (par2=1)

result 'reg_bit'

forward 1
#BinaryOp +=<+

* Signed compare less than or equal single bit &
constant %1,

* removed:

sources ‘reg_bit_c' ‘constant’

guard (par2=1)

result ‘reg_bit_c'

forward 1
#BinaryOp +=<+

" Signed compare less than or equal constant %0 &
single bit,

* made into NOT:

sources ‘constant’ 'reg_bit'

guard (pari =0)

result 'reg_bit_c'

81

forward 2

#BinaryOp +=<+

* Signed compare less than or equal constant %0 &
single bit,
" made into NOT:

sources ‘constant’ 'reg_bit_c'
guard (pari =0)
result 'reg_bit'

forward 2

#BinaryOp +>+

" Signed compare more than between single bits, made
into AND/NOT:

sources ‘reg_bit_c' 'reg_bit'
result 'reg_bit'

inline 5

par15'& cr

par26

#BinaryOp +>+

* Signed compare more than single bit & constant %1,
made into NOT:

sources 'reg_bit' ‘constant’
guard (par2=1)
result 'reg_bit_c'

forward 1
#BinaryOp +>+

* Signed compare more than single bit & constant %1,
made into NOT:

sources 'reg_bit_c' ‘constant’
guard (par2=1)
result 'reg_bit'

forward 1
#BinaryOp +>+

* Signed compare more than constant %0 & single bit,
removed:

sources 'constant’ 'reg_bit'

guard (par1 =0)

result ‘reg_bit'

forward 2
#BinaryOp +>+

" Signed compare more than constant %0 & single bit,
removed:

sources 'constant' 'reg_bit_c'

guard (par1 =0)

result ‘reg_bit_c'

forward 2

#BinaryOp +>=+

" Signed compare more than or equal between single
bits,
* made into NAND/NOT:

sources 'reg_bit' ‘reg_bit_c'
result ‘reg_bit'

inline 11
‘~(* markindent par 1 5' &' cr
par 2 6 ‘)’ exitindent

#BinaryOp +>=+

" Signed compare more than or equal single bit &
constant %0,
" made into NOT:

sources 'reg_bit' ‘constant'
guard (par2 =0)
result 'reg_bit_c¢'

forward 1
#BinaryOp +>=+

" Signed compare more than or equal single bit &
constant %0,
“ made into NOT:

sources 'reg_bit_c' ‘constant'
guard (par2 =0)
result 'reg_bit'

forward 1

#BinaryOp +>=+

* Signed compare more than or equal constant %1 &
single bit,

" removed:

sources ‘constant’ ‘reg_bit'

guard (pari =0)

result ‘reg_bit'

forward 2

#BinaryOp +>=+

" Signed compare more than or equal constant %1 &
single bit,
" removed:

sources 'constant' 'reg_bit_c'
guard (pari =0)
result 'reg_bit_c'

forward 2
#BinaryOp +=>+

" Signed compare more than or equal between single
bits,
* made into NAND/NOT:

sources 'reg_bit' 'reg_bit_c’
result ‘reg_bit'

inline 11

‘~(markindent par 15 ' &' cr
par 2 6 ') exitindent

#BinaryOp +=>+

" Signed compare more than or equal single bit &
constant %0,
* made into NOT:

sources 'reg_bit' 'constant’
guard (par2 =0)
result 'reg_bit_c'

forward 1

82

#BinaryOp +=>+

* Signed compare more than or equal single bit &
constant %0,
" made into NOT:

sources 'reg_bit_c' 'constant'
guard (par2 = 0)
result 'reg_bit'

forward 1

#BinaryOp +=>+

" Signed compare more than or equal constant %1 &
single bit,

" removed:

sources ‘constant' 'reg_bit'

guard (part1 =0)

result 'reg_bit'

#BinaryOp +=>+

" Signed compare more than or equal constant %1 &
single bit,

" removed:

sources ‘constant' 'reg_bit_c'

guard (pari =0)

result 'reg_bit_c'

forward 2

Concatenation Operator

#BinaryOp ,

" Concatenation between vectors:

sources ‘concat_mitbit' 'concat_mitbit'
result ‘concat_mitbit'

inline 30
par10‘ par20

#BinaryOp ,

" Concatenation between vectors:
sources 'concat_mitbit' ‘reg_bit_vector'
result ‘concat_mitbit'

inline 30

par10°‘ par20

#BinaryOp ,

* Concatenation between vectors:
sources 'reg_bit_vector' 'concat_mltbit'
result ‘'concat_mitbit'

inline 30

par10' par20

#BinaryOp ,

" Concatenation between vectors:

sources 'reg_bit_vector' 'reg_bit_vector
result ‘concat_miltbit'

* Concatenation between bit and vector:
inline 30 "

par10‘ par20 sources 'reg_bit_c' ‘concat_mitbit_c'

) result 'concat_mitbit_c'

* inline 30

e begin (vector_c,vector_c)-> vector_c ----- par10‘ par20

#BinaryOp , #BinaryOp ,

* Concatenation between vectors: * Concatenation between bit and vector:
sources 'concat_mitbit_c' ‘concat_milibit_c' sources 'reg_bit_c' 'reg_bit_vector_c'
result ‘concat_mitbit_c' result 'concat_miltbit_c'

inline 30 inline 30

par10‘ par20 part10'’ par20

#BinaryOp , “---—-end-(bit_c,vector_c)-> vector_c-----
* Concatenation between vectors: "-----begin-(vector,bit)-> vector-----
sources ‘concat_mitbit_c* 'reg_bit_vector_c' #BinaryOp ,

result 'concat_mitbit_c'
" * Concatenation between bit and vector:

inline 30 .

par10‘ par20 sources 'concat_miltbit' ‘reg_bit'
" result '‘concat_miltbit'
#BinaryOp , .

" inline 30

" Concatenation between vectors: par10‘ par20

sources 'reg_bit_vector_c' ‘concat_miltbit_c' #BinaryOp ,

result 'concat_mitbit_c'

" Concatenation between bit and vector:

inline 30 !

par10‘ par20 sources 'reg_bit_vector' 'reg_bit'
! result 'concat_mitbit'
#BinaryOp , .

" inline 30

" Concatenation between vectors: par10‘ par20

sources 'reg_bit_vector_c' 'reg_bit_vector_c' "-----end-(vector,bit)-> vector-----

result ‘concat_mitbit_c' "

infine 30 !

par10‘ par20 #BinaryOp ,
"-----end-(vector_c,vector_c)-> vector_c ----- " Concatenation between bit and vector:
"-----begin-(bit,vector)-> vector----- sources '‘concat_mitbit_c' 'reg_bit_c'

! result ‘concat_mitbit_c'

#BinaryOp , "

" inline 30

* Concatenation between bit and vector: par10‘ par20

sources 'reg_bit' ‘concat_mltbit' #BinaryOp ,

result 'concat_mitbit'
) * Concatenation between bit and vector:

inline 30)

part1Q' par20 sources 'reg_bit_vector_c' 'reg_bit_c'
! result ‘concat_mitbit_c'

#BinaryOp , .

‘ inline 30

" Concatenation between bit and vector: par10‘ par20

sources 'reg_bit' ‘reg_bit_vector' *-----end-(vector_c,bit_c)-> vector_c -----
result 'concat_mitbit' .

" *.----begin-(bit,bit)-> vector-----

inline 30 "

par10‘ par20 #BinaryOp ,

"-----end-(bit,vector)-> vector----- * Concatenation between bit and bit:
*-----begin-(bit_c,vector_c)-> vector_¢ ----- sources 'reg_bit' 'reg_bit’

) result 'concat_mitbit'

#BinaryOp , "

inline 30

83

par10 par20

*-----end-(bit,bit)-> vector-----"
“-----begin-(bit_c,bit_c})-> vector_c -----
#BinaryOp ,

" Concatenation between bit and bit:

sources ‘reg_bit_c' 'reg_bit_c¢'
result 'concat_mitbit_c'

inline 30
par10‘ par20

" END OF FILE:
. THIS IS THE END

84

	Voorblad
	Preface
	Abstract
	Contents
	1 Introduction
	2 Hardware description languages and simulators
	3 VHDL and HDL-Verilog
	4 HDL-Verilog implementation
	5 Instructions for the target language file generation
	6 Conclusions and recommendations
	References
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5

