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Abstract

In this thesis the replacement of the analog front end of a quality surveillance system by a
digital one is studied. The requirements for this digital system are that it has a performance
at least as good as the existing system and that it is more flexible.

In order to attain these goals a signal model is proposed and confronted with the actual
data. The existing system is translated to the digital domain. It is shown that adaptive sys­
tems can be used but only with due care since the signal model does not agree with the signal
model for which adaptive systems are intended. A theoretical analysis of one-parameter adap­
tive filters is presented extending the existing analysis to the case of nonwhite input and/or
reference signals. Finally, a DSP implementation is established as a discrete counterpart for
the existing system. Using a DSP-system for the implementation, the proposed system is
inherently more flexible since the software can be easily adapted.
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Chapter 1

Introdllctioll

This introduction provides an overview of the contents of this thesis and of the principles
involved in the implementation of an adaptive filter. The quality surveillance system for yarn
produced by BARCO Automation (Kortrijk, Belgium) has been designed for detecting the
color of a thread. The measurement set-up is shown in Fig. 1.1.

yarn

sensor

light source
r

b

Figure 1.1: Measurement set-up of the quality surveillance system.

The light source with a certain color spectrum is used for lighting the thread and the
sensors are used to measure the light reflected by the thread. The output of these sensors
are electrical signal (b and r) which are proportional to the reflected light intensities in the
blue range and red range, respectively. The ratio of these color components is constant in the
absence of variation in the intensity of the light source or in the thickness of the thread. So
our object of study is to analyze these color components in the presence of above mentioned
variation and to estimate the ratio by means of an adaptive algorithm. The project also
includes implementing a digital based quality surveillance system. This digital based system
is expected to have more flexibility and an improved performance compared with the existing
analog quality surveillance system.

The digital quality surveillance system is implemented on the TMS320C40 ('C40) chip of
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CHAPTER 1. INTRODJCTION 2

Texas Instruments. The TMS320C40 has been designed to provide efficient implementation of
many common digital signal processing (DSP) algorithms and its instruction is exceptionally
well-suited to DSP applications. Important characteristics of the 'C40 that contribute to its
high performance are, pipelining (i.e, the overlapping operations of the fetch, decode, read
and execute labels of a basic instruction), concurrent I/O and CPU operation. So exploiting
these and more characteristics of 'C40 is a good choice which many firms are unable to exploit
due to lack of expertise/time.

We begin Chapter 2 by introducing the mathematical formulation of the problem. In
particular we introduce here our assumption of the signals in the noise environment. The
sources of noise will also be discussed here. In Chapter 3 we will discuss the existing quality
surveillance system and in Chapter 4 we analyze the blue signal (b) and the red signal (r)
by means of sampled experimental data, taken from the sensor. We will also consider the
estimated functional relation and the distribution of this experimental data.

In Chapter 5 we introduce adaptive filters based on a gradient search technique for mini­
mizing a quadratic performance function (LMS) and on minimizing an exponential weighted
sum of squared error (RLS). The simulation results of these algorithms on the experimen­
tal data discussed in Chapter 4 are presented in Chapter 6. The simulation programs were
developed in MatLab.

Chapter 7 discusses the implemented C program for the digital quality surveillance system
with 'C40. A general description of the 'C40 will also be given here. Chapter 8 contains an
evaluation of the designed digital quality surveillance system and Chapter 9 draws conclusions
and recommendations.



Chapter 2

Problem description

2.1 Signal definitions and assumptions

The intensities of the light reflected by a piece of thread of the yarn in the red and blue
spectrum are considered. Ideally, the reflected light intensities are constant. However, in the
presence of variations in the intensity of the light source or in the thickness of the thread,
the reflected light intensities in the blue and red range will vary. The ratio of these reflected
light intensities will nevertheless be constant. The sources of the variations are considered as
stochastic quantities. The intensities of the reflected light in the red and blue range are called
r~ and b~, respectively, and are stochastic quantities as well. The working point is defined
as (r~, b~) where a bar denotes the (time-)average of a stochastic quantity. We introduce the
color coefficient aD as

(2.1)

Under the given assumptions, plotting b~ versus r~ would result in occurrences in the r - b
plane exactly on the line defined by aD and near the working point.

There are several sources of noise which we take into account. First of all there is mea­
surement noise, e.g., nonperfect alignment of thread and sensor, noise in the sensor itself and
quantization noise in digital representation of the signal. Also, small color deviations are
allowed (depending on the specified quality of constancy of the color of the thread). These
deviations on the measured light intensities are treated as stochastic quantities and are called
nl and n2 for the red and blue range, respectively. Furthermore, we assume that E{nd = 0
and

E{nD ~ E{[r~ - r~]2},

E{nD ~ E{[b~ - b~]2}.

(Note that if power of the noise nl and n2 would be larger than those of r~ and b~ we could
have restricted ourselves to the working point only.) Plotting r~ + nl versus b~ + n2 in the
r - b plane would result in an ellipsoidal distribution of the points around the working point
with the main axis of the ellipse on the line defined by aD.

As a last source of deviations of the ideal case we have the occurrence of a different color
of yarn, and of dark grains in the cotton. These deviations are also considered as stochastic
quantities and are denoted 81 and 82 for the red and blue color range, respectively. The dark
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CHAPTER 2. PROBLEM DESCRIPTION 4

grains are inevitable, but different colored pieces of yarn have to be detected (and disposed
of). It is assumed that these deviations are zero-mean, large i.e.

E{8D ~ E{[r~ - rb]2},

E{sD ~ E{[b~ - bb]2}.

and, furthermore, that they are relatively short lasting.
The actual signals rand b that we dispose of are thus assumed to be

r ro + nl + SI,

b bo+ n2 + S2,

since the measurement system provides us with high-pass filtered versions of the reflected
light intensities (Chapter 3) and

ro

bo

The reason for highpass filtering is that the sensors do not only measure the light reflected
by the thread but also reflections from the (steady) background.

For convenience of subsequent analysis, the two kind of deviations of the ideal behavior
are often taking as a single noise source, i.e., we define

nr nl + SI,

nb n2 + S2·

Plotting the signal r versus b would thus presumably lead to an ellipsoidal distribution in
the r-b plane around the point (0,0) with the main axis defined by ao and with (occasionally)
a number of outliers.

It is assumed that all covariances of the fundamental variables ro, bo, nl, n2, SI and
82 are equal to zero with, naturally, the exception of E{robo} and, possibly, E{SIS2}. The
probability density functions (pdf) of ro and bo are identical (except for scaling). Similarly,
it is expected that the pdf of ro + nl and bo+ n2 are nearly identical to those of ro and bo
since by definition nl and n2 are small. If the pdfs of rand b are not nearly identical, than
it may be inferred that there is a component SI and/or 82 interfering on the data (reversal of
this statement is not possible).

2.2 Frequency domain description

In essence, the model of the signal generation that is proposed is given in Fig. 1.1, left side.
We have the signals ro and bo functionally related by ro = aobo and the disturbances ni and
Si. Available to measurement are the signals rand b (or rand b are the measured signals
and the noise sources contain measurement noise as well). A similar model is the one given
in the right hand side of Fig. 1.1 with (30 = l/ao.

In the frequency domain we can describe the stochastic signals by their power spectral
density functions

Srr(Q)

Sbb(Q)

Srb(Q)

FE{r[k]r[k+ n]}

FE{b[k]b[k+ n]}

F E{r[k]b[k +n]},
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bo

b

r
ro

b

r

Figure 2.1: Signal models. The two signal models are identical if f30 = 1/ao.

where F denotes the Fourier transformation. If there are no large disturbances (81 = 82 = 0)
than we expect that (except for scaling) Srr ex Sbb (reversal of the statement is not possible).
Furthermore,

Srb(f2)/Sbb(f2) ~ constant = ao

Srb(f2)/Srr(f2) ~ constant = f30

If there are large disturbances than these ratios can still be frequency independent but it
would imply that not only the disturbances are correlated but also functionally related in the
same way as ro and bo (and therefore indistinguishable from the true color signals ro and bo).

In general, if two signals are functionally related by some linear operator x -+ y, than we
have

Sxy(f2)/Sxx(f2)

Syx(f2)/Syy(f2)

and thus

(2.2)

The function C is referred to as the coherence function. However, if there is noise interfering
than from C we can see which part of the power spectra of x and y can be described by a
linear operator (i.e., for those frequencies where C = 1) and on which frequency parts of x
and/or y the noise is interfering.



Chapter 3

Existil1.g system

In this chapter we introduce the functional behavior of the existing analog adaptive mecha­
nism. This introduction serves as the basic building blocks from which we can construct other
adaptive algorithm with equivalent if not better performance. We also examine the relation
of this existing system parameters to the most widely used adaptation method (LMS).

3.1 Scheme of the functional behavior of the analog system

Fig. 3.1 shows a block scheme of the adaptation algorithm used in the analog quality surveil­
lance system with exception of the scaling factors of the input signals.

---l HPF

II

~ f .dt + -e

II

HPF

Figure 3.1: Block schema of the existing adaptive algorithm.

The input signals pass through a highpass filter (HPF), which is a first order filter with
cut-off frequency at O.85Hz, in order to filter out the DC-cornponents (especially light reflected
by the background), and enters the adaptive mechanism. The output of this circuit is the
error signal e, which is given by e = r - ab. This adaptive mechanism tries to estimate
the color coefficient which is the ratio of the blue-contents and the red-contents. Due to the
prefiltering it is not possible to determine this coefficient by simply dividing these two signals.

Fig. 3.2 shows a simplified block schema of the adaptation mechanism shown in Fig. 3.l.
The output is the error signal e' , which is given by e' = Irl- albl. The input-output relation

6
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·[OJ-Irl--I
-·11 II-'bl_.@_.I+r-----r---

e

'_

T

Figure 3.2: Simplified block schema of the existing adaptive mechanism.

of this system is given by the differential equation

Tn +a(t)lb(t)1 = Ir(t)1

7

(3.1)

with T = 44ms.
The signal e is the input to a decision making mechanism (digital) which judges if color
deviations occur and if these pieces of thread have to be removed.

3.2 Discretized versions

In order to simulate the system, the amplitude is quantized into discrete steps and at the
same time the signal is sampled at discrete time intervals. To avoid aliasing, the input signals
spectrum is limited and its bandwidth is smaller than half the sampling frequency.

Discretization by numerical integration:
By applying the 'trapezium-rule' to (3.1), we obtain a difference equation:

a[k] = Ir[k]1 + Ir[k - 1]\ 2JL - Ib[k - 1]1 [k _ ]
2JL+lb[k]1 + 2JL+lb[k]1 (Y 1

so, that

a[k] = a[k _ 1] + D ('[k] +e'[k - 1]).
T 2

Discretization by using forward differences:
By replacing the derivative by a forward difference in (3.1) we obtain:

T a[k] +;[k - 1] = Ir[k _ 1]1- a[k - 1]lb[k - \\1 = e'[k - 1]

(3.2)
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so that

D
a[k] = a[k - 1] + -e'[k - 1]

7

where D is the sampling time.
In the first and third quadrant of the b - r plane this equation yields:

D
a[k + 1] = a[k] + -sgn(b[k])e[k]

7

In the second and fourth quadrant of the b - r plane we have

D
a[k + 1] = a[k] - -sgn(b[k])e[k]

7

8

(3.3)

(3.4)

Since the signal is primarily in the first and third quadrant, the update rule is almost always
the one given in (3.4). The usual LMS algorithm has the form (see Section 5):

a[k + 1] = a[k] + JLb[k]e[k] = a[k] + JLlb[k]lsgn(b[k])e[k]

Comparing this with (3.4) we observe that adaption formula is similar if appropriate choice
of the LMS parameter is made.

In order to get similar performances to the existing system with the LMS algorithm we take:

Assuming that the signal b follows a Gaussian distribution, we have

Tb1 = /00 _1_lble2::~ db = f!.ab.
-00 .j2;a V-;

So, it is expected that the LMS algorithm will give results similar to the existing system.

D 1
JL = ---.

7 O.8ab

3.3 Conclusions

(3.5)

• The existing systen is almost LMS algorithm in first and third quadrate of the b - r
plane.

• The existing adaptive algorithm does not adapt in the right direction if the signal (b, r)
is in the second or fourth quadrant of the b - r plane.

• The update rule for a discretized version of the existing algorithm depends on the chosen
way of conversion from the analog to the digital domain (see (3.2) and (3.3)).



Chapter 4

Experimental data

Random signals can be characterized by their probability distribution and power spectral
density functions. The input signals rand b introduced in the Chapter 2 are assumed to be
a random signals. So it is convenient to take a finite-length of sample data r[k] and b[k] and
estimate their probability density function and other essential parameters for our analysis.
The number of samples taken for both signals is 100,200 at the sampling rate of D= 0.5ms.
Also included is an estimate of the functional relation of the input signals.

4.1 Time domain analysis

In Fig. 4.1 we have plotted some data b[k] versus r[k] for k E [50000,51000]. We observe the
following:
- the signal b has a much smaller power (i.e., aD > 1);
- roughly speaking there is indeed an ellipsoidal distribution of the samples (see Chapter 2);
- the main deviations are in the directions of b, i.e., it appears that there is (relatively) more
noise in the blue signal than in the red signal.

-0.08

-o:!>'=-.4--o~.,--=-o.::--2 --0::'7.'----7------,0:':-.1-70~=----::O.3

Figure 4.1: Part of the experimental data blue versus red.

In Fig. 4.2 we have plotted the histogram of the red signal. Furthermore, we have cal­
culated the standard deviation and plotted the Gaussian probability density function given

9



CHAPTER 4. EXPER1MENTAL DATA 10

by this standard deviation as well. We observe that histogram is in nice agreement with a
Gaussian distribution. We have plotted the tails of this distribution in Fig. 4.3. We see that
the distribution is slightly skew, for which the dark grains in the yarn may be responsible.

Figure 4.2: Histogram of the red signal, together with a Gaussian distribution.

'~I .~1,.~
~).4 -0.38 -(1.36 -0.34 -0.32 -0.3 -0.28 -0.26 -0.24 -0.22 -0.2

red

i~:~' •••• 1
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ M

red

Figure 4.3: Tails of the histogram of the red signal, together with a Gaussian distribution.

In Fig. 4.4 we have plotted the histogram of the blue signal. Again, we have calculated
the standard deviation and plotted the Gaussian probability density function given by this
standard deviation as well. We observe that histogram does not agree with a Gaussian distri­
bution. We have plotted the tails of this distribution in Fig. 4.5. We clearly see that there is a
heavy tail in this distribution. This in agreement with our remarks on Fig. 4.1. Presumably,
the histogram can be better represented as the combination of a Gaussian distribution with
some other heavy-tailed distribution.

We introduce the estimators

(Xopt =
E{br}
E{b2 } ,
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Figure 4.4: Histogram of the blue signal, together with a Gaussian distribution.

It:nn:D:n~
-0.08 -0.075 ·0.07 -0.065 -0.06 -0.055 ·0.05 -0.045 -0.04

->blue

l~_omn:_:J
0.04 0.045 0.05 0.055 O.OS 0.065 0.07 0.075 0.08

->blue

11

Figure 4.5: Tails of the histogram of the blue signal, together with a Gaussian distribution.

f30pt =
E{br}
E{r2 }'

f30pt =

In the case of noise we get

E{boro} + E{SIS2} E{b~}

E{b6} +E{nD = Go E{b6} +E{nn ~ Go,

E{boro} + E{SIS2} E{rn
E{r6} +E{nn = f30 E{r6} +E{n;} ~ f30,

under the assumption that E{SIS2} = O. In other words, if we want to obtain a good estimate
of Go (or (30), we have to take the cleanest signal as the independent variable in the regression.
It easily follows that

Gopt < Go ~ 1/f3opt,

f30pt < f30 ~ I/Gopt,

(4.1)

(4.2)
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and

In other words we have a bound for how clean the signals are by

E{b6}
O:opt(3opt S E{b2} S 1

(and an identical expression for the red signal).
In Fig. 4.6 we have plotted the standard deviations of el and e2 with

el r[k] - o:b[k],

e2 b[k] - (3r[k]

12

(4.3)

(4.4)

for different values of 0: and (3. It is found that O:opt ~ 5.1 and (3opt ~ 0.125 implying that
indeed noise comes into play (O:opt(3opt ~ 0.64).

9.3

0.056

5.5 6 8~=-08-'0';-;-.,----;;";;0.12,------;;";0.,-;-.70.'16
bela

Figure 4.6: Standard deviation of the residual signals el and e2 as a function of 0: and (3,
respectively.

In Fig. 4.7 we have plotted the same data as in Fig. 4.1, but now with the lines r = O:optb
and b = (3optr. It can be seen that the latter relation more closely follows the main axis from
the ellipse in agreement with OJr earlier observation that the larger deviation from the ellipse
are mostly in the blue-direction. The conclusion is that

E{nn E{nn
E{r2} < E{b2}

and thus that if we want to establish a good estimate for 0:0 we can better consider

e2 = b - (3r

and look for the minimum in power of e2 than use el' Furthermore we have

E{b6} E{r5}
E{b2} E{r2} = 0.64

(4.5)

(4.6)

(4.7)
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Figure 4.7: Part of the experimental data blue versus red together with the estimated func­
tional relation according to QJopt (dashed line) and (3opt (dashed-dotted line).

indicating that at least one of the signals is seriously corrupted by noise. As bounds we have

E{b6}
0.64:::; E{b2 } :::; 1 (4.8)

and the same is true for the red signal. From our visual inspection we infer that the red signal
is cleaner than the blue one and thus

0.64 <
E{b6}
E{b2 } :::; 0.8,

0.8 <
E{r6}
E{r2 } :::; 1.
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4.2 Frequency domain analysis

14

In Fig. 4.8 the power spectral density functions of rand b are plotted. We observe that both
spectra are different implying that either the functional relation between ro and bo is not the
memoryless operator proposed previously, or that there is noise interfering.

1;;;·······.· .~
o 0.1 02 03 0.4 QS o. Q7 o. M 1

lreqLl9ncy

:::~1,0'
10'

10"
o Ql Q2 ~ OA 0.5 O~ 0.7 OB Q9 1

lreqlJ9ncy

Figure 4.8: Power spectral density functions. Top figure: Prr solid line and Pbb dashed line.
Bottom figure: IPrbl.

In Fig. 4.9 the coherence function is plotted. We note that only at the very low frequencies
the coherence function is approximately 1. This implies that there is no noise interference at
the low frequencies.

0.3

0.2

0.1

00 0.1 0.2 0.3 0.4 0.5 0.6......"'" .7 0.8 0.9 I

Figure 4.9: Coherence function.

In Fig. 4.10 we have plotted the transfer function estimates Trb (dashed line) and Tb~l.

We note that Trb is in accordance with the assumption that there is a memoryless operator
relating ro and bo and that there is only a minor noise component in b. Subsequently, the fact
that nr =1= l/Tr b is attributed to a large disturbance on the blue signal. These disturbances
cover a large part of the frequency spectrum and this is in accordance with the assumption of
large sudden peaks in the blue signal but also reveal that these peaks occur quite frequently
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(see also Fig. 4.1).

I]' :'= =J
o Ql U U M Q5 O. ~ Q8 M 1......."'"

.,~
1-0.. :

fi.-o 2

-0.3

-0.4
o Ql Q2 03 OA M M Q7 M M 1

Irequency
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Figure 4.10: Transfer functions Trb (solid line) and 1/ITbrl (dashed line). Bottom figure gives
the phase of Trb in radians.

4.3 Conclusions

• The data do not reject the assumption of the proposed underlying model.

• Under the assumption of the signal model, the blue signal has a relatively high noise
component.

• It is better to take the red as the independent variable in the regression than the blue
signal for the given data.



CHAPTER 4. EXPERIMENTAL DATA

4.4 The error signal

Consider the error signals el and e2 defined as

el r - O!optb,

e2 b - {3optr.

16

We have plotted the histograms in Figs. 4.11 and 4.12 for el and Figs. 4.13 and 4.14 for e2

together with the Gaussian distribution with (1; = e;. We note that these errors do not follow
a Gaussian distribution, and, furthermore, that there is a much clearer separation between a
sharp Gaussian-like noise distribution and a heavy-tailed distribution for the e2 signal. Again,
this argues for e2 as the signal in a subsequent detection stage where outliers have to be sorted
out.

i_

Figure 4.11: Histogram of the signal el, together with a Gaussian distribution.

~:t~D:D:~
.8.3 -0.28 -0.26 -0.24 -0.22 -0.2 -0.18 -0.16

->elTorl

~:~~:D:=~J
0.16 0.1 B 0.2 0.22 0.24 0.26 0.28

->8rrorl

Figure 4.12: Tails of the histogram of the signal el, together with a Gaussian distribution.
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Figure 4.13: Histogram of the signal ez, together with a Gaussian distribution.
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Figure 4.14: Tails of the histogram of the signal ez, together with a Gaussian distribution.

In Fig. 4.15 we have plotted the power spectral densities of el and ez. We observe that
the spectrum of ez is nearly flat, whereas the spectrum of el peaks at the lowest frequencies.
Furthermore, the spectra are nearly identical except for the lowest frequencies. It is clear that
el is not able to discard the low-frequent correlation that is present in the red-blue data even
though this has a high degree of coherence (see Fig. 4.9). The autocorrelation function of el

and ez are plotted in Fig. 4.16 and yield the same information as the power spectral density
functions.
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Figure 4.15: Power spectral density functions of the error signals el (solid line) and e2 (dotted
line) .

(.)
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0.5
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Figure 4.16: Autocorrelation function of the error signals el (a) and e2 (b).



Chapter 5

Adaptive filters

This chapter discusses the LMS and RLS algorithms. First we consider Wiener filtering and
then we develop the above mentioned algorithms.

Given two variables x and d (input and reference signal, respectively), it is assumed that
the functional behavior between these can be described by

d= wox +n

where n is a random variable (noise) uncorrelated with d and x.
Taking the optimization criterion

Jmin = min E{e2} = min E{(d - wx)2}
w w

this minimal value is reached for

w = E{xd}jE{x2}.

In adaptive filtering this is called the Wiener solution. Furthermore we have w = woo Note
that this is not in agreement with our signal assumption (Chapter 2) since here it is assumed
that there is no noise on the independent variable x.

5.1 The LMS algorithm

We return to the simple model

d = wox + n.

The minimization criterion is taken as

Jmin = minE{e2
} = minE{(d- wx)2}.

w w

The gradient dJj dw is given by - 2E{ex}. The stochastic gradient search is now given by
updating the w in the direction of the negative gradient:

w [k + 1] = w [k] - ~ ~~

where f-l is the step size. Since we do not have the disposal over dJjdw we approximate this
by its instantaneous value dJjdw ~ -2e[k]x[k] thus arriving at

w[k + 1] = w[k] + f-le[k]x[k].

19
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The analysis of the LMS behavior is given in Appendix A, we here merely give the re­
sults. Our analysis extends the usual results on LMS adaptive behavior (e.g. [1]) to the case of
non-white input and/or reference signals and is in accordance with the theory presented in [2J.

Convergence speed.
With v[kJ = w[kJ - Wo we have as initial behavior

E{v[k]} ~ -wopk,

where p = 1 - fla;.

Weight-error fluctuations.
Taking d[k] = wox[kJ + n[kJ we have in the steady state (k --+ 00)

with Pxx[lJ and Pnn[lJ the normalized autocorrelation function of x and n, respectively.

Error signal.
In the steady state we have

(5.1)

(5.2)

(5.3)

Final misadjustment.
The final misadjustment J is defined as E{e2 (k)} - a~ for k --+ 00 and from the previous
expression we have

We note that for the special cases of a white noise input or a white reference signal these
results are in accordance with those in [lJ.

5.2 The RLS algorithm

Again consider the simple model d = wox + n. We try to estimate E{xd} an1 E{x2
} by

time-averaging via the simplest mechanism. The simplest mechanism (in term1=> of required
operations and memory) is given by

(1 - B)x[kJd[k] +BPxx[k - 1]

(1 - B)x 2 [kJ + BPxx[k - :I.],

Le., a first-order recursive filter to do the time-averaging. Note that for a stationary process
we have E{Pxd[k]) = E{xd}.
Note 1. Often the RLS algorithm is developed starting from a deterministic error criterion.
Note 2. Scaling Fxd can avoid the term (1 - B). Doing so for Pxx as well, Q can still be
determined by the ratio.
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The analysis is given in Appendix C and closely resembles that of the LMS algorithm
given in Appendix A. As far as we know, the RLS algorithm has not been analyzed in this
way in any of the textbooks on adaptive filtering.

Convergence speed.
For initial behavior starting with Pxx [-l] = PX d[-l] = 0 we have

E{v[k]} = 0 (5.4)

but v[k] will initially be very noisy.
Jumping from one steady state to another, Le, wo[k] = WI for k < Nand wo[k] = W2 for
k > N we have

E{w[N + k]} = W2 + (WI - w2)(i.

Weight-error fluctuations.
In the steady state, Le., for k -t 00, we have

{ 2[]} (1-0) 2/ 2"" [E v k = 0 an ax LJPxx[l]Pnn 1].
1+ I

with P defined as before.

(5.5)

(5.6)

(5.7)

Error signal.
In the steady state we find for the mean-squared error

2 2 0-1""
E{e [k]} = Oan(1 + 10 LJPxx[l]Pnn[l])

+ I

Comparing (5.1)-(5.2) with (5.5)-(5.6) we see that we have a similar behavior of the LMS
and RLS algorithm if 1 - 0 = fla; and 1 - 0 ~ 1.

5.3 Adaptation to more robust forms

If the assumption on which the adaptive algorithms is based, Le., d = wox +n is not satisfied,
then clearly, such scheme can not be used. But also, if in the mean, that is for most data
points d, x this signal generation model holds, but occasionally not, we may expect that
performance is hampered. In that case one can resort to checking on outliers and reject these
data as input data for the control loop. This notion gives rise to the following strategy:
1. determine if a data point is an outlier;
2. reject these data for an update of w.

A simple method to detect outliers is the following. We determine the variance of the error
signal. If the current error signal is larger in absolute value some factor times the variance of
the error signal, it is assumed to be an outlier.

Both the LMS and RLS method can be simple adjusted in the above mentioned way.
In the next sections, we will propose these adapted LMS and RLS algorithms. An analysis
of the behavior of these algorithms is beyond the scope of the current report. However, we
can qualitatively give the expected behavior of these adaptations in comparison with the
unadapted schemes (based upon the analysis there) and we will show by experiments the
effects of the proposed adaptations (Chapter 6).
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5.4 The adapted LMS algorithm

The LMS algorithm reads

22

e[k]

w[k + 1]

d[k] - w[k]x[k]

= w[k] + JLe[k]x[k].

If an outlier occurs, e[k] will be large. This introduces an unwanted and large step in w, from
which the adaptive mechanism subsequently has to recover.

A way to prevent this is by testing the hypothesis whether a large error e[k] is attributable
to an outlier. To do so we can estimate the power of e (denoted by Pee) and see if the current
error e[k] is outside a certain confidence region (say within the 1% tail of the assumed Gaussian
distribution). The flow-chart of this adapted LMS algorithm is shown in Fig. 5.1.

initialize (Pee, 0')

e = d - O'X

Pee = (1 - O)Pee + Oe 2

0' = 0' + JLxe

No

outdet = 1

Figure 5.1: Flow-chart of the adapted LMS algorithm.

The required extra processing is minimal:

d[k] - w[k]x[k]

(1 - O)e2 [k] + OPee[k]

if e2 [k] < factor *Pee[k]

w[k + 1] = w[k] + JLe[k]x[k]
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outdet[k] = 0

else

w[k + 1] = w[k]

outdet[k] = 1

end

23

A new parameter has been introduced (0) for the estimation of the error signal power and
a flag (outdet) has been set to indicate the detection of an outlier.

5.5 The adapted RLS algorithm

The RLS algorithm reads

PXd[k]

Pxx[k]

w[k]

e[k]

(1- O)x[k]d[k] +OPxd[k - 1]
(1 - O)x 2 [k] + OPxx[k - 1]

PXd/Pxx[k]

d[k] - w[k]x[k]

An adaptation in analogy to the LMS-variant reads

e[k] = d[k] - w[k - l]x[k] % a priori error

if e2 [k] < factor * Pee[k - 1]

Pdx[k] = (1 - O)d[k]x[k] + OPdx[k - 1]

Pxx[k] = (1 - O)x 2 [k] + OPxx[k - 1]

w[k] = Pdx[k]/Pxx[k]

outdet[k] = 0

else % do nothing

Pdx[k] = Pdx[k - 1]
Pxx[k] = Pxx[k - 1]
w[k] = w[k - 1]
outdet(k] = 1

end

e[k] =

Pee[k]

d[k] - w[k]x[k] % a posteriori error

(1 - O)e2 [k] +OPee[k - 1]

5.6 Comments on the adapted algorithms

• If the model holds and we use the adapted algorithms then

- the weight will converge to the Wiener solution Woj

- the weight has less fluctuations than in the nonadapted casej
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the excess-mean-squared error will be less, but this will probably be hardly notice­
able in the mean-squared error.

• If the model does not hold because the x component contains noise thus

x b+ n2

y r+ nl

r aob

then

- the weight will not converge to the Wiener solution (wo = E{xy}jE{x2
}) but will

be closer to the 'true' value ao;

- the weight has less fluctuations than in the usual LMSjRLS case;

mean-squared error will be larger than in the usual LMSjRLS case since the algo­
rithm does not converge to the Wiener solution.

Furthermore it is noted that we need to consider the initialization of these adapted algo­
rithms carefully since we need a good initial estimate of Pee for a proper functioning.



Chapter 6

Experiments with different
algorithms

In this chapter we present computer simulation of the algorithms discussed in chapter 5. The
programs were developed in MatLab.

The choice of one algorithm in favor of another is determined by various factors, depending
on the exchange between complexity requirements and convergence properties of the adaptive
filter. In this section the main concern will be on the convergence properties of the adaptive
filters.

6.1 Filtered error signal

In this section we repeat the experiments of Chapter 4, but now with the filtered el and
e2 (filtered by FIR filter [1/2, 1/2]). The motive is to show the effect of filtering on the
error signal as is suggested by the difference between the discretized versions of the existing
adaptive system, see (3.3) and (3.2).

0.075

0.07

0.065

0.06

1!
0.055

0.05

0.1)45

0." •4 ......

8.5

:a7.5

.5

0.08 0.1 0.12 O. t-4 0.16
bola

Figure 6.1: Standard deviation of the filtered (solid line) and unfiltered (dashed line) signals
el (left) and e2 (right).

In Fig. 6.1 we have plotted the standard deviation of the filtered and unfiltered signals el

25
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and e2 for different values of Q and 13.

This plot shows that:

- Qopt is shifted from 5.1 to approximately 6.1 by the introduction of the filtering;

- j30pt remains the same for the filtered and unfiltered signal e2.

14,----.---_,

12 12

10 10

arllrl m~1

Figure 6.2: Histogram of the unfiltered signal el (left figure) and the filtered signal el (right
figure), together with a Gaussian distribution.
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Figure 6.3: Tails of the histogram of the signal el using the normal LMS algorithm (top figure)
and using an update rule by first filtering el (bottom figure), together with their Gaussian
distribution.

In Fig. 6.2 is plotted the histograms together with the Gaussian distribution of the using
the normal LMS algorithm and the one with filtering of el. The tails of this distribution are
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plotted in Fig. 6.3.

These plots shows that:

- There is a heavy tail in the distribution introduced by the filtering of el;

- The distribution of the filtered and unfiltered e2 is almost the same.

Conclusions

• The adaptive weight a is very sensitive to filtering el.

• The adaptive weight f3 is not sensitive to filtering e2'

• Using the error signal e2 = b- f3r gives the same result with different rules of discretiza­
tion.

6.2 Adaptive algorithms

Experiment 1: existing adaptive mechanism.
We simulate first the existing adaptive mechanism by its discretized version using the

'trapezium rule' as it is described in Chapter 3. The simulation algorithm is that given by
(3.2). The resulting behavior of a[k] and the optimal solutions (aopt = 5.1; l/f3opt = 8), which
are found from the experimental data in Section 4.1, are plotted in Fig. 6.4.

3.5
x 10'

2.51.50.5

•
7

• ~

~I(
0

Figure 6.4: The behavior of a[k] with existing adaptive mechanism, together with a opt=5.1
and 1/ f30 pt =0.125.

The result of this simulation shows the following.

- When the number of iterations k approaches infinity, a converges to an unknown
optimum solution. This solution is solution within the bounds given in Section
4.1.

- Almost a smooth adaptation mechanism, which means a small (E{v 2 [k]}).
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- Slow convergence rate.

- The adaptation weight a converge to the optimum solution within the bounds
given in section 4.1.

28

Experiment 2: LMS algorithm for a.
For this experiment a[k + 1] = a[k] + Ilb[k]el[k] is used to update the adaptive weight

a[k]. The step size Il is set to 1.025, in order to get approximately the same performances to
the existing adaptive mechanism according to (3.5). The resulting behavior of a[k] is plotted
in Fig. 6.5.

fi~4

3

2

I

1.5 -.. 2.5 3.5
J( 10"

Figure 6.5: The behavior of a[k] with LMS algorithm.

The result of this simulation shows that:

- The adaptive weight a does converge to an optimal value and after convergence,
a[k] continues to fluctuate around this optimal value.

- This convergence value is in agreement with the optimal value found in section
4.1 (aopt}.

Comparison of results Exp.1 and Exp.2.

- The rate of convergence in Exp.2 is approximately twice as fast as it Exp.1,
while the variance is larger.

- The large fluctuation after convergence is caused by outliers: an outlier causes
a large value for el, inducing a large step in a from which the algorithm has to
reconverge to its optimal value.

- The LMS algorithm suffers from noise interference at the high frequencies and
as a result it gives a larger final misadjustment.

Experiment 3: LMS algorithm and RLS algorithm for {3.
We simulate now the LMS algorithm with the equation {3[k + 1] = {3[k] + Ilr[k]e2[k] and

the RLS algorithm with the equations shown in section 5.2. In order to get approximately the
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same performances to the existing adaptive mechanism, the step size /-l is set to 0.125 for LMS
algorithm and the forgetting factor () is set to 0.998 for the RLS algorithm. The resulting
behavior of ,B[k] with the LMS algorithm and the RLS algorithm is plotted in Fig. 6.6a and
Fig. 6.6b, respectively.
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Figure 6.6: The behavior of ,B[k] with LMS algorithm and RLS algorithm. (a) LMS (b)
RLS.

The result of this simulation shows that:

- For the RLS algorithm the initial behavior is very noisy as is expected from the
analysis of Section 5.2. (This is not very good visible in this plot.)

- When the number of iterations k approaches infinity, ,B converges to the optimum
solution found in Section 4.1 (,Bopt) for both algorithms.

- With both algorithms ,B[k] fluctuate after convergence around ,Bopt in nearly the
same way.

- The rate of convergence with the RLS algorithm is faster than that of the LMS
algorithm.

Comparison of results Exp.3 and Exp.2.

- Exp3 shows a faster rate of convergence for both algorithms compared with
Exp.2.

Experiment 4: The robust LMS algorithm for a.
We simulate here the robust LMS algorithm, explained in section 4.3 with () = 0.95 and

factor = 2. The initialization is done by adapting the first 2000 samples with the usual LMS
algorithm, in order to reach a reasonable estimate for Pee. The simulation results of a[k] is
plotted in Fig. 6.7.
The result of this simulation shows that:

- There is a smooth adaptation process, which means a small E{ v2 [k]}. This is in
agreement with the remarks in Section 5.6.

- a converge to the unknown optimal solution which is higher than the optimal
solution given in Section 4.1 (aopt).
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Figure 6.7: The behavior of ark] with the robust LMS algorithm.

- This adaptive algorithm shows almost the same behavior as the adaptive mech­
anism in Exp.! with the exception of the convergence rate, which is faster than in
Exp.!.

- a shows a smooth adaptation which is a result of avoiding unwanted and large
step in a as is discussed in Section 5.4.
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Conclusion:
On the basis of the given data and the performed experiments we prefer the unadapted LMS
algorithm with e2 = b - (3r as error signal since it is the simplest mechanism.



Chapter 7

1mplementation

The signal processing workplace consists of hardware and software for developing and imple­
menting signal processing algorithms on sophisticated hardware and software. To make use
of this sophisticated hardware, a programming environment is required which allows users
to quickly develop and implement an application. Therefore, it must be possible to describe
the application in some sort of high level language, which can be easily implemented on the
hardware.

The software that enables us to do this consists of a real-time operating system, called
Virtuoso, and some development tools (assembler, compiler and linker) from Texas Instru­
ments. With Virtuoso and the development tools, it is possible to write an application in
ANSI-C and download it on the hardware. A detailed description of the hardware and the
Virtuoso real-time operating system can be found in [6].

7.1 C-program

The source file, for implementing the front-end of the digital quality surveillance system with
the 'C40, is shown in Appendix D. Translating this source file into a code that the 'C40 can
execute is a process consisting of several steps (see Fig. 7.1).

The cl30 shell program is a utility that can compile, assemble, and optionally link in one
step. The shell runs one or more source modules through the following steps:

• The compiler which includes the parser, the optimizer and the code generator.

• The assembler which generates a COFF object file.

• The linker (optional) which links the files to create an executable object file.

The C compiler:
The TMS320 floating-point C compiler is a full-featured optimizing compiler that trans­

lates standard ANSI-C programs into TMS320C4x assembly language source. The compiler
is made up of three distinct programs: the parser, optimizer, and code generator.

The input for the parser is a source file. The parser reads the source file, checking for
syntax and semantic errors, and writes an internal representation of the program called an
intermediate file. The optimizer is an optional pass that runs between the parser and the
code generator. The input is the intermediate file produced by the parser. The input for the

31
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Figure 7.1: Program development flow.

generator is the intermediate file produced by the parser or the .opt file from the optimizer.
The code generator produces an assembly language source file.

The assembler:
The assembler translates assembly language source files into machine language object files.

Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control various aspects of the assembly process, such as the source
listing format, data alignment, and section content.

The format of these object files is called common object file format, or COFF. COFF
allows you to define your systems memory map at link time. This maximizes performance by
enabling you to link C code and data objects into specific memory areas.

The linker:
The linker combines object files into a single executable object module. As it creates the

executable module, it performs relocation and resolves external references. The linker accepts
relocatable COFF object files (created by the assembler) as input. Linker directives allow
you to combine object file sections, bind sections or symbols to addresses or within memory
ranges, and define or redefine global symbols.
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The source file:
The C program-flow for implementing the LMS algorithm in the C40 is shown in Fig. 7.2.

The program must handel the computation, as well as the input/output, between these a
synchronization is required. Therefore the program-flow is divided into two blocks named
read block and main block.

Main block

Initialize

Read block
r----------------------,

I
I
I

I
I
I

I

I
I
I
I

I
I

,---_L.-----, I
I
I

'----..-----' I
I

I
I------....

Err, Alpha, Flag=O

,,,
o
o.
o,
L J

Figure 7.2: Program-flow of the implemented C program.

The read block is used for setting the flag in ready state (Flag=l) after reading and
converting of a data sample is completed. This block is realized with a C function by using
a special naming convention cJntxx where xx is a two-digit interrupt number between 00-99.
The name cJntxx is the C entry point which is reserved for the system reset interrupt. This
special interrupt routine initializes the system and calls the function main.

The main block initializes and calibrates the AD and DA converters first and then starts
the LMS algorithm. After completing the LMS algorithm (calculating the error signal e and
updating the adaptive weight) the error signal e is sent to the output device and the flag to
the wait state (Flag=O).

These two blocks are operating in parallel. The interrupt handling routine
(KS_EnableISR(IRQ, cJntxx)) install an interrupt service routine, which provides the cJntxx
to operate entirely in the background. The fastest working of this program can be achieved
by setting the sampling period of the AD/DA converter to a value where the main block
has to wait a minimum possible time for the new sample. So it is necessary to measure the
execution time of both blocks in order to reach a synchronized working of these blocks. There
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are different methods to measure the execution time (see [9]). A simple method is used here to
optimize the operations of these blocks. Three counters are included as shown in Fig. 7.2. By
repeating the main block a specified number of time, we can observe whether the executing
time of these blocks leads to a minimum waiting time. If counter! is less than counter3, then
the samples passed to the main block has a sampling period which is less than the sampling
period of the ADIDA converter.

The complete C program for implementing the LMS algorithm as it is described above is
shown in Appendix D. This appendix also contains the listing of a C program for saving the
red signal (r), the blue signal (b) and the error signal from the analog quality surveillance
system on the files named ouLr, ouLb and ouLy, respectively.

7.2 nSP-system

This section describes the TMS320C40 Digital Signal Processor architecture. It is intended
to serve as a quick look-up of the 'C40 architecture for the application programmer. Detailed
information can be found in the 'TMS320C40 User's Guide" from Texas Instruments.

The 'C40's high performance is achieved through the precision and wide dynamic range
of the floating-point units, large on-chip memory, a high degree of parallelism, and the six­
channel DMA coprocessor. The block diagram of the 'C40 is shown in Fig. 7.3.

The interface to the outside world is done via two programmable memory ports. Two 4K
bytes internal RAM blocks are available as well as a small cache of 512 Bytes. The 6 FIFO
buffered communication ports providing a total peak bandwidth of up to 320MB/s and they
can also directly be interfaced to peripheral devices. Internally there is a six-channel DMA
coprocessor that permits to execute memory operations while the CPU is handling computa­
tional tasks.

The Central Processing Unit (CPU)
The 'C40 has a register-based CPU architecture. The CPU comprises the following com­

ponents:

• Floating-point I integer multiplier

• ALU for performing arithmetic: floating-point, integer, and logical operations

• 32-bit barrel shifter

• Internal buses (CPU1/CPU2 and REG1/REG2)

• Auxiliary Register Arithmetic Units (ARAUs)

• CPU register file

The most important ones for the application programmer are the CPU registers. The
'C40 primary register file provides 32 registers in a multiport register file that is tightly cou­
pled to the CPU. All of the primary register file can be operated upon by the multiplier and
ALU, and can be used as general-purpose registers. However, the registers also have some
special functions. Besides the CPU primary register file the expansion register file contains
two special registers that act as pointers. We refer to [8] for detailed information on the CPU
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registers and various CPU components.
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Memory Organization
The total memory reach of the 'C40 is 4G (giga) 32-bit words (16 Gbytes). Program

memory (on-chip RAM or ROM and external memory) as well as registers affecting timers,
communication ports, and DMA channels are contained within this space. This allows tables,
coefficients, program code, and data to be stored in either RAM or ROM.

RAM block 0 and block 1 are 4K bytes each. The ROM block is reserved and contains
a boot loader. Each RAM and ROM block is capable of supporting two accesses in a single
cycle. The separate program buses, data buses, and DMA buses allow for parallel program
fetches, data reads and writes, and DMA operations. For example: the CPU can access two
data values in one RAM block and perform an external program fetch in parallel with the
DMA coprocessor loading another RAM block, all within a single cycle.

Peripherals
All 'C40 peripherals are controlled through memory-mapped registers on a dedicated pe­

ripheral bus. This peripheral bus permits straightforward communication to the peripherals.
The 'C40 peripherals include two timers and two serial ports.

The six high-speed communication ports provide rapid processor-to-processor communi­
cation through each port's dedicated communication interfaces.

Communication port features:

• 160-megabit per second bidirectional data transfer operations (at 40-ns cycle time)

• direct processor-to-processor communication via eight data lines and four control lines

• buffering of all data transfers, both input and output

• automatic arbitration provided to ensure communication synchronization

• synchronization between the CPU or direct-memory access (DMA) coprocessor and the
six communication ports via internal interrupts and internal ready signals

The six channels of the on-chip Direct Memory Access (DMA) coprocessor can read from
or write to any location in the memory map without interfering with the operation of the CPU.
The two timer modules are general-purpose 32-bit timer/event counters with two signaling
modes and internal or external clocking. They can signal internally to the 'C40 or externally
to the outside world at specified intervals, or they can count external events.
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Figure 7.3: TMS320C40 block diagram.
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Evaluation

This chapter presents the experimental set-up of the digital quality surveillance system. The
test results of the experimental set-up and the possibility of minimizing the costs of the DSP
system are also discussed.

8.1 Experimental set-up

In Fig. 8.1 is shown the experimental set-up. The mechanical system for rotating the thread
is denoted by M. The sensor S produces the illuminating light I and measures the reflected
light R. The sensor produces the signals rand b which are amplified by A_I and A_2 and fed
to the A/D converters. These signals are input to the DSP system. The output of the DSP
system is the error signal e which goes through a D/A converter and is made visible on the
oscilloscope (Osc) together with the error signal y of the existing analogue system. The DSP
system can be controlled by the PC.

I
M S

R

y

Osc

DSP

PC

Figure 8.1: Experimental set-up.

The sensor (5) and the mechanical system (M)
A ±3 m string of thread containing a ±3 cm green colored part was placed over 2 wheels

with circumference of 50 cm. One of the wheels was driven by a motor with adjustable speed.
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This string of thread was lead through the sensor (see Fig. 1.1) producing the rand b signals.

The two analog amplifiers (Al, A2)
These analog amplifiers were used to obtain a sufficient dynamical range for the A/D

conversion.

The A/D converters (A/D)
The A/D converters are part of the Signal Processing Workplace. These converters have

a 12 bit resolution with a dynamical range of ±10 V and they are designed to perform syn­
chronous analog to digital conversion of the two analog inputs. These two channels offer high
conversion speed with a sharp Butterworth anti-aliasing filter (LPF 100kHz). The sampling
frequency is set to 1kHz, which can be adjusted in software (see [10]).

The TMS320C40 floating point DSP (DSP)
The DSP system is used to calculate the error signal e and the adaptive weight a. All vari­

ables are presented on 40-bit floating-point values. The 'C40 implementation of floating-point
arithmetic allows for floating-point operation at fixed-point speeds via a 40-ns instruction cy­
cle. The output of the DSP is the error signal e.

The PC (PC)
The TMS320C40 uses a fully implemented 'Kernighan and Ritchie' C compiler for convert­

ing a C language program (our program is shown in Appendix D) into a TMS320 assembly
language program. The TMS320 Assembler/Linker translates TMS320 assembly language
source code into an executable object model. The PC downloads the output of this assem­
bler/linker on the hardware (PD-TIMEX modular DSP system). The DSP communicates
also with the PC using the available communication mechanism.

The D/A converter (D/A)
The D/A converter is also part of the Signal Processing Workplace. It offers high conver­

sion speed with sharp 4th order Bessel filters (LPF 100kHz) and 16 bits precision.

8.2 Testing the system

Several test were performed in order to consider the operation of the system.

Test 1. Collecting the data
Aim of this experiment was to test the measurement system, in particular the operation of

the mechanical system, sensor, analogue amplifiers, A/D converters and the DSP - hard disk
communication. The data was read into the DSP and subsequently saved on the hard disk of
the PC. The collected rand b data were supposed to be similar to those used in Chapter 4
and Chapter 6 (with the exception of the data representing the green piece).

Fig. 8.2 shows the collected data. This should be compared to Fig. 4.1. Apart from the
amplification we note that both the ellipsoidal structure and the outliers (the green part) are
clearly visible. We also note that the ellipse is much more well-defined than in the original
data. This observation lead to the following test.
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Figure 8.2: Part of the data blue versus red.

Test 2. Comparison with the original data
From the uncontaminated data, we estimated Q' and (3 as before (Chapter 4) and obtained

Q' = 0.7998, (3 = 1.2354 and Q'(3 = 0.988. We infer that for this piece of thread both the red
and blue signal contain only a minor noise contribution nl and n2 (see Chapter 4). Therefore
it raises the question how representative the original data was. On the other hand, the data
we collected represents only a small piece of thread (3 m.).

Test 3. The adaptive system
We applied the LMS-algorithm to the collected data (in MatLab) with {l = 0.001. Since

the data contained only minor noise components nl and n2 both el = r - Q'b or e2 = b - (3r
could be equally well applied. We considered el since this signal is most directly comparable
to the y-signal of the existing system (see Chapter 3). The resulting error signal el is shown in
Fig. 8.3. It shows clearly the outliers (green part) at the same time-instants as the y-signal.
These parts can be easily identified by using thresholding. Just before the green part the
occurrence of a knot is also clearly visible.
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Figure 8.3: The error signal el.
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Test 4. Signal quantization
In order to test if the system can operate with more coarsely quantized input data, the

12 bits rand b representation was reduced to an 8 bits representation. The error signal con­
tained slightly more noise but the outliers remained clearly visible. With the 6 bits rand b
representation the error signal contained a relative large amount of noise due to quantization
but still the outliers remained clearly visible.

Test 5. Arithmetic accuracy
The mean value of a is roughly 1 as a consequence that both the signals rand b are scaled

for the AID conversion. The noise in ~a is approximately 0.08. This means the quantiza­
tion noise should be much less than 0.08. Thus approximately 16 bits should be sufficient to
calculate and update a. Therefore, a cheap fixed-point processor is possible.

Test 6. Real-time adaptive filtering
The LMS-algorithm implemented Ln the C-program (see Appendix D) was converted into

an executable object model (Chapter 7) and downloaded on the DSP. The error signal e
was compared with the analogue error signal y of the existing system on an oscilloscope (see
Fig. 8.1). In both signals the occurrence of the deviations were clearly visible, which is in
agreement with the MatLab tests.

The LMS algorithm can be easily replaced by the RLS algorithm or their robust variants
simply by replacing the LMS algorithm part in the program listing shown in appendix D with
the chosen algorithm .

8.3 Conclusions

The experimental set-up is sufficient to test the algorithms. However, it would be more
convenient to be able to use larger segments of the yarn.

The signals that are collected resemble the original data. However, there seems to be less
disturbances in the data collected in our experiments.

The colored parts in the thread can be easily identified by adaptive filtering and thresh­
olding. However, tests with other disturbances are recommendable.

The real-time LMS algorithm works and can be easily adapted to an RLS adaptive mech­
anism.

A larger signal quantization (at least as low as 8 bits) is possible without disturbing the
further processing. This means that cheap AID converters can be used.

8.4 Recommendations

The assembler code has to be optimized if a number of parallel processors has to be dealt
with. The number of parallel processes that can be run on a single DSP for a given sample
frequency has as yet to be determined. This can be done as follows .

• Set the AID converter sampling period to a maximum sampling period where the de­
tecting of the outliers is possible.
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• Measure the total execution time (for all parallel processes) of the necessary operation
to be performed to implement LMS algorithm. This can be done in several methods.
Here we give an example based on the timing function on 96002 from Ariel (see [ll]).

extern void timerO_irqh; /*interrupt routine */
KS_EnableISR (4,timerO_irqh); /* enable interrupt */

int main ()
{

int time_1, time_2
timerO_init () ;
time_1=timeO_read();

/* initialize timer */
/* read time_1 */

/* time_2 - time_1=execution time in microseconds*/

}

• Adjust this above mentioned execution time, by altering the number of process, till the
executing time of the reading block.



Chapter 9

Conclusions and recommendations

This thesis has lead to the following conclusions.
- The existing system is basically an LMS-type algorithm.
- Depending on which input signal is most disturbed the regression parameter should be a
or (3.
- As analog counterparts of the existing system an LMS or RLS algorithm can be used and
with proper parameter setting these algorithms will have a quite similar performance.
- It deserves consideration to use more robust adaptive algorithms since the data is essentially
not in agreement with the data model for which adaptive filters are intended.
- Software has been designed for a DSP system in order to arrive at a digital counterpart of
the existing analog system.
- Our simulations suggest that cheap AID converters and a low-cost fixed-point DSP can be
used to implement the front end of the quality surveillance.

The presented work can be extended in several ways.
The system can be implemented on a fixed-point DSP. This requires considering and mini­
mizing the effect of quantization noise.
So far the occurrence of a perturbed signal is determined by considering the error e = b - ar
only. In essence, the shortest axis of the diagonal distribution is determined and taken as a
measure to determine outliers. It is better to consider a unitary transformation on the data
according to

In that way outliers in the direction of the main axis (Le., the signal 1) of the ellipsoidal
distribution can be dealt with as well.
The existing decision mechanism, presently in cascade with the analog system, is a digital
system. Presumably, the front-end adaptive system and the decision making mechanism can
be incorporated in a single flexible DSP system.
The existing system as well as its proposed analog counterpart essentially describe the color in
a two-dimensional space. Since the human eye describes colors in a three-dimensional space,
an red-green-blue detector should in principle yield a better color deviation discrimination.
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Appendix A

The convergence properties of the
LMS algorithm.

In this appendix the convergence properties of the LMS algorithm with one coefficient is
derived. We assume here the simple model

d[k] = wox[k] + n[k]

and the LMS update rule

w[k + 1] = w[k] + Jix[k]e[k]

where

e[k] = d[k] - w[k]x[k].

For this, the weight error (v[k]) and the error signal (e[k]) are represented as follows:

v[k] = w[k] - Wo,

e[k] = d[k] - w[k]x[k] = wox[k] + n[k] - w[k]x[k] = n[k] - v[k]x[k].

Weight-error fluctuation.
The update equation for the weight error is:

v[k + 1] = v[k](1 - Jix 2 [k]) + Jix[k]n[k].

v[k + 1] v[k](1 - Ji(1;) +Jix[k]n[k]

= v[k]p +Jix[k]n[k]
00

Ji Lp1x[k -l]n[k -I]
1=0

with p = 1 - Ji(1;.

43
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With E{ v2[k + I]} = E{v2[k]} and /-la; ~ 1 we have

2/-la;E{v2[k]} = 2/-lpE{v[k]x[k]n[k]} + /-l2 E{ x2[k ]n2[k]}

= 2/-lpE{v[k]x[k]n[k]} + /-l2a;a~.

Substituting v[k] in the right hand side of the previous equation results in:
00

2/-la;E{v2[k]} = 2/-lpE{/-l Lplx[k - 1 - l]n[k - 1 - l]x[k]n[k]} + /-l2a;a~

1=0
00

2/-l2LpIE{x[k]x[k -l]}E{n[k]n[k -l]} + /-l2a;a~
1=1
00

2/-l2Lplrxx[l]rnn[l] + /-l2a;a~
1=1
00

= /-l2 L plllrxx[l]rnn[l].
1=-00

Let L denote the effective length of rxx[l]rnn[l] and let 1 - pL ~ 1 (Le., the effective length
of pi ~ effective length of rxx[l]rnn[l]). Then

E{v2[k]} ~ ~ f r;p]rnn[l] = ~ f pxx[l]rnn[l]
1=-00 x 1=-00

with Pxx[l] = rxx/a;.
So, finally we get for the relative weight error:

E{v
2
[k]} = /-la; a~ ~ (l) (l)

2 2 2 2 LJ Pxx Pnn
W opt woptax 1=-00

with Pnn(l) = rnn(l)/a~.
This last expression is of a product of three terms. The first term is the adaptive constant,
the second term is the ratio between the noise and signal power in d and the last term is a
measure for similarity of the x time behavior to the n time behavior.

Final misadjustment.
First we will derive an expression for the mean-squared error E{e2 [k]}.

E{v2[k]x2[k]} - 2E{v[k]x[k]n[k]} + E{n2[k]}
00

E{v2[k]x2[k]} - 2E{/-l Lplx[k - 1 - l]n[k - 1- l]x[k]n[k]} + a~

1=0

!!.- L rxx[l]rnn[l] - /-l(L rxx[l]rnn[l] - a;a~) + a~
2 I I

a~ (1 + /-la;) - !!.- L rxx[l]rnn[l]
2 I

a~{1 + /-la;(I- ~ LPxx[l]Pnn[l])}.
I
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The equation for the relative error is given by:

J[k]

where

Jmin = E{e2 [k]}lw[k]:::woPt = E{n2 [k]} = a~.

So, the final misadjustment J is given by:



Appendix B

Parameter relation of RLS and
LMS algorithm

The purpose of this appendix is to describe the relation of the RLS and LMS algorithm. The
weight error is given by:

v[k] w[k] - Wa
Pxd[k] E{xd}---
Pxx[k] E{x2 }

Pxd[k] Pxd
Pxx[k] - Fxx
Pxd + Pxd[k] Pxd
Pxx + Fxx[k] pxx ·

With P. = P. - P.

where

v[k] Pxd (l + F~d[k]).2-(l_ P~x[k]) _ ~xd
Pxd Pxx Pxx Pxx

FXd[k] Fxx[k]Pxd---
Pxx P;x

-2-(Pxd [k] _ Pxx[k]Pxd )
Pxx Pxx

- 2 2Pxx = E {x } = ax

- 2
Pxd = E{xd} = Waax

The adaptive weight is given by:

w[k] = Pxd[k]
Pxx[k]

where Pxd[k] and Pxx[k] are first-order linear time-invariant systems with a nonzero-mean
stochastic input described by the difference equations:

Pxd[k] = OPxd[k - 1] + (1 - O)x[k]d[k]

46
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Pxx[k] = OPxx[k - 1] + (1 - O)x[k]x[k]

Taking the expectation we have

00

E{Pxd[k]} = (1- O)E{2:0Ix[k -i]d[k -i]}
1=0

00

(1 - O)E{[x[k]d[k]} 2: 01

1=0

E{x[k]d[k]} = woa;.

Using these results, we find that

v[k]

So, the adaptive weight equation with the RLS algorithm can be approximate by:

(1 - 0)
v[k] = Ov[k - 1] + 2 x[k]n[k].

ax
(B.I)

In order to get a similar performance to the LMS algorithm we take (compare (A.I) with
(B.I))

o= p = 1 - /-La;.

This shows that, the RLS algorithm, with appropriate choice of its parameters, will have
practically the same behavior as the LMS algorithm.
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The convergence properties of the
RLS algorithm.

In this appendix the convergence properties of the RLS algorithm are derived. Again we
consider here the simple model

d[k] = wox[k] + n[k],

v[k] = w[k] - Wo,

elk] = d[k] - w[k]x[k] = wox[k] + n[k] - w[k]x[k] = n[k] - v[k]x[k].

Weight-error fluctuation.
The update equation for the weight error is:

1-0
v[k + 1] = Ov[k] +-2x[k]n[k]

ax

and

With E{v 2 [k + 1]}:::::: E{v2 [k]} for a large k this equation can be written as:

20 1- 0
(1 + 0)E{v2 [k]} = 2"E{v[k]x[k + I]n[k + I]} +-4E{x 2 [k]n2 [k]}.

ax ax

Substituting v[k] results in:

(1 + O)E{v2[k]} = 20(1: 0) f 01E{x[k - l]x[k + l]n[k - l]n[k + I]}
ax 1=0

1-0
+-4-E{x2 [k]n 2 [k]}

ax
1 0 00

= ~ L OJlIE{x[k -l]x[k]n[k -l]n[k]}.
ax 1=-00
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Let L denote the effective length of rxx(l)rnn(l) and let 1 - ()L « 1 (the effective length of
pi ~ effective length of rxx(l)rnn(l)). Then the weight error fluctuation is given by

2 1 - () 1 ""' 1 - () a~ ""'
E{v [k]} ~ (1 + ()) a;' 7Pxx(l)rnn(l) = (1 + ()) a;' 7 Pxx (l)Pnn(l).

The mean-squared error.
The mean-squared error E{e2 [k]} is given by:

Substituting v[k] in the previous equation results in:

Transition behavior.
For wo[k] = WI for k < Nand wo[k] = W2 for k 2 N we have

E{w[k]} = (1-/) f ()IE{x[k](wo[k]x[k] + n[k])}
ax 1=0

N-I k
(1 - ()) L ()I WI + L ()I W2

1=0 I=N

W2 + (WI - W2)()k.

Again, this shows that taking () = 1 - J-la; gives the similar transient behavior for LMS and
RLS algorithm.
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C programs "LMS algorithm"

The following program is a C-implementation of the LMS program as discussed in Section 7.1.
This program essentially consists of two instructions only: the calculation of the error and
the update of the weight.

The libraries PDADA41, PDINT40, PDTMR and PDTYPE are from VIRTUOSO-libraries
and are needed for the AID and DIA interface [10].

#include "iface.h"
#include "nodel.h"
#include "_stdio.h"
#include "string.h"
#include "allnodes.h"

#include "PDADA4Al.H"
#include "PDINT40.H"
#include "PDTMR40.H"
#include "PDTYP40.H"

#define CPU_CLOCK 60E6
#define FREQ 1000
#define Mu lE-3

1* 50 MHz *1
1* 1khz *1
1* The step size of LMS algorithm *1

volatile
volatile

int
float

Flag;
in_r, in_b;

float Err, Alpha=0.a03;

ADA4A1Struct ADAl ; 1* define ADA card structure *1

void c_int02 ( void )
{

in_r=ADA4Al_READ_FLOAT ( ADA1.Chl ) ; 1* read float from channel 1 *1
in_b=ADA4Al_READ_FLOAT ( ADA1.Ch2 ) ; 1* read float from channel 2 *1

ADA1.Cnv->Data = OxFF;

50

1* start conversion
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Flag=1 ;

void prog1 ( void )
{

if (ADA4A1Init(&ADA1 , OxFOOOOOOO)==OK); /* test ADA1 card */
{

ADA4A1Calibrate(&ADA1); /* calibrate ADA1 */
}

if (KS_EnableISR(O, c_int02) != RC_OK)
{

printf("\n Unable to install interrupt routine!");
}

TmrO ->Period=CPU_CLOCK/(4*FREQ);
TmrO ->Control.Data = TMR_START;

while(1)
{

while(FLAG!=1) ;
{

Err=in_r - Alpha*in_b;
Alpha=Alpha+Mu*Err*in_b;

ADA4A_WRITE_FLOAT(ADA1.Ch3, Err); /* write float to channel 3 */

FLAG=O;
}

}

printfC"\n\n");

printf("\n End of LMS algorithm");
}

51

The following program was written to file the signals from the sensor on the harddisk as
used in test 1 (Chapter 8). Two ADA card structure (ADA1 and ADA2) are define in order
to have four analog inputs (for signal r, band y and one reserved). These two cards have
different base addresses (see [10]) which are defined at the initialization (ADA4AlInit()).

#include "iface.h"
#include "node1.h"
#include "_stdio.h"
#include "string.h"
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#include "allnodes.h"

#include IPDADA4A1.H"
#include IPDINT40.H"
#include IPDTMR40.H"
#include IPDTYP40.H"

52

#define CPU_CLOCK
#define FREQ
#define Mu
#define nl

60E6
1000
lE-3
1000

1* 50 MHz *1
1* 1khz
1* step size
1* number of

*1
*1
samples to save *1

volatile
volatile

float
float

static FILE

int Flag;
float in_r, in_b, in_y, in_e;

Err, Alpha=0.803;
out_r[nl], out_b[nl], out_y[nl], out_e[nl];

*fpl, *fp2, *fp3, *fp4;

ADA4A1Struct
ADA4A1Struct

ADA1;
ADA2;

1* define ADAl card structure *1
1* define ADA2 card structure *1

fpl=fopen(" out_r.met"," r ");
fp2=fopen(l out_b.met l ,lr ");
fp3=fopen(l out_y.met l ,l r ");
fp4=fopen(l out_e.met l ,l r ");

void c_int02 ( void )
{

in_r=ADA4Al_READ_FLOAT ( ADA1.Chl );
in_b=ADA4Al_READ_FLOAT ( ADA1.Ch2 );

in_Y=ADA4Al_READ_FLOAT ( ADA2.Chl );
1* of ADA2 card *1

ADA1.Cnv->Data = OxFF;
ADA2.Cnv->Data = OxFF;

Flag=l ;

}

void progl ( void )
{

1* read float from channel 1 *1
1* and channel 2 of ADAl card*1

1* read float from channel 1 *1

1* start conversion (ADA1) *1
1* start conversion (ADA2) *1

1* set the flag in ready state *1

if (ADA4A1Init(&ADA1, OxFOOOOOOO)==OK); 1* test ADAl card *1
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{

ADA4A1Calibrate(&ADA1); /* calibrate ADA1 */
}

if(ADA4A1Init(&ADA2, OxFOOOOOOO)==OK); /* test ADA2 card */
{

ADA4A1Calibrate(&ADA2); /* calibrate ADA2 */
}

if (KS_EnableISR(O, c_int02) != RC_OK)
{

printf(lI\n Unable to install interrupt routine!II);
}

53

TmrO ->Period=CPU_CLOCK/(4*FREQ);
TmrO ->Control.Data = TMR_START;

while (i=n1)
{

/* set timerO period time */
/* start timerO */

while(FLAG!=1) ;
{

Err=in_r - Alpha*in_b;
Alpha=Alpha+Mu*Err*in_b;

out3 [i] =in_r;
out_b[i]=in_b;
out_y[i]=in_y;
out_e[i]=Err;

FLAG=O;
}

/* calculate the error signal */
/* and the adaptive weight */

/* put the signals r, b, y
/* and Err in vectors

/* set the flag in wait state*/

}

}

for(i=O;i<n1;i++)
{

fprintf(fp1, 1IY.f\n ll .out_r[i]);
fprintf (fp2 J II Yof\n" .out_b [iJ) ;
fprintf(fp3,"Yof\n".out_y[i]);
fprintf (fp4, "Yof\n". out_e [i]) ;

}

printf(lI\n\n");

printf(lI\n End of LMS algorithm ll
);

/* write the vectors on file */
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Assembler program

The assembler code of the first C program in Appendix D is given below.

******************************************************
* FUNCTION DEF : _c_int02
******************************************************
_c_int02:
PUSH ST
PUSH FP
LDI SP,FP
PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
PUSH ARO
PUSH AR1
PUSH AR2
PUSH R9
PUSHF R9

*
* R9 assigned to temp var C$1

*
*** 27
.sym
.line
LDA
lOI
AND
LSH
FLOAT
NEGF
LDF
MPYF
STF
*** 28
. line
LDA
AND
LSH

---------- in_r = -((float) ((*ADA1.Ch1.Data&OxfffO)«16)*C$1);
C$1,23,6,4,32
4
Cl_ADA1+1,ARO
ClCONST+O,RO
RO,*ARO,R1
16 ,R1 ,R1
R1
R1
ClCONST+1,R9
R9,R1
R1, Cl_in_r

---------- in_b =-((float) ((*ADA1.Ch2.Data&OxfffO)«16)*C$1);
5
Cl_ADA1+4,AR1
RO, *AR1 ,R1
16 ,R1 ,R1

54
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FLOAT R1
NEGF R1
MPYF R9,R1
STF R1,Cl_in_b
*** 30 ---------- ADA1. Cnv->Data = 255u;
. line 7
LDA Cl_ADA1+13, AR2
LDI 255,R1
STI R1, *AR2
*** 31 ---------- Flag = l',
.line 8
STIK 1,Cl_Flag
*** ---------- return;
EPIO_1 :
.line 9
POPF R9
POP R9
POP AR2
POP AR1
POP ARO
POPF R1
POP R1
POPF RO
POP RO
POP FP
POP ST
RETI

55

.endfunc 32,000800703H,O

.sym

.globl

.func

_prog1,_prog1,32,2,O
_prog1

34
******************************************************
* FUNCTION DEF : _prog1
******************************************************
_prog1:
PUSH FP
LDI SP,FP
PUSH R4

*
* R2 assigned to temp var K$15
* R3 assigned to temp var K$14
* R4 assigned to temp var C$2
* AR2 assigned to temp var C$1
* AR2 assigned to temp var U$22
* R9 assigned to temp var Y$O
* RiO assigned to temp var U$12
*
*** 37 ---------- C$2 = lADA1 ;
.sym U$22,10,20,4,32
.sym Y$O,23,6,4,32



16
~CONST+5,RO

RO
_printf
1,SP

---------- printf("\nUnable to install interrupt routine ! ");

APPENDIX E. ASSEMBLER PROGRAM

.sym U$12,24,6,4,32

.sym K$15,2,6,4,32

.sym K$14,3,6,4,32

.sym C$1,10,24,4,32,$_Unknown_Tag_Name_$

.sym C$2,4,24,4,32,$_Unknown_Tag_Name_$

. line 4
LDI ~CONST+2,R4

*** 37 ---------- ADA4A1Init(C$2,OxfOOOOOOOu);
LDA R4,AR2
LDI ~CONST+3,R2

CALL _ADA4A1Init
*** 37 ---------- ADA4A1Calibrate(C$2);
LDA R4,AR2
CALL _ADA4A1Calibrate
*** 44 ---------- flag = 0;
. line 11
STIK 0 , ~_flag

*** 47 ---------- if ( !KS_EnableISR(O, &c_int02) ) goto g2;
.line 14
LDA 0,AR2
LDI ~CONST+4,R2

CALL _KS_EnableISR
CMPI O,RO
BZ L2
*** 49
.line
LDI
PUSH
CALL
SUBI
L2:
*** ----------g2:
*** 53 ---------- C$1 =TmrO;
.line 20
LDA ~_TmrO,AR2

*** 53 ---------- C$1->Period = 7500u;
LDI 7500,RO
STI RO,*+AR2(8)
*** 54 ---------- C$1->Control.Data =705u;
. line 21
LDI 705,Rj
STI R1,*AR2
*** ---------- U$22 = ADA1.Ch3.Data;
LDA O_ADA1+7,AR2
*** ---------- U$12 = Alpha;
LDF ~_Alpha,R10

*** ---------- K$14 = O.001F;
LDF OCONST+6,R3
*** ---------- K$15 =2. 147483647648156e8F;
LDF ~CONST+7,R2

L4:
*** ----------g4:
*** 61 ---------- if ( flag != 1 ) goto g4;
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. line
LDI
eMPI
BNZ
*** 63
. line
MPYF
SUBRF
LDF
STF
*** 64
. line
LDF
MPYF
MPYF
ADDF
STF
*** 66
.line
MPYF
FIX
NEGF
FIX
NEGI
LDILE
ASH
STI

28
Cl_flag,RO
1,RO
L4

---------- Err = Y$O = in_r-U$12*in_b;
30
Cl_in_b,R10
Cl_in_r,R10
R10,R9
R10,Cl_Err

---------- U$12 = Alpha += in_b*K$14*Y$0;
31
Cl_in_b,RO
R3,RO,R10
R9,R10
Cl_Alpha,R10
R10,Cl_Alpha

---------- *U$22 = (int) (Y$0*K$15»>16;
33
R2,R9,RO
RO,R1
RO
RO
RO
RO,R1
-16,R1,RO
RO,*AR2

71,000000010H,O

35
L4

*** 68
.line
B

EPIO_2:
. line 38
LDI *-FP(1),R1
LDI *FP,FP
POP R4
SUBI 2,SP
B R1
.endfunc

goto g4;

.sym _ADA1,_ADA1,8,2,576 .. fake47

.globl _ADA1

.bss _ADA1,18

.sym

.globl

.bss

.sym

.globl

.bss

_in_b,_in_b,6,2,32
_in_b
_in_b,1

_in_r,_in_r,6,2,32
_in_r
_in_r,1

.sym _flag,_flag,4,2,32

.globl _flag
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.bss _flag, 1

.sym _Err,_Err,6,2,32

.globl _Err

.bss _Err,1

******************************************************

58

* DEFINE STRINGS *
******************************************************
.sect ".const"
SLO: . byte 10, "Unable to install interrupt routine !", 0

******************************************************
* DEFINE CONSTANTS *
******************************************************
.bss
.sect
.word
.word
.float
.word
.word
.word
.word
. float
.float

CONST,8
".cinit"
8,CONST
65520 ;0
4.656612873840332e-9;1
_ADA1 ;2
-268435456 ;3
_c_int02 ;4
SLO ;5
1.0e-3 ;6
2. 147483647648156e8;7

******************************************************
* UNDEFINED REFERENCES *
******************************************************
.globl _KS_EnableISR
.end
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b
b'o
C(.)
D
€1

€2

E{x}
E{x2

}

E{xy}
nl,81

n2,82

r

r~

rxx[l]
Sxx(W)
Sxx(W)
Txy
v
W

Wopt

0:
O:opt

0:0, /30
/3
/3opt
()

J-L

Pxx[l]

the blue signal.
the noise-free blue signal.
the coherence function.
the sampling time.
the error signal with b in regression.
the error signal with r in regression.
the expectation for x[k].
the variance for x[k].
the covariance for x[k].
noise in the red range.
noise in the blue range.
the red signal.
the noise free red signal.
the autocorrelation function of x.
the power spectral density function for x[k].
the cross-power spectral density function for x[k] and y[k].
the transfer function (Sxyl Sxx).
the weight error.
the adaptive weight.
the Wiener solution.
the adaptive weight with b in regression.
the optimal solution with b in regression.
the color coefficient (0:0 = 1//30)'

the adaptive weight with r in regression.
the optimal solution with r in regression.
parameter (in estimation).
the step size in LMS algorithm.
the normalized autocorrelation function of x.
the variance of x[k].
the variance of n[k].
the integration constant.
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