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Summary

This report is about the hardware design of a Full-range Cellular Neural Network (FR­

CNN). Also in this report a method is suggested to find the boundaries of the basins of

attraction (BOA) for 2-cell CNN's.

A FR-CNN is a neural network consisting of identical neurons or cells with space­

invariant templates, modified in such way that it operates conform the Full range model.

This model has the advantage that the state of a cell is confined between certain values,

independent of the template parameters through which neighbouring cells affect the

state of the cell.

A circuit is suggested to implement a cell of a FR-CNN. It is shown that the suggested

circuit does not function properly and a modification to this circuit is made after which a

well-functioning cell circuit is obtained.

The boundaries of the basins of attraction of CNN's (not necessarily FR-CNN's) are the

borders that separate regions in state space. These regions (basins of attraction) are the

areas where a CNN converges to a specific equilibrium point.

To find the BOA in a 2-cell CNN a certain Lyapunov energy function is more closely

investigated and (with some restrictions) a force is introduced. Finally the BOA is found

by solving the differential equations, describing the cells' behaviour.
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1 Introduction

After the rebirth of the interest for artificial Neural Networks in 1982 [1], many different

implementations for this concept have been developed. The differences between these

implementations affect the overall characteristics of the network and thus the

applicability for a certain purpose like, for example, real time image processing. Here,

an important feature of neural networks is touched upon; these circuits can operate very

fast since the 'signal processing' is done simultaneously in parallel neurons, rather than

in sequential time steps.

The major disadvantage of most neural network implementations however is the number

of interconnections between neurons. In order to reduce the number of interconnections

but keep the advantages of parallel processing, Chua and Yang proposed a so-called

Cellular Neural Network (CNN) in 1988 [2] where neurons were only connected to

other neurons within a certain neighbourhood.

In 1992, Rodriguez-Vazquez proposed a modified model for neurons; the so-called Full

Range (PR) model and an implementation for a CNN in the current domain based on

this FR-model. [3]. In 1996 P. Bruin suggested an implementation for a FR-CNN in the

voltage domain. However, after realisation of the implementation, it was found to

display instabilities.

In this report the properties of the FR-model and Rodriguez-Vazquez' implementation

are investigated and a different implementation for a CNN based on the FR-model is

suggested.

Every neuron in a cellular neural network can be described by a certain state-equation. If

this network consists of two interconnected cells, the behaviour that is displayed by

those cells can be plotted in a so-called state space. It is interesting to be able to

'predict' to what final state the CNN will converge. For this, the state-space will be

partitioned into 'basins of attraction', separated by certain boundaries.

In this report a method to find the boundaries of the basins of attraction is proposed.
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2 A Cellular Neural Network

A Cellular Neural Network (CNN) is an artificial neural network consisting of separate

neurons or cells. It has several properties that may be advantageous compared to other

neural networks. The dynamic range of a CNN for example is bounded. Also a CNN can

easily be extended without having to re-adjust the entire network because a cell is not

connected to every other cell in the network but rather to cells within a certain

neighbourhood. Albeit its cellular structure it still displays the complex dynamic

behaviour as seen with other neural networks. Due to this complex behaviour it can be

used in image processing (e.g. noise-removal, connected component detection (CCD),

'thinning' etc.) It can also be used to simulate certain equations or be used as an

associative memory.

Another advantage is that although the factor with which the output of a cell affects the

behaviour of other cells (template parameter) may be different for spatially different

neighbouring cells, the template thus formed is translational invariant ('cloning

templates').

As stated above, these cells can interact with other cells within a certain neighbourhood.

A rectangular two-dimensional CNN consisting of 16 cells where every cell interacts

with only its directly neighbouring cells would look like the circuit shown in Figure 1.

Figure 1 A CNN (4x4) with r=l

If C(i,j) is the cell on the ilh row and jth column then cell C(2,2) is connected to CO,I),

CO,2), CO,3), C(2,I), C(2,2), C(2,3), C(3,l), C(3,2) and C(3,3).
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A so called r-neighbourhood is defined as:

Nr(i,j) ={C(k,Z~ max[lk - il,IZ- Al ~ r, 1~ k ~ M;l ~ Z~ N}

with M and N the number of rows and columns respectively and 'r' a positive integer.

(1)

It's easily seen that Figure 1 depicts a r-neighbourhood with r=1. For technical

implementation intercell connectivity with r=1 is the easiest to realise and exhibits a less

complex behaviour than CNN's with r~2.

The equation with which the time-dependent dynamics of a cell in a CNN can be

described was proposed by Chua and Yang [2] and is given by:

dV .. (t) V .. (t) I
C XI) = __X_')- A(' "k z).v ()+ l,}" y/dt+

dt Rx C(k,t)eN,(i,j)

I B(i,j;k,Z). Vukl(t) + I
C(k,t)eN, (i,j)

(2)

with 1~ i~, l~j~. It is assumed that IVxij(O)I~landIVuijl~l, C>OandRx >0.

The time-dependent variable Vxij(t) is called the 'state' of the cell and can be represented

by the voltage across a (state-) capacitor.

Assuming an r=1 neighbourhood in a two-dimensional CNN, there are nine tenns in

equation (1) that affect the state of the cell Vxij(t) by means of the output voltages Vykl(t)

of neighbouring cells: A(i, j;k ,Z).Vy/d(t)

Also there are nine terms depending on the input voltages (Vukl) of the neighbouring

cells: B(i,j;k,l). VUkl

Since the tenns that affect that voltage across a capacitor are currents, use can be made

of voltage controlled current sources (VCCS) to account for these tenns.

If
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and

then the tenns that affect the state of cell (i,j) due to input- and output voltages of

neighbouring cells (Vukl and Vykl respectively) are accounted for.

The constant input voltage Vuij of cell (i,j) is set by a voltage source Euij and the constant

I may be implemented using a constant current source with magnitude I. The tenn

Vxij(t) b b· db· . R· II I . h h .-~ can e 0 tame y connectmg a resIstor x m para e WIt testate capacItor.
x

The cell circuit as proposed by Chua and Yang [2] is shown in Figure 2.

Euij

Vuij VXij

c i
Ixu(i,j;k,l)

V r

Ixy(i,j;k,l) Iyx

y

Figure 2 The proposed cell circuit

Since the network is two-dimensional (or multi-dimensional in general), 'A(i,j;k,l)' and

'B(i,j;k,l)' can be represented by matrices and are called feedback- and control operator

respectively for obvious reasons. These matrices are the same for every cell in the

network (spatially invariant) so only two matrices need to be given (for the feedback­

and control operator respectively). For this reason the templates thus fonned are also

called 'cloning templates'.

The aforementioned VCCS's are linear devices except for the current source that drives

the output voltage Vyij via the output resistor Ry• This is a non-linear device and has a

transfer function:
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As is shown by Chua and Yang [2] the steady state outputs of the CNN are constants

and are either ±1, regardless of the exact value of the initial conditions- if it is assumed

that:

~xij(0)1 $ I}1$ i $ M (' '. ) _ ( .' ') (.....) > _1
~ I

1$ . $ N ,A l,],k,l - A k,l,l,], A 1,],1,] - R (3)
..<1]. x

U1l - ISi,kSM;ISj,ISN

The state equation (2) can be rewritten to provide a better insight into the behaviour of

the cell due to the 'actions' of neighbouring cells.

cdVxvCt) = It {A(i,j;k,z).Vyk/(t)+B(i,j;k,z).VUkl }+
dt C(k,l)eN,(i,j)

C(k,I)*C(i,j)
\ '

g(l)

Vxij(t) A(' '.' .) V () B(' '.' ') V I- --+ 1,],1,]' yij t + I, ],1,] , uij +
Rx

\ ,
h(V;(I))

dVx/t) ( ) ( )
C dt = g t + h(VXij t )

(4)

(5)

Thus g(t) represents the behaviour of the cell caused by other cells whereas h(t)

represents the cell's behaviour if there were no neighbouring cells. The phase diagram

can be plotted and if the constant current I is assumed to be zero the phase diagram will

look like Figure 3.
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i h(Y. .. )- <!~ij(t)
XI] - dt

I_A C

R C
X

Figure 3 The behaviour of the cell

Since the unit of g(t) and h(t) is Ampere the actions of neighbouring cells acting via g(t)

can be represented by a current source with a magnitude equal to g(t). Ignoring the

. fl f (b . h . h . 11) h h dVx/t).m uence 0 g(t) Y assummg t ere are no nelg bounng ce s sows t at dt IS

negative if -RxAc
c < Vxij(t) < 0 and Vxij(t) will become more negative. If Vxij(t) < -RxAc

c

dV .. (1)
then :it becomes positive and Vxij(t) will increase and tend towards -RxA/. From

this it can be seen that if Vxij(t)<O, Vxij(t) will eventually remain at -RxAcc which is

called a stable equilibrium point. A slight deviation from this point will result in such a

dVx/t)
dt that Vxij(t) will always return to the stable equilibrium point.

Likewise it can be concluded that if VXij(t»O, Vxij(t) will tend towards RxAc
c
, which is

another (stable) equilibrium point. If VXij(t)=O then Vxij(t) neither becomes positive nor

negative. A small deviation from this point however does not cause Vxij(t) to return to

Vxij(t)=O. Thus Vxij(t)=O is said to be an instable equilibrium point.

dV ..(t)
If g(t) is a non-zero constant then ;t is no longer equal to -h(Vxij) but equal to

dV ..(t)
-h(Vxij)+g(t). Therefore ;t will be equal to a vertically shifted (by g(t)) version of

Figure 3. However, in general the state of neighbouring cells may vary as functions of

time and so g(t) will not be a constant. Moreover, cell (i,j) itself may cause g(t) to

change due to the dynamic interactions between cells. This will result in a (vertical)

shifted version of Figure 3 with the shift being a certain complex function of time.
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3 The Full Range model

In 1992, Rodriguez-Vazquez introduced a new model to overcome several drawbacks of

the implementation as proposed by Chua and Yang [2]. One of these drawbacks is that

the primary output of image sensor devices is a current and therefore the interface

design for image processing tasks will be complicated [3]. An other drawback is that the

state variable is bounded, but can vary in a large range, depending on the templates

(certain values for feedback- and control operators). This may complicate VLSI

implementation, whereas the state variable in Rodriguez-Vazquez' Full Range model is

always comprised between -1 and +1 (normalised) independent of the templates.

With the Full Range model, the state-equation is given by:

{

- m(XC + 1) + 1 XC < I

with g(xc
) =l~ - XC otherwise

- m(xc-1) -1 xc> 1

and YC=/(XC(t))

(6)

where XC is the state variable of cell 'c' according to VXij(t) with Chua and Yang, DC is

the offset parameter (according to the term n, A/ and B/ are the feedback- and control

operator (according to Rx·A(i,j;k,l) and Rx·B(i,j;k,l) respectively), yd denotes the output

variable of cell 'd' (VykJ(t)) and ud the input variable of cell 'd' (corresponding with

VUkl).

If m= 1, this model reduces to the original Chua-Yang model. Here too, the state­

equation can be rewritten to show the effect of other cells on the state of cell 'c'. The

term independent of the state of cell 'c' can be written as:

I'=D C +B/uc + I{A/yd +B/ud
}

deN,(c)
d*c

·10·
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If the tenn I' is assumed to be zero (which is equal to stating that there is neither an

offset nor a constant input and that there are no neighbouring cells) then the state

equation reduces to: 'f ~c = g(xc) +AcCXC and is illustrated in Figure 4.

rn:;too

XC XC=_l XC

Figure 4 Phase-diagram ofthe full-range cell behaviour

Like was the case in the Chua-Yang model, a non-zero factor I' results in a vertical shift

of the characteristics shown in Figure 4. Note that here too, the vertical shift depends on

the outputs of neighbouring cells and thus varies as a function of time. As can be seen in

Figure 4, the state variable cannot be larger than ± 1 if m=oo.

Assuming 1'=0 and m=oo, the slope of the inner region c1xcl< 1) is A/-1. If furthennore

dx C

A/>1 then 'f ---;It is positive for positive values of XC and negative for negative values

of xc. The state can be said to be driven towards the outer regions. However, should the

state come into one of the outer regions, it would be 'pushed back' infinitely fast

towards the inner region due to the factor om' which is infinite. For the left outer region

(or: left clipping region) it can be found:

'f x=-m(x+1)+1+A/x+Z (8)

with Z the effect caused by other cells, the input of the cell and DC and assumed to be a

constant in this equation. The solution is found to be:

1-m+Z _m-A/,
X = +Be r =xc

m-A c
C

and lim XC = -1
m-+oo

·11 .
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with B a constant. So when the system is in the outer left region, it will converge to the

stable state in the left clipping region. For the dynamic (inner) region it is found that:

'r x=Z+A/x-x (10)

with Z a 'constant' term to take into account the neighbouring cells, the input of the cell

and the term DC. Solving this equation leads to an expression for the state:

A <_1
-<-I

Be T (11)

again with B a constant. Here the actions of the cell depend on the initial conditions.

Assume that at time t=O, the influence Z causes the function to look like Figure 5, then

Z is negative. If the state is at point 'P' (xc=O) at time t=O then for B we can find:

Z
B=--­

A C -lc

A c -1 A/-I, Z A/-I,
So: x= C ·B·e T =-·e T which is negative since Z is

't' 't'

negative and the state will move towards the left clipping region. For positive Z it can be

found that the state goes towards the right-hand clipping region, for which there's one

stable state as can be proven the same way as was done for the left-hand clipping region.

XC

Figure 5 The influence of 'Z' on the phase diagram

A continuous-time CNN conceptual cell diagram for the Chua-Yang model is shown in

Figure 6. The diagram of the FR-model according to the theory of Rodriguez-Vazquez

is shown in Figure 13. Rodriguez-Vazquez states that 'for the full range model the non­

linear block is eliminated and the function g(.) realised exploiting the output saturation

of the integrator block'. As can be seen, the state XC of the cell is a saturated function

and will not become larger than unity.
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B C
C -1

Figure 6 Conceptual cell diagram corresponding to the Chua-Yang model

However, the actual implementation given by ROdriguez-Vazquez to implement the FR­

model does not correspond to the diagram as shown in Figure 13.

Bc
e

XC

Figure 7 Conceptual diagram of the full range model given by Rodriguez-Vazquez

3. 1 Implementation in current-domain

To show that the implementation as suggested by Rodriguez-Vazquez does not realise

an FR-CNN, this circuit must be more closely looked at. The implementation in the

current-domain makes use of transconductors (See Figure 8)

Figure 8 A transconductor and a single-MOST implementation

For a non-inverting current amplifier with the saturation non-linearity, Rodriguez­

Vazquez suggests the circuit shown in Figure 9.
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I.

tI B2

10 I B2 lin

-+

-IBI

Figure 9 Non-inverting current amplifier

If IBI<lin<lB2 and assuming the input current of transconductor 2 (T.C.2) is zero, the

output current of T.C.I is equal to lin+IBI. Therefore 121 = lin + 18 \ and 101=lin. If
T.C.2

lin>IB2 then 12 1 = lin +18 \ but 101=IB2 since the output current of a transconductor
T.C.\

cannot be negative if the transconductors are realised using a MOST an assuming it

operates in normal modes. Likewise, lin cannot be more negative than (-IBI ). Thus the

saturation non-linearity is achieved.

To obtain an integrator, a capacitor is added as shown in Figure 10.

Figure 10 Current mode integrator

If lin>IB2 then eventually 121 = I;n +18 \ and 101=IB2. However, if lin<-IBI (which is
T.C.I

possible since the capacitor can be discharged) then 1o=IBI . So the output current is

clipped, but the capacitor is discharged. If (due to other cells) the current lin changes

sign and becomes larger than or equal to (-IBI) the capacitor first has to be recharged

before the output current starts following the input current again. It is as if the state of

the cell is driven into the clipping-region. To verify this assumption, the differential

equation can be written down, assuming lin>IB2 (see Figure 11)
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Figure 11 Currents through the components

Since Vao=O the NMOST parallel to the capacitor is always saturated and assuming

Ia=O we can find:

(12)

. dV (t)
The steady state solutIOn for Vc can be found by stating that dt = 0 .

Then it is found that:

f¥-+IB
limY = rn +V
t~- C K t

(13)

Thus it can be seen that if lin becomes a very large constant current, the capacitor will be

charged accordingly. The output current however is 'clipped' and will only start to

change if the capacitor is discharged enough, meaning that a time-delay will occur

depending on the charge that was stored on the capacitor while the output current of the

current mode integrator was clipped. See Figure 12.

[State
':=>Time

delay

,........ lin

,Clipping
region

Figure 12 State of the cell vs. the output current

This is a behaviour that differs from what can be concluded from the theory of the FR­

CNN. The system can be said to be driven into the clipping region and thus the circuit
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proposed by Rodriguez-Vazquez does not implement a FR-CNN. (See equation (6) and

Figure 4). This also becomes clear if the conceptual diagram of the full range model

given by Rodriguez-Vazquez (Figure 7) is compared with the conceptual diagram of the

implementation. See Figure 13.

XC(O)

>-------3>1~ f--xc---.,--=-Y_
C

~

B C
C -1

Figure 13 Conceptual diagram of implementation given by Rodriguez-Vazquez

3.2 The implementation ofR Bruin

The implementation of P. Bruin [4](1996) uses a three-transistor multiplier to establish

the (programmable) feedback- and control operators, a current mirror and an active

integrator using an opamp. As was shown by J. van Engelen [5], two-quadrant

multipliers may be used to establish the feedback- and control operators if the template

parameters are adjusted. The three-transistor multipliers that were used by P. Bruin are

two-quadrant multipliers.

In this circuit the state-conditions are represented by a voltage, see Figure 14. The

opamp is used to keep the node connected to the current mirror at virtual ground so the

transistors of the current mirror and multiplier remain biased correctly. In order to do the

'clipping' - that is, to clamp the state voltage at a certain level (make m=oo), the voltage

across the capacitor is compared to a pre-defined voltage. If the upper or lower clipping

voltage is reached, the according comparator-output goes down to ground potential (or

negative voltage supply) and shuts off the current supply by turning off the transistors

between the multipliers and current mirrors. This way, no current is supplied to the

(active) integrator, thereby causing the output voltage (which is equal to the state

voltage) to saturate. Note that 19 multipliers are connected in parallel.

-16-



input multipliers and current mirror

R

c

v...

Figure 14 Circuit as proposed by P. Bruin

There are several remarks that can be made. First, the feedback loop to control the

current that (dis-)charges the integrator is rather large. The current is cut off via a

current mirror, an active integrator (which has time constants of its own due to the

opamp) and a comparator (which introduces other time constants). This may result in a

slow system, a phase-response that is incorrect etc. Furthermore in general, op-amps

without (negative) feedback may result in instable circuits.

The circuit of P. Bruin is not driven further into the clipping region since the current that

(dis-)charges the capacitor of the integrator is cut off. Hence the implementation of

P. Bruin at system-level corresponds to the theory of Rodriguez-Vazquez as can be seen

from the conceptual diagram in Figure 13, and does not correspond to the

implementation given by Rodriguez-Vazquez.
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B C

C

XC

Figure 15 Diagram ofcircuit given by P. Bruin

3.3 Verification of the FR-formula

To verify whether an implementation that is searched for should be based on the

FR-formula (as is P. Bruin's), a Matlab-program is written. This program simulates an

array of cells (8x8) and uses an algorithm that does not allow for the state to be driven

further into the clipping region according to the FR-formula (6). The output of the

program shows the output of each individual cell plotted against time. The state is

clipped at ±1. The cells are given only an initial value, then the relaxation process is not

interfered with until the end of the simulation. See Figure 16.

Figure 16 Output ofcells shown graphically

As can be seen from these results, the behaviour that is displayed when an algorithm is

used based on the formulas seems to be correct if so called connected component

detection (CCD) is applied. See [5],[4] and [6]. Connected component detection is
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usually applied to an image where every pixel has a binary value. With CCD the image

is observed in a certain direction (from right to left for example). Every change in the

binary value of the subsequent pixels is represented with a change in value of only one

pixel in the resulting image. If a row of pixels in an image is depicted with:

(000.0 ••• 00) then the same row in the resulting image will be: (000000.0.0) if

the row was observed from right to left.

In the Matlab program that was written, a few assumptions were made. As can be seen

from the formulas, a cell's output/state influences its state via two feedback loops; the

function g(XC) (See (6)) and the self-feedback parameter A/. For normal Chua-Yang

operation: g(XC)=_xc
• These two feedback loops can be combined and a new feedback­

loop g'(XC) is obtained. So:

for Chua - Yang Operation

for FR - CNN's

dxC

't' d = g[XC(t}] + DC + L {A/yd(t} + B/ud} = g'[XC(t}] + I
t dEN.~)

with I=Dc + L{A/l(t}+B/ud}+B/uC
dEN. (c)
d~c

and g'[xC(t}]=g[xC(t}]+A/yC(t}

yC(t} = HlxC(t} + ll-lxC (t} -11)
yC(t} = XC(t}

(14)

.....

g(X')

-I

Negative
Feedback

X' -I

Positive
Feedback

~_I I \ X'

Figure 17 Chua-Yang mode/feedback loops combined

As can be seen from Figure 17 the value of AcCmust be at least + 1 for the system to

have two distinct stable equilibrium points.
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---...-­
g'(x') t

Figure 18 Full-range mode/feedback loops combined

For the Full Range model too there are two feedback loops which may be combined

(See Figure 18). It appears that is doesn't make a difference for the stable equilibrium

points how the new (combined) function g'(XC(t)) is obtained (via 'Chua and Yang' or

via 'Rodriguez-Vazquez'). The first assumption that is made in this Matlab program is

that the new function consists of a modified function g(XC) and a self-feedback operator

A/ (See Figure 19).

-
- J

g(x')

--v--­
g'(x') i

-1

-
-1

Figure 19 Alternative feedback loops with same result

This function g(XC) has an output that is ±oo if XC becomes =+= 1 and is zero if -1<xc<1.

The second assumption is that the time step T is chosen small enough to allow the

differentiation to be replaced with the Euler forward differential operator;

dX X(n + 1) - X(n)
-=
dt T

-20·
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Thus finding:

Cd;x =- ~x + L {A/V/(t)+B/V/(t}}+lc
t x deN, (c)

RxCd;X =-Vx +Rx L {A/V/(t)+B/V/(t)}+Rxlc
t deN,~)

dVx g'(V..) 1
~-= +-1

dt RxC C

T T
~Vx(n+l)=Vx(n)+ RxCg'[V)n)]+ C l

(16)

From the results it can be concluded that for CCD these assumptions are valid and that

the circuit operates correctly!

For CCD something can be said with regard to the values of self-feedback operator Ac
c

since not every value is valid if a properly functioning cell is to be obtained. Assume:

[
0 0 0 J [0 0 OJA = 1 A/ - 1 , B = 0 0 0 and I =0

o 0 0 0 0 0

(17)

then a cell XC is only affected by itself and the neighbouring cells on its left- and right­

hand side which will be denoted with x(l) and x(r) respectively. If these neighbouring

cells are assumed to have constant output then there are four possible situations. The

subsequent values for the output of cell XC indicate whether the state value of cell XC is

stable. If XC(O)=+1 and xC(n+ l)-xC(n)~O then xC(n) will tend towards -1 and therefore

XC(O)=+ 1 is an instable value for the output of cell xc. See Table 1.

Table J Subsequent output values ofa cell

# x(l) XC x(r) xC(n+1)_xC(n)

A -1 +1 -1 ~O

B -1 +1 +1 :SO

C +1 +1 -1 ~O

D +1 +1 +1 ~

For situation A and D, the output of cell XC should be stable, so (using equations (16)

and (17)):
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T A cxc + T g'[xC(n'l] > 0C C C ) -

A/ .1+ (1- x(z) + -1· x(r)) ~ 0

A/ ~ x(r) - x(z)

A/~O

For situation B, the output of cell XC should become'-1' ;

A/xC + g'[X(n)] ~ 0

A/·1 ~ x(r)-x(l)

A/ ~2

For situation C, the output of cell XC should remain '+1':

A/~-l-l

A/~-2

(18)

(19)

(20)

If XC was taken to be xC=_l a similar deduction could be made with the same results.

Other restrictions can be found when observing the edge cells (see Table 2).

Table 2 Subsequent output values ofan edge cell

# x(l) XC x(r) xC(n+1)_xC(n)

A 0 +1 +1 >0

B 0 +1 -1 +/-

C 0 -1 -1 ~O

D 0 -1 +1 +/-

For situation A and C, the output of cell XC should be stable, thus finding that Acc~l. For

situation Band D, it is not clear whether XC should keep the value it had before (denoted

with '+/-' in the last column). It can be shown however that for A/~l, XC will not

change (and thus be 'stable'). As a result, it can be concluded that for the templates as

defined earlier, the cell reaches a (stable) steady state solution if:

1~A/~2

The dynamical behaviour of the cell has been verified experimentally using the Matlab

program and displays a behaviour as is dictated by the properties of CCD.
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4 Design at system level

There are several possibilities to represent the state of a cell. The most common

representation of a state however is done by use of either a current or a voltage. There

are some advantages and disadvantages to either description. If the state were to be

described by a current, an inductor may be used as the differentiator. Disadvantageous is

that the state of other cells must be converted to a voltage, amplified with a different

gain for each cell (assuming a random template) and the results must be added. See also

Figure 6. A 'pro' is that use can be made of current mirrors and that using current

mirrors, an amplification factor can be implemented right away by varying the

widtMength ratio in the current mirrors.

If the state were to be described by a voltage, a capacitor may be used as the

differentiator. In this case, the state can be distributed anywhere without having to

replicate it first before distributing (using a current mirror). Another advantage is that

currents can be summed easily using K.c.L.; simply leading the currents to one node

suffices!

Since it appears that representing the state by a voltage leads to circuits with less

components, such a circuit is searched for. As a universal CNN is to be designed, the

templates must be programmable. To accomplish this, an amplifier with adjustable gain

that converts voltages to currents can be realised using a differential state multiplier that

consists of only three transistors. See [5] and [4]. Moreover, if the function g(XC
) is

observed (Figure 19) it seems that this function may be realised using 'diodes'

connected to a voltage source in such a way that if the state voltage becomes less than

the minimum state voltage, the corresponding diode will start to conduct. This way the

current that would have discharged that state capacitor (and hence decreased the state

voltage even further) is sourced into the system. Thus the state voltage is clamped to a

certain lower boundary. Likewise, the other diode will start to conduct if the state

voltage exceeds the voltage to which the state must be clamped.

This way not the current that (dis-) charged the state capacitor is limited (as is the case

with the implementation of P. Bruin) but the state voltage itself is affected, whereas the

current supplied by the multipliers and current mirrors is not. As a result the large
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feedback loop that is present in the circuit of P. Bruin (active integrator, comparator,

clipping transistors and current mirror as seen in Figure 14) can be omitted. This in

return may improve stability significantly.

The circuit at system level will look like the system shown in Figure 20.

Vdip,bigb

V -tal

From other cells

To otb.er cells

Figure 20 A cell at system level

4.1 A differential stage multiplier

Figure 21 A differential stage multiplier

Observing Figure 21 and assuming all transistors are saturated it can be shown that,

since Lil=Li2+Li3:

(21)

So:

(22)

As a result:
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I d2 - I d3 = K2[(VW - Vx - V,2Y - (Vw.ret - Vx- V,2YJ

=+(Vw,ret - Vw)~2KIK2(V;n - ~S - V,IY - K/(Vw- Vw.retY

To detennine the sign of this expression it is noted that if V2+<V2- then r-[>o, so:

(23)

As can be seen the differential stage multiplier is not an ideal mUltiplier but if the

second tenn -K/(Vw-Vw.ref) is kept small with respect to the first tenn

2KtK2(Vin-Vss-Vtl )2 the multiplier operates fairly linearly. It should be noted though that

channel-length modulation is neglected as are other higher order effects.

There are two possible configurations to implement a differential stage multiplier; a

NMOS and a PMOS version. See Figure 22.

v".ror1
\{n~

\(. _---<1---_

V.a '\In

NMOS PMOS

Figure 22 Two different configurations to implement a differential stage multiplier

For the NMOS configuration we can find that:

Table 3 Equations for the transistors

<D vmax<vx+vtI

vm"n>v••+vtl

® Vwrer<v~,+Vt2

Vwref>Vx+Vt2

® Vw<Vd3+Vtl

v w>vx+v.1

where Vmin~Vin~Vmax
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In the cell circuit, there is a self-feedback loop and so the input of at least one multiplier

will be connected with the output of the cell. If the state-voltage is connected to the gate

of the tail-transistor CD and assuming Vtn=0.5V, we can find for transistor CD: Vin>O.5V,

Vin<Vx+0.5 if Vss=OV. Similarly for transistor @: Vw<Vin+0.5, Vw>Vx+O.5.

So:

0.5<Vin<Vx+O.5

and

Vx+0.5<Vw<Vrnin+0.5

From (25) we obtain: Vmax=Vx+0.5 ~ Vmax-0.5=Vx

(25)

(26)

Substituting into (26) we find: Vmax<Vw<Vrnin+0.5. This is possible only if

Vmax<Vin+0.5 or Vmax-Vrnin<0.5. If Vrnin is taken to be 0.7V then Vmax must be less then

Vmin+O.5V=1.2V Assume V;n E [0.7;1.2] then:

Vmax ~Vw ~Vmin + 05

1.2 ~Vw ~ 1.2

And so there's no voltage swing left for the weight-voltage. It's possible to 'transfer'

some voltage swing from the state-voltage to the weight-voltage. This, however, will

result in an unacceptably small voltage-swing (125mV for either voltage if the voltage

swing is equally divided between state- and weight-voltage). One can try to improve this

voltage swing by using different transistors (PMOS instead of NMOS). Repeating the

same calculations leads to the following result:

Vmax ~Vmin + OSV

thus obtaining the same unacceptably small voltage swing. A way to increase the

possible voltage swing for both the state-voltage and the weight-voltage is to use a level

shifter to add/subtract a certain voltage to/from the state-voltage before applying it to the

gate of the tail-transistor!
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If the maximum current that will be flowing through the tail-transistor is taken to be

5~ then we can find with:

W
that ~ == 0.0783. To increase this ratio, PMOST's may be used since 1ln:~=3.95:1 even

though extra area has to be used for the N-well. A quick calculation shows that the ratio

has increased to 0.3025. This is the reason the configuration using PMOST's is chosen,

which has the additional advantage that the current mirror (that will be used to subtract

the current ~3 from ~2 (see Figure 21» will have to be made with NMOST's thereby

exploiting the higher mobility of electrons!
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5 Design of the cell circuit

In order to find appropriate widths and lengths for the transistors and a value for the

state capacitor, the approximate input-, output- and state voltages must be known. A

differential stage multiplier will be used, together with a current mirror to substract the

differential current. Furthermore, the diodes that will be used to limit the state voltage to

a certain maximum and minimum ('clamp' the state voltage) will be realised with

transistors connected in such way that a so-called diode-configuration results. This way,

the transistor will act like a diode. (See Figure 23)

. '. " .." - -' -" ... - -' - . - .. - . ~ -' - ."-
, ' 19 x Y.J"------_-----, .,.,-- ----,-_,--

~·fl
, Vmax•re!

State-
MUltipliers and Current~mirror capacitor, 'Diodes' : Levelshifter

Figure 23 Schematic for a single cell ofan FR-CNN

To find the voltages, voltage swing etc. two equations for every transistor will be used
(one equation resulting from the fact that a transistor is saturated (Vgd<V t) and one
because it must conduct (Vgs>Vt». If the rail voltage is taken to be Vdd=3.3V then one
can find:

~n E [1.9;25]

Vx ~ 2.2V

Vw,ret E [0.9;1.5]

~"ale E [0.72;1.32]

If the maximum current flowing through the tail transistor is set to 5~ then the WIL­

ratio for the transistors can be found to be:

Transistor M1

W
[;=0.3025

W 1.3
:::}-::-

L 4.3
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Transistor M2, M3

W
L=0.913

W 1.0
~-=-L-l.l

Transistors~,Ms (Current mirror)

W
L=5.659

W 6.8
~-=-

L - 1.2

The voltages Vref,max and Vref,min -which are voltages that control the potential at which

the state will be clamped- are taken to be 0.70V and 1.34V respectively and can be

found by assuming the state voltage is 1.32V and 0.72V respectively and assuming that

the maximum possible current (95~) flows through the diodes. The W/L-ratio for the

diode transistors ('clipping-transistors') will have to be: 16.0J.lmlO.7J.lm.

Assuming a 5J.1A current is allowed to flow through the transistors of the level shifter,

we can find that for TLS2: WIL=0.5464-7 W1lr1.01lml1.8J.lm and for TLSI:

WfL= 1.7267-7 W/L=1.9J.lml1.1 Jlm.

In order to estimate the value of the capacitor that will be used as the state capacitor, it is

assumed that the state capacitor must be 20 times larger than the parasitic capacitance in

parallel to the state capacitor. Assuming that the parasitic capacitance of major

importance is formed by the gate capacitances, the simple -approximated- function to

calculate the gate capacitance can be used: Cg =W· L· Cox'

To account for other parasitic capacitances, 25% to the total gate capacitance is added.

Thus: Cg,tot =C g,T/
S2

+ Cg ,T
C2

=28fF~ Cg ,lOt + 25% =35.10-
14

F. If this value is

assumed to be 5% of the total state capacitance, then Cstate will be 0.7pF.

When simulating the circuit with the parameters given above it does not give the

expected results. From this it can be concluded that the formulas that are derived from a

simple model of the transistor no longer apply for the transistors that are described using

Level 47 HSPICE parameters.
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5.1 Obtaining modified transistor parameters

In order to maintain the possibility of calculating voltages and currents using the simple

quadratic formulas, modified parameters will have to be used. To find these parameters

some simulations were conducted.

The system is to be modelled with:

Id =K1

.: (v"p-Vgs f(l+A ~d)

with V, =Vto+r(~I~b - qJ sl-~)

Using [7] and LEVElA7 HSPICE parameters (p.77):

(27)

<Ps=0.8221 V, T=298.15K

nj= 1.25674*1010 cm-3
, Eg=1.11562 V

Wp,eff=Wp, Lp,eFLp-0.069Jlm

Wn,eff=Wn-0.046Jlm, Ln,eFLn-0.06Jlm

HSPICE simulations showed that the drain-currents of the transistors depending on the

drain-, gate- and source voltages c'an be described fairly good with:
" '" '"

I'

5 ~ff ( r( 3.2)I =1455·10- .- V -v 1+0.02·-·V
d' L t gs L sd

eff

h' PMOS: with: VI = 05761 + 0.663(~Iv.'b - 0.82211- .J0.8221) (28)

~ff = W, Leff = L - 0.069f,l m
,>

5 ~ff ( f( 0.8)I d =7.24·10- .- Vgs -v, 1+0.26·L ·VdsLeff
"

NMOS: with: VI = 0.6421 + 056(~~Sb + 0.82211- .J0.8221 ) (29)

" ~ff = W - 0.046f,l m, Leff = L - 0.06f,l m,i

-30-



5.2 Redesigning the circuits

Using the estimated transistor parameters (equations (28) and (29)) derived in paragraph

5.1 the circuit shown in Figure 23 can be redesigned. Assuming:

~n E [1.9;2.3]

Vstate E [0.9;1.3]

Vw E [0.6;1.3]

Vw,ref = 0.95V

VIS .ref = 2.2V

Vmax,ref = 0.26V

Vmin,ref =2.0V
(30)

the WIL-ratios can be found (using formulas and calculations from last paragraphs) as

shown in Table 4.

Table 4 W/L-ratios of transistors

Transistor W L

M 1 1.1 2.1

M 2.Ml 2.1 0.8

Mt.M~ 11.9 0.8

Mrl 12.9 0.8

Mc.z 8.0 0.8

Ml~l 1.5 (1.1). 0.8 (1.5)·

M LSZ 1.1 0.6)· 1.2 (0.8)·

However, the measures for MLSI and M LS2 did not give the correct results. Optimising

with HSPICE revealed that when using the secondary values indicated with: 0* correct

results were obtained such that if Vstate ranges from 0.9V to 1.3V, Yin ranges from 1.9V

to 2.3V as given in (30).

5.3 Current sourcing active diode

The role of the diodes is obvious (See Figure 23). The state voltage must be clamped to

a certain level. If the state voltage lies within its range as defined in (30) then the diode

should be reversed-biased and must not conduct. If for example the state voltage reaches

its minimum then the diode must still not conduct, but should be no longer reversed­

biased. It will be forward-biased if the state voltage decreased even further. When this

happens an ideal diode would be able to source a current that is infinitely large. This

however is not possible and although the increase in current will be much larger than the
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decrease in state voltage, the slope of the characteristic of a diode will not be infinite.

From simulations it appeared that the characteristics of the diodes (transistors in diode­

configuration) are far from ideal; if a current of 951JA is sourced, the drop in state­

voltage would be too large. As a result the state-voltage would not be clamped to a

certain level but depends on the current that is sourced which is an undesired effect. (A

current of 95JlA is an extreme: every neighbouring cell, the cell itself and the constant

input sourcing or draining its full current into or from the cell. Thus: 19*5J.LA=95J.1A) In

order to obtain an active diode with better diode characteristics, the circuit as shown in

Figure 24 can be used.

Figure 24 An active diode

If Vstate drops and reaches its lower boundary, then transistor M2 will be switched off,

thereby no longer draining a current and its drain voltage will increase rapidly. The gate

voltage of transistor M 3 is the drain voltage of M2 and as a result M 3 will be switched

on, thus sourcing a current into the state capacitor, preventing V state to decrease further.

The state-voltage at which M3 is switched on, depends on the dimensions of the

transistors and on the bias voltage (the gate voltage of Ml). This bias voltage also

determines the gain of the amplifier consisting of M) and M2 thus affecting the 'switch­

on characteristic' of M3•

The transistor that will source the actual current will be an NMOST, since the effective

mobility of electrons is higher than the effective mobility of holes, resulting in smaller

transistor dimensions and relatively fast switch-on characteristics.

If the circuit is simulated using the ratios as shown in Figure 24 then a DC-simulation

shows that the behaviour should be satisfactory. But when a transient simulation is

performed, ringing occurs. The amplitude of this ringing is unacceptably large and
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should be reduced or preferably removed. To find the bias voltage on node ® (drain of

transistor M2) and have HSPICE compute the poles and zeros of the system, it has to be

adjusted so that approximately 50% of the maximum current flows through transistor

M3• This is true when V@=0.8972V. Using the circuit shown in Figure 25 the poles and

zeros can be computed.

Figure 25 Schematic to obtain poles and zeros

The transfer function from ® to @ contains two poles and two zeros:

~.2 = -7.35 .106
=+= j 823.85.103 Hz

ZI =-29.78.106 Hz, Z2 = 7.10.109 Hz

If the ratios of Wand L of both transistors 1 and 2 are kept a constant, then the voltage

at which the circuit is 'initiated' remains approximately the same. Adjusting the W/L­

ratios of the transistors (but maintaining the ratio between the W/L-ratios of transistors

Ml and M2) shows that the transfer function from ® to @ can be adjusted so that the

poles are on the real axis and are positioned relatively far apart. However, ringing still

occurs which is caused by the occurrence of a zero near the pole that is closest to the

imaginary axis. Using HSPICE, it was seen that the location of poles and zeros depends

heavily on the voltage on junction @. Furthennore, transient analysis showed that the

active diode reacted too late, that is, the switch-on time of the diode is large compare to

the time needed for the circuit to fully discharge the capacitor.

The time to 'fully discharge' the capacitor (voltage drop of OAV) is 2.9ns which is very

short indeed. To tackle this problem several solutions were considered: A) decrease the

response time of the diode, B) enlarge the state capacitor, C) decrease the maximum

current that has to be sourced or drained by the active diode or D) enlarge the voltage

swing of Vstate. A drawback of option B) is that this will consume a lot more area on the
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chip. Performing options C) or D) will result in having to redesign the differential pair

and increasing the non-linear effects of the multiplier.

~
2.6

If option A) is more closely looked at, it can be found that if - 0.8 '
L /ransi!/or 1

1.1
the active diode works acceptably fast and the

0.8

ringing has been reduced significantly. Note that an extra resistor of o.ln is added in

series with the state capacitor to overcome some DC-convergence problems with

HSPICE. Simulations were also done using extra resistors of Ikn, won, lOn, In and

even o.ooln. Then HSPICE reported no DC-convergence problems (although the Ikn

and loon resistors did affect the cells correct behaviour).

Now, the quiescent current through transistor M1 and M2 is approximately 15J.1A.

Ringing still occurs, but when the maximum current to be drained/sourced is 95J.1A,

there is only one 'peak'. However, simulations with HSPICE showed that there was

some ringing for a maximum current of 40~ which was the worst-case situation. (See

Figure 26 and Table 5)

Vovershoot+
~-~------~nd

<
~vershoot-

'tringing

Figure 26 Ringing

>

Table 5 Ringing displayedfor the maximum current and the worst case situation

Max. Current Vovershoot _ Vovershoot + V~nd # peaks "Cringing

95uA 848.0mV 901.9mV 900.9mV 1 ±6ns

40uA 882.9mV 927.2mV 914.6mV 4 ±15ns
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The time that is needed for the ringing to decay is small enough to accept some ringing,

since the relaxation time of the system will probably be an order of magnitude larger.

This may seem an invalid assumption if it is noted that the state capacitor may be fully

(dis-) charged in 2.9ns. However, this can only happen if every neighbouring cell

sources or drains its maximum current into (or from) the cell. Moreover, the inputs of

the cells (acting via the control operator) must do so too. This situation is not very likely

to happen and it was verified with HSPICE that the time needed to fully (dis-) charge

the state capacitor during normal operation is an order of magnitude larger.

5.4 Current draining active diode

In order to be able to drain the maximum current and thus 'clamp' the state voltage to a

certain value, an NMOS transistor will be used like in Figure 25. However, if the circuit

that was used in paragraph 5.3 is transposed, difficulties arise; transistors that cannot be

kept in saturation or transistors that will not conduct at all. To overcome these problems,

several other circuits architectures have been tried. Now a symmetrical CMOS amplifier

is used and all transistors work satisfactorily. (See Figure 27)

Figure 27 Schematic for symmetric current draining active diode

The use of an CMOS amplifier is disadvantageous since extra voltage sources are

required. However, it has the advantage that the voltage at which the state should be

clamped may be adjusted as well as the bias of the circuit. If the drain voltage of the tail­

transistor Mch5 is chosen to be O.4V and if its gate-voltage is set to O.95V then Vd of

Mch4 must be O.6V (Vg-Vt<Vd, using (29) it is found that: Vd>O.547V) and (Vg>Vs+Vt

-7 Vg>1.15V). In order to drain a current of 95J.LA through M6, its gate-voltage must be

at least 1.5V, so if this CMOS amplifier is balanced, Mch6 will not even conduct a
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current of 95~A yet. If the quiescent current is chosen to be 12~ then the dimensions

of the transistor can be found (Table 6):

Table 6 Measures o/transistors used in active diode

Transistor W (11m) L (1lIll)

Mt. M1 4.5 3.6

M2,M4 5.8 1.6

Ms 2.6 1.6

M6 1.1 0.8

To find the measures that will render the circuit to function without displaying ringing,

the poles and zero are computed for several WIL-ratios. It is found that the time needed

to switch on transistor Mch6 is too short. Therefore the gain of the characteristic of the

total active diode must be decreased. (That is, the switch-on characteristic must

decrease.) This cannot be done by adjusting the measures of Mch6 as this increases the

capacitive load for the CMOS amplifier (Mchl ...MchS) significantly, thereby disturbing

its proper functioning. To decrease the gain of the amplifier Mchl and Mch3 must be

given a gate-voltage that is less than 2.2V. However, the DC-characteristic will be

shifting as well and therefore the WIL-ratios will have to be adjusted as well!

It appears that the ringing, overshoot and the time needed for the ringing to decay is

influenced very strongly by the measures of Mch6. This will probably not be only due to

the fast characteristics of the amplifier, but also due to the capacitive load that is formed

by the gate of Mch6. This is another reason why the dimensions Mch6 are kept small. To

'overcome' the effects of parasitic capacitive loads, usually the current that may (dis-)

charge these loads is increased. This in return would mean an even larger CMOS

amplifier gain, which is unwanted, since this would increase the switch-on time of Mch6.

The resulting circuit therefore will be a trade-off between high currents (resulting in

some ringing) or having to deal with large parasitic capacitances which results in ringing

as well.

Simulation results (Appendix A) of the circuit of Figure 27 with transistor measures as

given in Table 6, show an acceptable amount of ringing (See Figure 28).
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Ringing depending on drained current
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Figure 28 Amount ofringing depending on the drained current with V'" representing Vowrshoo/+ and V representing

Vowrshool.
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6 The total cell circuit

A schematic of the total cell circuit is shown in Figure 29. It should be kept in mind that

although only one three-transistor multiplier is shown, in the actual circuit 19

multipliers are connected in parallel, whereas only one current mirror is used!

v.,llIl...--I----:----I:T-~---r-___:_;::===+==t====;__----,-

*M=-I~O.95V

J;

.. Multiplier and Current-mirror Clipping- low Levelshifter Clipping - high

Figure 29 Schematic of the total cell circuit

Since differential stage multipliers are used, only a two-quadrant multiplier is realised.

One important effect is that (with the use of the current mirror) the multiplier can only

source or sink a current, with the magnitude depending on both the input voltage and

weight-voltage, but the sign depends on the weight-voltage alone and cannot change 'at

runtime' since the weight-voltages are constants (as the template parameters are

constants!) In order to overcome this effect but still use the template parameters as given

by Rodriguez-Vazquez and not the modified parameters as given in [5], an offset current

is introduced. This is done in such a way that if the state voltage is exactly halfway its

full range, the current sourced (or drained) by the multiplier connected to this cell is

exactly counteracted by the additional constant current. This in return can be done using

an other multiplier that adds the required current. The resulting current source is thus the

constant current source as described in the state-equation plus or minus the required

additional current. This modified current source introduces a single extra current into (or

from) the cell and can be realised by a multiplier. See Figure 30.
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Figure 30 Using a second multiplier to account for constant current

Suppose the left-hand mUltiplier in Figure 30 is to realise the self-feedback parameter

A/. Then Vin will be connected to the output of the cell. The output of the cell is the

shifted state voltage of the cell (due to the levelshifter). As the state voltage can range

from O.9V to 1.3V, the output of the cell should be ranging from 1.9V to 2.3V. If the

state voltage is 1.1 V (which would be exactly halfway its full range) the output voltage

would be 2.1V. Due to non-linearities of the level-shifter, this voltage is 2.0762V as can

be measured with HSPICE. So:

v . +v
III ,nun III ,max =2.0762V

2
(31)

Then Vw* is the weight voltage that results in a current of O~ if Vin=2.0762V

(HVstate= 1.1OOOV)
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7 Suggestions for improvement of the circuit

Unfortunately there are some drawbacks to this implementation. Despite the fact that the

output impedance of a three-transistor mUltiplier is quite high, the output impedance of

19 multipliers in parallel is reduced significantly. Also, due to the small length of the

transistors used to obtain a current mirror, the output impedance is reduced even further.

See Figure 31.

Figure 31 Reduced output impedance

This can be verified in HSPICE using the schematic shown in Figure 32 where the state

capacitor is replaced with a DC-voltage source.

Figure 32 Schematic to obtain output impedance

The output impedance can be found to be approximately 81k.Q. However, the output

impedance depends on the weight voltage that is applied as well as on the input voltage

of the multipliers.

These effects can be modelled by assuming the multipliers and current mirror have an

infinitely high output impedance and a resistor is placed in parallel with the state

capacitor. See Figure 33.
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To other cells

Figure 33 Model for cell-circuit with parallel resistors

It was found that the output-impedance could best be modelled with two resistors in

parallel; one connected to ground (RI ...SlkQ) and one connected to 1.1V (R2...1.2MQ).

Depending on the weight voltages and input voltages, the value of RI deviated a certain

factor and can be seen as if for every multiplier with certain Yin and Vw a resistor

(positive or negative) was placed in parallel with RI.

If a row of six cells is simulated, it operates correctly if the self-feedback multiplier

(including the offset-current-multiplier) was applied to the edge-cells three times (and

for the inner cells two times!) See Appendix B for the HSPICE listing.

The effects of this fairly low output impedance can be overcome by finding the template

parameters experimentally. This can be done for example by increasing the self­

feedback of the cell. The extra current supplied will account for the current through the

resistors, but the self-feedback parameter no longer corresponds to the parameter given

by Rodriguez-Vazquez. It would be better however not to have such a low output

impedance at all. The circuits that may be used to achieve a higher output impedance are

shown in Figure 34.
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To other cells

Figure 34 Schematics ofcircuits to improve output impedance

7.1 Results ofimprovements

For the implementation of the schematic using a 2-quadrant current conveyor, the circuit

as shown in Figure 35 was suggested. The upper four transistors are to be observed for

negative values of lin.

r-----.----.-- 3.3V

from multipliers
and current mim)r

Figure 35 A 2-quadrant current conveyor

If lin>O then the lower four transistors must be observed. Cascode transistor M4 is

inserted in order to obtain a high output impedance. The output of the current conveyor

is connected to the state capacitor and a high output impedance will prevent unintended

(dis-)charging of the state capacitor. If~ must be saturated, then:

The source-voltage ofM4~ as can be seen from Figure 35 and so Vt.M4~O.64V. Vg=Vdd

and as a result:
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Vtid < Vstate +Vt
3.3V < 0.9V +0.64

This is not true and so M4 is not saturated. As a result the output of the current conveyor

has not a high impedance. Therefore this circuit will not be used. However, if MI, ~

and the transistors directly above them were connected to additional voltage sources,

this circuit may be used as a 2-quadrant current conveyor. This however is left for future

studies.

For the implementation using current mirrors the second schematic in Figure 34 may be

used. See Figure 36.

Figure 36 Schematic ofcell circuit with current mirrors

As can be seen, the currents from the multiplier are mirrored using three currents

mirrors. At the output of the system the currents mirrors are connected in such way that

a so called push-pull configuration is obtained (Mem4 and Mem7). Extra transistors are

inserted to assure a high output impedance. The state capacitor is connected to the

drains of Mem5 and MemB.

From the output of the multipliers a low impedance is seen, since these are connected to

the drains of Meml and Mem6 which are always saturated.

In order to find the bias voltage Vbias,n, assume that the current through Mem6=95J.LA. It is

found that the drain voltage of Mem3 is approximately 0.91V. The drain voltage of Mem7

will be approximately 0.91V as well. Since MemB must conduct, it can be found that if its

source voltage has a maximum of 0.91V, Vbias,n~I.8287V. Likewise it can be found that

Vbias,p~I.1823V if the current through Mem4 is taken to be 95J.LA.
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When the circuit was simulated it was found that the current mirrors consisting of Mem3,

Mem4 and Mem6, Mem7 functioned properly ifVbias,p=1.l6V and Vbias,n=1.84V.

Figure 37 Schematic ofcell circuit with more accurate current mirrors

It was seen however that the current through Mem2 mismatched the current through Meml

with about 2J.1A. To overcome this problem, an extra transistor was inserted. See Figure

37. Now all the current mirrors functioned well and a DC-simulation showed that the

currents were mirrored with a deviation of maximally ±O.02J.1A. The maximum current

of 95J.1A must be mirrored and in order to do so the transistors used to mirror a current

must have equal dimensions. This however causes the chip area needed for the total cell

circuit to increase significantly. This expansion can be reduced if the width of the

transistors Mem2, Mcm2a, Mcm3, Mem4, Mem5, Mcm7, Mem8 is halved.

(7 WIL=6.0J..lm/O.9Ilm) As a result, the maximum current that (dis-) charges the state

capacitor has decreased by a factor two as well. This has its effects on the speed with

which the cell operates (it becomes 'slower'), but has its positive effects on the output

impedance (which increases).

It was found that if Vw=O.9503V the multipliers are balanced and there is no current

flowing through the state-capacitor. If the state voltage is varied (using a DC-voltage

source which replaces the state capacitor) it is found that the resulting current through

the DC-voltage source is l8.0nA@Vstate=O.950V and -2.0nA@Vstate=1.250V. (See

Appendix C). From this it is easily calculated that the output impedance is ",,15Mn.

It was seen that the maximum current that can be drained and sourced using only one

multiplier is 2.7812J.1A. The largest template parameter Pmax must thus represent a

current of 2.78l2J.1A. If Pmax=1.5 as is the case with the CCD-example, then A/ should
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correspond with a template parameter of 1.5. The weight voltage of the multiplier

realising the self-feedback must be 1.3V. This is shown quite easily; if Vstate rises then

Yin rises as well. As a result the tail transistor M, sources a smaller current. The current

source that is needed to counteract the current offset -due to the use of a two-quadrant

multiplier (and the template parameters given by Rodriguez-Vazquez)- must then source

a current into the state capacitor (thereby increasing the state voltage). The self-feedback

multiplier must drain a smaller current and thus it can be concluded that positive values

for template parameters correspond to higher weight-voltages.

It is found that Vw=1.3V corresponds to P=Pmax=1.5 and O.6170V corresponds to P=­

-1.5. If the maximum current of2.7812~corresponds to P=1.5 then P=1.0 corresponds

to 1.8541J.1A. It was found experimentally that for P=l the weight voltage must be

1. 1450V and for P=-l, Vw=O.7620V.

If a cell is only connected to itself (only Ace is present) it is found that if the initial state

voltage= 1.11 V, the resulting output of the cell is high, while if the initial state voltage is

1.09V, the resulting output of the cell is low.

A row of six cells connected in such way that it performs connected component

detection was simulated and operates properly. See Table 7 for some experiments that

were conducted.
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Table 7 Experiments conducted with a row of6 cells. Function: Connected component detection without additional
edge-cells

VSlale(t=O) VSlale,steady slale Settling time
Initial conditions of subsequent Results of subsequent cells in Steady state reached after:

cells in row of 6 cells row of 6 cells
('O'=O.9V, 'I '=1.3V) ('0'=0.921V, 'I '=1.29V)

011110 000010 1.31lS
101100 111010 1.5us
001111 000001 1.31ls
001000 000010 1.61ls
101000 1 110 1 0 2.0jlS
111000 111110 1.01ls
111111 111111 <400n5
000000 000000 <SOns
001100 000010 1.0us
100000 111110 2.01lS

Note that the voltage at which the state is clamped is somewhat higher than O.9V. This

is caused by the current sourcing active diode. (For the effects of this diode, see also

Appendix C ). The characteristics of this diode may be improved by using an active

diode like the present current draining active diode and is left for future studies.

Nevertheless the results are promising and although the output impedance is quite high,

the speed at which the network operates can be increased by increasing the maximum

current that can be supplied to 95J.1A while keeping a high output impedance.
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8 Theory: boundary of the basin of attraction

The state voltage of a cell in a CNN varies as a function of time, due to self-feedback

and interaction with other cells. Because of these interactions, the state voltage will not

necessarily decrease or increase monotonically. The state voltage can be plotted as a

function of time as is done in Figure 16; for every individual cell the state voltage (on

the Y-axis) is plotted against time (X-axis). If a CNN consisting of only two interacting

cells is considered, it is possible to plot in a convenient way one state voltage versus the

other thus obtaining a state space plot. Although the state voltages are dependent of the

time, they are now not explicitly plotted as a function of time. In Figure 38, VSI and VS2

are the state voltage of the two cells. This state-space plot enhances the insight in the

dynamical behaviour of the system rather than the state voltage plotted versus time (a

'time-diagram').

Figure 38 Plot ofa trajectory in state space

As time changes, so too will the state voltages. If subsequent points in state space are

connected a curve is obtained and is called the 'trajectory' of the system. If this was

done for three interacting cells in a CNN, then for a complete description of the

dynamical behaviour, a three dimensional space would have to be drawn since there are

three state-voltages to be plotted.

Considering a CNN consisting of two cell, it is possible to find a certain 'border'

separating the entire state space (two dimensional in our example) into two regions, so

that if the system starts in any point of one region, it will always converge to one

specific equilibrium point, while if it starts in any other point, the system will always

converge to the other equilibrium point. This 'border' is called the 'boundary of

attraction' for obvious reasons and the region it encapsulates is called the basin of

attraction.
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Figure 39 Separation of the state space

In Figure 39 a two-dimension state space is depicted containing two equilibrium points

(EI and E2). The basin of attraction for E2 is shaded and the white area is the basin of

attraction for E I . The border between them (drawn with a thick line) is the boundary of

attraction. The objective is to find a description for this border and thus be of help in

explaining the outcome of the neural network.
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9 The Lyapunov energy function

If a CNN is considered that consists of two cells, then a two dimensional state space

displays the dynamic behaviour of the cells_ Assume that a cell is described by the

regular state equation_ (See also (2))

Or:

Cdd?) =- V~t} + A/V/t} + 2,A/V/(t}+ 2,B/Vu
d +1

x deN, deN,
d~c

(32)

RxCddt(t) =-Vx(t}+RxA/V/t)+Rx 2,A/V/(t)+Rx 2,B/Vu
d +Ri (33)

deN, deN,
d~c

To obtain a dimensionless equation, the voltages can be normalised with:

So dividing (33) by V max gives:

If the time is normalised as : t=RxCt then

which can be rewritten to obtain:

-th- c R A C C R A C b C R B C -c lRx
WI - a c = xc' ad = x d' d = x d ,I = V-

max

(36)



This nonnalised state equation (36) facilitates the description of the individual cell

equations. Assume that the two-cell CNN is described by:

Xl = -XI + 15Yl + Y2 + 1

x2=-X2+ Y, + 15Y2 + 1
(37)

Here, Yk=f(xk) is the output of cell k (k e {1,2}), which is the saturation function

described in chapter 2. The 2-dimensional state space is divided into nine separate

regions due to the fact that the output of a cell is a 3-segment piecewise linear function.

This can be seen in Figure 40. The states are plotted along the (dashed) axes. If the

horizontal axis is observed (along which XI is plotted) it can be seen that the state space

is divided into three regions (thick vertical lines) because the output saturates. Likewise

state X2 divides the state space three regions too, thus the entire state space is divided

into nine regions. If a state variable is said to be saturated, then actually the output is

saturated. (For FR-CNN's this is the same.) When the output of a cell saturates the tenn

of the output used in the state equations becomes a constant and therefore plays no

longer an active role in the equations. If the magnitude of both state-variables exceeds

unity, the output of both cells are saturated and the corresponding regions {I ,3,7,9} are

called 'saturated regions'. If only one output is saturated the corresponding regions

{2,4,6,8} are called 'partially saturated regions'. If none of the outputs are saturated the

system is operating in region {5}, which is called 'linear region'.

@

Figure 40 State space divided into nine regions

As is shown by Chua and Yang [2] and [8] the CNN (subjected to some restrictions) has

stable equilibrium points which must lie in one of the saturated regions. These

equilibrium points can be found by considering the saturated regions and stating that the

state-variable does no longer vary. (xk =0, ke{I,2}) Thus, using the given state

equations (37) two equilibrium points can be found; E1=(3.5, 3.5) and E2=(-1.5, -1.5).
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In order to find the boundary of the basin of attraction ('BOA') separating the basins of

attraction of both equilibrium points, the Lyapunov energy function as defined by Chua

and Yang [2] (see also [9],[10] and [11]) can be used and is described by the scalar

function (38)

(38)

Or (using (36)):

(39)

This energy function is only valid when CNN's with symmetrical templates are used,

that is, if A(i,j;k,l)=A(k,l;i,j). Chua and Yang also showed that this scalar function E(t)

is a monotone decreasing function of time. For the two-cell CNN in our example, the

energy function in the linear region becomes:

(40)

Observe that in region {5}

(41)

whereas the state equations are given by:

(42)
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The energy function for this two-cell CNN can be plotted as if it were a function of Xl

and X2. Therefore the gradient of E(xl'x2 ) shows where the slope of the energy has a

maximum (that is, increases fastest). In the opposite direction, the energy function

shows the largest decrease. If this energy function can be written as a scalar function

(depending on Xl and X2) then - gradE(xl'x2 ) indicates the direction of the largest

decrease in energy and the direction of the actual trajectory, since these directions are

the same (see (41) and (42)). This is true for our particular example and may not be true

in general because energy functions might be found where the direction of the actual

trajectory does not correspond to the largest decrease in energy. It is assumed however

that the direction of the trajectory corresponds to the largest decrease in energy

throughout this entire report unless stated otherwise. This is an important assumption

and narrows down the diversity in CNN's that may be observed, because it is not

necessary for a CNN to 'follow' that path in state space where the decrease in energy is

largest. Metaphorically speaking, it can be seen as if the state space contains a

mountain-ridge (with the altitude depending on the amount of energy). Since the energy

of the CNN (altitude on the mountain) as a function of time is a monotone decreasing

function, the mountain can never be ascended but is always descended. As a result,

following the trajectory we can never gain 'kinetic energy' because if that were possible,

it would be possible to ascend the mountain (thereby losing again the gained kinetic

energy).

However, when the energy function is plotted in the saturation regions it is easily shown

that the energy function remains at the same level throughout the entire saturated region.

(See Figure 41) This is logical since the energy only depends on the output of the cell

states which are constants in the saturated regions. This in return would mean that once

the system has entered a saturated region it will not proceed to approach an equilibrium

point or pass through this region at all. This is not true since the system will approach an

equilibrium point or pass through a saturation region. So here, the used Lyapunov

energy function does not represent a correct energy function in the sense that it

'explains' the systems behaviour.
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Figure 41 Lyapunov Energy function for our example (using (37) and (39» observedfrom different angles. with x
and y being the states (Xl and X2) and z representing the amount ofenergy.

9.1 The BOA in the linear region

If the linear region is observed the Lyapunov energy function (40) may be used since it

describes a correct energy function for our example. As can be seen from Figure 41,

there's a maximum within the linear region. To find this maximum in energy it is clear

that, although due to noise practically unrealisable, a system that starts exactly at this

maximum will not start to 'move'. This is an other equilibrium point but -unlike the

ones in the saturated regions- it is unstable. This equilibrium point can be found

however by stating that Xl = 0 and x2 =O. Thus the maximum in energy is obtained for

XI =-1 and X2 =-1. From this point, the system can follow trajectories that lead in

every direction. This is true, since the trajectories follow the (opposite direction of the)

gradient defined by the energy function (as no 'mass' is involved and so no kinetic

energy is gained). It may not be true with other two-cell CNN's where other template

parameters are used. (The constant factor with which the output of a cell affects the state

of an other cell is called a template parameter.) To overcome this problem, a 'force' is

introduced. If this system is submitted to a force-field depending on the exact position in

the state-space, the energy-function is no longer needed to describe the systems

behaviour. Again speaking in metaphors; if a ball is placed on a mountain it will start to

roll towards a certain direction directed by a force that depends on 1) the gravitational

force (which is assumed to be a constant) and 2) the orientation of the mountain. In
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Figure 42 the mountain representing the energy as a function of the states Xl and X2 is

plotted, as well as a 'ball' on its surface. The force acting on the ball is projected on the

XJ,x2-surface (the trajectory) and decomposed into its components along Xl and X2

respectively.

Figure 42 Force composed oftwo directional components

If the force field is taken in such a way that it always describes the correct direction to

which the trajectory tends, the state equations can be used. Therefore, introduce:

(43)

Here, F) does not necessarily correspond directly to XI since F1 can be composed of two

components of force. This is logical since XI not only depends on Xl but also on X2 and

vice versa. (See Figure 43)

Figure 43 Dependence on both state values

Since the system is described by the state-equation as is the 'force' the two descriptions

may both be used to do so. It will therefore describe the systems behaviour well, also in

saturated regions (which is trivial as the state equations are used) whereas the energy

function is no longer useful. This can be proven quite simply.
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If there is a function f, such that:

F = grad f with E= F; .i+ F; '1

and if F1(x,y) and F2(x,y) have continuous first-order partial derivatives then if:

J(F;dx + F2dy) = 0 (independent of the path "C")
c

HcurlF =0
'---..---'

iJF2 _ iJFt

iJx - iJy

the system (F) is called conservative (since curl F = curl(grad f) = 0). [12]

(44)

(45)

If F is not conservative, then the energy at a certain point depends on the trajectory that

was followed. It is then impossible to define a fixed amount of energy for this point and

thus the energy function cannot be represented by simply a scalar function. As an

example, assume that X2 is saturated (x2~-I), then:

(46)

So:

(47)

And so F is not conservative conform (44). In region {8} the energy function cannot be

described by a simple scalar function. The energy in a certain point in state space would

be depending on the path (the trajectory) that was followed. This cannot be true for a

CNN and leads to the conclusion that the assumption that the systems always follows

the steepest path on the energy function towards the equilibrium points is incorrect. This

implies that a scalar function may be found to represent the energy function, but then the

gradient will not be equal to the state-equations as was the case with (41) and (42).
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So far, the 'top' in energy in the linear region has been found for our particular example

under the assumption that the trajectory always corresponds to the steepest descent

along the energy-mountain and a 'force' has been defined (corresponding to the state

equations). How does this lead to the BOA? To answer this question the characteristic is

used the ridge of a mountain passes the top of the mountain and is the route with the

smallest slope. Any deviation from that route will result in less energy and thus lead

away from the ridge. (See Figure 44). Following this route it is like continuously

balancing on this mountain-ridge.

Xl

BOA=ridge of 'mountain'

Figure 44 A special trajectory; the ridge o/the mountain

To find this route (which is a special trajectory) at the edges of the region, a sort of

'work-function' may be introduced, analogues to the work done by a force.

w= fF·dr
c

(48)

Following the edges of the linear region the work done in order to do so can be studied.

If there's a maximum on the edge it can be found by integrating the force along the edge

to this point. Integrating to any other point will result in a work function that is less if

there's only one maximum. If multiple extremes are found the global maximum must be

observed. When the edge of the linear region with xl=-l is observed then, for our

example:

a a

W =fF .dr =f(XI +X2 )dx2
-I -I

= I[~AI + a~1 +al
2
)xl + ~a21 +~ +a22)X2+~]dx2

apr
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with

and A1=-I, A2=-I since the linear region is observed! The integration of the force along

the edge is depicted in Figure 45.

IV

II

Figure 45 Integration along edge I of linear region

Thus finding:

a

W =f[a XI + f3 x2 + r] dx2
-I

=~ a2+(r+axl)a- ~ +(r+ ax])

(49)

To find the point where the maximum work is done, differentiate the work function to

'a' and state that the result is zero (simply finding an extreme). This has the advantage

that any constants that are introduced by the force are annihilated. It is therefore not

necessary to know the absolute value in energy at a certain point since only differences

are observed.

dW r+ax]
-=O---7a=-..:....--~
da p (50)

and because xl=-l, a =t ,,8 =t ,r =2 it can be found that a =-1 so there is a BOA

through (-1, -1).
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Figure 46/ntegration along edge II of linear region

For edge II, the same calculation can be performed (see also Figure 46):

a

W =J(XI + X2 )dxl ;

-I

dW
-=0
da

and with x2=-1,a = 1-.13 =1-,Y = 2 it can be found that a = -1 so there is a BOA

through ( - 1,-1).

For edge ill it is found that a = -1 which is not a valid value since it does not lie in the

linear region. Likewise, for edge IV, a = -t which is an invalid value too.

9.2 Obtaining the description of trajectories

To determine the trajectory through (-1, - 1)and ( - 1,-1) it is possible to solve the state

equations for the linear region.

(51)

If A has en' distinct eigenvalues, then A has a basis of en' eigenvectors. Solving

det(A-AI)=O gives: A I =1- and A 2 = -t .Substituting A=AI and A=A.2 into det(A-AI)=O

results in two eigenvectors: K, =(:)and K, =[-11) hence:
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(52)

Diagonalisation of A gives [12]:

If,! = y~ then:

Yi.=AY~+l!

i. =y-I AY~ + y-Il!

= Dg.+y-Il!

From this it can be found that:

And thus (using,! = y~):

XI =-1- + Ke!t - C2e-tt

x
2

= -1- + Ke!1 + C
2
e--f1

(53)

(54)

(55)

(56)

These equations describe the trajectories as a function of time for the linear region. To

find the trajectory through (-I, - t), this point can simply be substituted which then

detennines the constants, assuming the trajectory is in (-I, - t )at time t=O. Thus we can

find: K=O and C2=t. The trajectory ends at the top of the energy in the linear region and

is described with:

(57)

In a similar way the trajectory through ( - t ,-1) can be found: K=O, C2= - t. As a result

the trajectory is described with:
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(58)

Notice that the 'ridge' of the mountain of energy is a straight line through (-1, - t) and

(- t ,-1) and could have been found too by substituting 'any' other value for Xl or X2

when trying to find the top 'a' on the edges I and IT respectively! (Equations 57 and 58)

9.3 The BOA in Partially Saturated regions

To find the BOA ( this particular trajectory) in the partially saturated regions a trajectory

has to be found that runs through (-1, - t) in region {4} and through ( - t ,-1) in region

{8}. Considering region {8} the state equations are given by:

. XIx,=-
2

x2 = - x2 - XI + 1
(59)

These equations can be solved to find the trajectories in a similar way as was done for

the linear region. In this case it's even simpler; first solve the ODE containing only Xl.

Substituting the result in the second ODE and solving this one as well gives:

(60)

With some restrictions, 't' can be written as a function of Xl. Substitution of the

expression found for 't' into the second equation then gives:

2 I ~, 2 I K. I
X, =,-Xl -., + ( ~J' =,-Xl -., + (Xl)' . The trajectory through (-"3,-1) reveals that

K = - 1~2 • Thus the BOA in region {8} is given by (see Figure 47):

(61)
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Figure 47 The trajectory and the gradient in partially saturated region

In general this substitution is not always possible and the trajectory can only be given as

an explicit function of time. As can be seen the BOA ends in X2=-00 for t-?-oo. The time

goes to -00 and is due to the fact that the gradient is observed which leads to the opposite

direction of the actual trajectory (assuming -grad(E(xl,x2)) and the state equations are

equal). Following the trajectory can thus be done by retracing the gradient. (Following

the gradient 'back in time'). Should the trajectory have ended on the edge of the region,

then the state equation for the corresponding neighbouring region must be solved and

again the trajectory must be continued to infinity.

It is not possible for a BOA to enter (or leave) a fully saturated region that contains a

stable equilibrium point. This is true since Zou and Nossek have shown that if there's an

equilibrium point in a saturation region, then the whole saturation region belongs to the

basin of attraction of that equilibrium point [8]. If the BOA entered such a saturated

region then this would mean that at least a part of this region belongs to another basin of

attraction and this is a contradiction. Moreover, from this fact it can be concluded that

every BOA enters the linear region. Hypothetically this could be only a single point.
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When the border between region {7} and {8} is observed, one can find another extreme

in the work-function. This must be a phantom-peak since this trajectory would enter a

saturated region with a stable equilibrium point. Moreover, it is not connected with the

BOA that was found earlier and therefore will not eventually reach the maximum that

was found in the linear region. This conclusion is easily made since a two-dimensional

state space is observed. In general these phantom peaks cannot be detected so easily, so

every peak must be subjected to further study, that is, the trajectory through every peak

must be followed. If it does not eventually reach a 'top' then this trajectory is not a BOA

and as a result the corresponding peak must be a phantom peak.
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10 Finding the BOA

For the two-dimensional case with symmetrical templates, time-independent template

parameters and assuming that the trajectory always follows the steepest descent along

the energy function in the linear region (which is true for positive definite matrices), the

method as described in previous paragraphs appears to be functioning and a scheme can

be made for the methodology to find the BOA.

1) Find the work-function along a certain direction on the edge of the linear
region. (Changing only one state variable at a time)

2) Find the extreme on this work-function

3) Find the function that describes the extrerpe as a function of other state
variables

4) Repeat step 1-3 for other edges of the linear region

5) Find the general solutions of the state-equations (which describe the
trajectories)

6) Find the (set of) solutions for the constants in order to find a specific (set
of) trajectory (or trajectories) that go through the extremes that were
found

7) Only trajectories that are connected and eventually reach the 'top' are
valid trajectories

Ad.3) This is the same as assuming that xl=constant with XI E [-1,+1] when studying
edge I.

Ad.7) As was the case with the phantom-peak on the border between regions {7} and
{8}.

If a function can be found that represents a correct energy function then this scheme can
be simplified significantly. The maximum of the energy function on the borders of the
regions must be found. Solving the state equations and finding the trajectories that go
through these extremes then results in a description for the BOA. Even so, it must be
verified if every trajectory reaches the absolute top of the energy function. If this is not
the case then the ridge that is found describes a local ridge and is not a part of the BOA.

The method as describe above is used on a general 2-cell CNN in Appendix D .

If for example this method is used on a three-dimensional CNN some more work is

involved. Assume:

-63-



(62)

Xl = -XI + 2YI + Y2 + 1

x2=-x2+ Yl + 2Y2 + Y3 + 1

x3= -x3+ Y2 + 2Y3 + 1

then four stable equilibrium point in saturated regions can be found: El=(4,5,4),

E2=(-2,-3,-2), E3=(-2,-1,2) and E4=(2,-I,-2). (Which has been verified experimentally.)

In the linear region it can be found that:

(63)

and thus:

(64)

It can be found that the extremes of the work-function are at: (-1,-1,1), (-l,t,-1) and

(1,-1,-1). The set of extremes of the work-function will always be a linear function of

the other state variables. If:

then:

And:

F = XI + x2 +x3+·· ,+xll

=F; .~l + F; .~2+...+F;, .~Il + C

a

- 64-
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So every extreme in the direction of xp can be expressed as a function of the other state

variables xp (p;<k). For x2=-1 we can find that: J: = [~J for -1,;a,;;1; the line on the

border where all the trajectories will run through that are part of the BOA. Thus the

trajectories through this line (assuming t=O) are given by:

[
ae' J

:! = -1

-ae'
(66)

It is easily verified that this is a single line and does not describe a (hyper-) plane. This

result is due to the fact that the top of the energy function lies exactly on the border of

the linear region. This may be overcome by observing the plane X2=-~, with ~>-1 and

should be more closely looked at in future studies.

10.1 The BOA with FR-CNN's

To find the basin of attraction for CNN's that are based on the full-range principle will

be less complicated, because there is only one region to be studied; the linear region.

Every other region is projected onto a certain boundary of the linear region. In the case

of saturated regions this boundary reduces to a single point. See Figure 48.

"(i)" "''';@''
Linear

XI ==i> "@ '!...- Region~ XI

----'w== '--) ( "@"
n®"

"@" "@It

Figure 48 Projection ofother regions onto the borders ofthe linear region

This point however does not necessarily contain a stable equilibrium, but it appears as

being stable, because the states cannot become larger than unity. The same effect may

appear at other comers, even though the original saturated regions may not have

contained a stable equilibrium point. See Figure 49. This can be caused for example by a
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gradient in the energy function that 'guides' the trajectory towards region {8} or region

{9} which it cannot enter, whereas with regular CNN's the trajectory may have been

able to leave region {9} for Xl>1. The systems will remain at (1,-1) due to the gradient

in the energy function and the saturation function even though at region {9} there may

not have been an equilibrium point.

•

Figure 49 Introduction ofstable equilibrium points

The introduction of such an equilibrium point may alter the overall behaviour of a FR­

CNN compared to the behaviour of a regular CNN. This may cause unwanted effects

and should be more closely looked at in further studies. Thus, although it did not appear

so with the example of CCD for which a Matlab program was written (see paragraph

3.3), the FR-CNN may display quite a different behaviour from what can be expected

when it uses templates that give a certain desired result with regular CNN's. Whether

the introduction of new equilibrium points is possible and what the effects would be

should be more closely looked at in future studies.
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11 Conclusions and recommendations

First of all, it was shown that the Full-range model as proposed by Rodriguez-Vazquez

can be applied, but that the implementation he suggests does not correspond to this Full­

range model. The schematic as given by P. Bruin however does implement the Full­

range model and is a correct circuit for a cell in a Full-range Cellular Neural Network

(FR-CNN).

It is seen that if Level 47 HSPICE parameters are used, the simple square-law formulas

no longer accurately describe the behaviour of the transistor and modified parameters

have to be found experimentally.

If a cell of a FR-CNN is implemented using only one current mirror and 19 multipliers

connected in parallel as suggested, the output impedance of the system is reduced

significantly. This causes the cell to show an unexpected behaviour. It was seen that if

the output impedance is increased, the proposed cell displays a proper behaviour. This is

verified with DC- and transient simulations which were done using the template

parameters needed to perform CCD.

In future studies, other operations than CCD should be more closely looked at when the

proposed cell structure is used. Also the characteristics of the active diodes to clamp the

state voltage to certain pre-defined levels may be improved. The output impedance may

be increased even more while the chip area that is needed for VLSI implementation is

reduced and the maximum current of 951lA can still be supplied. This will increase the

speed with which the CNN operates.

With respect to the boundary of the basin of attraction, it is shown that the BOA can be

found in a 2-cell CNN if some restrictions are assumed and if a sort of force is

introduced. This is done since it is shown that the used Lyapunov energy function no

longer represents a proper energy function. This energy function should describe the

behaviour of the cells in every region in state space.

Difficulties arise when the BOA is searched for in CNN's consisting of more than two

cells. Although these difficulties may be due to the definition of the force, the method to

find the BOA can still be used if a proper energy function is found. A new energy
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function that describes the behaviour of the cells in every region in state space should be

introduced.

Also, the behaviour of Full-range CNN's should be compared to the behaviour of

regular CNN's since it has become clear that undesired stable equilibrium points may be

introduced together with the FR-model. Although this does not appear in the examples

that were used, other examples may be found where new stable equilibrium points are

introduced and should be searched for in future studies.
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Appendix A Ringing caused by active diode

Drained current (!lA) y+ V' Vend
2 1.298 1.288 1.292
5 1.306 1.283 1.291
10 1.312 1.277 1.293
20 1.325 1.275 1.298
30 1.339 1.280 1.295
40 1.350 1.285 1.294
50 1.362 1.288 1.294
60 1.374 1.292 1.295
70 1.385 1.295 1.295
80 1.396 -- 1.296
95 1.412 -- 1.296

Ringing depending on drained current
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Appendix BHSPICE file :CNNrow6.sp

CNNrow6.sp 'CNN - one row of six cells'

*----------------------------------

.subckt multipl Vdd Yin Vw 3 4

MI 2 Yin Vdd Vdd PMOSr l.Iu 2.lu

M2 3 Vw 2 Vdd PMOSr 4.2u 1.6u

M3 4 5 2 Vdd PMOSr 4.2u 1.6u

Vwref 50 0.95V

.ends

*-----------_.._---------------..._---

.subckt cell Vdd Vinl Vin2 Vout Vwlft Vwlftc Vwrgt Vwrgtc

* Transistors

M4 3 3 0 oNMOSr 11.9u 0.8u

M5 4 3 0 oNMOSr 11.9u 0.8u

Mel I 6 14 Vdd Vdd PMOSr 2.6u 0.8u

Mcl2 6 40 oNMOSr 2.6u I.Ou

Mel3 Vdd 64 oNMOSr 1.I u 0.8u

Misl Vout 14 Vdd Vdd PMOSr 1.1 u 1.9u

Mls2 0 4 Vout Vdd PMOSr 1.8u 0.8u

Mchl 9 12 Vdd Vdd PMOSr 1.7u 6.2u

Mch2 9 410 oNMOSr 5.6u 1.6u

Mch3 7 12 Vdd Vdd PMOSr 1.7u 6.2u

Mch4 7 13 10 0 NMOSr 5.6u 1.6u

Mch5 10 II 0 0 NMOSr 2.6u 1.6u

Mch6 4 7 0 0 NMOSr l.Iu 0.8u

* Capacitor

CI 45 0.7pF *IC=1.3V

RI 500.1

* Voltage nodes

Vwref II 00.95V

Vbias 140 2.2V

VMchl&3 1201.5V

VMch4 130 1.3V

VAce vacc 0 0.6638V

Vnacc vnacc 0 1.3000V

VinO vinO 0 2.0762V

VwO vwO 0 0.9666V

* Multipliers

Xacc Vdd Vout vacc 34 multipl

Xaccc Vdd VinO vnacc 3 4 multipl

Xaccl Vdd Vout vacc 34 multipl

Xaccci Vdd VinO vnacc 34 multipi

Xts9 Vdd vinO vwO 3 4 multipl

XtslO Vdd vinO vwO 34 multipl

Xleft Vdd Yin I vwlft 3 4 multipl
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Xleftc Vdd vinO vwlftc 3 4 multipl

Xrighl Vdd Vin2 vwrgl 34 multipl

XrighlC Vdd vinO vwrgtc 3 4 multipl

Xtsll Vdd vinO vwO 34 multipl

Xtsl2 Vdd vinOvwO 34 multipl

Xts 13 Vdd vinO vwO 34 multipl

Xtsl4 VddvinOvwO 34multipl

XtsIS Vdd vinO vwO 34 multipl

Xtsl6 Vdd vinO vwO 34 multipl

Xtsl7 Vdd vinOvwO 34 multipl

Xtsl8 Vdd vinO vwO 34 multipl

Xlsl9 Vdd vinO vwO 34 multipl

.ends

...._--_.--------_._-----------

.subckt EcellL Vdd Vinl Vin2 Vout Vwlft Vwlftc Vwrgl Vwrgtc

* Transislors

M4 3 3 0 oNMOSr 11.9u 0.8u

MS 4 3 0 oNMOSr 11.9u 0.8u

Mel I 6 14 Vdd Vdd PMOSr 2.6u 0.8u

Mcl2 6 40 oNMOSr 2.6u I.Ou

Mel3 Vdd 64 oNMOSr l.Iu 0.8u

Misl Vout 14 Vdd Vdd PMOSr 1.1u 1.9u

Mls2 0 4 Vout Vdd PMOSr 1.8u 0.8u

Mchl 9 12 Vdd Vdd PMOSr 1.7u 6.2u

Mch2 9 4 10 oNMOSr S.6u 1.6u

Mch3 7 12 Vdd VddPMOSr 1.7u6.2u

Mch4 7 13 10 ONMOSr S.6u 1.6u

MchS 10 II 0 ONMOSr 2.6u 1.6u

Mch6 4 70 oNMOSr 1.1u 0.8u

* Capacitor

CI 45 0.7pF *IC=I.3V

RI SO 0.1

* Voltage nodes

Vwref II 00.9SV

Vbias 14 0 2.2V

VMchl&3 1201.5V

VMch4 130 1.3V

VAcc vacc 0 0.6638V

Vnacc vnacc 0 1.3000V

VinO vinO 0 2.0762V

VwO vwO 0 O.9666V

* MUltipliers

Xacc Vdd Vout vacc 34 multipl

Xaccc Vdd VinO vnacc 34 multipl

Xaccl Vdd Vout vacc 34 multipl

Xacccl Vdd VinO vnacc 34 multipl

Xacc2 Vdd Vout vacc 34 multipl

Xaccc2 Vdd VinO vnacc 34 rnultipl
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"left Vdd VinO vwO 3 4 multipl

Xlefte Vdd vinO vwO 34 multipl

Xright Vdd Vin2 vwrgt 34 multipl

Xrighte Vdd vinO vwrgte 34 multipl

Xtsll Vdd vinO vwO 34 multipl

Xtsl2 Vdd vinO vwO 34multipl

Xis 13 Vdd vinO vwO 3 4 multipi

Xts 14 Vdd vinO vwO 3 4 multipl

Xis 15 Vdd vinO vwO 3 4 multipl

Xts16 Vdd vinO vwO 3 4 multipl

XIs17 Vdd vinO vwO 34multipl

Xtsl8 Vdd vinO vwO 34multipl

Xtsl9 VddvinOvwO 34multipl

.ends

*----------------------------------------

.subekt EceI1R Vdd Vinl Vin2 Vout Vwlft Vwlftc Vwrgt Vwrgte

• Transistors

M4 3 30 ONMOSr 11.9uO.8u

M5 4 30 oNMOSr 11.9u 0.8u

Mel I 6 14 Vdd Vdd PMOSr 2.6u 0.8u

Mel2 6 40 oNMOSr 2.6u I.Ou

Mel3 Vdd 64 ONMOSr l.Iu 0.8u

Mlsl Vout 14 Vdd Vdd PMOSr 1.1 u 1.9u

Mls2 0 4 Vout Vdd PMOSr 1.8u 0.8u

Mehl 9 12 Vdd Vdd PMOSr 1.7u 6.2u

Meh2 9 410 oNMOSr 5.6u 1.6u

Meh3 7 12 Vdd Vdd PMOSr 1.7u 6.2u

Meh4 7 13 10 ONMOSr 5.6u 1.6u

Meh5 10 II 0 ONMOSr 2.6u 1.6u

Meh6 4 70 ONMOSr l.Iu 0.8u

• Capacitor

CI 45 0.7pF *IC=1.3V

RI 500.1

* Voltage nodes

Vwref I I 00.95V

Vbias 14 02.2V

VMehl&3 120 1.5V

VMeh4 13 0 I.3V

VAee vacc 0 0.6638V

Vnacc vnacc 0 1.3000V

VinO vinO 0 2.0762V

VWO vwO 0 0.9666V

• Multipliers

Xace Vdd Vout vacc 3 4 multipl

Xaecc Vdd VinO vnace 34 multipl

Xaecl Vdd Vout vaee 34 multipl

Xaeecl Vdd VinO vnacc 34 multipl

Xaee2 Vdd Vout vaee 34 multipl
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Xaccc2 Vdd VinO vnacc 34 multipl

Xleft Vdd Vinl vwlft 34multipl

Xleftc Vdd vinO vwlftc 3 4 multipl

Xright Vdd VinO vwO 3 4 multipl

Xrightc Vdd vinO vwO 3 4 multipl

Xtsll Vdd vinO vwO 34 multipl

Xtsl2 Vdd vinO vwO 34multipl

Xtsl3 Vdd vinO vwO 34 multipl

Xtsl4 VddvinOvwO 34multipl

XIS 15 Vdd vinO vwO 3 4 multipl

Xtsl6 Vdd vinO vwO 34 multipl

Xtsl7 VddvinOvwO 34multipl

Xtsl8 Vdd vinO vwO 34 multipl

Xtsl9 VddvinOvwO 34multipl

.ends

*---------------------------------

._----_._------------------....._--_..-----------

.Iran IOns ISOOns

*.op sOns

.Ie V(XI.4)=O.9V

+ V(X2.4)= 1.3V

+ V(X3.4)=1.3V

+ V(X4.4)=1.3V

+ V(XS.4)=1.3V

+ V(X6.4)=O.9V

Vdd I 03.3V

VwNilI 4000.9667V

Vwlft 4100.7979V

Vwlftc 420 1.I429V

Vwrgt 430 1.1429V

Vwrgtc 4400.7979V

VinNiIl 45 0 2.0762V

X114Su2u140404344EceItL

X2 I uI u3 u2 41 42 43 44 celt

X3 I u2 u4 u3 41 42 43 44 cell

X4 I u3 uS u4 41 424344 cell

XS I u4 u6 uS 41 42 43 44 cell

X6 I uS 45 u6 41 424040 EceItR

.print V(ul) V(u2) V(u3) V(u4) V(uS) V(u6)

+ V(X1.4)

+ V(X2.4)

+ V(X3.4)

+ V(X4.4)

+ V(XS.4)

+ V(X6.4)

+ I3(XI.Xacc.MI) V(XI.Xacc.2) V(XI.Xacc.3) V(XI.Xacc.4)
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.option WL POST OFF NOMOD ABSMOS=I E-12 RELVDC=O.OOI RELMOS=O.OOI

+ LVLTIM=3 DVDT=2 ABSVAR=IE-7 PIVOT=13

+ RELTOL=IE-7 method=gear "VNTOL=IE-14 "RMAX=O.OI

.temp 27

.MODEL NMOSR NMOS LEVEL=47

+VTHO=O.6167061 K1=O.5992536 K2=9.681673E-3

+K3=O.0664731 K3B=O.0848494 W0=2.011142E-6

+NLX=1.016643E-7 DVT0=4.0537809 DVT1=0.7140707

+DVT2=-0.015361 DL=3E-8 DW=2.301932E-8

+UA:6.124312E-10 UB=1.932798E-18 UC=O.0125756

+VSAT=8.922874E6 AO=O.6067592 KETA~0.0166963

+A1=O A2=1 RDS0=2.3

+RDSW=765.8949964 VOFF=-0.0335402 NFACroR=1.64108

+CDSC=2E-5 CDSCB=9.1684E-5 ETAO=O.0104031

+ETAB=3.090849E-3 DSUB=O.0578341 PCLM=1.5982969

+PDIBL1=O.1035115 PDIBL2=1.1703E-3 DROUT=O.5158942

+PSCBE1=1.30884E8 PSCBE2=7.363849E-8 PVAG=O.3064459

+~1.5856242 KTI~0.1I02432 KTlL=-I.2E-9

+KT2=O.0226957 UA1=1.116809E-1O UB=O

+UC1=-0.06 AT=1.022222E4 TOX=1.03E-8

+XJ=2E-7 NPEAK=I.1EI7 NSUB=4EI6

+SUBTHMOD=3 SATMOD=2 BULKMOD=1

+XPART=1 XT=1.55E-7 VBM~5

+U0=517.8468925 ETA=O.3 VGHIGH=O.15

+VGLOW=-D.15 CIT=O JS=O

+RSH=O CGDO=1.3 I2E-1O CGSO=I.312E-1O

+CGB0=3.28E-10 CJ=7.5E-4 PB=O.74

+MJ=O.35 CJSW=3.4E-1O

.MODEL PMOSR PMOS LEVEL=47

+VTHO=-0.540634I K1=O.6124669 K2=O.0 I78682

+K3=21.4923586 K3B=-8.6159594 W0=8.875616E-6

+NLX=1.892983E-7 DVT0=3.4224992 DVTl=O.6409558

+DVT2=O.0114412 DL=3.455666E-8 DW=O

+UA= 1.386541 E-9 UB=8.471541 E-19 UC=-0.0276702

+VSAT=6.210514E6 A0=3.9 KETA=-0.0835983

+A1=O.1772758 A2=7.15954E-3 RDS0=2.7

+RDSW=I.991187E3 VOFF=-0.0835342 NFACfOR=1.420078

+CDSC=2E-5 CDSCB=1.889443E-3 ETAO=O.0799679

+ETAB=-0.0699861 DSUB=O.05602321 PCLM=2.7224552

+PDIBL1=O.3863554 PDlBL2=1.621787E-3 DROUT=O.6291645

+PSCBEI=IE8 PSCBE2=I.001E-1O PVAG~0.2990312

+UT~1.253412 KTI=O.113123 KTl~I.00423E-9

+KT2=O.0226957 UAI=1.11689E-10 UB=O

+UCI=-0.0556 AT=5.55342IE-1O TOX=1.03E-8

+XJ=2E-7 NPEAK=I.1EI7 NSUB=4EI6

+SUBTHMOD=3 SATMOD=2 BULKMOD=2

+XPART=I XT=1.55E-7 VBM~5

+UO= 130.545 I767 ETA=O.3 VGHIGH=O.15

+VGLOW=-D.15 CIT=O JS=O

+RSH=O CGDO=1.312E-1O CGSO=I.312E-10

+CGB0=3.28E-10 CJ=7.9E-4 PB=O.83

+MJ=O.39 CJSW=4.2E-10
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.MODEL NMOSF NMOS LEVEL=·n

+VTHO=O.5667061 KI=O.5992536 K2=9.681673E-3

+K3=O.0664731 K3B=O.0848494 W0=2.011142E-6

+NLX=1.016643E-7 DVT0=4.0537809 DVTI=O.7140707

+DVT2=-0.015361 DL=7E-8 DW=-1.698068E-8

+UA=6.124312E-1O UB=I.932798E-18 UC=O.0125756

+VSAT=8.282874E6 AO=O.6067592 KETA=-O.0I66963

+AI=O A2=1 RDS0=2.3

+RDSW=765.8949964 VOFF=-Q.0335402 NFACTOR=I.641 0763

+CDSC=2E-5 CDSCB=9.1684E-5 ETAO=O.0104031

+ETAB=3.090849E-3 DSUB=O.0578341 PCLM=1.5982969

+PDffiLI =0.1035115 PDlBL2=1.1703E-3 DROUT=0.5158942

+PSCBE1 =1.30884E8 PSCBE2=7.363849E-8 PVAG=O.3064459

+UTE=-1.5856242 KT1 =-0.11 02432 KT1L=-1.2E-9

+KT2=O.0226957 UA1=1.116809E-1O 00=0

+UC1=-0.06 AT=1.022222E4 TOX=O.97E-8

+XJ=2E-7 NPEAK=1.1EI7 NSOO=4EI6

+SUBTHMOD=3 SATMOD=2 BULKMOD=1

+XPART=1 XT=1.55E-7 VBM=-5

+U0=517.8468925 ETA=O.3 VGHIGH=O.15

+VGLOW=-Q.15 CIT=O JS=O

+RSH=O CGDO=I.312E-1O CGSO=1.312E-10

+CGBO=3.28E-1O O=7.5E-4 PB=O.74

+MJ=O.35 OSW=3.4E-10 PBSW=O.74

+MSJW=O.29

.MODEL PMOSF PMOS LEVEL=47

+VTHO=-Q.4906341 K1=O.6124669 K2=O.0178682

+K3=21.4923586 K3B=-8.6159594 W0=8.875616E-6

+NLX=1.892983E-7 DVT0=3.4224992 DVT1=O.6409558

+DVT2--{).0I14412 DL=7.455666E-8 DW=-4E-8

+UA=1.386541 E-9 UB=8.471541 E-19 UC=-0.0276702

+VSAT=5.390514E6 A0=3.9 KETA=-O.0835983

+A1=O.1772758 A2=7.15954E-3 RDS0=2.7

+RDSW=1.991187E3 VOFF=-Q.0835342 NFACTOR=1.420078

+CDSC=2E-5 CDSCB=I.889443E-3 ETAO=O.0799679

+ETAB=-0.069986I DSUB=O.05602321 PCLM=2.7224552

+PDffiL1=O.3863554 PDffiL2=1.621787E-3 DROUT=O.6291645

+PSCBE1=IE8 PSCBE2=I.001E-10 PVAG=-0.2990312

+UTE=-1.253412 KT1=O.113123 KT1L=-I.00423E-9

+KT2=O.0226957 UAI=1.11689E-1O UB=O

+UC1=-0.0556 AT=5.553421E-1O TOX=O.97E-8

+XJ=2E-7 NPEAK=l.IEI7 NSOO=4EI6

+SUBTHMOD=3 SATMOD=2 BULKMOD=2

+XPART=1 XT=I.55E-7 VBM=-5

+UO=130.5451767 ETA=O.3 VGHIGH=O.15

+VGLOW=-0.15 CIT=O JS=O

+RSH=O CGDO=1.312E-10 CGSO=I.3J2E-10

+CGB0=3.28E-1O O=7.9E-4 PB=O.83

+MJ=O.39 OSW=4.2E-1O PBSW=O.83

+MSJW=O.35

.MODEL NMOSS NMOS LEVEL=47

+VTHO=O.6667061 K1=0.5992536

+K3=O.0664731 K3B=O.0848494

K2=9.681673E-3

W0=2.011142E-6
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+NLX=1.016643E-7 DVT0=4.0537809 DVTl=O.7140707

+DVT2=-0.015361 DL=·\E-8 DW=6.301932E-8

+UA=6.124312E-10 UB=1.932798E-18 UC=O.0125756

+VSAT=9.084287E6 AO=O.6067592 KETA=-o.0166963

+A1=O A2=1 RDS0=2.3

+RDSW=765.8949964 VOFF=-0.0335402 NFACTOR=I.6410763

+CDSC=2E-5 CDSCB=9.16839E-5 ETAO=O.0104031

+ETAB=3.090849E-3 DSUB=O.0578341 PCLM=1.5982969

+PDffiL1=O.1035115 PDffiL2=1.170287E-3 DROUT=O.5158942

+PSCBE1=1.30884E8 PSCBE2=7.363849E-8 PVAG=O.3064459

+UTE=·1.5856242 KTI=-0.1102432 KTlL=-1.2E-9

+KT2=O.0226957 UA1=1.116809E-10 UB=O

+UC1=-0.06 AT=1.022222E4 TOX=1.03E-8

+XJ=2E-7 NPEAK=1.1EI7 NSUB=4EI6

+SUBTHMOD=3 SATMOD=2 BULKMOD=1

+XPART=1 XT=1.55E-7 VBM=-5

+U0=517.8468925 ETA=O.3 VGHIGH=O.15

+VGLOW=-0.15 crr=o JS=O

+RSH=O CGDO=1.312E-10 CGSO=1.312E-10

+CGB0=3.28E-10 CJ=7.5E-4 PB=O.74

+MJ=O.35 CJSW=3.4E-1O PBSW=O.74

+MSJW=O.29

.MODEL PMOSS PMOS LEVEL=47

+VTHO=-0.5906341 K1=O.6124669 K2=O.0178682

+K3=21.4923586 K3B=-8.6159594 W0=8.875616E-6

+NLX=1.892983E-7 DVT0=3.4224992 DVTI=O.6409558

+DVT2=O.01l4412 DL=-0.544334E-8 DW=4E-8

+UA=1.386541E-9 UB=8.471541E-19 UC=·0.0276702

+VSAT=6.9450514E6 A0=3.9 KETA=-0.0835983

+A1=O.1972758 A2=7.15954E-3 RDS0=2.7

+RDSW=I.991187E3 VOFF=-0.0835342 NFACTOR=1.4200784

+CDSC=2E-5 CDSCB=1.889443E-3 ETAO=O.0799679

+ETAB=-0.0699861 DSUB=O.05602321 PCLM=2.7224552

+PDlBL1=O.3863554 PDffiL2=1.621787E-3 DROUT=O.6291645

+PSCBE1=lE8 PSCBE2=I.OOIE-1O PVAG=-0.2990312

+UTE=-1.253412 KTI=O.113123 KTIL=-I.00423E-9

+KT2=O.0226957 UA1=1.11689E-10 UB=O

+UC1=-0.0556 AT=5.553421 E-10 TOX=1.03E-8

+XJ=2E-7 NPEAK=1.1EI7 NSUB=4EI6

+SUBTHMOD=3 SATMOD=2 BULKMOD=2

+XPART=1 XT=1.55E-7 VBM=-5

+UO=130.5451767 ETA=O.3 VGHIGH=O.J5

+VGLOW=·0.15 crr=o JS=O

+RSH=O CGDO=1.312E-10 CGSO=1.3J2E-10

+CGBO=3.28E-10 CJ=7.9E-4 PB=O.83

+MJ=O.39 CJSW=4.2E-10 PBSW=O.83

+MSJW=O.35

.end
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Appendix C Currents through state capacitor

Currents (dis-)charging state capacitor
Currents through DC voItage source, representing the state voltage

--Istate 1-

'--------------------, - - - -

~ • - - f - • - - ; - - - • j - • - - t· - - - - t - . - - ,- - - • - ,- - - - - .. - - - - r - - -

, I " ", I- - - - - - - - . - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - -
• , • I ",

o

100

50

-150

-200 L-I-L &..L.L I..L-L.&..L.L...LL.lI..L-L..L.L..L L-I-L ".".

0,85 0,90 0,95 1,00 1,05 1,10 1,15 1,20 1,25 1,30 1,35

State \Oltage (V)

-'E -50

~
:::J

() -100

The state capacitor is replaced with a DC-voltage source and the DC-voltage is varied
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Appendix D 'BOA of a 2-cell CNN'

The following calculations are only valid for 2-cell CNN's with symmetrical templates and for which the
trajectory 'follows the steepest path down the energy-function'.

If for a 2-cell CNN the state equations are given by:
· A I I B

XI = IX) +a l YI +a2 Y2 + I

..t1 2 2 B
X 2 =£'2X 2 +al Yl +a2 Y2 + 2

then for the linear region it can be found that:
· A I I B

XI = IXI +a l XI +a2 X 2 + I

..t1 2 2 B
X 2 = £-'2X2 +al XI +a2 X 2 + 2

If the force F is defined as:

F=x\ +x2

it is found that:

F =(AI + all + al
2)x) + (a/ +~ + a/ )x2+(B) + B2)

, ,\ , '-y-----J

~ ~ r

Integration along edges I and III of the linear region then gives (See Figure 45 and Figure 46):
a

W = Ja XI +{3 x2 + r dx2
-I

~ [~ (x,)' +(ax, +r)x,I ~ (~ a' +(ax, +r).)-(~ - (ax, +r))
To find the extreme:

dW =0
da

{3 a + (a XI +r) =0

(ax) +r)
a=

{3
Thus, for Edge I and III;

AI +a)) +a)2 - BI - B2
a = I 2 and a =

a2 +~ +a2
Likewise for edge II and IV it is found that:

a2)+~ +a2
2- BI - B2

a = I 2 and a =
A) +a) +al

To find the trajectories assume:

· (a)1 + AI
x=F=- - 2a1

The eigenvalues are found with:
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det(A - AI) = 0

So:

(a/ + AI -A)(a/ +~ -A)-aI
2a2

1 =0

,12 - (a/ + AI +a/ + ~)A + (all + AJ(a2
2+ ~) - al

2a2
1 =0

and as a result:

a/ + AI +a/ +~ ±~(a/ + AI +a22+ ~Y -4(a/ + AJ(a/ + ~)+4aI2a/A 12 = ----------=..'----------=.---''-------'--'-----'-----
, 2

If:

II => x/a/ + AI - A I) + a2
1
X2= 0

(all + AI - AI)
X2 = I

a2

-, I, ~ ((ai+:::-A,J}-nd likewise, I, ~ ((a,' +~:- A,)J

If Y = (II I2) then:

Y=((ai+~:-A,l
a2

Also:

y- I =

(a/ + AI - ,12)
,12 -A I

(a/ + AI - AI)
AI -A 2

a l
2

,12-,11

a l
2

If ::! = Yz; then:

Yi = AYz;+l!

t =y- IAYZ; + y-Il!

=DZ;+y-Il!

or. t~(AO' A°J(:}r{::)
In .' f3 f3 c atgeneral, If: Z =a Z + then Z =--+ e

a
and as a result:
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