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Summary

This report is about the hardware design of a Full-range Cellular Neural Network (FR-
CNN). Also in this report a method is suggested to find the boundaries of the basins of
attraction (BOA) for 2-cell CNN’s.

A FR-CNN is a neural network consisting of identical neurons or cells with space-
invariant templates, modified in such way that it operates conform the Full range model.
This model has the advantage that the state of a cell is confined between certain values,
independent of the template parameters through which neighbouring cells affect the

state of the cell.

A circuit is suggested to implement a cell of a FR-CNN. It is shown that the suggested
circuit does not function properly and a modification to this circuit is made after which a

well-functioning cell circuit is obtained.

The boundaries of the basins of attraction of CNN’s (not necessarily FR-CNN’s) are the
borders that separate regions in state space. These regions (basins of attraction) are the

areas where a CNN converges to a specific equilibrium point.

To find the BOA in a 2-cell CNN a certain Lyapunov energy function is more closely
investigated and (with some restrictions) a force is introduced. Finally the BOA is found

by solving the differential equations, describing the cells’ behaviour.
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1 Introduction

After the rebirth of the interest for artificial Neural Networks in 1982 [1], many different
implementations for this concept have been developed. The differences between these
implementations affect the overall characteristics of the network and thus the
applicability for a certain purpose like, for example, real time image processing. Here,
an important feature of neural networks is touched upon; these circuits can operate very
fast since the ‘signal processing’ is done simultaneously in parallel neurons, rather than

in sequential time steps.

The major disadvantage of most neural network implementations however is the number
of interconnections between neurons. In order to reduce the number of interconnections
but keep the advantages of parallel processing, Chua and Yang proposed a so-called
Cellular Neural Network (CNN) in 1988 [2] where neurons were only connected to

other neurons within a certain neighbourhood.

In 1992, Rodriguez-Vizquez proposed a modified model for neurons; the so-called Full
Range (FR) model and an implementation for a CNN in the current domain based on
this FR-model. [3]. In 1996 P. Bruin suggested an implementation for a FR-CNN in the
voltage domain. However, after realisation of the implementation, it was found to

display instabilities.

In this report the properties of the FR-model and Rodriguez-Vdzquez’ implementation
are investigated and a different implementation for a CNN based on the FR-model is

suggested.

Every neuron in a cellular neural network can be described by a certain state-equation. If
this network consists of two interconnected cells, the behaviour that is displayed by
those cells can be plotted in a so-called state space. It is interesting to be able to
‘predict’ to what final state the CNN will converge. For this, the state-space will be

partitioned into ‘basins of attraction’, separated by certain boundaries.

In this report a method to find the boundaries of the basins of attraction is proposed.



2 A Cellular Neural Network

A Cellular Neural Network (CNN) is an artificial neural network consisting of separate
neurons or cells. It has several properties that may be advantageous compared to other
neural networks. The dynamic range of a CNN for example is bounded. Also a CNN can
easily be extended without having to re-adjust the entire network because a cell is not
connected to every other cell in the network but rather to cells within a certain
neighbourhood. Albeit its cellular structure it still displays the complex dynamic
behaviour as seen with other neural networks. Due to this complex behaviour it can be
used in image processing (e.g. noise-removal, connected component detection (CCD),
‘thinning’ etc.) It can also be used to simulate certain equations or be used as an

associative memory.

Another advantage is that although the factor with which the output of a cell affects the
behaviour of other cells (template parameter) may be different for spatially different
neighbouring cells, the template thus formed is translational invariant (‘cloning

templates’).

As stated above, these cells can interact with other cells within a certain neighbourhood.
A rectangular two-dimensional CNN consisting of 16 cells where every cell interacts

with only its directly neighbouring cells would look like the circuit shown in Figure 1.

C(1,DH—c(1,2)—C(1,3)—C(1,4)

ca.n—eea—cen—{ces

Paba

C3.1) C(3,2)—C@3.3)—C(3.4)

| | [ X[

C@4.) C4,2) C(4,3)—C4,4)

Figure 1 A CNN (4x4) with r=1

If C(i,j) is the cell on the i™ row and jlh column then cell C(2,2) is connected to C(1,1),
C(1,2), C(1,3), C(2,1), C(2,2), C(2,3), C(3,1), C(3,2) and C(3,3).



A so called r-neighbourhood is defined as:
N, (i.j)={cl. D maxlk - )i - f] <7, 1<k < Mi1<1< N] (1)

with M and N the number of rows and columns respectively and ‘r’ a positive integer.

It’s easily seen that Figure 1 depicts a r-neighbourhood with r=1. For technical
implementation intercell connectivity with r=1 is the easiest to realise and exhibits a less

complex behaviour than CNN’s with r>2.

The equation with which the time-dependent dynamics of a cell in a CNN can be

described was proposed by Chua and Yang [2] and is given by:

dv .(t V_.(t
Hal)_ Vol 5 v, 04
dt R, c(k.eN, (i) 2)
Y B(i, jsk,1) -V, (0) +1
C(kD)eN,(i.j)

with 1< 1 <M, 1< j <N. It is assumed that

\%

uij

v,,(0)]<1and

xij

<1, C>0andR, >0.

The time-dependent variable Vyi(t) is called the ‘state’ of the cell and can be represented

by the voltage across a (state-) capacitor.

Assuming an r=1 neighbourhood in a two-dimensional CNN, there are nine terms in

equation (1) that affect the state of the cell V,i(t) by means of the output voltages Vyu(t)

of neighbouring cells: A(i, j;k,l)-Vy,d(t)

Also there are nine terms depending on the input voltages (Vu) of the neighbouring

cells: B(i,j;k,l)'Vuu

Since the terms that affect that voltage across a capacitor are currents, use can be made

of voltage controlled current sources (VCCS) to account for these terms.

If

1(i, j;k.0)= A, jik,0)-V,,, (1)



and
Ixu(i’j;k’l) = B(i’j;k’l)'vukl

then the terms that affect the state of cell (i,j) due to input- and output voltages of

neighbouring cells (Vuq and Vyy respectively) are accounted for.

The constant input voltage Vy;; of cell (i,j) is set by a voltage source Ej and the constant

I may be implemented using a constant current source with magnitude I. The term

in (t)
- ;Q can be obtained by connecting a resistor Ry in parallel with the state capacitor.

X

The cell circuit as proposed by Chua and Yang [2] is shown in Figure 2.

Vuij qu . Vyij

=D O T rz OF O O &,

Ixu(i,j;k,]) Ixy(iyj;ks]) Iyx

777

Figure 2 The proposed cell circuit

Since the network is two-dimensional (or multi-dimensional in general), ‘A(i,j;k,1)’ and
‘B(i,j;k,1)’ can be represented by matrices and are called feedback- and control operator
respectively for obvious reasons. These matrices are the same for every cell in the
network (spatially invariant) so only two matrices need to be given (for the feedback-
and control operator respectively). For this reason the templates thus formed are also

called ‘cloning templates’.

The aforementioned VCCS’s are linear devices except for the current source that drives
the output voltage Vy; via the output resistor Ry. This is a non-linear device and has a

transfer function:




withf(V,, )= %HV, +1|-pv, -1

As is shown by Chua and Yang [2] the steady state outputs of the CNN are constants

and are either +1, regardless of the exact value of the initial conditions- if it is assumed

that ;

3)

v, 0l<1]1<i< M |
xy s, — e s .o 2
uij| <1 }1 <j<N \A(l,J,k,l) = A(k,l,l,]) A(l,_],l,_]) > R,

1Si, kSMSISISN

The state equation (2) can be rewritten to provide a better insight into the behaviour of

the cell due to the ‘actions’ of neighbouring cells.

av..
) v (Al k1) Vi () + Bli, ik 1) Vi }+
dt C(k.eN, (i.))
Clk1)=C(i.j)

gl1) 4)
V(¢
-~ %() + A(i, jsi, j)-V,;(¢)+ B, jsiy ) Vi + 1
o)
av_(t)
Cd—’t = g(t) + h(V,, (1)) (5)

Thus g(t) represents the behaviour of the cell caused by other cells whereas h(t)
represents the cell’s behaviour if there were no neighbouring cells. The phase diagram
can be plotted and if the constant current I is assumed to be zero the phase diagram will

look like Figure 3.
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Figure 3 The behaviour of the cell

Since the unit of g(t) and h(t) is Ampere the actions of neighbouring cells acting via g(t)

can be represented by a current source with a magnitude equal to g(t). Ignoring the

dv, (1)

influence of g(t) (by assuming there are no neighbouring cells) shows that g s

negative if -RyAc° < Vii(t) < 0 and Vy;(t) will become more negative. If Vyii(t) < -RyA.°

dav (1)
then :1‘:‘ (

this it can be seen that if V;;(t)<0, V,;(t) will eventually remain at -RA.° which is

becomes positive and Vy(t) will increase and tend towards -R,AS. From

called a stable equilibrium point. A slight deviation from this point will result in such a

av,,(t)

o that V,;(t) will always return to the stable equilibrium point.

Likewise it can be concluded that if V,(t)>0, Vy;(t) will tend towards R,A.%, which is
another (stable) equilibrium point. If V,;(t)=0 then V,;(t) neither becomes positive nor
negative. A small deviation from this point however does not cause V,;(t) to return to

V,ij()=0. Thus V,;(t)=0 is said to be an instable equilibrium point.

dv_(t)

xij

dt

If g(t) is a non-zero constant then is no longer equal to -h(V,;) but equal to

xij

-h(Vi+g(t). Therefore i

will be equal to a vertically shifted (by g(t)) version of

Figure 3. However, in general the state of neighbouring cells may vary as functions of
time and so g(t) will not be a constant. Moreover, cell (i,j) itself may cause g(t) to
change due to the dynamic interactions between cells. This will result in a (vertical)

shifted version of Figure 3 with the shift being a certain complex function of time.



3 The Full Range model

In 1992, Rodriguez-Vazquez introduced a new model to overcome several drawbacks of
the implementation as proposed by Chua and Yang [2]. One of these drawbacks is that
the primary output of image sensor devices is a current and therefore the interface
design for image processing tasks will be complicated [3]. An other drawback is that the
state variable is bounded, but can vary in a large range, depending on the templates
(certain values for feedback- and control operators). This may complicate VLSI
implementation, whereas the state variable in Rodriguez-Véazquez’ Full Range model is

always comprised between -1 and +1 (normalised) independent of the templates.

With the Full Range model, the state-equation is given by:

oy d(t) =[x+ X {Acy () +Bu'}+ D
t deN, (c)
—m(x* +1)+1 x“ <1
. : . (6)
with g(x°)= limq - x* otherwise
—m(x* —1)-1 x>1

and  y° = f(x°(t))

where x° is the state variable of cell ‘c’ according to Vy(t) with Chua and Yang, D€ is
the offset parameter (according to the term I), A4° and B4° are the feedback- and control
operator (according to Ryx-A(i,j;k,1) and RyB(i,j;k,1) respectively), yd denotes the output
variable of cell ‘d’ (Vy(t)) and u the input variable of cell ‘d’ (corresponding with

Vukl) .

If m=1, this model reduces to the original Chua-Yang model. Here too, the state-
equation can be rewritten to show the effect of other cells on the state of cell ‘c’. The
term independent of the state of cell ‘c’ can be written as:

r=p°+Buw+ Y {4,y +B u'} )

deN,(c)
d#c

-10-



If the term I’ is assumed to be zero (which is equal to stating that there is neither an

offset nor a constant input and that there are no neighbouring cells) then the state

c

= g(x°)+ A x and is illustrated in Figure 4.

equation reduces to: T

Moo M_oo

Figure 4 Phase-diagram of the full-range cell behaviour

Like was the case in the Chua-Yang model, a non-zero factor I’ results in a vertical shift
of the characteristics shown in Figure 4. Note that here too, the vertical shift depends on
the outputs of neighbouring cells and thus varies as a function of time. As can be seen in

Figure 4, the state variable cannot be larger than +1 if m=ce.

Assuming I’=0 and m=co, the slope of the inner region (|x‘[< 1) is AS-1. If furthermore

c

A’>1 then 7 is positive for positive values of x° and negative for negative values

of x°. The state can be said to be driven towards the outer regions. However, should the
state come into one of the outer regions, it would be ‘pushed back’ infinitely fast
towards the inner region due to the factor ‘m’ which is infinite. For the left outer region

(or: left clipping region) it can be found:

Tx=-m(x+1)+1+A‘x+Z (8)

with Z the effect caused by other cells, the input of the cell and D and assumed to be a

constant in this equation. The solution is found to be:

1-m+2Z -m-A‘tt c
x=—""—+Be T =x
m—A, )

and limx‘ =-1

m—oo

-11-



with B a constant. So when the system is in the outer left region, it will converge to the

stable state in the left clipping region. For the dynamic (inner) region it is found that:
Ti=Z+Ax—x (10)

with Z a ‘constant’ term to take into account the neighbouring cells, the input of the cell

and the term D°. Solving this equation leads to an expression for the state:

—Be * (an

again with B a constant. Here the actions of the cell depend on the initial conditions.
Assume that at time t=0, the influence Z causes the function to look like Figure 5, then

Z is negative. If the state is at point ‘P’ (x°=0) at time t=0 then for B we can find:

B

/4 Af-1 A, A1, : :
=——. So: x=—7= -B-e * =Z--e *  which is negative since Z is
Af-1 T T

negative and the state will move towards the left clipping region. For positive Z it can be
found that the state goes towards the right-hand clipping region, for which there’s one

stable state as can be proven the same way as was done for the left-hand clipping region.

Figure 5 The influence of 'Z’ on the phase diagram

A continuous-time CNN conceptual cell diagram for the Chua-Yang model is shown in
Figure 6. The diagram of the FR-model according to the theory of Rodriguez-Vazquez
is shown in Figure 13. Rodriguez-Vizquez states that ‘for the full range model the non-
linear block is eliminated and the function g(.) realised exploiting the output saturation
of the integrator block’. As can be seen, the state x° of the cell is a saturated function

and will not become larger than unity.

-12-



From other cells

Figure 6 Conceptual cell diagram corresponding to the Chua-Yang model

However, the actual implementation given by Rodriguez-Véazquez to implement the FR-

model does not correspond to the diagram as shown in Figure 13.

From other cells

Figure 7 Conceptual diagram of the full range model given by Rodriguez-Vazquez

3.1 Implementation in current-domain

To show that the implementation as suggested by Rodriguez-Véazquez does not realise
an FR-CNN, this circuit must be more closely looked at. The implementation in the

current-domain makes use of transconductors (See Figure 8)

I2

2

L L 1 .
+ + > +7’——{ vV,
Vi V; Vv, i

Figure 8 A transconductor and a single-MOST implementation

For a non-inverting current amplifier with the saturation non-linearity, Rodriguez-

Véazquez suggests the circuit shown in Figure 9.

-13-



Ig; 1

s -lg, Ig,

Figure 9 Non-inverting current amplifier

If Ip1<lin<Ip2 and assuming the input current of transconductor 2 (T.C.2) is zero, the

output current of T.C.1 is equal to Ly+Ig;. Therefore 12|TC2 =1, +1, and L=k If

In>Ip; then 1| =1, +1Iy but L=Ip; since the output current of a transconductor

cannot be negative if the transconductors are realised using a MOST an assuming it
operates in normal modes. Likewise, I;; cannot be more negative than (-Ig;). Thus the

saturation non-linearity is achieved.

To obtain an integrator, a capacitor is added as shown in Figure 10.

Figure 10 Current mode integrator

If L,>Ip> then eventually Izln_'l =1I,+1; and L,=Ig;. However, if Iis<-Ig; (which is

possible since the capacitor can be discharged) then I,=Ig;. So the output current is
clipped, but the capacitor is discharged. If (due to other cells) the current L, changes
sign and becomes larger than or equal to (-Ig;) the capacitor first has to be recharged
before the output current starts following the input current again. It is as if the state of
the cell is driven into the clipping-region. To verify this assumption, the differential

equation can be written down, assuming I;,>Ip; (see Figure 11)

-14-
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Figure 11 Currents through the components

Since Vgp=0 the NMOST parallel to the capacitor is always saturated and assuming

Ig=0 we can find:

I,+1,=I,+I,
dv, (12)

dv (t)
dt

The steady state solution for V. can be found by stating that =0.

Then it is found that:

: Iin+IB
}HEVC_ K i

(13)

Thus it can be seen that if I, becomes a very large constant current, the capacitor will be
charged accordingly. The output current however is ‘clipped’ and will only start to
change if the capacitor is discharged enough, meaning that a time-delay will occur
depending on the charge that was stored on the capacitor while the output current of the

current mode integrator was clipped. See Figure 12.

lou\ fs tate

' : DTir'ne
; ) delay

Clipping — L
region g Linear Clipping
) : region

region

Figure 12 State of the cell vs. the output current

This is a behaviour that differs from what can be concluded from the theory of the FR-

CNN. The system can be said to be driven into the clipping region and thus the circuit

-15-



proposed by Rodriguez-Vézquez does not implement a FR-CNN. (See equation (6) and
Figure 4). This also becomes clear if the conceptual diagram of the full range model

given by Rodriguez-Vazquez (Figure 7) is compared with the conceptual diagram of the

implementation. See Figure 13.

A

8O

EO0—

B c
go— _/—x y
49

DF

Figure 13 Conceptual diagram of implementation given by Rodriguez-Vizquez

3.2 The implementation of P. Bruin

The implementation of P. Bruin [4](1996) uses a three-transistor multiplier to establish
the (programmable) feedback- and control operators, a current mirror and an active
integrator using an opamp. As was shown by J. van Engelen [5], two-quadrant
multipliers may be used to establish the feedback- and control operators if the template
parameters are adjusted. The three-transistor multipliers that were used by P. Bruin are

two-quadrant multipliers.

In this circuit the state-conditions are represented by a voltage, see Figure 14. The
opamp is used to keep the node connected to the current mirror at virtual ground so the
transistors of the current mirror and multiplier remain biased correctly. In order to do the
‘clipping’ - that is, to clamp the state voltage at a certain level (make m=eo), the voltage
across the capacitor is compared to a pre-defined voltage. If the upper or lower clipping
voltage is reached, the according comparator-output goes down to ground potential (or
negative voltage supply) and shuts off the current supply by turning off the transistors
between the multipliers and current mirrors. This way, no current is supplied to the
(active) integrator, thereby causing the output voltage (which is equal to the state

voltage) to saturate. Note that 19 multipliers are connected in parallel.

-16-



i"np;n multil:;lie;s and current mirmor

Figure 14 Circuit as proposed by P. Bruin

There are several remarks that can be made. First, the feedback loop to control the
current that (dis-)charges the integrator is rather large. The current is cut off via a
current mirror, an active integrator (which has time constants of its own due to the
opamp) and a comparator (which introduces other time constants). This may result in a
slow system, a phase-response that is incorrect etc. Furthermore in general, op-amps

without (negative) feedback may result in instable circuits.

The circuit of P. Bruin is not driven further into the clipping region since the current that
(dis-)charges the capacitor of the integrator is cut off. Hence the implementation of
P. Bruin at system-level corresponds to the theory of Rodriguez-Vézquez as can be seen
from the conceptual diagram in Figure 13, and does not correspond to the

implementation given by Rodriguez-Vézquez.

-17-



From other cells

Figure 15 Diagram of circuit given by P. Bruin

3.3 Verification of the FR-formula

To verify whether an implementation that is searched for should be based on the
FR-formula (as is P. Bruin’s), a Matlab-program is written. This program simulates an
array of cells (8x8) and uses an algorithm that does not allow for the state to be driven
further into the clipping region according to the FR-formula (6). The output of the
program shows the output of each individual cell plotted against time. The state is
clipped at +1. The cells are given only an initial value, then the relaxation process is not

interfered with until the end of the simulation. See Figure 16.
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Figure 16 Output of cells shown graphically

As can be seen from these results, the behaviour that is displayed when an algorithm is
used based on the formulas seems to be correct if so called connected component

detection (CCD) is applied. See [5],[4] and [6]. Connected component detection is

-18-



usually applied to an image where every pixel has a binary value. With CCD the image
is observed in a certain direction (from right to left for example). Every change in the
binary value of the subsequent pixels is represented with a change in value of only one
pixel in the resulting image. If a row of pixels in an image is depicted with:
(o 00 @0 e e eoo0)then the same row in the resulting image will be: (cccoococeoceo)if

the row was observed from right to left.

In the Matlab program that was written, a few assumptions were made. As can be seen
from the formulas, a cell’s output/state influences its state via two feedback loops; the
function g(x°) (See (6)) and the self-feedback parameter A.°. For normal Chua-Yang
operation: g(x“)=-x°. These two feedback loops can be combined and a new feedback-
loop g’(x°) is obtained. So:

c

T o glx* @]+ D+ YAy (e)+ Bou'}= g [x(1)] +1

dt deN, (c)
with I=D"+ Y {AS y'(8)+B,u’}+B u
a= @ (14)
and g'[xc(t)] = g[xc(t)] + Ay (1)
y(t) = %(xc(t) + 1| —x°(¢) - 1|) for Chua - Yang Operation
¥ (1) = x°(1) for FR - CNN's
Ay
g(x9 Al
1
1 X -1 1 X
”'Ac‘
Negative Positive
—_ Feedback Feedback

VN

Figure 17 Chua-Yang model feedback loops combined

As can be seen from Figure 17 the value of A.° must be at least +1 for the system to

have two distinct stable equilibrium points.

-19-



g(x9)

Figure 18 Full-range model feedback loops combined

For the Full Range model too there are two feedback loops which may be combined
(See Figure 18). It appears that is doesn’t make a difference for the stable equilibrium
points how the new (combined) function g’(x“(t)) is obtained (via ‘Chua and Yang’ or
via ‘Rodriguez-Véazquez’). The first assumption that is made in this Matlab program is
that the new function consists of a modified function g(x“) and a self-feedback operator

A (See Figure 19).

Figure 19 Alternative feedback loops with same result
This function g(x°) has an output that is +oo if x° becomes F 1 and is zero if -1<x°<1.

The second assumption is that the time step T is chosen small enough to allow the

differentiation to be replaced with the Euler forward differential operator;

— = (15)
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Thus finding:

dv V
C—r=-2+ Y {A,,”Vy" (t)+ B, V! (t)}+lc

X deN,(c)

av,
RC— ===V, +R, 3 {4V ()+BV O}+RL,

* d deN, (c) (16)
d  RC C

T

Vv 1)=
=V.(n+1) V"(n)+RXC

T
V. |+—=1
g [V.)]+5
From the results it can be concluded that for CCD these assumptions are valid and that

the circuit operates correctly!

For CCD something can be said with regard to the values of self-feedback operator A’

since not every value is valid if a properly functioning cell is to be obtained. Assume:

0 0 O 0 0O
A=|1 A° -1,B=|0 0 Ofand/=0 17)
0 0 O 0 0O

then a cell x° is only affected by itself and the neighbouring cells on its left- and right-
hand side which will be denoted with x(1) and x(r) respectively. If these neighbouring
cells are assumed to have constant output then there are four possible situations. The
subsequent values for the output of cell x° indicate whether the state value of cell x° is
stable. If x°(0)=+1 and x°(n+1)-x°(n)<0 then x°(n) will tend towards -1 and therefore

x“(0)=+1 is an instable value for the output of cell x°. See Table 1.

Table 1 Subsequent output values of a cell

# 1 x() | x* | x(® | x*(n+1)-x(n)
A -1 +1 -1 20
B -1 +1 +1 <0
C +1 +1 -1 >0
D] +1 +1 +1 20

For situation A and D, the output of cell x° should be stable, so (using equations (16)
and (17)):
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ZA ‘x* +%g'[x°(n}l] 20

C [4
A1+ (- x()+-1-x(r)) 20 (18)
Af = x(r)-x(l)
AS20

For situation B, the output of cell x° should become ‘-1’ ;

A‘x +g'[X(m)] <0
A 1< x(r)—-x(D) (19)
A€ <2

For situation C, the output of cell x° should remain ‘+1°:
P

Afx 2 g'[X(n)]
Af>-1-1 (20)
Af2-2

If x° was taken to be x°=-1 a similar deduction could be made with the same results.

Other restrictions can be found when observing the edge cells (see Table 2).

Table 2 Subsequent output values of an edge cell

# | x() x° x(r) x°(n+1)-x(n)
A 0 +1 +1 20
B 0 +1 -1 +/-
C 0 -1 -1 20
D 0 -1 +1 +/-

For situation A and C, the output of cell x° should be stable, thus finding that A;>1. For
situation B and D, it is not clear whether x° should keep the value it had before (denoted
with ‘4/-¢ in the last column). It can be shown however that for A.>1, x° will not
change (and thus be ‘stable’). As a result, it can be concluded that for the templates as

defined earlier, the cell reaches a (stable) steady state solution if:

1SAf<L2

(4

The dynamical behaviour of the cell has been verified experimentally using the Matlab

program and displays a behaviour as is dictated by the properties of CCD.
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4 Design at system level

There are several possibilities to represent the state of a cell. The most common
representation of a state however is done by use of either a current or a voltage. There
are some advantages and disadvantages to either description. If the state were to be
described by a current, an inductor may be used as the differentiator. Disadvantageous is
that the state of other cells must be converted to a voltage, amplified with a different
gain for each cell (assuming a random template) and the results must be added. See also
Figure 6. A ‘pro’ is that use can be made of current mirrors and that using current
mirrors, an amplification factor can be implemented right away by varying the

width/length ratio in the current mirrors.

If the state were to be described by a voltage, a capacitor may be used as the
differentiator. In this case, the state can be distributed anywhere without having to
replicate it first before distributing (using a current mirror). Another advantage is that
currents can be summed easily using K.C.L.; simply leading the currents to one node

suffices!

Since it appears that representing the state by a voltage leads to circuits with less
components, such a circuit is searched for. As a universal CNN is to be designed, the
templates must be programmable. To accomplish this, an amplifier with adjustable gain
that converts voltages to currents can be realised using a differential state multiplier that
consists of only three transistors. See [5] and [4]. Moreover, if the function g(x°) is
observed (Figure 19) it seems that this function may be realised using ‘diodes’
connected to a voltage source in such a way that if the state voltage becomes less than
the minimum state voltage, the corresponding diode will start to conduct. This way the
current that would have discharged that state capacitor (and hence decreased the state
voltage even further) is sourced into the system. Thus the state voltage is clamped to a
certain lower boundary. Likewise, the other diode will start to conduct if the state

voltage exceeds the voltage to which the state must be clamped.

This way not the current that (dis-) charged the state capacitor is limited (as is the case
with the implementation of P. Bruin) but the state voltage itself is affected, whereas the

current supplied by the multipliers and current mirrors is not. As a result the large
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feedback loop that is present in the circuit of P. Bruin (active integrator, comparator,
clipping transistors and current mirror as seen in Figure 14) can be omitted. This in

return may improve stability significantly.

The circuit at system level will look like the system shown in Figure 20.

Vd:p high
To other cells
\Y - aI o
slalc
eee J; vllrl low

From other cells

Figure 20 A cell at system level

4.1 A differential stage multiplier

Figure 21 A differential stage multiplier

Observing Figure 21 and assuming all transistors are saturated it can be shown that,

since ILy1=Lg+1ys:

Kl (Vm —Vs.\' _th)2 = Kz(vw —Vx _Vr2)2 + K2(Vw,ref _Vx _Vrz)z (21)
So:
V +V
V.+V, = (‘”_"sz'_ef)ﬂ;\/z%(vm -V, —V”)2 - (Vw ~Vyres )2 (22)
2
As a result:

-24-



Iy —1,= Kz[(vw -V "Vrz)z —(Vw.ref -V, "'Vrz)z]

(23)
_ 2 2
= +(Vw,ref - Vw)\lz Kl KZ(‘,in - V\'.\' - Vxl) - KZ2 (Vw - Vw,ref)
To determine the sign of this expression it is noted that if V,,<V,. then I'-T>0, so:
2 2
Id2 - Id3 = (Vw _Vw,rej )JZKlKZ(‘/m _V\'.\' —Vrl) - KZZ(VW - Vw,ref) (24)

As can be seen the differential stage multiplier is not an ideal multiplier but if the
second term -K,*(Vy-Vyrr) is kept small with respect to the first term
2K1K2(Vin-Vss-Vt1)2 the multiplier operates fairly linearly. It should be noted though that

channel-length modulation is neglected as are other higher order effects.

There are two possible configurations to implement a differential stage multiplier; a

NMOS and a PMOS version. See Figure 22.

NMOS PMOS

Figure 22 Two different configurations to implement a differential stage multiplier

For the NMOS configuration we can find that :

Table 3 Equations for the transistors

@ | Viu<Vi+Vy

Vimin> VetV

@ |v, e<Va+Vo
Viure> VitV
@ | V,<Vu+Vy
V>V, 4V
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In the cell circuit, there is a self-feedback loop and so the input of at least one multiplier
will be connected with the output of the cell. If the state-voltage is connected to the gate
of the tail-transistor @ and assuming V,=0.5V, we can find for transistor ®: V;;>0.5V,
Vin<Vx+0.5 if V=0V. Similarly for transistor @: V,<V;y+0.5, Vo>V,+0.5.

So:

0.5<Viy<Vy+0.5 (25)
and

Vi +0.5<V y<Vpin+0.5 (26)
From (25) we obtain: Vyu=Vx+0.5 2 Vipax-0.5=V,

Substituting into (26) we find: Vpux<Vy<Vmin+0.5. This is possible only if
Vinax<Vin+0.5 or Vinax-Vmin<0.5. If Vpmin is taken to be 0.7V then Va must be less then

Vmint0.5V=1.2V Assume V, €[07;1.2] then:

Voax SV, <V . +05
12<V, <12

And so there’s no voltage swing left for the weight-voltage. It’s possible to ‘transfer’
some voltage swing from the state-voltage to the weight-voltage. This, however, will
result in an unacceptably small voltage-swing (125mV for either voltage if the voltage
swing is equally divided between state- and weight-voltage). One can try to improve this
voltage swing by using different transistors (PMOS instead of NMOS). Repeating the

same calculations leads to the following result:
Vo SV, +05V

thus obtaining the same unacceptably small voltage swing. A way to increase the
possible voltage swing for both the state-voltage and the weight-voltage is to use a level
shifter to add/subtract a certain voltage to/from the state-voltage before applying it to the

gate of the tail-transistor!
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If the maximum current that will be flowing through the tail-transistor is taken to be

SHA then we can find with:

W
that Z‘ = 0.0783. To increase this ratio, PMOST’s may be used since [,:}4;=3.95:1 even

though extra area has to be used for the N-well. A quick calculation shows that the ratio
has increased to 0.3025. This is the reason the configuration using PMOST’s is chosen,
which has the additional advantage that the current mirror (that will be used to subtract
the current Ij; from Iy (see Figure 21)) will have to be made with NMOST’s thereby

exploiting the higher mobility of electrons!
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5 Design of the cell circuit

In order to find appropriate widths and lengths for the transistors and a value for the
state capacitor, the approximate input-, output- and state voltages must be known. A
differential stage multiplier will be used, together with a current mirror to substract the
differential current. Furthermore, the diodes that will be used to limit the state voltage to
a certain maximum and minimum (‘clamp’ the state voltage) will be realised with
transistors connected in such way that a so-called diode-configuration results. This way,

the transistor will act like a diode. (See Figure 23)

i vls.n:f Mm
: Vmill.lef

| Vo
. ¢l .
: |
' M,
L N
2 ! 7,

M
M
S

szx.m[

7 © State- ]
. Multipliers and Current-mirror . capacitor.  'Diodes’ . Levelshifter

Figure 23 Schematic for a single cell of an FR-CNN

To find the voltages, voltage swing etc. two equations for every transistor will be used
(one equation resulting from the fact that a transistor is saturated (Vg<V;) and one
because it must conduct (Vg>Vy)). If the rail voltage is taken to be Vgq=3.3V then one
can find:

v, €[19:25]
V. <22V

V,., €[09;15]

V. e €[0.72;132]

state

If the maximum current flowing through the tail transistor is set to SHA then the W/L-

ratio for the transistors can be found to be:

w
T =03025
Transistor M,

N
(R



w
—Z =0913
Transistor M,, M3

_W_10
L~ 11

Transistors M4, M5 (Current mirror)

w

— =565

3 9
W _68
L~12

The voltages Vietmax and Viesmin -which are voltages that control the potential at which
the state will be clamped- are taken to be 0.70V and 1.34V respectively and can be
found by assuming the state voltage is 1.32V and 0.72V respectively and assuming that
the maximum possible current (951A) flows through the diodes. The W/L-ratio for the

diode transistors (‘clipping-transistors’) will have to be: 16.0um/0.7pum.

Assuming a S5pA current is allowed to flow through the transistors of the level shifter,
we can find that for Tis;: W/L=0.5464-> W/L=1.0um/1.8um and for Tis;:
W/L=1.7267-> W/L=1.9um/1.1pm.

In order to estimate the value of the capacitor that will be used as the state capacitor, it is
assumed that the state capacitor must be 20 times larger than the parasitic capacitance in
parallel to the state capacitor. Assuming that the parasitic capacitance of major
importance is formed by the gate capacitances, the simple -approximated- function to

calculate the gate capacitance can be used: C, =W-L-C, .

To account for other parasitic capacitances, 25% to the total gate capacitance is added.

Thus: C,  =C

8.0t 8:Tis2

+C,,, =28fF—>C,,, +25%=35-10""F. If this value is

ot

assumed to be 5% of the total state capacitance, then Cyee Will be 0.7pF.

When simulating the circuit with the parameters given above it does not give the
expected results. From this it can be concluded that the formulas that are derived from a
simple model of the transistor no longer apply for the transistors that are described using

Level 47 HSPICE parameters.
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5.1 Obtaining modified transistor parameters

In order to maintain the possibility of calculating voltages and currents using the simple
quadratic formulas, modified parameters will have to be used. To find these parameters

some simulations were conducted.

The system is to be modelled with:

I,= K"%(Vt.p _Vgx)z(l +A V“’)

with V, =V,o+y(w/be —9, -«/E)

Using [7] and LEVELA47 HSPICE parameters (p.77):

27

0:=0.8221V, T=298.15K
n;=1.25674*10"cm>, E,=1.11562V
Wo =W, Lp.etr=Lp-0.069um
Wi et=Wp-0.0461m, Ly e=L,-0.06um

HSPICE simulations showed that the drain-currents of the transistors depending on the

drain-, gate- and source voltages can be described fairly good with:

% 2 32
— -5, _ef ity
1,=1455-10"- (V, Vgx) [1+0.02 V"‘J

| pmos: with: V, =05761+ 0.663(,/[\4,,, ~08221|- /0822 1) @8) |

W, =W, L, =L-0069um

W, 2 08
=724.10° —L(y - 22
1,=724-10 L v, -v) (1+0.26 7 v,,sj

| NMOS: with: V, =0.6421+ 056(\”‘@ +08221 -+ 0.8221) (29)

W, =W -0046pum, L, = L-006pum
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5.2 Redesigning the circuits

Using the estimated transistor parameters (equations (28) and (29)) derived in paragraph

5.1 the circuit shown in Figure 23 can be redesigned. Assuming:

V,e[1923] v, =22v

Ve €[09513] V.. =026V 20
V,el0613] V., =20V (30)
V, . =095V

the W/L-ratios can be found (using formulas and calculations from last paragraphs) as

shown in Table 4.

Table 4 W/L-ratios of transistors

Transistor W L
M, 1.1 2.1
My, M, 2.1 0.8
My, M; 119 0.8
M 12.9 0.8
Mg 8.0 0.8
M; g1 1.5 1.1 0.8 (1.5)°
M;s, 1.1 (1.6)° 1.2 (0.8)"

However, the measures for Mys; and M, did not give the correct results. Optimising
with HSPICE revealed that when using the secondary values indicated with: ()" correct
results were obtained such that if Ve ranges from 0.9V to 1.3V, Vj, ranges from 1.9V

to 2.3V as given in (30).

5.3 Current sourcing active diode

The role of the diodes is obvious (See Figure 23). The state voltage must be clamped to
a certain level. If the state voltage lies within its range as defined in (30) then the diode
should be reversed-biased and must not conduct. If for example the state voltage reaches
its minimum then the diode must still not conduct, but should be no longer reversed-
biased. It will be forward-biased if the state voltage decreased even further. When this
happens an ideal diode would be able to source a current that is infinitely large. This

however is not possible and although the increase in current will be much larger than the
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decrease in state voltage, the slope of the characteristic of a diode will not be infinite.
From simulations it appeared that the characteristics of the diodes (transistors in diode-
configuration) are far from ideal; if a current of 95nA is sourced, the drop in state-
voltage would be too large. As a result the state-voltage would not be clamped to a
certain level but depends on the current that is sourced which is an undesired effect. (A
current of 95pA is an extreme: every neighbouring cell, the cell itself and the constant
input sourcing or draining its full current into or from the cell. Thus: 19*5uA=95uA) In
order to obtain an active diode with better diode characteristics, the circuit as shown in

Figure 24 can be used.

il
i

Figure 24 An active diode

If Ve drops and reaches its lower boundary, then transistor M, will be switched off,
thereby no longer draining a current and its drain voltage will increase rapidly. The gate
voltage of transistor M3 is the drain voltage of M, and as a result M3 will be switched
on, thus sourcing a current into the state capacitor, preventing Ve to decrease further.
The state-voltage at which Mj is switched on, depends on the dimensions of the
transistors and on the bias voltage (the gate voltage of M;). This bias voltage also
determines the gain of the amplifier consisting of M; and M, thus affecting the ‘switch-

on characteristic’ of Ms.

The transistor that will source the actual current will be an NMOST, since the effective
mobility of electrons is higher than the effective mobility of holes, resulting in smaller

transistor dimensions and relatively fast switch-on characteristics.

If the circuit is simulated using the ratios as shown in Figure 24 then a DC-simulation
shows that the behaviour should be satisfactory. But when a transient simulation is

performed, ringing occurs. The amplitude of this ringing is unacceptably large and
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should be reduced or preferably removed. To find the bias voltage on node @ (drain of
transistor M) and have HSPICE compute the poles and zeros of the system, it has to be
adjusted so that approximaiely 50% of the maximum current flows through transistor
M;. This is true when Vg=0.8972V. Using the circuit shown in Figure 25 the poles and

zeros can be computed.

Figure 25 Schematic to obtain poles and zeros

The transfer function from ® to @ contains two poles and two zeros:

B,=-735-10°F j82385-10° Hz
Z, =-29.78-10° Hz, Z, =7.10-10° H

If the ratios of W and L of both transistors 1 and 2 are kept a constant, then the voltage
at which the circuit is ‘initiated’ remains approximately the same. Adjusting the W/L-
ratios of the transistors (but maintaining the ratio between the W/L-ratios of transistors
M; and M,) shows that the transfer function from ® to @ can be adjusted so that the
poles are on the real axis and are positioned relatively far apart. However, ringing still
occurs which is caused by the occurrence of a zero near the pole that is closest to the
imaginary axis. Using HSPICE, it was seen that the location of poles and zeros depends
heavily on the voltage on junction @. Furthermore, transient analysis showed that the
active diode reacted too late, that is, the switch-on time of the diode is large compare to

the time needed for the circuit to fully discharge the capacitor.

The time to ‘fully discharge’ the capacitor (voltage drop of 0.4V) is 2.9ns which is very
short indeed. To tackle this problem several solutions were considered: A) decrease the
response time of the diode, B) enlarge the state capacitor, C) decrease the maximum
current that has to be sourced or drained by the active diode or D) enlarge the voltage

swing of Vgme. A drawback of option B) is that this will consume a lot more area on the
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chip. Performing options C) or D) will result in having to redesign the differential pair

and increasing the non-linear effects of the multiplier.

w 26
If option A) is more closely looked at, it can be found that if I{ =b—8’
transistor1 *
L4 —Z'E and K —H th tive diod rk tably fast and the
3 =10 3 =08 e active diode works acceptably

transistor2 transistor3

ringing has been reduced significantly. Note that an extra resistor of 0.1€2 is added in
series with the state capacitor to overcome some DC-convergence problems with
HSPICE. Simulations were also done using extra resistors of 1kQ, 1000, 10, 12 and
even 0.001Q. Then HSPICE reported no DC-convergence problems (although the 1k

and 100Q2 resistors did affect the cells correct behaviour).

Now, the quiescent current through transistor M; and M, is approximately 15pA.
Ringing still occurs, but when the maximum current to be drained/sourced is 95pA,
there is only one ‘peak’. However, simulations with HSPICE showed that there was
some ringing for a maximum current of 40pA which was the worst-case situation. (See

Figure 26 and Table 5)

V,

overshoot+

- V.

end

V.

overshoot-

T

ringing

Figure 26 Ringing

Table 5 Ringing displayed for the maximum current and the worst case situation

Max. Current Vovershoot - V overshoot + Vend # peaks Tringing
95nA 848.0mV 901.9mV 900.9mV 1 +6ns
40pA 882.9mV 927.2mV 914.6mV 4 +15ns
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The time that is needed for the ringing to decay is small enough to accept some ringing,
since the relaxation time of the system will probably be an order of magnitude larger.
This may seem an invalid assumption if it is noted that the state capacitor may be fully
(dis-) charged in 2.9ns. However, this can only happen if every neighbouring cell
sources or drains its maximum current into (or from) the cell. Moreover, the inputs of
the cells (acting via the control operator) must do so too. This situation is not very likely
to happen and it was verified with HSPICE that the time needed to fully (dis-) charge

the state capacitor during normal operation is an order of magnitude larger.

5.4 Current draining active diode

In order to be able to drain the maximum current and thus ‘clamp’ the state voltage to a
certain value, an NMOS transistor will be used like in Figure 25. However, if the circuit
that was used in paragraph 5.3 is transposed, difficulties arise; transistors that cannot be
kept in saturation or transistors that will not conduct at all. To overcome these problems,
several other circuits architectures have been tried. Now a symmetrical CMOS amplifier

is used and all transistors work satisfactorily. (See Figure 27)

Figure 27 Schematic for symmetric current draining active diode

The use of an CMOS amplifier is disadvantageous since extra voltage sources are
required. However, it has the advantage that the voltage at which the state should be
clamped may be adjusted as well as the bias of the circuit. If the drain voltage of the tail-
transistor Mcps is chosen to be 0.4V and if its gate-voltage is set to 0.95V then V4 of
M must be 0.6V (Vg-Vi<Vy, using (29) it is found that: V4>0.547V) and (Vg>V+V,
> V>1.15V). In order to drain a current of 95pA through Mg, its gate-voltage must be

at least 1.5V, so if this CMOS amplifier is balanced, M will not even conduct a
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current of 95HA yet. If the quiescent current is chosen to be 12uA then the dimensions

of the transistor can be found (Table 6):

Table 6 Measures of transistors used in active diode

Transistor | W (um) | L (um)
M, M, 4.5 3.6
M,, M, 5.8 1.6

M; 2.6 1.6
M, 1.1 0.8

To find the measures that will render the circuit to function without displaying ringing,
the poles and zero are computed for several W/L-ratios. It is found that the time needed
to switch on transistor Mgy is too short. Therefore the gain of the characteristic of the
total active diode must be decreased. (That is, the switch-on characteristic must
decrease.) This cannot be done by adjusting the measures of Mcpe as this increases the
capacitive load for the CMOS amplifier (Mchi...Mchs) significantly, thereby disturbing
its proper functioning. To decrease the gain of the amplifier Mcy; and Mcpz must be
given a gate-voltage that is less than 2.2V. However, the DC-characteristic will be

shifting as well and therefore the W/L-ratios will have to be adjusted as well!

It appears that the ringing, overshoot and the time needed for the ringing to decay is
influenced very strongly by the measures of M. This will probably not be only due to
the fast characteristics of the amplifier, but also due to the capacitive load that is formed
by the gate of Mcye. This is another reason why the dimensions Mg are kept small. To
‘overcome’ the effects of parasitic capacitive loads, usually the current that may (dis-)
charge these loads is increased. This in return would mean an even larger CMOS
amplifier gain, which is unwanted, since this would increase the switch-on time of Mcpe.
The resulting circuit therefore will be a trade-off between high currents (resulting in
some ringing) or having to deal with large parasitic capacitances which results in ringing

as well.

Simulation results (Appendix A) of the circuit of Figure 27 with transistor measures as

given in Table 6, show an acceptable amount of ringing (See Figure 28).
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Ringing depending on drained current
Ringing shown by autput voltage across state capacitor
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Figure 28 Amount of ringing depending on the drained current with V* representing Vpyershoors and V- representing
Vaver:hoal’

-37-



6 The total cell circuit

A schematic of the total cell circuit is shown in Figure 29. It should be kept in mind that
although only one three-transistor multiplier is shown, in the actual circuit 19

multipliers are connected in parallel, whereas only one current mirror is used!

v R
; T T
1821t a .
Mas L2 56
v " Vmt T“ Man"® Magg }_’1.3V
w 095V .
(0.6:1.3)
Viate 109:1.3) 7 |
PR j i My, '—’0.95v
Mg ;
. on
j : 7
: % .
4 3
_ Multiplier and Current-mirror ~ Clipping -low - Levelshifter Clipping - high

Figure 29 Schematic of the total cell circuit

Since differential stage multipliers are used, only a two-quadrant multiplier is realised.
One important effect is that (with the use of the current mirror) the multiplier can only
source or sink a current, with the magnitude depending on both the input voltage and
weight-voltage, but the sign depends on the weight-voltage alone and cannot change ‘at
runtime’ since the weight-voltages are constants (as the template parameters are
constants!) In order to overcome this effect but still use the template parameters as given
by Rodriguez-Vazquez and not the modified parameters as given in [5], an offset current
is introduced. This is done in such a way that if the state voltage is exactly halfway its
full range, the current sourced (or drained) by the multiplier connected to this cell is
exactly counteracted by the additional constant current. This in return can be done using
an other multiplier that adds the required current. The resulting current source is thus the
constant current source as described in the state-equation plus or minus the required
additional current. This modified current source introduces a single extra current into (or

from) the cell and can be realised by a multiplier. See Figure 30.
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Figure 30 Using a second multiplier to account for constant current
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Suppose the left-hand multiplier in Figure 30 is to realise the self-feedback parameter
A¢". Then Vi, will be connected to the output of the cell. The output of the cell is the
shifted state voltage of the cell (due to the levelshifter). As the state voltage can range
from 0.9V to 1.3V, the output of the cell should be ranging from 1.9V to 2.3V. If the
state voltage is 1.1V (which would be exactly halfway its full range) the output voltage
would be 2.1V. Due to non-linearities of the level-shifter, this voltage is 2.0762V as can

be measured with HSPICE. So:

‘/in.min +V

fm =20762V (31)

Then V,, is the weight voltage that results in a curmrent of OpA if V;;=2.0762V
(Hvstate= 1. IOOOV)
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7 Suggestions for improvement of the circuit

Unfortunately there are some drawbacks to this implementation. Despite the fact that the
output impedance of a three-transistor multiplier is quite high, the output impedance of
19 multipliers in parallel is reduced significantly. Also, due to the small length of the
transistors used to obtain a current mirror, the output impedance is reduced even further.

See Figure 31.

Figure 31 Reduced output impedance

This can be verified in HSPICE using the schematic shown in Figure 32 where the state

capacitor is replaced with a DC-voltage source.

Figure 32 Schematic to obtain output impedance

The output impedance can be found to be approximately 81kQ. However, the output
impedance depends on the weight voltage that is applied as well as on the input voltage

of the multipliers.

These effects can be modelled by assuming the multipliers and current mirror have an
infinitely high output impedance and a resistor is placed in parallel with the state

capacitor. See Figure 33.
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Figure 33 Model for cell-circuit with parallel resistors

It was found that the output-impedance could best be modelled with two resistors in
parallel; one connected to ground (R;=81k€2) and one connected to 1.1V (R=1.2MQ).
Depending on the weight voltages and input voltages, the value of R; deviated a certain
factor and can be seen as if for every multiplier with certain Vj, and V,, a resistor

(positive or negative) was placed in parallel with R;.

If a row of six cells is simulated, it operates correctly if the self-feedback multiplier
(including the offset-current-multiplier) was applied to the edge-cells three times (and

for the inner cells two times!) See Appendix B for the HSPICE listing.

The effects of this fairly low output impedance can be overcome by finding the template
parameters experimentally. This can be done for example by increasing the self-
feedback of the cell. The extra current supplied will account for the current through the
resistors, but the self-feedback parameter no longer corresponds to the parameter given
by Rodriguez-Vazquez. It would be better however not to have such a low output
impedance at all. The circuits that may be used to achieve a higher output impedance are

shown in Figure 34.
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Figure 34 Schematics of circuits to improve output impedance

7.1 Results of improvements

For the implementation of the schematic using a 2-quadrant current conveyor, the circuit

as shown in Figure 35 was suggested. The upper four transistors are to be observed for

negative values of Ijj,.

3.3V

from multipliers
and current mirror

Figure 35 A 2-quadrant current conveyor

If Ti»>0 then the lower four transistors must be observed. Cascode transistor My is
inserted in order to obtain a high output impedance. The output of the current conveyor
is connected to the state capacitor and a high output impedance will prevent unintended

(dis-)charging of the state capacitor. If My must be saturated, then:

V, <V, +V,

The source-voltage of M4#0 as can be seen from Figure 35 and so V(m420.64V. Vg=Vgq4

and as a result:
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Vdd < V:late + Vt

33V <09V +0.64

This is not true and so My is not saturated. As a result the output of the current conveyor
has not a high impedance. Therefore this circuit will not be used. However, if M;, My
and the transistors directly above them were connected to additional voltage sources,
this circuit may be used as a 2-quadrant current conveyor. This however is left for future

studies.

For the implementation using current mirrors the second schematic in Figure 34 may be

used. See Figure 36.

Figure 36 Schematic of cell circuit with current mirrors

As can be seen, the currents from the multiplier are mirrored using three currents
mirrors. At the output of the system the currents mirrors are connected in such way that
a so called push-pull configuration is obtained (M s and Mcp7). Extra transistors are
inserted to assure a high output impedance. The state capacitor is connected to the

drains of M¢ms and M¢ns.

From the output of the multipliers a low impedance is seen, since these are connected to

the drains of M¢m; and M¢pm¢ which are always saturated.

In order to find the bias voltage Vpiasn, assume that the current through Mcme=95pA. It is
found that the drain voltage of M3 is approximately 0.91V. The drain voltage of Mcm7
will be approximately 0.91V as well. Since M¢mg must conduct, it can be found that if its
source voltage has a maximum of 0.91V, Vy;,,21.8287V. Likewise it can be found that

Vbiasp<1.1823V if the current through M4 is taken to be 95pA.



When the circuit was simulated it was found that the current mirrors consisting of M¢ms3,

Mcma and Mcps, Mem functioned properly if Vhiasp=1.16V and Va5 n=1.84V.

33v

0.8

Figure 37 Schematic of cell circuit with more accurate current mirrors

It was seen however that the current through My, mismatched the current through Mcm;
with about 2uA. To overcome this problem, an extra transistor was inserted. See Figure
37. Now all the current mirrors functioned well and a DC-simulation showed that the
currents were mirrored with a deviation of maximally +0.02uA. The maximum current
of 95HA must be mirrored and in order to do so the transistors used to mirror a current
must have equal dimensions. This however causes the chip area needed for the total cell
circuit to increase significantly. This expansion can be reduced if the width of the
transistors Mcm2, Mem2a, Mems, Memss Mems, Mem?, Memg  is halved.
(=2 W/L=6.00m/0.9um) As a result, the maximum current that (dis-) charges the state
capacitor has decreased by a factor two as well. This has its effects on the speed with
which the cell operates (it becomes ‘slower’), but has its positive effects on the output

impedance (which increases).

It was found that if V,=0.9503V the multipliers are balanced and there is no current
flowing through the state-capacitor. If the state voltage is varied (using a DC-voltage
source which replaces the state capacitor) it is found that the resulting current through
the DC-voltage source is 18.0nA @ Vy=0.950V and -2.0nA@Vyue=1.250V. (See

Appendix C ). From this it is easily calculated that the output impedance is =15MQ.

It was seen that the maximum current that can be drained and sourced using only one
multiplier is 2.7812nA. The largest template parameter Ppna, must thus represent a

current of 2.7812uA. If Ppax=1.5 as is the case with the CCD-example, then A.° should

-44-



correspond with a template parameter of 1.5. The weight voltage of the multiplier
realising the self-feedback must be 1.3V. This is shown quite easily; if Ve rises then
Vin rises as well. As a result the tail transistor M; sources a smaller current. The current
source that is needed to counteract the current offset -due to the use of a two-quadrant
multiplier (and the template parameters given by Rodriguez-Vazquez)- must then source
a current into the state capacitor (thereby increasing the state voltage). The self-feedback
multiplier must drain a smaller current and thus it can be concluded that positive values

for template parameters correspond to higher weight-voltages.

It is found that Vw=1.3V corresponds to P=Pp,,,=1.5 and 0.6170V corresponds to P=-
-1.5. If the maximum current of 2.7812)1A corresponds to P=1.5 then P=1.0 corresponds

to 1.8541pA. It was found experimentally that for P=1 the weight voltage must be
1.1450V and for P=-1, V,=0.7620V.

If a cell is only connected to itself (only A.° is present) it is found that if the initial state
voltage=1.11V, the resulting output of the cell is high, while if the initial state voltage is

1.09V, the resulting output of the cell is low.

A row of six cells connected in such way that it performs connected component
detection was simulated and operates properly. See Table 7 for some experiments that

were conducted.
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Table 7 Experiments conducted with a row of 6 cells. Function: Connected component detection without additional

edge-cells

Vtare(t=0) V state,steady state Settling time
Initial conditions of subsequent Results of subsequent cells in Steady state reached after:
cells in row of 6 cells row of 6 cells

(‘0°’=0.9V, ‘1'=1.3V) (‘0°=0.921V, ‘1’=1.29V)
011110 000010 1.3ps
101100 111010 1.5us
001111 000001 1.3us
001000 000010 1.6us
101000 111010 2.0us
111000 111110 1.0us
111111 111111 <400ns
000000 000000 <50ns
001100 000010 1.0us
100000 111110 2.0us

Note that the voltage at which the state is clamped is somewhat higher than 0.9V. This
is caused by the current sourcing active diode. (For the effects of this diode, see also
Appendix C ). The characteristics of this diode may be improved by using an active
diode like the present current draining active diode and is left for future studies.
Nevertheless the results are promising and although the output impedance is quite high,
the speed at which the network operates can be increased by increasing the maximum

current that can be supplied to 95HA while keeping a high output impedance.
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8 Theory: boundary of the basin of attraction

The state voltage of a cell in a CNN varies as a function of time, due to self-feedback
and interaction with other cells. Because of these interactions, the state voltage will not
necessarily decrease or increase monotonically. The state voltage can be plotted as a
function of time as is done in Figure 16; for every individual cell the state voltage (on
the Y-axis) is plotted against time (X-axis). If a CNN consisting of only two interacting
cells is considered, it is possible to plot in a convenient way one state voltage versus the
other thus obtaining a state space plot. Although the state voltages are dependent of the
time, they are now not explicitly plotted as a function of time. In Figure 38, Vs; and Vs,
are the state voltage of the two cells. This state-space plot enhances the insight in the
dynamical behaviour of the system rather than the state voltage plotted versus time (a

‘time-diagram’).

Vea!
J///”ifg\Jt<O

V.
o& .

Figure 38 Plot of a trajectory in state space

As time changes, so too will the state voltages. If subsequent points in state space are
connected a curve is obtained and is called the ‘trajectory’ of the system. If this was
done for three interacting cells in a CNN, then for a complete description of the
dynamical behaviour, a three dimensional space would have to be drawn since there are

three state-voltages to be plotted.

Considering a CNN consisting of two cell, it is possible to find a certain ‘border’
separating the entire state space (two dimensional in our example) into two regions, so
that if the system starts in any point of one region, it will always converge to one
specific equilibrium point, while if it starts in any other point, the system will always
converge to the other equilibrium point. This ‘border’ is called the ‘boundary of
attraction’ for obvious reasons and the region it encapsulates is called the basin of

attraction.
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Figure 39 Separation of the state space

In Figure 39 a two-dimension state space is depicted containing two equilibrium points
(E; and E,). The basin of attraction for E, is shaded and the white area is the basin of
attraction for E;. The border between them (drawn with a thick line) is the boundary of
attraction. The objective is to find a description for this border and thus be of help in

explaining the outcome of the neural network.



9 The Lyapunov energy function

If a CNN is considered that consists of two cells, then a two dimensional state space
displays the dynamic behaviour of the cells. Assume that a cell is described by the

regular state equation. (See also (2))

av()  v.(1)

C - +AV()+ D AV () + Y BV+1 (32)
dt Rx € deN, Y deN,
d#c
Or:
de(t) c d d
RC—==V,()+RAV,()+R, YAV )+R, 2BV +RI (33)
deN, deN,

d#c

To obtain a dimensionless equation, the voltages can be normalised with:

So dividing (33) by Vi gives:

dx° RI
R.C (1) =-x()+RA Y ()+R, Y A Y (t)+R, DB u' +—— (34)

X
dr deN, deN, Vmax
d#c

If the time is normalised as : t=R,CT then

dx‘(t R1I
(z) =—x(t)+RASY(T)+R, X Ay (T)+R, D B u' +=*— (35)
d jeN, deN, Vmax
which can be rewritten to obtain:
dx(t
() =—x(t)+a y(r)+ Zad‘y“(t) + Zbd‘u" +i°
dt deN, deN,
d#c (36)
. . . IR
with: a =R A, a,=RAS,b =RBS, i =V

max
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This normalised state equation (36) facilitates the description of the individual cell
equations. Assume that the two-cell CNN is described by:

x, =-x,+15y, +y,+1

X,=—-x,+y +15y, +1 37

Here, yi=f(xx) is the output of cell k (ke{1,2} ), which is the saturation function

described in chapter 2. The 2-dimensional state space is divided into nine separate
regions due to the fact that the output of a cell is a 3-segment piecewise linear function.
This can be seen in Figure 40. The states are plotted along the (dashed) axes. If the
horizontal axis is observed (along which x; is plotted) it can be seen that the state space
is divided into three regions (thick vertical lines) because the output saturates. Likewise
state x, divides the state space three regions too, thus the entire state space is divided
into nine regions. If a state variable is said to be saturated, then actually the output is
saturated. (For FR-CNN’s this is the same.) When the output of a cell saturates the term
of the output used in the state equations becomes a constant and therefore plays no
longer an active role in the equations. If the magnitude of both state-variables exceeds
unity, the output of both cells are saturated and the corresponding regions {1,3,7,9} are
called ‘saturated regions’. If only one output is saturated the corresponding regions
{2,4,6,8} are called ‘partially saturated regions’. If none of the outputs are saturated the

system is operating in region {5}, which is called ‘linear region’.

Figure 40 State space divided into nine regions

As is shown by Chua and Yang [2] and [8] the CNN (subjected to some restrictions) has
stable equilibrium points which must lie in one of the saturated regions. These

equilibrium points can be found by considering the saturated regions and stating that the
state-variable does no longer vary. (x, =0, ke {1,2}) Thus, using the given state

equations (37) two equilibrium points can be found ; E;=(3.5, 3.5) and E;=(-1.5, -1.5).
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In order to find the boundary of the basin of attraction (‘BOA’) separating the basins of
attraction of both equilibrium points, the Lyapunov energy function as defined by Chua
and Yang [2] (see also [9],[10] and [11]) can be used and is described by the scalar
function (38)

E(t)———ZZA (.75 )y (9, (0)+ 52 z( S0

(' D&, R, (i) (38)

_ZZB(’ Jsk, l)vyy(t)vukl Zlqu(t)

(i.1)(k,1)

Or (using (36)):
E() =22 E(x(t))
(Z)Zad Vi (O)yu(0)+= (Ej(y,-,(t))z (39)
"(Zkz;.)bd Yij (), — Zl Yii (1)

This energy function is only valid when CNN’s with symmetrical templates are used,
that is, if A(i,j;k,)=A(k,L;i,j). Chua and Yang also showed that this scalar function E(t)
is a monotone decreasing function of time. For the two-cell CNN in our example, the

energy function in the linear region becomes:

E(x,,xz)z—%((xl)z +(x2)2)—xlx2 —-X X, (40)

Observe that in region {5}

- —7 X, 1
gradE(x,,x2)= i (41)
—-:22——x1 1

whereas the state equations are given by:

. X

X ==+x+1
2 (42)

. Xy

X, =‘?+xl +1
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The energy function for this two-cell CNN can be plotted as if it were a function of x;
and x,. Therefore the gradient of E (x,,xz) shows where the slope of the energy has a

maximum (that is, increases fastest). In the opposite direction, the energy function

shows the largest decrease. If this energy function can be written as a scalar function
(depending on x; and X;) then — grad E(xl,xz) indicates the direction of the largest

decrease in energy and the direction of the actual trajectory, since these directions are
the same (see (41) and (42)). This is true for our particular example and may not be true
in general because energy functions might be found where the direction of the actual
trajectory does not correspond to the largest decrease in energy. It is assumed however
that the direction of the trajectory corresponds to the largest decrease in energy
throughout this entire report unless stated otherwise. This is an important assumption
and narrows down the diversity in CNN’s that may be observed, because it is not
necessary for a CNN to ‘follow’ that path in state space where the decrease in energy is
largest. Metaphorically speaking, it can be seen as if the state space contains a
mountain-ridge (with the altitude depending on the amount of energy). Since the energy
of the CNN (altitude on the mountain) as a function of time is a monotone decreasing
function, the mountain can never be ascended but is always descended. As a result,
following the trajectory we can never gain ‘kinetic energy’ because if that were possible,
it would be possible to ascend the mountain (thereby losing again the gained kinetic

energy).

However, when the energy function is plotted in the saturation regions it is easily shown
that the energy function remains at the same level throughout the entire saturated region.
(See Figure 41) This is logical since the energy only depends on the output of the cell
states which are constants in the saturated regions. This in return would mean that once
the system has entered a saturated region it will not proceed to approach an equilibrium
point or pass through this region at all. This is not true since the system will approach an
equilibrium point or pass through a saturation region. So here, the used Lyapunov
energy function does not represent a correct energy function in the sense that it

‘explains’ the systems behaviour.
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Figure 41 Lyapunov Energy function for our example (using (37) and (39)) observed from different angles, with x
andy being the states (x; and x,) and z representing the amount of energy.

9.1 The BOA in the linear region

If the linear region is observed the Lyapunov energy function (40) may be used since it
describes a correct energy function for our example. As can be seen from Figure 41,
there’s a maximum within the linear region. To find this maximum in energy it is clear
that, although due to noise practically unrealisable, a system that starts exactly at this
maximum will not start to ‘move’. This is an other equilibrium point but -unlike the
ones in the saturated regions- it is unstable. This equilibrium point can be found

however by stating that X, =0 and x, = 0. Thus the maximum in energy is obtained for

x, =—% and x, =-%. From this point, the system can follow trajectories that lead in

every direction. This is true, since the trajectories follow the (opposite direction of the )
gradient defined by the energy function (as no ‘mass’ is involved and so no kinetic
energy is gained). It may not be true with other two-cell CNN’s where other template
parameters are used. (The constant factor with which the output of a cell affects the state
of an other cell is called a template parameter.) To overcome this problem, a ‘force’ is
introduced. If this system is submitted to a force-field depending on the exact position in
the state-space, the energy-function is no longer needed to describe the systems
behaviour. Again speaking in metaphors; if a ball is placed on a mountain it will start to
roll towards a certain direction directed by a force that depends on 1) the gravitational

force (which is assumed to be a constant) and 2) the orientation of the mountain. In

-53-



Figure 42 the mountain representing the energy as a function of the states x; and x; is
plotted, as well as a ‘ball’ on its surface. The force acting on the ball is projected on the

x1,X2-surface (the trajectory) and decomposed into its components along x; and x;

respectively.

E(xp,%)

1 x
1
Figure 42 Force composed of two directional components

If the force field is taken in such a way that it always describes the correct direction to

which the trajectory tends, the state equations can be used. Therefore, introduce:

F=F-i+F- j=%+%, (43)

Here, F; does not necessarily correspond directly to %, since F; can be composed of two
components of force. This is logical since x, not only depends on x; but also on x; and

vice versa. (See Figure 43)

AT

Figure 43 Dependence on both state values

Since the system is described by the state-equation as is the ‘force’ the two descriptions
may both be used to do so. It will therefore describe the systems behaviour well, also in
saturated regions (which is trivial as the state equations are used) whereas the energy

function is no longer useful. This can be proven quite simply.
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If there is a function f, such that:

F=gradf with E=F-i+F,-j (44)
and if Fi(x,y) and F>(x,y) have continuous first-order partial derivatives then if:

J-(F]dx + dey) =0 (independent of the path "C")

[
ocurlF=0 (45)
————

9h_JR
ax ady

the system ( F ) is called conservative (since curl F = curl(grad f ) =0).[12]

If F is not conservative, then the energy at a certain point depends on the trajectory that
was followed. It is then impossible to define a fixed amount of energy for this point and
thus the energy function cannot be represented by simply a scalar function. As an

example, assume that x; is saturated (x,<-1), then:

X =-x+a'x —a'+B, 46)
X, =~x,+a’x,—a, +B,
So:
JF,
1 1 =0
F, =(al —1)x,—a2 + B, dx, @7
E =-x,+a’x, —a,’+B,| 9F, 2
2 2 1+ 2 2)—==a" %0

I X,

And so F is not conservative conform (44). In region {8} the energy function cannot be
described by a simple scalar function. The energy in a certain point in state space would
be depending on the path (the trajectory) that was followed. This cannot be true for a
CNN and leads to the conclusion that the assumption that the systems always follows
the steepest path on the energy function towards the equilibrium points is incorrect. This
implies that a scalar function may be found to represent the energy function, but then the

gradient will not be equal to the state-equations as was the case with (41) and (42).
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So far, the ‘top’ in energy in the linear region has been found for our particular example
under the assumption that the trajectory always corresponds to the steepest descent
along the energy-mountain and a ‘force’ has been defined (corresponding to the state
equations). How does this lead to the BOA? To answer this question the characteristic is
used the ridge of a mountain passes the top of the mountain and is the route with the
smallest slope. Any deviation from that route will result in less energy and thus lead
away from the ridge. (See Figure 44). Following this route it is like continuously

balancing on this mountain-ridge.

E(x;,xy

BOA=ridge of 'mountain'
Figure 44 A special trajectory; the ridge of the mountain

To find this route (which is a special trajectory) at the edges of the region, a sort of

‘work-function’ may be introduced, analogues to the work done by a force.

W=|[F-dr (48)

Following the edges of the linear region the work done in order to do so can be studied.
If there’s a maximum on the edge it can be found by integrating the force along the edge
to this point. Integrating to any other point will result in a work function that is less if
there’s only one maximum. If multiple extremes are found the global maximum must be
observed. When the edge of the linear region with x;=-1 is observed then, for our

example:

a a

_le-dr=_j](x,+x2)dx2

S
I

a

J (A,+a,l +a12)xl+(a2'+A2+a22)x2+Bl+B2 dx,
A y N

’ \ ;
-1

e —

3 B 14
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. 1 1
x,=Ax, +a, x +a,x,+B,

with ) 5 )
X, =Ax,ta’x, +a, ’x, + B,

and A;=-1, A,=-1 since the linear region is observed! The integration of the force along

the edge is depicted in Figure 45.

TX2

v

II

Figure 45 Integration along edge I of linear region

Thus finding:

a

W= J-[ax,+ﬂx2 +}'] dx,

=§a2+(y+ax,)a—'g'+(}’+axl)

(49)

To find the point where the maximum work is done, differentiate the work function to
‘a’ and state that the result is zero (simply finding an extreme). This has the advantage
that any constants that are introduced by the force are annihilated. It is therefore not
necessary to know the absolute value in energy at a certain point since only differences

are observed.

(30)

and because x;=-1,&¢=3,f=1%,y =2 it can be found that a =—7 so there is a BOA

through (-1, —3).
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Figure 46 Integration along edge Il of linear region

For edge II, the same calculation can be performed (see also Figure 46):

T oV . dW_
W=:[l(x,+x2)dx,, 1a =0

and with x2=-1,a=%,ﬁ=%,y=2 it can be found that a=—% so there is a BOA

through (-5 ,-1).

For edge I it is found that @ =—7 which is not a valid value since it does not lie in the

linear region. Likewise, for edge IV, @ = —% which is an invalid value too.

9.2 Obtaining the description of trajectories

To determine the trajectory through (-1, —3) and (—+,-1) it is possible to solve the state

equations for the linear region.

.5 X
) 1N N
ox, = _|2 e+ (51
X, =—=+x,+1 1 3 1
2
If A has ‘n’ distinct eigenvalues, then A has a basis of ‘n’ eigenvectors. Solving
det(A-AD=0 gives: A, =2 and A, =—7 . Substituting A=A; and A=\, into det(A-AD=0

-1

i j hence:

1
results in two eigenvectors: Y, = [ 1] and Y, = [
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v (1 —1]
B! (52)

Diagonalisation of A gives [12]:

D=Y"'AY A0 53
If x=Yz then:
Y= AYz+h
2=Y'AYz+Yh (54)
=Dz+Y'h

From this it can be found that:

s _ 3, _ ~_2 3t
{?1 le - Z 3T;F? (55)
= 2, =Ce?

And thus (using x=Yz):

2 3t -4
x, =—5+Ke* —Ce™?

2 K] -1
X, =—%+Ke' +Ce™

(56)

These equations describe the trajectories as a function of time for the linear region. To

find the trajectory through (-1,-3), this point can simply be substituted which then
determines the constants, assuming the trajectory is in (-1,~3%) at time t=0. Thus we can

find: K=0 and C,=7 . The trajectory ends at the top of the energy in the linear region and

is described with:
2 1 -3¢
—3-3e
X= . 57
In a similar way the trajectory through (— 1 ,-1) can be found: K=0, C;=—13. As a result
the trajectory is described with:
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__2.+l ""%'
=30 2
—37 13

Notice that the ‘ridge’ of the mountain of energy is a straight line through (-1,—3) and
(—%,-1) and could have been found too by substituting ‘any’ other value for x; or x;

when trying to find the top ‘a’ on the edges I and II respectively! (Equations 57 and 58)

9.3 The BOA in Partially Saturated regions

To find the BOA ( this particular trajectory) in the partially saturated regions a trajectory
has to be found that runs through (-1,—3) in region {4} and through (- %,-1) in region

{8}. Considering region {8} the state equations are given by:
) (59)

These equations can be solved to find the trajectories in a similar way as was done for
the linear region. In this case it’s even simpler; first solve the ODE containing only X;.

Substituting the result in the second ODE and solving this one as well gives:
(60)

With some restrictions, ‘t” can be written as a function of x;. Substitution of the

expression found for ‘¢ into the second equation then gives:

The trajectory through (—7%,-1) reveals that

(=)

3 61)
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Figure 47 The trajectory and the gradient in partially saturated region

In general this substitution is not always possible and the trajectory can only be given as
an explicit function of time. As can be seen the BOA ends in x;=-o for t->-c. The time
goes to -o and is due to the fact that the gradient is observed which leads to the opposite
direction of the actual trajectory (assuming -grad(E(x;,x»)) and the state equations are
equal). Following the trajectory can thus be done by retracing the gradient. (Following
the gradient ‘back in time’). Should the trajectory have ended on the edge of the region,
then the state equation for the corresponding neighbouring region must be solved and

again the trajectory must be continued to infinity.

It is not possible for a BOA to enter (or leave) a fully saturated region that contains a
stable equilibrium point. This is true since Zou and Nossek have shown that if there’s an
equilibrium point in a saturation region, then the whole saturation region belongs to the
basin of attraction of that equilibrium point [8]. If the BOA entered such a saturated
region then this would mean that at least a part of this region belongs to another basin of
attraction and this is a contradiction. Moreover, from this fact it can be concluded that

every BOA enters the linear region. Hypothetically this could be only a single point.
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When the border between region {7} and {8} is observed, one can find another extreme
in the work-function. This must be a phantom-peak since this trajectory would enter a
saturated region with a stable equilibrium point. Moreover, it is not connected with the
BOA that was found earlier and therefore will not eventually reach the maximum that
was found in the linear region. This conclusion is easily made since a two-dimensional
state space is observed. In general these phantom peaks cannot be detected so easily, so
every peak must be subjected to further study, that is, the trajectory through every peak
must be followed. If it does not eventually reach a ‘top’ then this trajectory is not a BOA

and as a result the corresponding peak must be a phantom peak.
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10 Finding the BOA

For the two-dimensional case with symmetrical templates, time-independent template
parameters and assuming that the trajectory always follows the steepest descent along
the energy function in the linear region (which is true for positive definite matrices), the
method as described in previous paragraphs appears to be functioning and a scheme can

be made for the methodology to find the BOA.

1) Find the work-function along a certain direction on the edge of the linear
region. (Changing only one state variable at a time)

2) Find the extreme on this work-function

3) Find the function that describes the extreme as a function of other state
variables

4) Repeat step 1-3 for other edges of the linear region

5) Find the general solutions of the state-equations (which describe the
trajectories)

6) Find the (set of) solutions for the constants in order to find a specific (set
of) trajectory (or trajectories) that go through the extremes that were
found

7) Only trajectories that are connected and eventually reach the ‘top’ are
valid trajectories

Ad.3) This is the same as assuming that x;=constant with x, €[- 1,+1] when studying
edge L.

Ad.7) As was the case with the phantom-peak on the border between regions {7} and

{8}.

If a function can be found that represents a correct energy function then this scheme can
be simplified significantly. The maximum of the energy function on the borders of the
regions must be found. Solving the state equations and finding the trajectories that go
through these extremes then results in a description for the BOA. Even so, it must be
verified if every trajectory reaches the absolute top of the energy function. If this is not
the case then the ridge that is found describes a local ridge and is not a part of the BOA.

The method as describe above is used on a general 2-cell CNN in Appendix D .

If for example this method is used on a three-dimensional CNN some more work is

involved. Assume:
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x,=-x+2y,+y,+1
X,=—x,+ty,+t2y,+y,+1 (62)
X;=~x;+y, +2y,+1
then four stable equilibrium point in saturated regions can be found: E;=(4,54),
E»=(-2,-3,-2), E;=(-2,-1,2) and E4=(2,-1,-2). (Which has been verified experimentally.)

In the linear region it can be found that:

110 A, =1 2 0 -2
A=[1 1 1| and {A,=1++2 rt=oi1 V2o (63)
011 A,=1-42 1 -2 1
and thus:
(9, o (-9)
: w2 \2 (1-V2)
=Ce' - +Cpel +Cye
1442 -2
x2=‘J§C2 I+J_)'—\/_C38 1- 21_ (64)
x =—Ce'—(%+ﬁ)+c (142) (%_@)+Ce(‘_ﬁ)'
3 1 1+2 1-2 3

It can be found that the extremes of the work-function are at: (-1,-1,1), (-1,%,-1) and
(1,-1,-1). The set of extremes of the work-function will always be a linear function of
the other state variables. If:

F =3 +5%,+%+.+%,

(65)
=F-e +F,-e,+.+F e, +C
then:
W= '[F -dx, = 2(xk) +xkp§.nﬂpxp+ka
pzk -1
=%a+a2ﬁx+Ca—g+Zﬂx+C
pat” Pk
And:
aw
Ezaa+p§fnﬁ”x”+c
p#k
Zﬂpxp+C
p=ln
—)a:—’mk
o



So every extreme in the direction of x, can be expressed as a function of the other state

o

variables x, (p#k). For x,=-1 we can find that: x=| —1 |for -1<0<1; the line on the
-

border where all the trajectories will run through that are part of the BOA. Thus the

trajectories through this line (assuming t=0) are given by:

x=| -1 (66)

It is easily verified that this is a single line and does not describe a (hyper-) plane. This
result is due to the fact that the top of the energy function lies exactly on the border of
the linear region. This may be overcome by observing the plane x,=-B, with f>-1 and

should be more closely looked at in future studies.

10.1 The BOA with FR-CNN'’s

To find the basin of attraction for CNN’s that are based on the full-range principle will
be less complicated, because there is only one region to be studied; the linear region.
Every other region is projected onto a certain boundary of the linear region. In the case

of saturated regions this boundary reduces to a single point. See Figure 48.

Figure 48 Projection of other regions onto the borders of the linear region

This point however does not necessarily contain a stable equilibrium, but it appears as
being stable, because the states cannot become larger than unity. The same effect may
appear at other corners, even though the original saturated regions may not have

contained a stable equilibrium point. See Figure 49. This can be caused for example by a
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gradient in the energy function that ‘guides’ the trajectory towards region {8} or region
{9} which it cannot enter, whereas with regular CNN’s the trajectory may have been
able to leave region {9} for x;>1. The systems will remain at (1,-1) due to the gradient
in the energy function and the saturation function even though at region {9} there may

not have been an equilibrium point.

sz TXZ

W

—
\\\hﬁs xl

Ty

Figure 49 Introduction of stable equilibrium points

The introduction of such an equilibrium point may alter the overall behaviour of a FR-
CNN compared to the behaviour of a regular CNN. This may cause unwanted effects
and should be more closely looked at in further studies. Thus, although it did not appear
so with the example of CCD for which a Matlab program was written (see paragraph
3.3), the FR-CNN may display quite a different behaviour from what can be expected
when it uses templates that give a certain desired result with regular CNN’s. Whether
the introduction of new equilibrium points is possible and what the effects would be

should be more closely looked at in future studies.

-66-



11 Conclusions and recommendations

First of all, it was shown that the Full-range model as proposed by Rodriguez-Vizquez
can be applied, but that the implementation he suggests does not correspond to this Full-
range model. The schematic as given by P. Bruin however does implement the Full-
range model and is a correct circuit for a cell in a Full-range Cellular Neural Network

(FR-CNN).

It is seen that if Level 47 HSPICE parameters are used, the simple square-law formulas
no longer accurately describe the behaviour of the transistor and modified parameters

have to be found experimentally.

If a cell of a FR-CNN is implemented using only one current mirror and 19 multipliers
connected in parallel as suggested, the output impedance of the system is reduced
significantly. This causes the cell to show an unexpected behaviour. It was seen that if
the output impedance is increased, the proposed cell displays a proper behaviour. This is
verified with DC- and transient simulations which were done using the template

parameters needed to perform CCD.

In future studies, other operations than CCD should be more closely looked at when the
proposed cell structure is used. Also the characteristics of the active diodes to clamp the
state voltage to certain pre-defined levels may be improved. The output impedance may
be increased even more while the chip area that is needed for VLSI implementation is
reduced and the maximum current of 951 A can still be supplied. This will increase the

speed with which the CNN operates.

With respect to the boundary of the basin of attraction, it is shown that the BOA can be
found in a 2-cell CNN if some restrictions are assumed and if a sort of force is
introduced. This is done since it is shown that the used Lyapunov energy function no
longer represents a proper energy function. This energy function should describe the

behaviour of the cells in every region in state space.

Difficulties arise when the BOA is searched for in CNN’s consisting of more than two
cells. Although these difficulties may be due to the definition of the force, the method to

find the BOA can still be used if a proper energy function is found. A new energy
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function that describes the behaviour of the cells in every region in state space should be

introduced.

Also, the behaviour of Full-range CNN’s should be compared to the behaviour of
regular CNN’s since it has become clear that undesired stable equilibrium points may be
introduced together with the FR-model. Although this does not appear in the examples
that were used, other examples may be found where new stable equilibrium points are

introduced and should be searched for in future studies.

-68-



Acknowledgements

I'd like to thank my coach Hans Hegt for his technical and moral support. He treated me
as an equal and gave me the idea that he was as eager ‘to tackle this problem’ as I was.
I’d like to thank my other coach Domine Leenaerts too for the opportunity to have
‘another bite of theory’ and have me re-experiencing the feelings I had with my first
project.

Also I'm much obliged to my friends for moral backup the past few difficult weeks.
Knowing that there were some difficult times ahead, my parents tried to help me as
much as possible whereas actually I should have helped them instead. I am very grateful
for such wonderful parents and friends. They always remind me of a Dutch phrase: “De

boog kan niet altijd gespannen blijven.” which has proven quite useful at times!

-69-



(1}
(2]
(3]

[4]
(5}
[6]

(7]
(8]

[9]

[10]

[11]

[12]

References

J.A Hegt, “Neurale Netwerken”, department of electrical Engineering, Electronic Circuit Design
Group, Eindhoven University of Technology 1994, syllabus.

L.O.Chua, L.Yang, “Cellular Neural Networks: Theory”, IEEE Transactions on Circuits and
Systems. Vol.35. No.10. October 1988, p.1257-1272

A. Rodriguez-Vizquez et. al. “Current-mode Techniques for the implementation of continuous-
and discrete-time cellular neural networks” IEEE Transactions on Circuits and Systems-II:
Analogue and Digital processing. Vol.40. No.3, March 1993, p.132-146

P.P.F.M.Bruin, “Electronics for cellular neural networks” , Eindhoven, Stan Ackermans Instituut-
Ill. 1993, ISBN 90-5282-612-9

J.AE.P. van Engelen, “Implementation of an analogue programmable cellular neural network”,
department of Electrical Engineering, Electronic Circuit Design Group, Thesis, 1995

YL.C. de Jong, “Cellulaire neurale netwerken. Een inleidend onderzoek naar werking,
toepassingen en implementaties” , department of Electrical Engineering, Electronic Circuit Design
Group, Eindhoven University of Technology, 1993

“HSPICE user’s manual-software for IC-design” Meta-Software, Inc. Version96.1, February 1996,
p.16-157;16-159

F.Zou, J.A.Nossek, “Bifurcation and chaos in cellular neural networks”, IEEE Transactions on
Circuits and Systems-I: Fundamental Theory and Applications. Vol.40, No.3, March 1993, p.166-
173

J.H.Li et al., “Analysis and synthesis of a class of neural networks: linear systems operating on a
closed hypercube”, IEEE Transactions on Circuits and Systems, Vol.36, November 1989, p.1405-
1422

AN.Michel et al., “Analysis and synthesis techniques for Hopfield type synchronous discrete time
neural networks with application to associative memory”, IEEE Transactions on Circuits and
Systems, Vol.37, November 1990, p.1356-1366

D.Liu, AN.Michel, “Dynamical systems with saturation non-linearities”, Ed. by M. Thoma,
Springer-Verlag 1994, ISBN 3-540-19888-1

E.Kreizig, “Advanced engineering mathematics” 6™ ed., John Wiley & Sons, 1988, ISBN 0-471-
85824-2

-70-



Measured voltage

Appendix A Ringing caused by active diode

Drained current (LA) v* \'2 Veas |
2 1.298 1.288 | 1.292
5 1.306 | 1.283 | 1.291
10 1.312 | 1.277 | 1.293
20 1.325 1.275 | 1.298
30 1.339 | 1.280 | 1.295
40 1.350 | 1.285 | 1.294
50 1.362 | 1.288 | 1.294
60 1374 | 1.292 | 1.295
70 1.385 | 1.295 | 1.295
80 1.396 - 1.296
95 1412 - 1.296

Ringing depending on drained current

Ringing shown by output voltage across state capacitor

122

1,40

L) L ] 1 L) i 1 LI | )
4 ’ : ) » ' f '

Ly
——V
A Vencl

Drained current (1 A)
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Appendix B HSPICE file :CNNrows.sp
CNNrow6.sp 'CNN - one row of six cells'

.subckt multipl Vdd Vin Vw 3 4

Ml 2 Vin Vdd Vdd PMOSr 1.lu2.lu
M2 3 Vw 2 Vdd PMOSr 4.2ul.6u
M3 45 2 VddPMOSr 4.2ul.6u
Vwref 50095V

.ends

.subckt cell Vdd Vinl Vin2 Vout Vwlift Vwiftc Vwrgt Vwrgtc

* Transistors

M4 3 30 ONMOSr 11.9u08u
M5 4 30 ONMOSr 11.9u0.8u
Mcll 6 14 Vdd Vdd PMOSr 2.6u0.8u
Mcl2 6 40 ONMOSr 26ul0u
Mcl3 Vdd 6 4 ONMOSr 1.1u0.8u
Misl Vout 14 Vdd Vdd PMOSr 1.1u 1.9u
Mis2 0 4 Vout Vdd PMOSr 1.8u0.8u
Mchl 9 12 Vdd Vdd PMOSr 1.7u 6.2u
Mch2 9 410 ONMOSr 5.6ul.6u
Mch3 7 12 Vdd Vdd PMOSr 1.7u6.2u
Mch4 7 13 10 ONMOSr 5.6ul.6u
Mch5 10 11 0 ONMOSr 2.6ul.6u
Mch6 4 70 ONMOSr 1.1u0.8u

* Capacitor
C1 45 0.7pF *IC=1.3V
Rl 5001

* Voltage nodes
Vwref  1100.95V
Vbias 14022V
VMchl&3 12015V
VMch4 1301.3V

*

VAcc  vacc 0 0.6638V
Vnacc  vnacc 0 1.3000V
Vin0  vinb 0 2.0762V

Vw0  vw0 0 0.9666V

* Multipliers

Xacc Vdd Vout vacc 3 4 multipl
Xaccc Vdd VinO vnacc 3 4 multipl
Xaccl Vdd Vout vacc 3 4 multipl
Xaccel Vdd VinO vnacc 3 4 multipl
Xts9 Vdd vin0 vw0 3 4 multipl
Xts10 Vdd vin0 vw0 3 4 multipl
Xleft Vdd Vinl vwift 3 4 multipl
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Xleftc Vdd vin0 vwliftc 3 4 multipl
Xright Vdd Vin2 vwrgt 3 4 multipl
Xrightc Vdd vin0 vwrgtc 3 4 multipl
Xis11 Vdd vin0 vw0 3 4 muliipl
Xts12 Vdd vinO vw0 3 4 multipl
Xts13 Vdd vin0 vw0 3 4 multipl
Xtsl4 Vdd vinO vw0 3 4 multipl
Xts15 Vdd vin0 vwO 3 4 multipl
Xts16 Vdd vin0 vwO 3 4 multipl
Xts17 Vdd vinO vw0 3 4 multipl
Xts18 Vdd vin0 vw0 3 4 multipl
Xts19 Vdd vin0 vw0O 3 4 multipl

.ends

.subckt EcellL. Vdd Vin1 Vin2 Vout Vwift Vwliftc Vwrgt Vwrgic

* Transistors

M4 3 30 ONMOSr 11.9u0.8u
M5 4 30 ONMOSr 11.9u0.8u
Mcll 6 14 Vdd Vdd PMOSr 2.6u0.8u
Mcl2 6 40 ONMOSr 2.6ul.0u
McI3 Vdd 6 4 ONMOSr 1.1u0.8u
Mist  Vout 14 Vdd Vdd PMOSr 1.1u 1.9u
Mis2 0 4 Vout Vdd PMOSr 1.8u0.8u
Mchl 9 12 Vdd Vdd PMOSr 1.7u6.2u
Mch2 9 4 10 ONMOSr 5.6u 1.6u
Mch3 7 12 Vdd Vdd PMOSr 1.7u6.2u
Mch4 7 13 10 ONMOSr 5.6u 1.6u
Mch5 10 11 0 ONMOSr 2.6u1.6u
Mch6 4 70 ONMOSr 1.1u08u

* Capacitor
Cl 45 0.7pF *1C=1.3V
Rl 50 0.1

* Voltage nodes
Vwref 110095V
Vbias 14022V
VMch1&3 1201.5V
VMch4 13013V

»

VAcc  vacc 0 0.6638V
Vnace  vmacc 0 1.3000V
Vin0  vin0 0 2.0762V

Vw0  vw0 0 0.9666V

* Multipliers

Xacc Vdd Vout vacc 3 4 multip]
Xacce Vdd Vin0 vnacc 3 4 multipl
Xaccl Vdd Vout vacc 3 4 multipl
Xaccel Vdd VinO vnace 3 4 multipl
Xacc2 Vdd Vout vacc 3 4 multip!
Xacce2 Vdd Vin0 vnace 3 4 multipl

-73-



Xleft Vdd VinO vw0 3 4 multipl
Xleftc Vdd vinD vw0 3 4 multipl
Xright Vdd Vin2 vwrgt 3 4 multipl
Xrightc Vdd vin0 vwrgtc 3 4 multipl

Xts11
Xts12
Xts13
Xts14
Xts15
Xts16
Xis17
Xts18
Xts19

.ends

Vdd vind vw0 3 4 multipl
Vdd vin0 vwO 3 4 multipl
Vdd vin0 vwO 3 4 multipl
Vdd vin0 vw0 3 4 multipl
Vdd vin0 vw0 3 4 multipl
Vdd vin0 vw0 3 4 multip]
Vdd vin0 vw0 3 4 multipl
Vdd vin0 vw0 3 4 multipt
Vdd vin0 vw0 3 4 multipl

.subckt EcellR Vdd Vinl Vin2 Vout Vwift Vwlific Vwrgt Vwrgtc

* Transistors

M4
M5
Mcll
Mcl2
Mcl3
Misl
Mis2
Mchl
Mch2
Mch3
Mch4
Mch5
Mch6

3 30 ONMOSr 11.9u0.8u

4 30 ONMOSr 11.9u0.8u

6 14 Vdd Vdd PMOSr 2.6u0.8u
6 40 ONMOSr 2.6ul.0u
Vdd 6 4 ONMOSr 1.1u0.8u
Vout 14 Vdd Vdd PMOSr 1.1u 19u
0 4 Vout Vdd PMOSr 1.8u0.8u
12 Vdd Vdd PMOSr 1.7u 6.2u
4 10 ONMOSr 5.6u1.6u
12 Vdd Vdd PMOSr 1.7u6.2u
13 10 ONMOSr 5.6ul.6u
10 11 0 ONMOSr 2.6ul.6u
4 70 ONMOSr 1.1u0.8u

9
9
7
7

* Capacitor

Cl
Rl

45 0.7pF *1C=1.3V
5001

* Voltage nodes

Vwref

Vbias

110095V
14022V

VMchl&3 120 1.5V
VMch4 13013V

VAcc
Vnacc
Vin0
VwO

vacc 0 0.6638V
vnacc 0 1.3000V
vin0 0 2.0762V

vwO 0 0.9666V

* Multipliers

Xacc Vdd Vout vace 3 4 multipl
Xacce Vdd Vin0 vnacc 3 4 multipl
Xacc! Vdd Vout vacc 3 4 multipl
Xaccel Vdd VinO vnace 3 4 multipl
Xacc2 Vdd Vout vacc 3 4 multipl
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Xaccc2 Vdd Vin0 vnacc 3 4 multipl
Xleft Vdd Vinl vwlift 3 4 multipl
Xleftc Vdd vin® vwliftc 3 4 multipl
Xright Vdd VinO vw0 3 4 multip]
Xrightc Vdd vin0 vwO 3 4 multipl
Xts11 Vdd vin0 vw0 3 4 multipl
Xts12 Vdd vin0 vwO 3 4 multipl
Xts13 Vdd vin0 vw0 3 4 multipl
Xtsl4 Vdd vin0 vw0 3 4 multipl
Xts1S Vdd vin0 vw0 3 4 multipl
Xts16 Vdd vin0 vw0 3 4 multipl
Xts17 Vdd vin0 vw0 3 4 multipl
Xts18 Vdd vin0 vw0 3 4 multipl
X519 Vdd vin0 vw0 3 4 multipl

.ends

.tran 10ns 1500ns
*.op 50ns

IC V(X1.4)=0.9V
+ V(X2.4)=13V
V(X3.4)=13V
V(X4.4)=1.3V
V(X5.4)=13V
V(X6.4)=0.9V

+ o+ o+ o+

vdd 1033V
VwNill 400 0.9667V
Vwift  4100.7979V
Vwiftc 420 1.1429V
Vwrgt 430 1.1429V
Vwrgtc 44 00.7979V
VinNill 4502.0762V

X1145u2ul 40 4043 44 EcellL
X2 1ul u3u2dl 424344 cell
X3 1u2udu3 41 424344 cell
X4 1 u3u5ud 41424344 cell
X51 ud u6 us 41 42 43 44 cell
X611 u5 45 u6 41 42 40 40 EcellR

print V(ul) V(u2) V(u3) V(ud) V(uS) Vué)
+ V(X1.4)
+ V(X2.4)
+ V(G3.4)
+ V(X4.4)
+ V(X5.4)
+ V(X6.4)
+ 13(X1.Xacc.M1) V(X1.Xacc.2) V(X1.Xace.3) V(X1.Xacc.4)
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.option WL POST OFF NOMOD ABSMOS=1E-12 RELVDC=0.001 RELMO0S=0.001
+ LVLTIM=3 DVDT=2 ABSVAR=1E-7 PIVOT=13

+ RELTOL=1E-7 method=gear *VNTOL=1E-14 *RMAX=0.01

temp 27

.MODEL NMOSR NMOS LEVEL=47

+VTHO=0.6167061 K1=0.5992536 K2=9.681673E-3
+K3=0.0664731 K3B=0.0848494 W0=2.011142E-6
+NLX=1.016643E-7  DVT0=4.0537809 DVT1=0.7140707
+DVT2=-0.015361 DL=3E-8 DW=2.301932E-8
+UA=6.124312E-10 UB=1.932798E- 18 UC=0.0125756
+VSAT=8.922874E6  A0=0.6067592 KETA=-0.0166963
+A1=0 A2=1 RDS0=2.3
+RDSW=765.8949964 VOFF=-0.0335402 NFACTOR=1.64108
+CDSC=2E-5 CDSCB=9.1684E-5 ETA0=0.0104031
+ETAB=3.090849E-3 DSUB=0.0578341 PCLM=1.5982969
+PDIBL1=0.1035115 PDIBL2=1.1703E-3 DROUT=0.5158942
+PSCBE1=1.30884E8 PSCBE2=7.363849E-8 PVAG=0.3064459
+UTE=-1.5856242 KT1=-0.1102432 KT1L=-1.2E-9
+KT2=0.0226957 UA1=1.116809E-10 UB=0

+UC1=-0.06 AT=1.022222E4 TOX=1.03E-8
+XJ=2E-7 NPEAK=1.1E17 NSUB=4E16
+SUBTHMOD=3 SATMOD=2 BULKMOD=1
+XPART=1 XT=1.55E-7 VBM=-5

+U0=517.8468925 ETA=0.3 VGHIGH=0.15
+VGLOW=-0.15 CIT=0 1S=0

+RSH=0 CGDO=1.312E-10 CGSO=1.312E-10
+CGBO=3.28E-10 CJ=7.5E-4 PB=0.74

+MJ=0.35 CISW=34E-10

.MODEL PMOSR PMOS LEVEL=47

+VTHO=-0.5406341  K1=0.6124669 K2=0.0178682
+K3=21.4923586 K3B=-8.6159594 W0=8.875616E-6
+NLX=1.892983E-7  DVTO0=3.4224992 DVT1=0.6409558
+DVT2=0.0114412 DL=3.455666E-8 DW=0
+UA=1.386541E-9 UB=8.471541E-19 UC=-0.0276702
+VSAT=6.210514E6  A0=3.9 KETA=-0.0835983
+A1=0.1772758 A2=7.15954E-3 RDS0=2.7
+RDSW=1.991187E3  VOFF=-0.0835342 NFACTOR=1.420078
+CDSC=2E-5 CDSCB=1.889443E-3 ETA0=0.0799679
+ETAB=-0.0699861 DSUB=0.05602321 PCLM=2.7224552
+PDIBL1=0.3863554 PDIBL2=1.621787E-3 DROUT=0.6291645
+PSCBE1=1E8 PSCBE2=1.001E-10 PVAG=-0.2990312
+UTE=-1.253412 KT1=0.113123 KTI1L=-1.00423E-9
+KT2=0.0226957 UAI1=1.11689E-10 UB=0
+UC1=-0.0556 AT=5.553421E-10 TOX=103E-8
+XJ=2E-7 NPEAK=1.1E17 NSUB=4E16
+SUBTHMOD=3 SATMOD=2 BULKMOD=2
+XPART=1 XT=1.55E-7 VBM=-5

+U0=130.5451767 ETA=0.3 VGHIGH=0.15
+VGLOW=-0.15 CIT=0 J5=0

+RSH=0 CGDO=1.312E-10 CGSO0=1.312E-10
+CGBO=3.28E-10 CJ=7.9E-4 PB=0.83

+MJ=0.39 CISW=4.2E-10
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.MODEL NMOSF NMOS LEVEL=47

+VTHO=0.5667061 K1=0.5992536 K2=9.681673E-3
+K3=0.0664731 K3B=0.0848494 WO0=2.011142E-6
+NLX=1.016643E-7 DVT0=4.0537809 DVT1=0.7140707
+DVT2=-0.015361 DL=7E-8 DW=-1.698068E-8
+UA=6.124312E-10 UB=1.932798E-18 UC=0.0125756
+VSAT=8.282874E6  A0=0.6067592 KETA=-0.0166963
+Al1=0 A2=1 RDS0=2.3
+RDSW=765.8949964 VOFF=-0.0335402 NFACTOR=1.6410763
+CDSC=2E-5 CDSCB=9.1684E-5 ETA0=0.0104031
+ETAB=3.090849E-3 DSUB=0.0578341 PCLM=1.5982969
+PDIBL1=0.1035115 PDIBL2=1.1703E-3 DROUT=0.5158942
+PSCBE1=1.30884E8 PSCBE2=7.363849E-8 PVAG=0.3064459
+UTE=-1.5856242 KT1=-0.1102432 KT1L=-12E-9
+KT2=0.0226957 UA1=1.116809E-10 UB=0

+UC1=-0.06 AT=1.022222E4 TOX=0.97E-8
+XJ=2E-7 NPEAK=1.1E17 NSUB=4E16
+SUBTHMOD=3 SATMOD=2 BULKMOD=1
+XPART=1 XT=1.55E-7 VBM=-5

+U0=517.8468925 ETA=0.3 VGHIGH=0.15
+VGLOW=-0.15 CIT=0 JS=0

+RSH=0 CGDO=1.312E-10 CGSO=1.312E-10
+CGBO=3.28E-10 CJ=1.5E-4 PB=0.74

+MJ=0.35 CIJSW=3.4E-10 PBSW=0.74

+MSIW=0.29

.MODEL PMOSF PMOS LEVEL=47

+VTHO=-0.4906341  K1=0.6124669 K2=0.0178682
+K3=21.4923586 K3B=-8.6159594 W0=8,875616E-6
+NLX=1.892983E-7 DVT0=3.4224992 DVT1=0.6409558
+DVT2=0.0114412 DL=7.455666E-8 DW=-4E-8
+UA=1.386541E-9 UB=8.471541E-19 UC=-0.0276702
+VSAT=5.390514E6 A0=3.9 KETA=-0.0835983
+A1=0.1772758 A2=7.15954E-3 RDS0=2.7
+RDSW=1.991187E3  VOFF=-0.0835342 NFACTOR=1.420078
+CDSC=2E-5 CDSCB=1.889443E-3 ETA0=0.0799679
+ETAB=-0.0699861 DSUB=0.05602321 PCLM=2.7224552
+PDIBL1=0.3863554 PDIBL2=1.621787E-3 DROUT=0.6291645
+PSCBEI1=1E8 PSCBE2=1.001E-10 PVAG=-0.2990312
+UTE=-1.253412 KT1=0.113123 KT1L=-1.00423E-9
+KT2=0.0226957 UAI1=1.11689E- 10 UB=0
+UC1=-0.0556 AT=5.553421E-10 TOX=0.97E-8
+XJ=2E-7 NPEAK=1.1E17 NSUB=4E16
+SUBTHMOD=3 SATMOD=2 BULKMOD=2
+XPART=1 XT=1.55E-7 VBM=-5

+U0=130.5451767 ETA=0.3 VGHIGH=0.15
+VGLOW=-0.15 CIT=0 JS=0

+RSH=0 CGDO=1.312E-10 CGSO=1.312E-10
+CGBC=3.28E-10 CJ=7.9E-4 PB=0.83

+M1=0.39 CISW=4.2E-10 PBSW=0.83

+MSJW=0.35

.MODEL NMOSS NMOS LEVEL=47

+VTHO=0.6667061 K1=0.5992536 K2=9.681673E-3
+K3=0.0664731 K3B=0.0848494 W0=2.011142E-6
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+NLX=1.016643E-7
+DVT2=-0015361
+UA=6.124312E-10
+VSAT=9.084287E6
+Al1=0
+RDSW=765.8949964
+CDSC=2E-5
+ETAB=3.090849E-3
+PDIBL1=0.1035115
+PSCBE1=1.30884E8

DVT0=4.0537809 DVT1=0.7140707
DL=-1E-8 DW=6.301932E-8
UB=1.932798E-18 UC=0.0125756
A0=0.6067592 KETA=-0.0166963
A2=1 RDS0=2.3
VOFF=-0.0335402 NFACTOR=1.6410763
CDSCB=9.16839E-5  ETA0=0.0104031
DSUB=0.0578341 PCLM=1.5982969
PDIBL2=1.170287E-3 DROUT=0.5158942

PSCBE2=7.363849E-8 PVAG=0.3064459

+UTE=-1.5856242 KT1=-0.1102432 KT1L=-1.2E-9
+KT2=0.0226957 UA1=1.116809E-10 UB=0

+UC1=-0.06 AT=1.022222E4 TOX=1.03E-8
+XJ=2E-7 NPEAK=1.1E17 NSUB=4E16
+SUBTHMOD=3 SATMOD=2 BULKMOD=1
+XPART=1 XT=1.55E-7 VBM=-5

+U0=517.8468925 ETA=0.3 VGHIGH=0.15
+VGLOW=-0.15 CIT=0 JS=0

+RSH=0 CGDO=1.312E-10 CGSO=1.312E-10
+CGBO=3.28E-10 C)=7.5E-4 PB=0.74

+MJ=0.35 CISW=3.4E-10 PBSW=0.74
+MSJW=0.29

.MODEL PMOSS PMOS LEVEL=47

+VTHO=-0.5906341 K1=0.6124669 K2=0.0178682
+K3=21.4923586 K3B=-8.6159594 W0=8.875616E-6
+NLX=1.892983E-7 DVT0=3.4224992 DVT1=0.6409558
+DVT2=0.0114412 DL=-0.544334E-8 DW=4E-8
+UA=1.386541E-9 UB=8.471541E-19 UC=-0.0276702
+VSAT=6.9450514E6 A0=3.9 KETA=-0.0835983
+A1=0.1972758 A2=7.15954E-3 RDS0=2.7
+RDSW=1.991187E3  VOFF=-0.0835342 NFACTOR=1.4200784
+CDSC=2E-5 CDSCB=1889443E-3 ETA0=0.0799679
+ET AB=-0.0699861 DSUB=0.05602321 PCLM=2.7224552
+PDIBL1=0.3863554 PDIBL2=1.621787E-3 DROUT=0.6291645
+PSCBE1=1E8 PSCBE2=1.001E-10 PVAG=-0.2990312
+UTE=-1.253412 KT1=0.113123 KT1L=-1.00423E-9
+KT2=0.0226957 UA1=1.11689E-10 UB=0
+UC1=-0.0556 AT=5.553421E-10 TOX=1.03E-8
+XJ=2E-7 NPEAK=1.1E17 NSUB=4E16
+SUBTHMOD=3 SATMOD=2 BULKMOD=2
+XPART=1 XT=1.55E-7 VBM=-5

+U0=130.5451767 ETA=03 VGHIGH=0.15
+VGLOW=-0.15 CIT=0 JS=0

+RSH=0 CGDO=1.312E-10 CGSO=1.312E-10
+CGBO=3.28E-10 CI=7.9E-4 PB=0.83

+MJ=0.39 CISW=4.2E-10 PBSW=0.83
+MSIW=0.35

.end
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Appendix C Currents through state capacitor

Currents (dis-)charging state capacitor
Currents through DC v oltage source, representing the state voltage

' . ' ‘ \ : . ' .
sat s baaa s el oo aobesrastaassalsenastonsaslasaeslsnasy

200
08 09 0% 100 105 110 115 120 125 130 135
State wltage (V)

The state capacitor is replaced with a DC-voltage source and the DC-voltage is varied
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Appendix D ‘BOA of a 2-cell CNN’

The following calculations are only valid for 2-cell CNN's with symmetrical templates and for which the
trajectory ‘follows the steepest path down the energy-function’.

If for a 2-cell CNN the state equations are given by:
X =Ax +a'y, +azl}’2 +B,
X, = Ax, +a’y +a,’y, + B,
then for the linear region it can be found that:
X =Ax +a'x +a,'x, + B,
x, = Ayx, +a,2x] + a22x2 + B,

If the force F is defined as:
F=x+x,
it is found that:
F= (A, +a'+ a,z)xl + (azl + A+ azz)x2 +(B, + Bz)

— — e ~— J AN v_/
a B 4

Integration along edges I and III of the linear region then gives (See Figure 45 and Figure 46):

W=[ox+Bx,+y dx,
-1

=[g(x2)2+(ax,+y)x2]: (—ﬁ-a2+(axl+7’)) (123‘(“"1““7’))

To find the extreme:
aw
da
B a+(ax+y)=0
(ox, +7)
a= —'T
Thus, for Edge I and III;
A+a, +a’~-B ~B, A+a'+a’+B+B, _
a= and a=-— 1 3 respectively.
a2 +A,Z+a2 a2+A2+a2
Likewise for edge Il and IV it is found that:
a+ +a,’-B, - B a, +A,+a,’+ B, +B
sl 2and a=—-—2 4 2, 2‘ 2 respectively.
A+a'+al A ta, +a

To find the trajectories assume:

. | "+ A
E"'E._ 2 Ax+l_1
a, a, +A2

The eigenvalues are found with:
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det(A-AI)=0
“
a'+A -2 a,'

=0
a’ a,+A, -2

So:
(a'+ 4 -A)a,2 + 4, - A)-a,' =0
A% - (a,l +A+a’+ Az)l + (a,' + Al)(az2 + Az)—alzaz1 =0

and as a result:

_a'+At+a’+ 4 i\ﬂa,' +A+a+4) —4(a +A) a2+ 4,)+4a%a,

127 2
If:
Z,le(a,'+Al—).,)+a2'x2=O
(al’+A,—/1,)
X =="" 71
a,
-1 -1
then: Y = (a1]+AI—A‘l) and likewise: Y, = (a1]+Al_)“2)
azl azl
IfY=(Zl Zz)thcn:
-1 -1
Y= (all'*'Al—)“l) (a,'-l—A]—lz)
azl az1
Also:
(a,' +A -1 2) a,
Y= 12_11 )“2“11
(a'+A -1 ) !
1 1 1 a,
ll—lz l1_)“2
If x =Yz then:
Yz=AYz+h
t=Y'AYz+Y'h
=Dz+Y'h
. A, 0z y! B,
or: Z= 0 Az Z + 32 .

B

In general, if: Z=0z+ 3 then z= _E + Ce®'

and as a result:
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B(A -4, +a,')+ Ba, y
4 (2,1—2,2),’{1 +C|e
_ (A Y +all)+ Ba, At
e (/12"2'1)2'2 +C2e

Finally, the trajectories are then described by:

5 = B (A -1 +a1')+B2a21 CeM BI(AI—/I . +a11)+ B,a,

x2—

+ C,e‘*'J+
2’ 1

l
A /1+a ( BlA -1 +az,)+Ba2

(A -2 +a1 [ AV +a1)+B2a2 +Cezﬁ'}
A, ’
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