
 Eindhoven University of Technology

MASTER

Control of flexible manufacturing systems with non-zero setup times

Felten, H.P.J.

Award date:
2005

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/93d82526-7e41-4e98-8dfe-649c9fd3e7c7

Master's Thesis

Control of flexible manufacturing systems
with non-zero setup times

H.P.J. Felten

SE 420 423

Supervisor: prof. dr. ir. J.E. Rooda
Coaches: dr. A.Y. Pogromsky

dr. ir. A.A.J. Lefeber

TECHNISCHE UNIVERSITEIT EINDHOVEN

DEPARTMENT OF MECHANICAL ENGINEERING

SYSTEMS ENGINEERING GROEP

Eindhoven, April 2005

FINAL ASSIGNMENT

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mechanica! Engineering

February 2004

Systems Engineering Group

Student

Supervisor

Ad visars

Start

Finish

Title

Subject

H.P.J. Felten

Prof.dr.ir. J.E. Rooda

Dr.ir. A.A.J. Lefeber
Dr. A. Pogromsky

February 2004

February 2005

Verification of continuoos-time models for control of manufacturing
lines

The modem flexible manufacturing lines consist of a number of machines, buffers and transportation
lines. Same of the machines can perfarm multiple operations, so one of the control problems for such
manufacturing lines is to determine a switching policy for the machines to guarantee a certain objective,
for example to minimize the time required to achieve the desired production level. The problem of
control of manufacturing lines is extremely difficult in its full generality. However, recently, some of
the control problems were solved under assumptions that the manufacturing line can be approximately
modelled as a system of differentiallogical equations. The goal of the project is to investigate to what
extend the results derived for the simplified models can be utilized to control the real manufacturing
lines.

Assignment
First, for given manufacturing systems its approximate model should be found. This model should
belang to a certain class of differentiallogical equations. For the simplified model, using the analytica!
methods, a switching control policy should be determined. This switching policy should minimize the
time required to achieve the desired production levels. Next step of the project is to investigate effect of
the discretization, batehing and stochasticity on the performance of the controlled manufacturing line.

Prof.dr.ir. J.E. Rooda Dr.ir. A.A.J. Lefeber Dr. A. Pogromsky

Systems

Engineering Department of Machanical Engineering

ii Assignment

Preface

This Master's thesis is the final assignment of a five year curriculum for becoming Master of
Science in Mechanica! Engineering, with a specialization in Systems Engineering. The Sys­
tems Engineering Group, at the Technische Universiteit Eindhoven, aims to develop methods,
techniques and tools for the design of advanced industrial systems. lt concentrates on manu­
facturing systems comprising multiple communicating subsystems that workin parallel. An
example of such a system is a manufacturing system which processes multiple part types.

My final assignment was performed within the Hybrid Manufacturing Systems research theme,
which is one of the research themes of the Systems Engineering Group. The research of my
Master's thesis focused on cantrolling manufacturing systems which process multiple part
types. Within the Hybrid Manufacturing Systems research theme this was the first step into
the research of cantrolling and optimizing such systems.

First of all, I would like to express my highest appreciation to my coaches Sasha Pogromski
and Erjen Lefeber for their guidance and support during my final assignment. I am also very
grateful to professor Rooda and the other employees of the Systems Engineering group for
providing the environment in which I could study. Furthermore, I would like to thank my
parents who were always there to support me and who provided me the means to study. Also,
my thanks goesout to my little sister Hanneke for the many discussions during dinner on the
must irrelevant subjects. I would also like to thank my girlfriend Cynthia for her support,
patience and help during my study. Finally, I would like to thank everybody who supported
me or provided me with a great time during my study, especially, my good friends Harld and
Bas, my study colleagues Marco, Frans, Rudolf, Casper and all the people from Panache. I
would like to end with a quote from a famous engineer:

"I cannae change the laws of physics."
Montgomery "Scotty" Scott, chief engineer U.S.S. Enterprise

Henk-Pieter Felten
Eindhoven, April 2005

lll

iv Preface

Summary

Modern flexible manufacturing systems consist of a number of machines, buffers and trans­
portation lines. Some of the machines are capable of processing multiple types of parts or
performing multiple operations on the same part. If the next part type or operation is dif­
ferent from the previous part type or operation a setup is often required for these machines.
However, production capacity is lost every time a setup is performed. Therefore, the pol­
icy that decides when to perform a setup has a large influence on the performance of the
manufacturing system.

Let the production path of a part be the sequence in which a part visits the machines. Note
that the production path is a part of the recipe of a part. Flexible manufacturing systems
are distinguished in two different classes with regard to the production paths of the parts. A
flexible manufacturing system is called aeyclie if the machines can be ordered so that parts
can only move from one machine to a machine higher in the ordering. The system is called
non-aeyclie if such an ordering is not possible. For a manufacturing system that only consists
of one machine, a single machine system, also a distinction is made on basis of the part type
properties. A single machine system is said to be symmetrie if all part types have identical
arrival rate, setup time and process rate distributions, otherwise the system is said to be
asymmetrie.

Various control polides for flexible manufacturing systems exist. From these policies, three
promising polides have been chosen, namely the Savkin policy (SAV) [Sav03], the Clear the
Largest Works policy (CLW) [Per89] and the Clear the Largest Scaled Age policy (CLSA)
[Ols99]. For CLW it has been proven in [Liu92] that it is optimal with respect to minimiz­
ing the amount of (unfinished) work present in a symmetrie stochastic system with discrete
parts. For CLSA it has been shown by simulation in [Ols99] that this policy performs well
compared toother polides and that it functions in a stochastic system with discrete parts. A
disadvantage of both polides is that they are not guaranteed stabie for non-acyclic systems.
To overcome this problem [Hum94] introduced a technique called regulators which stabilize
these policies. SAV does not need these regulators, because it is already stabie by itself for
non-acyclic systems. A drawback of SAV is that it is designed fora system without variability
or for systems with a speciallimited variability. Furthermore, the workin a system can only
be continuous. Therefore, it has been stuclied whether SAV can function in a stochastic sys­
tem with discrete parts. It turned out that SAV can not function in such an environment. To
partially overcome this drawback SAV has been adapted such that it functions in a discrete
system with a triangular distribution for the arrival and process rates. The adapted Savkin
policy is denoted with SAVa.

The three polides have been compared with each other for a simple single machine system

V

vi Summary

with acyclic production paths and for a more complex manufacturing system with non-acyclic
production paths. The comparison was made by simulating a discrete system with a triangular
distribution for the arrival and process rate. As a performance measure the average flow
time of all the parts has been used. The results show that CLSA has the best performance
compared with the other polides for single machine systems with acyclic production paths.
SAVa has the best performance for non-acyclic systems which have parameters such that
the system is guaranteed stabie if it is controlled by CLSA or CLW. Introducing regulators
in the systems only worsens the performance for CLSA and CLW. However, regulators are
necessary for non-acyclic systems which have parameters such that the system is unstable if
it is controlled by CLSA or CLW. The results show that for these systems with regulators
CLSA and CLW perform better than SA Va. Therefore, it is not possible to point out one
policy from SAVa, CLSA, CLW, CLSA with regulators or CLW with regulators which has
the best overall performance.

The Savkin policy is the only control policy which is guaranteed stabie by itself for a non­
acyclic system. However, SAVa does not always have a good performance. Therefore, it has
been explored if the Savkin policy could be improved in order to increase its performance.
First, the performance of the original non-adapted Savkin policy was analyzed. It has been
proven in this thesis for a manufacturing system with a continuous flow of work and no
variability that the Savkin policy is not optimal with respect to minimizing the average
flow time. Furthermore, it has been shown that the average flow time of the system is not
independent of the initial buffer levels. Then, it has been tried to improve the Savkin policy
such that for any initial buffer level the average flow time converges to the lowest value
possible for that system. For a simple two buffer machine system with a continuous flow of
work and no variability this succeeded. Finally, it has been proven for the two buffer single
machine system controlled by the improved Savkin policy that for certain initial buffer levels
the average flow time converges to its minimum in the smallest amount of time possible.

Samenvatting (in Dutch)

Moderne flexibel fabricagesystemen bestaan uit machines, buffers en transportlijnen. Som­
mige van de machines kunnen meerdere producttypes bewerken of verschillende bewerkingen
uitvoeren op hetzelfde product. Voor deze machines is omstellen vaak noodzakelijk wanneer
het volgende type product of bewerking verschilt van de vorige. Echter, elke keer dat er een
omstelling plaats vindt gaat er productiecapaciteit verloren. Om die reden heeft de bestu­
ringsstrategie die bepaalt wanneer er omgesteld wordt een grote invloed op de prestatie van
het fabricagesysteem.

Laat het productiepad van een product de volgorde zijn waarin het product de machines
bezoekt. Merk op dat het productiepad een onderdeel is van het recept van een product.
Aan de hand van de productiepaden van de producten kan een flexibel fabricagesysteem wor­
den onderverdeeld in twee groepen. Een flexibel fabricagesysteem wordt acyclisch genoemd
wanneer de machines in het systeem geördend kunnen worden, zodat de aanwezige producten
altijd van een machine lager in de ordening naar een machine hoger in de ordening stromen.
Als deze ordering niet mogelijk is wordt het systeem niet-acyclisch genoemd. Een systeem
dat slechts bestaat uit 1 machine, een enkel machine systeem, kan ook nog onderverdeeld wor­
den aan de hand van de eigenschappen van de producten. Een enkel machine systeem wordt
symmetrisch genoemd wanneer alle producten de zelfde aankomst-, bewerkings-en omsteltijd
verdelingen hebben, zo niet dat wordt het systeem asymmetrisch genoemd.

Voor flexibel fabricagesystemen bestaan verscheidene besturingsstrategieën. Uit de verschil­
lende besturingsstrategieën zijn drie veel belovende strategieën gekozen, namelijk de Savkin
strategie (SAV) [Sav03], de Clear the Largest Work strategie (CLW) [Per89] en de Clear the
Largest Scaled Age policy (CLSA) [Ols99]. Voor CLW is bewezen in [Liu92] dat deze stra­
tegie optimaal is voor het minimaliseren van de hoeveelheid (onvoltooide) producten in een
symmetrisch stochastisch systeem met discrete producten. In [Ols99] is voor CLSA aange­
toond door middel van simulaties dat deze strategie goed presteert ten opzichte van andere
besturingsstrategieën en dat deze strategie functioneert in een stochastisch systeem met dis­
crete producten. Een nadeel van beide strategieën is dat ze niet gegarandeerd stabiel zijn
voor niet-acyclische systemen. Door gebruik te maken van een techniek genaamd regulatoren
[Hum94] kan een instabiel niet-acyclisch systeem gestabiliseerd worden. SAV heeft deze regu­
latoren niet nodig, omdat deze strategie uit zichzelf al stabiel is voor niet-acyclische systemen.
Een schaduwzijde vanSAVis dat deze strategie alleen ontworpen is voor een systeem zonder
variabiliteit of voor een systeem met een speciale beperkte variabiliteit. Bovendien, is SAV
alleen ontworpen voor systemen met een continue stroom werk. Daarom, is er onderzocht of
SAV kan functioneren in een stochastisch systeem met discrete producten. Het is gebleken
dat in een dergelijk systeem SAV niet goed functioneert. Dit nadeel is gedeeltelijk wegge-

vii

Vlll Samenvatting (in Dutch)

werkt door SAV aan te passen, zodat de strategie functioneert in een discreet systeem met een
driehoeksverdeling voor de aankomst- en bewerkingstijden. De aangepaste Savkin strategie
wordt aangeduid met SAVa.

De drie strategieën zijn met elkaar vergeleken voor een acyclisch enkel machine systeem en
voor een complexer fabricagesysteem met niet-acyclische productiepaden. De vergelijking is
uitgevoerd door het simuleren van een discreet fabricagesysteem met een driehoeksverdeling
voor de aankomst- en bewerkingstijden. Voor de prestatiewaardering is gebruik gemaakt van
de gemiddelde doorlooptijden van alle producten in het systeem. Uit de resultaten blijkt
dat CLSA beter presteert dan de andere strategieën voor acyclische enkel machine syste­
men. SA Va presteert beter dan de andere strategieën voor niet-acyclische systemen met zulke
parameters dat het systeem stabiel is als het bestuurt worden door CLW of CLSA. Het in­
troduceren van regulatoren verslechtert alleen maar de prestaties van CLW en CLSA. Echter,
regulatoren zijn wel noodzakelijk voor niet-acyclische systemen met parameters zodat het
systeem instabiel is als het bestuurd wordt door CLW of CLSA. Het blijkt dat de prestaties
van CLW en CLSA met regulatoren voor deze systemen beter zijn dan die van SAVa. Uit
SAVa, CLW, CLSA, CLW met regulatoren, CLSA met regulatoren kan dus geen strategie
worden aangewezen die altijd de beste prestatie levert.

De Savkin strategie is de enige besturingsstrategie welke gegarandeerd stabiel is uit zichzelf
voor een niet-acyclisch systeem. Echter, SAVa presteert niet altijd even goed in vergelijking
met de andere besturingsstrategieën. Daarom is er onderzocht of het mogelijk is de prestatie
van de strategie te vergroten door de Savkin strategie te verbeteren. Daarvoor werd eerst
de prestatie van de originele niet aangepaste Savkin strategie bestudeerd. Er is bewezen
in dit verslag voor een fabricagesysteem met een continue stroom werk en geen variabiliteit
dat de Savkin strategie niet optimaal presteert met betrekking tot het minimaliseren van
de gemiddelde doorlooptijd. Verder is er aangetoond dat de gemiddelde doorlooptijd van
het systeem niet onafhankelijk is van de initiële buffer niveaus. Daarna, is er getracht de
Savkin strategie te verbeteren zodat onafhankelijk van de initiële buffer niveaus de gemiddelde
doorlooptijd altijd convergeert naar de laagste waarde mogelijk voor dat systeem. Voor
een acyclisch enkel machine systeem met 2 buffers en en continue stroom van werk en geen
variabiliteit is dit gelukt. Tenslotte, is er bewezen voor het 2 buffers enkel machine system
bestuurd door de verbeterde Savkin strategie dat voor bepaalde initiële buffer niveaus de
gemiddelde doorlooptijd in de kortst mogelijk tijd naar de laagst mogelijk waarde convergeert.

List of Acronyms and Symbols

Acronyms

CLSA
CLW
CLWa

SAV
SA Va

Symbols

Ap,i(t)

Ap,i(t)

A~)s, t)

A;,i(s, t)

bp,i

Bm

dp

D
Dk

p

Clear the Largest Scaled Age control policy as introduced in [Ols99]
Clear the Largest Work control policy as introduced in [Per89]
Slightly modified version of CLW as introduced in this report, when there is a
tie between buffers, it is broken by choosing the buffer with the largest scaled
a ge
Control policy as introduced by Savkin in [Sav03]
Modified version of SAV as introduced in this report, this version is stable for
flexible manufacturing systems with a triangular distribution for the process
and arrival rate and with discrete parts.

Total age of all the work present in buffer bp,i at time t

Total expected age after a setup of all the work present in buffer bp,i

Cumulative input of buffer bp,i in the period [s, t]

Cumulative output from buffer bp,i in the period [s, t]

Buffer in front of machine ap,i containing work of type p

Set containing all buffers at machine m

Desired production level of part type p

Vector containing the lengths of all production runs from all buffers bp,l

Length of a production run from buffer bp,l during cycle k of the improved

Savkin policy for a two buffer single machine system

Time at which workof typepstarts arriving in buffer bp,i duringa scheduling

period j

Time at which the input of work of type p at buffer bp,i ends after it started

arriving at f~,i
ith step of a production path of a part type

Set containing all the production step numbers of a part type p

lh scheduling period T

i x

x

l~,i

m

M

M

p

p

p

q(t)

T

To

Up,i(t)

û~,i(t)

Urn

u:n
Wp,i

List of Acronyms and Symbols

Number of scheduling periods T necessary to guarantee that the cumulative

input of buffer bp,i equals the desired production level of part type p

Number of buffers at machine m

Average transportation delay when a part of type p moves from machine ap,i

to machine ap,i+l

Constant transportation delay when a part of type p moves from machine ap,i

to machine ap,i+l

Machine number

Number of machines in a flexible manufacturing system

Set containing all machines

Last step of a production path of a part of type p

Part type

Number of part types in a flexible manufacturing system

Set containing all part types

Vector containing the machine states of all the machines present in a flexible

manufacturing system at time t

State of machine m at time t

Area in which all positions lay that have a distance E or less from xid(ti~1)

Time at which machine ap,i starts a production run from buffer bp,i during

scheduling period j

Time at which machine ap,i under control of a Savkin policy, which follows

the ideal Savkin trajectory, starts a production run from buffer bp,i

The lengthof a scheduling period for the Savkin policy

Minimal scheduling period as computed by the Savkin control policy for a

flexible manufacturing system with the production levels d1, d2, ... , dp

Time at which machine ap,i under control of a Savkin policy, which follows

the ideal Savkin trajectory, ends a production run from buffer bp,i

Time at which a production run by machine ap,i from buffer bp,i during

scheduling period j ends

Length of one cycle of the improved Savkin policy for a two buffer single

machine system

Time after k cycles of the improved Savkin policy for a two buffer single

machine system

Regulator speed

Regulator speed constant

Average utilization of machine m

Utilization of machine m under control of the Savkin policy

Sealing factor for the Clear Largest Scaled Age policy

x(t)

xo

Xp,i(t)
xid.(t)
p,~

y(t)

Yp(t)

Yp,i(t)

es m

es
m

Àp

Àp(t)
)._C

p

Àp,i(t)

À~,i
>..".
p,~

J.tp,i
c

I-Lp, i

Pm

Pp,i

Xl

Vector containing the buffer levels of all the buffers present in a flexible man­
ufacturing system at time t
Vector containing the buffer levels of all the buffers present in the flexible
manufacturing system at time 0

Vector containing the buffer levels at timet of a two buffer single machine sys­
tem under control of a Savkin policy, which follows the ideal Savkin trajectory

Level of buffer bp,i at time t

Level of buffer bp,i at time t of a two buffer single machine system under control

of a Savkin policy, which follows the ideal Savkin trajectory

Vector containing the cumulative outputs from buffer bp,np in the period [0, t]

of all the part types present in a flexible manufacturing system.

Cumulative output of part type p from buffer bp,np in the period [0, t]

Cumulative output of part type p from buffer bp,i in the period [0, t]

Machine at which the ith step of a production pathof part type p takes place

Time required toperfarm a setup at machine m if all setups require the same
amount of time

Time required to perfarm a setup at machine m as computed by the Savkin
policy

Time required to perfarm a setup when the machine of a two buffer single
machine system switches from buffer b1,1 to buffer b2,1

Time required to perfarm a setup when the machine of a two buffer single
machine system switches from buffer b2,1 to buffer b1,1

Amount of time that the setup for buffer bp,I is extended in cycle k for a two

buffer single machine system

Totallength of a setup with extension for buffer bp,I in cycle k fora two buffer

single machine system

Minimal time required toperfarm a setup at machine m as computed by the
Savkin policy

Average arrival rate of partsof typepat machine ap,l

Arrival rate of parts of type p at machine ap,l at timet

Constant arrival rate of aparts of typepat at machine ap,l

Arrival rate of parts of type p at buffer bp,i at time t

Burst arrival rate of a parts of type p at machine ap,i

Conditional burst arrival rate arrival rate of a parts of type p at machine ap,i

Average ra te at which parts of type p are processed by machine ap,i

Constant rate at which partsof typepare processed by machine ap,i

Average tot al load factor of machine m

Average load factor of a part type p on machine ap,i

xii

p'/n
r~(t)

List of Acronyms and Symbols

Conditional burst congestion level of machine m

Earliest time instanee starting from timet at which at least one of the buffers
of machinemis not empty

rm[qm(·)\Ö](t) Time at which machine m started to work from the buffer from which machine
m is currently processing work at timet

Contents

Assignment

Preface

Summary

Samenvatting (in Dutch)

List of Acronyms and Symbols

1 Introduetion

1.1 Scope of the assignment

1.2 Outline

2 Flexible manufacturing systems

2.1 Flexible manufacturing system characteristics

2.2 Control policy characteristics

2.3 Literature survey

2.4 Resumé ...

3 Control polides

3.1 Control policies

3.2 Adapting the policies .

3.3 Resumé

4 Acyclic systems

4.1 Simulation experiments

4.2 Simulation results and discussion

4.3 Resumé

Xlll

i

iii

V

vii

ix

1

1

2

3

3

8

9

12

13

13

18

22

23

23

27

31

xiv

5 Non-acyclic systems

5.1 Stability

5.2 Simulation experiments

5.3 Simulation results and discussion

5.4 Resumé

6 lmproving the Savkin policy

6.1 Analyzing the Savkin Policy .

6.2

6.3

lmproving the Savkin policy for a simple case

Resumé

7 Conclusions and recommendations

7.1 Conclusions

7.2 Recommendations

Bibliography

A Proof of the main result of [Sav03]

B Various proofs belonging to Chapter 6

B.1 Cyclic clearing

B.2 Reaching the ideal Savkin trajectory

B.3 The optimal trajectory to the ideal Savkin trajectory .

B.4 Number of cycles

B.5 Idling .

B.6 AD:::; s

B.7 Determining the maximum value of E •

B.8 Figures

C Simulation

C.1 Introduetion .

C.2 Statistica! analysis of steady-state systems .

D Simulation files

D .1 Determining the transient phase

D.2 Python

D.3 x files .

E Optimization model

Contents

33

33

38

40

41

43

43

51

62

63

63

64

67

69

71

71

74

75

78

80

81

83

86

93

93

94

97

97

99

103

117

Chapter 1

Introduetion

1.1 Scope of the assignment

The modern flexible manufacturing system consist of a number of machines, buffers and
transportation lines. Some of the machines are capable of processing multiple types of parts or
performing multiple operations on the same part. If the next part type or operation is different
from the previous part type or operation a setup is often required for these machines. For
example, car manufacturers run stamping plants where the setup between part types involves
changing dies. The policy used for switching from processing a part type to a different part
type has a large influence on the performance of the manufacturing system. For example,
consider a machine which has to process two different parts and thus has two buffers in front
of the machine. Switching to the other buffer every time a part has been processed results
in loss of production time. However, switching to a different buffer only after a long period
processing the same part results in large buffer levels and longer waiting times of the parts
in the buffers. Therefore, it is important to determine a switching policy for the flexibele
manufacturing systems that guarantees a certain objective. For example, to minimize the
time required to achieve a desired production level or minimize the average flow time.

A lot of tools exist that try to find an optimal schedule for processing jobs that are all present
at initial time. However, in a modern production environment jobs arrive continuously over
time. This continuously arrival of jobs is highly relevant in deciding which part to process
next. The focus of this report is on the control of these modern production environment.
For these systems various control polides exist. Some of these control polides have been
developed by approximating manufacturing systems with differential logical equations. The
goal of this project is to investigate how and to what extend these approximation models and
their control polides can be utilized to control real manufacturing systems.

Most of the various control polides that exist have been developed and proven to be stabie
for an acyclic manufacturing system withno variability present. However, a manufacturing
system without variability is not realistic. Therefore, the influence of variability needs to
be investigated. In this report the influence of variability is investigated with the use of
discrete event simulation, because analytica! results are not yet available. It can be shown
that most of the polides developed are unstable for certain conditions when applied to a
non-acyclic system. A number of techniques to stabilize these systems have been proposed

1

2 Chapter 1. Introduetion

in literature. Just recently a switching policy was introduced which is stabie without such
techniques [Sav03], but this policy is only suitable for deterministic systems. The questions
that this reports tries to answer can be summarized as follows:

• Which control polides are available for cantrolling fl.exible manufacturing systems?

• Are these polides suitable for stochastic environments and, if not, can they be adapted?

• For acyclic systems, how do these polides perfarm and what is the infl.uence of certain
characteristics of the system on the performance?

• For non-acyclic systems, which techniques are available for stahilizing unstable con­
trol polides and how do they perfarm compared to the just recently developed stabie
switching policy [Sav03]?

• When the previous questions are answered, is it possible to point out one policy with
the best performance and if not, is it possible to imprave the most promising policy in
order to increase its performance?

In this report the average flow time of all parts is used as a performance measure for a control
policy.

1.2 Outline

The outline of this report is as follows. The next chapter introduces the notation used to
describe a fl.exible manufacturing system in this report. Furthermore, the results of a literature
survey on the subject of cantrolling such lines are given. In Chapter 3, three control policies,
chosen from the literature survey, are explained further. Then, it is investigated if and how
the polides need to be adapted to function in a stochastic discrete environment. In Chapter 4
simulation experiments are setup and performed in order to campare the three polides with
each other for a simple single machine system with acyclic production paths. After that the
polides are compared for a more complicated manufacturing system containing non-acyclic
production paths. Furthermore, instability problems that may arise are studied and it is
explored what the effect is of equipping (if necessary) the polides with an existing stahilizing
tool. Finally, it is investigated in Chapter 6 if it is possible to imprave the most promising
policy.

Chapter 2

Flexible manufacturing systems

This chapter starts with an introduetion on the different characteristics of a fiexible manufac­
turing system. Furthermore, this chapter introduces a continuous approximation of a fiexible
manufacturing system and various definitions are presented. A fiexible manufacturing system
is controlled by a control policy. Therefore, the general properties of a control policy are
introduced. Finally, the results of a literature survey on the subject of control polides are
discussed.

2.1 Flexible manufacturing system characteristics

The fiexible manufacturing systems described in this report have the following features:

1. There are P part-types which belong to the set P = {1, 2, ... , P} and there is a set
M = {1, 2, ... , M} of machines.

2. Parts of type p require processing at the machines O:p,l, o:p,2, ... , o:p,np in that order,
where o:p,i E M and i belongs to thesetIp = 1, 2, ... , np.

3. Raw parts of type p arrive to the system at machine o:p,l with an average ra te of Àp > 0.

4. At the ith machine they visit, parts of typepenter the buffer labelled bp,i, from which
they are eventually processed by this machine at an average rate of P,p,i > 0.

5. Partsof type p incur an average transportation delay lp,i 2:: 0 when rnaving from machine
O:p,i to machine o:p,i+l·

6. The machine m serves the buffers Bm := {bp,i : O:p,i = m}. A minimal setup time
Om 2:: 0 is required when machine m switches from processing parts of type p present
in buffer b E Bm to processing parts of another type p' present in buffer b' E Bm. The
machine does not work during such a setup.

Until stated otherwise, it is assumed that the transportation delay, arrival and process rate are
stochastic variables with an average of respectively lp,i' Àp and J.tp,i· It will be explicitly stated
when these variables are assumed to have constant values. A constant transportation delay,

3

4 Chapter 2. Flexible manufacturing systems

arrival or process rate is denoted with l~,i' À~ and 11~,i respectively. The minimal setup time
Om is assumed constant throughout this report. Therefore, the 'c' is left out for simplicity.

An example of a flexible manufacturing system is given in Example 2.1 to illustrate the above
description.

P= 1
b1,1 lil b1,2 lil

.
m= 1 m=2

lil b2,1

p =2

Figure 2.1: The flexible manufacturing system of Example 2.1.

Example 2.1. Consider the flexible manufacturing system depicted in Figure 2.1 and de­
scribed as:

p = {1,2}

a1,1 = 1

Ü2,1 = 2

>.i= 1

11Î,l = 2

11~,1 = 2

li,l = 0.1
2

el=-
3

M = {1,2}

a1,2 = 2

Ü2,2 = 1

À~= 2

11i 2 = 3
'

11~ 2 = 4
'

l~ 1 = 0.1
'

The manufacturing system consists of two parts P = {1, 2} and two machines M = {1, 2}.
The arrival rates of the parts are respectively >.i = 1 and À~ = 2. The first step for processing
part 1 is on machine one (a1,1 = 1}, with a process rate of 2 (11i, 1 = 2). The second step is
on machine two (a1,2 = 2) with a rate 3 (11i, 2 = 3). Part 2 is first processed on machine two
(a2,1 = 2) with a rate of 2 (11~, 1 = 2) and after that on machine one (a2,2 = 1) with a rate of
4 (11~,2 = 4). The time required to transport part 1 from machine one to two and part 2 from
machine two to one equals 0.1 (l[, 1 = 0.1). The time required toperfarm a setup on machine

one equals ~ (01 = V and for machine two equals 1 (82 = 1).

In addition to the various system parameters provided above the following parameters are
used to describe a flexible manufacturing system. Let Xp,i(t) denote the level of buffer bp,i at
timet and for any 1 S m S M and let qm(t) denote the state of machine m. Furthermore,
let Bm := {bp,i :_ ap,i = m} be the set of the buffers ser:red by machine m, and introduce the
set of symbols Bm := Bm U {0}. The function qm(t) E Bm is defined for all timestas follows:

qm(t) := { ~' .
p,~,

if machine m does not work at time t;
if machine m works with buffer bp,i at timet.

Moreover, let Yp(t) denote the cumulative output of part-type p from buffer bp,np over [0, t].

2.1. Flexible manufacturing system characteristics 5

For a flexible manufacturing system the following physically natural initial conditions are
considered:

x(t) = xo y(t) = 0 q(t) = 0 \;ft < 0, (2.1)

where x 0 is a given vector with non-negative components. Furthermore, the control policy in
use should always make sure that the following condition holds:

Xp,i(t) 2 0 \;ft 2 0, Vi EI, \lp E P, (2.2)

sirree a buffer level physically cannot become negative.

The state of buffer bp,1 in a system without variability can now be described by the following
logical-differential equations [Sav98]:

if qap,l (t) = bp,1

then xp,1 (t) = À~ - f-l~,u

if qap,l (t) of. bp,1

then Xp,1(t) =À~.

(2.3)

These equations are a continuous approximation of the discrete flow of parts. The contents of
the bufferscan been seen as work. It is convenient to see the work as a fluid and the buffers
as tanks.

Furthermore, for 2 :::; i :::; np and 1 :::; p:::; P the level of a buffer can be described with:

if (qap,i (t) = bp,i and qap,i-I (t- l~,i) = bp,i-1)

then xp,i(t) = J-L~,i- 1 - 1-l~,i,

if (qap,i(t) = bp,i and qap,i- 1 (t -l~,i) #- bp,i-1)

then xp,i(t) = -J-L~,i'
if (qap,i (t) #- bp,i and qap,i- 1 (t- l~,i) = bp,i-1)

then Xp,i(t) = f-L~,i-ll
if (qap,i (t) #- bp,i and qap,i- 1 (t- l~,i) #- bp,i-1)

then Xp,i(t) = 0.

(2.4)

lf Yp,i(t) denotes the cumulative output of part-type p from buffer bp,i for 1 :::; i :::; np and
1 :::; p :::; P over the time interval [0, t], then Yp,i(t) is described by the initial condition
Yp,i(O) = 0 and:

if qap,i (t) = bp,i

then i;p,i (t) = f-L~,i,

if qap,i (t) of. bp,i

then i;p,i(t) = 0.

(2.5)

6 Chapter 2. Flexible manufacturing systems

The above mentioned continuous approximation of a flexible manufacturing system belongs
to the class of hybrid dynamical systems. A system is said to be hybrid dynamical [Sav98]
if it combines continuous and discrete behavior and involves, thereby, both continuous and
discrete state variables. For example, in the above approximation the buffer levels Xp,i(t) are
continuous and the machine states qm(t) are discrete.

For the earlier described flexible manufacturing system the following definitions are presented.

Definition 2.1. [Hop96] The utilization of a machine is the fraction of time it is not idle for
lack of parts. This includes the fraction of time the machine is working on parts or has parts
waiting and is unable to work on them due to machine failure, setup or other detractors. The
utilization is computed as:

.
1

arrival rate
ut1 ization = ,

effective processing rate
(2.6)

where the effective processingrateis defined as the maximum average rate at which the work­
station can process parts, consiclering the effects of failures, setups and all other detractors.

In the manufacturing system described above the only detractor present is setup and possible
variability. However, the effect of the setup time on the maximum average rate at which the
workstation can processpartsis difficult to determine. Thus, making it hard to compute the
utilization. Therefore, the following definition is introduced.

Definition 2.2. The average total laad factor Pm of a machine m (m E M) is the average
fraction of time that machine m is processing parts and is defined as:

À
P - "" __l!_ m- 0 .

b f..Lp,i
p,iEBm

(2.7)

Note that the average load factor of a part type p (pEP) on machine ap,i (iE Ip) equals:

Àp
Pp,i = --.

f..Lp,i
(2.8)

In other words, the average total load factor is the necessary fraction of time that machine
m must work on average to ensure stability. Therefore, for a manufacturing system with a
non-zero minimal setup time Om a necessary capacity condition for stability of any control
policy is:

Pm < 1 VmEM. (2.9)

Note that for the average utilization Um and the average totalload factor Pm the following is
always true:

Pm ~Um VmEM. (2.10)

For the above described system the average totalload factor equals the average utilization if
the minimal setup time Om equals zero.

2.1. Flexible manufacturing system characteristics 7

For a system with no variability and with a setup time of zero the capacity condition (2.9)
can be relaxed to:

Pm =Urn :S 1 VmEM. (2.11)

However, in a stochastic environment the utilization has to besmaller than 1, since a utiliza­
tion of 1 results in an unstable system. The average total load factor equals the utilization
if the minimal setup time Bm equals zero. Therefore, for a system with variability capacity
condition (2.9) should be satisfied.

Let the production pathof a part be the sequence in which a part visits the machines. Note
that the production path is a part of the recipe of a part. Flexible manufacturing systems
are distinguished into two different classes with regard to the production paths of the parts.

Definition 2.3. [Per89] A fiexible manufacturing system is called acyclic if the machines can
be ordered so that parts can only move from one machine to a machine higher in the ordering.
The system is called non-acyclic if such an ordering is not possible.

P=1

~
P= 1

b,,2 I lil
m=1 m=3

P=2

~ P=2~ P=2
b2,3 I lil

m=2

P=3

~
p=3

Figure 2.2: An acyclic manufacturing system.

An example of an acyclic manufacturing system is depicted in Figure 2.2. The figure shows
a fiexible manufacturing system consisting of 3 machines and 3 different part types. Part
type one is first processed on machine one and then on machine three. The production path
of part type two is: machine one, machine two and finally machine three. Parts of type 3
need only to be processed on machine two. All the parts flow from a machine lower in the
ordering to a machine higher in the ordering. The ordering of the machines is 1 -< 2 -< 3.
A system where parts visit a machine more than once is called re-entrant. An example of a
re-entrant system is shown in Figure 2.3. The figure shows a fiexible manufacturing system
consisting of two machines and only one part type. The production path of this part type
is: machine one, machine two, machine two and finally machine one again. Thus, parts visit
machine one and machine two more than once. The system of Figure 2.3 is also non-acyclic,
since no ordering exists between the machines. Note that a non-acyclic system differs from
a re-entrant system. A system which is not re-entrant can still be non-acyclic. An example
of a non-acyclic system which has nore-entrant production paths is given in Example 2.1. A
part visits each machine only once, thus the system is not re-entrant. However, the system is
non-acyclic, since the machines cannot be ordered.

For a manufacturing system that only consists of one machine, a single machine system, a
distinction is also made on basis of the part type properties.

8 Chapter 2. Flexible manufacturing systems

P=1
b1,1 lil b1,2 lil

m=2

lil b1,4 lil b1,3

Figure 2.3: A non-acyclic manufacturing system.

Definition 2.4. [Ols99] A single machine system is said to be symmetrie if all part types
have identical arrival rate, setup time and process rate distributions, otherwise the system is
said to be asymmetrie.

In order to study deterministic multi machine systems it is useful to consider the following
class of inputs.

Definition 2.5. [Per94] Inputs belong to the class of bounded burstiness inputs if there exists
a constant '"'/p such that:

1t Àp(t) · dt:::; À~· (t- s) + '"'/p \ft :2: s :2: 0. (2.12)

In which J: Àp(t) · dt denotes the cumulative input of parts of type p (p E P) into the system.

The class of bounded burstiness inputs is one of the few classes for which bounds on system
parameters, such as buffer levels, can be determined.

2.2 Control policy characteristics

The characteristics of a flexible manufacturing system have now been described. A control
policy is required, which controls such a manufacturing system. The general properties of a
control policy are introduced in this section.

Definition 2.6. For a flexible manufacturing system a control policy is said to be stable if
for every initial condition, there exists a fini te constant Lb,i, such that for every (p, i):

Xp,i(t) :::; Lp,i :::; 00 \ft :2: 0, \:lp E P, \:/i E Ip. (2.13)

Thus, a control policy is said to be stabie if every buffer in the flexible manufacturing system
is bounded. Note that a control policy can only bestabie provided that the capacity condition
(2.9) holds for the flexible manufacturing system.

Definition 2.7. [Per94] A control policy for a single machine system is said to be stable in
isolation (SI), if it stahilizes the single machine under bounded burstiness inputs.

2.3. Literature survey 9

Definition 2.8. [Per89] A control policy is said to be distributed if the policy makes decisions,
regarding scheduling of parts to be worked on at machine m, by only observing the buffer
levels at machine m.

Definition 2.9. [Per94] A distributed control policy fora multi machine system is said to be
distributed stable in isolation (DSI) if every machine implements a stabie in isolation control
policy.

The control polides can be divided in three different service disciplines [Tak86].

1. Exhaustive service: the machine continues to process from a buffer until the buffer is
emptied. Parts arriving at the buffer currently being emptied are also processed.

2. Gated service: the machine processes only those parts which are waiting in the buffer
at the moment the machine started the setup for that buffer.

3. Limited service: a buffer is serveduntil either:

(a) The buffer is emptied.

(b) A specified number of parts are processed.

Furthermore, a control policy can have the following properties [Ols99].

• Queue greedy: the machine never idles at a buffer while there are parts in the buffer.

• System greedy: the machine never idles while there are parts in one of its buffers.

• Patient: if there are no more parts in the buffer then the machine idles at the last buffer
it processed from.

• FIFO service: The parts in a buffer are processed in order in which they arrived (i.e.
First In First Out).

The in this report needed characteristics of a fl.exible manufacturing system and of a control
policy, have now been described. In the next section it is investigated by means of a literature
survey, which control polides already exist.

2.3 Literature survey

A control policy is required in order to control the fl.exible manufacturing system that has
been introduced in the previous section. In this section the results of a literature survey on
control polides are discussed. In the survey it is assumed, until stated otherwise, that the
time required to perform a setup is non-zero. Obviously, the necessary capacity condition
(2.9) should be satisfied.

In literature a lot of information can be found that deals with static models. These static
models try to solve the problem of scheduling a fixed number of parts or jobs, with known
processing requirements, on a given set of machines, in order to minimize or maximize certain
performance measures like the average flow time. However, the solution procedure grows

10 Chapter 2. Flexible manufacturing systems

increasingly more complex with an increasing number of parts or scheduling horizon. Also
in a modern production environment jobs arrive continuously over time and thus the number
of parts are not known at initial time. Therefore a more dynamica[approached is preferred.
Unfortunately, the greater part ofliterature deals with static scheduling and not with dynamic
scheduling. Most literature on dynamic scheduling follows the approach as set by [Ger86] and
[Tak86]. The former states that a setup should not be performed too often because of the
resulting reduction of capacity and a setup should not be performed infrequently, because of
the resulting increase in flow time and buffer levels. The latter introduces among other things
the three service disciplines, exhaustive, gated and limited, as introduced in the previous
section.

In [Per89] different distributed control policies are introduced, such as Clear the Largest Buffer
(CLB) and Clear the Largest Work (CLW). These policies are all exhaustive, patient, queue
and system greedy and have a FIFO service discipline. The policies mentioned in [Per89] all
belong toa more general class of policies, namely the Clear a Fraction (GAF) control policies.
The control policies are proven stable for a single machine in isolation in a deterministic
environment. In addition, for an acyclic system it is proven that a CAF policy will stabilize
a mul ti machine system (in a deterministic environment) for all initial conditions. In [Per89]
it is still an open question if a CAF policy will stabilize a non-acyclic system. However, a
modified CAF backoff policy is provided, which will stabilize a non-acyclic system for all
initial conditions. This modified policy processes a part type p when it would have processed
the same part type if the machine had been in isolation. In other words, the policy uses part
type ordered time slices, with a length determined by the working of each machine as though
it is in isolation.

In [Kum90] it is shown that a CAF policy does not stabilize a non-acyclic manufacturing
system. It turns out that bounded levels of the buffers is not a property independent of the
initial conditions. Even a setup time equal to zero can result in instability. Furthermore,
[Kum90] introduces an Universally Stahilizing Supervisory Mechanism (USSM) that can be
used by a supervisor to stabilize any control policy. The USSM

• truncates all long enough production runs, and

• maintains a FIFO (First In First Out) list of all buffers with a large number of parts.

Though this mechanism is called supervisory it can be implemented in a distributed way.
Note the difference between the two stahilizing policies introduced by [Per89] and [Kum90].
The policy of [Per89] (backoff) is used to implement a CAF policy at each machine as though
it were operating in an isolated mode, but the policy of [Kum90] (USSM) can be used as a
"safety net" for any policy. The stability of the CAF policy with backoff is achieved at the
price of possible enforced idleness and thus possible unnecessarily large buffer levels. The
USSM ensures stability without forced idleness, though some time is lost due to repeated
switchings [Per94].

In [Per94] deterministic manufacturing environments with bounded burstiness inputs have
been analyzed. It is shown that distributed stable in isolation (DSI) policies are stable for
acyclic systems with bounded burstiness inputs. It is also shown that the CAF policies belong
to the class of stable in isolation (SI) policies and to the class of distributed stable in isolation
(DSI) policies. Furthermore, a third approach is provided to stabilize a non-acyclic system,

2.3. Literature survey 11

which implements system elements called regulators. The idea of using regulators is due to
[Hum94]. However, [Per94] introduces an improved version. It is proven that if the regulators
satisfy certain conditions, then the system will be stabie for all DSI polides with bounded
burstiness inputs. In [Hum94] it is also shown that CAF polides with backoff and USSM
can both be treated as particular cases of totally regulated systems. Note, that all provided
proofs of stability are only valid for deterministic systems or systems with inputs containing
bounded burstiness.

In [Liu92] it is shown for a symmetrie single machine system with variability and discrete parts
that a Stochastically Largest Queue (SLQ) policy stochastically minimizes the (unfinished)
work in the system. If all buffer levels at the machine are known, a SLQ policy switches
to a queue known to have the largest buffer level. Note that a Clear the Largest Buffer
policy (CLB) belongs to the class of SLQ polides and in a symmetrie system so does Clear
the Largest Work (CLW). Furthermore, [Liu92] shows that queue greedy, exhaustive, FIFO
service polides stochastically minimize the (unfinished) work in a single machine system.
Hence, for symmetrie systems, queue greedy exhaustive polides also minimize the expected
waiting time in a buffer [Ols99]. Finally [Liu92] shows for symmetrie systems that patient
polides minimize the expected waiting time.

In [Coo98] en [Coo99] it is discussed that a non idling policy does not have toperfarm better
than an idling policy. In [Ols99] a new heuristic policy is introduced, which in this report
is called Clear the Largest Scaled Age (CLSA), and it uses the scaled age of the parts in
each queue, as well as queue statisties, to decide which queue to service next. Like the CAF
polides this policy is exhaustive, patient, queue and system greedy and has a FIFO service
discipline. This policy is compared with other (heuristic) policies, by simulating the polides
for a single machine in isolation in a stochastic environment. It turns out that the proposed
policy has a good performance with respect to the average waiting time in the buffers, the
waiting time varianee and the confidence interval. However, a drawback is that this policy
only works good with significant large setup times (it does not work with a setup equal to
zero).

In [Lu91] several control polides are analyzed for re-entrant manufacturing systems with a
setup time Bm equal to zero. It is shown for a single part manufacturing system, that the
First Buffer First Serve (FBFS), Last Buffer First Serve (LBFS), Earliest Due Date (EDD)
and Least Slack (LS) polides are stabie even with inputs containing bounded burstiness.
Simulation tests are performed and it seems that LBFS may wel be the best policy for
minimizing the flow time, while LS may be the best policy for minimizing the varianee of the
delay. For a multiple part situation the uniform LBFS and Interleave FBFS polides are stable.
Open questions in [Lu91] are the stability of the First Games First Serve (FCFS/FIFO) policy
for single and multiple part systems and the stability of the LS and EDD policy in a multiple
part system and the stability of the LS and EDD policy in a multiple part system. In [Sei94]
it is shown that FIFO /FCFS can be unstable. In [Ban97] it is demonstrated by simulation
again with a setup time Bm equal to zero that the FIFO/FCFS, Shortest Mean Processing
Time First and Shortest Remaining Processing Time First polides can be unstable. Also
applying LBFS at station 1 and FBFS at station 2 can result in instability. Furthermore,
simulation is used to calculate feasible regions of stability.

In [Sav98] the concept of regularizability for a complex switched server queueing network
with non zero setup times is introduced. A switched server queueing network, with bounded

12 Chapter 2. Flexible manufacturing systems

time-varying arrival rates, is called regularizable if there exist a control policy such that the
following two conditions hold:

1. All the trajectoriesof the closecl-loop system are bounded

2. In case of constant average arrival rates, the relevant dynamics of the closecl-loop system
exhibits a regular eventually periadie behavior.

For regularizable networks the paper introduces a control policy which guarantees bounded­
ness and a regular predictabie behavior of all the trajectories (acyclic and non-acyclic) of the
network. Note, that there is a large similarity between inputs cantairring bounded burstiness
and these bounded time-varying arrival rates. This policy is non-greedy and impatient. Fur­
thermore, the policy is a variation on the limited service discipline. A modified version of the
control policy is introduced in [Sav03].

The difference between the polides is the focus of [Sav03] on a manufacturing environment
and in [Sav98] on a general complex switched server queueing network.

2.4 Resumé

The CAF polides are stabie for acyclic systems or for non-acyclic systems with certain stahi­
lizing techniques, all for systems in deterministic environment with inputs cantairring bounded
burstiness. The CLSA heuristic policy has been shown to be stabie with the use of simulation
for a single machine in a stochastic environment. In [Liu92] it is shown that SLQ polides
minimize the unfinished work and the number of parts in a stochastic symmetrie single ma­
chine system. The Savkin policy is stabie for all deterministic systems and for systems with
bounded variability in the arrival rates. The polides as discussed in [Lu91] are stabie for
deterministic non-acyclic systems without setup.

All proven stability is basedon hybrid dynamica! systems. However, in a realistic manufactur­
ing environment, variability, non-zero setup times, non continuous flow of parts, asymmetrie
queues and more than one machine are aften present, thus none of the polides is proven
or shown to work in such environment. In the following chapters it is investigated what
the influences are of stochasticity, discretization, asymmetry or multiple machines on the
performances of the different policies. The following polides are compared with each other.

• Savkin policy (SAV) [Sav98], [Sav03], because this policy is already proven to bestabie
for non-acyclic systems.

• Clear the Largest Work policy (CLW) [Per89], which is a special case of the CAF
policy, because this policy is optimal for the amount of parts and unfinished work in a
symmetrie system.

• Clear the Largest Scaled Age (CLSA) [Ols99], because it has been shown that this policy
perfarms well compared to other policies.

The polides as discussed in [Lu91] are not used for comparison, because these polides are not
proven stabie for systems with a setup time Om not equal to zero.

Chapter 3

Control policies

The previous chapter introduced a flexible manufacturing system, which can produce differ­
ent types of parts on the same machine. A certain amount of time is required in order to
change the production from one part type to a different part type. Furthermore, general
characteristics of a control policy, which can control such a manufacturing system, have been
introduced. Finally, the results of a literature survey on different control polides have been
given and from that survey three polides were chosen for comparison. In this chapter these
three policies, which are the Savkin policy (SAV), the Clear the Largest Work (CLW) policy
and the Clear the Largest Scaled Age policy (CLSA), are are explained in more detail. SAV
and CLW are only designed for systems without variability or for systems with a special
limited variability. Furthermore, the workin the systems can only be continuous. However,
in a realistic manufacturing system variability is present and the work consists of discrete
parts. Therefore, it is investigated in this chapter if the polides need to be adapted in order
to function in a more realistic system with variability and discrete parts.

3.1 Control polides

3.1.1 Control policy of Savkin

The control policy of Savkin (SAV), as has been introduced in [Sav98], is the only control
policy found to be proven stabie for both acyclic and non-acyclic systems. In [Sav03] a
modified version of the policy is introduced, which focusses on a manufacturing environment.
The policy of [Sav03] has been developed for a deterministic hybrid dynamica! manufacturing
system, such as the system described in Section 2.1. Thus, the policy is only defined for
constant values of the transportation delay, arrival and process rate.

The feedback policy that [Sav03] proposes has the following general form. When processing
work from a bufferband the buffer becomes empty or when the machine has been processing
work from that buffer for a certain amount of time then perform a setup toa different buffer b'.
The lengthof the setup tob' depends on the time that the machine has been processing parts
from buffer b. This can be formalized in the following general form: design sets Tm(b f-+ b')
and functions Fm : ([qm(·), xb(·)]Ö) f-+ [Om, oo) ,where 1 ~ m ~ M, b E Bm, b' E Bm- These

13

14 Chapter 3. Control policies

sets and functions define a feedback policy of the form:

if (qm(t) = b and [qm(·), Xb(·)]b E Tm(b ~---+ b')) then

e:n(t) :=Fm ([qm(·), xb(·)]b)
qm(i) := 0 Vt E (t, t + e:n(t)]
qm(t + e:n(t) + 0) := b'.

(3.1)

Notice that a feedback policy of the form (3.1) is distributed and that the setup time e:n(t)
is the control variable. However the condition:

(3.2)

should be satisfied.

In [Sav03] the following constauts d1 > 0, d2 > 0, ... , dp > 0 are introduced, which are desired
production levels and T > 0, which is the length of a given scheduling period. The control
objective of [Sav03] is then formalized in the following definitions and problem statement.

Definition 3.1. [Sav03] The closecl-loop system (2.3), (2.4), (2.5) and (3.1) is said to be
regular with the production levels d1, d2, ... , dp and the scheduling period T if it is stabie
and the following condition holds. For any salution [q(t), x(t)] to the system with initial
conditions (2.1), the output y(·) satisfies:

_lim (Yp,i((j + 1)T)- Yp,i(jT)) = dp Vp EP, Vi E Ip.
J->00

(3.3)

Definition 3.2. [Sav03] Assume that d1 > 0, d2 > 0, ... , dp > 0 are given. The minimal
time To for which there exist constant arrival rates ÀÎ > 0, À~ > 0, ... , Nj, > 0 and a feedback
policy such that the closecl-loop system is regular with the production levels d1, d2, ... , dp
and the scheduling period To, is called the minimal scheduling period of the system with the
production levels dt, d2, ... , dp.

In other words, a fl.exible manufacturing system with constant arrival rates is called regular
if the two following conditions hold:

1. All the trajectodes of the closecl-loop system are bounded, which means that the system
can operate with finite buffer capacity.

2. The production of the part-types 1, 2, ... , Pover time intervals [jT, (j + 1)T] converges
to the given desired production levels d1, d2, ... , dp as j tencis to infinity.

The possible minimal value of such timeT is called the minimal scheduling period To. The
Savkin policy is designed to solve the following problem.

Problem statement: For the following manufacturing system defined by its production
paths ap,1, ap,2, ... , ap,np of the part types P = {1, 2, ... , P}, constant machines rates 1-l~,i'
constant transportation delays l~,i and minimal setup times (}m· Find the minimal scheduling
period To of the system with given desired constant production levels d1, d2, ... , dp. For any
T 2:: To, propose constauts arrival rates ÀÎ > 0, À~ > 0, ... , Nj, > 0 and a feedback policy

3.1. Control policies 15

such that the closecl-loop system is regular with the production levels d1 , d2, ... , dp and the
scheduling period T.

Note that the above problem statement is a slightly modified version of the following op­
timization problem: find the minimal time T and a control policy such that production of
part types over the time interval [0, T] equals to given desired levels. No constructive imple­
mentable real time solutions are known for this problem. However, the modified problem has
a constructive real time solution.

The main result

The minimal scheduling period T0 can now be calculated with [Sav03]:

To := Elax [kmBm + L d:] '
m-l, ... ,M /-lp i

bp,iEBm '

(3.4)

in which km represents the number of buffers in Bm. Furthermore, the following constants
are introduced for T ~ To [Sav03]:

es ·= m· (3.5)

The feedback policy that is proposed in [Sav03] reads as follows. Form the following cyclic
sequence of buffers of machine m:

(3.6)

Where b1, b2, ... , bkm denote the km buffers of machinemin an arbitrary order. Let b E BM,
then nextsAv[b] is the buffer from Bm that is next to b in the cycle sequence (3.6). Let
[x(t), q(t)] be a trajectory of the system and introduce the function:

Tm[qm(·)IÖ](t) := inf{to :S ti qm(s) = qm(t) Vs E (to, t]}. (3.7)

Which is the time when the machine m started to work from the current buffer. The feedback
policy then becomes:

1\ (Xp,i(t) = 0 V t- Tm[qm(·)IÖ] = :t.)) then
p,<

e:n(t) := e:n + ~- t + Tm[qmOiöl
p,<

(3.8)

qm(t) := 0 Vi E (t, t + e:n(t)]

qm(t + e:n(t) + 0) := nextsAv[b].

Since T ~ To it is implied by (3.4) and (3.5) that 8~ ~ Om, thus requirement (3.2) is always
satisfied. The arrival rates canthen be calculated with:

)..C ·= dp
P • T Vp. (3.9)

16 Chapter 3. Control policies

In words, the controller limits that the time the machine is allowed to process from a buffer.
The machine idles when the time limit has not yet been reached and the buffer is empty.
The setup for a different buffer is started when the time limit expires. However, the setup
time can be larger than the time required to perform the setup in order to regulate the total
system. Note that the policy does not depend on the transportation delay l~,i·

In [Sav03] no proof is provided for the main results as stated above. In [Sav98] it is shown
that a switched server queueing networkis regular with the policy described above. However
the network as described in [Sav98] differs slightly from the manufacturing system described
above. Therefore, it shown in Appendix A that the proof provided in [Sav98] also holds for
the manufacturing system in [Sav03].

3.1.2 Clear the Largest Work Policy

The Clear the Largest Work policy (CLW) belongs to the class of Clear A Fraction (CAF)
policies. CAF polides are all exhaustive, patient, queue and system greedy and have a
FIFO service discipline. Note that the policy has been developed for a deterministic hybrid
dynamica! manufacturing system with bounded burstiness inputs.

Definition 3.3. [Kum90] An exhaustive policy is said to be a Clear A Fraction (GAF) policy,
if for each machine m there exists a constant Em > 0, and a constant Km such that if machine
m cammences a setup for buffer bp,i E Bm at time t, then:

Xp,i(t) 2:: Em 2::::: Xq,j(t)- Km.
bq,jEBm

The Clear the Largest Work (CLW) Policy belongs to the class of CAF policies.

(3.10)

Definition 3.4. [Per89] An exhaustive policy is said to be a Clear the Largest Work (CLW)
policy if machine m cammences a setup for buffer bp,i E Bm at time t such that:

Xp,i(t) > Xq,j(t)
-- ---

c - c
f..Lp,i f..Lq,j

(3.11)

In words, after emptying a buffer, the machines will serve the buffer that takes the most time
to empty.

Let bp,i E Bm and introduce the following function:

rfn(t) := inf{s 2:: ti 3xp,i(s) =/= 0}. (3.12)

In other words, r~(t) is the time s 2:: t at which one or more of the buffers is or are not
empty. Furthermore, assume that machine machine m has been processing work from bp,i,
then the function nextLw[Bm](t) returns the buffer bq,j =/= bp,i, bq,j E Bm which contains the
mostworkas defined by (3.11).

3.1. Control policies

Let bp,i E Bm. The CLW feedback policy can now be defined:

if (qm(t) = bp,i 1\ Xp,i(t) = 0) then

if (xq,j(t) = 0 'ibq,j E Bm) then
- - l qm(t) := 0 'it E (t, Tm(t)]

qm(T~(t) + 0) := bp,i
else

qm(i) := 0 Vi E (t, t + Bm]

qm(t + Bm + 0) := nextLw[Bm](t).

17

(3.13)

In words, if at time t the buffer bp,i from which machine m is processing becomes empty.
Then the policy checks if all buffers at machine m are empty. If all buffers are empty, the
machine idles until one of the buffers becomes non-empty. The policy then assigns machine
m to work again on buffer bp,i and starts all over. If not all buffers are empty, machine m
cammences a setup for the buffer cantairring the most work. Note that the policy does not
depend on the transportation delay l~,i.

3.1.3 Clear the Largest Scaled Age Policy

The Clear the Largest Scaled Age (CLSA) heuristic policy as introduced by [Ols99] uses part
ages multiplied by a scale factor todetermine which buffer should be served next. The two
previous discussed control policies (SAV and CLW) were analytical proven to be stabie for
a deterministic system or for a system with a limited variability, bath with only continuous
work. CLSA has not been proven stable. However, it was shown with the use of simulation
that CLSA is stabie for a stochastic single machine system with a discrete flow of parts.

Definition 3.5. [Ols99] An exhaustive policy is said to be a Clear the Largest Scaled Age
(CLSA) policy if machine m cammences a setup fora non-empty buffer bp,i E Bm at timet
such that:

'ibq,j E Bm for which Xq,j # 0 holds. (3.14)

In which Ap,i(t) is the total expected age after a setup for buffer bp,i and Wp,i is a sealing
factor:

(3.15)

In which Ap,i(t) denotes the total age currently present in buffer bp,i· Note, that the buffer
level Xp,i(t) has a discrete value and indicates the number of parts in the buffer. The total
age is the age of all the parts in the buffer add up together. In other words, if tin;,i is the
time at the jth part arrives in buffer bp,i after the buffer became empty then the total age is
defined as:

Xp,i

Ap,i(t) = 'L,(t- tin;,i).
j=l

(3.16)

18 Chapter 3. Control polides

The sealing factor Wp,i is defined as:

1
w . - ---.,---

p,t- Om(1- ~)·
J1,p,,

(3.17)

Note that the sealing factor Wp,i assigns a low priority to buffers with a long setup time or a
low utilization.

Furthermore, assume that machine m has been processing work from bp,i E Bm, then the
function, nextcLsA[Bm](t) returns the buffer bq,j # bp,i, bq,j E Bm which has the largest
scaled age, as defined in (3.14). The CLSA feedback policy can now be defined:

if (qm(t) = bp,i 1\ Xp,i(t) = 0) then

if (xq,j(t) = 0 Vbq,j E Bm) then
- - l Qm(t) := 0 Vt E (t, rm(t)]

Qm(r~(t) + 0) := bp,i (3.18)

else

Qm(i) := 0 Vi E (t, t +Om]

Qm(t +Om+ 0) := nextcLsA[Bm](t).

In which rfn(t) is defined as in (3.12). In words, if at time t buffer bp,i from which machine
mis processing is empty. Then the policy checks if all buffers at machine m are empty. If all
buffers are empty, the machine idles until one of the buffers becomes non-empty. The policy
then assigns machine m to work again on buffer bp,i and starts all over. If not all buffers are
empty, machine m cammences a setup for the non-empty buffer having the largest scaled age.

In [Ols99] no (stochastic) transportation delay lp,i was included in the simulation used to show
stability. As can been seen from (3.14) and (3.18), a transportation delay does not influence
the policy directly. The transportation delay does influence the arrival rate. However, it
only adds more variability to the arrival rate. CLSA was shown stable for a stochastic single
machine system, thus adding a transportation delay does not result in instability for the single
machine system.

3.2 Adapting the policies

In the previous section the control policies SAV, CLW and CLSA have been explained. SAV
and CLW have been developed for a deterministic system or for a system with a limited
variability, both with only continuous work. No variability and no discrete parts is not
realistic for a manufacturing environment. Therefore, it is investigated in this section if the
policies can cope with stochastic systems with discrete parts insteadof deterministic systems
with a continuous flow of work. Furthermore, if a policy can not cope with a stochastic system
with discrete parts, the policy is adapted so that is can work with such a system.

In the next chapter the three policies are compared for different system parameters such as
arrival rates, number of buffers, etc. However, the policy of Savkin works with given desired
production levels and not with given arrival rates. The policy of Savkin can be rewritten such

3.2. Adapting the policies 19

that it works with given arrival rates insteadof given desired production levels. This version
was already provided in [Sav98]. In order for the Savkin policy to work with arrival rates
equations (3.4), (3.5) and (3.8) are changed respectively into:

[
kmOm] To := 2llax .v ,

m-l, ... ,M 1 _ :z:::: _P
bp,;EBm JL~,i

(3.19)

""' >-F L.. JLC , e:n := __ b.::._:p'.,--i E_B_m __ P·_'
km

T-

(3.20)

(\ (Xp,i(t) = 0 V then

).CT

OT-n(t) := e:n + JL~. - t + Tm[qm015l
p,<

(3.21)

qm(t) := 0 \:ft E (t, t + OT-n(t)]

qm(t + OT-n(t) + 0) := nextsAv[b].

Note that the rewritten version cannot deal with total load factors equal to one and setup
times equal to zero.

For CLW it can happen that there is a tie, at the moment that the policy needs to dedde
which buffer to process from. In other words, several buffers have the same largest workload.
In order to make the comparison between the polides more fair, the following adaption is
made to CLW. If there is a tie, it is broken by choosing the buffer with the largest scaled age.
This slightly adapted CLW policy is denoted with CLWa.

3.2.1 Introducing variability

The policy of Savkin and the Clear the Largest Work policy are developed for a determin­
istic system or for a system with a limited variability, both with only continuous work. In
this section it is investigated if these two polides can cope with unlimited variability. Only
variability in the process and arrival rate is studied. Until stated otherwise it is assumed
that a transportation delay is not present. In Chapter 2 it was explained for a stochastic
manufacturing system that the utilization Um and the average totalload factor Pm should be
smaller than 1, in order to avoid instability. The utilization of a machine is the fraction of
time it is not idle for the lack of parts. Therefore, the utilization of a machine with non-zero
setup times and processing different parts, should include a factor for the time required to
perfarm a setup. As stated in Chapter 2, this setup factor is difficult to determine. However,
this factor is easy todetermine fora machine under control of SAV. The utilization is easy to
compute, because of the regular behavior present. The setup fraction equals the fraction of a
scheduling period T the machine is deliberate not processing parts. The time that machine
misnotprocessing partsin one scheduling period T equals e:n, which can be computed with
equation (3.5) or (3.20). Thus, the setup fraction equals:

(3.22)

20 Chapter 3. Control policies

The utilization u:n for a machine under the SAV control policy then becomes:

(3.23)

If one fills in e~ then

(3.24)

es ·= m·

As can been seen from (3.24), the utilization for the Savkin policy equals 1. Thus, the Savkin
policy is only stabie for a deterministic system. SAV always controls the system such that for
the given total load factor >..~/ f-t~,i the utilization equals one. For a stochastic system tuning
the policy with the average totalload factor Àp/ P,p,i seems a logical choice. However, the real
totalload factor is stochastic and can be larger than the average totalload factor. This results
in an utilization higher than one, thus instability. Therefore, the Savkin policy is adapted,
in order to introduce variability without resulting in an unstable system. The idea behind
the adaptation is that the policy is tuned with the largest total load factor possible. The
maximum arrival rate and the minimum process rate have to be known in order to compute
the largest total load factor possible. To know these values a special distribution for the
stochastic variables (process and arrival rate) is used. The form of the distribution is an
isosceles triangle, such that the average of the distribution equals the position of the top of
triangle. The triangular distribution is depicted in Figure 3.1. The advantage of a triangular
distribution is that it has limited extreme values. A disadvantage is the limited variability.
The average of the distri bution is set equal to the average arrival rate or average process rate.
The angular points of the triangle are chosen in such a way that the maximum value of the
load factor of a partpon machine m equals 80/87 = 1.175 times the average load factor of a
part p on machine m. The left and right angular point lay respectively at 80/87 and 94/87
times the average. The different parameters are summarized in Table 3.1.

Arrival rate Process rate Laad factor of one part

average Àp /-tp,i Pp,i

maximum Àma.x _ 94 À max _ 94 max - Ajj'aA - 94 - 1 175
p - 87 p 1-tp,i - 87 /-tp,i Pp i - min - 80 - '

, 1-Lp,i

minimum)"min_ 80 À min_ 80 min _ >-;;un _ 80
p - 87 p 1-tp,i - 87 /-tp,i P · - max - 94 p,t 1-Lp,i

Table 3.1: The parameters of the triangular distribution.

3.2. Adapting the policies 21

minimum mean maximum

Figure 3.1: The triangular distribution.

The Savkin policy can now be tuned with the parameters which result in the highest total
load factor. Thus, the maximum arrival rates and the minimum process rates are used to
tune the Savkin policy. These settings result in a controller, which is guaranteed stabie even
for the highest total load factor possible. However, the average total load factor is lower,
since the average arrival and process ra te differ from the values used for tuning the controller.
Therefore, the limited time allowed to process parts from a buffer is much larger than needed.
This results in the machine to idle often, because the buffer is empty before the time limit
has been reached. The machine under utilizes its capacity. This adapted version of SAV is
denoted as SA Va.

Calculating the utilization for a system under control of CLWa or CLSA is more difficult.
However, variability does not cause problems for the two policies, because the policies do not,
like SAV, control the machine in such a way that the utilization equals 1. The only restrietion
for introducing variability is that the capacity condition (2.9) is satisfied.

3.2.2 Introducing discretization

The SAV and CLW policy are designed for hybrid dynamica! systems, thus for a continuous
flow of work. However, in a realistic manufacturing environment this flow often consists of
individual parts. In this section it is investigated if the two polides can cope with discrete
work. Consicier a deterministic system in which the work present consists of discrete parts and
where the machine has to finish processing a part before it starts with a different operation.
If this system is under control of SAV and when using integer desired production levels dp,
the machine finishes a part exactly at the same time it should switch to a different buffer.
However, if the systems is stochastic or when the desired production levels dp are not integer
values, the possibility exist that the machine is still processing a part at the moment it should
switchtoa different buffer. Thus, the Savkin policy cannot cope with a discrete flow of work.
In order overcome this problem the already adapted SAVa policy is adapted even further so
that it finishesapart before it switches to a different buffer. As aresult the computed setup
time e::n (3.8) can become smaller than the minimal required setup time Bm· Therefore, if

22 Chapter 3. Control policies

this occurs the computed setup time e:n is set equal to the minimal required setup time ()m

in order to satisfy condition (3.2).

The CLWa and CLSA control polides do not limit the time allowed to process a part type.
The polides only control to which buffer a machine should switch. This is not affected by the
by the introduetion of discretization.

3.3 Resumé

In this chapter SAV, CLW and CLSA have been explained which can be used for cantrolling
flexible manufacturing systems. SAV and CLW are designed only for a deterministic system
or fora system with a limited variability, both with only continuous work. Therefore, it is has
been investigated in this chapter if these polides can cope with stochastic systems with discrete
parts. lt turned out that CLW can, but SAV can not cope with such systems. To partially
overcome this problem, SAV has been adapted such that it functions in a discrete system
with a triangular distribution for the arrival and process rates. The adapted Savkin policy
is denoted with SA Va. Furthermore, CLW has been slightly adapted to make a comparison
between the polides more fair. This slightly adapted CLW policy is denoted with CLWa. The
(adapted) policies are now suitable for a more realistic manufacturing environment. In the
next chapter simulation studies are designed and performed for camparing the polides for a
single machine system with parts which have an acyclic production path.

Chapter 4

Acyclic systems

In the previous chapter three control policies, SAV, CLW and CLSA, have been explained
that are suitable for cantrolling a flexible manufacturing system as described in Chapter 2.
If necessary, the policies have been adapted to be suitable for realistic flexible manufacturing
systems. SAV and CLW have been adapted and the adapted versions are denoted with SA Va
and CLWa. In this chapter a first comparison between the policies is made by simulating
a single machine flexible manufacturing system. The comparison is made by simulating
flexible manufacturing systems and study the performances of the policies. Furthermore, the
influences of system parameters on the performance is investigated. Simulation experiments
are designed for camparing the different policies for different situations. It is difficult to study
and analyze the performances of the policies for a large complex system. For that reason,
a simple single machine system with acyclic production paths is studied. However, first the
performance of a control policy is defined.

4.1 Simulation experiments

In this section experiments are designed to campare the performances of CLSA, SA Va and
CLWa and to study the influence of system parameters on the performances. The average flow
time of all parts is chosen, as the performance measure for a policy. The lower the average
flow time, the higher the performance of a control policy. In [Ols99] it has been shown, using
simulation, that CLSA perfarms well compared to other policies. Therefore, the flow times of
SA Va and CLWa are compared to the flow time of CLSA. The percentile difference between
the flow time of CLSA and SA Va or CLWa is examined. If a is the flow time of CLSA and b
is the flow time of SA Va or CLWa then the percentage difference is computed as lOO(b- a)/ a.
The results of the simulation experiments are presented and discussed in Section 4.2.

The system under consideration exists of only one workstation, which processes P part types.
The parts visit the machine only once. In Figure 4.1 the system is depicted.

23

24

__ P_=_1 _ _..~

__ P_=_2 _____..ill

________________ [!. ____________ .J~--;;~~;--u::r:~

Chapter 4. Acyclic systems

P= 1

p=2

p=P

Figure 4.1: An acylic single machine system with P part types.

Variability is present in the arrival and process rates in the form of triangularly distributions.
In Section 3.2.1 it has been explained how and why a triangularly distribution is used. The
average total load factor (2. 7) has to be smaller than one, otherwise the system can not be
stabilized.

A single machine system can be symmetrie or asymmetrie, both situations are investigated.
A symmetrie system is stuclied first.

4.1.1 A symmetrie system

For a symmetrie system, the following systems parameters are interesting to investigate:

• The number of buffers at a machine.

• The initial buffer levels.

• The average total load.

Experiment 1: the number of buffers at a machine

In this experiment it is investigated if and how the number of buffers that a machine has to
serve, influence the performance of a control policy. For this experiment the average total
load factor (2. 7) is set equal to 0.8, the process rates equal to 1 for every part type and the
setup time equal to 1. The arrival rate of a part depends on the number of buffers in the
system in order to keep the load factor equal to 0.8. Since the number of buffers equals the
number of part types, the arrival rate of a part type p becomes:

À Pm
p = pf-Lp,l· (4.1)

4.1. Simulation experiments

The system can be summarized as:

P = {1, 2, ... , P}

M = {1}

Pm = 0.8

ap,l = 1

À Pm
p = pf-Lp,l

f.Lp,l = 1

fh = 1.

The system is stuclied for 2, 3, 10,20 and 100 buffers at machine 1.

Experiment 2: the initia! buffer levels

25

The goal of this experiment is to investigate if and how the initial buffer levels infl.uence the
performance of the policies for a stochastic system. The setup of the system is the same as
for Experiment 1. The number of part types in the system is two. The system is stuclied for
initials buffer levels of 0 and 100 parts for every buffer.

Experiment 3: the average total load

The same system as for Experiment 1 is used to investigate the infl.uence of the total load
factor on the performances of the policies. There are 10 part types in the system. The
total load factor is varied by changing the arrival rates of the parts according to (4.1). The
following totalload factors are used: 0.8, 0.6 and 0.4.

4.1.2 An asymmetrie system

A system is called asymmetrie if not all part types have the same arrival rate, setup time and
process rate distributions. The SA Va policy can not cope with asymmetrie setup times. All
the setup times have to be identical. Therefore, only asymmetry in the arrival and process
rate is studied. The system under consideration is the same as for the symmetrie system,
as depicted in Figure 4.1. The number of buffers is always even in order not to introduce
skewness. The following parameters are investigated:

• The size of the asymmetry in the arrival rates.

• The size of the asymmetry in the process rates.

Experiment 4: the size of the asymmetry in the arrival rates

Asymmetry of the arrival rates is introduced in the following manner. As mentioned earlier
the number of buffers at the machine is always even. The buffers are divided in two groups,
each of the same size P/2. Thus, the first group exists of the buffers b1,1, b2,1, ... , b.~,l and

26 Chapter 4. Acyclic systems

the second group of the buffers b(~+l,l), b(~+2 , 1), ... , bP,l· Asymmetry in the arrival rates is
introduced by assigning the first group a lower average arrival rate than the other group in
such a way that:

À(~+l) ... P = Ç · Àl...~' (4.2)

in which P is the number of buffers served by the machine and Ç a factor for the asymmetry
present. The total load factor then equals:

p
2 À p À

Pm=L:-P + L _P
p=l /-Lp,l p=(~+1) /-Lp,l

(4.3)

Using (4.2), this can be rewritten:

À P = Pm/-Lp,l ~.
1...2 (1 +Ç) p

(4.4)

The parameters for this experiment are the same as for Experiment 1, thus the total load
factor (2.7) is set equal to 0.8, the process rates equal to 1 for every part type and the setup
time equal to 1. The arrival rates depend on the number of buffers in the system, as defined
by (4.2) and (4.4). The system then becomes:

P={1,2, ... ,P}

M = {1}

Pm = 0.8

ap,l = 1

/-Lp,l = 1

À P = Pm/-Lp,l ~
1...2 (1 +Ç) p

À(~+l) ... P = Ç · Àl...~

e1 = 1.

The system is stuclied for 10 buffers and for asymmetrie factors of 0, 5, 10, 25,50 and 100.

Experiment 5: the size of the asymmetry in the process rates

In this experiment the infl.uence of asymmetry in the process rates is investigated. Asymmetry
in the process rates is introduced in the same manner as for the arrival rates. Equations (4.2)
and (4.4) rewritten for the process rates become:

f-L(p 1) p 1 = ç . f-L p 2+ ... ' 1...2,1
(4.5)

and

(4.6)

4.2. Simulation results and discussion 27

The system setup is the same as for Experiment 4. The arrival rates equals 0.08 for every
part type. The system is investigated for an asymmetrie factor of 0 and 25 in the process
rates.

4.2 Simulation results and discussion

In this section the results of the experimentsas discussed inSection 4.1 are given. The results
are obtained by simulation.

The simulations are performed using the formalism x [Hof02], Python [Ros04] and Matlab
[Mat02]. The different models can be found in Appendix D. Camparing the policies on
the results of just one simulation can lead to wrong conclusions, because of the variability
present in the simulation results. In order to overcome this problem, multiple simulations are
performed, as described in Appendix C. The relative error, as defined in Appendix C, used
for the simulations equals 5%.

The results of the experiments are depicted in tables. In the first column of such a table the
values of the parameter that is studied are given. In the second to fourth column the average
flow times of the system under control of the different polides are given. In the fifth column
the percentile difference of the average flow time from SA Va compared to CLSA is depicted.
In the final column the percentile difference between CLWa and CLSA is given. Note, that
the percentile difference is computed as follows. If a is the flow time of CLSA and b is the
flow time of SAVa or CLWa then the percentage difference is computed as lOO(b- a) ja. If
the difference is:

• > 0, than the policy performs worse than CLSA.

• = 0, than the policy performs the same as CLSA.

• < 0, than the policy performs better than CLSA.

4.2.1 Symmetrie system

Experiment 1: the number of buffers at a machine

In Table 4.1 the simulation results of Experiment 1 are depicted. From column two to four
it is clear that the average flow time increases as the number of buffers increases. A possible
explanation for this increase is that the time between two production runs from the same
buffer increases with an increasing number of buffers, since more buffers need to be processed
from. This results in longer waiting times of the parts in the buffers and thus in an increase
of the average flow time.

In [Liu92] it has been proven that the CLW policy has the best performancefora symmetrie
system. The system of Experiment 1 is a symmetrie system. Thus, CLWa should have the
best performance, since it only differs slightly from CLW. The table shows that CLSA has
the same performance as CLWa. A possible explanation for the good performance of CLSA
is the following. The symmetry in the system causes the largest buffer to have, on average,
the largest scaled age. Thus, CLSA behaves the same as CLWa. The performance of SA Va is

28 Chapter 4. Acyclic systems

worse than that of CLSA and worsens with an increasing number of buffers. An explanation
for this deterioration of performance is the underutilization of the capacity present. The
average totalload factor is lower than SAVa is tuned for. This results in the machine to idle
often.

Num. of Buffers Flow time Percentile difference to CLSA
SA Va CLWa CLSA SA Va CLWa

2 11.0 4.0 4.0 175% 0%
3 19.3 6.5 6.5 197% 0%
10 77.5 24.0 24.0 223% 0%
20 160.9 48.8 48.8 230% 0%

100 827.6 231.3 232.0 257% 0%

Table 4.1: The results of Experiment 1.

Experiment 2: the initial buffer levels

The results of Experiment 2 can be found in Table 4.2. It can be seen that the initial buffer
levels do not infiuence the performance of the system under any of the policies. The initial
buffer levels do not infiuence the performance of CLW and CLSA, because the initial buffer
levels are emptied and "forgotten" on the long term. This also holds for SAVa, because of
the underutilization of the capacity present in the system. There is enough capacity left to
process the initial buffer levels. As explained in Section 3.2.1, the underutilization is caused
by the adaption made to SAV. Another reason for the lack of infiuence of the initial buffer
levels is the variability present, resulting in the initial buffer levels to be "forgotten" on the
long term.

lnitial buffer level Flow time Percentile difference to CLSA
SA va CLWa CLSA SA Va CLWa

0 11.0 4.0 4.0 175% 0%
100 11.0 4.0 4.0 175% 0%

Table 4.2: The results of Experiment 2.

Experiment 3: the average total load

The results of Experiment 3 are provided in Table 4.3. As can been seen from column two
to four, the average flow time decreases with a decreasing average total load factor. For a
non-switching machine the waiting time in the buffers is infiuenced by the utilization. The
waiting time decreases with a decreasing utilization. The utilization consists among other
things of the load factor. Therefore, the load factor has the same infiuence as the utilization
on the waiting time in the buffers, also for machines in fiexible manufacturing system. A
decreasing average total load factor results in a decreasing waiting time of the parts in the

4.2. Simulation results and discussion 29

buffers. The flow time consistsof the waiting time in the buffers and the process time of the
part. Thus, the average flow time decreases with an decreasing average totalload factor.

From the final column it can been seen that the load factor does not influence the performance
of CLWa compared to CLSA. As can beseen from the fifth column the performance of SA Va
compared to CLSA seems to increase with an decreasing load factor. An possible explanation
for the increasing performance of SA Va compared to CLSA is the following. A smaller load
factor results in a decreasing scheduling period T, thus buffers are emptied more often for a
shorter period and the idling periods are shorter. However, since there is enough capacity,
the buffers are still emptied. This results in a behavim that starts to show similarity to the
exhaustive policies, thus the performance with respect to the exhaustive policies increases.

Totalload Flow time Percentile difference to CLSA
SA Va CLWa CLSA SA Va CLWa

0.8 77.5 24.0 24.0 223% 0%
0.6 17.1 13.8 13.8 24% 0%
0.4 10.8 3.6 3.6 200% 0%

Table 4.3: The results of Experiment 3.

The results discussed above were all for symmetrie systems. As discussed earlier CLWa has
the best performance for a symmetrie system. CLSA has the same performance as CLWa,
since in a symmetrie system it has the same behavim as CLWa. The buffers containing the
most work, will on average also have the largest scaled age. SAVa has a bad performance
compared to the other two policies. The bad performance is caused by the underutilization
of the capacity present in the system.

4.2.2 Asymmetrie system

In this section the results of the experiments as described in Section 4.1.2 are analyzed and
discussed. The results are depicted in tables. For an explanation of these tables see Sec­
tion 4.2.1.

Experiment 4: the size of the asymmetry in the arrival rates

The results of Experiment 4 are depicted in Table 4.4. As can be seen from column two
to four the flow time decreases for an increasing asymmetry in the arrival rate. A possible
explanation for this decrease is the following. The time between two production runs from
the samebuffer increases for buffers containing parts which have a low arrival rate. The time
between production runs increases, because more time is needed to process from the buffers
containing parts with an high arrival rate. The time between two production runs from
the same buffer decreases for buffers containing parts which have an high arrival rate. The
decrease is caused by the fact that less time is needed to process from the buffers containing
parts with a low arrival rate. The average flow time decreases with an increasing asymmetry,
because there are more parts with an high arrival rate, thus with a decreasing waiting time in

30 Chapter 4. Acyclic systems

the buffers, than that are parts with a low arrival rate, thus with an increasing waiting time
in the buffers.

The performance of SAVa and CLWa in comparison to CLSA degrades with an increasing
asymmetrie factor. An possible explanation for the decreasing performance for an increasing
asymmetrie factor is the following. All the average process times are identical, thus the buffer
with the most work is also the buffer with most parts. Therefore, CLWa chooses the largest
buffer (at that exact moment) to performa setup for. Contrary to CLSA, which chooses that
buffer which is expected to have the largest scaled age after a setup has taken place. The
result is that with CLWa the buffers containing parts with a very low arrival rate are only
visited when their buffer levels are equal or higher than the buffers levels of buffers containing
parts with high arrival rates. As a result the buffers are not served often. With CLSA these
buffers are visited more often, because their scaled age increases much more rapidly than their
buffer size. SAVa does not choose a buffer to process from, but follows a simple sequence.
The larger the asymmetrie factor the larger the difference between the buffers, causing it to
be more efficient for the flow time to serve a certain buffer more often than others.

Factor Flow time Percentile difference to CLSA
SA Va CLWa CLSA SA Va CLWa

0 77.5 24.0 24.0 223% 0%
5 74.6 20.4 21.1 254% -3%
10 73.2 19.4 18.6 294% 4%
25 72.0 18.8 15.3 371% 23%
50 71.6 18.4 13.3 438% 38%
100 71.6 18.0 12.4 477% 45%

Table 4.4: The results of Experiment 4.

Experiment 5: the size of the asymmetry in the process rates

Table 4.5 gives the result of Experiment 5. It can be seen that SAVa and CLSA are not
influenced by asymmetry in the process rates. The flow times stay the samewithor without
asymmetry present. A possible explanation for this is the following. The flow time of a
product exists for the most part of the waiting time in the buffer while the machine is not
processing parts from that buffer. Therefore, the process rate of a part has a minor influence
on the average flow time. For SAVa the pr:ocess rate does not influence the choice of which
buffer to serve next, sirree the buffers are visited in a fixed sequence. For CLSA the flow times
of the part types are influenced by the asymmetry. However, the average flow time stays the
same. The flow time of one group of part types increases with the same amount as the flow
time of the other group of part types decreases. The influence of asymmetry in the process
rates for a system under control of CLWa is very large. The reason for this is that CLWa
takes decisions basedon the buffer levels times the process times (thus workload). The buffers
containing the parts with a small process time have to contain many parts before they are
emptied resulting in a large flow time.

4.3. Resumé 31

Factor Flow time Percentile difference to CLSA
SA Va CLWa CLSA SA Va CLWa

0 77.5 24.0 24.0 223% 0%
25 77.5 97.2 24.0 223% 305%

Table 4.5: The results of Experiment 5.

4.3 Resumé

Both asymmetrie and symmetrie systems have been studied. It can be concluded that CLSA
has the best performance in all situations and that CLWa has the same performance as
CLSA in symmetrie systems. In asymmetrie systems the performance of CLWa degrades
where asymmetry in the process rates has a much larger influence than asymmetry in the
arrival rates. The performance of SAVa compared to CLSA is bad for all situations. As
has been mentioned earlier this bad performance is caused by the policy being tuned for the
maximum load factor possible, while the realload factor is lower. This causes the policy to
under utilize the capacity present in the system, resulting in a lot of idling.

In this chapter only an acyclic single machine system and the performances of the different
polides on this system have been studied. In the next chapter a more complicated system
is studied. This system consists of more than one machine and non-acyclic production paths
are present.

32 Chapter 4. Acyclic systems

Chapter 5

N on-acyclic systems

In Chapter 2 a flexible manufacturing system, which could produce different parts on the
same machine, has been discussed. In Chapter 3, three policies, SAV, CLW and CLSA, have
been explained that are suitable for cantrolling such a manufacturing system. If necessary,
the polides have been adapted to be suitable for realistic flexible manufacturing systems.
SAV and CLW have been adapted and the adapted versions are denoted with SAVa and
CLWa. Furthermore, in the previous chapter simulation studies have been performed in
order to campare the three polides, SAVa, CLWa and CLSA, on their performance. The
performance of a policy was measured by the average flow time of all the parts in the system.
The system under consideration consisted of only one machine and parts visited the machine
only once. In this chapter a more complicated system is introduced, which has non-acyclic
production paths. lt is explained that a non-acyclic system can be unstable for certain control
polides even if the capadty constraint (2.9) is met. Therefore, a stabilization technique called
regulators [Per94] is introduced. Finally, simulation studies are performed to campare the
performances of the three polides with and without regulators.

5.1 Stability

An acyclic system is stable for any DSI policy, defined in Chapter 2, if the capadty condition
(2.9) is satisfied. However, stability is not guaranteed for a non-acyclic system satisfying the
capacity condition (2.9). In the following example it is shown that a non-acyclic system,
which satisfies (2.9), can be unstable.

P=1
b,,, lil b1,2 lil

m=2

lil b1,4 lil b1,3

Figure 5.1: The system of Example 5.1.

33

34 Chapter 5. Non-acyclic systems

Example 5.1. [Kum90j Consider the system as depicted in Figure 5.1 in which no variability
is present and defined as:

p = {1}

Ct!,l = 1

al,3 = 2

lel . = 0
,2

>.1 = 1

c 10
f.ll,l = 3

c 10
f.ll,3 = 3

(h = 50

M = {1,2}

a1,2 = 2

a1,4 = 1

V i

c 10
f.ll,2 = 6

c 10
f.ll,4 = 6

e2 = 5o.

In words, there is only 1 part, which is processed on 2 machines. The part is first processed on
machine one and then two times on machine two. The last process step is again on machine
one. A setup is required when switching between processing the parts from different buffers.
For simplicity the buffers are labeled bi insteadof bp,i. The capacity condition (2.9) is satisfied,
since the average total laad factor of bath machines is smaller than one:

9 9
Pl = 10 , P2 = 10 ·

Assume that the initial buffer level for b1 equals 100 and zero for b2, b3 and b4, thus

Xl,l (0) = 100 X1,2(0) = 0
Xl,3(0) = 0 Xl,4(0) = 0.

In Figure 5.2 the behavior of the system of Example 5.1 with an exhaustive patient policy
(for example, CLWa or CLSA) is depicted. The buffer levels of the four buffers in the system
are shown. The machine starts at t = 0 with the initial buffer levels as defined above and
machine one and two are ready to process from buffers 4 and 3 respectively. At t = 0
machine one starts with performing a setup for buffer b1 , sirree no work is present in b4.
Machine two stays idle at b3 until works arrives in buffer b2, which is when machine one starts
processing work from b1. From Figure 5.2 it can beseen that at at= T1 the system returns
to the samestate as it was at t = 0. Machine one and two are again ready to process work
from the buffers 4 and 3 respectively. Furthermore, the buffer levels for buffers 2 until4 equal
(x1,2, x1,3, Xl,4) = (0, 0, 0), which are the samelevels as at t = 0. However, the level of buffer 1
at t = T1 has increased compared to the level at t = 0. It has been shown in [Kum90] for
this system that if the initial conditions are (x1,1, x1,2, x1,3, x1,4) = (Ç, 0, 0, 0) that the buffer
levels at t = T1 =((a+ J.Lb/(1- J.Lb))Ç +'Y equal (x1,1, x1,2, x1,3, x1,4) = (aÇ + ,6, 0, 0, 0). For
this system a = 1.5, ,6 = 230 and 'Y = 530. The system will repeat itself with an increasing
period and increasing buffer level for buffer 1. Thus, the system has become unstable.

This instability is not caused by the time necessary to perform a setup, because a is inde­
pendent of the time required to perform a setup and ,6 equals zero when the time required
to perform a setup equals zero. Consider the system of Example 5.2, which has setup times
equal to zero.

5.1. Stability

550.-----.------.------,-----.------.------,------,-----,-,

500

450

400

350

~300
.91
Q;
'§250
CD

200

150

- Buffer level 1
. . - Buffer level 2

"._ Buffer level 3
- Buffer level 4

Figure 5.2: The behavior of the system of Example 5.1.

35

Example 5.2. Consider the system as defined in Example 5.1, but with setup times equal to
zero:

In Figure 5.3 the behavior of the system is depicted. The system has a behavior similarly
to that of Example 5.1. At a timet = T1 = ((a+ f.LI 2 /(1 - f.LI 2))Ç + "(the system returns , ,
to the same state as at time t = 0. Machine one and two are setup for the buffers 4 and
3 respectively and (xl,l,x1,2,X1,3,xl,4) = (aÇ + ,8,0,0,0) = (150,0,0,0). For this system
a = 1.5, ,8 = 0 and 'Y = 0.

The system is again unstable, in spite of the setup time being equal to zero. It can be shown
that a non-acyclic system can be unstable even when no part type ever revisits a machine,
as in Figure 2.1, or that stability depends on the initial conditions [Kum90]. The instability
results from the fact that the buffers for i > 1 can have instantaneous growth rates temporally
exceeding the capacity of the machine. These grow rates result in large buffer levels and thus
lead to very long production runs, which will block the other buffers at that machine, starving
other machines. The cycles present in a non-acyclic system causes periods of overflow and
starvation, thus resulting in instability.

5.1.1 Suflident stability condition

In the previous section it was shown that a non-acyclic system can be unstable while the
capacity condition (2.9) is satisfied. This section introduces a sufReient stability condition

36

50 100 150
time

Chapter 5. Non-acyclic systems

200

- Buffer level 1
- Buffer level 2
",_ Buffer level 3
- Buffer level 4

250

Figure 5.3: The behavior of the system of Example 5.2.

that guarantees the stability of a non-acyclic system for any DSI policy. In [Kum90] sufficient
stability conditions for stability of non-acyclic systems using CAF policies are determined.
However, the condition is only valid for non-acyclic systems in which parts do not flow from
machine m directly back to m, a so called self loop. In [Hum94] a sufficient stability condition
for any DSI policy is introduced. Thus, also for systems cantairring self loops.

To compute the suflident stability condition of [Hum94] the following has to be defined. Define
the conneetion graph of the system as a directed graph, where the nocles are the machines
and the are set A is:

A:= {(m, m')lm #- m' and :3(p, i); ap,i = m, ap,i+l = m'}. (5.1)

A machine m' is reachable from m if there is a directed path from m to m', which is written
as m ---+ m'. The machines m and m' are diconnected if m ---+ m' and m' ---+ m. Let
M1, M2, ... , MK be the set of diconnected components of the conneetion graph. For all
(m, m') E Mk there is a directed path from m to m' and back. For a buffer bp,i define kp,i
as the index k for which ap,i = m E Mk· There is a direct ordering on M, because of the
existence of directed paths from mE Mi to mE Mj(i #- j), which is written as Mi--< Mj, or
in short i --< j. Thus a system is acyclic, if each Mi consists of only one machine.

The system as depicted in Figure 5.1 is a clear example of two machines being diconnected.
The parts flow from machine 1 to 2 and back thus there is a clear directed path present. The
machines in Figure 2.1 are also diconnected. There is a path from machine 1 to 2 via the
flow of part 1 and there is path from machine 2 to 1 via the flow of part 2. Thus, no clear
ordering is present.

5.1. Stability 37

Definition 5.1. [Hum94] For each buffer, the burst arrival rate À~,i and the conditionat burst
arrival rate >.;,i are defined as:

À~,i = { ~:,i-1
À~,i-1

if i= 1
if i i- 1 and ap,i #- ap,i-1

else [ap,i = ap,i-1]·

>.". = { p,t
if i= 1 or kp,i = kp,i-1

else [kp,i-1 -< kp,i]·

The conditional burst congestion level [Hum94] is defined as:

X'
" - ~ p,i

Pm- 6 ·
b

f.Lp,i
p,iEBm

A machine m is called burst stable [Hum94] if it satisfies the burst capacity condition:

>.".
P':n = L ~ < 1.

b f.Lp,i
p,iEBm

(5.2)

(5.3)

(5.4)

(5.5)

Definition 5.2. [Hum94] A system is stabie under any DSI policy if each machine m E M
is burst stable, thus each p'/n < 1.

A non-acyclic system is guaranteed stabie if condition (5.5) holds. However, it does not
guarantee the system to be unstable if the condition does not hold. It can be shown that the
system as depicted in Figure 5.1 is stabie for certain parameters and initial conditions, for
which condition (5.5) does not hold.

5.1.2 Regulators

In the previous section is was shown that non-acyclic systems can be unstable even when the
capacity condition (2.9) holds. This section introduces a technique, called regulators [Per94].
These regulators modify a non-acyclic system such that it is stabie for any DSI policy. A
regulator splits a buffer in two (virtual) components, a regulator buffer and a regulated
buffer, as depicted in Figure 5.4. The flow of parts from the regulator to the regulated buffer
is restricted:

1. The cumulative input J: Up,i(t)dt to the regulated buffer bp,i satisfies

1t up,i(t) · dt ~ û~,i · (t- s) + iv,i,

in which û~,i is a constant.

2. If buffer bp,i-1 precedes bp,i then Àp ~ û~,i- 1 ~ û~,i·

38 Chapter 5. Non-acyclic systems

Àp,,{fJ 1111 -------i------''-"---1._ Regulator uP,{f) 11 1 1 · .,. Regulated 1 11---~-------

Figure 5.4: A regulated buffer.

3. For every machine m, the rates û~,i satisfy the capacity constraint

AC u .
A - ~ __1!_:!:_<1 Pm- L ·

b EB f..lp,i
p,~ m

Note that a regulator speed constant û~,i that satisfies the conditions mentioned above is
the arrival rate Àp. A regulator is called smooth when ,:Yp,i equals zero and was introduced
by [Hum94]. The use of smooth regulatorscan however result in an underutilization of the
capacity of the machine. Non -smooth regulators can partially off set this problem [Per94].

The policy of Savkin is stabie for both acyclic and non-acyclic systems, without the use of
stahilizing techniques. The policy itself regulates the flow of parts throughout the system by
limiting the time a machine processes parts from a buffer.

5.2 Sirnulation experirnents

In this section simulation experiments are designed to compare the performance of CLSA,
SAVa and CLWa. The results of the simulation experiments are presented and discussed in
Section 5.3.

Experiment 6: An unstable non-acyclic system

In this experiment the performance of the three polides are compared with each other for a
non-acyclic system with parameters such that the system is unstable under control of CLWa
or CLSA. In the previous section it was shown that a technique, called regulators, exists
that stahilizes any DSI policy. Therefore, CLWa and CLSA are equipped with regulators to
stabilize them. Initially, smooth regulators are used and the regulator speeds are set equal
to the average arrival rates, thus ,:Yp,i = 0 and û~,i = Àp- Variability is present in the process
and arrival rates in the form of a triangular distribution. It is assumed that no variability is
present in the regulator speed Up,i· The system under consideration is similar to the one in
Example 5.1. The process rates are however changed in order to set the average totalload

5.2. Simulation experiments 39

factor (2.7) equal to the value used in the previous chapter, namely 0.8. For the process and
arrival rates the same triangular distribution as in the previous chapter is used. The system
is then defined as:

p = {1}

01,1 = 1

01,3 = 2

zc1 ·7 = 0 ,t

À1 = 1
15

/-t1,1 = 4
15

/-t1,3 = 4
(h = 50

M = {1,2}

01,2 = 2

01,4 = 1

V i

15
/-t1,2 = 8

15
/-t1,4 = 8

()2 = 50.

The buffer levels are empty at the beginning of the simulation. Note that the capacity
condition holds, since Pm = 0.8 < 1 for bath machines. However, the burst capacity condition
(5.5) does nat hold, since P1 = Îg and p~ = 3. Therefore, the system is nat guaranteed to
be stable for CLWa and CLSA. According to [Kum90] for this system a= 8/7, j3 = 4010/21
and "(= 9560/21. Thus, the system is not stable.

Experiment 7: A guaranteed stabie non-acyclic system

The system of Experiment 6 did nat satisfy the burst capacity constraint (5.5). In this
experiment the performances of the three polides are compared with each other for a non­
acyclic system, which is guaranteed stabie under CLWa or CLSA. The following non-acyclic
system satisfies the burst capacity condition (5.5). The system is therefore guaranteed stable
for any DSI policy.

p = {1}

01,1 = 1

01,3 = 2

zc1. = 0 ,t

À1 = 1
10

/-t1,1 = 3
100

/-t1,3 = 9
()1 = 50

M = {1,2}

01,2 = 2

01,4 = 1

V i

20
/-t1,2 = 3

200
/-t1,4 = 9

()2 = 50.

The buffer levels are empty at the beginning of the simulation. Note that bath the capacity
condition and burst capacity condition hold, since P1 = 0.345, P2 = 0.24 and p'./n = 0.8 for
bath machines. Two types of simulation are performed. One simulation where CLWa and
CLSA are nat equipped with regulators and one simulation where they are equipped with
regulators. Again SA Va is nat equipped with regulators, because SA Va does nat require them.

40 Chapter 5. Non-acyclic systems

5.3 Simulation results and discussion

In Section 4.2 it is explained how the simulations are performed and how the results are
depicted.

Experiment 6: An unstable non-acyclic system

The simulation results of Experiment 6 can be found in Table 5.1. The simulation tests confirm
the instability for both poli des. As mentioned earlier, regulators are added to stabilize the
system for CLWa and CLSA. No results are available for CLWa and CLSA without regulators,
sirree they are unstable. SA Va is not equipped with regulators, sirree SA Va is already stable
in a non-acyclic system. It can been seen from the table that SAVa does not perfarm well
compared to CLWa or CLSA. The average flow time is more than 2 times larger than that
of CLWa and CLSA. The large periods of idling present, result in an underutilization of the
machine capadty and thus a bad performance. Insection 3.2.1 it is explained that the idling
is caused by the adaptation of SA Va for a stochastic environment.

Regulators Flow time Percentile difference to CLSA
SA Va CLWa CLSA SA va CLWa

No 3688.0 unstable unstable -% -%
Yes 3688.0 1140.6 1141.9 223% 0%

Table 5.1: The results of Experiment 6.

Experiment 7: A guaranteed stabie non-acyclic system

In Table 5.2 the results of the simulations are depicted. It can be seen from Table 5.2 that
SA Va perfarms better than the other polides withor without regulators. Applying the smooth
regulators results in a larger average flow time for CLWa and CLSA, thus in a larger percentile
difference compared to SAVa. A possible explanation for these results is the following. The
system without regulators and with CLWa or CLSA is stable. However, the non-acyclic
production paths and the patient property of the polides result in an underutilization of
the capadty of the machine. For example, buffer 3 is being emptied and buffer 2 is empty.
Furthermore, machine one is working on buffer 4. When buffer 3 is empty, buffer 2 is still
empty, because machine one has been working on buffer 4. Sirree the policy is patient the
machine waits at the empty buffer 3, which will stay empty, because buffer 2 is empty.
Machine two starts the setup for buffer 2 when machine one finally starts working on buffer
1. Smooth regulators only worsen the problem, by introdudng more underutilization through
more setups. SAVa policy also under utilizes the machine capadty, which is caused by the
adaption for an stochastic environment (see section 3.2.1). However, the underutilization
present in SAVa is, for this example, smaller than the underutilization present in the other
polides.

5.4. Resumé 41

Regulators Flow time Percentile difference to CLSA
SA Va CLWa CLSA SA Va CLWa

No 233.3 282.3 282.5 -17% 0%
Yes 233.3 469.0 473.9 -51% -1%

Table 5.2: The results of Experiment 7.

5.4 Resumé

Although DSI polides can stabilize acyclic systems, they do not always stabilize non-acyclic
systems. As has been demonstrated in this chapter the exhaustive polides CLWa and CLSA
can be unstable in a non-acyclic system. However, techniques, such as regulators, exist that
can stabilize these systems. The performance of the policies in a non-acyclic system depends
on the parameters of the system. Contrary to the tested acyclic single machine system,
CLSA does not always have the best performance. Furthermore, regulatorscan worsen the
performance of an already stabie non-acyclic system.

42 Chapter 5. Non-acyclic systems

Chapter 6

lmproving the Savkin policy

Chapters 2 and 3 introduced a flexible manufacturing system and three control polides which
are suitable for cantrolling such a manufacturing system. These polides are the Savkin policy
(SAV), the Clear the Largest Work policy (CLW) and the Clear the Largest Scaled Age policy
(CLSA). In Chapters 4 and 5 it has been shown, by the use of simulation, that none of the
polides has the overall best performance. It has also been shown that the Savkin policy
is the only control policy which is guaranteed stable by itself for systems with non-acyclic
production paths. This is a property that most control polides lack. Therefore, the question
arises: is it possible to adapt the Savkin policy such that it has a best overall performance
and still is stabie for systems with non-acyclic production paths? To answer this question,
first a better understanding of the Savkin policy is required. Therefore, this chapter starts
with an analytica! analysis of the Savkin policy. The analysis of the Savkin policy focusses on
the levels of the buffers. The buffer levels are directly related to the average flow time of work
present in the system. Thus, the buffer levels influence the performance of the system. Then,
with help of this analysis it can be investigated if it is possible to improve the Savkin policy.
The analysis is performed with the help of the logical-differential equations as introduced in
Chapter 2. Thus, the flow of discretepartsis approximated as a continuous flow. Furthermore,
it is assumed that no variability is present in the system. Techniques to analyze and improve
this approximated system will provide a basis for analyzing and improving more realistic
systems with variability and a discrete flow of parts. Note, that the original Savkin policy as
introduced in Section 3.1 is used, since variability is not present.

6.1 Analyzing the Savkin Policy

6.1.1 The fi.rst buffer in a production path

The analysis of the Savkin policy starts by investigating the first buffer in which work arrives.
Note, that T denotes the Savkin scheduling period where T 2:: To. Furthermore, let j denote
the jth scheduling period from t = (j- 1)T until t = jT, where j = 1, 2, 3,

Lemma 6.1. For buffer bp,l (pEP), which is the first buffer that workof type p encounters,

43

44 Chapter 6. Improving the Savkin policy

the following holds:

Xp,1 (jT) :2: Xp,1 ((j - 1)T)

. lim Xp,1(jT) = Xp,1((j- 1)T).
J->OCJ

Vj=1,2,3, ...

In words, the buffer level of a buffer bp,1 at the end of a scheduling period is equal or larger
than the buffer level at the start of the scheduling period. Furthermore, when the number of
scheduling periods goes to infi.nity the buffer level at the end of a scheduling period is equal
or larger than the buffer level at the start of the scheduling period. Which means that the
cumulative output from that buffer in one scheduling period equals the cumulative input.

Proof. Mass conversation implies the following for any buffer bp,i (iE 'Ip) :

Xp,i(jT) = Xp,i((j- 1)T) + A~,i((j- 1)T,jT)- A;,i((j -1)T,jT) Vj = 1, 2, ... ' (6.1)

in which A~,i ((j - 1)T, jT) denotes the cumulative input of buffer bp,i during the period
[(j- 1)T,jT] and A;,i((j- 1)T,jT) denotes the cumulative output from buffer bp,i during
the period [(j- 1)T,jT]. For the cumulative input of buffer bp,1 the following holds:

Vj=1,2,3, ... , (6.2)

sirree work of type p arrives with a constant rate À~ in the first buffer. For the cumulative
output from this buffer the following holds:

A;,1 ((j - 1)T, jT) ::::; dp

.lim APr 1 ((j -1)T,jT) = dp,
J->OCJ ,

(6.3)

for which the proof is delivered in [Sav98]. Lemma 6.1 now follows from (6.1), (6.2) and
(6.3). D

Lemma 6.2. Let ~, 1 (j E {1, 2, ... }, pEP) be the time at which machine ap,1 starts with
removing work from buffer bp,1 during scheduling period j. Then, A;,d(j- 1)T,jT] = dp if
and only if:

Xp,1((j- 1)T) :2: J.td: (J.t~,1- À~)- À~ (tp,1- (j- 1)T).
p,1

(6.4)

In words, the cumulative output from buffer bp,1 in scheduling period j equals the desired
production level only if at the start of that scheduling period the level of buffer bp,1 equals or
is larger than then the amount as defi.ned in (6.4).

Proof. Assume that A;,1 ((j- 1)T, jT) equals the desired production level. The Savkin policy
controls a workstation in such a way that during one scheduling period only one production
run from buffer bp,1 takes place. Furthermore, production from buffer bp,1 always starts at

the samemoment in a scheduling period, thus ~, 1 = ~-:J1 + T. Let T~, 1 be the time at which
the production run from buffer bp,1 in scheduling period j ends. Note, that a production run
ends if the cumulative output in a scheduling period equals the desired production level or

6.1. Analyzing the Savkin Policy 45

when the buffer becomes empty. Th en, A~, 1 ((j - 1)T, jT) can only be equal to the desired
production level dp if:

Ti - t!_ = dp
p,1 p,1 J.Lc ·

p,1
(6.5)

In the period [~,ll rt,1J workis removed from buffer bp,1 with a constant rate J.L~,i· However,
in that same period work also arrives in the buffer with a constant rate À~. Therefore, the
effective rate at which work is removed during this period from buffer bp,1 equals J.L~, 1 - À~,

then:

Xp,1 (t~, 1) - Xp,1 (Tt,1) = (Tt,1 - ~,1) (J.L~,1 - À~)
dp (C \C) = -c- f.Lp,l - "'P ·

J.Lp,1

use (6.5)

(6.6)

This means that the cumulative output from buffer bp,1 in one scheduling period equals the
desired production level if and only if:

(6.7)

In the period [(j -1)T, ~, 1] work arrives with a constant arrival rate À~. With the result that
the cumulative output from buffer bp,1 in one scheduling period equals the desired production
level dp if and only if:

Xp,1((j- 1)T) ~ J.L~ (J.L~,1- À~)- À~ (~, 1 - (j- 1)T).
p,1

(6.8)

0

Assume that (6.4) holds fora scheduling period j ='Ij; ('Ij; E {1, 2, ... }). Then, it follows from
Lemma 6.1 that Lemma 6.2 holds for any scheduling period j ~'Ij;. Furthermore, from (6.1),
(6.2) and (6.3) it follows that for any scheduling period j ~'Ij; that Xp,1((j -1)T) = Xp,1(}T).

Lemma 6.3. Let 'Ij; ('Ij; E {1, 2, ... }) be a scheduling period for which (6.4) holds, then:

Xp,1(t + T) = Xp,1(t) \ft~ ('Ij;- 1)T, 'Vp EP. (6.9)

In words, a buffer bp,1 will exhibit periadie behavior fort~ ('Ij; -1)T, thus for any scheduling
period j ~'Ij;.

Proof. It follows from Lemma 6.2 that for j ~'Ij;

'+1 .
~,1 = ~,1 +T

'+1 .
T~, 1 = T~, 1 + T,

(6.10)

since the production period always starts at the same moment in a scheduling period, always
has the samelengthand no variability is present. It can now be concluded from lemmas 6.1
and 6.2 that Lemma 6.3 holds. 0

46 Chapter 6. Improving the Savkin policy

Proposition 6.1. For any buffer bp,1 (p E P), which is the first buffer in a production path
of a part type p, the following holds:

Xp,1(t + T) = Xp,1(t)

A~,If(j- 1)T,jT] = dp

(6.11)

(6.12)

In words, a buffer bp,1 is guaranteed to exhibit periodic behavior fort;:: T. Furthermore, the
cumulative output from a buffer bp,1 for t ;:: T equals the desired production level.

Proof. It follows from lemmas 6.2 and 6.3 that Proposition 6.1 holds for any buffer bp,1 for
which:

Xp,1 (0) ;:: 7 (JL~,1 - ,\~) ·
/Lp,1

If Xp,1 (0) does not satisfy (6.13) then A~, 1 (0, T) ~ dp. Thus,

Xp,1 (Ti,1) ;:: 0

1 1 dp
Tp,1 - tp,1 ~ -c-,

/Lp,1

(6.13)

(6.14)

(6.15)

which means that for the cumulative input between the end of the production run in scheduling
period 1 at t = TJ,1 and the start of the new production run in scheduling period 2 at t = t;, 1
the following holds

2 1 T use tp,1 = tp,1 +

use (6.15)

d
use T = ,\~

p

(6.16)

The level of the buffer at the start of the production run in scheduling period j = 2 becomes:

(6.17)

The level of the buffer at the start of scheduling period j = 2 then becomes:

Xp,1(T) = Xp,1(t~,1)- A~,1(T, t~,1)

;:: d: (JL~,1- >.~) -À~ (t~,1- T),
/Lp,1

(6.18)

which means that Proposition 6.1 holds according to lemmas 6.2 and 6.3. D

6.1. Analyzing the Savkin Policy 47

6.1.2 Analyzing the other buffers

In the previous section it was shown that the first buffer in a production path is guaranteed
to exhibit periadie behavior fort~ T. Furthermore, it was shown that the cumulative output
from that buffer is guaranteed equal to the desired production level for t ~ T.

In this section the result of the previous section is extended to all the buffers in the system.
Define for any part type p E P:

Jp,i = 1 + Jp,i-1 + ceil (l~;- 1)
Jp,O = 0

lp,O = 0,

\:/i= 1, 2, 3 ... , np

(6.19)

in which the function ceil rounds up to the first integer. Note, that np denotes the last
production step of workof type p.

Lemma 6.4. For any buffer bp,i (i E Ip, p E P) the following holds:

A~,i((j- 1),jT) = dp

A;,i((j- 1),jT) = dp

\:Ij ~ Jp,i

\:Ij~ Jp,i + 1.

(6.20)

(6.21)

In words, the cumulative input of and cumulative output from buffer bp,i is guaranteed to be
equal to the desired production level for a scheduling period j ~ Jp,i + 1.

Proof. Lemma 6.4 is proven with induction. From the previous section it can be seen that
Lemma 6.4 holds for i = 1. Assume that Lemma 6.4 holds for buffer bp,i· To complete the
induction it needs to be shown that Lemma 6.4 also holds for bp,i+l The cumulative output
from buffer bp,i during scheduling period Jp,i is less than or equal to the desired production
level dp. The cumulative output is less than the desired production level if there is not enough
work present in the buffer. As aresult the following holds:

(6.22)

(6.23)

However, then work will still arrive after the end of the production run. Like for buffer bp,1,
see the proof of Proposition 6.1, the cumulative input of the buffer results in enough work to
be present at the start of the new scheduling period j = Jp,i + 1 to guarantee that:

\:Ij~ Jp,i + 1.

The work removed from buffer bp,i is transported with a transportation delay l~,i to buffer
bp,i+1· Note, that it is possible that this work arrives in bp,i+l in two successive scheduling
periods if the transportation delay does not equal the length T of one scheduling period,
see also Example 6.1. All the work that has been removed from a buffer bp,i in a scheduling
period j is guaranteed to have arrived in buffer bp,i+1 in scheduling period j +ceil(l~,dT). This
concludes the proof of Lemma 6.4 by induction, sirree the cumulative input in a scheduling

48 Chapter 6. Improving the Savkin policy

period of buffer bp,i is guaranteed equal to the desired production level for the scheduling
period:

(
ze.)

Jp,i+l = Jp,i + 1 + ceil ~t •

D

Example 6.1. This example illustrates a part of the proof of Lemma 6.4. In this example
it is shown that ij the transportation delay l~,i does not equal the length T of one scheduling
period it is possible that work arrives in bp,i+l in two successive scheduling periods.

Assume that in scheduling period j work is removed by machine ai,p from buffer bp,i in the

time period [~,iT~,J. This work is transported with a transportation delay of l~,i to the next

buffer bp,i+l· The work arrives in buffer bp,i+l during the time period [~,i+ l~,i' T~,i + l~,J
Let (jT- T~,i) < l~,i < T, then work removed from buffer bp,i in period j arrives in buffer
bp,i+l in the two successive scheduling periods j and j + 1. The time periods in which work
arrives in buffer bp,i+l are depicted in Figure 6.1 on a time line.

(j-1)T

1~: :;i .•. d ;:· ·· .. 1

jT

... '·I •·· I

c::=:J Arrival of work

Figure 6.1: The time line of Example 6.1.

Proposition 6.2. For any buffer bp,i (i E 'Ip, p E P):

Xp,i(t + T) = Xp,i(t)

A;,d(j- 1)T,jT] = dp

\:ft 2: Jp,iT

\:Ij 2: Jp,i + 1

(6.24)

(6.25)

In words, a buffer bp,i is guaranteed to exhibit periadie behavior for t 2: Jp,iT. Furthermore,
the cumulative output from buffer bp,l for t 2: Jp,iT equals the desired production level. As
a result the cumulative output from the system of part type p during a scheduling period is
guaranteed equal to the desired production level for t 2: Jp,npT.

Proof. Define [f~,iF~,i] as the time period in which work arrives in buffer bp,i where f~,i lays
in scheduling period j. It follows from Lemma 6.4 that for j 2: Jp,i + 1:

'+1 .
~,i =~,i +T

Tj-f:l = Tj. + T
p,t p,t

f j - fj-l T
p,i- p,i +

F j - pj-l T p,i- p,i + .
It can now be concluded that Proposition 6.2 holds, sirree no variability is present.

(6.26)

D

6.1. Analyzing the Savkin Policy 49

Lemma 6.5. For any buffer bp,i (i E 'Ip, p E P) the following holds

(6.27)

In words, when a buffer exhibits periadie behavior for t 2: Jp,iT then the minimallevel of a
buffer bp,i is at least the maximum of zero and Xp,i(Jp,iT)- dp.

Proof. According to Lemma 6.4, the cumulative output from and the cumulative input of a
bufferduringa scheduling period j 2: Jp,i + 1 are equal to the desired production level dp. The
level of a buffer is at its minimum if workis removed first befare new work arrives. If this is
the case then the buffer level at the start of the production run equals the buffer level at the
start of the scheduling period. The minimallevel of the bufferthen equals Xp,i(Jp,iT) - dP'
However, work does not always arrive after the production run. Work can also arrive during
of befare the production run. As aresult the minimal buffer level will be higher. The minimal
level of the buffer can of course not become smaller than zero. 0

From Lemma 6.5 it follows that the minimallevel of a buffer is not guaranteed equal to zero.

Lemma 6.6. The level of a buffer bp,i at t = Jp,iT is not independent of the levels of the
buffers bp,k (k E { = 1, 2, ... , i}) at t = 0. Thus, Xp,i(Jp,iT) is not independent of the initial
buffer levels of all the buffers that workof type p has visited.

Proof. Mass conversation implies the following:

In which for i = 1

and for i 2: 2

A~,dO, Jp,iT] = A~,i-dO, Jp,iT- lp,i-1]

~ A~,i-dO, Jp,iT]

Furthermore,

(6.28)

(6.29)

(6.30)

(6.31)

since the cumulative output of a buffer can not be larger than the level of the buffer at t = 0
plus the cumulative input or it can not be larger than the cumulative output limited by the
Savkin policy. It can now beseen from (6.29), (6.30) and (6.31) that the level of the buffer
at t = Jp,iT is not independent of the buffer levels of the buffers bp,k (k E { = 1, 2, ... , i}) at
t=O. 0

Proposition 6.3. For any flexible manufacturing system under control of the Savkin policy
the following holds for t 2: max Jp,npT:

(p=l,2, ... ,P)

50 Chapter 6. Improving the Savkin policy

1. all buffers exhibit periadie behavior, thus:

x(t + T) = x(t) (6.32)

2. the flow time of workof type p (pEP) is not independent of the initial buffer levels of
the buffers bp,i (iE Ip) at t = 0.

3. the flow time of workof type p (p E P) has the lowest value if the minimallevels of all
the buffers bp,i (iE Ip) are equal to zero. Thus the flow time of workof type p has the
lowest value possible if the following holds:

min(xp,i(t)) = 0. (6.33)

Proof. The proof for the first item follows directly from Proposition 6.2.

For the second item let 'Pp denote the flow time of work of type p. Then the following holds
for the flow time:

use (6.27)

(6.34)

From Lemma 6.6 it follows that Xp,i (Jp,iT) is not independent of the of the buffer levels of all
the buffers bp,k (k E { = 1, 2, ... , i}) at t = 0. Thus, it can be concluded that the flow time of
workof typepis notindependent of the initial buffer levels of all the buffers bp,i (iE Ip)·

If the minimal level of a buffer is larger than zero there is always an unnecessary constant
amount of work present in a buffer. This can also beseen from Figure 6.2. The upper line
depiets the periadie behavior of a buffer in a system fort 2 max(p=l,2, ... ,P) Jp,npT. The buffer
level of the buffer never drops below c1 . This minimal amount of work that is always present
in the buffer is not necessary to ensure the periadie behavior and if this amount of work would
be removed manually the same behavior will still be present. However, the minimal buffer
level will now be equal to zero as depicted with the bottorn line in the figure. Removing
this work results in a smaller flow time, sirree work is now not unnecessary waiting in the
buffer. D

6.2. Improving the Savkin policy for a simple case

c' I
I , ..
' I

I
... '

.... ·\· ·:· ..
I
\ I :
I I
I I
\ I
.I I

\ I
11

·'··· I
I
I
I

time

\

' ' .\ .. :
I :

·= \:

Figure 6.2: The behavior of a buffer under control of the Savkin policy.

6.1.3 Resumé

51

From Proposition 6.3 it can be concluded that the Savkin policy is not optimal with respect
to minimizing the average flow time. Furthermore, the average flow time of a system under
control of the Savkin policy is not independent of the initial buffer levels. A right choice of
initial buffer levels will result in the lowest flow time possible for a manufacturing system
controlled by the policy of Savkin. However, it is often not possible to arrange that a buffer
has a specified initia! buffer level. Therefore, the question arises: fora manufacturing system
controlled by the Savkin policy, is it possible to adapt the system in such a way that the
average flow time is minimized? This question is investigated in the next section.

6.2 lrnproving the Savkin policy for a sirnple case

In the previous section it has been shown that applying the Savkin policy on an approximated
flexible manufacturing system does not guarantee the lowest average flow time possible for the
Savkin policy. Furthermore, it has been shown that the average flow time is notindependent
of the initial buffer levels. A wrong choice of initial buffer levels results in the minimallevel
of a buffer being larger than zero. Thus, there is always a minimal amount of work present in
a buffer, which results in an increased average flow time. A right choice of initia! buffer levels
results in the minimal level of a buffer being equal to zero. Then, no unnecessary work is
present and this results in the lowest average flow time possible for the Savkin policy. In this
section it is investigated if it is possible to improve the Savkin policy such that the minimal
level of a buffer equals zero, regardless of the initial buffer levels. In other words, is it possible
to adapt the Savkin policy such that the resulting average flow time is as low as possible fora
system under control of the Savkin policy? The parameters of the Savkin policy that may be

52 Chapter 6. Improving the Savkin policy

adapted are the lengths of the production runs and the lengths of the setups. It is assumed
that a machine can idle by extending a setup.

First, it is investigated if it is possible to imprave the Savkin policy for a simple case. This
case consists of only one machine processing two different part types. Furthermore, the parts
in the systems are approximated as a continuous flow and it is assumed that no variability is
present.

The buffer levels in a flexible manufacturing system under control of the Savkin policy are
guaranteed to exhibit periadie behavior within a limited amount of time, see also Proposi­
tion 6.3. The periadie behavior stays the same for any initial buffer level. The initial buffer
levels only infl.uence the 'height' at which this period behavior takes place, see also Figure 6.2.
For a simple two buffer case it is possible to depiet the behavior of the buffers in a phase
diagram.

p=1
b1,1 lil

m=1

P=2
b2,1 lil

Figure 6.3: The fl.exible manufacturing system of Example 6.2.

Example 6.2. Consider the flexible manufacturing system depicted in Figure 6.3 and de­
scribed as:

p = {1,2}

a1,1 = 1

Àl = 1

f-ll1 = 3 ,

fh = 2.

M = {1}

CY2,1 = 1

À~= 2

f.l~ 1 = 6 ,

The minimal length of the Savkin scheduling period equals:

2*2
T0 = 1 2 = 12.

1 - (3 + 6)

The scheduling period is set equal to the minimal scheduling period, thus T = To. Furthermore,
for the desired production levels the following holds:

(6.35)

At time t = 0 the machine is ready to start processing from buffer b1,1·

In Figure 6.4 two possible phase diagrams of the system as described in Example 6.2 are
depicted. The horizontal axis represents the level of buffer b1,1 and the vertical axis represents
the level of buffer b2,1· The start position of a trajectory is denoted with *· The solid line

6.2. Improving the Savkin policy for a simple case

35~---------------.----------------~,===============~
- - x 11 (0) = 10, x 21 (0) = 20
_ x1:1(0) = o, x

2
,;(o) = o

N
><

30

25

20

15

10

0

_,,..,..\ \.
~/. \.\ ..

< ' ,,
............... ' ~

~,
\ ~ I-ti '-'"-12

· ' ~ · - 1,1 V j- ' , ...
. \;"> = fl V']= 0,1,2,: ..

' ,..,.. . \,.,.../
~··········

I = ti V j = 2,3 ... 1,1

.=JT 'lfi"1,2? ...

5 10 15
x1.1

Figure 6.4: A phase diagram of Example 6.2 for different initial buffer levels.

53

depiets the trajectory of the buffer levels for empty buffers at t = 0. The dashed line represents
the trajectory for the following initial buffer levels x1,1(0) = 10, x2,1(0) = 20. It can been seen
that the trajectory of the buffer levels for the empty buffers at at t = 0 converges within one
scheduling period T to an hourglass shape. For the initial buffer levels x1,1(0) = 10, x2,1(0) =
20 the trajectory immediately takes the form of an hourglass trajectory. The shape of this
hourglass trajectory stays the same regardless of initial buffer levels. However, the position
of this hourglass trajectory changes for different initial buffer levels. From Proposition 6.3 it
follows that the average flow time of all the parts in the system is minimal if the minimal
buffer levels equal zero. In the phase diagram this corresponds to the hourglass trajectory to
be positioned as far in the lower left corner as possible. In Figure 6.5 a trajectory is depicted
which results in a minimal average flow time for a two buffer machine system under control
of the Savkin policy. Note that a buffer is now empty at the end of a production run. This
trajectory, which results in a minimal average flow time for a two buffer machine system
under control of the Savkin policy, will be denoted as the ideal Savkin trajectory.

Let the vector xid(t) = [xid1 (t), xkd1 (t)] denote the position on the ideal Savkin trajectory on

the phase diagram at time' t. Furthermore, let xid(t~~1) and xid(T~~1) denote the positions on
the ideal Savkin trajectory at respectively the start and the end of a production run from
buffer bp,l· For this simple two buffer case the ideal Savkin trajectory can be computed easily,
sirree there is a constant arrival rate and a buffer should be empty at the end of a production
run. Thus, at t = T~~1 the buffer containing workof type p should be empty. The computed
trajectory can be found in Table 6.1. As can be seen the level of the buffer containing work
of type p equals zero at t = T~~1 . The buffer level at t = t~~1 for the buffer containing work of

t

54 Chapter 6. Improving the Savkin policy

16

14 /)··

Figure 6.5: A phase diagram of Example 6.2 if minimal workis present in the buffers.

type p follows from (6.7). The levels of the buffer containing workof typepat time s ::;; t~~1
can be computed by subtracting the cumulative input over the period [s, t~~1] from the buffer

level at time t = t~~1 . These buffer levels are shown on the left side of the x~~1 (t) column
and xk~1 (t) column. These values can be rewritten, which is shown on the right sicles of the
columns.

Table 6.1: The ideal Savkin trajectory.

x~~1(t) xk~1(t)
tid 1,1 4-(J.Li 1 ->.i)

J.Ll 1 '
= >.i (2el + 4--)

~-'2 1
4-(J.L~ 1- >.~)- >.~ (e1 + 4-)
/1-2 1 ' J.Ll 1

= e1>.~
Tïd 1,1 0 =0 4-(J.L~ 1 - >.~) - >.~e1 =À~ (el+~) I-L2 1 '

tid 2,1 4-(J.Li 1 ->.i) ->.i (e1 + 4--)
J.Lt 1 ' J.L2 1

= e1>.i 4-- (J.L~ 1 - >.~)
J.t2 1 '

=À~ (2el + 4-)
~-'1 1

Tid 4-(J.Li 1 ->.i) ->.iel =>.i (e1 + 4--) 0 =0 2,1
p,l 1 ' ~-'2 1

To minimize the average flow time the control goal of the improved Savkin policy becomes:
guarantee that the trajectory of the buffer levels converges within a minimal amount of time
to the ideal Savkin trajectory. Let x(tt1) denote the position of the improved Savkin policy
at the start of cycle k. The idea for adapting the Savkin policy is the following. Assume that
for every position on the phase diagram it is known what to do in order to satisfy the control
goal. With this information the improved Savkin policy will be able to control a simple two

6.2. Improving the Savkin policy for a simple case 55

buffer case such that the control goal is satisfied. The expectation is that the phase diagram
can be divided in differentareasin which certain control actions should be taken. An example
of such a division is given in Figure 6.6. The phase diagram is divided in three different areas.
Ifpositioned in the lower right area the machine should process from buffer b1,1· In the middle
area the machine should process from the buffer it is ready to process from. In the upper left
area the machine should process from buffer b2,1· The improved Savkin policy will be able to
cope with variability if a division is possible, sirree at every position on the phase diagram it
is known what the best action is.

Keep proce!ising trom ~urrent bulter
· · · · · swiicti ia process ·

trom b2,1 :

Figure 6.6: A phase diagram divided in different areas in which certain control actions should
be taken.

6.2.1 Options for an improved Savkin policy

The previous section introduced a control goal for the improved Savkin policy. The control
goal is defined as: guarantee that the trajectory of the buffer levels converges within a minimal
amount of time to the ideal Savkin trajectory. This section discusses different options for an
improved Savkin policy. The first option is a simple salution for the improved Savkin policy.

Cyclic clearing policy

Consicier the following possible simple salution for the improved Savkin policy: process from
b1,1 until it is empty, setup for b2,1, process from b2,1 until it is empty, setup for b1,1· Note

56 Chapter 6. Improving the Savkin policy

that this is a clearing policy, where the buffers are visited according to nextsAV· This pos­
sibie solution for the improved Savkin policy will be referred to as the cyclic clearing policy.
Consider a line through the positions xid(Tfd1) and xid(t~d1), denoted as a. Figure 6.7 depiets

a. Note, that this line crosses the x 1,1 axis ~t [(~~ + ())(~1 - .\1),0].

Proposition 6.4. Let qm(O) = b1,1, thus the machine is ready to process from buffer h,l·
Then, for any initial position that does not coincide with a and when applying the cyclic
clearing policy the resulting trajectory will converge to the ideal Savkin trajectory, but never
coincide with it. For any initial position that does coincide with a the resulting trajectory
will coincide with the ideal Savkin trajectory.

Proof. The proof of this proposition is given in Appendix B.l. Note that it can be seen
from the proof in Appendix B.l that Proposition 6.4 can easily be extended for qm(O) = b2,1·
However, a will then run though the positions xid(T~d1) and xid(tkd1). D , ,

18.-----------------.-----------------~----------------~

5 10 15

Figure 6.7: A phase diagram of Example 6.2 with a.

Searching for the optimal improved Savkin policy

The trajectory of the cyclic clearing policy only converges to the ideal Savkin trajectory, but
never reaches it. Furthermore, it is not guaranteed that the resulting trajectory converges to
the ideal Savkin trajectory in the smallest amount of time possible. Therefore, it is investi­
gated if a better solution can be found. First, it is studied if the ideal Savkin trajectory can
be reached and from which initial positions this is possible.

6.2. Improving the Savkin policy fora simple case 57

Proposition 6.5. Let Qm(O) = b1 ,1, thus the machine is ready to process from buffer b1,1·

Then, the ideal Savkin trajectory can be precisely reached for any initial position that lays
below or on a. The ideal Savkin trajectory can not be precisely reached for any initial position
that lays above a.

Proof. The proof of this proposition is given in Appendix B.2. Note, in Appendix B.2 it is
also shown from which initial positions the ideal Savkin trajectory can be reached if Qm(O) =

b2,1 · D

In addition, the following proposition can be made.

Proposition 6.6. If a position on the phase diagram can be reached in K cycles without
extending the setups then reaching that same position in K + 1 cycles will always take more
time. Furthermore, if a position can be reached in K cycles without extending the setups
then reaching that same position in K cycles with extending setups will always take more
time.

Proof. The proof of this proposition is given in Appendix B.4. D

Initia! positions below or on a
According to Proposition 6.5 the ideal Savkin trajectory can be reached from any initial
position below or on a if Qm(O) = b1 ,1·

Figure 6.8: A possible phase diagram of the system depicted in Figure 6.3

Proposition 6. 7. Consicier the system depicted in Figure 6.3. Assume that the machine
always follows the cycle: process from buffer b1,1 , setup for buffer b2,1, process from b2,1,

setup for b1,1. Furthermore, it is assumed that the time required to perform a setup when

58 Chapter 6. Improving the Savkin policy

the machine switches from b1,1 to b2, 1, denoted with (h 2, does not have to equal the setup
time when the machine switches from b2,1 to b1,1, denoted with 82 1· In Figure 6.8 a possible
phase diagram of such a system is depicted. The structure if this phase diagram is explained
in Appendix B.3. The phase diagram shows an ideal Savkin trajectory and the phase diagram
is divided by lines and intervals in different areas. These areas all have a specific color. Let
Qm(O) = b1,1 and consider the following actions for the following different initial positions.
For initia! positions in the dark gray area process from b1 ,1 work until d and then perform
a setup to buffer b2,1· For initial positions in the light gray area perform a setup to buffer
b2,1 and idle at b2,1 to b1. For initial positions in the very light gray area perform a setup to
buffer b2,1, performa setup to buffer b1,1 and idle at b1,1 until a1 . And for initial positions in
the white areaperforma setup to buffer b2,1, process work from b2,1 until c, perform a setup
to b1,1. These actions, summarized in Table 6.2, result in the fastest trajectory to the ideal
Savkin trajectory.

Proof. The proof of this proposition is given in Appendix B.3. Note, in Appendix B.3 it is
also shown which action should betaken to reach the ideal Savkin trajectory in the smallest
amount of time if Qm(O) = b2,1· 0

Table 6.2: Actions for any initial position with Qm(O) = b1,1 below a, as depicted in Figure
6.8, that result in the fastest trajectory to the ideal Savkin trajectory.

Dark gray process from b1,1 work until d, perform a setup
to buffer b2,1

Light gray perform a setup to buffer b2,1 and idle at b2 ,1 to
bl

Very light gray perform a setup to buffer b2,1, perform a setup
to buffer b11 and idle at b1 1 until a1 , ,

White perform a set up to buffer b2,1, process work from
b2,1 until c, perform a setup to b1 ,1

Initial positions above a
According to Proposition 6.5 the ideal Savkin trajectory can not be reached from any initial
position above a if Qm(O) = b1,1 . To measure if the improved Savkin policy has converged to
the ideal Savkin trajectory the position xid(tid1) of the ideal Savkin trajectory is compared

with the start position x(tt1) of a cycle kof the improved Savkin policy. A possible option
for the improved Savkin policy is the cyclic clearing policy, which was introduced earlier.
However, it is not guaranteed that the cyclic clearing policy converges to the ideal Savkin
trajectory in the smallest amount of time possible. The problem of finding the fastest route
to some point can be formalized as an optimization problem. Therefore, an optimization
algorithm is used in order to findan answer to this problem. First, the optimization problem
needs to be correctly defined in order to use an optimization algorithm to solve it.

In Appendix B.5 it is shown for positions above a that idling the machine never results in faster
convergence totheideal Savkin trajectory than not idling the machine. Thus, increasing the
lengths of the setups is never necessary in order to approach the ideal Savkin trajectory when

6.2. Improving the Savkin policy for a simple case 59

the initial positions lay above a. Therefore, the system variables that need to be optimized
are only the lengths of the production runs. The optimization problem is defined as follows.
Study if it is possible to sufficiently approach the ideal Savkin trajectory in one cycle. The
trajectory has sufficiently approached the ideal Savkin trajectory when the distance between
x(tf 1) and xid(t~d1) is smaller than or equal to E. If it is possible to reach the ideal Savkin , ,
trajectory in one cycle then minimize the amount of time necessary to reach the ideal Savkin
trajectory. If the ideal Savkin trajectory can not be reached in one cycle study if it is possible
to sufficiently approach the ideal Savkin trajectory in two cycles and minimize the amount of
time necessary. If the ideal Savkin trajectory again can not be reached study if it is possible
to sufficiently approach the ideal Savkin trajectory in three cycles and minimize the amount
of time necessary. The number of cycles is increased until the ideal Savkin trajectory can
be sufficiently approached and the system variables are optimized such that the amount of
time necessary the reach the ideal Savkin trajectory is minimaL In Appendix B.4 it is shown
that if a position can be reached in K cycles without extending the setups then reaching that
same position in K + 1 cycles will always take more time. Thus, a minimal number of cycles
to sufficiently approach the ideal Savkin trajectory results in the fastest convergence to the
ideal Savkin trajectory.

Note, the number of system variables increases with every cycle. For example, for the first
cycle there are only two variables: the lengthof the production run from b1,1 and the length
of the production run from b2,1· The second cycle again introduces two variables, thus there
are now four variables which neecis to be optimized. The lengths of the production runs are
limited, because a buffer level can not become negative. For this simple case let D~ denote
the lengthof the production from buffer bp,1 during cycle k. Then, the following holds:

x (tk) Dk < p,1 p,1
p - C ,\Cl

/Lp,1 - p
(6.36)

sirree a buffer level can not become negative. The level of a buffer a time t equals the level
of the buffer at the start plus the cumulative input and minus the cumulative output. For
this simple case the cumulative input equals the arrival rate times the time period. The
cumulative output equals the processes rate times the lengths of the production runs. Then,
(6.36) becomes:

k-1

Xp,1 (0) + À~t~,1 - /L~,1 2:= D~
Dk < v=1

p - /L~,1 - À~

(6.37)

Note, that t~, 1 denotes the time at the start of the production run D~ and equals:

k-1 p p-1

t;,1 = ((k -1)P + p -1) th + L L D~ + L D~. (6.38)
v=1 w=1 w=1

The lengthof a production run from buffer bp, 1 during cycle k is linearly dependent on the
lengths of all the previous production runs from all the buffers at that machine. Appendix B.6
shows how (6.37) tagether with (6.38) can be rewritten in the form:

AD Ss. (6.39)

60 Chapter 6. Improving the Savkin policy

In which D is a vector cantairring all the lengths of the production runs and :::; is understood
component wise. The size of A, D and s depends on the number of cycles.

The trajectory has sufficiently approached the ideal Savkin trajectory when the distance
between x(t1 1) and xid(t~d1) is smaller than or equal toE or formalized:

' '

id id k llx (t11)- x(t11)ll2 =
' '

The position on the phase diagram after k cycles at t = t~1 1 is defined as:
'

x(tk+l) = [x1,1 (t~j 1
)] = [x1,1 (0)] + tk+l [ÀI] _ [PÎ,l vtl D]_ 1

1,1 X (tk+l) X2 1(0) 1,1 Àc J 2,1 1,1 , 2
11

c '\"" Dv
r21 w 2·

' v=l

(6.40)

(6.41)

From (6.41) it can beseen that (6.40) is non-linearly dependent on the system variables. A
question that rises is: what size should E be? Let 9t be the area in which all positions lay that
have a distance E or less from xid(t~~1). Then, E should be so small such that it is guaranteed
that if a position in 9t can be reached in k cycles that a different position in that same area
9t can not be reached faster in k + 1 cycles. In Appendix B. 7 it is shown that the following
should hold:

PÎ,1P~,1 81
f. < -vr=========, J-lc 2 + 11c 2 1,1 r--2,1

(6.42)

to guarantee the above. The fastest route to the ideal Savkin trajectory can now be found in
the following manner: For k = 1 cycle study if it is possible to solve the following optimization
problem:

~n t~j1 = kPB1 + IIDih
s.t.: AD:::; s

D ?_ 0

11 xid (t~d 1) - x (t~1 1) ll2 :::; E •
' '

(6.43)

If the salution to this problem does not exist, because the feasible space is empty, then study
if it is possible to solve (6.43) for k + 1 cycles. Continue to increase the number of cycles
until a feasible salution exist. This salution is the fastest route to the ideal Savkin trajectory.
Note, that the objective function, the first and second constraint are linearly dependent on
the system variables and that the third constraint is not. Due to the non-linear constraint
and the increasing number of system variables which each cycle it is difficult to determine if
the problem has a convex salution space.

6.2. Improving the Savkin policy for a simple case 61

Gomparing the two options

The two possible options for the improved Savkin policy: clearing or optimization, are com­
pared with each other. The optimization problem is solved in Matlab with fmincon, which
uses a sequentia! quadratic programming (SQP) method to solve the problem. The file used
for camparing both versionsin Matlab can be found in Appendix E. The optimization version
should always return a trajectory which takes the same or less amount of time than the cyclic
clearing policy to sufficiently converge to the ideal Savkin trajectory. The reasou for this is
that if clearing should be the optimal salution than the optimization version has to return
that solution. It turns out that for various initial positions the optimization version returns
a trajectory that takes more time than applying the cyclic clearing policy. This is probably
caused by the salution space not being convex, because (6.40) is non-linearly dependent on
the system variables. To partially overcome this problem, the optimization is given the cyclic
clearing trajectory as an initial guess for a possible solution. Then, the optimization version
returns a trajectory almost similar to the cyclic clearing policy and which is negligible faster
than the cyclic clearing policy. The results of various optimization problems for different
initial positions are depicted in Table 6.3. The system as defined in Example 6.2 and an
E of 0.001 were used for generating these results. The table also depiets the results of the
cyclic clearing policy. The table shows the remairring distance between the trajectory and the
ideal Savkin trajectory and the time to sufficiently approach the ideal Savkin trajectory. It
can been seen from the table that remairring distance of the optimization algorithm always
lays around 0.001, which is equal toE. This is the maximal remairring distance allowed. Ap­
parently the optimization algorithm is not capable of finding a trajectory that has a smaller
remairring distance and takes less time. Therefore, the optimization algorithm tries to find
the fastest trajectory which results in a remairring distance of E. The remairring distance of
the cyclic clearing policy is always smaller than or equal to E. If the remairring distance would
be larger than E, then another cycle would be performed resulting in a shorter remairring
distance. It can also be seen from the table that the optimization algorithm is only slightly
faster than the cyclic clearing policy. Summarized, the optimization algorithm returns a tra­
jectory which is slightly faster than the trajectory of the cyclic clearing policy. However,
the remairring distance between the optimized trajectory and the ideal Savkin trajectory is
always larger or equal the remairring distance of the cyclic clearing policy. To overcome this
problem the remairring distance of the cyclic clearing policy is used as the E value for the
optimization problem. Then, the optimization version returns a trajectory very similar to
the cyclic clearing policy. The small difference between the trajectodes is probably caused by
numerical errors.

Table 6.3: The results of the cyclic clearing policy and the optimization algorithm.

Initial position Remairring distance required time
Cyclic clearing Optimization Cyclic clearing Optimization

[10, 10] 4.8828 . 10-4 9.9992 . 10-4 88.9995 88.9990
[57, 23] 2.5940 . 10 -4 0.001 166.4997 166.4989

[100, 357] 4.2439 . 10-4 0.001 388.4996 388.4989

It can be concluded that the optimization algorithm is not capable of finding a significant

62 Chapter 6. Improving the Savkin policy

better trajectory then the cyclic clearing policy. It can not be concluded that the cyclic
clearing policy is the optima! solution for an impraved Savkin policy. However, for initial
positions above a the cyclic clearing policy is easy implementable and it can cope with vari­
ability easily. Note that for this cyclic clearing policy the upper and lower switching lines of
Figure 6.6 respectively coincide with the x2,1 and x 1,1 axis. Further research is necessary to
find the optimal solution for the improved Savkin policy for initial positions above a.

6.3 Resumé

In the first section of this chapter it has been shown for an appraximated flexible manufac­
turing system that the average flow time is not independent on the initial buffer levels if the
line is under control of the Savkin policy. In the previous section it has been investigated for
a simple two buffer case if it is possible to imprave the Savkin policy such that the lowest
average flow time possible is guaranteed for such an line for any initial buffer level. Phase
diagramsof the buffer levels have been used for finding the best impravement for the Savkin
policy. First the ideal Savkin trajectory on the phase diagram for the system under control
of the Savkin policy has been determined. It has been shown for certain initial positions on
the phase diagram, which correspond to the initial buffer levels, that it is possible to reach
the ideal Savkin trajectory precisely. For these initial positions the fastest trajectory to the
ideal Savkin trajectory has been determined. For the other initial positions it is only possible
to approach the trajectory, but never possible to precisely reach it. Forthese initial positions
a trajectory has been determined that converges to the ideal Savkin trajectory, namely the
cyclic clearing policy. It has not been determined if this trajectory is the fastest way to
converge to the i deal Savkin trajectory. However, it is the fastest trajectory available, since
a significant faster trajectory has not been found.

Chapter 7

Conclusions and recommendations

7.1 Con cl usions

This thesis tried to answer various questions, which were:

• Which control poli ei es are available for cantrolling a fiexible manufacturing system?

• Are these polides suitable for stochastic environments and, if not, can they be adapted?

• For acyclic systems, how do these polides perfarm and what is the infiuence of certain
characteristics of the system on the performance?

• For non-acyclic systems, which techniques are available for stahilizing unstable con­
trol policies and how do they perfarm compared to the just recently developed stable
switching policy [Sav03]?

• When the previous questions are answered, is it possible to point out one policy with
the best performance and if not, is it possible to imprave the most promising policy in
order to increase its performance?

In this report the average flow time of all parts has been used as a performance measure for
the control policies. In Chapter 2 it has been shown that there are various polides available to
control a fiexible manufacturing system. Three promising polides have been chosen, namely
the Savkin policy (SAV), the Clear the Largest Work policy (CLW) and the Clear the Largest
Scaled Age policy (CLSA).

In Chapter 3 these polides have been stuclied further. It has been shown that the Savkin
policy can be unstable in a stochastic discrete environment. Therefore, the Savkin policy
has been adapted, in order to introduce variability in a system with discrete parts without
resulting in instability. The adapted version is denoted with SA Va. SA Va is only able to cope
with a special stochastic distribution, namely a triangular distribution for the arrival and
process rate. Also CLW has been slightly adapted to make a comparison with CLSA more
fair. The adapted CLW version is denoted with CLWa.

Simulation experiments have been setup and performed in Chapter 4 in order to campare
the three polides with each other for a simple single machine system with acyclic production

63

64 Chapter 7. Conclusions and recommendations

paths. The results have shown that CLSA has the best performance for a single machine
system with acyclic production paths.

It has been explained in Chapter 5 that the CLSA and CLWa policy are not always stable
in a non-acyclic system. A technique called regulators stahilizes these systems. However,
the performance of these two polides in a non-acyclic system depends on parameters of the
system. Contrary to the tested acyclic single machine system, CLSA does not always have
the best performance. Furthermore, regulators can worsen the performance of an already
stable non-acyclic system. Therefore, none of the polides with or without regulators has the
best overall performance.

The Savkin policy is the only control policy which is guaranteed stable by itself for systems
with non-acyclic production paths if the so-called capacity condition holds. This is a property
that the other two control polides lack. Therefore, the Savkin policy has been studied further
to see if it is possible to increase its performance. In Chapter 6 it has been proven for
a manufacturing system with a continuous flow of work and no variability that the Savkin
policy is not optimal with respect to minimizing the average flow time. It has also been shown
that the average flow time of a system under control of the Savkin policy is not independent of
the initial buffer levels. For a two buffer single machine system improvements for the Savkin
policy have been found, such that the average flow time converges to the lowest value possible
for such a system, regardless of the initial buffer levels. Finally, it has been proven for the
two buffer single machine system controlled by the improved Savkin policy that for certain
initial conditions the average flow time converges to its minimum in the smallest amount of
time possible.

7.2 Recommendations

New questions and ideas for improvements have arisen during this research.

Variability

The CLSA and CLW poli ei es are both capable of handling variability. So far, the Savkin
policy is only capable of handling special kinds of limited variability distributions. This
limits the suitability of the Savkin policy, since in practice the variability is often unlimited.
Therefore, further research is necessary to explore if it is possible to make the Savkin policy
suitable for non limited variability distributions. A possible solution was already introduced
in Chapter 6 for the two buffer single machine system. The system can handle variability if
for every position and corresponding machine state on the phase diagram it is known what
the best action is to reach an optimal position and corresponding machine state. Another
possible solution that needs further research is the following. In Chapter 3 it was shown that
the Savkin policy controls a manufacturing system in such a way that the utilization equals
one, which results in instability in a stochastic system. It needs to be studied if it is possible
to measure the utilization realtime and to adapt the parameters of the Savkin policy such
that the utilization is smaller than 1.

7.2. Recommendations 65

Regulators

In Chapter 5 regulators were introduced in order to stabilize the CLW and CLSA policy for
a non-acyclic system. For the simulations the arrival rate has been used as a setting for the
regulator speed and the simulations have been performed with smooth regulators. However,
the arrival rate does not have to be the optimal setting for the regulator speed. Furthermore,
non-smooth regulators can partially offset the problem of underutilization. It needs to be
explored if it is possible to imprave the regulators. The performance of the system with the
improved regulators should be greater than or equal to the performance of the system without
regulators. Maybe it is possible to use feedback to control the regulator speed.

Discretization

In Chapter 6 it has been tried to imprave the performance of SAV for a two buffer single
machine system with a continuous flow of work. However, in Chapter 3 it has been shown
that the SAV policy can be unstable in a system with work that consists of discrete parts if
a machine has to finish a part. Therefore, it needs to be investigated what the effects are of
discrete parts insteadof continuous work for the improved Savkin policy.

Larger systems

In Chapter 6 the Savkin policy has been impraved for a single machine system with two
buffers, which is an acyclic system. However, the Savkin policy is in particular interesting,
because it is stabie for non-acyclic systems. Therefore, it needs be explored if it is possible
to imprave the Savkin policy for non-acyclic systems. A possible impravement for the Savkin
policy is changing nextsAv, which determines from which buffer work is processed by the
machine. The Savkin policy visits each buffer once in one scheduling period. However, this
does not have to be the optimal sequence. For example, is it possible that a Savkin policy
with nextcLSA results in a lower average flow time? Therefore, it needs to be investigated if
it is possible to change the nextsAv and what the influence of this change is.

66 Chapter 7. Conclusions and recommendations

Bibliography

[Ban97] J. Banks and J.G. Dai. Simulation studies of multiclass queueing networks. IEEE
Transactions, 29:213-219, 1997.

[Bur97] Kevin Burgess and Kevin M. Passino. Stable scheduling polides for fiexible manu­
facturing systems. IEEE Transactions on Automatic Control, 42(3):420-425, March
1997.

[Coo98] B. Cooper, Shun-Chen Niu, and Mandyam M. Srinivasan. When does forced idle
time imprave performance in polling models. Management Science, 44(8):1079-
1086, August 1998.

[Coo99] B. Cooper, Shun-Chen Niu, and Mandyam M. Srinivasan. Setups in polling models:
Does it make sense to setup if no work is waiting? Joumal of applied probability,
36:585-592, 1999.

[Ger86] Stanley B. Gershwin. Stochastic scheduling and setups in fiexible manufacturing
systems. In K. Stecke and R. Suri, editors, Proceedings of the second ORSA/TIMS
conference on ftexible manufacturing systems: operations research models and ap­
plications, pages 431-422, Amsterdam, The Netherlands, 1986.

[Hof02] A.T. Hofkamp and J.E. Rooda. Chi tooiset reference manual. Technische Uni­
versiteit Eindhoven, Department of Mechanica! Engineering, Systems Engineering
Group, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, November 2002.
http:/ /se.wtb.tue.nl/.

[Hop96] J.W. Hoppand M.L. Spearman. Factory Physics: Foundations of manufacturing
management. Irwin, 1996.

[Hum94] Carlos Humes Jr. A regulator stabilization technique: Kumar Seidman revisited.
IEEE transaction on automatic control, 39(1):191-196, January 1994.

[Kum90] P.R. Kumar and Thomas I. Seidman. Dynamic instahilities and stabilization meth­
ocis in distributed real-time scheduling of manufacturing systems. IEEE Transac­
tions on Automatic Control, 35(3):289-298, March 1990.

[Kum93] P.R. Kumar. Re-entrant lines. Queueing Systems, 13:87-110, 1993.

[Kum95] P.R. Kumar and S.P. Meyn. Stability of queuing-networks and scheduling policies.
IEEE Transactions on Automatic Control, 40(2):251-260, February 1995.

67

68 Bibliography

[LawOO] Averill M. Law and W. David Kelton. Simulation modeZing and analysis. Mc-Graw­
Hill, 2000.

[Liu92] Zhen Liu and Philippe Nain. On optimal polling policies. Queueing Systems, 11:59-
83, 1992.

[Lu91] Steve H. Lu and P.R. Kumar. Distributed scheduling basedon due dates and buffers
priorities. IEEE Transactions on Automatic Control, 36(12):1406-1416, December
1991.

[Mat02] The MathWorks, Inc., Natick, Massachusetts, USA. Matlab reference guide, version
6, 2002. http:/ jwww.mathworks.com.

[Mon99] Douglas C. Montgomery and George C. Runger. Applied statistics and probability
for engineers. John Wiley & Sans, Inc., 1999.

[Ols99] Tava Lennon Olsen. A practical scheduling methad for multiclass production sys­
tems with setups. Management Science, 45(1):116-130, January 1999.

[Per89] James R. Perkins and P.R. Kumar. Stable, distributed, real-time scheduling of fiexi­
ble manufacting/ assembly / disassembly systems. IEEE Transactions on Automatic
Control, 34(2):139-148, February 1989.

[Per94] James R. Perkins, Carlos Humes Jr., and P.R. Kumar. Distributed scheduling of
fiexible manufacting systems: stability and performance. IEEE Transactions on
Automatic Control, 10(2):133-141, April 1994.

[Ros04] G. van Rossum. Python tutorial, May 2004. Available via http: I /www .python.
org/doc/current/tut/.

[Sav98] Andrey V. Savkin. Regularizability of complex switched server queueing networks
modelled as hybrid dynamical systems. Systems €3 Control Letters, 35:291-299,
1998.

[SavOO] Andrey V. Savkin and Alexey S. Matvev. Cyclic linear differential automata: a
simple class of hybrid dynamical systems. Automatica, 36:727-734, 2000.

[Savül] Andrey V. Savkin and Alexey S. Matvev. A switched server system of order n with
all its trajectodes converging to (n-1)! limit cycles. Automatica, 37:303-306, 2001.

[Sav03] Andrey V. Savkin. Optimal distributed real-time scheduling of fiexible manufac­
turing networks modelled as hybrid dynamical systems. In Proceedings of the 42nd
IEEE Conference on Decision and Control, Maui, Hawaii, December 2003.

[Sei94] T .I. Seidman. 'fi.rst come, first served' can be unstable! IEEE Transactions on
Automatic Control, 39(10):2166-2171, October 1994.

[Tak86] H. Takagi. Analysis of polZing systems. The MIT press, 1986.

Appendix A

Proof of the main result of [Sav03]

The problem statementand the control policy ofSection 3.1.1 have been introduced in [Sav03].
However, in [Sav03] noproof has been provided that the introduced control policy solves the
problem statement. In [Sav98] it has been proven that the same control policy solves a similar
problem statementfora switched server queueing network. However, the networkas described
in [Sav98] differs slightly from the manufacturing system described [Sav03]. In this appendix
it is shown that the proof provided in [Sav98] also holds for the flexible manufacturing system
of [Sav03].

Let T > 0 be a given time and .xmax > 0 a given known constant which is called the maximum
arrival rate. An arrival rate is part of the class Rr if the following condition holds:

jT

~ J >.(t)dt 5:, Àmax \ij= 1, 2, 3, ...

(j-l)T

(A.l)

An arrival rate belongs to the class Rr, which is a subclass of Rr, if there exists a constant
.xc such that

jT

T
l J >.(t)dt = .xc Vj=1,2,3, ... (A.2)

(j-l)T

In words it means that arrival rates from the class Rr have a constant average in the period
[jT, (j + l)T] which is less than or equal to .xmax.
Definition A.l. [Sav98] A closed loop system as described in Section 3.1.1, but with non­
constant (inter) arrival rates is said to exhibit regular behavior with a period T, ifthe following
conditions hold:

1. All the trajectodes of the closed loop system with (inter)arrival rates from the class Rr
and initial conditions (2.1) are bounded on [0, oo).

2. For all the trajectodes of the closed loop system with (inter)arrival rates from the class
Rr and initial conditions (2.1), the following two conditions are satisfied:

69

70 Appendix A. Prooi of the main result of {Sav03}

(a) There exist a vector function q(t) such that:
q(t + T) = q(t) Vt;:: 0 and
.lim mes{t E [(j- l)T,jT]: q(t) =J q(t)} = 0.

J-+00

(b) .lim [x((j- l)T)- x(jT)] = 0.
J-+00

Here mes H denotes the Lebesque measure of the set H.

Savkin provided a proof in [Sav98] that a similar closed loop system, with non-constant (inter)
arrival rates (belonging to the class Rr), exhibits regular behavior. He did this by proving
that the conditions defined by definition A.l were met.

The arrival rates of the raw parts in the problem statement of [Sav03] belong to the class Rr,
sirree the arrival rates are constant. The process rate P,p,l of machine o:p,l, which processes a
raw part of type p, is constant. Therefore, the output rate i;p,i will have a constant average
over a scheduling period T. The output ra te of machine o:p,l equals the arrival ra te of machine
O:p,2 for a part of type p. Therefore, the inter arrival rate in the described system also belongs
to the class Rr· It can be concluded that with arrival rates defined by (3.9) and the proposed
feedback policy (3.4), (3.5) (3.6), (3.7), (3.8) the system under consideration will be regular
with the production levels and the scheduling period. Notice, that the minimal scheduling
period does not depend on the the fixed transportation delays z~,i.

Appendix B

Various proofs belonging to
Chapter 6

In this appendix proofs are given for the various statements and propositions of Chapter 6.

B .1 Cyclic clearing

The proof in this section is for a system without variability. Therefore, the notation c is left
out for simplicity.
The figures of to this section are depicted in Appendix B.8.
Consicier the system depicted in Figure B.l. Let Qm(O) = b1,1, thus the machine is ready to
process from buffer b1,l· For this simple two buffer case it is possible to depiet the behavior of
the buffers in a phase diagram, see also Figure B.2 or Figure 6.7. Let a be a line through the
points xid(Tfd1) and xid(t~d1), this also depicted in Figure B.2. Note that this line crosses the

Xl,l axis at r(~~ + 8)(/-tl -'>.!), 0]. In this section it is shown for any initial position that does
not coincide with a and when applying the cyclic clearing policy that the resulting trajectory
will converge to the ideal Savkin trajectory, but never coincide with it. Furthermore, it is
shown that for any initial position that does coincide with a that the resulting trajectory will
coincide with the ideal Savkin trajectory.

Consicier an initial position at t = to that does not coincide with a. This initial position is
also depicted in Figure B.2. Assume that the system is under control of the cyclic clearing
policy. Then, at t = ta buffer b1,1 will be empty and the buffer level of buffer b2,1 equals
X2,l(ta)· The trajectory of the cyclic clearing policy until the next time that buffer b2,1 is
emptied can be computed:

At t = ta:

Xl,l(ta) = 0

X2,l(ta) = X2,l(ta)

At t = tb = ta + 81 :

Xl,l(tb) = Xl,l(ta) +(tb- ta)Àl

X2,1(tb) = X2,l(ta) +(tb- ta)À2

71

72 Appendix B. Various proofs belonging to Chapter 6

At t = t = tb+ X2,1 (tb) :
e /-L2,1 -Àl

XI,l(te) = XI,l(tb) +(te- tb))'l
X2,1(te) = 0

At t = td = te + 81 :

X1,1(td) = XI,l(te) + (td- teP•l

X2,1(td) = X2,1(te) + (td- te)À2

At t = t = td + Xl,l (td) :
e /-LI,l ->.1

XI,l(te) = 0

X2,1(te) = X2,1(td) +(te- td)À2.

Working this out results for x2,1 (te) in:

In which:

Working eb out results in:

The capacity condition (2.9) implies the following:

~+~<1.
/Ll,l /L2,1

Multiplying the left and right side with /Ll,l/L2,1 results in:

From (B.4) and (B.5) it can be seen that:

O<q<l.

(B.l)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

Let x~,l denote the zth time that buffer b2,1 becomes empty. It can beseen from (B.l) that
the following holds:

Vz:?: 1. (B.7)

This can be rewritten:

Vz:?: 1. (B.8)

B.l. Cyclic clearing

Then:

00

1. z+ 1 L k-1 oo 1 1m x 2 1 = CaCb +eb x 2 1
Z--+00 ' '

k=1
Ca

1- Cb

_ À281 (f.t1,1/t2,1 + P,2,1À1 - /t1,1À1)

/t1,1/t2,1 - /t1,1À2 - /t2,1À1

From (3.19) is follows that:

À - - 201/t1,1 À2/t1,1
1 - 1t1,1 'Do - --

/t2,1

Then (B.9) can be rewritten with (B.10) into:

see Table 6.1

73

(B.9)

(B.10)

(B.ll)

From (B.ll) it can be concluded that for any initial position that does not coincide with a
and when applying the cyclic clearing policy that the resulting trajectory will converge to
the ideal Savkin trajectory, but never coincide with it. With (B. 7) it is easy to show that for
any initial position that does coincide with a that the resulting trajectory will coincide with
the ideal Savkin trajectory. For any initial position that coincides with a it can be seen from
Figure B.2 that the resulting trajectory with the cyclic clearing policy eventually will reach

·t· id (Tid) U · id (Tid) c i · (B 7) lt · pos1 Ion x 2 1 1 1 . smg x 2 1 1 1 tOr x 2 1 m . resu s m:
' ' ' ' '

use (B.10)

(B.12)

see Tabel 6.1.

Thus, it can be concluded that for any initial position that does coincide with a that the
resulting trajectory will coincide with the ideal Savkin trajectory.

74 Appendix B. Various proofs belonging to Chapter 6

B.2 Reaching the ideal Savkin trajectory

The proof in this section is for a system without variability. Therefore, the notation <e' is left
out for simplicity.
The figures of to this section are depicted in Appendix B.8.
Consider the system depicted in Figure B.l. It is assumed that the time required toperfarm
a setup when the machine switches from b1,1 to b2,1, denoted with lh,_.2, does not have to
be equal to the setup time when the machine switches from b2,1 to b1,1, denoted with 82,_.1.

For this simple two buffer case it is possible to depiet the behavior of the buffers in a phase
diagram. In Figure B.3 a trajectory is depicted on a phase diagram which results in a minimal
average flow timefora two buffer machine system under control of the Savkin policy. Note
that a buffer is now empty at the end of a production run. This trajectory, which results
in a minimal average flow time for a two buffer machine system under control of the Savkin
policy, will be denoted astheideal Savkin trajectory. In this section it is shown for the system
depicted in Figure B.l from which initial positions on the phase diagram the ideal Savkin
trajectory can be reached.

Consider the interval on the ideal Savkin trajectory between the positions x(tid1) and x(T{d1).

From now on this interval will be indicated as a1 , as depicted in Figure B.4. Th~ machine st~te
has to be qm = b1,1 in order to follow the ideal Savkin trajectory when positioned on a1 . Thus,
the machine has to be ready to process from buffer b1,1 . There are two areas on the phase
diagram from which a1 can be reached, such that qm = b1,1 when a1 has been reached. When
on a1 qm = b1,1 can only hold if either the previous machine state q~ev equals: q~ev = b1,1

or the machine was performing a setup to buffer b1,1, denoted as q~ev = b2,1 f----t b1,1· When
q~ev = b1,1 it can be seen from the phase diagram that a1 can only be reached from a2 . The
interval a2 is an extension of a1 and crosses the x1,1 axis at [(J.L~\ +B2,_.I)(p,1,1 -,\1),0]. When

q~ev = b2,1 f----t b1,1 the machine is performing a setup and this setup takes up 82,_.1 amount
of time. Therefore, when q~ev = b2,1 f----t b1,1 it can be seen from the phase diagram that a1

can only be reached from c. Summarized, a1 can be reached from two areas on the phase
diagram, namely from the interval a2 and line c if the machine is in the proper machine state.

Interval a1 can be reached from all positions from where it is possible to reach c or a2 with
the proper machine state. It can be seen from the phase diagram that there are no positions,
not on a2 , from where a2 can be reached with the proper machine state. However, there are
positions from where it is possible to reach c. At c a setup from buffer b2,1 to buffer b1,2

should commence. Thus, prior to that the machine had to be processing work from b2,1· It
can beseen from the phase diagram that for positions in the dark gray area c can be reached
by processing work from buffer b2,1· Furthermore, for positions in the light gray area c can be
reached by idling the machine. Note that idling the machine results in the same trajectory
as when a setup is performed. In this situation it can be seen as extending a setup.

Consider the interval on the ideal Savkin trajectory between the positions x(tkd1) and x(T~d1).
From now on this interval will be indicated as b1 . In order to follow the ideal Sa~ kin traject~ry
when positioned on b1 the machine state has to be qm = b2,1· As for a1 two areas can be
determined from which b1 can be reached with a proper machine state. The two areas are
depicted in Figure B.5.

All initial positions from which it is possible to reach the ideal Savkin trajectory have now
been determined. In Figure B.6 the area from which it is possible to reach the ideal Savkin

B.3. The optima] trajectory to the ideal Savkin trajectory 75

trajectory is depicted. It can be concluded that the ideal Savkin trajectory can never be
reached from initial positions that do not lay within the gray area.

B.3 The optima! trajectory totheideal Savkin trajectory

The figures of to this section are depicted in Appendix B.8.
Consicier the system depicted in Figure B.l. Assume that the machine always follows the cycle:
process from buffer b1,1, setup for buffer b2,1, process from b2,1, setup for bt,l· Furthermore,
it is assumed that the time required to performa setup when the machine switches from b1,1

to b2,1, denoted with t'h, _ _.2, does not have to be equal to the setup time when the machine
switches from b2,1 to b1,1, denoted with lh--+1· Finally, it is assumed that a machine can idle
by extending a setup. For this simple two buffer case it is possible to depiet the behavior of
the buffers in a phase diagram. In Figure B.3 a trajectory is depicted on a phase diagram
which results in a minimal average flow timefora two buffer machine system under control
of the Savkin policy. Note that a buffer is now empty at the end of a production run. This
trajectory, which results in a minimal average flow time for a two buffer machine system under
control of the Savkin policy, will be denoted as the ideal Savkin trajectory. In this section
it is shown for initial positions from which it is possible to precisely reach the ideal Savkin
trajectory what the fastest trajectory to the ideal Savkin trajectory is. In Section B.2 it has
been shown from which initial positions and corresponding machine state the ideal Savkin
trajectory can be reached.

Let Qm(O) = b1,1, thus the machine is ready to process from buffer bt,l· The initial positions
from which the ideal Savkin trajectory can be reached are depicted in Figure B.5. For any
initial position that lays between or on a and d, which is the dark gray area, the fastest way
to precisely reach the ideal Savkin trajectory is: process from buffer b1,1 until d has been
reached, performa setup to buffer b2,1· It can beseen from the phase diagram in Figure B.5
that no other methods exist to reach to ideal Savkin trajectory from initial positions in the
dark gray area, sirree idling is only allowed during a setup.

Consicier e as depicted in Figure B.7. Line e runs parallel with d and they are B2f--+1 apart
from one another. Let Qm(O) = b1,1 , for any initial position that lays between or on d and e,
which is the light gray area. For an initial position with Qm(O) = b1,1 in the light gray area
there are three options to reach the ideal Savkin trajectory:

1. setup for b2,1 and idle at b2,1 until b1.

2. setup for b2,1, setup for b1,1, if the resulting position falls within the dark gray area,
process work from b1,1 until d, setup for b2,1· If the resulting position falls outside the
dark gray the ideal trajectory can not be reached with this option.

3. setup for b2,1, setup for b1,1, if the resulting position falls within the dark gray area, idle
at b1,1 until a 1. If the resulting position falls outside the dark gray the ideal trajectory
can not be reached with this option.

It can be seen from Figure B. 7 that for option 1 the time needed to reach b1 by idling is
smaller than or equal to 02f--+ 1. Thus, for option 1 the time needed to reach b1 is smaller than
or equal to: Btf--+1 + 02~--->1· The time needed to reach the ideal Savkin trajectory for option 2

76 Appendix B. Various proofs belonging to Chapter 6

and 3 is equal to or larger than: eh--+1 + e2f-+l) since both options exist of performing a setup
for buffer b2,1 and buffer b1,1· Therefore, it can be concluded that fastest way to reach the
ideal Savkin trajectory is option 1.

Consicier g as depicted in Figure B.8. Interval g runs parallel with a line indicating a setup
or idling and runs through the position where a1 and b1 cross. Let qm(O) = b1,1, for any
initial position that lays between or on the g, e, the x2,1 axis and the x1,1 axis, which is the
very light gray area. For an initial position with qm(O) = b1,1 in the very light gray area the
fastest way to reach the light gray area is to perform a setup to b2,1 and idle until the light
gray area. In the light gray area it it known that idling at buffer b2,1 until b1 is the fastest
to reach the ideal Savkin trajectory. Therefore, it can be concluded that for initial positions
in the very light gray area the fastest way to reach the ideal Savkin trajectory is to perfarm
a setup for buffer b2,1 and idle at b2,1 until b1 has been reached.

Consicier f as depicted in Figure B.9. Line f runs parallel with c, which was introduced in
Figure B.4. Line f and interval c are 01f-+2 apart from one another. Line f is 01f-+2 + 02f-+1

apart from a1 • Let qm(O) = b1,1 , for any initial position that lays betweenor on the f, c and
the x2,1 axis, which is the very dark gray area. It can be seen from the phase diagram that
at least a setup to b2,1 and back to b1,1 needs to be performed in order to reach the ideal
Savkin trajectory for any initial position with qm(O) = b1,1 in the very dark gray area. The
remaining distance after these setups can be covered with the following options:

1. idle at b1 1 to a 1 .
'

2. if positioned in the dark gray area, process work from b1,1 until d, perform a setup to
buffer b2,1· If the resulting position falls outside the dark gray the ideal trajectory can
not be reached with this option.

3. if positioned in the light gray area, setup for b2, 1 and idle at b2,1 until b1 . If the resulting
position falls outside the light gray the ideal trajectory can not be reached with this
option.

It can be seen from the phase diagram that option 2 and 3 take more time than option 1.
Therefore, it can be concluded that for any initial position with qm(O) = b1,1 in the very dark
gray area the fastest way to the i deal Savkin trajectory is: perform a set up to buffer b2,1,

perform a setup to buffer b1,1 and idle at b1,1 until a1 .

The white triangle in the phase diagram of Figure B.9 is the only area for which no actions
have been defined yet. Let qm(O) = b1,1· For any initial position in the white triangle the
following two options exist

1. perform a setup to buffer b2,1 and idle at b2,1 until b1 .

2. perform a setup to buffer b2,1, process work from b2,1 until c, perform a setup to b1,1·

Which option results in the fastest trajectory depends on the position in the white triangle.
Consicier the upper white triangle in the phase diagram of Figure B.lO. This triangle depiets
the area which can be reached after performing a setup to buffer b2,1· Note that h, the upper
line of the triangle, runs parallel to b1 and runs e2f-t 1 apart from b1. Thus, idling from h to
b1 takes the same amount of time as performing a setup to b1,1 from c. Consicier position

B.3. The optima] trajectory to the ideal Savkin trajectory 77

1 on h, which can be reached from anywhere on the dashed line by idling. Instead of idling
work could have been processed from buffer b2,l· A vertical line from position 1 to c depiets
the line which could have been reached if the time spend on idling was used for processing
work. Consicier a line parallel to b1 and through the position where the vertical line and c
cross. The position where this line crosses the dashed line indicates the position from which
idling to h or processing work from b2,1 to c takes the same amount of time. Thus, from this
position it takes the same amount of time to reach the ideal Savkin trajectory. Consicier a
line through this position and the position where c and h cross, as depicted in Figure B.ll.
This line can be copied to the lower white triangle. Then, option 1 is the fastest way to the
ideal Savkin trajectory for all the initial positions above this line and option 2 is the fastest
way to the ideal Savkin trajectory for all the initial positions below this line.

The actions for an initial position on or below a with Qm(O) = b1,1 that results in the fastest
trajectory to the ideal Savkin trajectory are summarized in Figure B.12 and defined in Ta­
bie B.l. In the same manner as for initial positions with Qm(O) = b1,1 all actions for initial
positions below or on b with Qm(O) = b2,1 can be determined. The actions are summarized
in Figure B.13 and defined in Table B.2.

Table B.1: Actions for any initial position with Qm(O) = b1,1 below a, as depicted in Fig­
ure B.12, that result in the fastest trajectory to the ideal Savkin trajectory.

Dark gray process from b1,1 workuntil d, perfarm a setup
to buffer b2,1

Light gray perfarm a setup to buffer b2,1 and idle at b2,1 to
bl

Very light gray perfarm a setup to buffer b2, 1 , perfarm a set up
to buffer b1 1 and idle at b1 1 until a 1 , ,

White perfarm a setup to buffer b2,1, process work from
b2,1 until c, perfarm a setup to b1,1

Table B.2: Actions for any initial position with Qm(O) = b2,1 below b, as depicted in Fig­
ure B.13, that result in the fastest trajectory to the ideal Savkin trajectory.

Dark gray process work from b2,1 until c, perfarm a setup
to buffer b1,1

Light gray perfarm a setup to buffer b1,1 and idle at b1,1 to
al

Very light gray perfarm a setup to buffer b1, 1 , perfarm a setup
to buffer b2 1 and idle a b2 1 until b1 , ,

White perfarm a set up to buffer b1,1, process work from
b1,1 until d, perfarm a setup to b2,1

78 Appendix B. Various proofs belonging to Chapter 6

B.4 Number of cycles

The proof in this section is for a system without variability. Therefore, the notation IC' is left
out for simplicity.
The figures of to this section are depicted in Appendix B.8.
Consider the system depicted in Figure B.l. Assume that the machine always follows the
cycle: process fora from buffer b1,1, setup for buffer b2,1, process from b2,1, setup for b1,1· For
this simple two buffer case let D; denote the amount of timeworkis removed from buffer bp,l

during cycle j. Assume that qm(O) = b1,1, thus the machine is ready to process from buffer
b1,1· In addition, it is assumed that a machine can idle by extending a setup. Furthermore,
it is assumed that the time required toperfarm a setup when the machine switches from b1,1
to b2,1, denoted with Olr-t2, does not have to be equal to the setup time when the machine
switches from b2,1 to b1,1, denoted with 02>--tl· Then, for this simple two buffer case the
minimal scheduling period (3.19) becomes:

(B.l3)

Let 0~, 1 (k) denote the time that the setup for buffer bv,1 is extended in cycle k and let Bi,1(k)
denote the totallength of setup with extension in cycle k, thus:

(B.l4)

Finally, let yk denote the length that one cycles lasts, then:

yk = Bl 1 (k) + 0~ 1 (k) + D~ + D~. , , (B.15)

The amount of time that work is removed from buffer b1,1 during cycle k can be computed
with:

(B.l6)

in which:

Xl,l(Tfl) = X1,1(t~j 1)- À1 (t~!l- Tf1)

= X1,1(t~j 1)- À1 (el,1(k) + Bb(k) + D~).
(B.17)

The amount of time that work is removed from buffer b2,1 during cycle k can be computed
with:

(B.l8)

B.4. Number of cycles

in which:

X2,1(t~,1) = X2,1(tt1) + À2 (t~j 1 - t~,1)

= x2,1(tt1) + À2 (D~ + Bb (k))

X2,1(T~1) = X2,1(t~j 1)- À2 (t~r- T~1)
= X2,1(t~j 1)- À2Bi,1(k).

Then, with (B.16) to (B.20) and after simplification (B.15) becomes:

Tk = Bi,1(k) + Bb(k)+

x1,1(tL)~-t2,1 + À11-t2,1(er 1(k) + e~ 1(k))- x1,1(t~1 1)~-t2,1
+ ' ' ' ' +

/-t1,1/-t2,1 - Àl/-t2,1 - À2/-tl,1

X2,1(t~ 1)/-tl,1 + À2P,1,1(Bi 1(k) + 0~ 1(k))- X2,1(t~1 1)J-t2,1 + ' ' ' ' .
/-t1,1/-t2,1 - À1P,2,1 - À2/-t1,1

With (B.14) this can be simplified into:

Tk = a + Ç (Bi, 1 (k) + B~b (k)) +
+ fJ1 (x1,1(t~,1)- x1,1(t~j 1)) + fJ2 (x2,1(tt1)- x2,1(t~j 1)),

in which:

e + e + e1r--.2 + e2>-+1(À11-t2,1 + À21-t1,1)
a = 1>--+2 2>--+1

/-t1,1/-t2,1 - À1/-t2,1 - À2P,1,1

e1>-+2 + e2>-+1 _ r.
1-~-~- 0

J-l.l,l /-L2,1

see (B.13)

ç = À1/-t2,1 + À2/-t1,1
/-tl,1/-t2,1 - Àl/-t2,1 - À2/-t1,1

f31 = /-t2,1
/-t1,1/-t2,1 - Àl/-t2,1 - À2/-t1,1

f32 = /-t1,1
/-t1,1/-t2,1 - À1/-t2,1 - À2/-t1,1

From (B.5) it follows that Ç, (3p > 0. Let i'k denote the time after k cycles, then:

tk = tk-1 + Tk Vk 2:: 1,

79

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

80 Appendix B. Various proofs belonging to Chapter 6

in which 'Î'0 = 0. This can be rewritten:

use (B.21) and simplify
k=l

k

= kTo + Ç L (Bï,1(k) + B2,1(k)) +
k=l

+ f3I (x1,1(tL1)- x1,1(tU1)) + !32 (x2,1(tL1)- x2,1(t~j 1))
k

= kTo + Ç L (Bî,1(k) + B2,1(k)) +
k=l

+ f3 (x(tL1)- x(t~j 1)).

(B.28)

Note, that x(ti 1) denotes the position on the phase diagram at t = 0 and that x(t~11) denotes
' ' the position on the phase diagram at the end of cycle k.

Let x(tfi1
) =X be a position on the phase diagram that can be reached in K cycles without

extendi~g the setups and assume that the same position X can also be reached in K + 1
cycles without extending the setups, then:

fK = KT0 + f3 (x(O) -X)

fK+l = (K + 1)T0 + f3 (x(O)- X) = fK + To.

lt can be concluded that if a position on the phase diagram can be reached in K cycles
without extending the setups then reaching that same position in K + 1 cycles will always
take more time.

Let x(tfi1
) =X be a position on the phase diagram that can be reached in K cycles without

extendi~g the setups and assume that the same position X can also be reached in K cycles
with extending the setups. lt can be seen from (B.28) that reaching the position X with
extending the setups willlast:

K

ç L (Bî,l(k) + B2,1(k))
k=l

longer than reaching the position X without extending the setups.

B.5 ldling

Consicier the system depicted in Figure B.1 for which a phase diagram is shown in Figure B.14.
lt is assumed that the time required toperfarm a setup when the machine switches from b1,1
to b2,1 , denoted with 01> 2, does not have to be equal to the setup time when the machine
switches from b2,1 to b1, 1 , denoted with 02>--tl· In this section it shown for positions that lay
above the gray area that idling is never an option. The question that needs to be answered is:
At this specific moment in time does it have an advantage to idle the machine? An example
is stuclied in order to answer this question. Assume that the machine is processing work from

B.6. AD :Ss 81

buffer b1,1 and reaches a position 1 on the phasediagram of Figure B.14. The question now is:
will idling the machine at this specific moment result in a trajectory and state on the phase
diagram faster than not idling the machine. Assume that the machine idles for some time
and then continues processing work from b1,1· This is depicted with the solid arrows in the
phase diagram. The trajectory continues along arrow z. Now assume that the machine did
not idle at position 1. To reach the z arrow the machine can idle at a later moment in time,
as depicted with the dashed arrows. Both options, idling now or idling later, last the same
amount of time and reach the same trajectory. It can be concluded that idling now does not
have an advantage, idling later will result in the same trajectory and state. Therefore, idling
is never an option for reaching the ideal Savkin trajectory from positions above the gray area,
sirree the trajectory can not be reached within a limited amount of time.

B.6 AD< s

The proof in this section is for a system without variability. Therefore, the notation <e' is left
out for simplicity.
In this section is shown how (6.37) and (6.38) can be rewritten in the following form:

AD :Ss. (B.29)

In which A is a [kP x kP] matrix, the veetors D, s have a lengthof kP and :S is understood
component wise. Note that k denotes the number of cycles of the improved Savkin policy.
First, (6.37) and (6.38) are repeated:

(6.37) :

(B.30)

Note, that t~, 1 denotes the time at the start of the production run D; and equals:

(6.38) :
k-1 p p-1

t~,1 = ((k- 1)P + p- 1) lh + L L D~ + L D~. (B.31)

v=1w=1 w=1

Using (B.31) in (B.30) results in:

(B.32)

82 Appendix B. Various proofs belonging to Chapter 6

This can be rewritten:

(B.33)

in which:

À
"' - p ""P-

/--tp,l- Àp

It can be seen from (B.33) that D~ is linear depended on all the previous production runs.
Let A1,A2 and 0 be [P x P] matrices defined as:

1 0 0
-a2 1 0 0

Al=

-ap_l -ap_l 1 0
-ap -ap -ap 1

1 -al -al

-a2 1 -a2 -a2

A2 =

-aP-1 -ap_l 1 -ap_l

-ap -ap -ap 1

and

0= [~ ~ l
Furthermore, let Dk, sk be veetors with a length of P and defined as:

and

X1,1 (0)+>.1 ((k-l)P+l-l)(h
J1.1 1 ->.1

X2,1 (0)+>.2((k-l)P+2-l)(h
J1.2,1-À2

XP,1 (0)+>.1 ((k-l)P+P-1)01
Ji.P,1 -Àp

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

B. 7. Determining the maximum value of E 83

It can be seen from (B.33) that the following holds:

k-l

A2 LDv + A1Dk S sk. (B.39)
v=l

This can be rewritten in the form of (B.29) in which:

A1 0 0
A2 A1 0 0

A= [k x k], (B.40)

A2 A2 A1 0
A2 Ai A2 A1

Dl
D2

D= (B.41)
nk-l

Dk

and

sl

s2

s= (B.42)
sk-l

sk

B.7 Determining the maximum value of E

The proof in this section is for a system without variability. Therefore, the notation <e' is left
out for simplicity.
In this section it is investigated what size E should be for the optimization problem as described
inSection 6.2. Let 9t be the area in which all positions lay that have a distance E or less from
xid(tid1). Then E should be so small such that it is guaranteed that if a position in 9t can be

' reached in k cycles that a different position in that samearea 9t can not be reached faster in
k + 1 cycles.

Note, it is shown in Section 6.2 that extending setups is not necessary for the optimization
problem. Furthermore, the length of the setup is equal for switching from b1,1 to b2,1 and
back. Let x€1 be a position that can be reached in k cycles and falls within 9t and x€2 be
a position that can be reached in k + 1 cycles and also falls within 9t. Furthermore, let T€~

84 Appendix B. Various proofs belonging to Chapter 6

and TE~+l respectively denote the time in which position xEl and xE2 are reached. Then, the
following should hold according to (B.28):

fk < fk+1 El E2
kTo + f3 (x(O) - xEI) < (k + l)To + f3 (x(O) - xE2)

f3 (x(O) - xEI) < T0 + f3 (x(O) - xE2) (B.43)

f3 (xE2 - x EI) < To

/31 T/1 + /32T/2 < To,

in which:

(B.44)

The maximal distance between two positions both within 91: is equal to: 2t: and then the
following holds:

'f/1 = 2o,;

The distance between two positions is defined as:

VT/Î +Tl~= 2E

TIÎ + Tl~ = 4t:
2

4t:2
K

2 + T/~ = 2E

Solving T/2 from (B.46) results in:

Tagether with (B.43) this results in:

j(K) < To,

in which:

The maximum value of j(K) can be found withits derivative.

Solving (B.50) for K results in:

* /31
K = -v-;;=:/3~? =+=/3::;:;;<~

(B.45)

(B.46)

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

B. 7. Determining the maximum value of E 85

Using (B.51) in (B.48) and simplifying results in:

(B.52)

Solving E from (B.52):

use (3.19), (B.25) and (B.25)

(B.53)

86

B.8 Figures

Appendix B. Various proofs belonging to Chapter 6

p=1
b1.1 I 11

m= 1
p=2

b2,1 lil

Figure B.l: A flexible manufacturing system.

l=t c

- ideal Irajeetory
• • clearing version

Figure B.2: A possible phase diagram ofthe buffer levels for the system depicted in Figure B.l
when the cyclic clearing policy is applied.

B.8. Figures

x.,,,

x,,, r:,,

tid

'·'

87

Figure B.3: A possible phase diagram ofthe buffer levels for the system depicted in Figure B.l.

x,,, r:,,

Figure B.4: A possible phase diagram of the buffer levels for the system depicted in Figure B.l.

88 Appendix B. Various proofs belonging to Chapter 6

Figure B.5: A possible phase diagram of the buffer levels for the system depicted in Figure B.l.

Tid
1,1

":.,1

Figure B.6: All initial positions from which it is possible to reach the ideal Savkin trajectory
for the system depicted in Figure B.l if the machine has the proper machine state.

B.8. Figures 89

Figure B.7: A possible phase diagram of the system depicted in Figure B.l.

Figure B.8: A possible phase diagram of the system depicted in Figure B.l.

90 Appendix B. Various proofs belonging to Chapter 6

Figure B.9: A possible phase diagram of the system depicted in Figure B.l.

)

Figure B.lO: A possible phase diagram of the system depicted in Figure B.l.

B.8. Figures 91

Figure B.ll: A possible phase diagram of the system depicted in Figure B.l.

Figure B.l2: A possible phase diagram of the system depicted in Figure B.l.

92 Appendix B. Various proofs belonging to Chapter 6

x,,, T~1

Figure B.l3: A possible phase diagram of the system depicted in Figure B.l.

b'

Figure B.l4: Does idling introduces an advantage?

Appendix C

Simulation

C.l Introduetion

Different results are obtained when a simulation of a stochastic model is reproduced under
the same conditions. Therefore, the results of just one simulation can not be used to draw
conclusions on. The differences in the results are caused by the variability present. Further­
more, the results of one simulation run are not independent, which means that formulas from
the classica! statistics can not be used directly, since the classica! statistics is based on inde­
pendent variables. Two random variables are said to be independent if the value of X has no
influence on the value of Y and vice versa. In a simulation the variables are not independent,
for example if X is flow time of a part and Y is the flow time of the next part in a buffered
production line. If the first part incurs a large delay and thus a large flow time the probability
that the next part has a large flow time increases. In other words the value of X influences
the value of Y. To solve the two problems mentioned above the following technique is used.

Let Y1, 12, ... , Ym be random variables resulting from a simulation with a run length of m
observations and let Yn, Y12, ... , Ylm be the numerical values of these variables obtained from
a simulation. If the simulation is reproduced independent from the previous one, but under
the same conditions, other numerical values Y21, Y22, ... , Ym are obtained for the variables
Y1, Y2, ... , Ym. Now suppose the simulation is reproduced independently n times resulting in
the following observations:

Yn, · · ·, Yli, ... ' Ylm

· · ·, Yji, ... ' Yjm

Ynl, · · ·' Yni, ... ' Ynm

The observations in one row are not independent from each other, but the observations
Yli, Y2i, ... , Yni in one column are and are independent observations for the variabie }i. This
property is called independency across runs and because of this property classica! statistics
can be applied.

93

94 Appendix C. Simulation

C.2 Statistica! analysis of steady-state systems

Let Y1, Y2, ... be the output of a simulation and let Fi(Yil) be the cumulative distribution
function of Yi, where y is a real number and I the initial conditions used in the simulation.
Suppose that the simulation does not have a terminating event and if Fi(Yil) ---+ F(y) when i
go es to infinity then F(y) is called the steady-state distribution of the output proces Y1, Y2,
Let Y denote this random steady-state variabie with a distribution F(y) and let v = E(Y)
be the mean of this distribution.

C.2.1 The transient phase

Suppose a simulation produces the output Y1, Y2, ... , Ym. The sample mean Y(m) = L~ Yi
is a biased estimator of v = E(Y) for any finite m. The sample mean is a biased estimator
because at the beginning the observations, where the steady-state not yet has been reached,
"corrupt" the sample mean. This problem is called the problem of the initia[transient and
a technique often used to solve this problem is called initia[data deletion. This technique
deletes the first l observations and uses the remaining observations to estimate v, thus:

m

2:: Ym
Y(m, l) = i=l+l l .

m-
(C.1)

The technique used in this report for determining l is as follows. A number of n simulations
are made of a relative large length m, where }ji is an observation as defined earlier. Let

Yi = Lj~1
Yi for i = 1, 2, ... , m, which are plotted against i. From the resulting figure choose

l' as the value beyond which Yi appears to have converged. The value l' is multiplied by 1.5
to ensure that the value l is not chosen to low, then l = 1.5 · l'. Perform more simulations or
make use of moving averages if the resulting plot oscillates too much to make a good choose
for l'. If l' is picked correctly then the sample mean Y(m, l) will be approximately an unbiased
estimator of v, thus E(Y(m, l)) ~ v.

C.2.2 Replication/Deletion approach for means

There are several ways to estimate the steady-state mean v of a process withoutput Y1, Y2,
The technique used in this report is the Replication/Deletion approach for means. The
mean reason this technique is used is because it is the easiest technique to understand and
implement.

Let Xj be the sample mean of the steady-state observations in one simulation run:

m

2:: YJi
X . - i=l+ 1 \../ . 1 2

J - m -l vJ = ' ' ... 'n. (C.2)

The Xj's are independent random variables with E(Xj) ~ v, because of the independency
across runs and the deletion of the transient phase. If the number of independent runs n is
large, the sampling distribution of the sample mean X(n) will be approximately normal with
a mean f-1, and varianee 0'

2 . This theorem is called the Central Limit Theorem.

C.2. Statistica] analysis of steady-state systems 95

Definition C.l (Central Limit Theorem [Mon99]). If X1, X2, ... , Xn is a random sample of
size n taken from a population (either fini te or infinite) with mean p, and fini te varianee a 2 ,

and if X(n) is the sample mean, then the limiting form of the distribution of

z = X(n)- p,
ajfo

as n-----> oo, is the standard normal distribution.

(C.3)

In many cases of practical interest, if n 2 30, the normal approximation will be satisfactory
regardless of the shape of the population. However sirree the varianee a 2 of the approximated
normal distribution is unknown, equation (C.3) can not be used. When a 2 is unknown, a
logical procedure is to replace a with the sample varianee S(n).

Definition C.2. [Mon99] Let X 1 , X 2 , ... , Xn be a random sample from a normal distribution
with unknown mean p, and unknown varianee a 2 . The quantity

T = X(n)- p,
S(n)/vn

has at (student-t) distribution with n- 1 degrees of freedom.

(C.4)

Definition C.2 applies for populations with a normal distribution. The distribution of Xj is
unknown, but the distri bution of the sample mean X (n) is approximately normal if n is large.
Therefore, the sample mean X(n) is an approximately unbiased point estimator for p, and an
approximate 100(1- a) confidence interval for p, is given by [Mon99]:

-- S(n) -- S(n)
X(n)- ta/2,n-1 Vn :S fJ, :'S X(n) + ta/2,n-1 Vn · (C.5)

C.2.3 Number of replications

As can been seen from (C.5) the size of the confidence interval depends on the number of
replications n. At least 30 replications are needed to approximate the sampling distribution
of the sampling mean as normaL Only 30 replications can result in a large confidence interval,
thus in a large error of X(n). To decrease the error, the number of replications needs to be
increased. In this section a procedure to the determine the number of replications required
to reach a certain maximum error is introduced.

The relative error of a sample is the ratio between the error [X(n)- p,[and the mean and is
defined by [LawOO]:

[X(n)- p,[
"f= .

fJ,
(C.6)

However, the mean p, is unknown, thus the relative error can not be computed directly.
Suppose n replications are performed until the following is true:

X() S(n)
n + ta/2 n-1 (;;;

' vn <
[X(n)[- 'Y·

(C.7)

96 Appendix C. Simulation

Then [LawOO]:

1 _a~ P(J:X(n)- JLI < half-length)
JX(n)J - JX(n)J '

(C.8)

in which half-length equals the half size of the confidence interval: X(n) + ta;2,n-l
8Jj. It

can be shown that:

1 _a~ P(J:X(n)- JLI < half-length) < P(JX(n)- JLI < 'Y
JX(n)J - JX(n)J - IJL! (1- "!)).

(C.9)

Thus, if the relative error is estimated by (C.7), then X(n) has a relative error of at most
'Y/(1- "!) with a probability of approximately 1- a. In other words, if 100 independent 90
percent confidence intervals are constructed, it is expected that X(n) has a relative error of
at most "(/ (1 - "() in about 90 of the 100 cases. In about 10 of the 100 cases the relative error
is greater than 'Y/(1- "f). The relative error is larger than "(, because the sample mean JL is
estimated by X(n). A sequentia! procedure for abtairring an estimate of JL with a predefined
relative error that only takes as many replications as needed is as follows:

1. Make no replications (in this case no = 30).

2. Compute X(n) and the half-length ofthe confidence interval where nis equal to no and
100(1- a) is the confidence level.

3. If h~;~~Wh :::; 'Y stop and use. X(n) as point estimate for IL· If ha1
1_i1~Wh > 'Y then make

a new simulation, replace n with n + 1 and start again at step 2.

Thus at least no replications are performed to approximate the sample mean with a nor­
mal distribution. If the computed approximated relative error is larger than desired then
additional replications are made until the desired relative precision is met.

C.2.4 Simulation run length

The technique used to estimate l only provides an approximation of the length of the transient
phase. It is possible that a number of observations beyond l are still corrupted by the transient
phase. However if the simulation run length m is large enough these observations will have
little influence on Xj or X(n). The initial choice of the run length m for the simulation is
this report is m = 5 ·l. The run length m is increased if from the figure, from which a choice
for l is made, can be observed that the initial choice for m is too short. The run length is
not based on a certain criterion, however there is a trade off between the run length and the
number of replications. The number of replications needed to reach a certain relative error
decreases when the simulation length increases.

Appendix D

Simulation files

In this appendix the files are presented used for the simulation experiments of chapters 4 and
5. The simulations have been performed according to the repHeation / deletion approach,
which has been explained in Appendix C.

D.l Determining the transient phase

The following Matlab files have been used to determine the transient phase. The x files can
be found in D.3.

transientphasel.m

% transientphase1.m is used to determine the transient phase. The file is made to
% run in a unix environment. This file simulates the chi-file 10 times until
% 30000 parts have exit the system. It saves the relevant data to the workspace.
% This data can be used in transientphase2.m. The chi file that this file
% runs continue produces a lot of output, which is written in to files. To
% ensure fast simulation do not run this file on a file-server, but
% directly on a computer.
clear all
clc

in1=input('Which python file? ','s');
in2=input('Which chi file? ','s');
in=['python2 ' in1 ' ' in2 ' 30000 0 0']

for i=1:10

end

unix (in);
d=load('E.txt');

if i==1;
E=d;

el se
E=[E d(: ,2)];

end

A=[];
for i=1:length(E)

A(i,2:11)=mean(E(1:i,2:11));
A(i,12)=mean(A(i,2:11));

% The python file with the data
% The chi file
% Defines the Unix command

% Executes 'in' in Unix
% Loads the file containing the flow
% times of each part

% Stores the flow times in E

% Stores the flow times in E

% Matrix A contains on (i,j) the av.
% flow time of of the parts 1 until i for
% the jth simulation. The last column
% contains the av. of the av. flow time.

97

98

end
clear d i
save workspace
exit

transientphase2.m

% transientphase2.m is used to determine the transient phase.
% It needs data from transientphase1.m.
close all
clear all
clc

Appendix D. Simulation files

load workspace % Load data from transientphase1.m

ME=[E(:,1) mean(E(: ,2:end),2)]; %ME contains the av. flow time of part i.

% From figure 1 and 2 the transientphase can be determined.
figure (1)
stairs(ME(:,1),ME(:,2),'b')
grid
xlabel('Part number')
ylabel('Average flow time')
title(['The av. flow time of part i for ' in1 ' with ' in2], 'Interpreter','none')

% Moving average, for more inforation see [LawOO].
w=40; % Window
Y= [];
for i=1:w

end

s=-(i-1);
se=i-1;
a=sum((ME((i+s):(i+se),2)),1);
Y=[Y (a/(2*i-1))];

for i=(w+1):(length(ME)-w)

end

s=-w;
se=w;
a=sum((ME((i+s):(i+se),2)),1);
Y=[Y (a/(2*w+1))];

figure (2)
stairs(Y)
grid
xlabel('Part number')
ylabel('Moving average flow time')
title(['The moving av. flow time of part i for ' in1 ' with' in2], 'Interpreter','none')

% From the figures above the transientphase can be determined.
% From Figure 3 it can be determined if a simulation length of
% m=5*1 is long enough.

figure (3)
plot(E(:,1),A(:,2:11))
hold on
plot(E(:,1),A(:,12),'k' ,'LineWidth',3)
grid
xlabel('Part number')
ylabel('Total Average flow time of part 1 topart i')
title(['Total Average flow time of part 1 topart i for ' in1 ' with ' in2], 'Interpreter' ,'none')
legend('Simulation 1','Simulation 2','Simulation 3','Simulation 4','Simulation 5', .. .

'Simulation 6','Simulation 6','Simulation 8','Simulation 9','Simulation 10', .. .
'Average of all sim.',4)

D.2. Python

D.2 Python

runner.py

runner.py facilitates the startup of simulations.
import sys,os,string,math

pfile = raw_input("Which python file? ")
chifile = raw_input ("Which chi file? ")
runl = raw_input ("Length of simulation? ")
ini = raw_input("Transient phase?")
do = raw_input("Just one run(O) or multiple (1)?")
filename = raw_input("Which file name for possible output?")

The unix cernmand for running the simulations is formed:
para='nohup python2 '+pfile+' '+chifile+' '+runl+' '+ini+' '+do+' >'+filename+' &'
print para

Inputs the cernmand para os. system ("%s" %(para))
os.system('top -i') # Shows running processas on the server.

Problem_x. py

Problem_x.py facilitates the input of data in the chi file.
Note that Chi can not cope with a value of 1/2, this should
be 0.5. Python transfarms 1.0/2.0 automatically in a real number.

import sys,os,string,math

For deterministic simulations, the input in chi can only
exists of naturals. A value of 0.333 eausas problems for
chi. Therefore, all the values have to be naturals.
This is done by multiplying them with a multiplication factor
Note that this factor is also present in the output.

m 1

For stochastic simulation the following data is needed for
the triangulardistribution of the arrival and process rate:

mh 94.0/87.0 # The right corner of the triangle
ml = 80.0/87.0 # The left corner of the triangle

When simulating the Savkin policy, the scheduling period
needs to be defined:

T 1000.0/53.0

The time required to perferm a setup is defined:
setupO= 1 # The minimal set up time for werkstation
setup1= 1 # The minimal setup time for werkstation
setupi= x # The minimal setup time for werkstation

etc,
The values are transformed into a string:

0
1
i

setup= '<I '+str(setupO*m)+' '+str(setup1*m)+' '+str(setupi*m)+' I>'

The following data is for the part types.

Part type 0

ta=25.0 # The inter arrival time
The interarrival time is transformed into a string
and max. and min. values of the triangle are computed

99

100 Appendix D. Simulation files

and transformed.
interO= '<I '+str(ta*m*ml)+' '+str(ta*m)+' '+str(ta*m*mh)+' I>'

---------Production step 1
W= 0 # Werkstation at which the production step takes place
v= 1 # This is the v th visit to this werkstation
tr= 0.0 # The transportation delay to the werkstation for this production step
bt= 1 # The batchsize of transportation for this production step
pr= 1.0 # The process time for this production step

All the data is transformed into a string and the min
and max. value of the process time for the triangle
are computed.

step!= '< '+str(W)+' '+str(v)+' '+str(tr*m)+' '+str(bt)+' <I '+str(pr*m*ml)+' '+str(pr*m)+
' '+str(pr*m*mh)+' I> >'

---------Production step i
W= 5 # Werkstation at which the production step takes place
v= 1 # This is the v th visit to this werkstation
tr= 0.0 # The transportation delay to the werkstation for this production step
bt= 1 # The batchsize of transportation for this production step
pr= 1.0 # The process time for this production step

All the data is transformed into a string and the min
and max. value of the process time for the triangle
are computed.

stepi= '< '+str(W)+' '+str(v)+' '+str(tr*m)+' '+str(bt)+' <I '+str(pr*m*ml)+' '+str(pr*m)+
' '+str(pr*m*mh)+' I> >'

#Etc., until all production steps of part type 0 have been put in.

All the steps are combined
------------Total part type 0---------------­
partO= '['+step!+' '+stepi+']'

Part type 1

All data of part type 1

Part type i

All data of part type i

Total part types

The following string contains all interarrival times and there min. and max. values
interarrival= '<I '+interO+' '+inter!+' '+interi+' I>'

The following string contains all ether data of the part types
totparts= '<I '+partO+' '+part!+' '+parti+' I>'

The data below does not have to be changed

The following string contains all the information about the system.
TOT= '< '+str(T*m)+' '+interarrival+' '+totparts+' '+setup+' >'

The following defines the unix command.
para1=(sys.argv[1])+" '%s' "%(TOT)
para='./'+para1+' '+(sys.argv[2])+' '+(sys.argv[3])+' '+(sys.argv[4])
print para

If the fourth arg. is 0, then just run the chi file once
if the fourth arg. is 1, then use RUN.py to run the chi file
multiple times.

D.2. Python

if sys.argv[4] == '0':
os.system("%s" %(para))

elif sys.argv[4] == '1':
os. system ("python2 RUN. py %s" %(para))

print 'stopped \n'

RUN.py

RUN.py facilitates the execution of multiple simulations
and simulating until the relativa error of the
estimated average is 0.05/(1-0.05) with a probability
of approximately 1-0.05=0.95%
import sys,os,string,math

Values of the student-t distribution for n>= 30, 0.05/2=0.025
tvalue=[2.042, 2.040, 2.037, 2.035, 2.032, 2.030, 2.028, 2.026, 2.024,

2.021, 2.020, 2.018, 2.017, 2.015, 2.014, 2.013, 2.012, 2.011,
2.009, 2.008, 2.007, 2.006, 2.005, 2.004, 2.003, 2.002, 2.002,
2.000, 2.000, 1.999, 1.998, 1.998, 1.997, 1.997. 1.996, 1.995,
1.994, 1.994, 1.993, 1.993, 1.993, 1.992, 1.992, 1. 991, 1. 991,
1.990, 1.990, 1.989, 1.989, 1.989, 1.988, 1.988, 1.988, 1.987.
1.987, 1.986, 1.986, 1.986, 1.986, 1.985, 1.985, 1.985, 1.984,

First, the definition Raadfile is defined.

2.023,
2.010,
2.001,
1.995,
1.990,
1.987.
1.984]

The definition Raadfile reads the data file from a chi simulation, which
is one big giant string and has the following form
['1\t 4\t 2\n'], this is an example, \t =tab, \n = new line
These are the different variables that the chi files give at the end of the file.
For example the throughput, flow time, WIP, etc
This is transformed in one long line.
1 4 2
Numlist changes it back in a list with strings
['1'' '4'' '2']
Finally, the values are changed in reals.
[1.0, 4.0, 2.0]

def Readfile(fname):
fp=open(fname,'r')
line=string.strip(fp.readlines()[-1])
fp.close
x=[]
numlist=string.split(line,'\t')
for i in numlist:

x.append(float(i))
return x

Main program

The following loop examines the given command line with which
RUN.py was run and stores the argumentsin paramstr.

paramstr=' '
for i in range(len(sys.argv[1:])):

paramstr=paramstr+' '+repr(sys.argv[i+1])

paramstr. is extended and now contains the command line
to run the chi file with and stores screen output in to
the file data.

paramstr=paramstr+ ' >> data.txt'

If a file data allready exists it is deleted.
if os.path.isfile('data.txt'):

os.unlink('data.txt')

n=O # The simulation number

101

102 Appendix D. Simulation Eles

while 1: # Do foraver until break:
os.system('%s' % paramstr)
n=n+1
print n

Runs the unix command paramstr
Updates the simulation number
Prints the simulation number
Makes an empty list lastx= []

lastline=Readfile('data.txt')
for i in range(len(lastline)):

Reads the last line of the data file
The data is transferred to lastx

lastx.append(lastline[i])

if n==1:
xm=[]

If this is the first simulation run
Make an empty list xm, at xm(i) it will
contain the average of value data(i)
over n simulations

xv=[J # Make an empty list xm, at xv(i) it will
contain the st. deviation of value data(i)
over n simulations

conf= []
c=[J

for i in range(len(lastx)):
xm.append(lastx[i])
xv.append(O)
conf.append(O)
c.append(O)

Half lenght confidence interval
Estimate relativa error

else: # If this is not the first simulation run
for 1 1n range(len(lastx)):

xv[i]=(n-2)*xv[i]/(n-1)+(lastx[i]-xm[i])*(lastx[i]-xm[i])/n
xm[i]=((n-1)*xm[i]+lastx[i])/n

Computes the st. deviations
Computes the averages

if n>29: # If more then 29 simulations have been performed
for i in range(len(lastx)):

conf[i]=math.sqrt(xv[i])*tvalue[n-30]/math.sqrt(n)
c[i]=conf[i]/xm[i]

maxconf= max(c)

Computes the half-lengths
Computes the relativa errors

Returns the max. rel. error

if maxconf<0.05:
xm_output=' '

if all relativa errors are smaller than 0.05:

wrfile.ext

xv _output=' '
for i in range(len(xm)):

xm_output = xm_output+str(xm[i])+'\t'
xv_output = xv_output+str(xv[i])+'\t'

print 'xm: \n'
print xm_output
print 'xv: \n'
print xv_output
break

This file is used for exporting data from the x-files to Python.

language "python"
file "wrfile"

ext fileini(w, b, p :nat) -> nat
ext outfilebuffer(t:real, w, b , s :nat) ->nat
ext outfilecyct(n :nat, ave :real) ->nat

wrfile.py

wrfile.py writes data from chi to files.

The results are transformed
in a string and printed.

Stop!

D.3. x files

def fileini(w,b,p):
f=open('W'+str(w)+'B'+str(b)+'.txt', 'w')
f.write('O'+'\t'+'O\n')
f. close()
i=open('E.txt' ,'w')
i.close()
return 0

def outfilebuffer(t,w,b,s):
f=open('W'+str(w)+'B'+str(b)+'.txt', 'a')
f.write(str(t)+'\t'+str(s)+'\n')
f .close()
return 0

def outfilecyct(n, ave):
f=open('E.txt','a')
f.write(str(n)+'\t'+str(avc)+'\n')
f .close()
return 0

def fileini(w,b,p):
f=open('W'+str(w)+'B'+str(b)+'.txt', 'w')
f.write('O'+'\t'+'O\n')
f .close()
i=open('E. txt', 'w')
i. close()
return 0

def outfilebuffer(t,w,b,s):
f=open('W'+str(w)+'B'+str(b)+' .txt', 'a')
f.write(str(t)+'\t'+str(s)+'\n')
f. close()
return 0

def outfilecyct(n, ave):
f=open('E. txt', 'a')
f.write(str(n)+'\t'+str(avc)+'\n')
f. close()
return 0

D.3 x files

SAVvar.chi

11 SAVvar.chi simulates the SAV policy for a system with a triangular distribution
11 for the process and arrival rates.

from std import *
from fileio import *
from random import *
from wrfile import *

type job

, path

, infor

nat # nat # real # path
11 A job contains one part that is used in this simulation.
11 <part-type, ID, time job enters the system, the production path >
= (nat # nat # real # nat # real~3)*
11 A path describes the production path that a part fellows.
11 [<werkstation, the #th visit to the workst., transp. delay to the workst.
11 , batch size transp., proc. time >]
= nat # real # real
11 This is information send between controller and machine.
11 <buffer, proc. rate, set-up time >

, batchbuffer = (((job*)~maxbuf)~numpart)~numworkst

103

104 Appendix D. Simulation files

1/ Parts are "buffered" in this tuple fortransport batching. This tuple is larger
/1 than needed. and is used by the transporter process.

, transplist = (job* # real)*
11 A list of parts that are in transport.
11 [<job, transport delay >],

, datatype = real # (real~3)~numpart # path~numpart # real~numworkst
11 This contains almost all the data that is needed for the simulation.
11 < period T, <I the inter arrival time of a part type I>
// , <I the production paths of the different part-typesl >, setup times workstation >

I/ Information about the systems enters the simulation via the variable
I/ data: datatype.

const dt nat 0 11 The position where period T information can be found in data
dta nat 1 I/ The position where inter arrival time information can be found
dpath nat 2 I/ The position where prod. path information can be found in data
dsetup nat 3 I/ The position where setup information can be found in data

11 --
// The following parametersneed to be provided
11 --

maxbuf
numpart
numworkst

nat
nat
nat

10
10
1

/1 The max. number of buffers found at a workstation
// The number of different part-types
/1 The number of workstations

11 --
// Generator cluster
11 --
// ------------- Generator
// The generator releasesparts into the system.
11 There are as many generators as part-types

proc G (o: !job, part:nat, data: datatype) =
I [id: nat, ta: real~3

in data

, u: -> real
id:= 1
ta:= data.dta.part

/1 G loads the inter-arrival time tuple containing
// the values for triangular distribution.

u:= triangle(ta.O, ta.1, ta.2)
*[true ; delta sample(u)

/1 *[true ; delta ta.1

J I

-> o!< part, id, time, data.dpath.part >
; id:= id + 1

11 ------------- generator cluster
clus GEN (o: (!job)~numpart, data: datatype)
I [j:nat <- o .. numpart: G (o.j, j, data)] I

/1 The triangular distribution
// Stochastic case: do forever: wait sample and send lot
// Deterministic case: wait ta and send lot

11 --
// Workstation cluster
11 --
// -------------Controller
/1 The controller has a double function:
/1 1) It makes sure that the parts arrive in the proper buffer
// 2) It controls which buffer is used by the machine.

proc C (i: ?job*, im: ?void, ib: (?void)~maxbuf, obi: (!job*)~maxbuf

, om: !infor, workstation: nat, data: datatype)
11 ------------- Type definition
I [switch, included: bool, j, buffer, visit, n

q: nat, bufseq: nat*, T, msetup, sutm, ts, te, sut: real
xs: path
u: (-> real)~maxbuf

11 , u: (real)~maxbuf

tp: (real ~3)

// Stochastic case
11 Deterministic case

D.3. x files

, pt: (real)~maxbuf

, lotbuf: (nat)~maxbuf

, bufinfo: (nat~2)~maxbuf, lots: job*
, info: infor

11 ------------- Initialization
11 The controller runs through data and checks which part-type visits
11 this werkstation and how many times. For each time that a part-type
11 visits this werkstation a buffer is included in the buffer sequence.

I switch:= false; j:=O; buffer:= 0; T:=data.dt
msetup:= data.dsetup.workstation
bufseq:= []

105

* [j < numpart 11 The number of part types that need to be checked

11

11

-> xs:= data.dpath.j; visit:= 1 11 A part type can never visit a werkstation more then
11 the max. num. of buffers present at a workst. ; *[visit <= maxbuf

-> < included, n
; [included

>:= workstationincluded(xs, werkstation, visit)
11 If a part type visits the werkstation it:
11 Adds a buffer to the buffer sequence -> bufseq:= bufseq ++ [buffer]

tp:= idx(xs, n).4
u.buffer:= triangle(tp.O,
; u.buffer:= tp.1

11 leads the info of that production step
tp.1, tp.2) 11 if stochastic, stores the proc. distr.

11 if deterministic, stores the proc. time
11 computes max. lengthof a run of a part-type

pt.buffer:=data.dt * (tp.2) I (data.dta.j.O) 11 stochastic case
; pt.buffer:= data.dt * tp.1 I (data.dta.j.1) 11 deterministic case
bufinfo.buffer:= <I j, visit I> 11 it is stored which part visits what buffer
q:=fileini(workstation, buffer, j) 11 Info. on the buffers send to Python
buffer:= buffer + 1

not included
-> skip

visit:= visit + 1

11 If a part type does not visit this workst.
11 skip

j:= j + 1

sutm:= fsutm(bufseq, pt, T)
[sutm < msetup 11 A build-incheck

->!"Error, did you compute T right?\n","sutm: ",sutm,"\t msetup: ",msetup,"\n"
sutm >= msetup
-> skip

buffer:= 0
info:=< buffer, sample(u.buffer), sut >

11 ; info:= <buffer, u.buffer, sut >
om!info

11 The machine is set ready for buffer 0
11 Stochastic case
11 Deterministic case
11 With this info. the machine can be initialized
11 It contains info about from which buf. should
11 be processed, the process time and the time

ts:=time; te:= ts + pt.buffer

11 -------End of initialization
*[true; i?lots

11 of a possible setup
11 The end time of production is computed and
11 stored, also the start time is stored.

-> j:= bufchan(hd(lots), bufseq, bufinfo); ob1.j!lots
; lotbuf.j:= lotbuf.j + len(lots)
11 Incoming parts are send to the proper buffer by checking there part
11 type and there #th visit. The controller registers the increase of
11 parts in the buffer

b: nat <-O .. maxbuf: true; ib.b?
-> lotbuf.b:= lotbuf.b- 1
11 The controller registers when a part leaves a buffer

true; im?
-> [switch

]

-> ts:=time; te:= ts + pt.buffer
; switch:= false

not switch
-> skip

[te> time and lotbuf.buffer > 0

11 Checks if a setup has taken place
11 yes: computes new values

11 not: does nothing

11 Checks if it is time to setup

106 Appendix D. Simulation files

-> skip /1 nat time: does nothing
te<= time or lotbuf.buffer <= 0
-> switch:= true

sut:=sutm + pt.buffer - time + ts
[sut < msetup

/1 When a setup needs to performed it
/1 it is computed how long to the setup
// should be. If due to variability the

-> sut:=msetup
sut >= msetup

/1 computed setup is smaller than the minimal
11 setup this is corrected

]

-> skip

bufseq:= swap(bufseq)
buffer:=hd(bufseq)

11 The buf. seq. is updated

/1 The controller checks if it is time toperfarm a setup ar if the
/1 buffer being served is empty. If this is nat true, the machine
/1 stays processing parts from the current buffer. If this is true
/1 the controller computes the necessary setup time and sends this
// to the machine.
; info:=< buffer, sample(u.buffer), sut > /1 Stochastic case

/1 ; info:= < buffer, u.buffer, sut > 11 Deterministic case

] I

; om! info
// The controller sends information to the machine.
/1 It contains info about from which buf. should be processed,
/1 the process time and the time of a possible setup.

11 ------------- Buffer
/1 The buffer processas and receives parts from the transport proces, via
/1 the werkstation controller. If the parts were batched during transport,
// these batches are separated. Information about the buffer is written to a file.

prae B (ic1: ?job*, om: !job, oe: !void, buffer: nat, werkstation: nat)=
I [LOTS, lots: job*, x: nat, info: baal
I LDTS:= []; info:= false

*[true; ici?lots
-> *[len (lots) > 0

11 Receives parts
11 Stores parts

-> LOTS:= LOTS ++ [hd(lots)]; lots:= tl(lots)]
x:=outfilebuffer(time,workstation,buffer,len(LOTS)) //

nat info and len(LOTS) > 0; om!hd(LOTS) //
-> LDTS:= tl(LOTS) //

; x:=outfilebuffer(time,workstation,buffer,len(LOTS))

Writes info.
Sends parts
Updates buf.

to file

info.

; info:=true
info; oe! /1 Informs Controller
-> info:= false

l I

11 ------------- Machine
11 The machine sends a requests to the controller that it is ready
/1 From the controller it receives information about the buffer it needs
// to use and information needed for processing a part. When the buffer
/1 it needs to use, is different then the previous one, the machine switches
/1 with the setup time it receives from the controller.

prae M (ib: (?job)~maxbuf, ie: ?infor
, o: !job, oe: !void, werkstation: nat)=

I [buffer: nat, lot: job, info: infor
11 ------------- Initialization

I ic?info
buffer:= info.O

11 End of initialization
*[true ->oe!; ic?info

; [buffer = info.O
-> ib.buffer?lot; delta info.1

lot.3:= tl(lot.3)
o!lot

/1 Requests and receives info.
/1 Switching is nat needed
// Receives part from buffer and processas it
/1 Updates the production pathof the part
//Part is send totransport process.

D.3. x E.les

buffer/= info.O // Switching is needed
-> delta info.2; buffer:= info.O // Switch is performed.

J I

11 ------------- Werkstation cluster
clus W (i: ?job*, o: !job, werkstation: nat, data: datatype)
I [ebi: (-job*)·maxbuf, bm: (-job)·maxbuf, cm:-infor
, mc:-void, bc: (-void)·maxbuf
I j:nat <- O .. maxbuf: B (cbi.j, bm.j, bc.j, j, werkstation)

I I M (bm, cm, o, me, werkstation)
11 C (i, me, bc, ebi, cm, werkstation, data)
J I

11 --
// The main cluster
11 --
// ------------- Transport process
11 The transport process, receives every job that is send from generator to werkstation,
11 from werkstation to werkstation and werkstation to exit. If batehing is required for transport,
11 this process batches the jobs. Also transportation delays are taken into account.

proc Tr (ig: (?job)•numpart, i: (?job)·numworkst, o: (!job*)•numworkst, oe: !job)
I [xs: transplist, lot: job, LOTS: batchbuffer, lots: job*, werkstation: nat
I xs: =[]

J I

*[j:nat <-0 .. numpart: true; ig.j?lot
-> < xs, LOTS >:= batching(lot, xs, LOTS, time)
11 Receives jobs from the gen. and batches them and includes them in the transport list
k:nat <-O .. numworkst: true; i.k?lot
-> [not finished (lot)

-> < xs, LOTS >:= batching(lot, xs, LOTS, time)
finished (lot)
-> oe!lot

1/ Receives jobs from the workst. and batches them and includes them in the transport list
11 if the part is not finished, otherwise the part is send to the exit
len (xs) > 0; delta (hd(xs).i- time)
-> lots:= hd(xs).O; werkstation:= hd(hd(lots).3).0

; o. werkstation !lots; xs: = tl(xs)
11 When the transportation delay has finished, it sends the batch to the desired
11 werkstation.
]

11 ------------- Exit proces
11 The exit proces removes the parts from the system and it computes
11 the average flow time. If necessary it writes the flow time of each
11 part to a file.

proc E (i: ?job, numlots: nat, initial: nat, sim: nat)
I [tottp: nat, cyctot: real, lot: job, x: nat
I tottp:=O; cyctot:=O.O

107

*[tottp < numlots; i?lot
-> tottp:= tottp + i

tottp <= initial
-> skip

11 When less parts have exit the system then run length
11 Update number of parts

tottp > initial
-> cyctot:= cycle(lot, tottp-initial,

[sim 0 -> x:=outfilecyct(tottp,
I sim > 0 -> skip
]

!cyctot,"\n"
terminate

cyctot, time) // Computes av. flow tume
time-lot.2) // Writes the flow time of each product

11 Terminatas the simulation

108 Appendix D. Simulation files

Jl

11 ------------- Main cluster
clus GTSWBE(data: datatype, simtime: nat, initial: nat, sim: nat) =
I [gt: (-job)~numpart, wt: (-job)~numworkst, tw: (-job•)~numworkst, te: -job
I GEN (gt, data)
I I Tr (gt, wt, tw, te)
I I j: nat <-O .. numworkst: W (tw.j, wt.j,j, data)
I I E (te, simtime, initial, sim)
J I

xper (data:datatype, simtime: nat, initial: nat, sim: nat) = I [GTSWBE(data, simtime, initial, sim)] I

11 --
11 Functions
11 --
11 ------------- swap function
11 Updates the buffer sequence
func swap(s: nat•) -> nat*
I [ret tl (s) ++ [hd(s)]] I

11 ------------- fsutm function
11 Calculates the minimal set-up time according to Savkin
func fsutm(bufseq: nat* , pt: real~maxbuf, T: real) -> real
I [x: real, n : nat
I x:=O.O; n:=O

J I

*[n < len(bufseq) ->x:= x + pt.n; n:=n+1]
ret (T-x)ln

11 ------------- bufchan function
11 The function returns to the controller to which buffer a part
11 should be send when it arrives at the werkstation. It investigates
11 if the part type and the visit number correspond with the information
11 stored in bufinfo. When there is a match, the buffer number is returned.
func bufchan (lot: job, bufseq: nat•, bufinfo: (nat~2)~maxbuf) ->nat =
I [n: nat
I n:= 0

J I

•[len (bufseq) > 0 and (lot.O I= bufinfo.n.O or hd(lot.3).1 I= bufinfo.n.1)
-> n:= n+1; bufseq:= tl(bufseq)

ret n

11 ------------- cycle function
11 Calculates the flow time of a part
func cycle(x: job, y: nat, cyc: real, t: real) -> real
I [ret (y-1) I y * cyc + (t- x.2) I y]l

11 ------------- finished function
11 Checks if a part is finished or if it still has to undergo
11 production steps.
func finished (lot:job) -> bool
I [[len (lot.3) 0 -> ret true

J I

I len (lot.3) > 0 -> ret false
]

11 ------------- batehing function
11 This function is used by the transport process and batches the parts
11 fortransport if this is needed. It first adds the incoming part to list of
11 the same parts. If this list contains enough parts they are made ready for transport.
11 The function returns the tuple containing all parts which are waiting to be batehad and
11 a list containing the batches which are in transport and the time when there transport is
11 finished.
func batehing (lot: job, xs: transplist, LOTS: batchbuffer, t: real)

D.3. x files

-> transplist # batchbuffer =
I [part, workstation, visit, batchsize: nat, lots: jOb*
I part:=lot.O; workstation:= hd(lot.3).0

J I

visit:= hd(lot.3).1-1; batchsize:= (hd(lot.3)).3
LOTS.workstation.part.visit:= LOTS.workstation.part.visit ++ [lot]
lots:= LOTS.workstation.part.visit
[len (lots) batchsize -> xs:= transport(xs, lots, t); LOTS.workstation.part.visit:= []
I len (lots) < batchsize -> skip
]
ret <xs,LOTS>

11 ------------- transport function
1/ Returns a list of batches in transport sorted by transport delay.
func transport (xs: transplist, lots: job*, t:real) -> transplist=
I [ret insert(xs,<lots,t+hd(hd(lots).3).2>,inc)] I

1/ ------------- inc function
11 This function is necessary for the transport function.
func inc(x, y: job*#real) -> bool=
I [ret x.! < y.1] I

11 ------------- workstationincluded function
11 Checks if the workstation is included in the production path of a part
11 and if the visit corresponds to the given visit.
func workstationincluded(xs:path, workstation:nat, visit:nat) -> bool#nat
I [b: bool, n: nat
I b:=false ; n:= 0
;*[not b and len(xs) > 0

J I

-> b:= (hd(xs).O = workstation and hd(xs).1 visit)
xs:=tl(xs); n:= n+1]

ret < b, n-1 >

CLWvar.chi

109

Most of the CLWvar.chi file is similar to the SAVvar.chi file. Only code that differs from
SAVvar.chi is denoted below. The controller process and the bufchan function differ as the
ones defined in SAVvar.chi and the functions LW, CLSA and sum are added. Furthermore, the
swap and fsutm function are not necessary in CLWvar.chi.

11 --
// Workstation cluster
11 --
// ------------- Controller
11 The controller has a double function:
11 1) It makes sure that the parts arrive in the proper buffer
11 2) It controls which buffer is used by the machine.

proc C (i: ?job*, im: ?void, ib: (?void)-maxbuf
, obi: (!job*)-maxbuf
, om: !infor, workstation: nat
, data: datatype) =

11 ------------- Type definition
I [included: bool, j, buffer, visit, n

, nbuf, q: nat, msetup: real, xs: path
, u: (-> real)-maxbuf

11 , u: (real)-maxbuf
, tp1: (real-3)
, tp, ta : (real)-maxbuf
, lotbuf: (real*)-maxbuf
, bufinfo: (nat-2)-maxbuf, lots: job*
, info: infor

11 ------------- Initialization

11 Channels

11 Stochastic case
/1 Deterministic case

110 Appendix D. Simulation files

11 The controller runs through data and checks which part-type visits
11 this werkstation and how many times. For each time that a part-type
/1 visits this werkstation a buffer is assigned to it.

I j:=O; buffer:= 0; nbuf:= 0
msetup:= data.dsetup.workstation
*[j < numpart // The number of part types that need to be checked

-> xs:= data.dpath.j; visit:= 1 //A part type can never visit a werkstation more then
; *[visit <= maxbuf // the max. num. of buffers present at a workst.

-> < included, n >:= workstationincluded(xs, werkstation, visit)
; [included // If a part type visits the werkstation it:

-> tp1:= idx(xs, n).4 // loads the info of that production step
u.buffer:= triangle(tp1.0, tp1.1, tp1.2) // if stochastic, stores the proc. distr.

/1 ; u.buffer:= tp1.1 // if deterministic, stores the proc. time
tp.buffer:=tp1.1
ta.buffer:= data.dta.j.1
bufinfo.buffer:= <I j, visit I> // it is stared which part visits what buffer
q:=fileini(workstation, buffer, j) // Info. on the buffers send to Python
buffer:= buffer + 1

not included
-> skip

/1 If a part type does not visit this workst.
/1 skip

visit:= visit + 1

j:= j + 1

nbuf:= buffer
buffer:= 0

/1 The number of buf. at this workst.

info:=< buffer, sample(u.buffer), msetup >
11 ; info:= <buffer, u.buffer, msetup >

om!info

// The machine is set ready for buffer 0
11 Stochastic case
/1 Deterministic case
// With this info. the machine can be initialized
// It contains info about from which buf. should
/1 be processed, the process time and the time
// of a possible setup

11 -------End of initialization
* [true; i ?lots

-> j:= bufchan(hd(lots), nbuf, bufinfo); ob1.j!lots
; *[len (lots) > 0

-> lotbuf.j:= lotbuf.j ++ [time]; lots:= tl(lots)
/1 Incaming parts are send to the proper buffer by checking there part
/1 type and there #th visit. The controller registers the increase of
11 parts in the buffer

b: nat <-O .. maxbuf: true; ib.b?
-> lotbuf.b:= tl(lotbuf.b)

/1 The controller registers when a part leaves a buffer
c: nat <-O .. maxbuf: len(lotbuf.c) > 0; im?
-> [len(lotbuf.buffer) > 0

-> skip
len(lotbuf.buffer) <= 0
->buffer:= LW(lotbuf, tp, ta, nbuf, msetup, time)

]

/1 The controller checks if there are buffers which are not empty.
/1 If the buffer from which the machine is processing is not empty
// do nothing, but if this buffer is empty, then it is computed which
// of the non-empty buffers has the largast scaled age.
; info:=< buffer, sample(u.buffer), msetup > // Stochastic case

/1 ; info:=< buffer, u.buffer, msetup > /1 Deterministic case

] I

; om! info
/1 The controller sends information to the machine.
// It contains info about from which buf. should be processed,
// the process time and the time of a possible setup.

11 --
// Functions
11 --

D.3. x files

11 ------------- LW function
11 Calculates which of the the buffers contains the most work.
func LW (lotbuf: (real*)~maxbuf, tp, ta: real~maxbuf, nbuf: nat, msetup, t: real) ->nat
I [i, a: nat, x: nat # real

I i:= 0; x:= < 0, 0.0>
*[i< nbuf

-> [x.1 > (len(lotbuf.i)) * tp.i
-> skip
x.1 = (len(lotbuf.i)) * tp.i

111

->a:= CLSA(<I lotbuf.(x.O), lotbuf.i 1>, <I tp.(x.O), tp.i 1>, <I ta.(x.O), ta.i 1>, 2, msetup, t)

J I

[a = 0
-> skip
a= 1
->x:=< i, (len(lotbuf.i)) * tp.i >

x.1 < (len(lotbuf.i)) * tp.i
->x:=< i, (len(lotbuf.i)) * tp.i >

i:= i + 1

ret x.O

11 ------------- CLSA function
11 Calculates which of the non-empty buffers contains the largast work
11 and returns that buffer.
func CLSA (lotbuf: (real*)~2, tp, ta: real~2

, nbuf: nat, msetup, t: real) ->nat
I [i: nat, x: nat # real, age: real, w: real

I i:= 0; x:= < 0, 0.0>

J I

*[i < nbuf
-> age:= msetup~2 I (2* ta.i) + msetup * len(lotbuf.i) + len(lotbuf.i)*t - fold (lotbuf.i, sum, 0.0)

w:= 1 I (msetup * (1 - tp.i I ta.i)) 11 Weight factor
[x.1 >= age * w or len(lotbuf.i) <= 0 11 Buffer is empty or has smaller scaled age

-> skip
x.1 < age *wand len(lotbuf.i) > 0 11 Buffer is not empty and has larger scaled age
-> x:= < i, age * w >

i:= i + 1

ret x.O

11 ------------- sum function
11 Sums to reals
func sum(x y: real) -> real
I [ret x + y J I

11 ------------- bufchan function
11 The function returns to the controller to which buffer a part
11 should be send when it arrives at the werkstation. It investigates
11 if the part type and the visit number correspond with the information
11 stored in bufinfo. When there is a match, the buffer number is returned.
func bufchan (lot: job, nbuf: nat, bufinfo: (nat~2)~maxbuf) -> nat =
I [i: nat
I i:= o

J I

*[i< nbuf and (lot.O I= bufinfo.i.O or hd(lot.3).1 I= bufinfo.i.1)
-> i:= i+1

ret i

112 Appendix D. Simulation files

CLSA var .chi

Most of the CLSAvar.chi file is similar to the CLWvar.chi file. Code that differs from SAV­
var.chi is denoted below. Only the controller process and the CLSA function differ slightly
from CLWvar.chi. Therefore, for the controller process only the part that differs is shown.

proc CC)
I [
I

] I

c: nat <-O .. maxbuf: len(lotbuf.c) > 0; im?
-> [len(lotbuf.buffer) > 0

-> skip
len(lotbuf.buffer) <= 0
->buffer:= CLSA(lotbuf, tp, ta, nbuf, msetup, time)

11 --
11 Functions
11 --
11 ------------- CLSA function
11 Calculates which of the non-empty buffers contains the largest werk
11 and returns that buffer.
func CLSA (lotbuf: (real*)Amaxbuf, tp, ta: realAmaxbuf

, nbuf: nat, msetup, t: real) ->nat=
I [i: nat, x: nat # real, age: real, w: real
I i:= 0; x:= < 0, 0.0>

] I

*[i < nbuf
-> age:= msetupA2 I (2* ta.i) + msetup * len(lotbuf.i) + len(lotbuf.i)*t - fold (lotbuf.i, sum, 0.0)

w:= 1 I (msetup * (1 - tp.i I ta.i)) 11 Weight factor
[x.1 >= age * w or len(lotbuf.i) <= 0 11 Buffer is empty or has smaller scaled age

-> skip
x.1 < age *wand len(lotbuf.i) > 0 11 Buffer is not empty and has larger scaled age
-> x:= < i, age * w >

i:= i + 1

ret x.O

No variability

A simulation for a system without variability can be performed with the three x-files depiet
above. Only some small modifications are needed. These modification are already shown in
the code, but they are commented. Uncommenting them and commenting there stochastic
counterparts results in simulation for a system without variability. However, for SAVvar.chi
some other small modifications need to be made in the controller proces. The following part
can be deleted.

[sut < msetup
-> sut:=msetup
sut >= msetup
-> skip

This part is not necessary anymore, because due to deterministic behavior the computed
setup time can not become smaller than the minimal setup time. Furthermore, errors can
arrise due to truncation. Therefore, the following needs to be added.

D.3. x files

proc C(....)
I [
I

J I

true; im?
-> [switch

-> ts:=time; te:= ts + pt.buffer; switch:= false
not switch
-> skip

[te> time and lotbuf.buffer > 0 //Checks if it is time to setup
-> [te-time< te-6 ->!time, "\t Error:", te-time,"\n"

; terminate
I te-time >= 1e-6 -> skip
]

te <= time ...

113

Note that due to the lack of variability the following can happen. Assume that the machine
is processing parts from buffer 1 and that at t = 30 the machine sends a request signal to the
controller of workstation 1 that it is ready to process a part. Furthermore, a part arrives at
buffer 1, which the controller needs to register. Thus, at t = 30 two events take place which
the controller needs the process, namely:

• the controller receives a request signal form the machine.

• the controller registers that a parts arrives at buffer 1.

Which event takes place "first" at t = 30 is determined non deterministically by X· This,
can cause problems if buffer 1 is empty at t = 30. If the request of the machine is processed
first, the controller will start a setup, because the buffer is empty. But if the parts arrival is
registered first, the machine will not perfarm a setup.

Initial buffer levels

During the experiments only the initial levels of the first buffer that a part visits has been
changed. Thus, only the Xp,I (0) needs the be controlled. Therefore, the following constauts
need to be defined.

, lotsini : nat-1 = <I 367 I> // The initial parts that need to be generated.
, bufini : (nat-2)-2 = <I <1367,01>,<10,01> I>
11 <I ini. buf. lev. of buffers at a werkstation, ini. buf. lev. of buffers at a werkstation I>
/1 The initial buffer levels, only introduce initial buffer levels for the buffers
/1 that are visited first for a part, thus only b_{p,1}.

The size of the tuples depend on the number of parts types, the maximum number of buffers
found at a workstation and the number of workstations. However, the type definition of a
constant can not cope with an earlier defined constant. Therefore the following is not possible.

lotsini
bufini

nat -numpart = ...
(nat-maxbuf)-numworkst =

The following needs to be added to the generator process of all the policies.

114

proc gC ...
I [...
I

Appendix D. Simulation E.les

u:= triangleCta.O, ta.1, ta.2)
*[id <= lotsini.part

// The triangular distribution
// Initial buffer level

] I

-> o!< part, id, time, data.dpath.part >
; id:= id + 1]

*[true; delta ...

Furthermore, for CLW or CLSA the following neecis to be added to the controller part.

proc CC)
I [
I

om!info /1 With this info. the machine can be initialized
/1 It contains info about from which buf. should
/1 be processed, the process time and the time
/1 of a possible setup

*[c: nat <-O .. maxbuf: lenClotbuf.c) < bufini.workstation.c; i?lots
-> j:= bufchanChdClots), nbuf, bufinfo); ob1.j!lots

*[len Clots) > 0
-> lotbuf.j:= lotbuf.j ++ [time]; lots:= tlClots)

]

11 This ensures that the buffers have the desired buffer levels.
/1 ------- End of initialization

* [true; i? ...

l I

For SAV the following has to be ad.

proc CC)
I [
I

ts:=time; te:= ts + pt.buffer /1 The end time of production is computed and
1/ stored, also the start time is stored.

*[c: nat <-0 .. maxbuf: lotbuf.c < bufini.workstation.c; i?lots
-> j:= bufchanChdClots), bufseq, bufinfo); ob1.j!lots

lotbuf.j:= lotbuf.j + lenClots)
]

/1 This ensures that the buffers have the desired buffer levels.
11 ------- End of initialization

* [true; i? ...

l I

Regulators

The buffer process, control process and the workstation cluster are modified in order to
introduce regulators. Below the modifications for CLWvar.chi are shown.

11 --
// Werkstation cluster
11 --
// ------------- Controller
// The controller has a double function:
//'1) It makes sure that the parts arrive in the proper buffer

D.3. x files

/1 2) It controls which buffer is used by the machine.

pree C (i: ?job*, im: ?void, ib1: (?void)"maxbuf, ib2: (?void)"maxbuf
, ob1: (!job*)"maxbuf , ob2: (!real)"maxbuf
, om: !infor, werkstation: nat
, data: datatype) =

11 ------------- Type definition
I [included: boel, ...
I

I/

J I

ta.buffer:= data.dta.j.1
bufinfo.buffer:= <I j, visit I>
q:=fileini(workstation, buffer,
ob2.buffer!ta.buffer
buffer:= buffer + 1

End of initialization
*[true; i?lots

// it is stored which part visits what buffer
j) // Info. on the buffers send to Python

/1 Arrival time info send to the buffer

-> j:= bufchan(hd(lots), nbuf, bufinfo); obl.j!lots
// Incaming parts are send to the proper buffer by checking there part
/1 type and there #th visit.

b:nat <-O .. maxbuf: true; (ibl).b?
-> lotbuf.b:= lotbuf.b ++ [time]
// The controller registers the increase of the regulated buffer
11 lots in the buffer

d:nat <-O .. maxbuf: true; (ib2).d?
-> lotbuf.d:= tl(lotbuf.d)
// The controller registers when a part leaves a regulated buffer
c: nat <-0 .. maxbuf: ...

/1 ------------- Buffer
/1 The buffer processas and receives parts from the transport proces, via
// the werkstation controller. If the parts were batched during transport,
/1 these batches are separated. Information about the buffer is written to a file.

pree B (iel: ?job*, ic2: ?real, om: !job, oc1, oc2: !void, buffer: nat, werkstation: nat)=
I [LOTS1, LOTS2, LOTStot, lots: job*, x: nat
, info1, info2: boel, tend, ta : real
I LOTS1:= []; LOTS2:= []; LOTStot:= []; info1:= false; info2:= false

ic2?ta; tend:=O.O
; *[true; icl?lots 1/ Receives parts

-> *[len (lots) > 0
-> LOTS1:= LOTS1 ++ [hd(lots)]

LOTStot:= LOTStat ++ [hd(lots)]
lots: = tl(lots)

/1 Stores parts in the
/1 regulator buffer
/1 total buffer

x:=outfilebuffer(time,workstation,buffer,len(LOTStot)) // Writes info. to file
not info1 and len(LOTS1) > 0 ; delta (max(tend - time,O.O)) // Parts move from the regulator
-> LOTS2:= LOTS2 ++ [hd(LOTS1)]; LOTS1:= tl(LOTS1) // to the regulated buffer

; info1:= true
info1; oc1!
-> info1:= false; tend:= time + ta

/1 The controller is informed

not info2 and len(LOTS2) > 0; om!hd(LOTS2) // Sends parts
-> LOTS2:= tl(LOTS2); LOTStot:= tl(LOTStot) //Updates buf. info.

/1 ; x:=outfilebuffer(time,workstation,buffer,len(LOTStot))
info2:=true

info2; oc2!
-> info2:= false

J I

pree M(...
I [...

// The controller is informed

115

116 Appendix D. Simulation Eles

J I

11 -------------Werkstation cluster
clus W (i: ?job*, o: !job, werkstation: nat, data: datatype) =
I [ebi: (-job*)-maxbuf, bm: (-job)"maxbuf, cb2:(-real)"maxbuf, cm:-infor

, mc:-void, bci,bc2: (-void)"maxbuf
I j:nat <- O .. maxbuf: B (cbi.j, cb2.j, bm.j, bci.j, bc2.j, j, werkstation)

I I M (bm, cm, o, me, werkstation)
I I C (i, me, bei, bc2, ebi, cb2,cm, werkstation, data)
J I

For CLSAvar.chi the same modification need to be made.

Appendix E

Optimization model

In this appendix the file is presented used to solve the optimization problem of Section 6.2.

optimization.m

clear all
close all
clc

% --
% Input of parameters
% --

% The arrival rates
% The process rates
% The setup time
% Epsilon

LAMBDA=[! 2];
MU=[3 6] ;
theta=2;
epsilon= 1e-3;
X0=[10 10]; % The initial buffer levels

% --
% Calculate the necessary parameters
% --
%
j=length(LAMBDA); % The number of buffers
T=j*theta/(1-sum(LAMBDA./MU)); % The scheduling period
D=LAMBDA*T; % Desired production levels

% --
% !deal Savkin Trajeetory
% --

% Suppose that the buffer sequence of Savkin is X(1)->X(2)-> ... ->X(end)->X(1)
% and the machine is ready to start with production from X(1)
% then the ideal initial buffer levels are:

for i=1:j
Xideal(1,i)=LAMBDA(i)*(T-(i-1)*theta-sum(D(1:i)./MU(1:i)));

end

% Calculating the ideal Savkin trajectory:
Tideal=[O];
for i=1:j

dt=D(i)/MU(i);
Tideal=[Tideal; Tideal(end)+dt];
Xideal=[Xideal; Xideal(end, :)+LAMBDA*dt];
Xideal(end,i)=O;
% A switch to the next buffer, a setup takes place:

117

% The production time from buffer i
% Store the time
% Arrival of work in that period
% The buffer is completely emptied

118

Tideal=[Tideal; Tideal(end)+theta];
Xideal=[Xideal; Xideal(end,:)+LAMBDA*theta];

end
XidealO=Xideal(1,:);

Appendix E. Optimization model

% Store the time
% The work that arrives during the setup

% The 'initia! buffer level of the ideal sequence

% --
% cyclic clearing policy
% --

Tclear=[O];
Xclear=[XO];

% The distance covered:

% Store the time
% Store the buffer levels

Diffclear=[norm(Xclear(1,:)-Xideal0)-norm(Xclear(end,:)-Xideal0)];
% The distance between the start of the ideal sequence and the start of
% cyclic clearing policy sequence:

Distclear=[norm(Xclear(end,:)-XidealO)];
% The ratio beteeen the distance covered and the time:

Ratioclear=[Diffclear(end)/Tclear(end)];
tclear=[];
clearingcycles=O; % The number of cycles

% Start a new cycle if the ideal Savkin trajectory has not been
% sufficienly approached yet:

while norm(Xclear(end,:)-XidealO) >epsilon
clearingcycles=clearingcycles+1; % Increase the number of cycles
fprintf('Starting clearing cycle: %g\n',clearingcycles)
for i=1:j

dt=Xclear(end,i)/(MU(i)-LAMBDA(i));
tclear=[tclear; dt];
Tclear=[Tclear; Tclear(end)+dt];
Xclear=[Xclear; Xclear(end,:)+LAMBDA*dt];
Xclear(end,i)=O;

% A switch to the next buffer, a setup takes place:
Tclear=[Tclear; Tclear(end)+theta];
Xclear=[Xclear; Xclear(end,:)+LAMBDA*theta];

end
% Update Distclear, Diffclear and Ratioclear:
Distclear=[Distclear; norm(Xclear(end,:)-XidealO)];

% The production time of buffer i
% Store the production time
% Store time
% Arrival of work in that period
% The buffer is completely emptied

% Store time
% The work that arrives during the setup

Diffclear=[Diffclear; norm(Xclear(1,:)-Xideal0)-norm(Xclear(end,:)-Xideal0)];
Ratioclear=[Ratioclear; Diffclear(end)/Tclear(end)];

end
fprintf('The cyclic clearing policy reached the ideal Savkin trajectory in: %g' , ...

((length(Tclear)-1)/4))
fprintf(' cycles.\n')

% --
% Optimization
% --
ALPHA=LAMBDA./(MU-LAMBDA); % Calculating alpha
A=diag(ones(j,1));
A2=zeros(j,j);
s=XO'./(MU-LAMBDA)';

% Using the solution
toptO=tclear(1:j,1);

% Calculating s
from the cyclic clearing policy as initia! guess:

for z=2:j
A=A+diag(-ALPHA(z:end),-z+1);
A2=A2+diag(-ALPHA(1:j-(z-1)),z-1);
s(z)=s(z)+(z-1)*theta*ALPHA(z);

end
A2=A+A2;
i=1;
exitflag=O;

% Calculating A

% Calculating s

% Calculating A2
% Number of cycles

options=optimset;
options=optimset(options,'Diagnostics','off','Display' ,'off', ...

'largescale','off','TolCon',1e-6,'TolFun',1e-6);
% Start a new cycle if the ideal Savkin trajectory has not been
% sufficiently approached yet:

while exitflag<=O
fprintf('Running optimization algorithm for %g',i)
fprintf(' cycles\n')
if i>1 % Update A,en s

A=[A zeros((i-1)*j,j); A2 A(end-(j-1):end,:)];
s=[s; s(end-(j-1):end)+j*theta*ones(j,1).*ALPHA'];
toptO=tclear(1:j*i,1); %Update gues

end
% Run the optimization algorithm:
[topt, fvalopt, exitflag]= fmincon(0shortesttime,topt0,A,s,[],[],O, [], ...

0nonlconstraint,options,j,i,theta,MU,LAMBDA,XO,Xideal0,epsilon);
i=i+1; % Update the number of cycles

end

%Calculate the position that now has been reached:
numofcycle=i-1;
Xopt=XO;
Topt=[O];

% The distance covered:
Distopt=[norm(Xopt(end,:)-XidealO)];

% The distance between the start of the ideal sequence and the
% cyclic clearing policy sequence:

start of

Diffopt=[norm(Xopt(1,:)-Xideal0)-norm(Xopt(end,:)-Xideal0)];
% The ratio beteeen the distance covered and the time:

Ratioopt=[Diffopt(end)/Topt(end)];
for i=1:numofcycle

for z=1:j;
dt=topt((i-1)*j+z);
Xopt=[Xopt; Xopt(end,:)+LAMBDA*dt];
Xopt(end,z)=Xopt(end,z)-MU(z)*dt;
Topt=[Topt; Topt(end)+dt];

% A switch to the next buffer, a setup takes place:

end

Xopt=[Xopt; Xopt(end,:)+LAMBDA*theta];
Topt=[Topt; Topt(end)+theta];

% Update Distopt, Diffopt and Ratioopt:
Distopt=[Distopt; norm(Xopt(end,:)-XidealO)];

% The production time of buffer i
% Arrival of work in that period
% Amount of work removed in that period
% Store time

% The work that arrives during the setup.
% Store time

Diffopt=[Diffopt; norm(Xopt(1,:)-Xideal0)-norm(Xopt(end,:)-Xideal0)];
Ratioopt=[Ratioopt; Diffopt(end)/Topt(end)];

end

% --
% Camparing
% --

fprintf('\n The optimization algorithm is %g',(Tclear(end)-Topt(end))/Tclear(end)*100)
fprintf(' procent faster than clearing. \n')
fprintf(' The optimization algorithm lays %g',(Distclear(end)-Distopt(end))/Distclear(end)*100)
fprintf(' procent closer to the ideal Savkin trajectory than clearing. \n')
fprintf(' The optimization algorithm has a %g',(Ratioopt(end)-Ratioclear(end))/Ratioclear(end)*100)
fprintf(' procent better ratio impravement in time than clearing. \n')

% --
% Figures
% --
figure(1)
plot(Xideal(:,1),Xideal(:,2),'r',Xideal0(:,1),Xideal0(:,2),'r*'•···

grid

Xclear(: ,1) ,Xclear(: ,2), 'b', ...
Xopt (: , 1) , Xopt (: , 2) , 'k')

xlabel('X1')
ylabel('X2')
legend('Ideal Savkin trajectory','startpos. ideal Savkin trajectory' ,'cyclic clearing policy' ,'')
title('The trajectories of the buffers')

figure(2)

119

120

plot(Tclear(1:4:end),Distclear,'b.' , ...
Topt(1:4:end),Distopt,'kp', ...
[0 Topt(end)], [epsilon epsilon],'y')

grid
xlabel('time')
ylabel('Distance to startpos. ideal Savkin trajectory')
title('Distance to startpos. ideal Savkin trajectory in time')
legend('cyclic clearing policy','Dptimization')

figure(3)
plot(1:length(Distclear),Distclear,'b.', ...

1:length(Distopt),Distopt,'kp', ...
[0 length(Distclear)], [epsilon epsilon] ,'y')

grid
xlabel (' cycle')
ylabel('Distance to startpos. ideal Savkin trajectory')
title('Distance to startpos. ideal Savkin trajectory per cycle')
legend('cyclic clearing policy','Dptimization')

shortesttime.m

Appendix E. Optimization model

% function f = shortesttime(t,j,i,theta,MU,LAMBDA,XO,XidealO,epsilon)
% computes the objective function. The objective function should be
% minimized.

function f = shortesttime(t,j,i,theta,MU,LAMBDA,XO,XidealO,epsilon)
f = norm(t,i)+j•i•theta; %Computes the total time

nonlconstraint.m

% function [c,ceq] = nonlconstraint(t,j,i,theta,MU,LAMBDA,XO,XidealO,epsilon)
% computes the non-linear constraint. If c is smaller than zero, then
% the reached position is sufficiently close to the ideal Savkin
% traj ectory.

function [c,ceq] = nonlconstraint(t,j,i,theta,MU,LAMBDA,XO,XidealO,epsilon)
C= repmat(eye(j),i,1);
X=XO+LAMBDA•(norm(t,1)+i*j*theta)-t'*C.*MU;
c = norm(XidealO-X)-epsilon;
ceq = 0;

% Computes the position
% This should c <= 0.

