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Abstract

In this thesis we present the design of a secure bulletin board, which can be viewed as a public
broadcast channel with memory. Such a bulletin board is implemented by a distributed protocol
executed between several parties. Users can post messages to this board, and once they have
received a signed acknowledgement, they have the assurance that their message will never be
deleted, will never be changed, and will be available to every other user. Also, no authorized user
can be denied access to posting and reading messages. These properties hold even when up to
one-third of the parties comprising the bulletin board are corrupted.
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1 Introduction

Real-world election systems have attracted much attention over the last years. The current voting sys-
tems have many problems ranging from the results of elections, and therefore democracy, depending
on the honesty of the select few people that construct voting machines, to outright fraud with pre-filled
ballot containers. Concrete problems include voting results that were only available many weeks af-
ter the closing of the election in India, and misleading voting ballots in the US. In many countries,
the integrity of the election is questioned by the opposition. Much effort is put into making election
systems to be better verifiable.

Such election systems are still quite vulnerable, though. It is very difficult to prevent the corruption
of any party. The undetected corruption of a single party has great consequences. The outcome of
the election can be influenced, and the privacy of the voters can be violated. What we need is an
election scheme, where the corruption of a single or a few parties do not endanger the security aspects
of election schemes.

With the combination of the internet and the availability of well-studied cryptography, we have both
an infrastructure and the methods to design an election scheme that solves many of the problems that
exist with classical voting systems. The goal is to present an election scheme that not only produces
correct results even when voters try to disturb the process, but even tolerates malicious talliers. An
example of such an election scheme is presented in [CGS97]. This scheme provides privacy and uni-
versal verifiability, even when a number of talliers are corrupted. This scheme, however, assumes the
existence of a public broadcast channel with memory, a bulletin board. This thesis describes the design
and implementation of such a bulletin board, and discusses various aspects ranging from theoretical
issues such as resilience to various attacks, to practical issues such as efficiency and implementation
considerations.

A secure bulletin board has similar applications in other domains, as well. For example, secure auction
schemes could benefit from a secure bulletin board. In fact, many cryptographic protocols, such as
Pedersen’s verifiable threshold secret sharing scheme, assume the existence of a broadcast channel.
The bulletin board presented in this thesis can be used in these protocols.

In this thesis, we study various protocols that are suitable for use in a secure bulletin board, but we
explicitly note that the proofs and even descriptions of those protocols are not the focus of this thesis.
In examining the protocols, we do try to give a general idea how the protocol works, but the primary
intention is to use an existing protocol as the basis in our bulletin board.
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2 Case Study: A Multi-Authority Election Scheme

Since the motivation of the construction of the bulletin board presented in this thesis is to complete
the scheme presented in [CGS97], we will first examine the properties of that scheme, without going
into too much detail. Other applications in which a bulletin board is used probably need similar
functionality.

The scheme of [CGS97] works in the model set forth by Benalohet al. [CF85, BY86, Ben87]. In
this model, the active parties are divided intol votersV1,¼,Vl andn talliersA1,¼, An. The election
basically consists of two phases: In the first phase, each voter casts his vote by encrypting it and
posting the vote to the bulletin board. In the second phase, the talliers execute a multi-party protocol
to jointly compute the results of the election, and publish the result to the bulletin board.

This scheme tolerates the benign and malign failure of up to a thresholdt talliers, 1£ t £ n. This
means that even whent talliers cooperate, they cannot change the result of the election. This is a very
important property, because the outcome of the election does not depend on each tallier being honest,
unlike in classical elections, where for example a single pre-filled ballot container can influence the
results.

It is assumed that the talliers have jointly generated a public key and shared private keys for a thresh-
old cryptosystem. The encryption key is assumed to be distributed to the voters in a secure manner,
and voters will use this key to encrypt their ballots. Since a threshold cryptosystem is used, only suffi-
ciently large groups of talliers will be able to decrypt a ballot. An honest tallier will not participate in
the decryption of a single voter’s ballot, since that would compromise the voter’s privacy. If sufficient
talliers are honest, the privacy of voters can be assured.

To cast his vote, the voter encrypts his ballot and posts it to the bulletin board. In order to guarantee
privacy, the contents of this encrypted vote may not be linked to the voter. There are two ways to
provide this: the first is to use homomorphic encryption schemes to obtain the encryption of the sum
of all votes, and only decrypt this sum using a threshold decryption protocol. This requires the voter to
present a proof that his encrypted ballot does indeed contain a valid vote. This approach is proposed
in [CGS97]. Another method to provide ballot secrecy is with the method ofMixing. This method
works by taking the set of all encrypted votes, and give it to te firstMixer. This mixer permutes the
order of the votes. The votes are also blinded, so that the permutation used is not visible, and a proof
is presented that the input set consists of the same votes as the output set. The output of the first mixer
is the input to the second mixer, who also mixes the votes. This process is repeated by each mixer. As
long as there are at least one honest mixer that does not reveal the permutation used, no one will be
able to link a vote to its voter. After this mixing, each vote is decrypted using a threshold decryption
protocol, and the election result can easily be calculated from these decrypted votes.
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3 Specifications of the Bulletin Board

We are going to specify and build a prototype of a bulletin board, which is implemented by a dis-
tributed protocol executed between several parties. This bulletin board can be used as the primitive
needed in the election scheme, or it can serve other purposes, like a secure broadcast channel needed
in protocols such as Pedersen’s verifiable secret sharing scheme.

3.1 Functionality

The problem the bulletin board actually has to solve is aconsensusor Byzantine agreementproblem.
Byzantine agreement is a classical problem introduced in [PSL80] and [LSP82]. All parties must
reach consensus on the contents of a particular message, while some parties may be corrupted by an
adversary. The protocol used must be resilient toByzantine failures: a corrupt party can behave in
any arbitrary way, even conspire together with other corrupt parties in an attempt to make the protocol
work incorrectly. The identity of corrupt parties is unknown, reflecting the fact that faults can happen
unpredictably.

We informally state the functionality provided by the bulletin board in this section.

Availability Each party is able to successfully send messages to the bulletin board.

Broadcast If some party sends a message to the bulletin board, every party receives that message.

Agreement Once a message has been sent successfully to the bulletin board, every party receives the
same message.

Memory Once a message has been sent successfully to the bulletin board, the message is not deleted
and is available to each party.

Our bulletin board will run as a distributed protocol between several parties. We do not want to assume
that every party does exactly what the specification prescribes, because we want to take into account
that some adversary controls some of the parties.

3.2 Types of Parties

Each party may follow the rules of our specifications, or it may deviate from them. To categorize the
behaviour of the parties, we introduce a few definitions. A party is eitherhonestor corrupt. Honest
parties follow the specifications of the protocol. Corrupt parties may deviate in any way from the
protocol, including cooperating with other corrupt parties. This is also known asByzantinefailure. In
thestaticadversary model, the adversary selects a number of parties and corrupts them, after which
exactly these parties are corrupt, and the other parties are honest. In thedynamicadversary model, the
adversary may observe the protocol as it runs, and select parties to corrupt at will.

In addition to being honest, we introduce definitions relating to the reachability and responsiveness
of parties. A party is eithercorrect or faulty. Correct parties always respond correctly within some
timeout, while faulty parties either respond too late, not at all, or incorrectly. If a party has been cut
off the network, or has crashed, it is faulty. By definition, corrupt parties are always faulty, and correct
parties are always honest.

9



3.3 Bounds on the Number of Faulty Parties

If every party is corrupt, then we cannot expect our bulletin board to work properly, of course. The
bulletin board must however be tolerant of at least a few faulty parties. Each protocol implementing
the functionality of a secure bulletin board has some bound on the number of parties it tolerates to be
faulty, which is called theresilience. For example, Phalanx [MR98] has a resilience ofen-1

4 u. Another
bound, which is the resilience of Rampart [Rei94], isen-1

3 u. A bulletin board can be used to solve the
so-calledagreementproblem, and a well-known theoretical result says that every protocol solving the
agreement problem has a resilience of at moste

n-1
3 u, hence, the bound for Rampart is optimal.

3.4 Typical use of Bulletin Board

Using the election scheme as the example application for our bulletin board, we identify the required
functionality. There are four phases.

1. During the first phase of the election, the bulletin board is initialized and its keys are generated
and distributed to the voters.

2. During the second phase of the election, voters must be able to post their vote to the bulletin
board. After posting, they must have the assurance that their vote is not altered or removed, and
that the vote will be counted in the final tally (of course, under the assumption that no more
parties are faulty than tolerated by the protocol).

3. During the third phase of the election, the first mixer must be able to contact the bulletin board,
and read all the votes cast. Then, that mixer must be able to write back the result of mixing,
and the proof that the result is indeed a permutation of the original set of votes. Subsequently,
the second mixer reads the results of the first mixer, and writes back the next permutation of the
votes. This process is repeated for each mixer.

4. During the fourth phase of the election, the talliers jointly decrypt each vote. This operation
consists of reading all votes, and writing a decryption share back to the bulletin board. From
these decryption shares, everyone can reconstruct the original vote, and compute the final result.

Distribution of each party’s public key is beyond the scope of this project, so we just assume that the
distribution in the first phase is done correctly, e.g. with a PKI. The second phase is correct by design,
if the condition on the number of correct parties is met. The mixing results of the second phase must
be verified. This verification must be done by at least one honest party, which means that at least one
third of the parties must verify the correctness, if the protocol tolerates at most one third minus one
faulty parties. The results produced in the third phase must be verified in a similar manner.

3.5 Assumptions of the Bulletin Board

We like to assume as little as possible about the information available to the parties when building the
bulletin board. Specifically, there should be no trusted third party, a single party on whose honesty the
bulletin board depends.
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Communication with or between parties should be done securely. Secure channels are easily set up
when each party has its own public/private keypair. Since no trusted third party is available to generate
this keypair, each party must generate its own. After generation, some method must exist to securely
publish the public keys, so that everyone involved in the election has access to each public key. The
method used to distribute the public keys is beyond the scope of this project, it is assumed that such a
method exists, e.g. a PKI is used.

While it is possible to use a simple threshold signature scheme using only the public key of each
party, a speedup in performance can be gained by using a better threshold signature scheme, as will
be explained in a later chapter. Such a scheme needs a separate threshold key generation protocol,
though, and the public key produced by the protocol must be published as well. We therefore assume
that a threshold key generation protocol is included in the bulletin board. This protocol will probably
be run some time before the actual election is held, so that the public key can be distributed to the
voters.
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4 Candidate Bulletin Board Protocols

Now that we have a clear idea of what our bulletin board must be capable of, we can study various
existing protocols and decide what protocol we will use as the core of our bulletin board. The protocols
that we examine are Rampart [Rei94], a protocol described by Kursawe and Shoup [KS01], Phalanx
[MR98], and another version of Phalanx [MR97] which we will denote by PhalanxII. The Rampart and
Phalanx protocols will be adapted so that they use threshold signatures in order to gain performance.
Therefore, we make a comparison of six different protocols: Rampart, Kursawe-Shoup, Phalanx,
PhalanxII, Rampart+, and Phalanx+, where the + indicates the adapted version.

An informal description of each protocol discussed in this chapter is given, but this description is just
enough to examine the complexity of the protocols. It is not the intention to give a precise description
of each protocol, the designs of the protocols are beyond the scope of this project. After comparing the
complexity of the various protocols presented in this chapter, we can select one to use in our bulletin
board. Once this choice has been made, the selected protocol will be discussed in greater detail.

4.1 The Bulletin Board Used in Elections

We will use the election scheme from our case study to determine the criteria to compare various
protocols. In this election scheme, the bulletin board will be used to publish votes from the voters and
additional data by the talliers.

We review the phases defined in section 3.4 and examine the requirements on the complexity of read
and write operations:

1. The first phase is the setup phase, where the servers jointly generate public key pairs for a
threshold signature scheme. The performance of this phase is not very important.

2. The second phase is the voting phase, during which clients can publish their votes on the bulletin
board. These votes are small and are placed on the board one at a time.

3. During the third phase, mixers read the whole contents of the board, permute the contents and
write back the contents to the board. These read and write operations are performed only a
small number of times, but since it covers the whole contents of the bulletin board, the data read
and written is very large.

4. After the mixers have mixed the votes sufficiently many times, the talliers jointly decrypt the
votes in the fourth phase. These talliers also use large read and write operations to process large
amounts of votes at once. After writing the decrypted votes back to the board, the votes can be
tallied.

In conclusion, the protocol must support fast writes of small messages, and reads and writes of many
small messages at the same time. Reading one small message does not occur often, if at all.

4.2 Comparison Criteria

In order to compare the protocols, several criteria need to be defined:
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Resilience The maximal number of parties that may be corrupted. The best that can be achieved
is en-1

3 u. If more parties than the resilience are corrupted, the security of the protocol is not
guaranteed.

Round Complexity The number of changes in the direction of communication. This gives a rough
indication of the latency of the protocol.

Message ComplexityThe number of messages sent over the network.

Communication Complexity The total length of the messages. This is a better indication of network
traffic than message complexity, as very large messages take more time and bandwidth to be
sent than small messages.

Computational Complexity The amount of computation needed. Only public key cryptosystem
operations are taken into account, as the modular exponentiations will be the dominating factor
of the needed computation time.

For each protocol, two typical runs will be examined, in which a client writes one message, and a
client reads many messages. For simplicity, it is assumed that the client reads the firstl messages
in the read operation. These two operations are denoted withWrite OneandRead Many. In these
descriptions,n will be the number of parties andl the number of messages read. Alternatively, Read
Many may be seen as reading a very large message of sizel .

In our comparisons, we only consider the case where every party is honest. Once a protocol is resilient
against faulty behaviour of some of the parties, it is likely that no party even tries to disrupt the
protocol, unless there are enough corrupt parties to compromise the integrity of the bulletin board, at
which point the performance is not important anyway.

4.3 The Protocols

The pseudo-formalism used to describe the protocols is taken from [CKPS01]. Each message has a
parameter describing the kind of message sent. If that parameter is anin or anout, then the message
is not sent over the network, but instead passed on to a lower or upper layer in the protocol stack. In
that case, the second parameter describes the kind of message sent. Other parameters contain payload.
The protocol descriptions in this section are not as formal as the descriptions in later sections, because
this section focuses on performance and complexity, not on correctness and completeness.

A protocol is described as a series of events and responses. Once a specific condition is triggered, the
appropriate statements are executed, possibly triggering other conditions.

4.3.1 Rampart Protocol Description

The protocol used in Rampart implements a secure broadcast channel, and is composed of several
layers: the Atomic multicast protocol, the Reliable multicast protocol and the Echo multicast protocol.
The Echo multicast is the core protocol, which is used by honest servers to ensure that all other
servers receive a certain message. The Reliable multicast protocol uses the Echo multicast protocol
and ensures that the set of received messages is the same on each server, even if a message is sent by
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a dishonest server. The Atomic multicast protocol uses the Reliable multicast protocol and assigns an
order to the messages.

These three layers are built on a Secure Group Membership protocol, such as the one detailed in
[Rei96]. With this protocol, each server maintains a view of partiesVx, which is the set of active
and responsive parties in the broadcast channel. Once a party suspects another party of being faulty,
it votes to remove the faulty party from the group, and once enough parties choose to remove some
faulty party, the faulty party is removed. A new group viewVx+1 is formed, which then becomes the
current view.

Echo Multicast Protocol The interface of the echo multicast protocol consists of two processes:
E-mcast(x, m) andE-deliver(p, x, m), which are used to multicast a messagem in view x.

Let Vx denote the set of servers in the active view. When some partyp Î Vx wants to echo multicast
a messagem in view x, it sends (in, e-mcast, x, m) to the echo multicast protocol. When some party
p¢ Î Vx receives a multicast messagem in view x from p, the echo multicast protocol sends (out,
e-deliver, x, m) to a higher-level protocol.

This protocol is explained in greater detail in section 8.4.1, but a summary is given here: When (in,
e-mcast, x, m) is received, partypstarts by sending aninit message containing the cryptographic hash
of m, denoted byf (m). Each party maintains an indexlp denoting the number of messages received
by this party. Theinit message commits the hash ofm to thelp-th message fromp. Each party then
responds with anechomessage, including a signature serving as proof that that party committedm
to the lp-th index. p then accumulates theseechomessages, until it has̀(2|Vx

| + 1)/3p of them, and
then sends acommit message, containing the signatures andm. Each party can now deliverm, after
verifying that the order of delivery of messages fromp is correct.

This protocol prevents a corrupt party from making honest parties deliver different messages on the
same index. Since a party has to acquire`(2|Vx

| + 1)/3p signatures from different parties, and since
each honest party only creates one signature for a specific index and party, a corrupt party cannot
acquire two sets of signatures for two different messages on the same index.

upon receivinga message (in, e-mcast, x, m)
send (init , x, f (m)) to eachpÎ Vx.

upon receivinga message (init , x, d) from pÎ Vx

let lp be the number of messages received fromp.
send a signed message (echo, p, x, lp, d) to p.

upon receivingmessagesS= {(echo, p, x, l , d) signed byp j }p jÎVx , where|P| = `(2|Vx
| + 1)/3p

send (commit, p, x, m, S) to eachpÎ Vx.

upon receivinga message (commit, p, x, m, S) whereS= {(echo, p, x, l , d)K }p jÎVx and|P| = `(2|Vx
| + 1)/3p

if no viewVy is received withy > x andpÏ Vy

add this message tocommitsx.

upon addinga message (commit, p,¼ ) to commitsx

while a message (commit, pi , x, m, {(echo, p, x, l , d)K }p jÎVx) is previously received such thatc
x
i + 1 = l do

send (out, e-deliver, pi , x, m) and setcx
i := c

x
i + 1;.

Figure 1: Rampart Echo Multicast Protocol
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Reliable Multicast Protocol The interface of the reliable multicast protocol consists of two pro-
cesses:R-mcast(m) andR-deliver(pi , m), which are used to multicast a messagem. It uses theE-
mcast(x, m) andE-deliver(pi , x, m) processes of the echo multicast protocol.

This protocol is discussed in section 8.5.1

In the absence of membership changes, the reliable multicast protocol just relays messages between
the echo multicast protocol and the atomic multicast protocol. Therefore, the protocol is not detailed
here, but it will be in a later section.

Atomic Multicast Protocol The interface of the atomic multicast protocol consists of two pro-
cesses:A-mcast(m) is used to send a messagem to every server, andA-deliver(pi , m) is executed on
each server when it receivesm.

Without going into detail, special messages are broadcast with the reliable broadcast protocol to assign
an order to the messages. A single atomic multicast messagem results in one reliable multicast
message containingm, and one order packet. Whenn messages are atomically multicast in a short
period, only one order packet is needed, resulting inn + 1 reliable multicast messages. This extra
message does not impact complexity much, therefore it is not detailed here. The atomic multicast
protocol is detailed in section??

Constructing a Bulletin Board The secure atomic broadcast protocol that Rampart provides can
be used as the most important building block of our bulletin board.

When a client wants to write a message on the bulletin board, the server with which the client con-
nected uses the broadcast protocol to broadcast the message and requests threshold signature shares.
These shares are combined by the server into a single signature and returns that signature to the client.

To read a message, a client sends a nonce, which is broadcast by the server to construct a signature on
the message and the challenge. The message is returned, together with the signature.

If a client wants to read the contents of the whole bulletin board, it only needs to receive the messages
from one of the servers, in addition to a single signature of all the messages together. Since an
atomic broadcast protocol is used, each server has exactly the same sequence of messages. Therefore,
only one signature share needs to be transmitted from each server to the server to which the client is
connected, and the bulletin board messages only need to be sent from one server to the client. This is
all under the assumption that no writes occur during the read operation.

The client protocol:
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upon receivinga message (in, write , m)
repeatsend (write , m) to some serverpÎ P
until ready-write.

upon receivinga message (write-ack, mK ) whereK is the public key of the bulletin board
if the signature is correctthen

setready-write.

upon receivinga message (in, read)
repeatchoose a challengec and send (read, c) to some serverpÎ P
until ready-read.

upon receivinga message (read-ack, m, Xm, c\K ) whereK is the public key of the bulletin board
if the signature is correctthen

setready-read
send (out, read-ack, m)

upon receivinga message (in, read-all, b, e)
repeatchoose a challengec and send (read-all, c, b, e) to some serverpÎ P
until ready-read-all.

upon receivinga message (read-all-ack, {m}
[b,e), X{m}[b,e), b, e, c\K ) whereK is the public key of the bulletin board

if the signature is correctthen
setready-read-all
send (out, read-all-ack, {m}

[b,e))

Figure 2: Bulletin Board Protocol for Clients

The server protocol:

upon receivinga message (write , m)
send (in, a-mcast, Xwrite , m, c \) wherec is the client

upon receivinga message (out, a-deliver, Xwrite , m \) from p
recordm, c, i
seti := i + 1 send (write-ack, mK ) to p whereK is the threshold signature key of this party.

upon receivingmessages (write-ack, mKi
) from enough partiespi

combine the threshold signatures into one signaturemK .
send (write-ack, mK ) to c.

upon receivinga message (read, c)
send (read-request, c) to eachpÎ P.

upon receivinga message (read-request, c)
send (read-reply, Xm, c\K ) to the sender, whereK is the threshold signature key of this party, andm is the message recorded as
written by clientc.

upon receivingmessages (read-reply, Xm, c\Ki
) from enough partiespi

combine the threshold signatures into one signatureXm, c\K .
send (read-ack, m, Xm, c\K ) to c.

upon receivinga message (read-all, c, b, e)
send (read-all-request, c, b, e) to eachpÎ P.

upon receivinga message (read-all-request, c)
send (read-all-reply, X{m}, b, e, c\K ) to the sender, whereK is the threshold signature key of this party, and{m} are all messages.

upon receivingmessages (read-all-reply, X{m}, c\Ki
) from enough partiespi

combine the threshold signatures into one signatureX{m}, c\K .
send (read-all-ack, {m}, X{m}, c\K ) to c.

Figure 3: Bulletin Board Protocol for Servers
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4.3.2 Rampart Protocol Run

When examining the performance of Rampart, only the echo multicast protocol is of interest, since in
a run with only honest parties, the commands in the other layers are performed in a constant amount
of time, and the network traffic induced by the atomic and reliable multicast layers is only a fraction
of the amount generated by the echo multicast protocol.

When a clientc writes a messagem to the bulletin board consisting of serversP, the following steps
are executed:

1. c sends (write , m) to some serverpÎ P.

2. p sends (init , x, f (m)) to everyp¢ Î P.

3. upon receipt, every server sends a signed echo message (echo, p, x, l , d)K j
to p.

4. after receiving the echo messages,p sends (commit, p, x, m, {(echo, p, x, l , d)K j
}pÎP¢ÍP) to

every process, where|P¢| = a2n+1
3 q.

5. after serverp¢ receives the order message, it A-deliversm, computes a signature share and sends
(write-ack, mK) to p.

6. p combines the shares into a single signature and sends (write-ack, mK) to c.

When a clientc reads alll messages, the following steps are executed:

1. c chooses a nonced and sends (read-all, d) to some serverpÎ P.

2. p sends (read-all-request, d) to eachp¢ Î P.

3. eachp¢ Î P computes a signature share over thel messages and sends (read-all-reply, signa-
ture) top.

4. p combines these shares into a single signature and sends (read-all-ack, messages, signature)
to c.

Note that the broadcast protocol is not used in the read protocol, since the servers do not need to
come to an agreement on something. Receivingan-1

3 q + 1 signature shares is enough to construct the
threshold signature.

4.3.3 Analysis of Rampart

In this first complexity analysis, we shortly describe how we obtained the numbers. We omit this
description in later analyses.

Resilience The resilience is given by the Rampart protocol itself.

g

n- 1
3
w
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Round Complexity In the example protocol run, we count the number of items, since each item
represents a communication in a different direction than the previous item.

Write One Read Many
7 4

Message ComplexityTake the protocol run where a client writes a message. We observe that there
are 3 protocol steps in which one message is sent, and there are 4 protocol steps in whichn
messages are sent. We neglect the former, so there are about 4n messages sent in the write
protocol.

Write One Read Many
4n 2n

Communication Complexity Of each protocol step, we note how big the messages are that are being
sent, and to how many parties they are being sent. In step 4 of the write protocol,n messages are
sent containing̀(2n+ 1)/3p signatures, so it has a communication complexity of about 2n2/3,
plus there are three steps in which a small message is sent ton parties.

Write One Read Many

3n+ 2n2

3 2n+ l

Computational Complexity In step 2 of the write protocol, each server creates only one signature
which is neglected, but in step 3, each server verifies`(2n+ 1)/3p signatures. The entry server
also verifies the first̀(2n+ 1)/3p signatures received in step 3.

Write One Read Many
client 1 1
server a

2n+1
3 q 1

entry server a

4n+2
3 q a

4n+2
3 q

4.3.4 Rampart+ Protocol Description

The communication and computational complexity of Rampart is quadratic in the number of parties.
This is due to step 4 of the write protocol, where one party sendsn messages of lengthO(n). With
a threshold signature scheme, we can ‘compress’ thoseO(n) signatures into one signature, thereby
reducing the communication complexity toO(n), and reducing the computational complexity of non-
entry servers toO(1).

We change the Rampart protocol such that a signature share, rather than a signature, is created when
sending theechomessage, and we change the event handler of thecommit message to combine the
signature shares into a single threshold signature:
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upon receivinga message (in, e-mcast, x, m)
send (init , x, f (m)) to eachpÎ Vx.

upon receivinga message (init , x, d) from pÎ Vx

let lp be the number of messages received fromp.
send a message (echo, p, x, lp, d) with a signature share on it top.

upon receivingmessagesS= {(echo, p, x, l , d) signed byp j }p jÎVx , where|P| = `(2|Vx
| + 1)/3p

combine the signature shares of theechomessages into a single signatures.
send (commit, p, x, m, s) to eachpÎ Vx.

upon receivinga message (commit, p, x, m, s) wheres=(echo, p, x, l , d)K whereK is the shared private key of the threshold signature
scheme and|P| = `(2|Vx

| + 1)/3p
if no viewVy is received withy > x andpÏ Vy

add this message tocommitsx.

upon addinga message (commit, p,¼ ) to commitsx

while a message (commit, pi , x, m, (echo, p, x, l , d)K ) is previously received such thatc
x
i + 1 = l do

send (out, e-deliver, pi , x, m) and setcx
i := c

x
i + 1;.

Figure 4: Rampart+ Echo Multicast Protocol

4.3.5 Rampart+ Protocol Run

When a clientc writes a messagem to the bulletin board consisting of serversP, the following steps
are executed:

1. c sends (write , m) to some serverpÎ P.

2. p sends (init , x, f (m)) to everyp¢ Î P.

3. upon receipt, every server sends a echo message (echo, p, x, l , d)K j
with a threshold signature

on the message top.

4. after receiving the echo messages,p combines the threshold signature shares into one signature
s and sends (commit, p, x, m, s) to every process,|P¢| = a2n+1

3 q.

5. after serverp¢ receives the order message, it A-deliversm, computes a signature share and sends
(write-ack, mK) to p.

6. p combines the shares into a single signature and sends (write-ack, mK) to c.

4.3.6 Analysis of Rampart+

As only the communication complexity and the computational complexity change, the other aspects
are not mentioned here.

Communication Complexity
Write One Read Many

4n 2n+ l
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Computational Complexity

Write One Read Many
client 1 1
server 2 1

entry server a

n-1
3 q a

4n+2
3 q

4.3.7 Kursawe-Shoup Protocol Description

Like the protocol used in Rampart, the protocol of Kursawe-Shoup [KS01] is an atomic broadcast
protocol. A big difference between those two protocols, is that Rampart builds on a secure group
membership protocol, while Kursawe-Shoup does not. The latter protocol has two phases: theop-
timistic phaseand therecovery procedure. Instead of group views like Rampart has, it has epochs.
Each epoch begins with an optimistic phase, in which messages are sent to the leader of the protocol,
which starts broadcasting the message. When enough parties complain because of timeouts or errors,
the recovery procedure is started to ensure that messages sent in the current epoch are delivered. After
this procedure, the next epoch is started with another optimistic phase.

Because we examine the complexity of the protocol in the absence of faulty parties, we only describe
the optimistic phase and examine its properties.

Optimistic Phase First, the optimistic phase is started. The phase ends when theRecoverprocedure
is executed. After theRecoverprocedure terminates, this phase is started again.

When a server wants to broadcast a message, that message is first sent to the leader. The leader mul-
ticasts the message to every server with the0-bind message. Every server that receives the message
in this way, also sends it to every server, with the1-bind message. Then, every server that receives
this message, it sends ta2-bind message to every server, and upon receiving a2-bind message, the
message is delivered.

When some server does not deliver a broadcast message before some timeout, it sends a complaint
and stops responding to0-bind messages. Whent + 1 servers block this way, the other servers cannot
make progress and eventually the Recovery procedure will be executed.

If the leader is faulty, and only sends the message ton- t - 1 or less correct servers, then the message
will not be broadcast successfully, because a1-bind message will never be generated. If the leader
sends the message to at leastn - t servers which send a2-bind in response, then at leastt + 1 of
thosen- t servers are honest and will send that2-bind to every server. Now every server receives the
message at leastt + 1 times, so that every server that did not already send a2-bind, they will do it
now. This results in every correct server sending a2-bind message, resulting in every server receiving
at leastn- t 2-bind messages, after which every server will deliver the message.

The protocol uses the following variables:e is the epoch number. It starts at zero and is incremented
each time the Recovery procedure is executed.D is the set of the messages that have been delivered.
I is the initiation queue, the queue of messages that the server has initiated, but not yet delivered.
w is the window pointer, denoting the number of requests that have been delivered.BIND1 and
BIND2 are the sets of messages received in a1-bind resp. 2-bind message.acnt is the number of
acknowledgements received for message deliveries.complaineddenotes whether this server has sent
a complaint. it (m) holds the value ofw for eachm Î I at the point in time whenm was added to
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I . l is the leader index.SRis maintained by the leader and contains the set of messages which have
been assigned sequence numbers.scnt is maintained by the leader and contains the value of the next
available sequence number.

upon receivinga message (in, a-broadcast, m)
verify mÏ I Ç D ß |I | < Bu f Size
Send (initiate , e, m) to the leader
Add m to I
Setit (m) := w

upon receivinga message (initiate , e, m)
verify this process is the leader
verify w £ scnt < w+WinSizeßmÏ D Ç SR
Send (0-bind, e, m, scnt) to all parties
scnt := scnt+ 1
Add m to SR

upon receivinga message (0-bind, e, m, s)
verify the sender is the leader
verify w £ s < w+WinSizeß sÏ BIND1 ß ((I = Æ) Þ (w £ min{it (m) : mÎ I }|Thresh))
Send (1-bind, e, m, s) to all parties
Add s to BIND1

upon receivingn- t message of the form (1-bind, e, m, s) from distinct parties that agree ofs andm
verify w £ s < w+WinSizeß sÏ BIND2
Send (2-bind, e, m, s) to all parties
Add s to BIND2

upon receivingt + 1 message of the form (2-bind, e, m, s) from distinct parties that agree ofs andm
verify w £ s < w+WinSizeß sÏ BIND2
Send (2-bind, e, m, s) to all parties
Add s to BIND2

upon receivingn- t message of the form (2-bind, e, m, s) from distinct parties that agree ofs andm
verify s= wß acnt³ |D ßmÏ D ß sÎ BIND2
Send (out, a-deliver, m)
Add m to D
Removem from I
stop timer

upon timer is not running andcomplainedis not set andI ¹ Æ andacnt³ |D|
start timer

upon timeout
if Øcomplainedthen

Send (complain, e) to all parties
complained:= true

upon receivingt + 1 messages of the form (complain, e) from distinct parties
verify Øcomplained
Send (complain, e) to all parties
complained:= true
stop timer

upon receivingn- t messages of the form (complain, e) from distinct parties
Execute the Recover procedure.

Figure 5: Optimistic Phase of Kursawe-Shoup

Constructing a Bulletin Board The protocol of Kursawe-Shoup is a broadcast protocol, just like
Rampart, so a bulletin board can be constructed on top of the broadcast protocol with the protocol
described in section 1.
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4.3.8 Kursawe-Shoup Protocol Run

When examining the performance of Kursawe-Shoup, only the optimistic phase is of interest, since in
a run with only honest hosts, the recovery procedure will not be executed.

When a clientc writes a messagem to the bulletin board consisting of serversP, the following steps
are executed:

1. c sends (write , m) to some serverp.

2. p sends (initiate , e, m) to the leader.

3. upon receipt, the leader sends (0-bind, e, m, scnt) to every server.

4. upon receipt, every server sends (1-bind, e, m, s) to every server.

5. upon receiving enough1-bind messages, every server sends (2-bind, e, m, s) to every server.

6. upon receiving enough2-bind messages, every server A-deliversm, computes a signature share
and sends (write-ack, mK) to p.

7. p combines the shares into a single signature and sends (write-ack, mK) to c.

When a clientc reads alll messages, the following steps are executed:

1. c chooses a challenged and sends (read-all, d) to some serverpÎ P.

2. p sends (read-all-request, d) to eachp¢ Î P.

3. eachp¢ Î P computes a signature share overl messages and sends (read-all-reply, signature)
to p.

4. p combines these shares into a single signature and sends (read-all-ack, messages, signature)
to c.

Like in the Rampart protocol, the broadcast protocol is not used in this step, since the servers do
not need to come to an agreement on something. Receivinga

n-1
3 q + 1 signature shares is enough to

construct the threshold signature.

4.3.9 Analysis of Kursawe-Shoup

Resilience

g

n- 1
3
w

Round Complexity
Write One Read Many

7 4
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Message Complexity
Write One Read Many

n+ 2n2 2n

Communication Complexity
Write One Read Many

n+ 2n2 2n+ l

Computational Complexity

Write One Read Many
client 1 1
server 1 1

entry server a

n-1
3 q a

n-1
3 q

4.3.10 Phalanx Protocol Description

The protocol described in [MR98] does not use the broadcast approach taken by Rampart and Kursawe-
Shoup, but instead clients contact a large part of the servers themselves. Each client contacts`(3n+
1)/4p servers when reading or writing a variable. Each set of`(3n+ 1)/4p is aQuorum, so each client
contacts a full quorum when reading or writing a variable.

Clients use timestamps tied to the messages they write, which are stored by servers to determine which
message is most recently written. Each clientc has its separate space of timestamps,Tc, with which a
total order on timestamps can be defined without collisions between the timestamps of clients.

Since each quorum overlaps each other quorum in at least`(2n + 1)/4p other servers, each message
written to a full quorum by a client is available for other clients reading a full quorum through at least
`(2n+ 1)/4p servers. At mostd(n- 1)/4t servers are corrupt, so when at leastd(n- 1)/4+ 1t servers
agree on a message and timestamp, a client knows that this message is indeed written by another
client. From the set of correct messages, a client selects the message with the highest timestamp.

Some servers contacted by a client reading a message might not have the message yet, since the client
writing the message did not contact all servers, but only a single quorum. To eventually stabilize the
message, after reading a message a client writes that message back to all servers that did not have the
message already.

The protocols to read and write a variable by a client:
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upon receivinga message (in, write , v)
repeatsend (request-timestamp) to `(3n+ 1)/4p serversq
until ready-timestamp

upon receivingmessages (timestamp, ti ) from `(3n+ 1)/4p differentqi with valid ti
setready-timestamp
Select timestampt Î Tc such thatt > t i for all i
repeatsend (request-signature, Xv, t\) to `(3n+ 1)/4p serversq
until ready-signature

upon receivingmessages (signature, Xecho, v, t\Ki
) from `(3n+ 1)/4p differentqi with valid signatures

setready-signature
repeatsend (write ){Xecho, v, t\Ki

}i to serverq Î Q Î Q
until ready-write

upon receivingmessages (write-ack) from `(3n+ 1)/4p differentqi
setready-write

upon receivinga message (in, read)
repeatsend (read) to `(3n+ 1)/4p serversq
until ready-read

upon receivingmessages (read-reply, Xvi , ti\_Ki ) from `(3n+ 1)/4p differentqi
setready-read
Choose from theXvi , ti\ value pairs the pairXstored, v, t\ that occurs at least`(n- 1)/4p + 1 times with the highest timestampt,
and send (out, read-reply, v). If no such pair exists, send (out, read-reply, ^).
repeatsend (writeback, Xstored, v, t\ with d(n- 1)/4t + 1 signatures) to serverq Î Q Î Q
until ready-writeback

upon receivingmessages (writeback-reply ) from `(3n+ 1)/4p differentqi
setready-writeback

Figure 6: Phalanx Protocol for Clients

The protocol that servers follow:

upon receivinga message (request-timestamp)
chooset as a timestamp valid for the sender, higher than any previous timestamp
send the message (timestamp, t) to the sender

upon receivinga message (request-signature, Xv, t\)
if no pairXv¢, t\ is signed beforethen

send the message (signature, Xecho, v, t\Ki
) to the sender

upon receivinga message (write , Xv, t\, {Xecho, v, t\}i )
if t > tx and the signatures are valid and from̀(3n+ 1)/4p different serversthen

x := v; tx := t
send (write-ack) to the sender.

upon receivinga message (read)
send (read-reply, Xstored, x, tx\K ) to the sender.

upon receivinga message (writeback, Xstored, v, t\ with d(n- 1)/4t + 1 signatures)
if t > tx then

x := v; tx := t
send (writeback-reply ) to the sender.

Figure 7: Phalanx Protocol for Servers

This protocol does not offer much protection against writers that write the value to only a part of a
quorum. When this happens, a read may or may not return that value, since there exist quorums where
not enough servers received that value. Once a read operation returns that value, the read operation
writes back the value to a full quorum, so from then on, reads return the correct value. This may be
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very inconvenient, as it looks like a vote appearing long after the voting period is closed.

This protocol also does not enable us to optimize the reading of all messages at once. Since each
server does not contain the full set of messages, each set of messages must be read off each server.
There is not even an order on the messages, so operations like “read the the first 1000 messages” are
not possible. The best that can be done is to read all messages stored at one server, and then read all
messages of the second server, and repeat this for3n

4 servers.

4.3.11 Phalanx Protocol Run

When a clientc writes a variable to a quorum of serversQ of size`(3n+ 1)/4p, the following protocol
is executed:

1. c sends (request-timestamp) to every server inQ.

2. Every server inQ sends (reply-timestamp, t) to c.

3. c sends (request-signature, Xv, t\) to every server inQ.

4. Every server inQ sends (reply-signature, Xv, t\K j
) to c.

5. c sends (write , Xv, t\, {Xv, t\K j
}) to every server inQ. The list of signatures in the message is a

list of sizea3n+1
4 q.

6. Every server inQ computes its signature on the pair and sends (write-ack) to c.

To read a variable, the following protocol is executed:

1. c sends (read) to every server inQ.

2. Every server inQ sends (read-reply, Xstored, v, t\K j
) to c.

3. c sends (writeback, Xstored, v, t\ together withd(n-1)/4t+1 signatures) to some of the servers
in Q.

4. The servers that received an update send (writeback-reply ) to c.

To read a set of variables, the previous protocol is executed for each variable.

4.3.12 Analysis of Phalanx

Resilience

g

n- 1
4
w

Round Complexity
Write One Read Many

6 4
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Message Complexity
Write One Read Many

9n
2 l × 3n

Communication Complexity
Write One Read Many
15n
4 +

9n2

16 l × J3n
2 [+

n2

6 +
n
2]N

Note: The communication complexity is very unpredictable, because it depends on the circum-
stances whether many servers need to be updated. The part between square brackets denotes
some value between zero and the indicated value.

Computational Complexity

Write One Read Many

client 9n
4 l × J3n

4 [+
n2

6 +
n
2]N

server 3+ 3n
4 l × J3n

2 [+
n2

6 +
n
2]N

4.3.13 Phalanx+ Protocol Run

When we substitute the signature of theXv, t\ pair by a threshold signature share, we can substitute
the list of signatures in the commit packet with a single threshold signature, thereby reducing the
communication complexity toO(n). The servers now also do not need to compute their own signature
over the value/timestamp pair after they have been written. The amount of time spent on combining
the signature shares into one signature is done by the client, which is an advantage in our setting, as
clients have plenty of time during voting, since they only need to cast a single vote.

4.3.14 Analysis of Phalanx+

Since only the communication complexity and the computational complexity change with respect to
Phalanx, the other criteria have been omitted.

Communication Complexity
Write One Read Many

9n
2 l × J3n

2 [+
n2

6 +
n
2]N

Computational Complexity
Write One Read Many

client 12n
4 l × I3n

2 [+
2n
2 ]M

server 4 l × (1[+2])
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4.3.15 PhalanxII Protocol Description

Like Phalanx, a client accesses quorums when reading or writing a variable. In the protocol described
in [MR97], however, servers also contact each other during writings.

A client writing a message starts the protocol by choosing a timestamp value, and sending anupdate
message to a quorum of servers. Each server in the quorum sends anechomessage containing the
message to each other server in the quorum, and upon receiving theechomessage from each server, it
sends aready message to each server in the quorum. If enough of theseready messages have arrived,
each server sends anupdate-ackmessage to the client, signalling that the write succeeded. Reading
a message is done in exactly the same way as it is done in Phalanx.

Clients follow this protocol to read and write a variable:

upon receivinga message (in, write , v)
Choose a timestampt Î Tc greater than any previously used timestamp.
repeatFix a setQ of servers where|Q| = `(3n+ 1)/4p and send (update, Q, v, t) to every serverq Î Q
until ready-update

upon receivingmessages (update-ack) from qi such thatÇi qi � Q and|Q| = `(3n+ 1)/4p
setready-update

upon receivinga message (in, read)
repeatsend (read) to serverq Î Q where|Q| = `(3n+ 1)/4p
until ready-read

upon receivingmessages (read-reply, Xvi , ti\_Ki ) from qi such thatÇi qi � Q and|Q| = `(3n+ 1)/4p
setready-read
Choose from theXvi , ti\ value pairs the pairXv, t\ that occurs at leastb+ 1 times with the highest timestampt, and send (out,
read-reply, v). If no such pair exists, send (out, read-reply, ^).

Figure 8: PhalanxII Protocol for Clients

Servers follow this protocol:

upon receivinga message (update, Q, v, t) from clientc
if t Î Tc, and if the server has not previously received fromc a message (update, Q¢, v¢, t¢) where eithert¢ = t andv¢ ¹ v or
t¢ > t , then

send (echo, Q, v, t) to eachq Î Q.

upon receivingmessages (echo, Q, v, t) from everyq Î Q
send (ready, Q, v, t) to eachq Î Q.

upon receivingmessages (ready, Q, v, t) from a setB+ of servers, such that|B+ | ³ d(n+ 1)/4t + 1
send (ready, Q, v, t) to eachq Î Q if it has not done so already.

upon receivingmessages (ready, Q, v, t) from a setQ- of servers, such that|Q- | ³ `(2n+ 1)/4p
if t > tx then

x, tx := v, t;
send (update-ack) to c, wherec is taken fromt Î Tc.

upon receivinga message (read)
send (read-reply, Xx, tx\K ) to the sender.

Figure 9: PhalanxII Protocol for Servers

Since, like the other Phalanx protocol, each variable is not stored at every server, reading large sets of
messages has the same disadvantages as in Phalanx.
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4.3.16 PhalanxII Protocol Run

To write a variable to a quorumQ, the following protocol is executed:

1. c sends (update, Q, v, t) to every server inQ.

2. every server inQ sends (echo, Q, v, t) to every server inQ.

3. every server inQ sends (ready, Q, v, t) to every server inQ.

4. every server inQ sends (update-ack, t)o c.

To read a variable from a quorumQ, the following protocol is executed:

1. c sends (read) to every server inQ.

2. Every server inQ sends (read-reply, Xx, tx\Ki
) to c.

To read a set of variables, the previous protocol is executed for each variable.

4.3.17 Analysis of PhalanxII

Resilience

g

n- 1
4
w

Round Complexity
Write One Read Many

4 2

Message Complexity
Write One Read Many

9n2

8 +
3n
2 l × 3n

2

Communication Complexity
Write One Read Many

9n2

8 +
3n
2 l × 3n

2

Computational Complexity
Write One Read Many

client 3n+4
4 l × 3n

4
server 3n

2 l × 1

4.4 Summary of the Analyses

4.4.1 Resilience

With nservers, Rampart(+) and Kursawe-Shoup have resiliences ofe

n-1
3 u, the Phalanx(II)(+) protocols

have resiliences ofen-1
4 u.
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4.4.2 Round Complexity

Rampart Rampart+ Kursawe- Shoup Phalanx Phalanx+ PhalanxII
Write one 7 7 7 6 6 4
Read many 4 4 4 4 4 2

4.4.3 Message Complexity

Writing one variable to or reading many variables from a system ofn servers (where only3n
4 servers

need to be contacted by the quorum-based protocols) induces the following amount of messages:

Rampart Rampart+ Kursawe- Shoup Phalanx Phalanx+ PhalanxII

Write one 4n 4n n+ 2n2 9n
2

9n
2

9n2

8 +
3n
2

Read many 2n 2n 2n l × 3n l × 3n l × 3n
2

4.4.4 Communication Complexity

The communication complexity is a more accurate measure of network traffic than message complex-
ity. Between two messages of different size, but which still both fit in a single ethernet frame (1500
bytes), differences in speed will not be very big, but when a single message contains signatures for
many servers, the size of the message will grow much larger than an ethernet frame, so the differences
in speed will be noticeable.

Rampart Rampart+ Kursawe- Shoup Phalanx Phalanx+ PhalanxII

Write one 3n+ 2n2
+n

3 4n n+ 2n2 9n2

16 +
15n
4

9n
2

9n2

8 +
3n
2

Read many 2n+ l 2n+ l 2n+ l l × J3n
2 B+

2n2

16 +
2n
4 FN l × 3n l × 3n

2

4.4.5 Computational Complexity

Because public key cryptography operations will take most of the computation time, this section only
deals with the number of such operations. A distinction is made between client and server time,
because in our setting, the time that clients spend on calculation does not cost us anything. The client
needs to prove its identity in both protocols, but other methods than public key cryptography might be
used, so this is not taken into consideration.

The following table lists the number of public key operations performed by an average server. This
means that for the Rampart(+) protocols, a non-entry server is taken.

Rampart Rampart+ Kursawe- Shoup Phalanx Phalanx+ PhalanxII
Write one a

2n+1
3 q 2 1 3+ 3n

4 4 3n
2

Read many 1 1 1 l × J3n
2 B+

n2

6 +
n
2FN l × (1[+2]) l × 1
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To give an indication of the latency of a write or read action, the amount of parallelization must be
taken into account. If one server performs all signing and verifying operations, latency will be high,
but if all servers perform an equal amount of those operations, latency will be lower. The following
table lists the maximum number of public key operations performed by any of the servers. For the
Rampart(+) protocols, this will be the entry server, for the Phalanx(II)(+) protocols, this will make no
difference.

Rampart Rampart+ Kursawe- Shoup Phalanx Phalanx+ PhalanxII
Write one a

2n+1
3 q a

4n+2
3 q a

n-1
3 q 3+ 3n

4 4 3n
2

Read many a

2n+1
3 q a

4n+2
3 q a

n-1
3 q l × J3n

2 B+
n2

6 +
n
2FN l × (1[+2]) l × 1

Before we make our decision on what protocol we will use in our bulletin board, we first examine
threshold signatures and describe the adversary in more detail.
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5 Threshold Signatures

Threshold signatures play an important role in the design of the bulletin board. Not only does the
client receive a threshold signature from the bulletin board in acknowledgement of her voting, but the
speed of the core protocol layer of the bulletin board depends heavily on the speed of the threshold
signatures. This chapter describes the requirements on the threshold signature scheme to be used, and
discusses several schemes.

5.1 Preliminaries

Before we delve into the details of threshold signature schemes, we first describe the preliminaries
necessary to understand the rest of this chapter.

5.1.1 The Discrete Logarithm Assumption

The discrete logarithm assumption is the assumption that in some groups it is hard to calculate the
discrete logarithm of a value. This assumption is used in many of the schemes presented in this
chapter.

Discrete Logarithm Assumption The discrete logarithm assumption for groupG states that it is hard
to computex given generatorg and random group elementgx.

Often a subgroup ofZ/ pZ*, orZ*p for short, is used, wherep is a prime such that there exists a prime
q dividing p-1. Then there exists a generatorgof orderq. When the size ofp is around 1024 bits and
the size ofq is 160 bits, the discrete logarithm problem for the cyclic group generated byg is believed
to be hard.

5.1.2 Threshold Secret Sharing Scheme

A secret sharing scheme is used by a dealer to let a number of participants share a secret value, without
letting small groups of parties have any information on the secret. Only until a group large enough
pool their individual shares, they can recover the secret. In a(t, n)-threshold secret sharing scheme, a
dealer distributes shares to then participants, and only groups oft or more participants can recover
the secret. The scheme consists of two algorithms:

Distribution A protocol in which dealerD shares a secrets such that each participantpi obtains a
sharesi , 1 £ i £ n.

Reconstruction A protocol in which secrets is recovered by pooling sharessi , i Î A, |A| ³ t ß A Í
{1,¼, n}.

A simple and elegant(t, n)-threshold secret sharing scheme is proposed by Shamir. The scheme for
sharing a secretsÎ Zp, p a primepower is defined as follows:
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Distribution The dealer picks a random polynomiala(x) ÎR Zp[x] of degree< t satisfyinga(0) = s.
It sends sharesi = a(i) to participantPi for i Î {1,¼, n}.

Reconstruction Any setA of t participants may recover secrets from their shares by Lagrange inter-
polation:

s=â
iÎA

siΛA,i, with ΛA,i = ä

jÎA�{i}

j
j - 1

To see why reconstruction works, recall that the Lagrange interpolation formula for the unique
polynomiala(x) of degree< t passing through the points(i, si), i Î A, is given by

a(x) =â
iÎA

si ä

jÎA�{i}

x- j
j - 1

Since we are interested in the constant terms= a(0) only, we may substitutex with 0.

This scheme does not give any protection against malicious parties contributing incorrect shares, or
the dealer giving out incorrect shares. Feldman introduced a verifiable secret sharing scheme, based on
Shamir’s secret sharing scheme. The idea is to let the dealer broadcast commitments of the coefficients
of the polynomiala(x), which do not reveal information about the polynomial or the secret under the
discrete logarithm assumption, but which enable participants to verify the correctness of their share
and the correctness of shares contributed by other parties.

Let Xg\ denote a cyclic group of large prime ordern with generatorg, and let the discrete logarithm
problem in groupXg\ be hard. Feldman’s VSS is given by:

Distribution The dealer chooses a random polynomial of the form

a(x) = s+ Α1x+µ + Αt-1xt-1,

whereΑ j ÎR Zn, 1 £ j < t . The dealer sends sharessi = a(i) to participantpi in private, for
i Î {1,¼, n}. In addition, the dealer broadcasts commitmentsB j = gΑ j , 0 £ j < t andΑ0 = s.
Upon receipt of sharesi , participantpi verifies its validity by evaluating the following equation:

gsi =

t-1

ä

j=0

Bi j

j .

Reconstruction Each sharesi contributed by participantpi is verified using the previous equation.
The secrets= a(0) is then recovered as in Shamir’s scheme fromt valid shares.

5.1.3 Signature Scheme

A signature scheme presents a way to authenticate information. Given some data, only parties with
access to a certain private key can compute a valid signature on that data, where everyone with the
public key corresponding to the private key can check the validity of the signature.

A signature scheme consists of three algorithms:

Key Generation The algorithm to pick a private and a public key.
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Signature Generation Given a private key, this algorithm computes the signature on a block of data.

Signature Validation Given a signature, a public key and a block of data, the validity of the signature
on the data can be verified with the signature verification algorithm.

An example of a signature scheme which we will use in this project is Schnorr’s signature scheme.
Let Xg\ denote a cyclic group of large prime ordern with generatorg, and let the discrete logarithm
problem in groupXg\ be hard. Furthermore, letH(×) denote a hash function such thatH(m) denotes
the hash value of messagem. Schnorr’s signature scheme is given by:

Key Generation Let x ÎR Zn be the private key, and leth = gr be the corresponding public key.

Signature Generation On input of a messagem and a private keyx, chooseu ÎR Zn, seta = gu,
c = H(a, m), andr = u+ xc. The signature onm is the pair(c, r).

Signature Validation On input of a messagem, a pair(c, r), and a public keyh, accept(c, r) as a
signature onm if and only if c = H(grh-c, m) holds.

For short, a Schnorr signature on messagem in group Xg\ under private keyx is the value pair
(H(m, gr ), r + H(m, gr )x) with r ÎR Zn, n the order ofXg\.

Under the discrete logarithm assumption, and in the random oracle model, Schnorr’s signature scheme
is secure.

5.1.4 Threshold Signature Scheme

Like a normal signature scheme, a threshold signature scheme is used to authenticate data. The
difference however, is that out of a group of parties, several parties have to cooperate to generate
a valid signature. In a(t, n)-threshold signature scheme, the private key is shared betweenn parties
so thatt parties can jointly produce valid signatures. The Signature Generation algorithm is now a
distributed protocol, and we can split the signature generation protocol into two steps: signature share
generation and signature combination. Therefore, a threshold signature scheme consists of these
algorithms:

Key Generation This is a distributed protocol in which all parties obtain the same public key, and
each party obtains their own share of the private key.

Signature Share GenerationGiven a private key share, this algorithm computes the signature share
on a block of data.

Signature Share Combination Givent signature shares obtained from different parties, these shares
are combined into one signature.

Signature Validation Given a signature, a public key and a block of data, the validity of the signature
on the data can be verified with the signature verification algorithm.

In some threshold signature schemes, the signature share generation may be a distributed protocol, in
which each party has to communicate with other parties in order to generate signature shares. These
threshold signature schemes areinteractive.
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5.2 Requirements and Assumptions

Each party of the bulletin board generates its own public key pair. The public key of each party must
be available to all parties of the bulletin board, while the private keys must remain secret. These
public keys are used for protecting the communication channels between the parties, and may be used
directly by the threshold signature scheme.

The key generation protocol of the threshold signature scheme must be completely distributed. The
goal of this project is to provide a bulletin board where there is no single point of failure, so there
cannot be a single trusted party that generates the keys.

The performance of the threshold signature scheme is very important. The echo multicast protocol,
the core protocol of the bulletin board, uses a threshold signature on each message that is multicast.
Ideally, a party that wishes to create a signature on a message sends that message to all other parties,
receives a signature share from each party and combines those shares into a single signature. Such
a scheme is non-interactive: parties that create a signature share do not need to communicate with
other parties. If a non-interactive threshold signature scheme produces signatures of constant size,
this signature scheme will (most likely) give rise to a complexity linear in the number of participants
when broadcasting a message: each message is sentn times, generatingn threshold signature shares
requiresn computations, and combining those shares requires a computation linear inn. Finally,
confirming the message by sending the threshold signature to each party costs time linear inn. The
threshold signature scheme used in [Rei94], is non-interactive, but produces signatures of size linear
in n. Therefore, the last step in the protocol takesO(n2

) time. The main purpose of this chapter is to
improve on that bound.

5.3 A Trivial Threshold Signature Scheme

First, we will have a look at the threshold signature scheme used in [Rei94].

Key Generation There is no key generation protocol, the existing public keys of each party are suf-
ficient to create a threshold signature.

Signature Share GenerationA party generates its threshold signature share on a message by signing
that messages with its own private key.

Share Combination To combine the signature shares into one signature, a party waits until it has
received exactly the thresholdt shares, and creates a list of pairs of the signature share and its
signer. This list is the threshold signature.

Signature Validation To verify that the list obtained in the previous step is a valid threshold signa-
ture, check that its size is exactly the thresholdt, check that no party has submitted two signature
shares, and verify each signature share.

Since this scheme does not have a key generation, it meets our requirements on the key generation.
The size of a threshold signature, however, is linear in the number of participants. We would like to
come up with a smarter scheme in which signature shares are combined into one signature of constant
size.
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5.4 Pedersen’s Threshold Signature Scheme

Pedersen’s threshold signature scheme [Ped91] is based on Schnorr signatures [Sch89] and Feldman’s
verifiable secret sharing scheme (VSSS) [Fel87]. See [GJKR03] for security proofs.

Recall that a Schnorr signature on messagemwith private keyx in groupXg\ is (H(m, gr ), r+H(m, gr )x),
wherer ÎR Zn andH(×) is a hash function. A threshold signature scheme is easily constructed from
this signature scheme.

Let each partypi have a private key sharexi whereÚi xi = x = ÚiÎA xiΛA,i, whereΛA,i = Ú jÎA�{i}
j

j-i
for each subsetA of sizet, and lety = gx be public to every party. Feldman’s verifiable secret sharing
scheme is used to generate suchxi : Each party runs Feldman’s threshold secret sharing scheme with
itself as dealer, and computes itsxi as the sum of all received shares. Since in Feldman’s VSS scheme
commitments of the coefficients of the polynomialgΑi j are broadcast, and sincexi = Αi0, the public
keyy is computed by taking the power of all broadcastgΑi0.

To generate a signature on messagem, a distributed secretr is generated to compute the Schnorr
signature(H(m, gr ), r + H(m, gr )x). Denote each party’s share ofr by r i . The value of eachr i is
generated in the same way as the value ofxi , and after generation each party computes the value of
gr similar to the value ofy = gx. Each party computes its signature share as(c, si) = (H(m, gr ), ri +

H(m, gr )xi). Combiningt shares, the signature on messagem can be computed as(c,ÚiÎA siΛA,i).

To summarize:

Key Generation Each participant runs Feldman’s VSSS as dealer to share a secret. These shares are
used to compute each party’s secret key.

Signature Share GenerationEach party runs Feldman’s VSSS as dealer again, to generate a global
random valuer. Then, each party computes its signature share as(H(m, gr ), ri + H(m, gr )xi).

Signature Combination From t signature shares from partiesi Î A, the signature can be computed
as(c,ÚiÎA siΛA,i).

Signature Validation The signature is a valid Schnorr signature which can be validated by the pub-
licly available valuegx.

The key generation protocol meets our requirements. It is efficient, and fully distributed. The signature
share generation, however, is not efficient enough. Though it has the same complexity as the key
distribution, our requirements are tighter here. Since each party runs as a dealer in Feldman’s VSSS,
each party sends messages to all other parties. This gives rise to at least a bit complexity ofΩ(n2

).
While this is efficient enough for key generation, such a scheme would not give our bulletin board the
speed increase we are looking for. The trivial scheme presented in the previous section also has bit
complexity ofO(n2

).

5.5 Shoup’s Threshold Signature Scheme

Pedersen’s threshold signature scheme is not efficient enough for our purposes, because it is inter-
active. In fact, every threshold signature scheme based on discrete logarithms appears to be inter-
active, since the joint generation of the random value needed for these schemes appears to require
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interaction. The RSA setting, however, does not need such a randomization, and Shoup describes
a threshold signature schemes based on RSA signatures [Sho00]. The generation of threshold sig-
natures is non-interactive. This scheme requires a modulus where the prime factors are of special
form, which presents difficulties in jointly generating the primes. [DK00] proposes modifications to
[Sho00], which removes the requirements on the primes, so that [FMY98] can be used as the threshold
key generation protocol. The threshold signature scheme proposed in [Sho00] with the modifications
of [DK00] meets our requirements: The threshold key generation [FMY98] is fully distributed; the
generation of each signature share is done in constant time and does not need interaction; and the
combination of enough signature shares results in a signature of constant size in linear time. How-
ever, jointly generating an RSA modulus is far from trivial: Although [FMY98] proposes such a
protocol, it is quite complicated and the number of protocol rounds is quadratic in the number of bits
of the modulus. We would therefore rather have another threshold signatures scheme, where a simpler
threshold key generation protocol suffices.

5.6 Adapted Version of Pedersen’s Threshold Signature Scheme

In this section, we propose a modified version of Pedersen’s threshold signature scheme. This scheme,
however, provides linear bit complexity only in the optimistic case. Since we study the performance
of the bulletin board in the absence of faulty parties, this is tolerable. It uses the same key generation
protocol as used in Pedersen’s version of the scheme. Basically, we ask the parties to generate a
random valuer i , and returngr i . We then selectt of these values, and computegr

= ÕiÎA(g
r i )
ΛA,i. We

present the parties inA with gr and ask them to compute their signature share using this value. If they
return a signature share, we can compute the signature as normal.

This protocol fails if a corrupt party does return agr i , but afterwards does not return a signature share.
After some timeout, we can either select a different set not containing the faulty party, or we can revert
to another threshold signature scheme, which is more costly in terms of network traffic.

If no corrupt parties disturb the protocol, we have a protocol with a bit complexity ofn, that produces
signatures of constant size, and that uses an acceptable key generation protocol.

5.7 Threshold Signatures Based on Gap Diffie-Hellman Groups

Recall the following problems, informally stated:

Computational Diffie-Hellman (CDH) problem Givengx andgy, computegxy.

Decision Diffie-Hellman (DDH) problem Givengx, gy, andgz, determine ifxy= z.

In the usual modular arithmetic inZq, both problems are believed to be hard. There are certain
groups, however, that have the property that the CDH problem is believed to be hard, while the DDH
problem is actually easy to solve. These are the Gap Diffie-Hellman groups. Such groups give rise to
a signature scheme [BLS01]. LetXg\ be a group, and letH(×) be a hash function that hashes messages
onto the groupXg\.

Key Generation Select a private keyx ÎR Xg\, and compute public keyy = gx.
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Signature Generation Given a messagem, compute the signatures= H(m)x.

Signature Validation Given a signatures on a messagem, validate the signature by checking thatg,
y, H(m) ands are a valid Diffie-Hellman tuple.

Since no shared random secret is needed in the signature generation, this scheme is easily converted
into a threshold signature scheme [Bol02].

Distributed Key Generation As with Pedersen’s Threshold Signature Scheme, Each participant runs
Feldman’s VSSS as dealer to share a secret. This results in each partypi having axi , and a global
y = gx wherex is determined by eacht out ofn parties.

Signature Share GenerationGiven a messagem, compute the signaturesi = H(m)xi .

Signature Share Combination From t valid sharessi Î A, compute the threshold signatures =
ÕiÎA siΛA,i.

Signature Validation Given a signatures on a messagem, validate the signature by checking thaty,
H(m) ands are a valid Diffie-Hellman tuple.

We now have a threshold signature scheme that has a simple key generation, and efficient generation
and combination algorithms. That leaves us with only one problem: how do we find a Gap Diffie-
Hellman group? Without going into too much detail, we remark that bilinear maps on elliptic curves
such as the Weil and the Tate pairing give rise to Gap Diffie-Hellman groups. A bilinear map is a
binary function with the following property:

P(gax, gby
) = P(gx, gby

)
a
= P(gax, gy

)
b
= P(gx, gy

)
ab

SinceP(gx, gy
) = P(g, g)xy

= P(g, gxy
), we can decide that given a tuple(gx, gy, gz

) if z = xy holds by
checking ifP(gx, gy

) = P(g, gz
) holds.

5.8 Conclusion

The trivial signature scheme is very easy to implement, but does not give the best performance.
Threshold signature schemes based on RSA signatures have a threshold RSA modulus generation
protocol that is generally too difficult and inefficient to implement. Elliptic curves give rise to good
performance, but implementing elliptic curves may provide difficulties. The adapted version of Ped-
ersen’s threshold signature scheme also gives good performance in the optimistic case, and is easily
implemented.

Only the trivial signature scheme does not need the bulletin board in the key generation protocol.
This signature scheme will therefore be used at least in the setup phase of the bulletin board. After the
setup phase, we may switch to a different signature scheme and both the adapted version of Pedersen’s
threshold signature scheme, and the threshold signature scheme based on elliptic curves meet our
requirements. As we will see in a later chapter, the threshold signature scheme based on elliptic
curves is much easier to incorporate in our protocols.
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6 Attack Models

The protocols work under different assumptions on the adversary. In this chapter, we examine the
attack model of the Kursawe-Shoup protocol and the Rampart protocol. Before we do this, however,
we outline the specifications imposed by an election scheme.

6.1 The Context

In order to determine what kinds of attack our voting system must be able to withstand, we first
examine what a proper election looks like. Once the requirements are known, we can point out ways
to disrupt the election, and define different kinds of adversaries.

An election is held on a preselected day. There is a certain period in that day during which people
can cast their votes. We assume that every voter can identify himself as a legitimate voter, and that
each person that identifies himself as a voter is indeed a legitimate voter. Each voter must have the
opportunity to cast his vote, but each voter can vote at most once. Each voter must be convinced
that his vote is counted correctly, and that his vote is kept confidential. At the end of the day, when
the election period is over, the votes must be tallied. The result of that tally must be that the exact
number of votes cast for each candidate is known. The result must also be trusted by being verifiable,
and in case of malfunctions, be recoverable. The outcome of the election must be made public in a
reasonable amount of time.

6.2 Security Properties

We distinguish two probably, but not necessarily, disjoint groups of adversaries. The first group wants
to change the outcome of the election. The second group wants to sabotage the election.

The first group consists of persons that favor one of the candidates, and they may try to prevent certain
people from voting, change votes, or interfere with the tallies. This group is very well-funded, and
capable of bribing persons. An attack by this group is successful if the outcome of the election is
shifted in favor of the attackers. In order to achieve this, the attackers have to corrupt parties, and this
will be done before the election starts. We can therefore consider this group of attackers to be a static
adversary. This group targets theIntegrityof the bulletin board.

The second group might consist of terrorists, anarchists or just plain script kiddies. The goal is to
disrupt the election by mounting denial of service attacks in order to prevent access to servers. This
can be done by icmp flooding, or by impersonating voters and having servers devote their entire cpu
time to calculations only to find that these were not necessary. An attack by this group is successful if
at any point during the election period, people were unable to cast their vote and receive their receipt
in a timely manner. The attackers can choose the parties on which they mount their denial of service
attacks. We can therefore consider this group of attackers to be an adaptive adversary, but limited in
their attacks. This group targets theRobustnessof the bulletin board.

Privacy is a major requirement in election schemes. Our bulletin board, however, does nothing to
protect the privacy of voters since the election scheme built on top of the bulletin board handles
privacy.
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6.3 The Adversary in Kursawe-Shoup

The parties participating in the broadcast channel specified by Kursawe and Shoup in [KS01] com-
municate over an insecure, asynchronous network. The adversary may corrupt at mostt of the parties,
wheret < en-1

3 u. Furthermore, no assumptions are made about the network, which is left under the
complete control of the adversary: the network is the adversary. Parties send their message to the
adversary, and the adversary may choose to deliver messages faithfully, alter messages, or just discard
them. When the adversary decides to cut off a party from the network, all messages for that party
remain queued until the adversary lets them pass.

When facing an adversary, the adversary succeeds in compromising the integrity or robustness of the
bulletin board when they corrupt or affect at mosten-1

3 u parties. When one of the parties is being
cut off the network, the other parties will queue all messages for that party. When dealing with long
lasting outages, this might become a problem.

6.4 The Adversary in Rampart

The Rampart protocol described in [Rei94] builds on a secure membership protocol. Any party that
is found to be faulty, is removed from the broadcast channel, whether this party is dishonest or just
unresponsive. The protocol allows for parties to be accepted into the broadcast channel while run-
ning, so formerly unresponsive parties can re-enter the group. The major difference in attack model
between this protocol and the [KS01] protocol, is that in this protocol if the network is the adversary,
the adversary can simply remove honest parties by blocking communication, and then ensure that
the corrupted parties are the majority of parties in the broadcast channel. Therefore, an application
considering this protocol must ensure that the adversary cannot entirely control the network.

As with the previous protocol, at mosten-1
3 u parties may be affected or corrupted by the adversary.

In contrast with the previous protocol, however, when a party is being cut off the network, messages
are not kept in a queue. Rather, when the party re-joins the group, it will only receive messages from
then on. This causes some servers to have missed a number of votes, but as each message is delivered
atomically, each message may be numbered so that each server exactly knows what windows of votes
it is missing. A protocol can be built on top of this protocol to synchronize the missing votes.

6.5 Hackers

There exists another adversary, and this adversary is very different from the adversaries discussed
above. Hackers try to gain access to the machines running the bulletin board. Once they have com-
promised one machine, they can use the same tactic to gain access to the other machines, since they are
likely similar and have the same weaknesses. This is different from the adversaries discussed above,
because in this case, there are no or very small costs to compromise more machines after the first
machine has been compromised. Therefore, it is advisable that the bulletin board is ran on different
platforms, so that if a hacker compromised one particular platform, the number of machines com-
promised stays below the resilience of the bulletin board. For example, if the bulletin board consists
of 28 servers, spread evenly over 4 platforms like machines running Windows XP, Linux, SGI IRIX
and MacOS, the bulletin board is resilient against the corruption of 9 parties. If a hacker hacks all
machines running Windows, and two administrators are bribed, then the bulletin board is still secure.
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7 The Bulletin Board Core Protocol

We are now ready to select one of the above described protocols, and use that protocol to implement
our bulletin board.

First we note that three of our protocols have a resilience ofe

n-1
3 u, and the three other protocols have

a resilience ofen-1
4 u. This is not significant enough to justify a choice.

Communication and computational complexity have the greatest influence on throughput.

• If we look at the communication complexity, and examine the Write One operation, we notice
that Rampart+ and Phalanx+ haveO(n) complexity and the other protocols haveO(n2

) com-
plexity.

• If we read many variables, sayx, then Rampart, Rampart+, and Kursawe-Shoup have a com-
munication complexity ofO(n + l ), while the Phalanx protocols have a complexity of at least
O(n × x).

• The computational complexity of writing one variable isO(1) in the Rampart+, Kursawe-Shoup,
and Phalanx+ protocols, andO(n) in the other protocols

• The computational complexity of reading many variables has a complexity ofO(1) in the Ram-
part, Rampart+, and Kursawe-Shoup protocols, while it has complexity of at leastO(l ) in the
Phalanx protocols.

In conclusion, the communication and computational complexity of each operation in Rampart+ is
asymptotically never worse than in any other protocol. Each other protocol has an operation that has
a worse complexity than in Rampart+.

There are more arguments for choosing Rampart above the other protocols:

• As seen in the previous chapter, the attack model assumed in Rampart more closely matches
the attack model of an election than the attack model of Kursawe-Shoup.

• In the Phalanx protocols, messages “eventually stabilize”, meaning that if a voter writes his vote
to less parties than he should, for example ton-1

4 + 1 parties instead of 3n-1
4 parties, the vote

remains hidden until a correct reader chooses thosen-1
4 + 1 parties to read the vote from. This

means that after closing the election, suddenly new votes may appear. Of course, the parties
may choose to synchronize right after closing the election, but that boils down to implementing
a broadcast protocol like Rampart or Kursawe-Shoup.

We therefore chooseRampart+, the version of Rampart using threshold signatures, as the core pro-
tocol of our bulletin board.
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8 Formal Specifications of the Protocols

We have selected the Rampart protocol as the basis of our bulletin board. We already described how
a multicast protocol can be used to implement a bulletin board, but before we can start coding, we
need proper descriptions of the protocols. The bulletin board consists of a secure group membership
protocol, on top of which the three layers of Rampart are built, and again on top of which several
layers of other protocols are built. Some of these protocols have clear descriptions, but others are
described really vaguely, and still others are invented specifically for the bulletin board and have thus
not been described at all. To acquire a clear and consistent specification from which the code can be
derived, in this chapter we introduce a pseudo code and describe all needed protocols with it.

The protocols also have another purpose: while the specifications of Rampart in [Rei94] and of the
secure group membership protocol in [Rei96] are probably well-suited for proofs of correctness, they
are not much good as a guide for an implementation. The formal specifications given in this chapter
form a bridge between the specifications of [Rei94] and [Rei96] and an implementation, by staying on
the specification level but being far more explicit in details. This gives us a set of specifications that
we can compare to the original specifications in order to verify the correctness, but these specifications
also give a firm lead for the code.

8.1 Notation

In this section, we introduce a formalism used to describe our protocols. The most important thing
protocols do is sending messages. Therefore, we start with describing what messages look like in our
formalism, and we introduce means to send and receive them. We also describe how timers work.
These timers are often needed in protocols to handle unresponsive parties. Finally, we describe how
timeouts are specified.

8.1.1 Messages

We refine the notation introduced in section 4.3. Since the protocols discussed in this chapter are
described in much greater detail, we need better descriptions of how messages and timers work.

The protocols communicate with each other using messages. The notation used in the syntax of these
messages resembles the notation in [CKPS01, sect. 2.1.2]. We distinguish two different types of
messages: horizontal messages and vertical messages. Horizontal messages travel from one party
running a protocol to another party running the same protocol. Vertical messages travel from one
protocol ran by a party to another protocol ran by the same party, i.e. another layer on the protocol
stack.

Messages are of the form (type, parameters), for example (init , x, m). If the type is notin or out, it
is a horizontal message that will be sent over the network. These types of messages are assumed to
be sent in a reliable and confidential way, where the order of the messages are preserved. In practice,
another protocol layer will take care of this. If its type isin or out, it is a vertical message which is
sent between protocol layers of one party.

Protocols are described in an event-driven way. A protocol receives a vertical message with the clause
‘ON RECEIVING MESSAGE(in, type, parameters)’, and a horizontal message with the clause ‘ON RE-
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CEIVING MESSAGE(type, parameters)FROM source’. A party sends a vertical message by executing
‘send (out, type, parameters)’, thereby triggering the ON RECEIVING clauses of the other protocol
layer. A horizontal message may be sent by executing ‘send (type, parameters) todestination’. Once
this message is received by the other party, it triggers the appropriate ON RECEIVING clause.

When a received message contains a signature, its validity is implicitly verified. If the signature does
not match, the message is discarded and the contents of the ON RECEIVING MESSAGEclause is not
executed. When a received message contains bound parameters, those parameters are first treated as
unbound and compared to the other variables with the same name. If they are not equal, the message
is discarded and the contents of the ON RECEIVING MESSAGEclause is not executed.

8.1.2 Timers

In addition to responding to incoming messages, some protocols need to take certain actions when
after a certain period theydid not receive a message. To facilitate this, two additional constructions
are defined. The first one is the PERIODICALLY clause, which is triggered regularly. The second one
is the ON TIMER clause. This clause is identified by a name and a number of parameters. After a short
time after the protocol executesstart timer (identifier , parameters), the corresponding ON TIMER

clause is triggered once with the given parameters. If the protocol decides that the timer does not
need to be triggered anymore, it can executestop timer (identifier , parameters) to prevent the ON

TIMER clause from triggering. If the clause is already triggered, or if the timer has not been started,
that command has no effect.

8.1.3 Signed Data

Data between angle brackets followed by a subscript expression represents the signature of data. For
instance,Xx, ack, y\z is the signature obtained by signing the variablesx andy and the identifierack
with private keyz. Note that in most other publications, this would imply thatx, ack andy are sent
too. In this document, only the signature is sent. It is often not necessary to send all fields, and the
protocols in this document must have enough detail to specify which fields are sent and which fields
are not send.

Each datablock shall contain an identifier in boldface, to prevent a signature to be used in a different
place than in which it was intended. Contrary to the order of the arguments in the notationXx, ack,
y\z, which has the intuitive meaning of the signature of ‘x gives an acknowledgement abouty’, an
implementation must always put this identifier in front of variables, to prevent type-error attacks.
There may be other ways to prevent from these kind of attacks, but moving a static identifier to the
front of the signature is very simple and highly effective.

8.2 Composition of the Protocols

Rampart is composed of several layers of protocols. Before we describe each layer, we give a brief
outline what each protocol’s function is, and how the protocols cooperate.

Rampart uses aSecure Group Membershipprotocol. Our bulletin board consists of several servers,
some of which may be unresponsive, some of which may even be corrupt. The protocol layers are
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created in such a way that corrupt parties cannot destroy the integrity of the bulletin board, so corrupt
parties may at most be unresponsive. The secure group membership protocol deals with unresponsive
parties, by maintaining agroup viewof currently responsive parties. At first, each party is in the active
group view. If a party becomes unresponsive, other parties may vote it out of the current group view.
The secure group membership protocol then composes a new group view, where the unresponsive
party is expelled. The other protocols then only deal with this new group, and are therefore able to
continue making progress.

Rampart’s multicast functionality is composed of three layers: theEcho Multicastprotocol, theReli-
able Multicastprotocol, and theAtomic Multicastprotocol. The echo multicast protocol is the lowest
protocol, and does most of the work of the multicast, ensuring that each multicast message is received
as the same message at every (honest) party. If a message is received by the echo multicast protocol
at an honest party, that party has the assurance that every honest party will (eventually) receive that
same message. These messages, however, are sent to one specific group view. If one of the parties
becomes unresponsive, a change in the group view has to occur. The messages sent to the old group
view have to be delivered before messages are delivered to the new group view. The reliable multicast
protocol ensures just that. When a change in the group view occurs, the reliable multicast protocol
queues new multicast messages, and first ends all messages sent in the previous group view. After
closing that group view, the queued messages may be sent for the new group view.

The echo multicast and reliable multicast protocols ensure that the order in which messages are re-
ceived from a particular party is the same as the order in which they were sent. Those protocols,
however, do nothing to ensure that two messages sent by two different parties are received in the same
order by every party. The atomic multicast protocol ensures that the order in which messages are
received is the same at each party.

Even atomic multicast does not suffice for our bulletin board. Parties may have been removed from a
group view to rejoin later. Such parties have missed a set of messages. An extra layer is introduced
with which rejoining parties can safely recover each message it did not receive yet. This is theSyn-
chronized Atomic Multicastprotocol. On top of this protocol, we can easily build our bulletin board.
Or, we choose to build our key generation on top of the synchronized atomic multicast protocol.
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Figure 10: The Protocol Layers

The picture displays how the various protocols interact. The secure group membership protocol is
the lowest protocol, which interacts with the network. The echo multicast protocol uses the group
membership protocol, etc. On top of the synchronized multicast protocol, our bulletin board protocol
is built.

8.3 The Group Membership Protocol

The protocol described in this section is detailed in [Rei96]. A secure group membership protocol is
needed in the implementation of the various broadcast protocols in Rampart [Rei94]. This protocol
ensures that in a set of partiesP, the honest parties agree on the subgroup ofP consisting of currently
operational and correct parties. To accomplish this, each partypi has a viewV

x
i which consists of the

currently operational parties. This view changes over time, so anx is used to denote thex-th view.
Initially, each party is in viewV0

i , which will be configured manually by an administrator. When party
pi creates its viewVx

i , viewV
x
i is said to bedefined, and isundefinedotherwise. The protocol ensures

that allx-th views at each correct party are the same. Therefore, the subscripti is usually omitted:Vx

denotes thex-th view.

Members of the current view can remove other members or invite new parties into the group. When,
in view Vx, a partypi Î Vx discovers that partyp j Î Vx is faulty, faulty(p j ) is said to hold atpi .
Otherwise,correct(p j ) holds atpi .

One assumption is placed on the parties: We assume that at least`(2|P| + 1)/3p members ofP are

44



correct, so that at mostd(|P| - 1)/3t parties are corrupted.

The protocol ensures that the following four predicates hold:

Uniqueness If pi andp j are correct andVx
i andV

x
j are defined, thenVx

i = V
x
j .

Validity If pi is correct andVx
i is defined, thenpi Î V

x
i and for all correctp j Î V

x
i it holds thatVx

j is
(eventually) defined.

Integrity If pi Î Vx
�Vx+1, thenfaulty(pi) held at some correctp j Î Vx, and if pi Î Vx+1

�Vx, then
correct(pi) held at some correctp j Î Vx.

Liveness If there is a correctpi Î Vx such thatcorrect(pi) holds at̀ (2|Vx
| +1)/3p correct members of

Vx, and a processp j Î Vx or a processpk Ï Vx such thatfaulty(p j ) holds atd(|Vx
|-1)/3t correct

members ofVx or correct(pk) holds atd(|Vx
|-1)/3t correct members ofVx, then eventuallyVx+1

is defined.

8.3.1 Informal Description

A total order is assumed to exist on the parties. The party with the highest rank acts as the manager,
who is responsible for proposing updates to the group view. When a party suspects another party of
being faulty, it reports this to the manager. Once the manager receivesd(|Vx

| - 1)/3t + 1 requests to
remove partyp, it knows that at least one honest party accusesp of being faulty. The manager then
sends asuggestmessage to every party, upon which every honest party responds with aack message.
When the manager receives`(2|Vx

| + 1)/3p ack messages, it sends aproposal message to everyone.
Every party responds with aready message, and after receiving`(2|Vx

| + 1)/3p ready messages the
manager sends acommit message, upon which the new view is formed.

If the manager is accused of being faulty, a party sends adeputy message to the party with the highest
rank, whom is not accused of being faulty. When a party receivesd(|Vx

| - 1)/3t+ 1 deputy messages,
it sends aquery message to every party, thereby seizing the manager role. Each party responds to
this with a last message, possibly containing the last proposal sent by the previous manager. The
deputy sends asuggest-lastmessage, upon which each party forms the new view by removing the
party suggested by the party with the lowest rank, higher than the deputy.

A cheating manager may try to convince one party of one update to the groupview, while having
another party forming another view. Before a manager can propose a party to be removed, it has to
accumulated(|Vx

| - 1)/3t + 1 signed requests to remove some partyp, so at least one honest party
wantsp removed. The manager then forms a proposal, by accumulating`(2|Vx

| + 1)/3p signedack
responses. A variable ProtocolState is used in such a way that once a party signed aack response
for some partyp intended to be used by a manager or deputypd, it refuses to signack responses for
other parties. If that party is requested to sign aack response for another partyp¢ by another deputy,
it even refuses to do so when the rank ofp¢ is higher than the rank ofp. Since each honest party only
supports one proposal by signing only oneack response, and since a proposal needs`(2|Vx

| + 1)/3p of
these responses, a manager can form at most one proposal.

It may seem that if a party receives a correctproposal message, it has enough information to update
the current view. Only one correctproposal message can be formed, and if that party broadcasts
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this message to every other party, and every other party broadcasts it again, ensuring that each party
receives theproposal. However, this does not work, since before theproposalmessage would arive at
every party, a deputy may be chosen to remove the manager. Then, the situation could occur that some
parties remove the manager, and other parties follow theproposalmessage. To prevent this situation,
the manager first sends aproposal, receives theready responses from the other parties, and combines
thoseready messages into acommit message. Now if some party receives acommit message while
a deputy tries to remove the faulty manager, the deputy receives theproposalmessage with itsquery
message, and then follows thatproposal instead of removing the manager. Agreement of the group
views is now maintained.

8.3.2 Interface of the Protocol

The protocol provides a set of group viewsVx for x ³ 1, where eitherVx is undefined orVx
Í P.

Let Vx be the current group view.
When a partypi Î Vx suspects another partyp j Î Vx to be faulty, it sends

(in, faulty , p j , x)

When a partypi Î Vx wants another partyp j Ï Vx to join the group, it sends

(in, correct, p j , x)

When a new group viewVx+1, is delivered,x is increased such thatVx is the new group view. The
following message is received

(out, view, Vx)

This message is received even when the party executing this message is removed from the group.
When the party becomes a group member again, the according viewVx is sent with (out, view, Vx).

A message not defined in the original paper, but needed by the [Rei94] protocol, is a message to
enable additions to viewx. When no correct partyÎ Vx sends (in, adds, x) beforeVx+1 is generated,
Vx
� Vx+1.

(in, adds, x)

This message is used in the reliable multicast protocol, to prevent that no progress is made when
there are several corrupt parties. If several corrupt parties need to be removed in order to output
an r-mcast of the next view, additions to the current view are put on hold until that view is really
delivered. Otherwise, two corrupt parties could be added and removed over and over again without
making progress.

8.3.3 The Secure Group Membership Protocol SGM

The protocol presented in figures 12, 13, and 14 is a translation of the protocol presented in appendix A
of [Rei96]. Although the latter protocol has a formal representation, with the notation used in [Rei96]
it is not easy to make a nice translation to an implementation. An implementation acts on received
messages, it does not check large predicates in a loop, like the specification in [Rei96] does. Rather,
it executes statements as a consequence of incoming messages. There is still a correspondence with
the original protocol: When a certain block of statements is executed, the corresponding predicate
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of the protocol must hold, and when a predicate of the protocol is true, the corresponding block of
statements must be executed. Therefore, the protocol is adapted so that it is message-driven: instead
of evaluating predicates, it updates its state and sends messages when it receives a message.

We show a small part of the protocol described in [Rei96], with which we illustrate how the whole
protocol is translated:

protocolstate¬ 3|Vx
i |

last proposal¬ Æ
repeat
[]$p((pÎ V

x
i ß f aulty(p)) Þ (pÏ V

x
i ß correct(p)))

: sendXnotify p\Ki
to mgr

[]$pÎ V
x
i (p ¹ mgrß "q Î V

x
i (rank(q) > rank(p) Þ f aulty(q)))

: sendXdeputyp\Ki
to p

[]$pÎ V
x
i , PÍ V

x
i (rcvd(p,Xquery{Xdeputyp\K j

}p jÎP\) ß 3rank(p) < protocolstateß |P| = d(|V
x
i | - 1)/3t + 1)

: protocolstate¬ 3rank(p)
sendXlast plast proposal\Ki

to p

[]$p, PÍ V
x
i (rcvd(mgr,Xsuggest{Xnotify p\K j

}p jÎP\)ß

3rank(mgr) - 1 < protocolstateß |P| = d(|V
x
i | - 1)/3t + 1)

: protocolstate¬ 3rank(mgr) - 1
sendXackmgrp\Ki

to mgr

Figure 11: Part of the original Group Membership Protocol

It is not difficult to argue that the translation from the protocol of [Rei96] to the protocol presented
in figures 12, 13, and 14 is valid: the predicates in the protocol of [Rei96] almost always contain
some form ofrcvd(p,¼ ), which correspond to our UPON RECEIVING MESSAGEclauses. This
translates directly to a message-driven approach. This is not enough for correctness: it also has to
be checked that no predicate becomes true by other events. Luckily, this is the case, as can easily
be verified manually. The only non-trivial manner in which predicates in [Rei96] can become true is
by the variable ProtocolState. ProtocolState is monotonically decreasing, and in the predicates it is
only used in the formx < ProtocolState, so once a predicate is false because the part containing the
comparison to ProtocolState is false, the predicate cannot become true anymore. We therefore do not
need to check if clauses need to be executed when we change the value of ProtocolState.

The SGM-View Protocol The Secure Group Membership protocol uses the SGM-View protocol as
a subprotocol to manage one particular view. SGM starts SGM-View withVx as parameter. If the
current view is changed, SGM-View exits and returns viewVx+1 to the Secure Group Membership
protocol, which starts this View protocol with viewVx+1 as a parameter.

Each signature created in this protocol is assumed to include the view numberx. For brevity, thisx is
omitted.

In the following protocol, the following conventions are used:pt (this party) is the party executing
the protocol,pc (change party) is the party on which a change request is made,ps (sender party) is
the sender of a message, andpm (party manager) is the party with the manager role.
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Protocol SGM-View (member role) for party pt

UPON RECEIVING MESSAGE(in, open, SGM-View, Vx):
LastProposal:= Æ
V := Vx

pm := pÎ V whereØ($q Î V ::rank(q) >rank(p))
ProtocolState:= 3|V |
MDState:= begin

UPON RECEIVING MESSAGE(in, faulty , pc):
send (notify , pc, Xpt , notify , pc\Kt

) to pm

start timer (remove-manager)
if Ø$pÎ V : rank(p) < rank(pc) : correct(p) then

Let pd Î V such thatcorrect(pd) ß ("pi Î V : rank(pi ) > rank(pd) : faulty(pi ))

send (deputy, Xdeputy, pd\Kt
) to pd

ON TIMEOUT (remove-manager)
Let pd Î V such thatcorrect(pd) ß ("pi Î V : rank(pi ) > rank(pd) : faulty(pi ))

send (in, faulty , pd)

UPON RECEIVING MESSAGE(in, correct, pc):
send (notify , pc, Xpt , notify , pc\Kt

) to pm

start timer (remove-manager)

UPON RECEIVING MESSAGE(suggest, pc, NotifySet)FROM ps:
if ps = pmß 3 rank(pm) - 1 < ProtocolStateß|NotifySet| = d(|V | - 1)/3t + 1 then

ProtocolState:= 3 rank(pm) - 1
send (ack, pc, Xpm, ack, pc\Kt

) to pm

UPON RECEIVING MESSAGE(proposal, pc, AckSet)FROM ps:
if 3 rank(ps) - 2 < ProtocolStateß|AckSet| = `(2|V | + 1)/3p then

ProtocolState:= 3 rank(ps) - 2
LastProposal:= Xps, pc,AckSet\
send (ready, pc, Xps, ready, pc\Kt

) to ps

UPON RECEIVING MESSAGE(commit, pc, pd, ReadySet)FROM ps:
if |ReadySet| = `(2|V | + 1)/3p then

if rank(pt ) £ `(2|V | + 1)/3p then
send (commit, pc, pd, ReadySet) top whererank(pt ) < rank(p) < rank(pt ) + d(|V | - 1)/3t + 1

else
send (commit, pc, pd, ReadySet) top where 0 <rank(p) < d(|V | - 1)/3t + 1- (|V |- rank(pt ))

send (out, view, pc, pd, ReadySet)
send (out, halt)

UPON RECEIVING MESSAGE(query, DeputySet)FROM ps:
if 3 rank(ps) - 2 < ProtocolStateß|DeputySet| = d(|V | - 1)/3t + 1 then

ProtocolState:= 3 rank(ps)

send (last, LastProposal,Xlast, ps, LastProposal\Kt
) to ps

UPON RECEIVING MESSAGE(suggest-last, LastSet)FROM ps:
if 3 rank(ps) - 1 < ProtocolStateß|LastSet| = `(2|V | + 1)/3p then

LowestRank:= |V | + 1
LowestUpdate:= pm
for eachLastProposalÎ LastSetdo

split LastProposal inXpd, pc,AckSet\
if rank(ps) < rank(pd) < LowestRankß|AckSet| = `(2|V | + 1)/3p then

LowestRank:= rank(pd)

LowestUpdate:= pc

ProtocolState:= 3 rank(ps) - 1
send (ack, LowestUpdate,Xpt , ack, LowestUpdate\Kt

) to ps

Figure 12: Secure Group Membership View
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Protocol SGM-View (manager/deputy role) for party pt

UPON RECEIVING MESSAGE(notify , pc, Xps, notify , pc\Ks
) FROM ps:

NotifySetc = NotifySetc Ç {Xs,Xps, notify , pc\Ks
\}

if MDState= beginß|NotifySetc| = d(|V | - 1)/3t + 1 then
send (suggest, pc, NotifySetc) to eachpÎ V
MDState:= sent-suggest

UPON RECEIVING MESSAGE(ack, pc, Xpt , ack, pc\Ks
) FROM ps:

AckSetc = AckSetc Ç {Xs,Xpt , ack, pc\Ks
\}

if MDState= sent-suggestß| AckSetc| = `(2|V | + 1)/3p then
send (proposal, pc, AckSetc) to eachpÎ V
MDState:= sent-proposal

UPON RECEIVING MESSAGE(ready, pc, Xpt , ready, pc\Ks
) FROM ps:

ReadySetc = ReadySetc Ç {Xs,Xpt , ready, pc\Ks
\}

if MDState= sent-proposalß| ReadySetc| = `(2|V | + 1)/3p then
broadcast (commit, pc, pt , ReadySetc) to eachpÎ V by sending this message to self

UPON RECEIVING MESSAGE(deputy, Xdeputy, pt \Ks
) FROM ps:

DeputySet = DeputySetÇ{Xs,Xdeputy, pt \Ks
\}

if MDState= beginß|DeputySet| = d(|V | - 1)/3t + 1 then
send (query, DeputySet) to eachpÎ V
MDState:= sent-query

UPON RECEIVING MESSAGE(last, LastProposal,Xlast, pt , LastProposal\Ks
) FROM ps:

LastSet[LastProposal] = LastSet[LastProposal]Ç{Xs, LastProposal,Xlast, pt , LastProposal\Ks
\}

if MDState= sent-queryß| LastSet[LastProposal]| = `(2|V | + 1)/3p then
send (suggest-last, LastProposal, LastSet[LastProposal])
MDState:= sent-suggest

Figure 13: Secure Group Membership View (Continued)

The SGM Protocol The protocol presented in figure 14 is a slightly modified version of the protocol
presented in figure 7 of appendix A of [Rei96]. Section 4.3 of [Rei96] gives three options on how the
first group view is obtained. We have chosen to fix the participants with which the bulletin board
starts.
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Protocol SGM for party pt

UPON RECEIVING MESSAGE(in, open, SGM, Parties):
x := 1
History := Æ
MessageQueue:= Æ
Faulty:= Æ
P := Parties
V[x] := P
View := new (in, open, SGM-View, V[x])
Adds:= false

UPON RECEIVING MESSAGE(in, faulty , pc, x¢):
Faulty:= FaultyÇ{pc}

send (in, faulty , pc) to View

UPON RECEIVING MESSAGE(in, correct, pc, x¢):
Correct:= CorrectÇ{pc}

if Addsand x¢ = x then
send (in, correct, pc) to View

UPON RECEIVING MESSAGE(in, adds, x¢):
if x¢ = x then

Adds:= true
for each pc Î Correctdo

send (in, correct, pc) to View

UPON RECEIVING MESSAGE(out, view, pc, pd, ReadySet)FROM View:
x := x+ 1
History := HistoryÇXx, pc, pd, ReadySet\
if pc Ï V[x- 1] then

send (history, History) topc
V[x] := V[x- 1] È {pc}

Correct:= Correct�{pc}

else
V[x] := V[x- 1]�{pc}

Faulty:= Faulty�{pc}

Adds:= false
View := new (in, open, SGM-View, V[x])
send (in, faulty , p) to View for each pÎ Faulty
send (out, view, x, V[x])
while Xtype, parameters,ps\ = head(MessageQueue[x]) do

pophead(MessageQueue[x])
send (type, parameters) to View with senderps

UPON RECEIVING MESSAGE(out, history, History, pc) FROM View:
send (history, History) topc

UPON RECEIVING MESSAGE(history, History) FROM ps:
while Xx, pc, ReadySet\ Î Historydo

let View send a (commit, {Xpc, ReadySet\}) to eachpÎ V[x] Ç {pt }

UPON RECEIVING MESSAGE(type, parameters,p) FROM View:
send (view-message, x, type, parameters) top

UPON RECEIVING MESSAGE(view-message, x¢, type, parameters)FROM ps:
if x = x¢ then

send (type, parameters) to View with senderps

if x < x¢ then
enqueueXtype, parameters,ps\ on MessageQueue[x¢]

Figure 14: Secure Group Membership View (Continued)
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8.4 The Echo Multicast Protocol

The echo multicast protocol is the basis of the reliable multicast protocol. In the absence of member-
ship changes, a reliable multicast reduces to a single echo multicast. This protocol ensures that the
l -th echo multicasts fromp for view x at any two honest parties are the same.

Under the assumption that at mostd(|Vx
| - 1)/3t parties inVx are corrupt, the following statements

hold:

1. If p is honest and some honest process sends (out, e-mcast, p, x, m), thenp sent (in, e-mcast,
x, m).

2. If the l -th message of the form (out, e-mcast, p, x, ¼ ) at two honest processes are (out,
e-mcast, p, x, m) and (out, e-mcast, p, x, m¢), thenm= m¢.

8.4.1 Informal Description

Because the echo multicast protocol is quite complicated, we first simplify it by stating that a party
p sends at most one message. Partyp has to convince every party that he sends the samem to every
other party.

Suppose a partyp wishes to multicast a single messagem. p first tries to obtaiǹ (2|Vx
| + 1)/3p

signatures bindingp’s message tom by sending aninit message containingm. On receipt of ainit
message, a partyp¢ creates a signature on the name of the requesting party and the message. This
signature is sent with aecho message as a response to theinit message. After partyp receives
enough correctechoreplies, it sends acommit message containing the messagemand the signatures,
indicating as proof thatm is the message sent to everyone. Once a party receives thiscommit message,
it verifies the signatures, and delivers messagem.

Why are`(2|Vx
| + 1)/3p signatures enough to convince other parties thatp has sentm to everyone?

Every honest party only ever creates one signature for each party. A party that tries to cheat by trying
to convince one party thatm is p’s message, and another party thatm¢ is p’s message, will have to
obtain two sets of signatures. Corrupt parties might be willing to create multiple signatures for party
p, so thatp can send different messages to different parties. Assume that a party has obtained two sets
of signatures. These two sets are each created by`(2|Vx

| + 1)/3p parties. That means that there are at
leastd(|Vx

| - 1)/3+ 1t parties that created two signatures for the samem. This is in contradiction with
our assumption that there are at mostd(|Vx

|-1)/3t corrupt parties: ifpobtained two sets of signatures,
one form and one form¢, then there are at leastd(|Vx

| - 1)/3+ 1t corrupt parties, which is one more
than we allowed.

We now gradually expand this simplified protocol. First, we explain how parties can send multiple
messages: ifp sends a message, it stores its indexl . Each party also stores the number of messages
received from other parties in a variablelp. Whenp requests signatures on a particular messagem on
index l , each party creates the signature onp, messagem, and indexl . This way,p’s l -th message is
unique.

The indexl is also used to maintain the correct order of all messages sent by a party. Upon receiving
acommit message for a messagemand indexl , the message and index are stored in a ‘Commits’ set,
and a variablec[p¢] is used to indicate the index of the next message to be delivered from partyp¢.
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After delivering the message, it stays in the Commits set until the messages isstable. A message is
stable once every party has added the message to its own Commits set. Each party periodically notifies
the other parties of the messages in Commits by multicasting acountersmessage containing thec[p]
values. Each party records these values in a setcp[p

¢
]. If a party has a messagem from p¢ with index

l in its Commits set, andcp[p
¢
] is at leastl for eachp, then it concludes that every party has addedm

to its Commits set, so it deliversm to a higher protocol layer and removes it from the Commits set.

If a messagem stays in the Commits set for too long, a party sends the message to the parties which
have not deliveredmyet, in order to try to make it stable. If a second timeout expires, parties who still
have not deliveredm are unresponsive, and are voted out of the current view.

This informal description assumes that the group view does not change. If a party is voted out, a
new group view is formed, and parties have to send their messages to a different set of parties. In
effect, each party indexes its variables by the group view numberx, so it usesl [x] as the index of its
messages,c[p, x] as the index of the next message to deliver from partyp, etc.

Instead of acquiring̀(2|Vx
| + 1)/3p signatures, a party could also generate a threshold signature by

acquiring signature shares. Two threshold signatures schemes are specified, and the differences in
notational complexity are profound. The first threshold signature scheme specified is the adapted
version of Pedersen’s Threshold Signature Scheme, described in section 5.6. First, each party is
requested to choose a secretki and reply withgki . On receiving̀ (2|Vx

| +1)/3p of thosegki values, they
are combined into a valuegk. Then, thè (2|Vx

| + 1)/3p parties participating in thegk are requested to
contribute a signature share based on theirgki value. If they all respond within a timeout, a threshold
signature is created, and used to commit the messagem. If they do not respond within a timeout, the
protocol reverts to the normal version of the protocol, where care is taken so that parties still cannot
commit two different messages to the same indexl .

The second threshold signature is much simpler. Since a non-interactive threshold signature scheme
is used, a party can just request`(2|Vx

| +1)/3p signature shares on a messagem, combine those shares
into one signature, and commit the messagem.

8.4.2 Interface of the Protocol

To echo-multicast a messagem in view x, send the following message:

(in, e-mcast, x, m)

When an echo-multicast messagem is received in viewx from party pi , the following message is
received:

(out, e-mcast, pi , x, m)

When the echo-multicast messagem is received in viewx from party pi by all members ofVx, the
following message is received:

(out, e-mcast-stable, pi , x, m)
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8.4.3 Translating the Protocol

Translating the echo multicast protocol into the specification presented in figures 17-21 was more
difficult than translating the secure group membership protocol. The protocol described in [Rei94]
uses lots of text to describe the functionality, and the parts specifying how to achieve stability are
stated very informally. We show a small piece to illustrate what we had to translate:

1. If E-mcast(x, m) is executed at somepÎ Vx, p sends

Xinit : x, f(m)\

to each member ofVx. (A message sent by a process to itself is received immediately when it is sent.) This process is called
the multicastinitiator.

2. If p j receivesXinit: x, d\from somep Î Vx and this is thel -th message of the formXinit: x,*\that p j has received fromp, then
p j sends

Xecho: p, x, l, d\K j

to p.

3. Once the initatorp hasreceived a set of echoes{Xecho: p, x, l, f(m)\K j
}p jÎP for somel and someP Í Vx where|P| = `(2|Vx

| +

1)/3p, it sends
Xcommit : p, x, m,{Xecho: p, x, l, f(m)\K j

}p jÎP\

to each member ofVx.

Figure 15: Part of the original Echo Multicast Protocol

And we show a typical passage from the section describing how to achieve stability:

So that processes can tell when echo multicasts are stable, eachq Î Vx periodically echo multicasts its set{cx
i }piÎVx of counter values

to view x. X¼ \A processq knows that thel -th echo multicast frompi to view x is stable ifq has E-delivered a message for view
x containing a counter valuecx

i ³ l from each member ofVx. An honest process does not permit a multicast to remain unstable for
longer than a prespecified timeout duration. That is, if a processq retains (1) incommitsx beyond some timeout duration after executing
E-deliver(pi , x, m), it attempts to make this multicast stable by sending (1) to eachr Î Vx from whichq has not E-delivered a counter
valuec

x
i ³ l .

Figure 16: Another part of the original Echo Multicast Protocol

While stated less formally than the secure group membership protocol, it is easier to translate this
protocol, because this protocol is already stated in a more reactive way: it explicitly states that if a
partyp j receives a message of the formXinit: x, f(m)\, then it does this and that. This translates nicely
into our formalism. We show how we translated the part of the protocol indexed with 1. It is text of
the form ‘If E-mcast(x, m) is executed, then send (init , x, f (m)) to every party inVx’. This is translated
into anin message, producing the following code:

UPON RECEIVING MESSAGE(in, e-mcast, x, m):
for each pÎ SGM.Vx do

send (init , x, f (m)) to p

Later on in the protocol, we notice that we should be able to retrieve the messagem by its hash, and
that we must record its index. We therefore introduce a variablel which records its index, and we
introduce a maplm which, when indexed by the hash of a message, contains both the message and its
index. We add the code:
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UPON RECEIVING MESSAGE(in, e-mcast, x, m):
l [x] := l [x] + 1
lm[ f (m), x] := Xl [x], m\
for each pÎ SGM.Vx do

send (init , x, f (m)) to p

Then, we add code to facilitate for our threshold signature schemes, but we omit that trivial code.

It was more difficult to translate the text about stability, because in its informality the text that describes
the protocol is mixed with text that is merely flavour. It does however emphasize the importance of
first translating the original protocols into a set of coherent formal specifications.

8.4.4 Variables used in the Protocol

Let x be a view number. Thenl [x] denotes the number of messages that this party has multicast in view
x. lm[x] is a set of pairs of messages and indexes. When a party sends thel -th messagem, thenXm, l\
is added tolm[x]. Because this set of pairs is used as a function from messages to indexes, a special
notation is used to insert and find elements. To insert that pair intolm[x], the notationlm[l, x] := m
is used. To find the index of messagem, lm[m, x] is used. An implementation must check iflm[x]
indeed contains a messagem, and otherwise ignore the received message.

c[p, x] contains for each partyp the index up until which messages received frompare delivered. This
list is used to preserve the order in which messages received fromp are delivered. If a messagem
received fromp with a higher index thanc[p, x]+1 is received, it is enqueued until previous messages
from p are received.

cq[p, x] is the listc[p, x] at partyq, as broadcasted byq. This list is used to determine if every party
has broadcast every message.

s[p, x] denotes for every partyp the index of the message that is stable.("p Î Vx
:: s[p, x] = (¯ q Î

Vx
:: cq[p, x])) (Here, the notation(¯ a :: b) means the minimum over the valuesb in the domaina).

This variable is not strictly necessary, but simplifies the notation.
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8.4.5 The Echo Multicast Protocol EMP

Protocol EMP for party pt

UPON RECEIVING MESSAGE(in, open, EMP, SecureGroupMembershipProtocol):
SGM = SecureGroupMembershipProtocol
l [SGM.x] := 0
lm[SGM.x] := Æ
for each pÎ SGM.VSGM.xdo

lp[SGM.x] := 0
c[p, SGM.x] := 0
cpi
[p, x] := 0 for each pi Î SGM.Vx

s[p, x] := 0

UPON RECEIVING MESSAGE(in, e-mcast, x, m):
l [x] := l [x] + 1
lm[l [x], x] := Xl [x], m\
for each pÎ SGM.Vx do

if non-interactive threshold signatures are availablethen
send (init-ni-threshold , x, f (m)) to p

else ifthreshold signatures are availablethen
send (request-threshold, x, f (m)) to p

else
send (init , x, f (m)) to p

UPON RECEIVING MESSAGE(init , x, d) FROM ps:
verify ps Î SGM.Vx

lps
[x] := lps

[x] + 1
send (echo, x, lps

[x], Xps, x, lps
[x], d\Kt

) to ps

UPON RECEIVING MESSAGE(echo, x, l , Xpt , x, lm[l, x], d\Ks
) FROM ps:

verify ps Î SGM.Vx

EchoSet[x, l ] := EchoSet[x, l ] Ç{Xs,Xpt , x, lm[l, x], d\Ks
\}

if |EchoSet[x, l ]| = `(2|Vx
| + 1)/3p then

for each pÎ SGM.Vx do
send (commit, x, l , lm[l, x], m, EchoSet[x, l ]) to p

UPON RECEIVING MESSAGE(commit, x, l , m, Signature)FROM ps:
verify ps Î SGM.Vx

for eachx¢ Î [x, SGM.x] do
verify ps Î SGM.Vx¢

AddToCommit(ps, x, l , m, Signature)

UPON RECEIVING MESSAGE(out, view, V):
l [SGM.x] := 0
lm[SGM.x] := Æ
for each pÎ SGM.VSGM.xdo

lp[SGM.x] := 0
c[p, SGM.x] := 0
cpi
[p, x] := 0 for each pi Î SGM.Vx

s[p, x] := 0

Figure 17: Echo Multicast Protocol
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Protocol EMP (threshold signatures for the optimistic case) for partypt

UPON RECEIVING MESSAGE(request-threshold, x, d) FROM ps:
choosekt

send (reply-threshold, x, d, gkt ) to ps

UPON RECEIVING MESSAGE(reply-threshold, x, d, as) FROM ps:
verify ps Î SGM.Vx

if |Threshold[x, d]| < `(2|SGM.P| + 1)/3p then
Threshold[x, d] := Threshold[x, d] Ç{Xs, as\}

if |Threshold[x, d]| = `(2|SGM.P| + 1)/3p then
l [x] := l [x] + 1
combine{ai }Xi,ai \ÎThreshold[x,d] into a
send (init-threshold , x, d, a) to eachpi whereXi, ai\ Î Threshold[x, d]
send (unused-threshold, x, d, a) to eachpi whereXi, ai\ Ï Threshold[x, d]
lm[d, x] := l [x]
start timer (threshold, x, d, l )

ON TIMEOUT (threshold, x, d, l )
send (init-no-threshold, x, d, l ) to eachpÎ SGM.Vx

UPON RECEIVING MESSAGE(init-threshold , x, d, a) FROM ps:
verify ps Î SGM.Vx

send (echo-threshold, x, d, Xps, x, lps
[x], d\Kt (a)

) to ps
tl := tl Ç {Xd, lps

[x], ps\}

lps
[x] := lps

[x] + 1

UPON RECEIVING MESSAGE(unused-threshold, x, d) FROM ps:
verify ps Î SGM.Vx

tl := tl Ç {Xd, lps
[x], ps\}

lps
[x] := lps

[x] + 1

UPON RECEIVING MESSAGE(init-no-threshold, x, d, l ) FROM ps:
verify ps Î SGM.Vx

verify Xd, l, ps\ Î tl
send (echo, x, d, Xps, x, l[x], d\Kt

) to ps

UPON RECEIVING MESSAGE(echo-threshold, x, d, Xpt , x, lm[d, x], d\Ks(a)
) FROM ps:

verify ps Î SGM.Vx

EchoThresholdSet[x, d] := EchoThresholdSet[x, d] ÇXs,Xpt , x, lm[d, x], d\Ks(a)
\

if |EchoThresholdSet[x, d]| = `(2|SGM.P| + 1)/3p and timer is runningthen
stop timer (threshold, x, d, lm[d, x])
combine the signatures in EchoThresholdSet[x, d] into Xpt , x, lm[d, x], d\K(a)
for each pÎ SGM.Vx do

send (commit, x, lm[d, x], m, Xpt , x, lm[d, x], d\K(a)) to p

Figure 18: Echo Multicast Protocol (Continued)

Protocol EMP (non-interactive threshold signatures) for party pt

UPON RECEIVING MESSAGE(init-ni-threshold , x, d) FROM ps:
verify ps Î SGM.Vx

send (echo-ni-threshold, x, d, Xps, x, lps
[x], d\Kt

) to ps
lps
[x] := lps

[x] + 1

UPON RECEIVING MESSAGE(echo-ni-threshold, x, d, sig) FROM ps:
verify ps Î SGM.Vx

if |NIThreshold[x, d]| < `(2|SGM.P| + 1)/3p then
NIThreshold[x, d] := NIThresholdÇ{Xps, sig\}
if |NIThreshold[x, d]| = `(2|SGM.P| + 1)/3p then

l [x] := l [x] + 1
combine{sigi }Xsigi ,pi \Î Treshold[x,d] into sig
for each pÎ SGM.Vx do

send (commit, x, lm[d, x], m, sig) to p
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Figure 19: Echo Multicast Protocol (Continued)

Protocol EMP (stability) for party pt

PERIODICALLY
send (in, e-mcast, Xcounters, {c[p, x]}pÎSGM.Vx\)

UPON RECEIVING MESSAGE(out, e-mcast, ps, Xcounters, {c¢[p, x]}pÎSGM.Vx\):
cps
[p, x] := c¢[p, x] for each pÎ Vx

for eachs wheres[p, x] < s £ (¯ q Î Vx
:: cq[p, x]) do

stop timer (unstable, p, x, s)
stop timer (remove-unstable, p, x, s) if it is running
s[p, x] := s
retrievem and Signature from Commits[x]
Commits[x] := Commits[x] �Xp, x, s, m,Signature\}
send (out, e-mcast-stable, p, x, m)

ON TIMEOUT (unstable, p, x, l )
retrievem and Signature from Commits[x]
for each p¢ wherec[p, x] > cp¢ [p, x] do

send (make-stable, p, x, c[p, x], m,Signature)
start timer (remove-unstable, p, x, l )

ON TIMEOUT (remove-unstable, p, x, l )
for each p¢ wherec[p, x] > cp¢ [p, x] do

send (in, faulty , p¢)

UPON RECEIVING MESSAGE(make-stable, p, x, l, m,Signature)FROM ps:
for eachx¢ Î [x, SGM.x] do

verify pÎ SGM.Vx¢

AddToCommit(p, x, l , m, Signature)

Figure 20: Echo Multicast Protocol (Continued)

Protocol EMP (procedures) for party pt

PRODUCEDUREAddToCommit(ps, x, l , m, Signature)
if c[ps, x] < l ß Xps, x, l, m,Signature\ Ï Commits[x] then

Signature is either{Xi, Xps, x, lm[d, x], d\Ki
\} or Xps, x, l, f(m)\K(a) or Xps, x, l, f(m)\K

if Signature ={Xi, Xps, x, lm[d, x], d\Ki
\} then

verify |Signature| = `(2|Vx
| + 1)/3p andXi, s\ Î SGM.Vx for all Xi, s\ Î Signature

Commits[x] := Commits[x] Ç{Xps, l, m,Signature\}
start timer (unstable, ps, x, l)
while Xp, c[p, x] + 1, m¢,Signature\ Î Commits[x] do

send (out, e-mcast, p, x, m¢)
c[p, x] := c[p, x] + 1

Figure 21: Echo Multicast Protocol (Continued)

8.5 The Reliable Multicast Protocol

The reliable multicast protocol offers functionality to send a message to every member in a group, as
determined by a secure group membership protocol, such that each group member has the assurance
that every other party has received the same message. The reliable multicast protocol uses the echo
multicast protocol. In the absence of membership changes, messages are just forwarded to and from
the echo multicast protocol. When a membership change occurs, this protocol ensures that echo
multicast messages are not held forever in the queue.
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The protocol ensures that these predicates hold:

Integrity For all honestp andm, an honest process sends (out, r-mcast, p, m) in view x at most the
number of times thatp sent (in, r-mcast, m) in view x.

Uniform Agreement If q is an honest member ofVx+k and an honestp sends (out, r-mcast, r, m) in
view x, thenq sends (out, r-mcast, r, m) in view x.

Validity-1 If p is an honest member ofVx+k for all k ³ 0, thenp sends (out, r-mcast-view, Vx).

Validity-2 If p andq are honest members ofVx+k for all k ³ 0 andp sends (in, r-mcast, m) in view
x, thenq sends (out, r-mcast, p, m) in view x.

8.5.1 Informal Description

In the echo multicast protocol, messages are sent and received in a specific view. If a group mem-
bership change occurs, new messages must be sent for the new view, and the messages queue for the
old view must be cleaned. After this cleaning, the membership change may be passed on to higher
protocol layers. The reliable multicast protocol handles these tasks.

The protocol uses a variablex to denote the latest view number delivered to the higher protocol layers.
Most of the time, thisx has the same value as thex of the secure group membership protocol, but
during membership changes, it ‘lags behind’. Another variable OpenView denotes for which views
messages are still accepted. Likex, this variable is usually equal to thex of the secure group member-
ship protocol. Each view with an index lower than OpenView is said to beclosed.

When a messagemhas to be sent, it is echo multicast in the latest view. If a messagem is received, it
is first verified that this message is not intended for an already closed view. If it is intended for view
x, it is delivered instantly. If it is intended for a later view, it is enqueued.

When a group membership change occurs, each party echo multicasts anendmessage to the old view,
signalling that this is the last message it will send in the old view. After receiving anend message
from every party, each party sends aflush message to the new view, containing the Commits set of the
echo multicast protocol. This way, agreement is obtained on the messages that have to be delivered
in the old view. Also, OpenView is incremented, signalling that no more messages for the old view
may be received. Once aflush message is received from every party, the group membership change is
announced to the higher protocol layers andx is incremented. If a party does not send anendor flush
message in time, it is voted out. When a party is voted out during another group membership change,
it is assumed to have sent aendmessage and an emptyflush message.

8.5.2 Interface of the Protocol

The protocol is initiated with the following message, which takes a secure group membership protocol
as a parameter:

(in, open, RMP, SecuregroupMembershipProtocol)

To reliably multicast a messagem, send the following message:

(in, r-mcast, m)
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When a reliably multicast messagem is received, the following message is sent by the protocol:

(out, r-deliver , m)

When a new view with indexx is received from the secure group membership protocol and all mes-
sages sent in the old view are delivered, this message is sent:

(out, r-mcast-view, x)
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8.5.3 The Reliable Multicast Protocol RMP

Protocol RMP for party pt

UPON RECEIVING MESSAGE(in, open, RMP, SecureGroupMembershipProtocol):
SGM := SecureGroupMembershipProtocol
EMP := new (in, open, EMP, SGM)
x := SGM.x- 1
OpenView:= SGM.x
id[x] := 0
idp[x] := 0 for each pÎ SGM.V(SGM.x)
Join()

UPON RECEIVING MESSAGE(in, r-mcast, m):
send (in, e-mcast, SGM.x, Xr-msg, id[SGM.x], m\)
id[SGM.x] := id[SGM.x] + 1

UPON RECEIVING MESSAGE(out, e-mcast-stable, p, x¢, Xr-msg, id¢, m\):
if OpenView£ x¢ and idp[x

¢
] < id ¢ then

idp[x
¢
] = id¢

if x¢ = x then
send (out, r-mcast, p, m)

if x¢ > x then
enqueueXp, m\ on Defer(x¢)

UPON RECEIVING MESSAGE(in, view, V):
id[SGM.x] := 0
idp[SGM.x] := 0 for each pÎ SGM.V(SGM.x)
NotReceivedFlush[SGM.x] := SGM.V[SGM.x- 1] È SGM.V[SGM.x]
if pt Ï SGM.V[SGM.x- 1] then

Join()

else
NotReceivedEnd[SGM.x- 1] := SGM.V[SGM.x- 1] È SGM.V[SGM.x]
for eachx¢ Î (x, SGM.x) do

ReceivedEnd(SGM.V[SGM.x- 1]�SGM.V[SGM.x], x¢ - 1)
ReceivedFlush(SGM.V[SGM.x- 1]�SGM.V[SGM.x], x¢)

send (in, e-mcast, SGM.x- 1, Xend\)
start timer (end, SGM.x- 1)

ON TIMEOUT (end, x¢)
for each pÎ NotReceivedEnd[x¢] do

send (in, faulty , p, x¢ + 1)

UPON RECEIVING MESSAGE(out, e-mcast, ps, x¢, Xend\):
ReceivedEnd({ps}, x¢)

ON TIMEOUT (flush, x¢)
for each pÎ NotReceivedFlush[x¢] do

send (in, faulty , p, x¢)

UPON RECEIVING MESSAGE(out, e-mcast, ps, x¢, Xflush, Commits\):
verify ps Î NotReceivedFlush[x¢]
if x¢ = 1 or pt Î SGM.V[x¢ - 1] then

for each Xp, x¢ - 1, l, m,Signature\ Î Commitsdo
EMP.AddToCommit(p, x¢ - 1, l , m, Signature)

ReceivedFlush({ps}, x¢)

Figure 22: Reliable Multicast Protocol
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Protocol RMP (procedures) for party pt

PRODUCEDUREReceivedEnd(P, x¢)
NotReceivedEnd[x¢] := NotReceivedEnd[x¢] �P
while NotReceivedEnd[OpenView]= Æ do

stop timer (end, OpenView)
OpenView:= OpenView + 1
send (in, e-mcast, OpenView,Xflush, EMP.Commits[OpenView-1])
start timer (flush, OpenView)

PRODUCEDUREReceivedFlush(P, x¢)
NotReceivedFlush[x¢] := NotReceivedFlush[x¢] �P
while NotReceivedFlush[x+ 1] = Æ do

stop timer (flush, x)
x := x+ 1
send (in, adds, x)
send (out, r-mcast-view, x)
while Defer[x] ¹ Æ do

dequeuehead(Defer[x]) asXp, m\
send (out, r-mcast, p, m)

PRODUCEDUREJoin()
send (in, e-mcast, x+ 1, Xflush, Æ\)
if x = 0 then

start timer (flush, x+ 1)

Figure 23: Reliable Multicast Protocol (Continued)

8.6 The Atomic Multicast Protocol

This protocol is used together with a secure membership protocol, to send and receive messages to
all members of the current group view. The order in which messages are received by each party is
the same at each party, hence the name ’atomic’. The protocol uses the reliable multicast protocol to
reliably send each message to all members.

The protocol ensures that these predicates hold:

Integrity For all honestp andm, an honest process sends (out, a-mcast, p, m) in view x at most the
number of times thatp sent (in, a-mcast, m) in view x.

Uniform Agreement If q is an honest member ofVx+k for all k ³ 0 and an honestp sends (out,
a-mcast, r, m) in view x, thenq sends (out, a-mcast, r, m) in view x.

Validity-1 If p is an honest member ofVx+k for all k ³ 0, thenp sends (out, a-mcast-view, Vx).

Validity-2 If p andq are honest members ofVx+k for all k ³ 0 andp sends (in, a-mcast, m) in view
x, thenq sends (out, a-mcast, p, m) in view x.

Order If q is an honest members ofVx+k for all k ³ 0 and an honestp sends (out, a-mcast, r, m)
before (out, a-mcast, r ¢, m¢) in view x, thenq sends (out, a-mcast, r, m) before (out, a-mcast,
r ¢, m¢) in view x.

8.6.1 Informal Description

??
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The reliable multicast protocol is used to multicast messages. Once a messagem is received from
party p it is added to the queue Pendingp. A designated group member, thesequencer, periodically
sends an order message denoting the order in which the messages are to be delivered. The sequencer
keeps a queue Senders, which is a sequence of parties. Upon receiving this sequence, each party takes
the first partyp of this sequence, and the first message of queue Pendingp, and delivers that message.
Then, it takes the second party of the sequence, and delivers the appropriate message, etc. This way,
each party delivers all messages in the same order.

If a new view is delivered, the atomic multicast protocol does not wait for an order message, but
deterministically chooses an order in which to deliver the queued messages.

8.6.2 The Interface

The protocol is initiated with the following message, which takes a secure group membership protocol
as a parameter:

(in, open, AMP , SecureGroupMembershipProtocol)

To atomically multicast a messagem, send the following message:

(in, a-mcast, m)

When an atomically multicast messagem is received from partypi , the following message is sent by
the protocol:

(out, a-mcast, pi , m)

When a new view with indexx is received from the secure group membership protocol and all mes-
sages sent in the old view are delivered, this message is sent:

(out, a-mcast-view, x)
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8.6.3 The Atomic Multicast Protocol AMP

Protocol AMP for party pt

UPON RECEIVING MESSAGE(in, open, AMP , SecureGroupMembershipProtocol):
SGM := SecureGroupMembershipProtocol
RMP := new (in, open, RMP, SGM)

UPON RECEIVING MESSAGE(in, a-mcast, m):
send (in, r-mcast, Xa-msg, m\)

UPON RECEIVING MESSAGE(out, r-mcast, ps, Xa-msg, m\):
Enqueuem on PendingRMP.x

s
if Seq(RMP.x) = pt then

SendersRMP.x
:= SendersRMP.x

ü pt

start timer (sequence, ps, m, RMP.x)

ON TIMEOUT (sequence, ps, m, x)
if x = SGM.xthen

send (in, faulty , Seq(x), x)

PERIODICALLY
if Seq(RMP.x) = pt then

send (in, r-mcast, Xorder, SendersRMP.x
\)

SendersRMP.x
:= Æ

UPON RECEIVING MESSAGE(out, r-mcast, Seq(RMP.x), Xorder, Senders\):
while Senders¹ Æ do

dequeuehead(Senders) aspi
if pi Î SGM.V(RMP.x) then

enqueuepi on OrderRMP.x

while OrderRMP.x
¹ Æ and PendingRMP.x

head(OrderRMP.x) ¹ Æ do

dequeuehead(OrderRMP.x) asps
dequeuehead(PendingRMP.x

ps
) asm

send (out, a-mcast, ps, m)
stop timer (sequence, ps, m, RMP.x)

UPON RECEIVING MESSAGE(out, r-mcast-view, x):
for each pÎdeterministicallySGM.V(x- 1) do

while Pendingp ¹ Æ do
dequeuehead(Pendingp) asm
send (out, a-mcast, p, m)
stop timer (sequence, p, m, x- 1)

send (out, a-mcast-view, x)

Figure 24: Atomic Multicast Protocol

8.7 The Synchronized Atomic Multicast Protocol

The atomic multicast protocol ensures that received messages are delivered in the same order, but
members that have been offline for a moment do not receive all messages. The protocol described in
this protocol enables parties to synchronize the messages, so that all honest parties eventually receive
the same messages in the same order.

The protocol ensures that these predicates hold:

Integrity For all honestp andm, an honest process sends (out, a-mcast, p, m) in view x at most the
number of times thatp sent (in, a-mcast, m) in view x.
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Uniform Agreement If q is an honest member ofVx+k for all k ³ k¢ for a k¢ and an honestp sends
(out, a-mcast, r, m) in view x, thenq sends (out, a-mcast, r, m) in view x.

Validity-1 If p is an honest member ofVx+k for all k ³ k¢ for a k¢, thenp sends (out, a-mcast-view,
Vx).

Validity-2 If p andq are honest members ofVx+k for all k ³ k¢ for a k¢ andp sends (in, a-mcast, m)
in view x, thenq sends (out, a-mcast, p, m) in view x.

Order If q is an honest members ofVx+k for all k ³ k¢ for a k¢ and an honestp sends (out, a-mcast,
r, m) before (out, a-mcast, r ¢, m¢) in view x, thenq sends (out, a-mcast, r, m) before (out,
a-mcast, r ¢, m¢) in view x.

8.7.1 Informal Description

When a partyp is not voted out of the group, it receives all messages. When partyp is voted out, it
does not receive any multicast message. Now when partyp is permitted back into the group, we start
synchronizing. The party goes into a special mode, setting the flag ‘joining’ totrue, and it multicasts
a messagerequest-hashes, reporting the number of messages that it received before being voted out
of the group. The other parties respond by sending the hash of the messages that have been sent
after the amount of messages specified in therequest-hashesmessage. Eventually, partyp receives
at least̀ (2|Vx

| + 1)/3p hashes, of which at leastd(|Vx
| - 1)/3|t + 1 hashes are the same, since these

are contributed by honest parties. Partyp now stores the correct hash of the missing messages in a
variable ‘hash’, and selects one party at random from which it requests the missing messages. An
honest party responds to this request by sending those messages. Upon receipt, these messages are
checked against the obtained hash. If the response times out, or if the response is incorrect, another
party is selected at random, untilp obtains the correct set of messages.

While obtaining these missing messages,penqueues any message that is received by the atomic multi-
cast protocol on the ‘save’ queue. After obtaining the missing messages,pdelivers them immediately,
and then delivers the messsages queued on ‘save’. The synchronization is now complete.

8.7.2 The Interface

The protocol is initiated with the following message:

(in, open, SAMP, SecureGroupMembershipProtocol)

(in, s-mcast, m)

(out, s-mcast, ps, m)

(out, s-mcast-view, x)
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8.7.3 The Synchronized Atomic Multicast Protocol SAMP

Protocol SAMP for party pt

UPON RECEIVING MESSAGE(in, open, SAMP, SecureGroupMembershipProtocol):
AMP := new (in, open, AMP , SecureGroupMembershipProtocol)
messages:= Æ
member:= pt Î SGM.V(SGM.x)
joining := false

UPON RECEIVING MESSAGE(in, s-mcast, m):
send (in, a-mcast, m)

UPON RECEIVING MESSAGE(out, a-mcast, ps, m):
if joining then

enqueueXps, m\ on save
else

send (out, s-mcast, ps, m)
enqueueXps, m\ on messages

UPON RECEIVING MESSAGE(out, a-mcast-view, x):
if pt Ï SGM.V(x)ß memberthen

member:= false

if pt Î SGM.V(x) ß Ø memberthen
member:= true
joining := true
save:= Æ
Hashes:= Æ
hash:= Æ
stop timer (messages)
send (in, a-mcast, request-hashes,|messages|)

UPON RECEIVING MESSAGE(out, a-mcast, ps, Xrequest-hashes,b \):
if Øjoining then

send (reply-hash, |messsages|, hash on messages[b, |messages|))

UPON RECEIVING MESSAGE(reply-hash, e, h) FROM ps:
Hashes:= HashesÇXe, h\
if |Hashes| = `(2|SGM.V(SGM.x)| + 1)/3p then

Hash, end:= h, ewhereXe, h\ occurs at leastd(|SGM.V(SGM.x)| - 1)/3+ 1t times in Hashes
select ap
send (request-messages, |messages|, end) to somep
start timer (messages)

UPON RECEIVING MESSAGE(request-messages, b, e) FROM ps:
if |messages| ³ e then

send (reply-messages, messages[b, e)) to ps

Figure 25: Synchronized Atomic Multicast Protocol
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UPON RECEIVING MESSAGE(reply-messages, m) FROM ps:
stop timer (messages)
if Hash= hash onmß |m| = end- |messages| then

while m¹ Æ do
dequeue head(m) asXps, m¢\
enqueueXps, m¢\ on messages
send (out, s-mcast, ps, m¢)

while save¹ Æ do
dequeue head(save) asXps, m¢\
enqueueXps, m¢\ on messages
send (out, s-mcast, ps, m¢)

joining := false

else
select anotherp
send (request-messages, r, end) to somep
start timer (messages)

ON TIMEOUT (messages)
select anotherp
send (request-messages, |messages|, end) to somep
start timer (messages)

Figure 26: Synchronized Atomic Multicast Protocol (Continued)

8.8 Threshold Key Generation Protocol

This section describes the key generation protocol. After running this protocol, each participating
party obtained three things: 1) a private key share, which it uses to sign a message, 2) the public
verification keys of each other party, with which a message signed by the private key share of another
user can be verified, and 3) a public key. LetP be the set of parties. The private key shares are
constructed such that if`(2|P|-1)/3p parties sign a messagemwith their private key share, a signature
can be constructed from those shares which can be verified to be correct by the public key. Each
private key share is unique and only known at a single party, while the public key shares and the
public key are the same at each party. The group in which the calculations are done, is chosen to be
the same group used by partyp0.

8.8.1 Informal Description

Each party acts as a dealer to share a secret using Feldman’s verifiable secret sharing scheme. A
random polynomial is selected, of which the constant factor is equal to the shared secret. First, each
party receives its own share of the secret. After that, commitments of the coefficients of the polynomial
are broadcast, which are used to verify the correctness of the shares. After receiving the shares of all
parties, the private key is computed from this secret, and acorrect message is broadcast signalling
that everything went well. After receiving acorrect message from every party, the protocol halts
successfully, returning the public key share of every party, a public key and a private key share.

If any of the parties tries to cheat, any party can complain and the key generation protocol will halt,
without having generated keys. While the protocol described in this section is largely taken from
[GJKR03], our protocol more easily fails. Instead of trying to recover from errors, the protocol just
halts. This is done for a few reasons: In our voting bulletin board application, key generation is prob-
ably done at least a few weeks or months before the election, because the resulting public key must
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be distributed to the voters. It is important that every party participates in this key generation, because
these are the only parties that play a useful role in the bulletin board. If a party is unresponsive during
the key generation, the unresponsiveness must be solved and the key generation must be restarted. If
an attacker tries to disturb the key generation, he will be discovered long before he can do any dam-
age. Every party can disrupt the key generation by just being silent. Therefore, the protocol does not
contain code to recover from errors: If a particular equation does not match, the protocol is just halted.
No uncovers of committed secrets are requested, that just adds complexity which opens up potential
vulnerabilities. An attacker knows in advance that introducing errors will just halt the protocol, which
he could have done himself anyway by just not sending any messages.

This protocol uses the atomic multicast protocol, and therefore also the group membership protocol.
Since this protocol is run only once in the startup phase of our bulletin board, and since each party
must participate in the creation of the key shares, the protocol will fail if during the run of the protocol
a party is removed from the group. That member has to be added to the group again before another
attempt at generating the key shares. A precondition of the protocol is that all parties must be in the
current group view.

8.8.2 Interface of the Protocol

To start the protocol, send the following message:

(in, open, TKGP , SecureGroupMembershipProtocol)

If the protocol executed correctly, the protocol returns with a public key and a private key share:

(out, halt, TKGP , PublicKeyShares, PublicKey, PrivateKeyShare)

If, however, a member of the group was removed, the protocol returns without keys:

(out, halt, TKGP )
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8.8.3 The Protocol

Protocol TKGP for party pi

UPON RECEIVING MESSAGE(in, open, TKGP , SecureGroupMembershipProtocol, threshold):
SGMP:= SecureGroupMembershipProtocol
Xp, q, g\ := head(SGMP.P).Group
n := |SGMP.P|
t := threshold
let ak Îr Zp for eachk Î [0, t], and f (z) = a0 + a1z+¼ + atz

t

x := a0
ReceivedCommits:= Æ
send (share, fi ( j)) to p j for eachp j Î SGMP.P
send (in, a-mcast, Xpoly-commits, {gak }kÎ[0,t]\)
start timer (generated)

UPON RECEIVING MESSAGE(share, xi ) FROM ps:
ReceivedShares[ps] := xi

UPON RECEIVING MESSAGE(out, a-mcast, ps, Xpoly-commits, {X¢k}k\):
if ps Ï ReceivedSharesthen

send (in, a-mcast, Xcomplaint\)

else
Xsk := X¢k for eachk Î [0, t]

if gReceivedShares[ps] ¹ ÕkÎ[0,t] X
jk

sk mod p then
send (in, a-mcast, Xcomplaint\)

else
ReceivedCommits:= ReceivedCommitsÇ{ps}

if |ReceivedCommits| = n then
send (in, a-mcast, Xcorrect\)

ON TIMEOUT (generated)
send (in, a-mcast, Xcomplaint\)

UPON RECEIVING MESSAGE(out, view, Vx):
send (in, a-mcast, Xcomplaint\)

UPON RECEIVING MESSAGE(out, a-mcast, Xcomplaint\):
send (out, halt, TKGP )

UPON RECEIVING MESSAGE(out, a-mcast, ps, Xcorrect\):
Correct:= CorrectÇps
if |Correct| = n then

stop timer (generated)
y := ÕkÎ[0,n] Xk0 mod p
send (out, halt, TKGP , {Xk0}kÎ[0,n], y, x)

Figure 27: Threshold Key Generation Protocol

8.9 The Voting Protocol

This section describes three protocols. The first protocol is used by servers to receive votes from
clients, broadcast it to the other servers and record the vote in a list, and to answer requests to read
votes. The second one is used by a client to cast a vote, and to read votes that are cast by others. The
third protocol is used by the talliers to read all votes cast, and write back the results of the election.

Note that the voting protocol should contain authorization verification. Clients that send their vote to
the bulletin board must be authorized to vote, in order to prevent them from voting multiple times or
casting votes for others. This information might be implicit in the vote that they cast, using signed
votes for example. Clients that want to read the entire contents of the bulletin board must also be
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authorized to do so, otherwise many clients would be able to overload the bulletin board. Such
authorization, however, is outside the scope of this project and clients are therefore assumed to be
authorized.

8.9.1 Informal Description

The bulletin board has three states, NotStarted, Voting, and Tallying. When the protocol is started,
the bulletin board is in the NotStarted state, and is unable to receive votes. When it is time to start
the voting protocol, the messagestart-voting is multicast by each party. On receivingd(n- 1)/3+ 1t
of these messages, the protocol switches to the Voting state, and is ready to receive votes. When
contacted by a client, a partyp multicasts the vote. Upon receiving a multicast vote, each party
responds with a signature on this vote, sent in private top. Partyp then combines the signatures and
presents it to the client as a proof of voting. If the client does not receive this proof of voting in time,
it assumes thatp is unresponsive, selects another party and tries to vote again.

When it is time to stop the voting, the messagestop-voting is multicast by every party. On receiving
d(n-1)/3+1t of these messages, the protocol switches to the Signature state, upon which the bulletin
board jointly produces a signature on all votes. In this state, clients are no longer able to cast votes.
Once this signature is produced, the bulletin board switches to the Tallying state. Talliers are now
able to read all votes, by contacting one of the parties, which responds with all votes and the signature
created in the Signature state.

8.9.2 Interface of the Server Protocol

To start the bulletin board, send the followingopenmessage. Clients will not immediately be able to
cast votes.

(in, open, SVP)

When the voting period starts, send the following message. Ifd(n - 1)/3 + 1t parties have sent this
message, clients can start sending in their votes, or more precisely, servers can start forwarding votes
and record them.

(in, start-voting)

When the voting period is over, send the following message. Ifd(n- 1)/3+ 1t parties have sent this
message, clients cannot send any more votes. Immediately, talliers are allowed to read the votes and
write back the information.

(in, stop-voting)

8.9.3 Interface of the Client Protocol

To cast a vote, send your votev with the followingopenmessage.

(in, open, CVP, v)

If the vote was successfully cast, the protocol terminates with a certificate proving successful voting.

(out, halt, CVP, v, signature onv)
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8.9.4 Interface of the Tally Protocol

This document does not describe the whole tally protocol, but it does describe the steps it takes to read
the votes and write the results to the bulletin board. It is assumed that the tally protocol starts after the
servers entered the tallying state. To start the tally protocol, send this opening message:

(in, open, TP)

Once opened, the protocol will retrieve the votes from the bulletin board and report them to a higher
protocol layer, which does the work of actually tallying the votes. Once the votes are read, the protocol
halts with the following message:

(out, halt, TP, v)
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8.9.5 The Server Voting Protocol SVP

Protocol SVP for party pt

UPON RECEIVING MESSAGE(in, open, SVP):
State:= NotStarted

UPON RECEIVING MESSAGE(in, start-voting):
send (in, s-mcast, Xstart-voting\)

UPON RECEIVING MESSAGE(in, stop-voting):
send (in, s-mcast, Xstop-voting\)

UPON RECEIVING MESSAGE(out, s-mcast, ps, Xstart-voting\):
StartVoting:= StartVotingÇ{ps}

if |StartVoting| = d(n- 1)/3t + 1 then
State:= Voting

UPON RECEIVING MESSAGE(out, s-mcast, ps, Xstop-voting\):
StopVoting:= StopVotingÇ{ps}

if |StartVoting| = d(n- 1)/3t + 1 then
State:= Signature
send (in, s-mcast, Xvotes-signature, XVotes\Kt

\)

UPON RECEIVING MESSAGE(cast, v) FROM c:
Verify State = Voting
Verify thatc is an authorized voter and thatv is a valid vote
send (in, s-mcast, Xcast,c, v\)

UPON RECEIVING MESSAGE(in, s-mcast, ps, Xcast,c, v\):
Verify thatc is an authorized voter and thatv is a valid vote
if c Î Votesthen

send (signature, c, Votes[c], signature onc and Votes[c]) to ps

else
enqueuev on Votes with keyc
send (signature, c, v, signature onc andv) to ps

UPON RECEIVING MESSAGE(signature, c, v, signature)FROM ps:
Signatures[c, v] := Signatures[c, v] ÇXps,signature\
if |Signatures[c, v]| = d(n- 1)/3t + 1 then

send (signature, v, Signatures[c, v]) to c

UPON RECEIVING MESSAGE(in, s-mcast, ps, Xvotes-signature, signature\):
Verify State = Signature
VotesSignatures:= VotesSignaturesÇXps,signature\
if |VotesSignatures| = d(n- 1)/3t + 1 then

State = Tallying

UPON RECEIVING MESSAGE(read) FROM t:
Verify State = Tallying
send (read, Votes, VotesSignatures) tot

Figure 28: Voting Protocol for Servers
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8.9.6 The Client Voting Protocol CVP

Protocol CVP for party c

UPON RECEIVING MESSAGE(in, open, CVP, v):
select a bulletin board serverp
send (cast, v) to p
start timer (vote, v)

ON TIMEOUT (vote, v)
select another bulletin board serverp
send (cast, v) to p
start timer (vote, v)

UPON RECEIVING MESSAGE(signature, v, signature)FROM ps:
verify that the signature is correct
send (out, halt, CVP, v, signature)

Figure 29: Voting Protocol for Clients

8.9.7 The Tally Protocol TP

Protocol TP for party t

UPON RECEIVING MESSAGE(in, open, TP):
select a bulletin board serverp
send (read) to p
start timer (read)

ON TIMEOUT (read)
select another bulletin board serverp
send (read) to p
start timer (read)

UPON RECEIVING MESSAGE(read, v, s) FROM ps:
stop timer (read)
if s ared(n- 1)/3t + 1 valid signatures from different parties onv then

send (out, halt, TP, v)

else
select another bulletin board serverp
send (read) to p
start timer (read)

Figure 30: Voting Protocol for Talliers
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9 The Implementation

With the complete set of specifications of the protocols of the previous sections, the next task is to
write the code for the bulletin board. C++ is the language chosen for this implementation. In this
section, we first examine methods and constructions used in the code. Later, we discuss each protocol
layer, and describe how the specification is translated into code.

9.1 Writing Secure Code

The code created in this project must be secure. In real life, programs intended to secure resources,
such as a Secure Shell server, are usually not cracked by breaking the protocols or even the cryp-
tographic primitives, but are broken by exploiting bugs in the implementation of the protocols and
algorithms. While in non-cryptographic software, a bug may be a mere degradation of certain func-
tionality, in cryptographic software, a single bug may be responsible for the compromising of the
entire system. Only one buffer overflow bug is enough to break into an SSH server. A small bug in the
random-number generator of an SSL server is enough to eavesdrop on the communication. Therefore,
it is very important to carefully consider programming methods that improve the quality of the code.
In this section, we will review a few principles which, in our opinion, are very important when writing
secure code.

We regardsimplicityas one of the most important things when writing secure code. Simple specifi-
cations and implementations are easier to understand, and therefore bugs are easier to spot. Simple
specifications also lead to shorter implementations, and less code means less opportunities to make
mistakes.

Another thing that is important is to stay close to the specification. Many different ways exist in which
functionality defined in the specification can be implemented. Especially when trying to optimize
code, the resulting code may fulfill its specification but it may be unclear to an observer why. It
is easy to introduce bugs while trying to optimize code, and these bugs may be very hard to find.
An advantage of staying close to the specification, is that code is much easier to check against its
specification.

Of course, many others have written about creating secure code. We do not claim that these two
principles are even remotely sufficient, but these principles were followed as closely as possible in
creating the software, and therefore had a very high impact on the code.

9.2 Libraries Used

This section describes the various libraries that are used in the code of the bulletin board.

The C++ Standard Template Library The C++ Standard Template Library (STL) is part of the
C++ language. It contains basic ingredients, such as containers likevectorandset.

The Boost Libraries This set of libraries, available athttp://www.boost.org , contains var-
ious ingenious constructions, which supplement the C++ STL. The library is specifically written to
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cooperate with the STL, and almost all of the libraries proposed for the next C++ standard are part of
Boost. The section “Constructions Used” describes most of the pieces taken from Boost.

A Cryptographic Library Of course, software dealing with cryptographic constructions needs
cryptographic primitives. This library contains the AES block cipher, various hash functions, vari-
ous modes of operations for both block ciphers and hash functions, and public key algorithms like
Schnorr signatures. This library is, like the Boost libraries, written to cooperate nicely with the C++
STL. Unsatisfied with the current, mostly C oriented, cryptographic libraries, I have written this li-
brary myself. There exists a cryptographic library for C++ written by Wei Dai, but this library has the
drawback that it is a complete framework, it is difficult to use only small portions.

A Big Integer Library Unfortunately, neither the C++ STL nor Boost contains a big integer library
(yet). The public key algorithms of the cryptographic library depend on this library for its unlimited
precision integer operations. This library is written by myself. For faster calculations than the default
implementation, it can serve as a front-end for fast (C oriented) big integer libraries like the Gnu Multi
Precision library.

9.3 Constructions Used

One of the requirements is that code is kept as simple as possible. Boost contains various libraries
that can make a programmer’s life very easy, but to someone unfamiliar to these constructions, it may
seem like hocus-pocus. The intention of this section is to provide some background so that most of
the constructions code can be understood. Therefore, this section describes the constructions that have
had the greatest influence on the design of the code.

Variants A variant, also known as a discriminated union, is an object that can hold another ob-
ject of any of a few types. One of the Boost libraries provides such a variant type. For exam-
ple, variant<int, string> can hold either an integer or a string. This construction is used
in the dispatching of messages. When some protocol sends for example aninit_message , an
echo_message , or acommit_message , it actually passes an object of typevariant<
init_message, echo_message, commit_message> to a lower protocol layer. The lower
protocol is a class templatized (meaning the class has a template parameter) on a single message type,
and it has the responsibility of sending objects of that type. This has the advantage that protocols do
not need to know the exact type of messages they have to send, because that type is substituted when
the higher-level protocol is created. This construction can be chained form protocol layer to protocol
layer.

For example:

template<class MessageType>
class low_protocol_layer {

void send(MessageType message);
};

template<class MessageType>
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class mid_protocol_layer {
low_protocol_layer<variant<MessageType, init_message,

echo_message, commit_message> > protocol;

void send(MessageType message) {
protocol.send(message);

}
};

class high_protocol_layer {
mid_protocol_layer<variant<end_message, flush_message> >

protocol;

void send(MessageType message) {
protocol.send(message);

}
};

Here,low_protocol_layer is the lowest protocol layer sending messages of a type
MessageType that is to be substituted later.mid_protocol_layer does that substitution, with
a variant of four different types. One of those types needs itself to be substituted by a higher protocol.
high_protocol_layer does that, with a variant of two types.

Next, we need to be able to extract the type of the object currently held by a variant. Suppose the low
level protocol layer receives a message. It passes that message on to a higher level protocol as a single
object, the variant. That higher protocol now has to unwrap the variant. We will not go into details
here, but part of the unwrapping involves calling a function overloaded on all the types held by the
variant. Consider the following code:

void received_data(variant<end_message, flush_message> message) {
apply_visitor(make_mcast_visitor(), message);

}

void dispatch_mcast(end_message message) {
...

}

void dispatch_mcast(flush_message message) {
...

}

received_data is called by the lower level protocol with the received message. The
apply_visitor function then calls, with the help of themake_mcast_visitor , the proper
overload ofdispatch_mcast , and the contents of the variant is nicely split.

Variant is an enormous help in dispatching messages from layer to layer. Without variant, we would
probably have to write a parse function for every protocol layer. With variant, there is only one
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problem left: The lowest level protocol has to convert the variant object into a stream of bytes, in
order to be able to send it to another party. The next section deals with that problem.

Serializing Objects The Boost Serialization library contains functionality to convert objects to a
sequence of bytes and back (or to XML, as we will see later). It is a large and complicated library, but
fortunately, its use is extremely simple. Therefore, we will not delve into details, but we just show a
few examples.

Consider this class:

class init_message{
int x;
string message;

};

We want to convert an object of typeinit_message into something that we can send across the
network. First, we add functionality so that the Serialization library knows how to serialize it:

class init_message{
int x;
string message;

template<class Archive>
void serialize(Archive & ar, const unsigned int version) {

ar & boost::serialization::make_nvp("x", x);
ar & boost::serialization::make_nvp("message", message);

}
};

That is all. Just one templatized function, containing a serialization instruction for each field in the
object. Every object that has to be serialized, has such aserialize function. The code to actually
convert an object into a sequence of bytes or the other way around is very short, only 4 lines, and
is not very interesting. Only a few places in the code need to do this, so we omitted that code here.
What is more interesting, is what the data looks like after converting. The Serialization library has the
option not to convert the data to a very compact representation, but also to an XML representation of
the object. The XML representation also helps when debugging code. If we serialize an object of type
init_message , we get the following data:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<!DOCTYPE boost_serialization>
<boost_serialization signature="serialization::archive" version="3">
<init_message class_id="0" tracking_level="0" version="0">

<x class_id="1" tracking_level="0" version="0">5</x>
<message class_id="2" tracking_level="0" version="0">this

is a message</message>
</init_message>
</boost_serialization>
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Now ignoring some information used by the Serialization library itself, we can see that the value ofx
is 5, and that the stringmessage contains "this is a message".

If we serialized an object of a certain type, we can only deserialize an object of the same type. The Se-
rialization library does not help us find out what that type is. However, we want to serialize messages
of various types, and at the other end deserialize the message as an object of the correct type. We do
this by combining the messages into a single variant, as seen in the previous section. Now we have a
single object we need to serialize, namely the variant. After deserialization, we use the functionality
of the variant to extract the correct message.

Combining the Variant and Serialization libraries has given us an enormously powerful tool in sending
messages from one party to another. Without those libraries, we would have to write parsers, and deal
with many different messages spread across many protocol layers. Those big parsers would have
cost much time, and would likely have a few bugs so it would also cost a lot of debugging time
tracing hard-to-find bugs. With the Variant and Serialization library, we only need to mechanically
write serialize functions for each object that we want to serialize, and pass on variants from one
protocol layer to another.

There exists a significant drawback, however. Due to the heavy use of templates, the length of the
names of types grow very large, resulting in slow compilation times and even triggering internal com-
piler limits. Consider a variable of typevariant<int, string> . Internally, the type of this vari-
able isboost::variant<int , _STL::string , boost::detail::variant::void_ ,
boost::detail::variant::void_ , boost::detail::variant::void_ ,
boost::detail::variant::void_ , boost::detail::variant::void_ ,
boost::detail::variant::void_ , boost::detail::variant::void_ ,
boost::detail::variant::void_ , boost::detail::variant::void_ ,
boost::detail::variant::void_ , boost::detail::variant::void_ ,
boost::detail::variant::void_ , boost::detail::variant::void_ ,
boost::detail::variant::void_ , boost::detail::variant::void_ ,
boost::detail::variant::void_ , boost::detail::variant::void_ ,
boost::detail::variant::void_> . Now when several layers ofvariant are combined,
the length of this type grows tenfold. When serializing objects of this type, templates are used where
types of objects also grow larger. During compilation, types were detected with a size approaching
10,000. Microsoft Visual C++ 7.1 could not handle these constructions, and produced internal com-
piler errors. GNU’s GCC luckily is still able to handle this code. The use of objects with very large
types is quite new, and future compilers are expected to be better at handling them. In any case, once
the source successfully compiled, the typenames have no influence on the speed or size of the code.

Function and Bind This section discusses the Boost libraries Function and Bind. While these are
actually two separate libraries not depending on each other, we use these libraries mostly together.
They find their use incallbacks. Callbacks are used for example when a low-level protocol has
received data, it uses a callback to notify a higher-level protocol that a new message is available.

Using Function is not very difficult. Suppose you want to create a callback taking a string as parameter.
You create a variablecallback of type function<void(string)> . Now you can assign
anything tocallback that you would normally be able to call as a function taking one string as a
parameter. After that, you can usecallback just as if it were a normal function. For example:
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void print(string m);

void do_something() {
function<void(string)> callback;
callback = &print;
callback("hello");

}

Whendo_something is executed, the third line will call the functionprint .

Now it gets a little more interesting when Bind is involved.bind is a function taking as argument
a function (this may be a member function of a class), and a number of parameters.bind returns
something you can store inside afunction . When you call thatfunction , it works as if the
arguments passed to bind are already stored in the arguments of the function specified inbind . For
example:

void print(string m);

void do_something() {
function<void()> callback;
callback = bind(&print, "hello");
callback();

}

Here,callback is a function taking 0 arguments.bind takes the functionprint , binds a string as
a parameter, and assigns the result tocallback . Now whencallback is actually called,print
is called with "hello" as a parameter.

There’s more. When passing_1 to bind , bind returns a function taking one parameter, and that
parameter is substituted as the parameter at the position of the_1 . For example:

void print(string m);

void do_something() {
function<void()> callback;
callback = bind(&print, _1);
callback("hello");

}

Now, how do we use this in the code? Suppose, we have a protocol layer that want to notify a higher
protocol layer when a message has arrived. The following code fragment shows how this is done.

template<class MessageType>
class low_protocol_layer {

function<void(MessageType)> received_data_callback;

void handle_received_data(function<void(MessageType)> handler) {
received_data_callback = handler;
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}

void something() {
MessageType message = ...;
received_data_callback(message);

}
};

class high_protocol_layer {
low_protocol_layer low_protocol;

high_protocol_layer() {
low_protocol.handle_received_data(bind(

&high_protocol_layer::received_data, this, _1));
}

void received_data(string message);
}

First, the constructor ofhigh_protocol_layer callshandle_received_data to properly
assign the callback. It usesbind(&high_protocol_layer::received_data, this,
_1) , to make the callback point to itsreceived_data member function, which takes one pa-
rameter, namely the message itself.

Once the protocol is running, the low-level protocol may decide that it wants to notify the higher
level protocol of a message. It callsreceived_data_callback with message as a parameter.
This triggershigh_protocol_layer ’s received_data function, and passes the message as
a parameter.

The costs to usefunction andbind are not high. Calling afunction is about as fast as calling
a virtual function. Usingbind with a function requires space to store the arguments, but does not
decrease speed.

Sockets A few classes are created to handle network traffic. One of the classes represents a TCP/IP
socket, providing functionality to send data from one party to another. Another class represents a
TCP/IP listening socket, listening on a specific port, enabling other parties to make a connection with
the party on this port. A functioncheck_activity is used to check for network activity, reporting
such activity via callbacks described in the previous section. Network activity of a TCP/IP socket
includes indication that a connection has been successfully made, that data is ready to be received,
that more data may be sent, and that the connection has been lost. Network activity of a TCP/IP
listening socket only consists of the indication that another party wants to make a connection. The
functioncheck_activity checks for network activity on all sockets at the same time. It takes a
single parameter indicating the time it may wait for activity. If this time passes without any activity,
the function returns without triggering any callbacks. If during that time there was some activity,
for example new data has arrived on a particular socket, the appropriate callback is triggered so that
protocols may handle the incoming data. After processing network activity, thecheck_activity
function returns immediately without waiting for more network activity. The reason of this behaviour
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will become clear later on.

Timers The formal protocol descriptions often use timers. One classtimer was created to easily
deal with timer events. Once atimer object is created, it is assigned a specific time after which it trig-
gers a callback. The design is similar to the design of the sockets: a single function exists which trig-
gers everytimer object which is due for triggering. This function, unlike thecheck_activity
function of the sockets, does not accept a duration as parameter indicating how long it may wait.
The function returns immediately after triggering the appropriate callbacks. Instead, another function
computes the duration until the nexttimer object is due for triggering. The next section describes
how the timers and the sockets cooperate.

9.4 The Execution Flow of the Program

Each server of the bulletin board has to deal with several network connections and several timers.
Where a multi threaded approach might be expected, the implementation of the bulletin board is
written as a single threaded program. This section discusses why this is done and how this is accom-
plished.

First, we discuss how we were able to create the bulletin board as a single threaded program. We
have two sorts of events on which we have to respond: timers and network traffic. Each timer is
registered in a global list of timers. We can find out how much time is left before the first timer
triggers. This time is spent checking the network sockets. All sockets are checked simultaneously
for network activity, for a duration equal to the time left before the next timer triggers. If there is no
network activity, we trigger the correct timer, and recalculate how much time is left before the next
timer triggers, and spend this time checking for network activity. If there is network activity, then
the appropriate handlers are triggered. Immediately after returning from these handlers, the program
checks if the time left before the next timer triggers has changed. Indeed, the handling of the network
activity may have started a new timer, or changed an existing one.

This system of handling events has the condition that each handler may not wait itself for events. If it
blocks for an unspecified amount of time, the whole program stops. It is however not difficult to write
the event handlers in this way.

The workings of this system may sound quite complicated, but in reality, it is very simple and very
effective. There exists one loop in the program which does the checking of timer or network activity:

while (true) {
socket_base::check_activity(timer::next_trigger());
timer::check();

}

The advantage of a single threaded approach over a multi threaded approach is that functions do not
need to be made thread-safe. In the single threaded approach, the event handler that is executing does
not need to worry about other event handlers touching the same data, and no deadlock can occur.
Overall, it makes reasoning about the behaviour of the program a lot easier.
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9.5 Translating the Specifications into Code

Having described several constructions, each having their own impact on the code, we describe how
a specification of a protocol is translated into an implementation.

First, we observe that each protocol is mainly composed of a series of event handlers, responding to
several different message types: the (in, open, protocol, parameters) message starting the protocol,
the (in, name, parameters) message processing data obtained from a higher-level protocol, the (out,
name, parameters) message processing data obtained from a lower-level protocol, the (name, param-
eters) message processing data obtained from this protocol, and timeout events. Furthermore, some
protocols have procedures which can be called directly from this protocol or higher-level protocols.

For each protocol, a class is created representing the functionality of that protocol. Since (almost)
every protocol has to send messages for a higher-level protocol, of which the type is unknown to
that protocol, the class gets a template parameter representing the type of the message it can send.
The echo multicast protocol, and higher protocols, are not only capable of sending a message to a
single party, but also of sending a message to every party, multicasting that message. Therefore, the
classes representing the echo multicast protocol and higher protocols have two template parameters,
one containing the type of the message sent to a single party, and one containing the type of the
message which is multicast. We saythemessage, even though higher protocols send messages of a
variety of types, because those messages are combined into one type using the variant library.

For example, the echo multicast protocol gets this class:

template<class MessageType, class MulticastMessageType>
class echo_multicast_protocol {

...
};

Constructor Messages The (in, open, EMP, SecureGroupMembershipProtocol) message is trans-
lated into a constructor. The protocol assumed that the secure group membership protocol is created
before the echo multicast protocol, but in code it is easier to let the echo multicast protocol create
the secure group membership protocol, so we pass the parameters of the secure group membership
protocol constructor to this constructor:

template<class MessageType, class MulticastMessageType>
class echo_multicast_protocol {
public:

echo_multicast_protocol(const own_party_id& identity,
const party_set& parties);

private:
secure_group_membership_protocol<...> m_sgmp;

};

The secure group membership protocol now is a member of the echo multicast protocol. Each name
of a member of a class has the prefixm_to distinguish it from other variables.
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Messages Between Protocol LayersThe (in, name, parameters) messages are translated into pub-
lic functions, so that higher-level protocols can call those functions directly. The (out, name, param-
eters) messages are translated into callbacks, each with a function with the prefixhandle_ so that
the higher-level protocol can point the callback into the right direction.

template<class MessageType, class MulticastMessageType>
class echo_multicast_protocol {
public:

typedef boost::function<void(const party_id& sender,
const T1& message)> received_data_callback;

echo_multicast_protocol(const own_party_id& identity,
const party_set& parties);

void handle_received_data(received_data_callback handler);

void e_mcast(std::size_t x, const multicast_message_type&
message);

private:
secure_group_membership_protocol<...> m_sgmp;
received_data_callback m_received_data;

};

Here, we first make a typedef of the complicated type of the callback used in thereceived_data
callback and name itreceived_data_callback , then we introduce a member holding the target
of the callback namedm_received_data , and we create the functionhandle_received_data
to assign a target tom_received_data . If the echo multicast protocol wants to notify a higher-
level protocol that data has arrived, it simply executesm_received_data(sender, message)
and the function previously passed tohandle_received_data is executed.

Messages Between PartiesThe next task is to translate the messages sent within a protocol layer,
between parties. Each different message gets its own class. This class holds variables containing the
data of the message, and functionality to serialize it, using the serialization library. For example, the
class of theinit message looks like this:

class init_message {
public:

init_message();
init_message(std::size_t a_x, const std::string& a_digest);

std::size_t x;
std::string digest;

private:
friend class boost::serialization::access;
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template<class Archive>
void serialize(Archive & ar, const unsigned int version)
{

ar & boost::serialization::make_nvp("x", x);
ar & boost::serialization::make_nvp("digest", digest);

}
};

Sending an init message wherex = 5 and digest="banaan" is done by calling thesend function of
the lower protocol, with a newly createdinit_message object as parameter.

m_sgmp.send(destination, init_message(5, "banaan"));

This message eventually arrives at the destination. The secure group membership protocol then trig-
gers the callback originally assigned by the echo multicast protocol with:

m_sgmp.handle_received_data(boost::bind(
&echo_multicast_protocol::received_data, this, _1, _2));

So, eventually thereceived_data function of the echo multicast protocol is called, with the source
party and the message as parameters. Since this message is actually a variant containing ourinit
message, thereceived_data function has to split the variant so that the correctdispatch func-
tion is called, which handles theinit message.

This code is used to dispatch the message (the other code of the class is omitted):

template<class MessageType, class MulticastMessageType>
class echo_multicast_protocol {

void received_data(const party_id& p_s, const message_type&
message)

{
boost::apply_visitor(make_dispatcher(this, p_s), message);

}

void dispatch(const party_id& p_s, const init_message& message)
{

...
}

void dispatch(const party_id& p_s, const echo_message& message)
...

};

Timers The final event-processing construction we have to translate are the timeouts. We use the
timer class to accomplish this. We take the atomic multicast protocol as example, where the se-
quencer has a timeout signalling that it must send an order message, defining the order in which

83



messages must be delivered. We introduce a variablem_send_sequence_timer of typetimer ,
and point the handler to the right function with

m_send_sequence_timer.handle_triggered(boost::bind(
&atomic_multicast_protocol::send_sequence, this));

in the constructor of the atomic multicast protocol. When we receive a message, we start the timer
with something like

m_send_sequence_timer.start(boost::posix_time::seconds(2));

After two seconds, thesend_sequence function is triggered.

Parameterized Variables Lots of variables are parameterized on another variable. For instance, the
echo multicast protocol has a variable EchoSet[x, l ], which is a set for each combination of valuesx
andl . We use nestedstd::map classes to construct these variables. Supposex andl each have type
std::size_t , and the EchoSet contains a set of objects of typeecho_type . Then the EchoSet
variable is translated into

std::map<std::size_t, std::map<std::size_t,
std::set<echo_type> > > m_echo_set;

We can now access one of the sets withm_echo_set[x][l] . To insert a variableecho of type
echo_type , we writem_echo_set[x][l].insert(echo); .

Signatures Many of the protocol layers use signatures. Two functions have been created to facilitate
easy signature creation and verification.sign takes asignature generator, a private key, and a random
number generator, and returns astring containing the signature put on the data of the signature
generator. The signature generator is an object translating data into a stream of bytes. It works mostly
in the same way as messages, only it does not contain functionality to translate a stream of bytes back
into variables, and it puts a unique identifier in front of the data. For example, this is a signature
generator:

class deputy_signature_generator {
public:

deputy_signature_generator(const short_party_id& p_d,
std::size_t x);

private:
short_party_id m_p_d;
std::size_t m_x;

friend class boost::serialization::access;

template<class Archive>
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void serialize(Archive & ar, const unsigned int version);
{

std::string name("deputy");
ar << boost::serialization::make_nvp("name", name);
ar << boost::serialization::make_nvp("p_d", m_p_d);
ar << boost::serialization::make_nvp("x", m_x);

}
};

A valid function takes a signature generator, a public key, and a signature as arguments, and returns
whether the signature is valid on the data presented by the signature generator.

These functions make creating and verifying signatures very easy. To send a message containing a
signature, the following code is used:

sgmp().send(p_s, echo_message(x, l,
sign(echo_signature_generator(p_s, x, l, digest), sgmp().p_t(),

m_rng)));

Here, theechomessage contains a view numberx, an indexl , and a signature created on the identifier
of the senderps, the view numberx, the indexl and the digest of another messagedigest. pt contains
the private key, andmrng is a nondeterministic random number generator.

To verify that the signature is correct, the receiver of the message executes the following code:

if (!valid(echo_signature_generator(sgmp().p_t(), x, l, digest),
p_s, message.signature))
return;

The same data is passed to the signature generator, and that signature generator is passed to thevalid
function, which checks if the signature sent by the other party is correct under his public key.

9.6 The High-Level Protocol Layers

With the constructions explained in previous sections, we can now easily translate the formal spec-
ifications into working code. The next sections explain details, and clarify how certain less obvious
expressions are translated. These are the high-level protocol layers:
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Figure 31: High-Level Protocol Layers

Of these layers, we will discuss parts of the secure group membership protocol and the echo multicast
protocol. We will see how nicely the specifications translate into code, and therefore we do not need
to treat the other protocol layers in further detail.

9.6.1 Secure Group Membership Protocol

The secure group membership protocol is translated into two classes: the
secure_group_membership_layer and thesecure_group_membership_view . These
two classes represent theSGM protocol, and its sub-protocolSGM-View.

Although the secure group membership protocol is not exactly a protocol layer below the other pro-
tocols, it was easier to make this the lowest layer. The secure group membership protocol now relays
messages from the echo multicast protocol to the network. This has the advantage that the type of
messages which have to be sent over the network is easy to compute: The group membership protocol
takes the messages of the echo multicast protocol, and adds its own messages to this list. This list is
then passed to the network protocol layer. We examine this in detail:

Thesecure_group_membership_view sends messages of typenotify_message ,
suggest_message , etc. Therefore, it has this type:

typedef boost::variant<notify_message, suggest_message, ack_message,
proposal_message, ready_message, commit_message, deputy_message,
query_message, last_message, suggest_last_message> message_type;
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So, it sends messages of typemessage_type , in which the actual messages are embedded. The
secure_group_membership_layer takes this message type, adds a message which is used by
the group membership protocol layer directly, namelyhistory_message , and adds the message
type of the echo multicast protocol. The message type of the echo multicast protocol is passed to the
group membership layer via the template parameterT. This is the type of the messages sent by the
secure group membership protocol:

typedef boost::variant<T, history_message,
secure_group_membership_view::message_type> message_type;

Translating the specification to implementation was quite straightforward. Let’s examine a small
example. This piece of specification:

UPON RECEIVING MESSAGE(suggest, pc, NotifySet)FROM ps:
if ps = pmß 3 rank(pm) - 1 < ProtocolStateß|NotifySet| = d(|V | - 1)/3t + 1 then

ProtocolState:= 3 rank(pm) - 1
send (ack, pc, Xpm, ack, pc\Kt

) to pm

is translated into this code:

void secure_group_membership_view::dispatch(const party_id& p_s,
const suggest_message& message)

{
if (m_parties.find(p_s) == m_parties.end()

|| !message.valid(m_p_t, p_s, m_parties))
return;

if (p_s == p_m
&& 3 * rank(p_m) - 1 < m_protocol_state
&& message.notify_set.size() == low_threshold()) {

m_protocol_state = 3 * rank(p_s) - 1;
m_send(p_m, ack_message(message.p_c,

sign(ack_signature_generator(p_m, message.p_c, m_x),
m_p_t, m_rng), m_x));

}
}

We already explained that a UPON RECEIVING MESSAGEclause is translated into a dispatch function,
taking the sender and the contents of the message as arguments. The firstif statement is not directly
specified by the protocol, but it is mentioned in the text preceding the protocols that each message
handler should check that the message is sent by some party in the current group view, and that
the signatures in the message are valid. That is checked by the firstif statement. The secondif
statement is almost directly translated into code. NotifySet is contents of the message, and therefore
a member of themessage object. low_threshold is a function evaluating thed(|V | - 1)/3t + 1
formula. The two statements in the code are also almost directly translated from the specification. The
group view indexx, which was only implicitly stated in the specification, is now explicitly mentioned
in both the sending of the message and the creation of the signature.
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9.6.2 Echo Multicast Protocol

Like the secure group membership protocol, the specifications of the echo multicast protocol translate
nicely into code. We take the function with which we start the echo multicast,e_mcast , as example.
The specification of thee_mcast function:

UPON RECEIVING MESSAGE(in, e-mcast, x, m):
l [x] := l [x] + 1
lm[l [x], x] := Xl [x], m\
for each pÎ SGM.Vx do

if non-interactive threshold signatures are availablethen
send (init-ni-threshold , x, f (m)) to p

else ifthreshold signatures are availablethen
send (request-threshold, x, f (m)) to p

else
send (init , x, f (m)) to p

Figure 32: Specification of thee_mcast function

translates into the following code:

void e_mcast(std::size_t x, const multicast_message_type& message)
{

assert(0 < x && x <= m_sgmp.x());

std::ostringstream oss;
boost::archive::xml_oarchive oarchive(oss);
oarchive << BOOST_SERIALIZATION_NVP(message);

++m_l[x];
m_lm[x][m_l[x]] = oss.str();
m_sgmp.send(m_sgmp.v(x), emp::init_message(x,

make_digest(oss.str())));
}

First, anassert is used to verify the precondition thatx is a well-defined view. Next, we translate
message into a string, so that we can compute its hash value. We can now start with following the
specifications. First, the variablel , translated into the memberml is incremented. Then, we store the
message in the variablelm[l [x], x], which is translated into the memberm_lm of typemap<size_t,
map<size_t, string> > . Note that in the code, the group view indexx is always the first
argument in maps. After storing the message, we create aninit_message , and send it to everyone
in the current group view. Note that neither of the threshold signatures schemes is implemented.

While most of the protocol is translated into code in a very direct way, we applied a small trick in
computing the timeout values when to send the nextcountersmessage. The specifications only say
‘periodically, send acountersmessage’, but it does not say how often. If we send acountersmessage
every tenth of a second, we have a relatively small latency, but we require much cpu time. If we send
acountersmessage every 20 seconds, we have a big latency, but we require less cpu time. By varying
the interval betweencounters messages, we try to have a small latency when there are only a few
messages to be sent, and we increase the latency when there are many messages to be sent. This way,
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we keep a nice balance between cpu time needed and latency. We determine the interval to the next
sending of acounters message like this: When we receive a message, we start our timer to trigger
in a 10th of a second. If we do not receive another message in that time, the timer triggers and we
send ourcountersmessage in a 10th of a second, thus keeping latency low. If we do receive another
message before our timer triggers, we add the time elapsed between the two messages to our timer,
unless this timeout was already larger than 2 seconds. This way, if many messages arrive, we ensure
that we send acounters message every 4 seconds. If in one instant a burst of messages arrive, and
then much time lapses before the next message, we still send ourcountersmessage early, because a
burst of messages does not add much time to our timeout value. If many messages arrive at regular
intervals, the latency increases.

9.7 The Low-Level Protocol Layers

The higher level protocols assume that communication between parties is reliable and private. Such
is a common assumption, and the theory of setting up secure channels is not difficult. We do need
to implement them, however, and we try to maintain as much simplicity as possible by introducing
separate layers, that each solve a small problem, so that each layer is small and easily to test.

We will use TCP/IP as our means of communication. Before we start examining what layers we need,
we review the differences between what TCP/IP communication gives us, and what we need for our
higher level protocol layers.

TCP/IP Sockets Needed
bytes are sent objects are sent

not secure secure
communication between ports communication between parties

zero or more connections between partiesexactly one connection between parties

With TCP/IP sockets, bytes are sent over a communication channel, whereas we need to send objects.
Those bytes are not sent securely, we need confidentiality and integrity. The communication channel
is made between two combinations of servers and ports, instead of between parties. We can now
define the protocol layers, which provide us with the necessary functionality, each one improving
a small bit over the previous layer. The first, lowest, layer interacts with the operating system and
provides exactly the characteristics presented in the left column of the table above. The last layer
has provides all characteristics defined in the right column. We create five layers, that provide the
following characteristics:

sent secure orientation # connections
Socket Layer bytes no port zero or more

Secure Connection Layer objects given a secure key port zero or more
Key Exchange Layer objects yes port zero or more

Multiplex Layer objects yes party zero or one
Reliable Layer objects yes party one

We now discuss each layer and describe how they are implemented.
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Figure 33: Low-Level Voting Protocol Layers

9.7.1 Socket Layer

The tcp_socket class represents the socket layer, and is an abstraction from the functionality
provided by the operating system. Sockets are not standardized across different platforms, so imple-
mentations of this class may differ between operating systems. The implementation is tested under
Windows 2000 and GNU/Linux, and probably works under Windows 98 and later, and all sorts of
Unixes.

Before data can be sent and received with thetcp_socket class, a connection must be built. This
can be done in two ways: the class can initiate a connection with a specific server on a specific port,
or an incoming connection can be accepted. If this operation succeeds, the callbackconnected is
triggered, otherwise the callbackdisconnected is triggered. Thedisconnected callback is
also triggered when the connection is terminated.

Once the connection is built, data can be sent as a vector of octets. Once the other end of the connection
receives this data, it triggers thereceived_data callback, after which the data can be retrieved
from the socket.

One other callback exists, thesend_ready callback, which indicates that the socket’s buffers are
empty and that new data may be sent.

9.7.2 Secure Connection Layer

The secure connection layer applies symmetric cryptographic algorithms to make the data sent over a
connection both reliable and confidential. Furthermore, it translates the stream of bytes into objects,
using the serialization library described above.

This layer does not do any key negotiation, however, because that is a functionality different from
securing and translating data, that is better handled in another layer. This layer takes a key and uses
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that key in the algorithms. When the connection has just been built, a default key is used, and therefore
provides no security until the key exchange layer provides a secure key.

Many protocols have a separate non-encrypted mode. It is easier, however, to already have the encryp-
tion algorithms in place, so that no special mode is needed, and the protocol layer is kept is simple as
possible.

The secure connection layer has the same interface as the socket layer, with the addition of methods to
set the key for each direction of communication, and the difference that the send function and receive
callback deal with objects instead of vectors of octets.

Once theconnected callback of the secure connection layer is triggered, the keys are reset to a
default value, and it triggers theconnected callback of a higher level protocol. Since the other end
of the communication channel resets the keys to the same value, communication is possible, but not
secure.

When an object is sent by the secure connection layer, it is first serialized in order to obtain a stream
of octets. The information sent to the sockets layer consists of the size of the data, then a MAC
(Message Authentication Code) on the size, then the encrypted data, and finally, a MAC on the size
and the original data. As encryption algorithm, the AES (Advanced Encryption Standard) is used in
CTR (Counter) mode [Dwo01]. As MAC algorithm, CMAC (Cipher-based MAC) [Dwo05] is used,
with AES as block cipher.

Since CTR mode is used as encryption, the two keys used for each direction of communication are not
allowed to be the same, or else the security is compromised. The key given to the secure connection
layer is a vector of octets of any length. The secure connection layer expands the key itself into a key
and a counter for the encryption, and a key for the MAC, using the SHA256 hash function.

9.7.3 Key Exchange Layer

The secure connection layer needs a secure key in order to provide the necessary security. The key
exchange layer produces such a key using an authenticated Diffie-Hellman key negotiation.

Once theconnected callback of the key exchange layer is triggered, it first sends its own identity to
the other party. When it receives the identity from the other party, it retrieves the public key belonging
to that party. A Diffie-Hellman exchange is started, and the key exchange’s own private key is used
to sign the key exchange. Once the key exchange message from the other party is received, two keys
are computed, one for each direction of communication. These keys are then given to the secure
connection layer, from which point on the communication is secure. Now theconnected callback
of the higher level protocol is triggered, indicating that a connection has been built and secured.

9.7.4 Multiplex Layer

Like TCP/IP sockets, the key exchange layer is a communication channel between ports at both par-
ties. Two channels may exist between two parties, when both parties decide to connect to the each
other at the same time. Zero channels may exist just after starting the protocol, or after a network
problem. The multiplex layer provides communication channels between parties, instead of between
ports at parties. By automatically closing superfluous connections, it serves as a single communication
channel to each party.
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9.7.5 Reliable Layer

The multiplex layer provides communication channels that are reliable when connected, but between
a disconnect and a new connection, messages may or may not have been received by the other party.
The reliable layer has a simplified sliding window protocol, where received packets are acknowledged.
If a new connection has been made, any messages that have been sent but not received by the other
party are sent again.

Since the reliable layer completely handles reconnecting lost connections, the interface consists of a
function to send a message to a party, and a callback reporting that a message is received from some
party.

92



10 Evaluation of the Prototype

In this section, we evaluate the complexity of the code, we discuss possible optimizations, and we
measure the performance of the prototype.

10.1 Complexity of the Code

The prototype built is of considerable size: about 7800 lines of C++ code. This may seem to be
quite a lot, but with these code, 12 protocol layers are implemented. That makes on average 650
lines of code per protocol. A quarter of this code consists of the message types being translated into
classes and signature generators. This code has a low complexity, given a message specification like
(commit, p, x, l , d) augmented with the types of these parameters, it should be very easy to create an
automatic code generator. An even larger part of the code consists of very direct translations of the
formal specifications. The complexity of this code is higher than the translations of messages, but still
the complexity of this code is not that high: it is easily verified against the formal specifications.

By applying constructions like the serialization library and carefully considering how to translate the
formal specifications into code, the complexity of the code has been kept low so that it was possible to
rapidly implement twelve layers of protocols, and get it to work reliably. Bugs occurred, but they were
few and easily reproducible, and easily found by testing each protocol layer separately. Almost every
bug was the consequence of either misinterpreting the original specifications, or making mistakes
when translating the specification to code. The last category of errors was easy to spot by comparing
the specifications to the code.

10.2 Optimizations

In the prototype, each vote is broadcast separately. While this gives a good indication of the latency
and throughput of broadcasts, it is unnecessary to broadcast them separately. A bulletin board server
could wait for, say, 10 seconds, accumulating votes, and broadcast those 10 votes in one message.
This increases the latency by at most 10 seconds, but that may not be a great deal. Depending on how
much votes are cast per second, it dramatically increases the throughput. Note that in the prototype,
the limiting factor is the time spent on public key operations, network bandwidth was not an issue.
Increasing the size of broadcast messages has no effect on the time spent on public key operations.

10.3 Performance

One of the most interesting aspects of building a prototype is that you can measure its performance.
Although we did not spent much time on this and our results are therefore not very precise, we do get
a general idea of how well this protocol performs.

First, we explain what we measured, and how we measured it. Since the latency is something that is
configurable, by adjusting how often the echo multicast protocol sends itscountersmessage and the
atomic multicast protocol sends itsorder message, we picked a latency of about 4 seconds, which is
high enough to not really disturb throughput, but low enough for our bulletin board to be reasonably
responsive.
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We regarded throughput as the most important aspect of performance. As the number of servers run-
ning the bulletin board grow, the throughput will decline. We measured the throughput by letting each
server send a message over the atomic multicast protocol at regular intervals. Gradually decreasing
the interval times, we determined the point at which the parties could not keep up, and started to get
voted out of the group. With this information, we computed how much messages can be sent by the
bulletin board per second.

The hardware used for this experiment consisted of a 16-node cluster, where each node has an Intel
Pentium 4 processor, running at 3 GHz. Memory and network bandwidth were not the limiting factor,
computation time was. Although the hardware is quite fast (at the moment of writing, 2005), our
implementation of public key calculations is not optimal, it is estimated that a factor 2 can be gained
by improving on the efficiency of the code.

Due to lack of time, our implementation does not include the non-interactive signatures. Being a ma-
jor improvement on the efficiency of the protocol, we decided to emulate non-interactive signatures,
by spending less time verifying signatures. In the echo multicast protocol, a sender of a message even-
tually sends out acommit message containing̀(2n+ 1)/3p signatures. In a non-interactive signature
scheme, only one signature is sent. Therefore, the receiving party would only check one signature.
We crippled our implementation so that the receiving party only checks the first signature in the list.
Furthermore, with a non-interactive signature scheme, the party building thecommit message need
not check the signatures before combining them, but can do so afterwards, therefore checking only
one signature instead of many. We also adapted our implementation to only check one signature. Now
we have an implementation that matches the performance of an implementation where non-interactive
signatures are used.

We now present how much messages can be broadcast per second:

Parties Interactive Signatures Non-Interactive Signatures
4 20/s 40/s
10 5/s 33/s
16 2/s 18/s

We clearly see the quadratic factor with the interactive signatures. Non-interactive signatures give a
very good improvement, which will of course be more noticeable when more servers are involved.

With the optimizations presented in the previous section, we can outline how well our bulletin board
can perform. Let us take the case where the bulletin board consists of 16 servers, and uses non-
interactive signatures. 18 messages may be sent per second, which is about one message per server
per second. We already have a latency of about 4 seconds. By introducing a latency of another second,
each server can queue messages for a second, and send those messages in one broadcast. Now our
bulletin board has a latency of 5 seconds, but a virtually unlimited number of messages may be sent
per second. If we tolerate greater latencies, we can increase the number of parties running the bulletin
board. In doing so, we can build a secure bulletin board with reasonable latency with 40 servers, of
which 13 servers may be corrupted.

11 Conclusion

In this thesis, we studied existing protocols suitable for the implementation of a bulletin board. Com-
paring their performance characteristics, we selected one and greatly improved on its complexity. We
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showed how we converted the original protocols into a nice coherent set of protocols suitable for di-
rect translation into code. We explained how the translation of the code can be done in a very clear
and very precise way. This produced a prototype, which we believe issecure by design. Finally, we
measured its performance, giving an indication of how much parties can be used while maintaining
reasonable latency.
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