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Abstract

At Statistics Netherlands (SN), the Dutch national statistics institute, statistical
classifications are modeled using a complex structure of multiple overlapping hi-
erarchical data structures in an abstract model called Cristal. The basic structure of
this model is an hierarchical directed acyclic graph (DAG) that models the part-
whole relations between the entities in statistical classifications, extended with
another DAG structure that models the element-set relations between the entities
in the classifications.

In this thesis we provide a novel visualization technique composed of the tree-
map visualization technique and the Venn-diagram technique in combination with
a force-directed layout algorithm in order to visualize the complex classification
structures in a Cristal. Important aspects of the visualization are the combination
of a hierarchical structure and a graph structure, as well as the usage of various
perceptual cues that take advantage of the human visual perception system.

Additionally, we have created a visualization tool that implements the pro-
posed visualization technique. To test the functionality and usability of the visu-
alization method, we have conducted a user experiment with a number of partici-
pants.
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Chapter 1

Introduction

At Statistics Netherlands (SN), a large amount of data about the Netherlands is
collected, edited, estimated, aggregated and finally published in the form of tables.
During the most recent years, the policy at SN has been to gather all information
that has been published into one big database, called StatLine. Due to this policy,
StatLine has become a database with a big collection of independent tables with
information concerning all possible topics. The StatLine software development
team has first searched for the most generic form in which the individual tables
can be structured. As a next step, it has searched for ways in which the relations
between the individual tables can be made more generic. The result is a generic
model called ’Cristal’, which can contain all the information of the individual
tables, i.e., data and metadata, as well as the relations between the tables. The
current implementation of the Cristal model only supports metadata, but support
for micro and macro data will be added in the future. Section2 gives a detailed
explanation of the Cristal model as an addition to the following short description
of the model.

The acronym ’Cristal’ stands forCubic,Raw orIntermediateSTatisticAL in-
formation. The name shows that the model is not only meant to hold published
data (often structured in ’Cubes’), but that unpublished data (’raw’ and ’intermedi-
ate’ data) can be structured by means of the Cristal model as well. This means that
virtually all types of statistical information, such as micro data taken from ques-
tionnaires or registers, intermediate edited data, or partly aggregated data, can be
modeled using the Cristal model. Note that an instance of information modeled
by means of the Cristal model is called a Cristal.

The information in a Cristal is stored in a structured way. Since statistical
information very often contains multiple hierarchical levels, the Cristal model al-
lows this kind of hierarchical structure, however, the elements in a Cristal have
to comply with a few basic rules. Currently there exists an implementation of
the Cristal model in the form of a dynamic link library, which enforces these ba-
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Chapter 1: Introduction 2

sic rules. An editor is available to perform basic operations on a Cristal, such as
storing information extracted from a database into a Cristal, adding information
by hand, storing a Cristal, etc. The editor uses a tree structure to visualize the
Cristal, but this is not sufficient to show all the relations between different ele-
ments in a Cristal. The distinctive hierarchical structure of a Cristal is difficult to
comprehend and, therefore, a good visualization is needed to get a clear view of
the structure of a Cristal.

As is the case with any visualization tool, navigating through the data is an im-
portant factor. The human visual perception system can be a great asset in visual-
izing and navigation information, when carefully taken advantage of. Knowledge
of the human visual perception system is, therefore, required, in combination with
viewing, navigating and possibly editing the information.

The structure of the Cristal model is explained in Chapter2. Subsequently,
Chapter3 outlines the requirements for the visualization. Chapter4 describes dif-
ferent possible visualization techniques, as well as their limitations. In Chapter5
we propose a novel visualization technique that addresses the known limitations
of existing techniques, followed by an explanation of the developed visualization
tool. The proposed visualization technique requires a force model, which is ex-
plained in Chapter6. In Chapter7 we describe the user experiment we conducted
to test the visualization tool. Subsequently, Chapter8 addresses the possibilities
and the limitations of the visualization technique, as well as possible areas of fur-
ther research.



Chapter 2

The Cristal model

In an effort to stay ahead of the competing statistical institutes, it is strategically
important for Statistics Netherlands (SN) to focus on the special added value that
national statistical offices can offer. Key factors are probably the quality and the
coherence of the statistical information they supply. Hence national statistical
institutes should further invest in the quality and coherence of their information to
keep ahead of the competition.

For several years, SN has stored all the published statistical information in
the output database. As such, this single database contains all publications of
the past years. Moreover, the information in this database is freely accessible for
everyone on the Internet through a system called StatLine. However, the quality
and especially the coherence of the data in the output database is still moderate,
due to the fact that statisticians all create their own publications that each have
different structures and, therefore, can not be combined although the topics are
often related.

The output database contains a heterogeneous collection of independent sta-
tistical cubes. In short, a cube is a multi-dimensional collection of information
regarding the same subject. An edge of a cube contains a hierarchical classifica-
tion regarding a certain subject, while the center of the cube contains the data that
relates the different subjects at the edges of the cube. Clients can select subsets
of cubes to display in statistical tables. The statisticians who enter the cubes in
the output database are completely free to introduce their own definitions, sta-
tistical units, classifications and target variables, independent of the other cubes.
Since clients become more demanding, their request for relational information
increases. Clients want to combine neighboring cubes, so they can view more re-
lations between certain areas of interest. However, since the statisticians are free
to create their own definitions and classifications, often the edges of the cubes
address the same subject but have a different classification structure. To glue the
different cube-edges together, more information is needed about the specific hier-
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Section 2.1:Categories 4

archy, statistical units and definitions.
Moreover, clients of statistical information tend to ask for more background

information, such as information about

• how the statistical terms are defined,

• how the statistical information relates to neighboring information in the
same environment,

• how the statistical information was obtained.

The problem is that this kind of background information is insufficiently avail-
able. As with many problems, the solution is not straightforward. The Cristal
model [9, 10] attempts to solve this, by providing a model for the relations be-
tween heterogeneous kinds of statistical information.

A priori statistical information

Generally, statistical information can be split into two parts: information that is
known beforehand (mainly variables, classifications and values) and statistical
observations that are derived from the information already known (mainly obser-
vations types and observations). The former may also be calleda priori statistical
information and the lattera posteriori information. The abstract Cristal model
supports both types of information, but the current implementation of the model
only supportsa priori information. Therefore, we only discuss thea priori in-
formation, i.e., the information structure that is known beforehand, because this
concerns the complex graph structures we are dealing with in this project. For a
detailed explanation of thea posterioriinformation involving statistical observa-
tions, which has not been implemented yet, we refer to van Bracht [9, 10].

The basic elements ofa priori statistical information are thea priori cate-
gories, and thea priori part-whole relations between them. However, more is
needed to describe statistical information: for example, notions of sets of cat-
egories and of category trees are required. Therefore two extra objects are in-
troduced in the model:levelsfor sets of categories andhierarchiesfor trees of
categories. These different objects are explained in the following sections.

2.1 Categories

In the Cristal model, the termcategorydenotes apredicate, e.g., something that
can be asserted about an object. Examples can be the category ”Amsterdam”,
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which is a predicate for the actual region of the Dutch city Amsterdam, or the
category ”male”, which is a predicate for a male person or animal.

2.1.1 Category relations

The basica priori relations between the categories in a Cristal are the part-whole
relations. There are different kinds of part-whole systems [47], but almost all of
them use the general structure of a partial ordering, which is the basic structure
for category relations in the Cristal model.

In a part-whole relation, one category plays the role of the part and is called
subcategory while the other plays the role of the whole and is called supercategory.
The interpretation of this relation between parts and wholes is that if categoryc1

is a part of categoryc2, thenc1 logically impliesc2. In other words: ifc1 can
be asserted about an object, thenc2 can also be asserted about it. This can be
illustrated by the following examples.

For example, the predicates ”is in France” and ”is in Europe” can both be
asserted about the same object and the first assertion logically implies the sec-
ond. This is obviously because ”France” is considered to be a part of ”Europe”.
However, other situations are also possible: ”is a person” logically implies ”is
a creature”, but ”person” is not considered to be a part of ”creature”. Instead
”person” is a specialization of ”creature”. ”is in France” and ”is a person” are
subcategories of ”is in Europe” and ”is a creature” respectively.

The partial ordering structure is subject to the following rules, wherec1, c2

andc3 are categories:

• c1 ≥ c1 (Reflexivity)
A category is always a subcategory of itself;

• if (c1 ≥ c2) ∧ (c2 ≥ c3) thenc1 ≥ c3 (Transitivity)
If a certain category has both a supercategory and a subcategory, then its
subcategory is always a subcategory of its supercategory;

• if (c1 ≥ c2) ∧ (c2 ≥ c1) thenc1 = c2 (Anti-symmetry)
If two categories are subcategory of each other then these two categories
must be identical (Anti-symmetry).

The partial ordering on the categories in combination with the above rules can
be regarded as a directed acyclic graph (DAG) with a strong hierarchical nature.
This is because the part-whole relations between the categories induce a hierar-
chical structure. Strictly speaking, the structure is DAG, but because of this strong
hierarchical structure, we continue to refer to the category-structure as hierarchi-
cal DAG.
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Figure 2.1: Category subdivision of The Netherlands.

Let’s introduce a running example that is used to explain the structure of the
a priori objects in the Cristal model. We made a classification structure of The
Netherlands, i.e., we made a Cristal. We define the root category to be the pred-
icate ”The Netherlands” that denotes the region of the Dutch country, as can
be seen in Figure2.1. Subsequently we divide the total region in two halves,
for which we create two additional categories ”North Netherlands” and ”South
Netherlands”. After that we divide these two halve countries into quarters of The
Netherlands, for which we create ”North-West Netherlands”, ”North-East Nether-
lands”, ”South-West Netherlands” and ”South-East Netherlands”. Subsequently
we notice that instead of creating a north-south division, we might as well cre-
ate a west-east division of The Netherlands. For this, we create two additional
categories ”West-Netherlands” and ”East-Netherlands”. These two halves of The
Netherlands can be divided into the same four quarters as well.

What we see in this example is that, a category is a predicate, in this case, a
predicate that asserts something about a region. Furthermore, there is are obvious
part-whole relations between the categories, since ”North-East Netherlands” is of
course a part of ”North-Netherlands”. These part-whole relations are denoted by
arrows from whole to part. In this case, ”North-Netherlands” is the supercategory
and ”North-East Netherlands” is the subcategory.

Furthermore, the transitive relations are denoted by dashed arrows. Ususally
we do not define these relations explicitly, but they are implicitly present in a clas-
sification structure in a Cristal. Note that we have omitted the reflexive relations
in the picture, but these relations would be shown as an arrow from a category to
itself.
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2.2 Levels

The previous section about category relation describes the transitivity of category
relations without further comment, since transitivity is a fairly obvious property
of part-whole relations. However, it is possible that non-transitive relations exist
between predicates, i.e., categories. For example, there is an important difference
between regions and countries. The difference is that an arbitrary part of a region
is again a region (transitive). However, an arbitrary part of a country is not a
country again (non-transitive). This is because the countries together form a set of
elements rather than a whole of parts. This means that all the regions can, but the
set of all countries cannot be modeled by means part-whole relations as explained
in the previous section about category relations.

These non-transitive relations are the element-set relations. For example, ifa
is an element ofb, i.e.,a ∈ b, andb is an element ofc, i.e., b ∈ c, this does not
necessarily mean thata is an element ofb, i.e.,a /∈ c. A level is introduced in the
Cristal model to cope with these relations.

Basically, a level is a set of categories, i.e.,L → {c1, c2, . . . , cN}. However,
there are certain restrictions on levels that make them not just a set of categories,
i.e.,

• (L1 → {c1, c2}) ∧ (L2 → {c2, c1}) 6⇒ L1 = L2

Two levels can be different, even if they contain exactly the same categories,

• ∀c1,c2∈L(c1 6= c2)⇒ ¬∃c3(c1 ≥ c3 ∧ c2 ≥ c3)
Two different categories in a level cannot overlap.

Wherec1 andc2 denote categories andL, L1 andL2 denote levels. The first
restriction differs from the usual set theory, because in set theory, two sets are
equal if they have exactly the same elements. As for the second restriction, in set
theory the setS = {{a, b}, {b, c}} contains two sets that contain the same element
b, see Figure2.2. This is perfectly legal in set theory, but forbidden for a level in
the Cristal model. The following example clarifies this second restriction.

Suppose that, in analogy with the previous setS, categoriesa, b, c, x, y and
z are such thata andb are subcategories ofx, b andc are subcategories ofy and
x andy are subcategories ofz. This situation is shown in Figure2.2, where the
arrows are shown from the supercategories to the subcategories, i.e., from wholes
to parts. In this case the setS = {x, y} is legitimate, but the levelL → {x, y} is
not allowed becausex andy overlap, i.e., they share the same subcategoryb.
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Not  
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Figure 2.2: Categories x and y cannot be
in the same level because they overlap,
i.e., they share category b.

2.2.1 Level relations

A level can be a sublevel or superlevel of another level, but this is not necessarily
always the case. If a level is a sublevel of another level then this level is called a
refinement of the other level. This indicates that the refinement relations between
levels are partially ordered as well. The refinement relations between the levels
can be deduced from the partial ordering of the underlying categories according to
the following simple rule: a level is a refinement of another level if every category
in that level has a corresponding supercategory in the other level. Note, however,
that a superlevel may have categories without any corresponding subcategories in
its sublevel.
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Figure 2.3: Refinement relations between levels.

The relations between the levels are expressed in Figure2.3. In both structures,
all the categories in the sublevel have a supercategory in the superlevel and this
is precisely the reason for the relation between the sublevel and the superlevel.
Note that categories can reside in multiple levels and in this case we call the levels
to be overlapping. As showed in Figure2.3, two overlapping levels can have a
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superlevel-sublevel relation as well, since the reflexive relations of the categories
can express the fact that a category in one level has a supercategory, i.e., the same
category, in another level.

The 

Netherlands

South 

Netherlands

East 

Netherlands

West 

Netherlands

North

Netherlands 

South-West

Netherlands

South-East

Netherlands

North-West

Netherlands

North-East

Netherlands

Country

North-South
Division

East-West
Division

Corner regions

Figure 2.4: Levels defined on the classification of The Netherlands.

In our running example we have previously defined a category classification
of The Netherlands. In Figure2.4we have defined levels on this classification. As
stated, a level is a set of categories and in the example we have defined four lev-
els, i.e., ”Country”, ”North-South Division”, ”East-West Division” and ”Corner
regions”. Note that it is not possible to create a level that contains the categories
”North Netherlands” and ”West Netherlands”, because these two categories are
overlapping, since they have subcategory ”Nort-West Netherlands” in common.
As stated, categories in a level are not allowed to be overlapping and, therefore,
such a level would not be allowed.

Furthermore, relations can be defined between the levels in the example that
are not showed in Figure2.4. Since all categories in level ”Corner regions” have
a supercategory in level ”North-South Division”, the former level is a sublevel
of the latter. At the same time, all categories in level ”Corner regions” have a
supercategory in level ”East-West Division”, and, therefore, the former is also
a sublevel of ”East-West Division”. This means, that the bottom level has two
superlevels. Note that the level ”Country” has two sublevels, namely ”Nort-South
Division” and ”East-West Division”. Note also that the relations between levels
are refinement relations. A sublevel is a refinement of a superlevel.
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2.3 Hierarchies

On top of the category and level structure, a hierarchy structure is defined. A sin-
gle hierarchy supports storage of a tree structure of categories, but a classification
structure can contain multiple hierarchies that can share their categories, so the to-
tal category structure is a graph. A hierarchy is a sequence of levels in which each
next level is a refinement of the previous level, i.e., each next sublevel is different
from its superlevel. The order for the levels in a hierarchy must comply with the
order of the refinement relations between the levels. As such, the sequence of
levels in a hierarchy is not a tree structure, but due to the restrictions on levels, the
underlying category structure in a hierarchy is always a tree structure.

      Country

Corner regions

East-West
Division

North-South
Division

North-South
hierarchy

East-West
hierarchy

Figure 2.5: Hierarchies defined on the classification of The Netherlands.

Our running example has been extended with hierarchies, as shown in Fig-
ure2.5. The levels are shown again in gray with a dashed border. This figure also
includes the relations between the levels as arrows from superlevel to sublevel.
We have defined two hierarchies on the classification of The Netherlands, namely,
”North-South hierarchy” and ”East-West hierarchy”. The thick black arrows de-
note the hierarchies as an ordered sequence of levels. Multiple hierarchies are
possible, but usually we are only interested in hierarchies that range from a top
level to a bottom level. In our example, only two hierarchies from top level to
bottom level are possible, and they are both shown in the figure.

Note that, when the category structure is closely examined (see Figure2.1), the
graph of categories really consists of two tree structures that have been placed on
top of each other. One tree structure is a division of the netherlands via north-south
into four corners, while the other tree structure is a division of the netherlands via
east-west into four corners. These two tree structures are represented by the two
hierarchies we have defined previously. Therefore, a single hierarchy can model
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a tree structure of categories, but multiple hierarchies model a graph structure of
categories.

2.4 Variables

The Cristal model has two main kinds of variables: simple variables (that can
be numeric or textual variables) and classification variables. A simple variable
is simply based on a single set of values, while a classification variable is based
on a hierarchical structure of categories with extra support for multiple levels and
hierarchies.

2.4.1 Simple variables

The simple variables in the Cristal model support sets of values. These can be
numerical values, such as ”1 meter”, ”2 meter” and ”3 meter” (including the mea-
surement units), but can also be textual values, such as the addresses of each
inhabitant of a country. In the current implementation of the Cristal model these
simple variables are split up in numerical variables and textual variables.

The values of a simple variable are ordered, but it is assumed that the order
relation is not equal to a relation between parts and wholes. In other words, even
though ”14 meter”< ”23 meter”, ”14 meter” is not considered a part of ”23 me-
ter”.

Moreover, in case of numerical values with a single measurement unit, the
measurement unit is often omitted to make it possible to manipulate any two val-
ues by addition, subtraction, multiplication and division. Then, usually, the result
of the manipulation is again a value in the numeric simple variable.

In practice, the simple variables are often extended by extra non-numeric val-
ues like ”not a number”, ”infinity”, ”missing”, ”not possible” and so on. Unfor-
tunately, these extra values complicate ordering, addition, subtraction, multiplica-
tion or division.

Theoretically speaking, the values of simple variables should also be treated as
categories. However, since these values and their ordering relations are considered
trivial, no category structure is being constructed for the simple variables.

2.4.2 Classification variables

The, for this project, more interesting variables are the classification variables.
As opposed to a simple variable, a classification variable is a complete system of
categories, extended with levels and hierarchies. It can contain any combination
of the three entities previously described:
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• A collection of partially orderedcategories. If a category is in a classi-
fication variable, then all its subcategories are in that same classification
variable as well,

• A collection of partially orderedlevelsdefined on the partially ordered cate-
gories. The ordering of levels is deduced from the ordering of the categories,

• A collection ofhierarchiesdefined on the partially ordered levels. Each hi-
erarchy in the collection is a sequence of partially ordered levels, complying
with the ordering of the levels.

To relate with our running example, the complete structure of categories (Fig-
ure2.1), levels (Figure2.4) and hierarchies (Figure2.5) can be stored using one
classification variable.

2.5 Identification and attributes

Every object in the Cristal model, i.e., a category, a level, a hierarchy and a vari-
able, has at least aname, akey, adescription, astartdate, anenddateand aglob-
ally unique identification(GUID) number. These are the basic attributes of each
object. The set of attributes can be extended in two ways. They can be extended
with any other kind of user defined attributes and they can be extended for their
translations in any other language.

As expected, thename-attribute denotes a short textual representation of the
object. Thedescription-attribute contains a longer textual description of the ob-
ject, and theguid-number is used as an identification number. Thekey-attribute
is a special attribute, in the sense that it is used to support different versions of
the same objects. Since objects are identified with theirguid-number, this means
that two objects with the sameguid-number are exactly the same. It is possible
to create a new object that represents a new version of another object and thus
very much resembles this other object, but this would result in a new object with
a newguid-number. To be able to track these different versions of objects, the
key-attribute is used. Objects that have the samekeyare considered to represent
different versions of the same object. Since only one version of an object can be
valid at any given time, thestartdateandenddateattributes are used to denote
the time frame in which the object is valid. Note that these time frames can not
overlap for objects that have the samekey. The implementation of the Cristal
model guards these restrictions and throws exceptions when these restrictions are
violated.
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2.6 Summary

The most interesting part(s) of the Cristal model are the classification variables.
These are the entities that contain the entire complex structure. To summarize,
from the top to the bottom, an instance of the Cristal model, i.e., a Cristal, can
contain classification variables, these classification variables can contain hierar-
chies. Hierarchies are in effect ordered sequences of levels, or tree structures of
categories. Levels are sets of categories that have no part-whole relation.

Speaking from bottom to top, a Cristal contains a hierarchical directed acyclic
graph (DAG) of categories, on top of which the levels are defined as sets of cate-
gories. According to the partial ordering of the categories, the levels are partially
ordered as well. An ordered sequence of levels is a hierarchy and multiple hierar-
chies can form a classification variable.

Note that although the structure of categories is a hierarchical DAG, it is fairly
possible for an instances of the Cristal model that the category structure is a hi-
erarchical tree, for instance when there are no categories with multiple supercate-
gories.

 r

 u  v  x  y

 a  b  c  d

L1

L3L2

L4

H1 = {L1, L2, L4}
H2 = {L1, L3, L4}

Figure 2.6: The total structure of a classification in a Cristal.

Additionally, Figure2.6schematically shows the total structure of the running
example used throughout this chapter. The small white circles with the lowercase
characters denote the categories with the relations between them showed by ar-
rows. The gray ellipses with dashed border denote the levels, ranging fromL1
to L4. The relations between the levels are represented by the dashed arrows.
In order to make the figure not anymore complicated, a textual representation
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of the hierarchies is shown below the figure. HierarchyH1 represents the se-
quence of levelsL1, L2, L4, while hierarchyH2 represents the sequence of levels
L1, L3, L4.

This complex structure makes it possible to relate similar classifications taken
from different statistical tables. Furthermore, thanks to the fact that almost all
entities can store their descriptions as attributes (in possibly several languages),
it is always clear how the statistical terms are defined. Moreover, through these
attributes, different versions of entities can be defined, as well as followers an
predecessors for entities. Since one of these attributes is an always uniqueguid-
number which is used for identification, it is always clear whether two objects
represent the same entity in the classification, because they have the sameguid-
number.



Chapter 3

Requirements

As stated in the Introduction (see Section1), the program should be able to create
a comprehensive visualization from the information in a Cristal, in special the
information in a classification variable (see Chapter2), because it is the most
complex part of the Cristal model. Since a classification variable contains a lot
of information, the visualization is not trivial, especially because the structure of
the information is quite particular, as explained in Section2. During the time the
Cristal model was developed at SN, a number of people have worked with the
first versions of the implementation of the model. The following requirements for
a visualization tool are based on these first experiences with the Cristal model,
but also on the developers’ vision on the usage of the Cristal model. First we
outline the requirements and the last section of this chapter (Section3.5) gives a
numbered list of the requirements including their priorities.

3.1 Elements to visualize

The most important purpose of the visualization is to clarify the relations between
the categories, which has, therefore, top priority. A little less important is the
visualization of the levels and their relations with the categories. Also, the visu-
alization of the changes in the category structure throughout the time has some
degree of importance. Furthermore, the visualization of simple variables has least
importance. Of course, the visualization should contain as much information as
possible, but too much information would only clutter the screen and does not
improve comprehension. There is a certain trade-off here which favors the visual-
ization of the categories.

From this, we can create the following requirements:

• RE1: Visualization of categories (top priority),

15
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• RE2: Visualization of levels (medium priority),

• RE3: Visualization of hierarchies (low priority),

• RE4: Visualization of simple variables (low priority),

• RE5: Visualization of changes in time (medium priority).

The average classification contains up to 1,000 categories, but classifications
with up to 20,000 or 30,000 categories are currently present in the database, there-
fore, the aim is to visualize this large number of categories. It is obvious that the
performance will probably not be very good with this number of categories.

As stated in Chapter2, the structure of categories is partially ordered. In
practice, the path from root to leaf is never over 10 categories long. Typically,
each category has about 5 subcategories, except the supercategories of the leaves.
Such categories often have about 20 subcategories. When drawn as a hierarchical
graph structure, the graph would be very wide, but not very deep.

The following requirements can be defined:

• RE6: Visualization of up to 1,000 categories comprehensively (top priority),

• RE7: Visualization of up to 40,000 categories (medium priority).

3.2 Usability and functionality

The target group of users will be statisticians who will use the program to get
an overview of the statistical metadata they are researching. The statisticians are
used to work with a computer, but, nevertheless, the user interface of the program
should be easy to use. Navigating through the structure should be easy and mostly
intuitive.

The following requirements can be defined from the previous:

• RU1: Easy to use for statisticians (top priority),

• RU2: Easy navigation (top priority).

The main function of the program is to visualize the contents of a Cristal, in
special the contents of classification variables. The program will be mainly used
by statisticians that enter and manipulate the information in the model. They have
to get a detailed overview of the structure of the information to better understand
it, which in turn helps them to draw conclusions about it. Currently, not all sta-
tisticians use the Cristal model to store their classification structures. To increase
uniformity, the aim is to get all statisticians to work with the model. But for this
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to happen, the statisticians all have to understand the rather complex model. As a
result of this, the visualization should also aid in the initial understanding of the
abstract Cristal model.

From this, the following requirements can be extracted:

• RF1: Aid in understanding of specific classification structure of a Cristal
(top priority),

• RF2: Aid in initial understanding of Cristal model (top priority).

Following from this, it should be possible to write the images the visualiza-
tion creates to disk in a widely used file format (.jpg or .bmp), for instance, to
use within a presentation about the Cristal model. Furthermore, animation of the
movements can be used to increase comprehension during navigation, but this is
not top priority. In the case animation is added to the visualization, storing the
animation in a widely used file format (.avi) would be a great asset for use in
presentations about the Cristal model.

Currently, a program exists to enter the information, an in-place editor is,
therefore, not required, but could be added with low priority to increase func-
tionality and usability.

Requirements following from this:

• RF3: Use animations to increase comprehension (medium priority),

• RF4: Write images to disk in a widely used file format (top priority),

• RF5: Write animations to disk in a widely used file format (low priority).

• RF6: In-place editor (low priority).

Furthermore, the main goal of every visualization is to improve the compre-
hension of the displayed information. As the amount of information or the com-
plexity of the information increases, it gets harder to obtain insight in the infor-
mation and to be able to use the information in a suitable way. Speed plays an
important role. When the user can obtain insight in the information set quicker,
he/she is able to use the information quicker which will result in a quickly found
solution for the problem.

Of course, the above is true for all visualizations. Since the designer of a
visualization tool wants to influence the actions and decisions the user makes upon
using the tool, we continue this section by defining requirements according to the
intended actions and decisions.

The full Cristal package not only includes the Cristal model in the form of
library that can be used by programmers to include in their projects, but also a
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Cristal editor. This editor, the Variable Editor (see AppendixB), can be used to
create and/or modify a Cristal. Since a user of the editor has to gain insight in
the opened Cristal to be able to edit it, the Variable Editor contains a tree view of
hierarchies, levels and categories as well as a properties grid that contains specific
properties of the selected object, see FigureB.1.

The intention of the visualization tool is to help in the understanding of the
Cristal model. The current tool available, the Variable Editor, has certain lim-
itations, for example that the graph structure of categories is transformed into
multiple tree structures which requires certain categories to be present in multiple
trees. We, therefore, want the visualization tool to be more comprehensive to the
user than the Variable Editor. This would mean that the visualization tool is an
improvement, which is of course the intention of the designer.

Furthermore, we want the user to use the easiest possible data structure for
their information sets, i.e., they use a tree when the information can be modeled
using a tree structure, otherwise use a graph structure. Therefore, we want tree
structures to look more appealing then graph structures.

Moreover, we want the user to create data structures with the least amount of
errors. One type of error is the use of unnecessary objects. Since they are unnec-
essary, they can be left out of the information set, which makes the information
structure less complex. Another error, which we want to address, is the number
of objects that are invisible in the existing editing tool, the Variable Editor. They
have to be pinpointed by using the visualization tool and subsequently be removed
from the Cristal.

The requirements following from this:

• RF7: Improvement over Variable Editor (top priority),

• RF8: Use easiest possible data structure (top priority),

• RF9: Avoid unnecessary objects (top priority),

• RF10: Show objects invisible in Variable Editor (top priority).

3.3 System

Since the visualization tool will be used in an office environment on desktop sys-
tems, it should be aimed to run on a high-end desktop system. The current im-
plementation of the Cristal model is in the C# programming language, so the vi-
sualization program should be implemented in C# as well. The program should
run on the Windows operating system, extended with the Microsoft .NET runtime
libraries. Since usability is important and the users are familiar with the Windows
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operating system, the program should look and feel like a Windows program. The
program should be desktop-based, not web-based.

Following from this, the next requirements can be defined:

• RS1: Visualization should run on high-end desktop system (top priority),

• RS2: Tool implemented in C# (top priority),

• RS3: Windows look and feel (top priority).

3.4 Language

It should be possible to select the language of the interface of the program. The
program should support at least Dutch and English. A lot of Cristals are stored
in multiple languages, so the program should also be capable of displaying the
Cristal in the selected language.

The following requirements are defined from this:

• RL1: Support interface in multiple languages (top priority),

• RL2: Support display of Cristal in multiple languages (top priority).

3.5 Requirement matrix

The following table lists the previously detailed requirements. Each requirement
is given a number for easy reference as well as a priority. The numbering, as well
as the priority ranking is explained in Table3.2.
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Number Requirement Priority
RE1 Visualization of categories 1
RE2 Visualization of levels 2
RE3 Visualization of hierarchies 3
RE4 Visualization of simple variables 3
RE5 Visualization of changes in time 2
RE6 Visualize up to 1,000 categories comprehensively 1
RE7 Visualize up to 40,000 categories 2
RU1 Easy to use for statisticians 1
RU2 Easy navigation 1
RF1 Aid in understanding of specific structure of a Cristal 1
RF2 Aid in initial understanding of Cristal model 1
RF3 Use animations to increase comprehension 2
RF4 Write images to disk in a widely used file format 1
RF5 Write animations to disk in a widely used file format 3
RF6 In-place editor 3
RF7 Improvement over Variable Editor 1
RF8 Use easiest possible data structure 1
RF9 Avoid unnecessary objects 1
RF10 Show objects invisible in Variable Editor 1
RS1 Visualization should run on a high-end desktop system 1
RS2 Implemented in C# 1
RS3 Windows look and feel 1
RL4 Support interface in multiple languages 1
RL5 Support display of Cristal in multiple languages 1

Table 3.1: List of requirements.

Number Type of requirement Priority Explanation
RE Requirements on elements to visualize 1 Top priority
RU Usability requirements 2 Medium priority
RF Functionality requirements 3 Low priority
RS System requirements
RL Language requirements

Table 3.2: Legend for list of requirements (Table 3.1).



Chapter 4

General information visualization
techniques

As stated in Chapter3 in combination with Chapter2, the structure we want vi-
sualize is a hierarchical directed acyclic graph (DAG), namely the graph of cat-
egories. On top of that, we want to visualize different relations between the cat-
egories, namely the levels, and we want to visualize the changes in time for the
categories. To comply with these requirements, we want to create a new visual-
ization tool or enhance an existing visualization tool.

Therefore, we first try to define the important factors of a visualization in com-
bination with the type and structure of the information we want to visualize. After
that, we discuss a few existing visualizations that are able to visualize the multiple
overlapping hierarchical classification structures we are looking for, followed by
a conclusion.

4.1 Introduction

In general, data visualization is used to gain insight in data, where data is defined
in the broadest sense possible. Wherever information is being handled, visualizing
this information can be a great asset to be able to comprehend the matter. Data
visualization is applicable to a large number of areas, from medical appliances
to physical data models, from a file system to statistical data, for example at SN.
Usually visualization of data with an inherent geometry (like molecular or scanned
medical data) is called scientific visualization; visualization of abstract data like
tables, trees, graphs and also Cristals, is called information visualization.

There are three important factors in a visualization, namely the human visual
perception, the display itself and the interaction technique. These three compo-
nents have to be chosen carefully to get the greatest revenue out of the visual-
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ization. Of course, the type of information that has to be visualized plays an
important role in the choice of these three components. To serve as an overview,
Gershon et al. [23] have created a wide-ranging taxonomy on topics about hu-
man visual perception, display techniques and interaction techniques. Often, the
boundaries between these three topics are fuzzy, because in a typical visualiza-
tion, these three components need to work closely together to build up the visu-
alization. The tutorial of Gershon et al. partitions the display technique category
into sub-categories such ashierarchies, node-and-linkand other, while the in-
teraction techniques can be classified into the categoriesfocusing, filtering and
linking. Since this project concerns the visualization of multi-dimensional hierar-
chical graph structures, we focus on thehierarchiesandnode-linkcategories.

4.2 Human visual perception

As stated above, an important part of a visualization is the human factor, more
specifically, the properties of human perception of visual information. Perceptual
cues all have a different way of affecting the human visual perception system.
Since these perceptual cues are important for humans, visualization can make
use of these cues to their advantage. A lot of research has, therefore, been done
[51] that provides experimental evidence on which visualization techniques are,
or should be, based. Most of the literature regarding this subject concentrates on
the effects of motion and color.

The power of basic visual attributes such as color, size and brightness comes
from the fact that they are part of so-calledpre-attentive cues. These cues are
visual attributes that immediately ”jump out” of the image or scene. The human
visual processing system unconsciously marks these elements. Visual properties
can, therefore, be split into two categories, one with the pre-attentive cues and the
other with the visual properties that require an effort to be recognized. The two
most important pre-attentive cues are motion and color, where color is defined in
the broadest sense of the word, including texture, hue, intensity and contrast. The
human object-detection system is mainly based on motion-detection, in combina-
tion with detection of colors. In general, when something with a distinct color
than the surrounding moves with a different speed than the surrounding, we hu-
mans mark that something as an object. Therefore, motion and color are two
important cues in a visualization, which are elucidated in the following sections.

4.2.1 Motion

Since motion is an important cue in human life, various studies have investigated
the ability of motion to increase the power and comprehension of information vi-
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sualizations. For example, Hubona et al. [34] and Ware and Franck [52] have
investigated the possibilities of using motion as an aid for dis-entangling other-
wise ambiguous 3D graph structures. Their findings show that rotation of a 3D
network made its structure much clearer than with static representations or even
stereoscopic-depth views of the static structure.

Fundamental research into the properties of motion has been done by Bartram
[2], who has explored motion as a technique for encoding further dimensions of
an information set. Bartram states that perceptual properties such as harmonic
oscillation, blinking and frequency of movement are suitable for pre-attentively
representating some types of information. Later, Bartram expanded this by theo-
rizing that objects oscillating in a common phase have an ability to stand out as a
group from other objects [3].

Finally, Bederson and Boltman [7] show that for some simple tasks, animat-
ing between viewpoints in an abstract information display improves the ability of
users to reconstruct that information space. In effect, animation allowed the users
to clarify their mental representations of the information without any diminishing
performance, which reflects the work of Ware and Franck [52] for 3D structures.

4.2.2 Color

Color is very important in identifying groups of objects and, therefore, using the
right color for a visualization is an important topic in information visualization.
For example, the background color can easily affect the perception of foreground
colors, therefore, a neutral background should be chosen when possible.

Color itself can be regarded as three dimensional. These dimensions can be
red, green and blue (RGB), or hue, saturation and value (HSV). The dimensions
might as well be obtained from other color spaces, such as the LUV color space.
The LUV space is designed to be a perceptually uniform color space, where the
L value encodes perceived luminance, i.e., the lightness, and combinations of the
U and V values define chromacity, i.e., the actual color. Within any of these color
spaces, a specific color will map to a specific point in the 3D space.

Since the RGB color space is perceived by humans as non-linear, Levkowitz
and Herman [39] describe a color scale that correct this non-linearity of the RGB
scale in human vision. The distance of two colors on their linearized color scale
is proportional to the perceived difference between the two colors.

Other perceptual and physiological advantages and pitfalls of color were de-
scribed by MacDonald [40]. Since the human eye is less sensitive to blue than it is
to green or red, fine detail should not be displayed in blue, according to MacDon-
ald. Color, like other perceptual cues, can be misleading when it is used without
proper consideration of its properties.
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Furthemore, experimental studies by Healey et al. [30, 31] have demonstrated
the conflicting effects of several perceptual visual cues, such as color, shape and
motion. They found that the use of color tends to dominate and effectively mask
information displayed by shape. Such perceptual conflicts should, of course, be
avoided as much as possible.

These experimental findings provide a basis for developing information visu-
alization systems that take advantage of the properties of the human visual system.
However, one of the criticisms of visualization is that its researchers and practi-
tioners don’t take the perception research sufficiently into account. Mackinlay
[41] underscribes this and states that understanding and taking advantage of the
interaction between perception and cognition will be a major topic for information
visualization in the future.

4.3 Display techniques

Usually information is abstract, but it is often structured in a certain way, for ex-
ample a network or a hierarchy. Different display techniques deal with the size,
layout and legibility on the screen. Since we want to visualize multiple overlap-
ping hierarchy structures, we do not follow Gershon et al.’s categorization, but
we focus on the three most relevant information types for this type of data struc-
tures: hierarchies, graphs and networks (node-link data), and multi-dimensional
information.

4.3.1 Hierarchies

Since the graph of categories is a hierarchical structure, a relevant research area is
the area of hierarchy visualization. A hierarchical structure is an efficient way
of storing, classifying and manipulating objects. It requires the objects to be
grouped and sub-grouped according to common attributes. In practice, informa-
tion is very often hierarchically structured, because a lot of information can be
grouped and sub-grouped. Therefore, we find hierarchical information in file sys-
tems, document classifications, taxonomies, organizational structures and sports
league structures, for example. As a result, a great deal of effort has been put into
the visualization of these hierarchical data structures in the field of information
visualization.

Hierarchies tend to be strictly trees, i.e., structures in which an object, or node,
has exactly one parent object/node (except the root, which has no parent). How-
ever, this is not always the case, as some more complex structures can be hier-
archical too, such as the classification structure in a Cristal. Furthermore, these
structures occur with multiple taxonomies on the same subject, for example in the
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botanical world. When taxonomists study and classify organisms to create a clas-
sification hierarchy that shows the organisms natural relationships, they group the
organisms into different taxa, i.e., categories. These lower level taxa are placed
in higher level taxa according to some criteria, and this structure forms a hierar-
chy. Different taxonomists create different taxa, but at the lowest level they are all
classifying the same organisms. When the taxonomies of different taxonomists
are combined, a clear hierarchical structure is formed, but it is certainly not a tree
structure. In short, a hierarchy can also contain elements or nodes that have more
than one parent. However, we discuss representations suitable for hierarchical
trees first.

The two classic approaches to drawing tree structures are the node-link and
nested box representations. The node-link representation generally visualizes
nodes within the tree structure as small boxes, connected by lines that reflect the
logical connections, or links, between the nodes. The nested-box representation,
on the other hand, represents trees by drawing ”child” nodes as smaller boxes
within a larger box representing the ”parent” node that contains it. This process is
then carried out recursively, dividing the smaller nodes to be able to fit their child
nodes and so on. The latter is often called a ”tree-map” representation.

Figure 4.1: Cone tree by Robertson, Mackinlay and Card [44].

An early hierarchical tree information visualization was called ”Cone Trees”
by Robertson, Mackinlay and Card in 1991 [44], developed as part of the Informa-
tion Visualizer project at Xerox PARC [12]. A tree structure is displayed in three
dimensions in an attempt to increase the number of nodes that can be presented
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on the screen, as shown in Figure4.1. The links from a particular node to its child
nodes form a translucent cone. The child nodes are arranged uniformly around
the cone’s base. Selecting any node brings that node to the front of the view of
the cone tree in an animated sequence. The use of animation preserves the users’
mental model of the visualization while the repositioning of the nodes takes place.
As stated in Section4.2.1, an animation is by far superior to the alternative abrupt
moving to the final positions. However, cone trees suffer from viewing problems
caused by occlusion1 in the 3D representation, as seen in the figure. Still, its
appearance and possibilities gave other researchers inspiration to investigate how
this visualization method could be improved or extended. Jeong [36] adapted the
cone trees to tackle the occlusion problem by using reconfigurable discs instead
of cones. Others, namely Tversky et al. [48] and later Carrìere and Kazman [13],
studied and began to resolve the problems of enhancing the perceptual cues used
in cone trees, as well as advanced filtering and focusing mechanisms.

Aware of the fact that traditional node-link tree diagrams waste approximately
half of the screen space, Johnson and Shneiderman developed Treemaps [37] as
a space-efficient approach to increase the size of trees that could be displayed on
the screen.

Figure 4.2: Nested tree-map layout by Johnson and Shneiderman [37].

Tree-maps, an example of which is shown in Figure4.2, use a representation
with nested boxes in which a specified screen area is divided according to the

1Occlusion occurs when two objects in 3D space are projected on top of each other on a 2D
screen. The nearest object is occluding, i.e., blocking the view to the farthest object, and is,
therefore, called the occluder.
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number of root nodes in the tree. These root node areas are then sub-divided ac-
cording to the number of children of each node. This process continues recursively
down to the leaf nodes. The relative size of each area is calculated according to
a property of the data. The original application was used to visualize a file sys-
tem structure, and used the file and directory sizes to calculate the size of each
area. This approach is extremely space-efficient, because it uses all of the space
available in the original area, but the leaf nodes are very prominently visible as
opposed to the internal structure of the data. To solve this problem, the internal
nodes can be given borders to make it more clear that they reside underneath their
child nodes, but this obviously reduces the space available for the display of the
child nodes.

Figure 4.3: Cushion tree-map layout by van Wijk and van de Wetering [53].

Tree-maps have proven to be, like cone trees, successful enough to unleash fur-
ther investigations into its usage. The use of tree-maps in other data domains has
been explored, for instance in analytical decision charts by Asahi et al. [1]. Vari-
ous extensions and refinements to the original design have been developed, such
as using 3D effects to improve the perception of the structural depth by van Wijk
and van de Wetering [53], and improvements on the aspect ratios of displayed
leaves by Bruls et al. [11]. Lately, research has focused on layout algorithms that
combine stability and pleasing aspect ratios between the nodes in a tree-map [45]
and layout of objects of bounded minimal size [6]. A pleasing aspect ratio is a
height/width ratio for the rectangles in a tree-map that is close to one, such that
the rectangles are close to squares. Recently, Engdahl, Köksal and Marsden [18]
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use tree-maps to visualize threaded discussion forums on PDAs.

4.3.2 Node-link structures

As stated we want to visualize the graph of categories. A graph structure is usually
known as a node-link structure. The nodes, as with trees, represent individual ob-
jects and the links represent the relations between them. Many different types of
graphs exist. The least complex graphs are the trees, which have their own special-
ized visualization approaches as previously described. A little more complex are
the Directed Acyclic Graphs (DAG) relevant in this project. Multigraphs and full,
general graphs are the most complex graphs. Herman, Melançon and Marshall
[33] describe the common graph structures in detail, including their associated
visualizations, in their survey paper.

The visualization of general types of graph structures is difficult compared to
visualizing trees and simple hierarchies. In general, the problem lies in the fact
that a graph is not a simple hierarchy, and, therefore, is not lending itself for a
hierarchical layout. To overcome these difficulties, attempts have been made to
transform the graph to a type of a tree, which is much easier to visualize. For
example, Hao et al. [28] use invisible links between nodes to avoid the links clut-
tering the screen. They make a number of links in the graph invisible, such that
instead of the full graph, a hierarchical tree structure is always displayed, which is
a lot more comprehensive. Furthermore, Munzner [42] uses a technique that com-
putes the spanning tree of a graph. A layout for this spanning tree is subsequently
calculated using the cone tree method (see also Section4.3.1) and displayed in 3D
hyperbolic space. Using these methods, screen clutter is largely avoided to create
a more understandable visual layout.

Another option is to restrict the graph such that it has properties that lend
themselves to be visualized more understandable. Bartram et al. developed the
Ztree [4] that displays a tree-like graph with the tree portion in a nested tree-
map style and the other relations displayed as cross-links between the appropriate
nodes (or sets of nodes) in the hierarchical structure. The display of the Ztree can
be described as a combination of a pure tree layout, where further properties are
revealed through user interaction (this is explained in Section4.4).

Finally, another main display technique in information visualization for draw-
ing a full graph is to use a self-organising system that positions the nodes and
links of the whole graph according to a set of rules. These rules are defined with
the idea to produce visually pleasing layouts, but obviously, the final judgment
of this is down to the user, not the algorithm. Harel and Koren [29] focus on is-
sues such as reducing visual edge-crossings and promoting visual symmetry in the
case the graph has symmetrical properties, to make complex visualizations more
understandable.
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Figure 4.4: The HyperSpace web viewer [54].

An example of a graph visualization that is applied to a specific domain is
HyperSpace [54] which is displayed in Figure4.4. HyperSpace visualizes the hy-
permedia structure of the World Wide Web (WWW) as a graph. Individual pages
are shown as circles and links between pages are represented by lines between the
nodes in the visual representation. HyperSpace visualizes the graph by letting the
user select an area of interest, after which the related pages move closer together
and the unrelated pages move further away. In the end a graph with clusters of
related pages is formed and displayed.

The type of self-organising structure HyperSpace uses is called a force-directed
algorithm that uses a spring-mass model (see the next section). Such layout algo-
rithms are used in many systems such as HyperSpace’s successor Narcissus [32].
The effect of this clustering is analogous to the concept of grouping in drop-down
menus. Similar items are grouped together and the user recognizes that they are
sharing common attributes, because they are positioned closely together.

Force-directed layout

A force-directed layout algorithm calculates the positions of a group of entities
according to the links between them. The original method was introduced by
Eades [16]. In short, the algorithm works as follows: nodes are replaced by steel
rings and the links between them depict springs that have a certain ”strength” or
”stiffness”, as showed in Figure4.5.
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Figure 4.5: Physical spring model.

The algorithm iteratively calculates the forces modeled by the springs and the
nodes are moved in the direction of the calculated forces to minimize the overall
energy of the system, as listed in Section6.1. This is exactly the way an actual
physical system would move. For example, two distant nodes connected by a
strong spring would be moved faster and closer toward each other, because of
the effects of the spring. Two close nodes move away from each other, since the
spring will ”push” instead of ”pull”. Also, often a repelling force between all
nodes is used, typically according to the electrostatic forces working on particles
with similar charge. These repulsion forces usually help to spread out the nodes
for a more pleasing layout and help to avoid overlapping node representations.

The spring-mass model has often been subject to refinements, including those
of Fruchterman and Reingold [20], Kumar and Fowler [38] and Gansner [22].
Fruchterman and Reingold have enhanced the algorithm with uniform edge lengths
as well as an increased degree of symmetry in the layout, Kumar and Fowler ex-
tended the algorithm to three dimensions and Gansner tackled the problem of
nodes occluding each other by using unfavorable positioning. Another type of
force-directed model is based on a process known as simulated annealing [15].
It is more costly in algorithmic terms, but allows nodes to move in a direction
opposing the local force gradient. This allows layouts to escape from positions
in which the classic spring layout would be in a local minimum and head toward
layouts in which the total energy is closer to the global minimum.

4.3.3 Multi-dimensional information

Since we want to visualize hierarchical multi-dimensional information structures,
we discuss solutions from the relevant research area. Multi-dimensional informa-
tion is information whose objects can have many shared attributes or dimensions.
One of the main difficulties regarding visualization of multi-dimensional informa-
tion is the mapping of these many dimensions to the two dimensions displayable
on a computer screen.

A three dimensional projection can help to display one extra dimension of in-
formation and virtual reality techniques can increase the depth perception of 3D
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visualizations, but, as stated, this only gives one extra spatial dimension. Since
multi-dimensional data can have many dimensions, this is often not a big ad-
vantage. Moreover, a 3D perspective introduces its own set of problems, such as
occlusion and effective use of depth cues. These issues can be tackled using trans-
parency and motion, but, since these drawbacks can not be tackled completely,
consideration should be taken whether or not the drawbacks outweigh the benefits
while using a 3D visualization.

A straightforward solution to the multi-dimensional problem is to represent
information entities as objects on the screen. The dimensions can, subsequently,
be mapped to visual properties of these objects on the screen such as position,
rotation, color, brightness, transparency and shape. With this technique, a very
high number of dimensions can be visualized. An example is the music visualizer
by Graves et al. [26]. A problem with this approach lies in deciding which dimen-
sions to assign to which visual property of the displayed objects. This can only
be decided by analysing the information in accordance with the user’s tasks and
deciding what aspects of the information the user is most likely searching for. An-
other problem is the perceptual ordering, i.e., the human visual perception system
marks visual cues as color and motion before other visual cues. It seems, there-
fore, obvious to map important dimensions to color and motion cues. However, it
is not trivial to know what the important dimensions of an information structure
are. A solution can be to let the users themselves dynamically assign dimensions
to certain visual properties according to the task at hand.

Another approach initially developed by Feiner and Beshers [19] consists of
nesting coordinate systems within the points of other coordinate systems. This
way only a subset of the actual dimensions or objects present in the information
set is viewed at a time. A further approach is to divide the screen into sub-areas
in which pairs of dimensions can be compared against each other. This approach
uses a number of different viewports where a number of dimensions is displayed in
each viewport. The problem of linking the information in the different viewports
arises, which is one of the interaction techniques described in the next section.

Inselberg and Dimsdale [35] introduced Parallel Coordinates, a system whereby
a number of dimensions are mapped one-to-one to an equal number of parallel
axes on-screen. An object in the information set is mapped to a series of points,
one per axis, with the position of each point on the axis being dependent on their
value in the dimension that is represented by the axis. The points are connected
with line segments between neighboring axes, forming a ”poly-line” across the
set of axes. This process is repeated for each object in the information set.

Using this method, similar objects have similar lines. In later applications us-
ing this technique, the axes can be moved about to enable the user to order the
dimensions as they see fit. However, one problem is that if two objects share the
same value in a particular dimension, they share the same point on the correspond-
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Figure 4.6: Parallel coordinates as visualized by Siirtola [46].

ing axis, which results in two polylines that appear to merge and then separate
again. Without additional cues, such as color, it is impossible to determine which
line is which after the merge and separation effect. Such a situation can be seen
clearly in the third axis from the left, labeled ”CYL” in Figure4.6.

Even while using the previous techniques, there is still a limit on the number of
dimensions that can be represented through dimensional nesting, parallel coordi-
nates or simple one-to-one mappings of color, hue, shape, positioning etc. Some
high-dimensional datasets can have hundreds of different dimensions. To solve
this, Young [50] reduces the amount of dimensions through a technique called
Multi-dimensional scaling (MDS). Using this technique, a distance function has
to be defined that describes the distance between the information entities over all
the dimensions. The information set can subsequently be displayed on a two di-
mensional screen with the distances between the individual objects resulting from
the distance function. To calculate a placement of the objects such that the dis-
tances in 2D are as close as possible to the result of this distance function, often
a force-directed layout algorithm is used (see Section4.3.2). Variations exist that
reduce the number of dimensions to three instead of two, and subsequently create
a two dimensional projection on the screen.

4.4 Interaction techniques

The third topic in Gershon, Card and Eick’s tutorial [23] was ”interaction tech-
niques”. In this topic, they classified the general interaction styles that have been
used with visualization. The aims of these techniques are to simplify and aid the
user in finding patterns or locating specific details in the information. Of course,
these techniques may be implemented differently in different visualizations, but
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many share similar underlying principles. Gershon, Card and Eick grouped the
interaction techniques into three categoriesfocusing, filtering andlinking.

4.4.1 Focusing techniques

Figure 4.7: Hyperbolic graph visualization [42].

Focusing techniques are concerned with the magnification of the display area
on the screen. Through the use of focusing techniques, certain areas of the vi-
sualization space can be given prominence which in turn increases the detail and
comprehension of whatever is displayed there. Furthermore, focusing techniques
allow navigation and overview of large information sets while simultaneously al-
lowing detailed inspection of specific pieces of information. In general, focusing
techniques resemble the effects of looking through a fish-eye lens or a magnifying
glass. The fish-eye view uses the effects of a gradual magnification effect that is
centered on a focal point. The magnifying glass, on the other hand, uniformly
increases the magnification, which is often called zooming. Also, a combination
of both techniques is fairly possible.
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A different class of lens viewers take advantage of a non-Euclidean space,
namely hyperbolic space. Hyperbolic space has the unintuitive property that in-
finity can be projected back to a finite point in Euclidean space. As such, all points
in a structure in hyperbolic space can be projected back to a bounded area of ”nor-
mal” space. In addition, a visually pleasing fish-eye effect is generated with the
object at the origin in hyperbolic space displayed at the origin in normal space.
However, the equations involved are not trivial and in practice many objects are
reduced to such small size that they are not displayed. Munzner [42] has applied
hyperbolic lenses to network structures, while extending the hyperbolic distortion
to three dimensions (see Figure4.7).

Figure 4.8: Fish-eye view using a lens [27].

The second class of focusing techniques are the zoom methods. Opposite to
fish-eye views, the entire window is always at the same level of magnification
while using zoom methods. However, the effect is still to focus on a particular
piece of information to gain detailed insight in that subset of the data, but now
the context is lost. Separate overview and detail windows can be linked together
which partially solves this problem, but it is less elegant than the lens techniques
and requires the user to mentally link the information in the two windows. Bed-



35 Chapter 4:General information visualization techniques

erson and Hollan [8] introduced a semantic zoom in their Pad++ interface. Using
this approach, they extended the standard zooming method by changing the level
of detail when zooming in or out.

These lens-based focusing techniques rely on transformations on the used co-
ordinate spaces. Another focusing method, where an object’s absolute coordinates
depend on their neighbors position rather than a global transformation function,
relies on functions called Degrees Of Interest (DOI). Furnas [21] describes a DOI
as a function that ”assigns to each point in the structure a number telling how in-
terested the user is in seeing that point, given the current task”. His approach was
then to compare these values with a threshold value and thus deciding whether or
not an object was shown. An example, which uses an actual lens that represents
the area of interest is given by van Ham and van Wijk [27]. Figure4.8 shows a
graph that displays less detail at the periphery while the level of detail increases
in the direction of the lens. Under the lens, the level of detail is maximized.

4.4.2 Filtering techniques

Filtering techniques are used when the user wishes to get detailed insight in in-
formation that has common attributes or values. Usually the subset of the data
that corresponds to the selected conditions is highlighted, or non-corresponding
information is removed from the visualization.

Eick [17] describes sliders that define a range in a particular dimension or
set of dimensions. The filter subsequently accepts objects with values within the
given ranges and rejects other objects. Only the information in the current filter
is visualized on the screen. By using the filter, unwanted information is removed
from the visualization, which results in a clearer view on the information the user
is interested in. Furthermore, it is possible to filter out unwanted information by
using transparency and blur effects.

Filtering can also be used on structured information sets, such as a tree struc-
ture. For example, the user can set filter conditions that result in the removal of
certain subtrees in the data set. What remains are the parts of the tree where the
interest of the user lies in. This creates a more comprehensible overview picture
of the data when a lot of subtrees have been removed and gives the user the ability
to expand the subtree of interest.

Filtering techniques are similar to focusing methods in their aim to increase
detail in the area of interest, while reducing the amount of irrelevant and distract-
ing information. In other words, filtering techniques focus a user’s attention. But
they are different from focusing methods because they affect the display attributes
of the visualized objects directly rather than the space in which the objects are vi-
sualized. In addition, filters are different from focusing techniques, because they
can also be applied to other perceptual cues, such as color, size, visibility and
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transparency.

4.4.3 Linking techniques

The third main interaction technique is linking. Usually, linking is important when
the visualization involves multiple views on the information set. It is important
that an action carried out in one of the views results in a mirroring of that action’s
results in the other views. This is, for example, the case when the user selects an
object or region in one view, which has to result in the selection of that same object
or region in the other views. Often, linking is used in combination with multiple
scatterplots, as can bee seen in Figure4.9 from Tweedie et al. [49]. The figure
shows the selection of different value ranges on the left that have to correspond
with the yellow boxes on the right. A change of selection in any of these views
results in an update of the selection in the other views. As with other interaction
techniques, this update must be rapid to be useful.

Figure 4.9: Linking value ranges and scatterplots [49].

Additionally, North and Shneiderman [43] describe a taxonomy of possible
linking techniques between two views. Selection of items in one view results in
the same items being selected in another view. Navigation of a view is mirrored in
the navigation of another view. When an item is selected, the item is automatically
selected in the other views as well and the other views automatically navigate the
information set such that the selected item becomes visible. All these tasks can be
performed on views on the same data set, or on different data sets.

To conclude, linking techniques can be used for splitting visually crowded
visualizations of complex data sets into multiple more comprehensible views. The
combination of data and perceptual cues between these many views will allow the
user to comprehend the information piece by piece. Furthermore, the users only
need to correlate as many views as necessary to acquire the information they need.
In the case linking techniques are not applied correctly, it is obvious that the use of
multiple views does not lead to an increase of comprehension of the information
set.
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4.5 Hierarchical graph visualizations

The previous sections describe more general methods for graph visualization, this
section describes related work that covers the more specific multi-dimensional hi-
erarchical structures we try to visualize. This specific type of information structure
is, for example, found in the botanic world, where taxonomists create classifica-
tions that categorise different species of plants and organisms. These classifica-
tions are hierarchical structures where specimens are grouped into different taxa.
These taxa are then placed in higher level taxa according to some criteria, e.g.,
DNA relationships or simply shape. The taxa are also assigned to ranks that spec-
ify the level of a taxon in a classification hierarchy, such as ”familia” or ”genus”.
Taxonomists may use different combinations of these existing ranks, or even de-
velop new ranks, in their taxonomies.

When a taxonomist has created a taxonomy and has published it, the taxon-
omy is considered a valid classification. If other taxonomists disagree with the
classification, they have to create and publish a new classification that reflects
their viewpoint. This means that, over time, some specimens may end up classi-
fied in different groups in various classifications. These different classifications
are all valid, since taxonomists do not have the concept of ”correct classification”.
All published taxonomies are considered valid viewpoints.

In the following paragraphs, we discuss a graph-based and a set-based visu-
alization of this kind of multi-dimensional hierarchical graphs from the botanical
world, followed by a Venn-diagram visualization method that is used to display
categorized files from a file system.

4.5.1 Graph-based hierarchy visualization

Graham et al. [24] have made a comparison between set-based and graph-based
visualizations of overlapping classification hierarchies in the botanical field as de-
scribed above. The first prototype they have created to use in the comparison is
a directed acyclic graph (DAG) (see Figure4.10) that combines the individual
hierarchical taxonomies. This could be done, because the information in the hier-
archies has a high degree of correlation. Different hierarchies share a large num-
ber of categories, so the nodes in the graph remain relatively constant. Mainly
the links between the nodes and thus the organisation of the nodes involve major
changes between hierarchies.

The program visualizes the DAG structure using the spring-mass metaphor
that is commonly used in network visualizations (see also Section4.3.2). The
edges of the graph represent springs between the nodes that move the nodes to
their positions. Unlike most spring-mass model based systems, these positions
are not final and are constantly recalculated by the system. This is because the
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Figure 4.10: Graph visualization of overlapping classification hierarchies [24].

user can switch on and off the display of individual hierarchies that require the
visualization to readjust itself to suit only the hierarchies that are displayed.

The main advantage of this approach is the total integration of all the hierar-
chies. All the hierarchies can be seen at once in a single visualization. Therefore,
limitations on linking objects (see Section4.4.3) are completely avoided, since
there is only one visualization area that contains all the information. However,
problems arise when the user wants to filter out certain hierarchies to get a closer
look. As can be seen in the figure, the total picture looks quite crowded with infor-
mation. This is because all the nodes are visible, as well as all the links between
them. Graham et al. use coloring to display the current filter, i.e., links between
nodes in the selected hierarchies are displayed using colors with light hue and
links between nodes that are not selected are not displayed at all. Furthermore,
the nodes in the selected hierarchies are assigned a light color and the nodes that
are not selected are colored black. This way, the selected hierarchies draw the
attention of the user, which is a desired effect, because the user has selected these
hierarchies, which indicates the user’s interest in these hierarchies.

To differentiate between hierarchies in the graph, the visualization displays
the links between the nodes with a different color for each hierarchy. The colors
are from a linear color scale (see Levkowitz and Herman [39]) in which the per-
ceived difference between two colors is proportional to their distance on the color
scale. The colors used are evenly spread along the color scale, so they appear to
be evenly spread along the color range, which makes differentiating between the
colors easier.

Furthermore, the nodes are displayed individually as labeled rectangles. Each
node is colored using a gray-value that indicates its distance from the root nodes
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(a hierarchical DAG can have multiple root nodes). The lighter the node, the
closer it is to the root nodes. Note, however, that the nodes that are furthest away
from the root nodes are still colored a little lighter than the nodes that are not
selected, which are colored black. In addition to the colored links, each node has
a small set of colored glyphs along the top of the labeled rectangle that indicates
the hierarchies the node is a member of. These colored glyphs are even displayed
when the node is not selected, which enables the user to notice membership of
particular classifications even when the links are not displayed.

Graham et al. state that the reasoning behind the use of gray and color indica-
tors is that these two different color scales are perceived differently. Gray scales
are perceived as being ordinal scales, indicating a quantitative measure, while
color scales are generally seen as only indicating membership or some other qual-
itative measure. Therefore, Graham et al. use color to indicate membership of
a particular hierarchy structure, which is a qualitative property, and use the gray
scale to show distance from the root, which is a quantitative metric.

To conclude, the real drawback in using this visualization method is that it is
difficult to see the hierarchical structure of the graph, compared to tree-map vi-
sualizations where the hierarchical structure is by far more comprehensible (see
Figure4.3). Of course, the user can select and deselect hierarchies, but differen-
tiating between different paths from the root node down to the node of interest
remains difficult, even with the specific use of coloring. This remains an intrin-
sic problem when using a fairly standard force-directed graph drawing algorithm.
However, caution needs to be taken when comparing this graph-based visualiza-
tion to tree-map visualizations, because a tree-map visualization can only visual-
ize a hierarchical tree structure which is significantly different from visualizing a
graph structure.

Graham et al. ruled out this option of hierarchical graph visualization, because
of two reasons. Their prototype had a limit of displaying and updating roughly 250
node positions at a rate of 4/5 refreshes per second. This was due to the fact that
the graphical update on-screen took a considerable amount of time, which they
could not reduce. Secondly, force-directed placement algorithms have an intrinsic
high complexity. They have investigated a method to reduce this complexity to
speed up the prototype that uses some degree of stochastic sampling to move
the nodes rapidly to their final positions. This method introduced an unacceptable
amount of visual jittering whenever changes were made to the spring-mass model.
For these reasons, they ruled out this visualization prototype.

4.5.2 Set-based hierarchy visualization

The second approach of Graham et al. [24] is a set-based visualization. Since
a categorization of objects, such as a botanical taxonomy, consists of sets and
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subsets, it seemed logical to exploit this feature in the visualization.

Figure 4.11: Set visualization of overlapping classification hierarchies [24].

As explained in the introductory text to this chapter, a single classification is
a categorization made by one taxonomist. As a result, this single classification
is a tree structure. When multiple taxonomists create a taxonomy on the same
subject, multiple tree structures are formed that share a large number of objects.
Since the set-based solution requires tree structures, the complete taxonomy is
split into the single classifications made by the single taxonomists. These classi-
fications are subsequently displayed separately using a tree visualization method,
see Figure4.11.

Each horizontal system of squares and rectangles represents a single classifi-
cation by a single taxonomist. The leaf nodes are represented by small rectangles,
while their parent nodes are represented by rectangles that are placed above the
leaf nodes. To reduce screen space problems, the leaf nodes are arranged in a grid
formation, as opposed to the normal style of a linear layout for each level of a
hierarchy. Furthermore, each node contains the label of the category it represents,
but again to reduce screen space problems, only the first character of the label of
the leaf nodes is displayed.

Interaction with the data is performed using linking and highlighting. Since
certain nodes are present in multiple hierarchies, correct and comprehensible link-
ing of nodes between hierarchies is important. This is solved by letting the user
select a node, which is subsequently highlighted using the same color in all hier-
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archies. Each node, including the large parent nodes, can be shared in multiple
hierarchies. Each selected node has a different color, but equal nodes in different
hierarchies have the same color. For no apparent reason, the used colors are not
as bright as in the graph-based visualization.

In addition to just selecting a node, the node’s rectangle is expanded to hold
the full title of the object. This occurs in each hierarchy the node is present. A
drawback is that upon selecting a node, the overall picture changes very much,
because all the hierarchies have to be readjusted to fit the enlarged node. After
selecting a node, it takes some time for the user to get acquainted again with the
new image on the screen.

To conclude, the set-based system is very much capable of displaying the dif-
ferent hierarchical parts of the total structure of the information set. However,
the hierarchical structure per classification may get clear to the user, the overall
structure is not comprehensible at all. This is because a single object that is inci-
dentally shared is displayed multiple times, in each hierarchy, while, in fact, it is
only one single object. The price to be paid for this (partially) clear hierarchical
structure is the difficult linking of nodes between hierarchies. The main problem
is that only by highlighting nodes, the structure can become visible. Moreover,
the readjusting of the nodes upon selection does not permit fast linking through
highlighting, because every time the picture changes, the user needs some time to
get acquainted with the new image.

Graham et al. conducted a user experiment with taxonomists to evaluate the
visualization prototype. Since the hierarchical structure of the data set was more
important to the taxonomists than the graph structure, the taxonomists positively
responded to the set-based prototype as opposed to the graph-based prototype de-
scribed in the previous section. The taxonomists stated that the multiple tree effect
and the grouping of sets was closer to how they viewed classifications when work-
ing with taxonomic data, rather than a node-link diagram as seen in the graph-
based prototype. However, there were still problems with selecting nodes and
mentally linking the same nodes divided over multiple hierarchies, as well as the
problems involving the changing of the layout each time a node was selected. But
Graham et al. thought they could overcome these problems and continued devel-
oping this visualization prototype.

4.5.3 Venn-diagram visualization

As technology advances and file systems get bigger and bigger, traditional hierar-
chical file systems have the limitation that files can only be structured according
to one attribute. In general, a file system is a hierarchical classification of files
in the form of a tree structure. In this structure, the files are the leaf nodes that
are placed in a directory (a parent node) that represents a common attribute for all
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the files in that directory. Since disk storage continues to get cheaper while the
amount of storage space increases, it is not uncommon to have a large amount of
files on a storage disk that could be structured in a number of different ways. For
example, the same files could be structured according to different criteria, such as
”place”, ”date”, ”subject” etc. Such a classification of files would create a graph
structure for a file system, which is currently not supported by the mainstream file
systems. De Chiara et al. [14] provide a visualization method that is capable of
displaying such a graph structure by using a technique similar to Venn diagrams.

Strictly speaking, a Venn diagram is a special case of an Euler diagram. An
Euler diagram uses shapes to denote sets. When shapes overlap, the overlapping
part denotes the intersection of two or more sets. Only non-empty sets are repre-
sented by a shape in an Euler diagram. A Venn diagram is a special Euler diagram
in which all possible intersections of sets are non-empty, and, therefore, all possi-
ble intersection of sets are denoted by a region. Since a number of intersections
between directories in a file system are empty, the visualization method uses Euler
diagrams. But, since De Chiara et al. have named their visualization method Ven-
nFS (after Venn File System), and since Venn diagrams are more widely known
than Euler diagram, we refer to this sort of diagrams as Venn diagrams.

Figure 4.12: Venn-diagram visualization of file categorization.

As shown in Figure4.12, files are classified into categories, according to dif-
ferent criteria. Each category is represented by a colored ellipse, while the files are
represented as small labeled squares. Since a file belongs to at least one category,
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the ellipse encloses the files in that category. In the case a file belongs to multiple
categories, the colored ellipses representing these categories overlap analogous to
the set representation style known as Venn diagrams.

Interaction with the data is performed using filtering. The user is able to select
a filter on the shown files according to file size, or modification date. Furthermore,
the user can select a file which results in the display of more detailed information
on the selected file.

A drawback of this approach is that only two levels in the hierarchy can be
shown, which results from the intrinsic non-hierarchical properties of Venn dia-
grams. The notion of parent nodes and child nodes is sparsely supported, i.e.,
only one layer of parent nodes and one layer of child nodes is present in the vi-
sualization, while in most hierarchical information structures, a number of levels
are present that have to be visualized.

Furthermore, since all categories and files are labeled, the screen is cluttered
with labels. This is very distracting when the user wants to get a quick overview of
the structure of his storage space. On the other hand, it is perfectly clear without
user interaction which glyph represents which file. Moreover, the coloring of the
nodes is quite arbitrary. The user has to select a color for each category in the file
system and is, of course, very well capable of selecting an unintuitive coloring.

To conclude, the approach of using a Venn diagram style visualization cer-
tainly has potential, because opposite to a graph visualization, there is no screen
clutter due to links between nodes. Furthermore, since there is only one visu-
alization area, limitations of linking are completely avoided (see Section4.4.3).
On behalf of navigating and filtering, fairly standard methods are used. How-
ever, this prototype is only capable of displaying two levels in the hierarchy at
once, because Venn diagrams are intrinsically non-hierarchical. Moreover, stan-
dard Venn diagrams represent for a number of sets all possible combinations of
unions and intersections. This way all possible subsets are created that overlap
each other. Since these complete Venn diagrams do not look appealing when con-
structed from more than 4 sets, De Chiara et al. have implemented a visualization
technique that resembles Venn diagrams.

4.6 Conclusion

So far we have seen a number of ways to visualize hierarchical graph structures.
Each visualization technique has certain positive points as well as certain draw-
backs. So far, there is no out-of-the-box solution that is capable of visualizing the
hierarchical DAG structures from a classification in a Cristal.

However, we have seen a number of interesting properties we would like to
see combined in a visualization of a classification from a Cristal, i.e.,
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• Hierarchical structures
Tree-map layouts offer intrinsic support for hierarchical structures using in-
clusion. An interesting property is the fact that transitive relations between
objects are natively supported,

• Flexible force-directed layout algorithm
Node-link diagrams often use force-directed layout algorithms that are very
flexible and allow for many adjustments,

• Overlapping structures
Venn-diagram style visualizations that offer support for overlapping struc-
tures such as graph structures,

• Advantages using human visual perception
Visualizations that take advantage of the human visual perception system
by using motion and coloring as well as other perceptual cues such as shape
or size. These perceptual cues should not only be used in the visualization
technique, but also in the interaction technique.

Of course there are also a number of properties we would like to avoid, be-
cause they can be regarded as drawbacks on the visualization of the hierarchical
DAG structures of a Cristal, i.e.,

• Node-link diagrams show no hierarchical structure
Node-link diagrams do not provide a clear overview of the hierarchical
structure of a graph,

• No duplication of nodes
Visualizations such as Graham et al.’s set-based visualization (see Section4.5.2)
duplicate nodes which introduces linking problems that we want to avoid,

• Multi-dimensional techniques show no hierarchical structure
Multi-dimensional information visualization techniques such as Parallel Co-
ordinates (see Section4.3.3) that do not provide an overview of the hierar-
chical structure.

Since the hierarchical structure of the classification structure in a Cristal is the
most important to visualize, as well as the graph-structure, we propose a novel
visualization technique in the next chapter that is a combination of the tree-map
technique and the Venn-diagram technique. In combination with a flexible force-
directed layout algorithm we are able to show the hierarchical structure and the
graph structure without the need to duplicate nodes.



Chapter 5

Visualization of Cristal

As stated at the end of the previous chapter, we will propose a novel visualization
method in this chapter. First we state our approach, subsequently we explain the
way we are going to visualize the different aspects of the classification structure
in a Cristal. Finally we explain the interaction techniques used in the prototype.

5.1 Approach

As stated at the end of Chapter4, we want to create a visualization method that can
show both the hierarchical structure and the graph structure of a hierarchical DAG.
As we have seen, probably the best way to visualize a hierarchical structure is the
use of tree-maps (see Figures4.2and4.3), since the inclusive shapes immediately
induce the percept of part-whole relations. A welcome extra aspect of this kind
of visualization is the intrinsic visualization of the transitive part-whole relations
present in the structure. However, the tree-map technique can only visualize tree
structures and the category structure we want to visualize in the first place is a
hierarchical DAG.

An essential difference between a DAG and a tree structure is the fact that
the former allows nodes to have multiple supernodes, while the latter only allows
nodes to have at most one supernode. One of the main ideas behind a tree-map
visualization is that each node encloses all its subnodes while maximizing screen
space usage, which is of course only possible when each node has at most one
supernode. In our case, we have a DAG structure where nodes can have multiple
supernodes. Using the tree-map paradigm, this would result in overlapping nodes
in the case these nodes share the same subnodes. Moreover, this kind of overlap-
ping entities is exactly the same as the way a Venn-diagram is constructed. In a
Venn-diagram, two sets are depicted by two overlapping circles while the over-
lapping part of the two circles represents the intersection of the two sets. When
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we also keep in mind that the relations between categories in a classification in a
Cristal are part-whole relations, a category is essentially a collection of its subcat-
egories, which complies with the Venn-diagram paradigm of sets and their inter-
sections. We, therefore, propose to combine a Venn-diagram style visualization
method with the hierarchical inclusion paradigm found in tree-map visualizations.

Our initial approach is to represent the categories of the classification struc-
tures in a Cristal by shapes, such that categories actually reside in their super-
categories. In the case there are categories with multiple supercategories, these
categories should reside in all of their supercategories, which results in overlap-
ping shapes.

Furthermore, we have to find a placement of the categories, such that the su-
percategories can be drawn as enclosing shapes around them. Since overlapping
shapes have a meaning, it is important that shapes that do not have overlap, are
drawn non-overlapping. Only categories that have overlap should show overlap-
ping regions on the screen. For this, the categories should be placed on the screen
in such a way that this is achieved. This is not trivial as opposed to a naive tree-
map visualization. We will use a force-directed layout algorithm to determine
positions for the categories that allow the supercategories to be drawn as enclos-
ing shapes around them. We choose a force-directed algorithm because such al-
gorithms are relatively easy to adjust and, therefore, very flexible and suited for
multiple purposes, such as the proposed layout of categories. This algorithm is
explained in the next chapter, Chapter6. Using this approach, we have to give
up the tree-map’s capabilities of maximizing the screen space usage, but this is
inevitable and not considered really problematic.

We continue this chapter by detailing the way we visualize the categories, the
levels and the time properties of a classification structure of a Cristal.

5.2 Visualization of categories

To visualize the graph of categories, we represent each category with a shape. As
stated, these shapes have to include each other to depict a category-subcategory
relation, but they also have to overlap each other to depict a category with multiple
supercategories. We have investigated the use of a number of different shapes,
which we explain next. We started out with simple rectangles as can be seen in
Figures5.1and5.2.

Initially, we chose rectangles, because they are very easy to implement and
capable of showing the desired inclusion and overlap. Figure5.1 shows a small
tree structure where the categories completely enclose their subcategories. The
leaf categories of the graph, which we call atoms, i.e., categories that have no
subcategories, are special categories which are denoted by a small square. The
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Figure 5.1: Tree structure with three
atoms inside a category, and three
categories inside a rootcategory.

Figure 5.2: Two overlapping cate-
gories with two atoms in the overlap-
ping region.

inclusing rectangles in the figure clearly induce the visual percept of subcategories
actually being in their respective supercategories.

Subsequently, Figure5.2 shows a small graph structure in which two cate-
gories have the same two subcategories in common. In essence, this means that
the supercategories overlap each other, therefore, we draw the rectangles such that
they are overlapping with the two subcategories (atoms in this case) in the over-
lapping part. The overlapping rectangles in the figure clearly induce the visual
percept of subcategories actually being in multiple supercategories.

There is, however, a problem with using the proposed technique with rec-
tangles to display the hierarchical DAG structures. Because of the fact that the
rectangles are not allowed to rotate, it is not always possible to display a graph us-
ing rectangles. Figure5.3(a) shows a graph structure with at the bottom row four
atom categories. The middle row show the categories that represent all combina-
tions of two atoms, while the top row displays the root category. This particular
structure can not be comprehensively shown using rectangles, as can be seen in
Figure5.3(b). This figure shows a lot of overlapping shapes, but it is not clear
exactly which rectangles are overlapping which.

Therefore, we investigated the use of blob shapes. Figure5.3(c) shows the
same graph structure visualized with blobs. Obviously, the structure is more clear
while using blobs, however, rectangles have a very interesting property that blobs
lack. In the case only a part of a rectangle can be seen, the human visual perception
system can quite easily predict the rest of the rectangle. This is because the brain



Section 5.2:Visualization of categories 48

a b

c d

Figure 5.3: Category shapes: (a) Graph with all combinations of two atoms as
categories, (b) Visualization of a using rectangles, (c) Visualization of a using
blob shapes, (d) Visualization of a using ellipses.

only has to see two edges of a rectangle to mentally visualize where these edges
cross. Blob shapes lack this fundamental property, because since a blob can take
on any shape, the visual perception system can not make a mental image of an
unseen part of a blob. This property does not manifest itself when viewing small
structures such as Figures5.3(b) and (c), but we found out that larger structures
are a lot clearer when visualized with rectangles than with blobs.

The third shape we have investigated is the ellipse. Ellipses have the same
property as rectangles, where the human visual perception system can make a
mental image of the complete ellipse quite easily when a part of the ellipse is not
shown. Figure5.3(d) shows the graph structure visualized using ellipses. As can
be seen, the structure is more clear than with rectangles, but not as clear as with
blobs. Furthermore, the restriction that a supercategory completely encloses its
subcategories is quite difficult to guarantee. The inclusion of the ellipses is even
in the figure not perfect. Moreover, when the stated restriction can be guaranteed,
it is fairly possible that a supercategory will be denoted by a very large ellipse,
because of an awkward positioning of its subcategories. This happens more fre-
quently when the path from rootcategory to atom is relatively long and results in
very large ellipses with large empty regions. Therefore, we chose to stick with the
relatively easy rectangular shapes. Rectangles are easy to implement as well as
easy to mentally comprehend in most cases which results in a clear total picture.
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Furthermore, rectangles are compared to ellipses very space efficient. The limita-
tions in the number of graph structures we can visualize using rectangles do not
outweigh the advantages rectangles have compared to blobs and ellipses, since in
practice, such graph structures are very rare.

Another important aspect of the visualization is the notion of depth in the
graph. All categories have a certain distance from the rootcategory. When this
distance is somehow visible, this would enhance the perception of the hierarchical
structure. Of course, the depth of each category is inherently visualized using the
proposed method of inclusion and overlap, but to enhance this, we want to use
coloring. Section4.2.2 states the importance of color, moreover Section4.5.1
states that a gray scale is perceived as an ordinal scale, indicating a quantitative
measure, such as the distance of a category to the root category. A color scale
is perceived as a qualitative measure, indicating membership of a set, such as a
category’s membership of a level.

In analogy to the previous, we use gray values to denote the distance of a
category to the root category. The atoms are colored white and each supercategory
is colored a little darker up to the rootcategories that are the darkest. A few simple
tests showed that the other way around, i.e., black atoms and light root categories,
does not indicate the depth of a category in the graph as well as the proposed
coloring. This is because we use transparency to denote overlapping rectangles
resulting in the overlapping region being darker which, in turn, results in difficult
distinction between an overlapping region and a subcategory, because both are
darker than the surrounding supercategories. Since the proposed coloring uses
only gray values, the hue can be used to display other aspects of the classification
structures, such as levels.

5.2.1 Ghost categories

As stated, the general approach is that a subcategory, which is semantically part of
a supercategory is represented by a rectangle which is actually ’in’ the rectangle
of the supercategory. This means that supercategories which have one or more
subcategories in common must have an overlapping region.

However, it is possible that the set of subcategories of a category is a part
of a set of subcategories of another category, see Figure5.4(a). Category 1 and
category 2 have two subcategories in common, namely, category 4 and category
5. This should show up as an overlapping region in the visualization (see Fig-
ure 5.4(b)), but this figure suggests a tree-like structure as can be seen in Fig-
ure5.4(c), where category 2 is suddenly a subcategory of category 1. In the orig-
inal structure, this relation was not present, so category 2 should not be entirely
included in category 1. Following from this, there is a part of category 2 that
is different from category 1, but this part happens to be empty, i.e., not contain-
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category 1

category 3 category 4category 5
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category 3 category 4 category 5

category 2
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d e

Figure 5.4: Ghost categories: (a) Two categories with two subcategories in
common, (b) Visualization of a which is actually c, (c) The graph structure has
changed into a tree structure, (d) Ghost category added to category 2, (e) Visual-
ization of d with the ghost category shown in red.

ing any subcategories. Therefore, there should be a non-overlapping region that
shows this part, but this is not possible, because a supercategory is always drawn
as an enclosing rectangle around its subcategories.

A solution to this problem is to add so called ghost categories to the graph
which are used to fill up these empty non-overlapping regions such that these
regions become visible. In the example, a ghost category should be added to cat-
egory 2. Addition of this ghost category fills up the empty part of category 2 and
creates the graph of Figure5.4(d) which is visualized as shown in Figure5.4(e).
Note that the ghost categories are actually not visible in the visualization.

Formally speaking, we have a directed graph of categoriesG = (V, E), where
V is the collection of categories in the graph, i.e., the collection of vertices, and
E is the collection of direct relations between these categories, i.e., the collec-
tion of edges between the vertices. Now letsub(v) be the collection of direct
subcategories of categoryv ∈ V , i.e.,

sub(v) = {u ∈ V |(v, u) ∈ E} (5.1)

Then, in analogy with the previous example, a ghost category should be added
to c2 when the set of subcategories ofc2 is completely contained in the set of sub-
categories ofc1. A category is completely contained in another category when all
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subcategories of the former category are also subcategories of the latter category,
i.e.,

sub(c2) ⊆ sub(c1)⇒ sub(c2)
′ ← sub(c2) ∪ ghost (5.2)

5.3 Visualization of levels

As explained in Chapter2, a level is a collection of categories that have no direct
relation in the category-graph and no subcategory in common. Levels represent
element-set relations in contrast to categories that represent part-whole relations.
Furthermore, levels are partially ordered and form a hierarchical DAG, such as
the categories. Moreover, it is possible that categories reside in multiple levels,
thus levels can overlap each other, with the shared categories in the overlapping
region. However, since the categories in a level do not have a direct relation in the
category-graph and no subcategory in common, the rectangles representing the
categories in a level can not be overlapping.

To visualize the graph of levels, it is fairly possible to use the same visu-
alization method as has been used for the categories, since the structure of the
level-graph is similar to the structure of the category-graph. However, this would
render two images that look alike, one for the levels and one for the categories, but
represent two things that are semantically completely different. On top of that, the
levels and categories are related to each other, since levels are sets of categories.
The relation between the levels and the categories would not be clear from the
two resembling images. Furthermore, it is not possible to overlay the visualiza-
tion of categories with the visualization of levels, because this would create two
hierarchical structures on top of each other, which would not show the relations
between a category and the level(s) it resides in.

We chose, therefore, to visualize a level by selecting it from a list and subse-
quently highlighting all categories that make up this level. Since the categories in
a level do not have a parent-child relation, the categories in a level should not be
overlapping in the highlighted set of categories. This property can, therefore, be
easily verified by the user. Furthermore, since we are already using gray values to
denote the depth of categories in the graph, we use hue to highlight the categories
in a level, because the color scale is better suited for a qualitative measure such as
the indication of membership of a set.

Figure 5.5 shows the selection of two levels using the running example of
Chapter2 regarding a classification structure of The Netherlands. The left part of
the figure shows the category structure of the classification while level ”East-West
Division” is selected. The categories ”East Netherlands” and ”West Netherlands”
belong to this level and are colored orange. The right part of the figure shows
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Figure 5.5: Two different levels.

the visualization while level ”North-South Division” is selected. Because the cat-
egories ”North-Netherlands” and ”South-Netherlands” make up this level, these
categories are colored blue.

The two parts of the figure also show that the atoms in the classification struc-
ture, i.e., the small white squares in the corners, reside in multiple levels. When
both levels would be selected at the same time, the red and blue categories would
overlap because of this, therefore, we only allow the user to select one level at a
time. Furthermore, the categories in a level do not overlap, as can be seen in the
figure, because they have no direct relation and no common subcategories, which
is a restriction of a level.

5.4 Visualization of time

As stated in Chapter2, each level and category, and even stronger, each object in
a classification variable of a Cristal, has a start date and an end date. The object is
valid, i.e., existing, in the time between those two dates and is not valid, i.e., not
existing, outside the time frame denoted by those two dates. It seems, therefore,
obvious to let the user select a time frame by selecting a start date and an end date,
and only show the objects that are valid in this period of time. According to this
definition, there are five types of categories:

1. Categories that are valid during the entire selected time frame.

2. Categories that become valid somewhere in the selected time frame.

3. Categories that stop being valid somewhere in the selected time frame.
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4. Categories that become valid and stop being valid somewhere in the selected
time frame.

5. Categories that are not valid during the entire selected time frame.

t start t end

selected time frame

1

2

3

5

4

time

Figure 5.6: Different types of validity.

Figure5.6 schematically shows the five different validity types for the cate-
gories. Note that type 5 consists of categories that are either valid before the time
frame or after the time frame, but not both at the same time.

A possible way to show these different types of categories is to color them
using different colors according to the type of validity following from the selected
time frame. Using a slider, the user can change the time frame by sliding the
starting date (tstart) or the end date (tend) of the time frame. However, since we are
already coloring categories to show the levels, additional coloring of categories to
denote their type of validity would probably result in a visual chaos. We, therefore,
try to find another way to visualize time.

In addition to defining starting and end dates for objects, the Cristal model
offers support for tracking changes in objects using a combination of thekey-
attribute and the starting date and end date, as explained in Section2.5. This
results in categories having predecessors and successors. To be able to show a
combination of the validity type of a category as well as its predecessors and
successors, we propose to show only the categories that are valid somewhere in
the selected time frame (types 1, 2, 3 and 4 of Figure5.6). Categories that are not
valid in the selected time frame are hidden (type 5 of Figure5.6). Furthermore,
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we show the changes in time of a category by drawing arrows from predecessor
to successor, as shown in Figure5.7.

Figure 5.7: Arrows denote changes from predecessor to successor.

The figure shows a category with two subcategories at some point in time
changing into a category with no subcategories. After this, the category changes
again into a category with two subcategories again. Using this method, a sequence
of successors is denoted as a sequence of arrows. Note that we gradiently color
the arrows from dark to light. We use a distinctive color to make the human visual
perception system mark these arrows as special and, therefore, draw attention to
them.

5.5 Interaction and usability

As outlined in Chapter4, perceptual cues and interaction are an important part
of a visualization tool. Of course, we included a number of such, mainly visual,
cues in our visualization. The following sections give a detailed description of the
incorporated perceptual cues, as well as the different interaction techniques.

5.5.1 Perceptual cues

The most important perceptual cue used in the visualization is the inclusion in
combination with the overlap of shapes. A shape drawn on top of another shape
induces the percept of inclusion when the topmost shape is smaller than the un-
derlaying shape. We use this percept to display the relation between a category
and its subcategories, because this relation is indeed an inclusive relation. The
subcategory is a part of its supercategory. Additionally, two overlapping shapes
induce the percept of a common part. We use this percept to display categories
that have multiple supercategories. Indeed, in this case, the subcategory is at the
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same time part of both supercategories, thus the supercategories have something
in common, which is exactly the subcategory.

Furthermore, to display the depth of a category in the graph, we color them
from black (root categories) to white (leaf categories) along a gray scale. The gray
scale is perceived as a linear scale and thus suited to display quantitative measures
(see also Section4.5.1). The depth of a category is typically a quantitative mea-
sure. Moreover, this leaves other colors to display different properties.

One of these properties is the validity of a category, in combination with its
predecessors or followers. As stated before, an arrow is drawn from predecessor to
follower to denote the change over time of the category. Perceptually, an arrow de-
notes a certain movement, which induces a start position and an end position. The
start position is the predecessor-category that changes into the follower-category,
which is the end position. Furthermore, the start position of the arrow is colored
darker than the end position of the arrow which results in a gradient coloring of
the arrow. This greatly enhances the percept of movement.

Coloring is also used to display levels. Levels are groups of categories that
cannot have overlap. The user is enabled to select a particular level from a list
of levels and subsequently all the categories belonging to that level are colored.
As stated, we use non-gray colors to display the categories in a level in order to
make a clear distinction between the categories in the selected level and the other
categories.

Furthermore, motion is next to coloring one of the most important aspects of a
visualization. The iterative layout algorithm using the spring-embedder model is
inherently capable of displaying motion. The positions of the categories change
after each iteration step of the layout algorithm, therefore, a redraw of the entire
graph structure on the screen is all that is required to create an animation. Further-
more, motion is incorporated in combination with user interaction, as described in
the next section.

5.5.2 Interacting

In combination with the perceptual cues described in the previous section, interac-
tion with the dataset is also an important factor. Of course, interaction techniques
should aid in the comprehension of the information set, and, therefore, make use
of perceptual cues as well.

Labeling is an important factor of a visualization. Upon hovering a category
with the mouse, a label displays the contents of the ”name”-attribute of the cate-
gory. Clicking a category while holding the shift-button adds the clicked category
to the multi-selection, i.e., a group of selected categories. The categories in the
multi-selection show a green border around them to distinguish them from other
categories. Furthermore, these categories show their label permanently.
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As stated in the previous section, motion is next to coloring one of the most
important aspects of a visualization. Movement of categories is achieved through
interaction with the information set and through the inherent motion of the force
directed layout algorithm (which is explained in Section6). Since the layout al-
gorithm is an iterative algorithm, the results after each iteration of the algorithm
can be displayed, which results in an animation. We have chosen to show this
animation on the screen to give the user an idea of the way the layout is being
constructed.

Furthermore, the user can interact with the dataset by dragging categories to
another position, which of course induces motion. By dragging a supercategory,
for example, it is clearly visible what subcategories belong to the dragged super-
category, because the human visual system associates objects moving in the same
direction with the same speed as somehow connected together.

It is possible to double-click a category to get a properties-window in which
it is possible to navigate upward and downward in the graph of categories by
clicking a supercategory or subcategory from the currently selected category. The
properties-window always shows the currently selected category, while the graph
shows the currently selected category with a red bounding box. This way, the user
can cognitively link the object in the graph visualization with the object in the
properties-window.

5.6 Prototype

The prototype, which is called ”CristalView”, contains the main visualization
area, where the graph of categories is showed. A screenshot of the application
is shown in Figure5.8.

The categories, i.e., nodes in the graph, are represented by rectangles and
squares. A supercategory is represented by a rectangle, surrounding its subcat-
egories. The atoms, i.e., leaf nodes, are represented by small squares, because
they are different from the other categories, since they have no subcategories.

Furthermore, the right of the screen displays the list of levels present in the
Cristal. Each level has an associated color. Upon selecting a level, the categories
belonging to that level are appropriately colored to show the contents of the level.
Since categories in a level can not have overlap, this property can be easily visually
verified by the user.

Additionally, since each category has a certain period of time in which it is
valid, a time slider is displayed in which the user can set a time frame by select-
ing the start-date and end-date. Subsequently, only those categories that are valid
somewhere in the selected time frame are shown. Moreover, in combination with
the validity of a category, it is possible to denote the predecessors and the follow-
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Figure 5.8: Screenshot of the final program.

ers of a category. An arrow is drawn from a predecessor to a follower to display
the change of that particular category over time.

Also, it is possible to double-click a category, which brings up a properties-
dialog. This dialog shows the attributes of the category, as described in Chapter2.
In addition, these static properties can be edited. Also, the supercategories and
subcategories of the selected category are shown, and can be clicked to navigate
upward and downward in the graph of categories.

5.7 Final application

A number of participants of the user experiment explained in Chapter7, had re-
marks about the visualization tool. Of course, this is not very surprising, as they
were testing the prototype. These participant remarks are listed and discussed in
Section7.3. The final application is basically the same as the prototype, but ac-
cording to these remarks, we have added a few things to the visualization tool.
Figure5.8shows the final application.

A search functionality was added to the tool which enables the user to search
for a certain category. When the user enters a number of keywords, the tool
searches for the first occurrence in the information set of a category that matches
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any one of the keywords. When a category is found, it is added to the multi-
selection, meaning that the category gets a green border as well as a label. Fur-
thermore, it is possible to search again using the same keywords, which results in
more categories be added to the multi-selection.

An important user remark was that the folding of categories was too easy. Only
the right mouse button had to be pressed and the category the mouse was hovering
would be folded. This often resulted in surprised participants, because they did
not know what they had done. Therefore, we have made it a little more difficult
to fold a category, i.e., we have added a pop-up menu that pops up when the
right mouse button is pressed over a category. A number of options are revealed,
such as showing the properties-dialog, add the hovered category to the multi-
selection, deselect all, fold the hovered category. We chose for this solution, since
the prototype had no way to deselect all categories at once. Each category that
was in the multi-selection had to be individually removed from the multi-selection.
Furthermore, we thought a pop-up menu was a nice visual control unit, as opposed
to the obscure key combinations that had to be pressed in the prototype.

Furthermore, we have implemented a toolbar with easy access buttons to en-
hance the usability of the user interface. Typical functions that can be reached
from the toolbar are loading and saving of Cristals, but also zooming options and
search options are represented by a button on the toolbar.

The results of the user experiment show that the visualization of levels is more
effective with the Variable Editor. To get the best of both worlds, we have changed
the list from which the levels can be selected such that it resembles the hierarchy-
tree in the Variable Editor. Therefore, the list shows the list of hierarchies, with
accompanying hierarchy-icon. A hierarchy can be expanded to show the list of
levels in that hierarchy. Each level has a level-icon and a color associated with it.
Each level can subsequently be expanded to show the categories in that level. The
categories are also accompanied with a category-icon. Note that these icons are
taken from the Variable Editor, and are listed in AppendixB.

5.7.1 Implementation

The prototype as well as the final application were developed using C#.NET.
This was a requirement, since the complete Cristal model was implemented in
C#. The language C# does very much resemble Java. Like Java, C# supports
a garbage collector that frees resources when the system runs low on memory.
There are, however, subtle differences. Java programs, for example, compile to
byte-code that require to be executed on a Java Virtual Machine. C# programs,
on the other hand, compile to an intermediate language that can be interpreted by
the Microsoft .NET framework. The .NET framework translates the intermediate
language to instructions the processor can execute. When a .NET program is run
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for the first time, the .NET framework simply translates the intermediate language
code to CPU instruction, but during execution, the .NET framework keeps track
of code that is executed many times, such as repetitions. The framework subse-
quently optimizes these code-bits, so they execute faster. The framework does not
optimize all the code, because this would be unprofitable, since it costs relatively
much time to optimize. For pieces of code that get executed many times, optimiz-
ing them is profitable, because the added optimization time does not outweigh the
increase in execution time.

To give a small statistical overview, the final application consists of a little less
than 15,000 lines of code, split over 42 classes. The complete project is made up
from 44 files.
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Force model

As stated in the previous chapters, we want to visualize a hierarchical graph as
a collection of shapes, e.g., rectangles, that can have overlap, see Figure5.2. In
order to visualize the hierarchical structure of the graph, we draw a supercate-
gory as an enclosing rectangle around it subcategories, which induces the percept
of subcategories being actually in their supercategories. Furthermore, we use a
force directed placement algorithm to find positions for the categories such that
the structure of the graph is clear to the viewer. In this chapter we discuss this
algorithm.

6.1 Overview

The graph of categories is a Directed Acyclic Graph (DAG) which can be repre-
sented by a graphG = (V, E) whereV is the collection of vertices andE is the
collection of edges connecting the vertices. The vertices represent the categories
and the edges represent the parent-child relations between the categories and are,
therefore, directed from parent to child. Note that we do not take into account the
edges that represent the transitive or reflexive relations between categories.

Force directed algorithms model this graph as a physical system and then try
to find the positionspv of all verticesv such that the total energy in the system is
minimal. Standard force directed algorithms (Battista et al. [5]) model the edges of
the graph as springs, as also shown in Figure4.5. Pseudo code of such a standard
algorithm is given in Figure6.1.

In general, this model is used to draw undirected, possibly cyclic graphs, be-
cause all vertices in the graph are treated the same. This means that the hierar-
chical structure is lost. As stated, we want to draw supercategories as enclosing
rectangles around their subcategories. We want the categories that have a close
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1: constA, B {Strength of attraction, strength of repulsion}

2: procedure LAYOUT(Graph G)
3: { Place the nodes ofG at random positions}
4: for all v ∈ V (G) do
5: pv ← prandom

6: end for
7: repeat
8: { Calculate force vectorFv for each nodev }
9: for all v ∈ V (G) do

10: Fs ← 0, Fr ← 0
11: for all u 6= v do
12: puv ← |pu − pv|
13: −→puv ← (pu − pv)/puv

14: { Add repulsive force vector ofu onv }
15: Fr ← Fr + B

(puv)2
· −→puv

16: if u ∈ neighbors(v) then
17: { Add attractive force vector ofu onv }
18: Fs ← Fs + A · (puv − x0) · −→puv

19: end if
20: end for
21: Fv ← Fs − Fr

22: end for
23: { Move each nodev according to its force vectorFv }
24: for all v ∈ V (G) do
25: p′v ← pv + Fv ·∆t
26: end for
27: until (End condition reached)
28: end procedure

Figure 6.1: Standard force-directed algorithm.
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relation to be positioned close to each other as well. To accomplish this, we do
not define springs on the edges of the graph, but between sibling-categories, as ex-
plained in the following section. Subsequently, Section6 explains the force model
we use followed by multiple sections that explain the additional parameters of our
model.

6.2 Springs between siblings

We define categories that have a supercategory in common to have a close rela-
tion, moreover, two categories that have a direct supercategory in common are
calledsiblings. We want to emphasize that siblings are closely related and form
clusters, hence, we use springs between sibling-categories. A formal definition
of sibling-categories is given below. Figure6.2 shows a graph in which the cat-
egories are represented by steel rings. Additionally, springs are defined between
sibling-categories. The arrows in the figure denote the edges in the graph, i.e., the
super-subcategory relations between the categories.

Note that there are no springs between a supercategory and its subcategory.
Since a supercategory is drawn as an enclosing rectangle around its subcategories,
the force exerted on a supercategory is, in effect, a force on each of its subcate-
gories. Therefore, the forces on a supercategory are passed on to its subcate-
gories. This ensures that supercategories, which are clusters of subcategories, are
connected with springs as a group and receive their force vectors as a group.

Figure 6.2: Graph with springs between siblings.

Since the graph is directed and acyclic, every category has zero or more su-
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percategories as well as zero or more subcategories. Letsuper(v) andsub(v) be
the collections of supercategories, respectively subcategories, of categoryv ∈ V ,
i.e.,

super(v) = {u ∈ V |(u, v) ∈ E} (6.1)

sub(v) = {u ∈ V |(v, u) ∈ E} (6.2)

Using these definitions, the two types of categories, supercategories and atoms
can be defined as follows. An atom is a categoryv with sub(v) = ø and a super-
category is a categoryu with sub(u) 6= ø.

The siblings of categoryv ∈ V are defined by the categories that share a
supercategory with categoryv, i.e.,

sibling(v) = {s ∈ V |super(v) ∩ super(s) 6= ø} \{v} (6.3)

As stated, we define springs between the siblings in graphG. The force on
a category depends on the attractive forces exerted by the springs between the
category and its siblings. Details on the spring forces are denoted in the following
section.

6.3 Force function

Each spring in the model has, in analogy with a physical spring, a spring function.
Functionfuv(x) describes the attractive spring-force for a spring between cate-
goriesu andv and follows typically physical analogies, such as Hooke’s spring
law:

fuv(x) = Auv · (x− xuv
0 ) (6.4)

wherexuv
0 states the zero energy length of the spring between categoriesu and

v, see Section6.7andAuv the stiffness of the spring between categoriesu andv,
see Section6.6.

The force is a function of the distance between the categories. We can write
the total force exerted on categoryv as the sum of the forces exerted by the springs
connected tov and the total force on the supercategory ofv, i.e.,

F (v) =
∑

u∈sibling(v)

fuv(puv)
−→puv +

∑
u∈super(v)

F (u) (6.5)

with distancepuv = |pu−pv| and force direction−→puv = (pu−pv)/puv, where
pv is defined as the position of categoryv. Since an atom is only a small square,
the position of an atom is trivially defined as the actual coordinate of the square,
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where the position of a supercategory is defined by the rectangle that encloses its
subcategories. We use the center point of the rectangle as the connection point of
the springs that are connected to this supercategory.

The potential energy in the springs connected to categoryv can be expressed
as:

P (v) =
1

2

∑
u∈sibling(v)

Auv · (puv − xuv
0 )2 +

∑
u∈super(v)

P (u) (6.6)

The total potential energy of the system can be expressed as:

P =
∑
v∈V

P (v) (6.7)

In the optimal configuration, the total potential energy is minimal. Due to the
non-linearity of the problem, it is not feasible to find a minimum directly, hence
an iterative approach has to be used. A commonly used method is to start from a
random configuration. The categories are subsequently moved in the direction of
the forces exerted on them, such that in the end the total force on each category
is zero, or, in other words, a minimum energy state is reached. This will often be
only a local minimum, but the result is visually pleasant enough.

6.4 Repulsion forces

Standard force directed algorithms also use repulsion forces between categories.
The result of the choice to define springs between siblings is that the springs be-
tween siblings form a fully connected graph. Each category in this subgraph of
the overall spring system is connected with a spring to all the other categories in
this subgraph. Therefore, the structure resembles a very strong crystal-like struc-
ture which is not easily affected by a repulsion force on one of its categories. In
practice, the difference between the algorithm with repulsion forces is negligible
opposed to the algorithm without repulsion forces. Moreover, in the case the re-
pulsion forces would make a difference, this would have a negative effect on the
symmetry. Categories that have an equal number of subcategories look exactly
the same, but this is not always the case when repulsion forces are used. Further-
more, since the calculation of the repulsion forces is of orderO(N2) per iteration
in the number of categories, the performance gained by omitting them would be
significant. Therefore, we omit the repulsion forces. More information on the
complexity of the force algorithm is given in Section6.10.
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6.4.1 Bumper springs

However, and we make a small sidestep here, the negligible effect of the repulsion
forces could be caused by a bad ratio between attractive and repulsive forces. To
investigate this, we have introduced a new type of springs between all the nodes,
i.e., bumper springs. These springs do not exert an attractive force, but only a
repulsive force, similar to repulsion forces. The idea is that these bumper springs
make sure that the categories push themselves away from other categories.

As stated, the bumper springs only try to reach their zero energy length in the
case they are too short. A bumper spring that is too long does not try to reach a
shorter length. Therefore, the bumper springs do not follow Hooke’s spring law
as defined in Equation6.4, but an alternative spring law:

fbumper(x) =

{
A · (x− x0) whenx < x0

0 otherwise
(6.8)

As could be expected, the effect of the bumper springs was also negligible,
for the same reasons as we could neglect the repulsion forces. Furthermore, the
additionalO(N2) springs asked a lot more computation power. Therefore, we
might as well use repulsion forces, but since we have rejected those, we reject the
bumper springs as well.

6.5 Time step

At each iteration, the positionpv of a categoryv is updated according to:

p′v = pv + F (v) ·∆t (6.9)

where∆t is the time step. Initially, the time step is set to a relatively high
value to let the really stretched out springs do their work, which results in a fast
placement which is not yet perfect. Through time, the time step is diminished
to make sure the springs can reach their minimum energy state. A small time
step removes the oscillating effect which occurs when the spring is traversing its
zero energy length each iteration of the calculation process. As the time step gets
smaller and smaller, the graph is fine tuned. Specifically, we use:

∆ti+1 = C ·∆ti (6.10)

wherei is the number of the iteration andC is a constant with0 ≤ C ≤ 1.
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6.6 Stiffness

The stiffness of a spring reflects the rate at which the spring tries to reach its
zero energy length. The stiffer the spring, the faster the spring tries to reach this
length. As stated, we define springs between the sibling-categories in the graph,
where siblings are defined as categories with the same supercategory, see Equa-
tion 6.3. It is, therefore, possible for categories to be siblings through multiple
supercategories. This occurs, for example, when a set of subcategories have the
same set of supercategories, such as in Figure5.2. The middle two categories have
the same set of supercategories, namely, the two supercategories shown. Accord-
ing to the definition (see Equation6.3), we would create multiple springs between
these categories, because they are siblings over multiple supercategories. To de-
crease the computational complexity, at most one spring is created between any
two categories. Therefore, to reflect the existence of multiple springs, the one
existing spring’s stiffness is multiplied by the number of springs it represents.

In Figure6.3, the categoriesc4 andc5 are siblings through multiple supercat-
egories, e.g.,c1 andc2. According to the definition, there should be two springs
between these two categories, but we only place one spring with double stiffness
between these two categories.

c 1
c 2

c 3
c 4

c 5

c 6

Figure 6.3: Spring between c4 and c5 has increased stiffness, while c3 and c6 are
considered lonely categories.

Another problem that can be solved with increased spring stiffness is the be-
havior of ’lonely categories’. Categories that have only one supercategory, and
siblings with multiple supercategories, are called ’lonely categories’. Formally
speaking, a categoryv ∈ V is considered a lonely category whenv ∈ Lonely(V ),
where the collection of lonely categories is defined by:
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Lonely(V ) = {v ∈ V |#super(v) = 1 ∧ ∀s∈sibling(v)(#super(s) > 1)} (6.11)

where#C denotes the number of elements in collectionC. Since the siblings
of these lonely siblings receive their force vectors from multiple supercategories,
and these supercategories move often in opposite directions, the total force vec-
tor of these siblings is significantly smaller than the force vectors of the lonely
categories. The lonely categories, therefore, tend to move away from the siblings
while enlarging the rectangle of the supercategory. To cope with this unwanted
behavior, the stiffness of the springs attached to the lonely categories is doubled
to keep them close to their siblings with multiple supercategories. Note that ghost
categories (see Section5.2.1) can also be seen as lonely categories, and, therefore,
have stiffer springs attached to them.

In Figure6.3, the categoriesc3 andc6 are considered lonely categories, be-
cause they each have only one supercategory, e.g.,c1 and c2 respectively, but
siblings with multiple supercategories, e.g.,c4 andc5. Note that in practice there
usually are more categories likec4 andc5, so the difference in spring force be-
tween lonely nodes and their siblings is large.

6.7 Change spring lengths

Since two categories that are connected by a spring should not overlap when they
do not have an overlapping region, it is important to correctly set the zero energy
length of the spring between these two categories. Each spring in the force model
tries to get as closely to its zero energy length as possible, while following the
spring law (see Equation6.4). Since the spring is connected to the center point of
the shape which represents the category, the length of the spring should be at least
the sum of the radii of the two shapes if we want one length for arbitrary relative
positions.

Initially, the exact size of the shape of a category is not know, since initially the
atoms are placed randomly across the screen. This means that the supercategories
initially have very large shapes and they are all overlapping. The actual radius of
these shapes is, thus, very large and, therefore, we approximate the radius by using
the square root of the weight of a category. Therefore, the zero energy lengthxuv

0

of a spring between two categoriesu andv that are not overlapping is initially
defined as a function on the weights ofu andv, i.e.,

xuv
0 = B · (

√
wu +

√
wv) + m (6.12)
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�

�

Figure 6.4: Initial spring length.

wherewx is defined as the total number of atoms under categoryx, i.e., the
number of subcategories which have no subcategories. ConstantB denotes the
radius of an atom. Termm denotes a margin, as can be seen in Figure6.4.

We take the square roots of the weights, because the square root of a number
of items is generally a good estimate for the number of items in horizontal direc-
tion, and the number of items in vertical direction. Of course, this relies on the
assumption that the items are uniformly distributed and lie in a square or a circle.
In our case, the subcategories in a supercategory are not uniformly distributed
and the shape of the supercategory is not a square or a circle, so we only use this
definition as an initial zero energy spring length.

Therefore, during the placement process, the lengths of the springs are ad-
justed each step of the iteration to better reflect the actual distance between the
two endcategories of a spring. To avoid unwanted overlap between categories, the
length of the spring should at least be the sum of the radii of the two endcategories.
First we define the radius to be half the diagonal of the rectangle that represents
the category. Then, letru andrv be the radius of categoriesu andv respectively,
then:

xuv
0 = ru + rv + m (6.13)

wherexuv
0 is the zero energy length of the spring between two categoriesu

andv. Termm denotes a margin, i.e., the distance between the two rectangles that
represent the categories, as denoted by Figure6.5a.

It is fairly possible for two categories that are connected to a spring, to have an
overlapping region. In accordance with the Cristal model, this overlap means that
the two categories have at least one subcategory in common. The length of the
spring should account for the overlapping space. This means that the zero energy
length of the spring should reflect the sum of the radii of the two categories minus
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Figure 6.5: Spring lengths: (a) Spring length when the two categories do not
overlap, (b) Spring length when the two categories overlap.

the diameter of the overlapping region. Since it is difficult to determine the actual
diameter of the overlapping region, we approximate this diameter by taking twice
the square root of the weight of the overlapping region. Letru andrv be the radius
of categoriesu andv respectively, then:

xuv
0 = ru + rv − 2ro −m (6.14)

wherexuv
0 is the zero energy length of the spring between two categoriesu

andv, ro denotes the radius of the overlapping region ofu andv, and termm
denotes a margin, as denoted by Figure6.5b. The radius of the overlapping region
is defined as half the length of the actual diagonal of the rectangle that encloses
the categories that make up the overlapping region.

6.7.1 Other spring length options

We described the best working zero energy spring lengths above. We have exper-
imented with a number of different ways to change the spring lengths to decrease
unwanted overlap. As a sidestep we give a number of alternatives and the reasons
why they have been ruled out:

• Change spring length according to overlap.
When the sum of the radii of two categories that are connected with a spring
is greater than the distance between the two center points of the categories,
the two categories are overlapping. In this case, the length of the spring is
increased, otherwise, the length of the spring is decreased, i.e.,

ls =

{
ls · (1 + e) whenru + rv > |pu − pv|
ls · (1− e) otherwise

(6.15)



Section 6.7:Change spring lengths 70

Another option is to increase the length of the spring between two categories
when the actual shapes of the categories are overlapping and decrease the
length of the spring otherwise, i.e.,

ls =

{
ls · (1 + e) whenu is overlapping withv
ls · (1− e) otherwise

(6.16)

wherels is the length of the spring between categoriesu andv, ru andrv

are the radii of categoryu, respectively categoryv, pu andpv are the center
positions of categoryu, respectively categoryv, ande is a small constant.
These spring length change functions have been ruled out because the spring
lengths just change too dynamically. The change of one spring’s length
leads to the change of another spring’s length and so on. It is, therefore,
fairly possible that the length of the springs only increase, which leads to a
graph that grows unbounded.

• Change power of the weight according to the radius per spring.
This option uses the initial length of the springs, which is defined by Equa-
tion 6.12. In short, the spring length is set to the sum of the square roots of
the number of atoms below the two categories. Since taking the square root
of a number is the same as raising that number to the power of0.5, we can
change that power to alter the spring length. More specifically, when the
power is increased, this means that categories with small weights, i.e., lit-
tle atoms, have substantially longer springs connected to them. Decreasing
the power results in categories with big weights, i.e., many atoms, to have
substantially longer springs connected to them.

a =

{
a · (1 + e) whenru + rv > |pu − pv|
a · (1− e) otherwise

(6.17)

As with the previous option, we can also check to see whether the actual
rectangles of the categories are overlapping and adjust the power accord-
ingly.

a =

{
a · (1 + e) whenu is overlapping withv
a · (1− e) otherwise

(6.18)

ls = B · ((wu)
a + (wv)

a) + m (6.19)

wherea is the power which is used in the latter equation,ru andrv are the
radii of categoryu, respectively categoryv, pu andpv are the center posi-
tions of categoryu, respectively categoryv, e is a small constant expression,
ls is the length of the spring between categoriesu andv, B is the stiffness
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of the spring,wu andwv are the weights, i.e., the number of atoms, of cate-
goriesu, respectively categoryv, andm is a margin.
It turns out that the springs between atoms remain too long and the springs
between supercategories are relatively too short. Furthermore, there is still
a lot of overlap which is not wanted, because the lengths of the springs are
not yet optimal. However, the system is a lot less dynamic, and does not
lead to a graph that grows unbounded.

• Change overall power of weight according to the radius.
The previous options describe a way to change the power which is used
in accordance with the number of atoms below a category to resemble the
radius of that category, which in turn is used to determine the length of the
spring. In the previous options, this power is determined per spring. Of
course, it is also possible to determine this power for all the springs at the
same time. This means that all radii of all categories are calculated using
the same power.

a =

{
a · (1 + e) when at least two categories are overlapping
a · (1− e) otherwise

(6.20)

ls = B · ((wu)
a + (wv)

a) + m (6.21)

wherea is the power which is used in the latter equation,e is a small con-
stant expression,ls is the length of a spring between two categoriesu andv,
B is the stiffness of the spring,wu andwv are the weights, i.e., the number
of atoms, of categoriesu, respectively categoryv, andm is a margin. Note
that all the zero energy lengthsls of all the springss are updated with the
new powera.
The initial results were appealing while using this option, but we soon found
out that it is fairly possible for two categories to be constantly overlapping.
The result is that the power is constantly increased, while the overlap is not
reduced. Therefore, the lengths of the springs only increase, which leads,
again, to a graph that grows unbounded.

6.8 Multi Dimensional Scaling

A different approach we have investigated originated from the area of multi di-
mensional scaling (MDS). In essence, the main problem is to find a hierarchical
placement for the categories in which categories that have a close relation are
placed closer to each other than categories which have no relation. In our case, a
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close relation is defined between categories that have the same supercategory, i.e.,
siblings.

Standard MDS algorithms use a distance function between different objects
and try to place the objects on the screen with respect to their relative distances.
This distance function is, in essence, a mapping from a multi dimensional space
to a two dimensional space, or in some cases a three dimensional space. In our
case, the distance function should return a relatively low distance for categories
that are siblings and a high distance for categories that have nothing in common.
To denote the distance between two categoriesu and v, we count the number
of edges in the shortest pathp from u to v, with the restriction that the closest
common supercategory ofu andv is a member or pathp.

Let G = (V, E) be a directed acyclic graph whereV is the collection of cate-
gories, i.e., the collection of vertices andE is the collection of relations between
categories, i.e., the collection of edges between the vertices. Thus, each vertex in
the graph denotes a category.

First define a distance function between two categories that counts the edges
between two categories:

d(u, v) = number of edges on the shortest path fromu to v (6.22)

Then, the set of closest common supercategories of two categoriesu andv is
defined by:

CCS(u, v) = {x ∈ V |∀y∈V (d(x, u) + d(x, v) < d(y, u) + d(y, v))} (6.23)

Finally, the distance function used for this MDS algorithm withccsuv ∈ CCS(u, v)
is defined as the length of the path fromu to v over the smallest common supern-
odeccsuv, i.e.,

dmds(u, v) = d(ccsuv, u) + d(ccsuv, v) (6.24)

Since the positions of the atoms dictate the positions of the supercategories,
we define a fully connected graph of springs between the atoms. The zero energy
spring length of these springs is defined by the distance functiondmds(u, v).

As stated, the MDS approach defines a full graph of springs between the
atoms. After a few iterations of the force algorithm, this results in a somewhat
circular representation of atoms. The proposed distance function as function that
describes the spring length between two atoms proved to be a good estimate for
the actual distance between the atoms. There is, however, no way of ensuring
that the supercategories can be drawn as enclosing rectangles around their sub-
categories. For example, since the atoms are laid out in a circular structure, the
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supercategories of the atoms that happen to lie on the outside of the circle tend to
grow very large and overlap each other, causing a lot of unwanted overlap. It is
also possible that two supercategories with each two atoms form a cross and, thus,
create a lot of unwanted overlap. In an MDS algorithm there is no way we know of
that enforces better placement of the atoms such that these drawbacks are avoided.
Therefore, since the MDS algorithm does not take the hierarchical structure into
account, and because it generates circular structures that do not comply with the
proposed rectangular inclusive shapes, we had to rule out the MDS approach.

6.9 Summary

For reference, AppendixA lists the pseudocode for our force directed algorithm.
To summarize, the following steps are used in the force model:

• Add ghost categories
We add ghost categories to the graph to show the implicit relation of a cate-
gory being contained in another category, which otherwise would be shown
as an explicit relation.

• Define springs between siblings
To create clusterings of categories, we define springs between sibling-categories
as opposed to the general force directed algorithms with springs defined on
the edges of the graph. Siblings are defined as categories that share the same
direct supercategory.

• Increase spring-stiffness to resemble multiple springs
A spring between siblings that have the same set of supercategories has
increased stiffness to resemble multiple springs. We only define one spring
to decrease computational complexity.

• Increase spring-stiffness for ’lonely categories’
Springs of ’lonely categories’ have increased stiffness to avoid the tendency
of these ’lonely categories’ moving away from the rest of the graph, result-
ing in large rectangles for their supercategories.

• Initial zero energy spring length
Initial zero energy spring length between two categoriesu andv:
xuv

0 = B · (√wu +
√

wv) + m

• Iterate over springs
Repeatedly iterate over all the springs to calculate the force vectors for each
node, in order to minimize the total energy function. Execute the following
steps each iteration:
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• Calculate force vectors
Calculate the total force vector for each categoryv, according to the springs
connected to that category.

• Move categories
Move the categories to their new positions, according to the calculated force
vectors.

• Change spring lengths
Because the square root is not a good estimate for the radius of a group
of categories, we change the zero energy spring lengthxuv

0 of the spring
between two categoriesu andv every step of the iteration as follows:

- No wanted overlap:xuv
0 = ru + rv + m

- Wanted overlap:xuv
0 = ru + rv − 2ro −m

6.10 Complexity

In this chapter, we have defined an iterative force directed algorithm. Each iter-
ation of the algorithm, the force vectors that result from the springs between the
categories have to be calculated. Furthermore, each category has to be moved
according to the resulting force vector from its spring. Subsequently, the zero en-
ergy length of each spring has to be adjusted. As a result, the number of springs
determines the complexity of the algorithm.

In the worst case, a graph withN categories consists of one root-category and
the otherN − 1 categories are subcategories of the root-category. This means that
there areN − 1 siblings, each with the root-category as supercategory, resulting
in

∑N
i=1(N − 1− i) springs, which is of orderO(N2).

Each iteration, the forces resulting from these springs need to be calculated.
The more categories the classification contains, the more iterations are needed
to calculate an appealing layout. Therefore, the number of iterations is of order
O(N). Furthermore, movingN categories to their new positions is anO(N)
operation. Subsequently iterating over all springs to change their zero energy
spring lengths is anO(N2) operation. To sum up, the total complexity isO(N) ·
(O(N2) + O(N) + O(N2)). Which evaluates toO(N3).

As stated in Section6.4 we have omitted the repulsion forces for one reason
because they require an additionalO(N2) calculation per iteration. Since the total
complexity per iteration is already ofO(N2), this does not seem to matter very
much. However, the complexity of calculating the repulsion forces requires ex-
actly N2 steps, because for all categories, all categories have to be examined to
acquire the repulsion between them, while the iteration complexity ofO(N2) is
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only a worst case running time. On average, for a number of real world infor-
mation sets, the amount of springs is about10N , which isO(N). This results in
a total average case complexity ofO(N) · (O(N) + O(N) + O(N)) = O(N2).
Therefore, omitting the additionalO(N2) for calculating the repulsion forces per
iteration does reduce the complexity of the total algorithm.

6.11 Results

The algorithm is capable of showing graph structures with up to 1,000 categories
on a high-end desktop computer. To give an impression on the running time,
Table6.1shows the running times for different classification structures on an Intel
Pentium 4 2.8 with 512MB RAM.

# Categories: Running time:
50 8 sec
100 14 sec
358 49 sec
986 2:36 min

Table 6.1: Running times of algorithm.

We found that narrow graph (or tree) structures tend to cause less unwanted
overlap. In practice, the classification structures at SN are narrow structures, i.e.,
graph structure in which the categories near the root category have little subcat-
egories. Unfortunately, however, the algorithm was not capable of removing all
unwanted overlap. In these cases, the user has to move the categories around with
the mouse to be able to see the exact structure of the information set.

A tree structure with 100 categories is shown in Figure6.6. The algorithm is
fairly capable of showing tree structures, as can be seen in the figure.

A graph structure with 52 categories is shown in Figure6.7. The portion inside
the red circle shows some overlap that we could not avoid.

Figure6.8 shows a graph structure with 986 categories. The two red circles
again denote some unwanted overlap.
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Figure 6.6: Visualization of tree structure with 100 categories.
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Figure 6.7: Visualization of graph structure with 52 categories.
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Figure 6.8: Visualization of graph structure with 986 categories.



Chapter 7

Evaluation

Once the initial prototype was developed, it was necessary to determine the ca-
pabilities and the potentials of the visualization technique and the visualization
tool, CristalView. This judgment needed to be performed such that both the good
points and drawbacks of the visualization were revealed.

In Chapter3 we have defined a number of requirements for a visualization of
the classification structures of a Cristal. Subsequently, we have come up with a
visualization method and a prototype of our visualization tool, CristalView (see
Chapter5). In this chapter we evaluate the visualization tool CristalView. For
this, we have conducted a user experiment with a number of participants, which
is described in the following sections.

7.1 Methods of testing

In this section we describe the test methods for the requirements we evaluate dur-
ing the user experiment. The test setup is explained in the next section. We num-
ber the test methods starting with E1 and the tested requirements (see Chapter3)
are denoted between brackets.

• E1: Improvement over Variable Editor(RF7, RF1, RF2)
The most important factor that has to be tested is whether or not the visu-
alization tool is an improvement over the previous visualization tool, the
Variable Editor. To this end, a comparison has to be made between the two
visualization tools. We, therefore, ask the user several questions about the
structure of the information set and measure the time needed to answer the
questions using the two visualization tools. The questions have to be dif-
ferent for the two visualization tools to avoid the effect of memory, but the
insight required to answer them has to be the same. Also, the questions have
to address all kinds of possibilities the Cristal model offers, to test whether

79
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the user understands the full capabilities of the Cristal model. Since some
participants have no experience with the Cristal model at all, the initial un-
derstanding of the model is tested by these questions as well.

• E2: Pinpoint deficiencies(RF8, RF9, RF10)
Another intention is to enable the user to create data without unnecessary
objects. Also, the chosen data structure, e.g., a tree or graph structure, has
to be the simplest structure possible. To test this, the users are confronted
with a Cristal that has deficiencies in it. They are asked to identify the de-
ficiencies and how they would fix them. Also they are asked questions on
whether or not they would have created the Cristal the same way if they had
to do it themselves. Of course, it is necessary that the users have some kind
of experience with the visualization tool, so this part of the test should be
carried out after the user has gained some experience with the tool. Note
that the required time per action is not really an issue here, because it is
more important that certain deficiencies are identified.

• E3: Ease of use(RU1, RU2)
Finally, the program has to be easy to use. This is examined through a con-
cluding survey with questions on the user interface, the ease of navigating,
etc. Also, the users can describe certain improvements on the program they
would like to see, as well as general remarks.

7.2 Test setup

We start the user experiment with a short explanation of the visualization tool
CristalView. The basic functions are explained and demonstrated shortly to give
the user an impression of the program. In case the user is not familiar with the
Variable Editor, the functionality of this editor is explained shortly to the user. Of
course, the contents of the user test is explained to the user.

The user experiment consists of three parts. The first part is a comparison
between the Variable Editor and CristalView. In the second part the participant
has to pinpoint certain strange objects in the dataset. The third and final part of
the test consists of a survey that asks the user’s opinion on the visualization tool
CristalView.

In the first part of the test (seeE1) the user is asked to answer some questions
about the information set on the screen.
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To be able to test the visualization of different aspects of the information set,
three types of questions were asked, i.e.,

• Questions regarding categories

• Questions regarding levels

• Questions regarding time

The time required to answer the questions is measured. This is done for the
Variable Editor as well as CristalView, which allows us to compare the measured
times and draw conclusions on the comprehension of the information structure.
The information we use is not real world data, but a specially constructed infor-
mation set with descriptive category-names. Since we are letting the participants
use the Variable Editor as well as CristalView and we want to compare the two,
we use two information sets with exactly the same structure, except that the de-
scriptive names are different. This allows us to ask different questions for each
information set which prevents the effects of participants memorizing questions,
but in fact we are asking the same questions, because the structure of the two in-
formation sets is the same. The complete structure of the information set, as well
as the questions asked about it can be found in AppendixC.

In the second part of the test (seeE2), the user was asked to look at the current
Cristal and see if there are any strange objects on the screen. If the user identified
such objects, the user was asked to precisely describe what is wrong. After that
the user was asked a couple of questions on whether or not he/she would have
created the same Cristal given the data. We used a specially constructed dataset
with a number of deficiencies in it. By counting the number of deficiencies found
by the participant, we can draw conclusions on whether or not the user is capable
of using CristalView to pinpoint errors and unnecessary objects in the data. The
information set we used is described in AppendixC.

The last part of the test (seeE3) asks the user to give his opinion about certain
aspects of the program, e.g., navigation, ease of use etc. This is done through a
small survey in which the user can propose certain improvements and give general
remarks.

Since these methods of testing (also see Section7.1) require an extensive test
which takes a few hours, we could not use a large amount of participants. On
the other hand, to be able to draw well-funded conclusions, we should test the
program with as many participants as possible. Therefore, we use a group of
about ten participants, but each test is slimmed down to around one hour.
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Figure 7.1: (a) CristalView average answer times. Vertical lines denote minimum
and maximum answer times. (b) Variable Editor average answer times. Vertical
lines denote minimum and maximum answer times.

7.3 Results

Since the user experiment is divided into three parts, we discuss the results of the
three parts separately before we draw conclusions.

Part one - Comparison

The participants were divided into two groups. The first group tested CristalView
first and subsequently the Variable Editor, while the second group started out with
the Variable Editor.

Figure7.1shows the averages of the measured answer times for the two tools.
The test consisted of 22 questions regarding the three aspects of the visualization,
see AppendixC. The three different types of questions are denoted below the
horizontal axis of the graphs. For each question, the vertical line denotes the
maximum and minimum answer times, while the trend denotes the average answer
time per question.

Figure7.1(a) shows the answer times for CristalView. It shows that the category-
questions are answered quite quickly, which means they were relatively easy to
answer. The level-questions were a bit harder to answer, so they took more time.
The question regarding time were a little easier to answer, but still more difficult
than the category-questions. Furthermore, the difference in answering times is
quite significant, as shown by the vertical lines. Some participants required con-
siderable more time to answer questions than other participants. This effect is
most noticeable regarding the level-questions, probably because these questions
were considered to be harder to answer than the category-questions.

Figure 7.1(b) shows the answer times for the Variable Editor. Opposite to
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Figure 7.2: (a) Difference between CristalView and Variable Editor average an-
swer times, (b) Average answer times per type of question.

the previous graph, this graph shows that the category-questions are quite hard to
answer, while the level- and time-questions are relatively easy to answer. Again,
the difference in answering times is the largest with the toughest questions, which
can in this case be found amongst the category-questions.

When we take the difference between the two graphs, we acquire Figure7.2.
Figure7.2(a) shows the CristalView average answer times minus the Variable Edi-
tor average answer times. This means that the participants answered the questions
faster in CristalView when the trend is below 0, and that the questions were an-
swered quicker in the Variable Editor when the trend is above 0. Again, the figure
shows that the usage of CristalView is considerably more efficient regarding Cat-
egories, but when it comes to Levels, the Variable Editor is more efficient. For
questions regarding Time, both tools are equally efficient. To clarify this state-
ment, consider Figure7.2(b). This figure shows the difference in average answer
times per type of question between the two tools. It clearly follows from this fig-
ure that CristalView clarifies the category-structure, but that the Variable Editor is
more effective regarding the level-structure. When it comes to questions regarding
time, both tools are equally effective.

Part two - Deficiencies

As stated in Section7.2, the user is asked to look at a classification structure of
a Cristal and see if there are any strange objects on the screen. Moreover, the
participant is asked to precisely describe what is wrong. We used an information
set containing a classification structure of regions of The Netherlands, see Appen-
dix C. The dataset contains all municipalities of The Netherlands at the lowest
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level. These municipalities are contained in 42 groups of municipalities. These
groups of municipalities are contained in 12 provinces, where the provinces are
contained in 4 quarters, one for each wind of the compass. These 4 quarters are
contained in the root category ”Total”.
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Figure 7.3: Percentage of participants that pinpointed a deficiency.

There were several deficiencies to be found in the classification structure in
regions of The Netherlands. For example, there was a ”Loose Category”, i.e., a
category that was not contained in the root category ”Total” and not in any level.
Furthermore, there was a category that was only contained in the root category
”Total”, but not in any lower level such as ”Province” or ”Quarter”. Also there
were categories like ”Other” that were present at each level in the classification
structure. A lot of municipalities were at some point in time joined, or split. These
joining and splitting operations were not traceable, so could be marked strange.
Finally, there were categories for which the set of subcategories is a part of the set
of subcategories of another category. For these categories a ghost-category had to
be created (see Section5.2.1). This can also be marked as strange.

Figure7.3shows the results of the second part of the experiment. Every par-
ticipant noticed the strange ”Loose Category” that did not belong to any root cat-
egory, as well as the category that did not belong to any province or quarter. More
than half the participants noticed the categories like ”Other” that were present at
each and every level. The municipalities that were split up, or joined together
were only noticed by ten percent of the participants, and the categories that have
exactly the same set of supercategories were not noticed at all.
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Part three - Survey

As stated in Section7.2, the third part of the user experiment consisted of a small
survey in which the participants could express their feelings about the tool. The
general opinion was that CristalView is very much a welcome contribution to the
Cristal package. Every participant was willing to use the tool to gain insight in a
Cristal.

General opinion

Navigation Usability Functionality Added comprehension

excellent

good

neutral

not so good

very bad

Figure 7.4: General opinion about CristalView.

Figure7.4 expresses the general opinion of the participants, which was very
positive at the different points. Navigating through the dataset was judged to be
very good, and also the usability of the program was quite good. The participants
thought the tool contained enough functionality, but since they all had ideas of
functionality to add, they generally judged the functionality to be good. Finally,
the participants all found their comprehension of the Cristal model very much
increased.

Participant remarks

Of course, when a number of participants test a program which is still in devel-
opment, they all have an opinion about it and they all miss certain functionality
which they would like to be added to the program. We discuss a number of re-
marks that were expressed by several of the participants. In Section5.7 we have
described how these remarks were dealt with in the final application.
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• Search functionality. The Variable Editor contains search functionality, and
almost all of the participants were looking for a search option in CristalView
to get a quick start in finding their way in the information set. Nearly all par-
ticipants mentioned this search functionality as a function that is very much
needed in an application that provides the user insight in an information set.

• Folding and unfolding of categories. The tested prototype contained a category-
fold function, which folded a category (and all its subcategory) to a small
circle when the user right-clicked the category. The idea behind this was to
avoid visual clutter and enable the user to focus on aspects of interest. Dur-
ing the user experiment, however, a few participants accidentally folded a
number of categories and they were very surprised. The participants did not
know what they had done, and were unable to trace the folded category. The
described effect of surprise is enhanced when a root category is accidentally
folded, because in that case a large portion of the image on the screen will
vanish into a small circle and users panic and ask themselves what they have
done.

• Select multiple levels at the same time. The prototype only allowed to select
one level at a time, which colored the categories in the selected level with
the specified color. A few questions during part one of the user experiment
could be answered by taking the intersection of two levels, which was not
possible, because only one level could be selected at a time. Therefore,
participants remarked that they would like to be able to select multiple levels
at a time. When implementing the selection of multiple levels at the same
time, it is possible that categories reside in two different levels that are both
selected. The overlapping level-region would have to be colored with the
two colors of the two levels at the same time. This would result in a blended
color or some sort of pattern with multiple colors, which would both be
very distracting. Therefore, to avoid these problems, we decided not to
implement the selection of multiple levels at the same time.

• Degree of abstraction (see also: van Ham, van Wijk [27]). During the user
experiment, participants remarked that it would be more convenient to have
some degree of abstraction. Of course, the folding functionality addresses
this problem, but since this functionality proved to be very confusing, some
users requested a way to only show the high level categories (such as the
root categories). In combination with zooming functionality, the lower level
categories (such as the atoms) could be shown when the user zooms in on
a specific area of the dataset to see a more detailed picture. This would
decrease visual clutter and, therefore, increase the comprehension of the
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information set. We decided not to implement a degree of abstraction, since
the folding functionality provides enough possibilities to our opinion.

7.4 Conclusion

In this section we draw conclusions on the results of the different parts of the user
experiment. We address the test methods defined in Section7.1separately.

• E1: Improvement over Variable Editor
From the results of the first part of the user experiment (see Figures7.1
and7.2) follows that CristalView is more effective regarding the category
structure, but that the Variable Editor is more effective when it comes to
the level structure. Regarding the time structure, both tools are equally ef-
fective. An explanation for these results can be found when we look at the
design principles of both tools. CristalView was designed to visualize the
category structure. Visualization of levels was added later by coloring the
categories that form a certain level. The Variable Editor was designed the
other way around, because it focuses mainly on the hierarchy- and level
structure and the categories were added to complete the lot. It is, therefore,
not very surprising that CristalView does a better job at visualizing cate-
gories, while the Variable Editor is better off visualizing the level structure.
With regard to the time structure, both programs have an appropriate way
of dealing with categories that are predecessors or followers of each other,
that works for both programs equally well. Furthermore, from the first part
of the test in combination with the concluding survey of the experiment, we
can conclude that the participants gained more insight in the full capabilities
of the Cristal model, as well as a broader understanding of the Cristal model.

• E2: Pinpoint deficiencies
Also, in Chapter3 we expressed the need for users to create data with some
degree of symmetry and without unnecessary objects. The results of part
two of the user experiment show that every participant remarked the outly-
ing categories and that more than half of the participants noticed the strange
categories like ”Other” that existed at every level in the information set.
From this we can conclude that users will create better information sets
when they can really see what they are doing. They can really pinpoint un-
necessary objects and remove them from the information set. A few partic-
ipants even wondered why some parts of the image ’looked better’ to them,
before discovering that these good looking parts were in fact tree structures
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instead of graph structures. Therefore, it seems likely that users will create
information sets with an increased degree of symmetry which only adds to
the comprehension of the information.

• E3: Ease of use
Finally, Chapter3 states that the program should be easy to use, which
means that the user interface of the program should be clear to the user.
From the results of the first part of the experiment already follows that par-
ticipants find their way into the program quite fast, according to the mea-
sured answer times. Often the user finds an answer in under ten seconds,
which can be regarded as fast. Furthermore, from the concluding survey
of the experiment follows that navigating, usability and functionality are all
rated good to excellent. All participants stated that they would like to use
CristalView to get insight in a particular Cristal, so we state that the program
is easy to use.

In general, people who have experience with computer programs are used to
textual representation of information. Of course, this does not necessary mean that
a textual representation is more effective. While a visual representation of infor-
mation can be visually appealing, people often want to know what the underlying
textual information is. It takes, therefore, some time for most people to get used
to a visualization tool that reduces the amount of textual representations with a
theoretically more comprehensive visual representation of the information set. In
this case, CristalView is clearly a visual representation of information, while the
Variable Editor uses a textual representation of information. It is, therefore, good
to test this in practice with a user experiment, and according to the above, the over-
all conclusion is very positive regarding the visual representation of CristalView.
However, a problem still remains with the visualization of the level structure. Per-
haps it is possible to combine the best features of CristalView and the Variable
Editor which gives the best of both worlds, i.e., the category visualization from
CristalView combined with the level visualization of the Variable Editor.



Chapter 8

Conclusions

This chapter presents conclusions based on working with the visualization method
explained in this thesis, subdivided into possibilities and limitations. The final
section gives a number of recommendations for further research and possible im-
provements.

8.1 Possibilities

• Inclusion and overlap
The visualization of parent rectangles surrounding their child rectangles to
represent part-whole relations was already known to present a visually clear
and comprehensive image. The combination with overlapping rectangles to
represent child objects with multiple parent objects also proved to be very
useful. An additional advantage is the intrinsic visualization of transitive
parent-child relations, in other words, parent-grandchild relations.

• Interaction
CristalView provides a clear picture of the entire graph without overload-
ing the user with information. Using this overview image, the user can quite
easily gain insight in the overall structure of the graph. Because of the many
ways to interact with the information set, the user can navigate or zoom in
to a region of interest to be able to see more detail. Moreover, the user
can drag the rectangles to new positions to provide an even more appealing
image. Since the user can also select which categories should be labeled,
and even drag the labels to a new location, well known problems regarding
labels overlapping regions of interest are avoided.

89
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• Positive evaluation
Following from the user experiment we have conducted to evaluate CristalView
(see Chapter7), we have found that CristalView can help users to pin-
point deficiencies in the classification structure and is easy to use. Since
CristalView does not support editing of the structure of the classification,
an edit-tool has to be used to clear out the possible deficiencies, for exam-
ple the Variable Editor (see AppendixB). However, since CristalView does
support editing of the attributes of a category, level or hierarchy, changing
these attributes can be done very easily while viewing a classification struc-
ture.

8.2 Limitations

• Unwanted overlap
Since overlapping rectangles really denote someting, namely a child cate-
gory with multiple parent categories, we do not want rectangles overlapping
when this relation is not present. The force-directed layout algorithm should
take care of that, however, we have not succeeded in completely avoiding
unwanted overlap. On the other hand, the user can move categories to an-
other position by dragging the categories with the mouse, such that there is
no unwanted overlap.

• Graph shape
We found that narrow graph structures tend to cause less unwanted overlap.
Fortunately, in practice most classification structures used at SN are narrow
structures, i.e., graph structures in which the categories near the root of the
graph have little subcategories (about 5). The structures at SN often are
narrow at the top, but very wide at the bottom, i.e., the supercategories of
the atoms each have a large number of subcategories.

• Graph size
A graph structure with up to 1,000 categories can be shown with CristalView
in around 2 minutes on a high-end desktop computer (Intel Pentium 4 2.8
with 512MB RAM). Due to the algorithmic complexity of the force model
(see Section6.10), the calculation of category positions tend to take too
much time when trying to visualize more categories. Moreover, the drawing
of the categories on the screen becomes more time consuming with larger
classification structures, which we were not able to speed up. Due to the
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many interaction possibilities, a refresh of the image on the screen needs to
occur very often, which requires all the categories to be redrawn.

• Hierarchical DAG structures
The visualization method works with hierarchical DAG structures. Other
graph structures usually do not have an hierarchical structure and, thus, the
system of rectangles including each other to denote part-whole relations
does not provide a useful image. However, since a tree structure can be re-
garded as a special case of a hierarchical DAG, namely when each node has
at most one supernode, tree structures can be visualized quite well, resulting
in an image with only inclusive rectangles and no overlapping rectangles.

• Arbitrary size of rectangles
Since the size of a rectangular category is determined by the number and
positions of its subcategories, the size of the rectangles does not reflect an
actual measure used in the classification structure. For example, when a
classification is made on departments and subdepartments of an enterprise,
usually the largest department is the production department and the smallest
departments are the support and facilitating departments. The large produc-
tion department could be denoted by a small atom, because there is no fur-
ther subdivision made, but the support and facilitating departments usually
contain more subdepartments, resulting in larger rectangles with subrectan-
gles and subsequently atoms in them. This could be counter-intuitive for the
users, because CristalView only shows the structure of the classification, not
the contents of the classification.

8.3 Further research

• Avoid unwanted overlap
We have tried to avoid unwanted overlap, but as stated previously, we could
not prevent it completely. We have, however, a few recommendations for
future research on this topic.

1. Placement of atoms
Since the atoms at the lowest level only have supercategories, it should
be possible to identify groups of atoms that have the same supercat-
egories. This can be one supercategory, or a set of supercategories.
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These atoms can subsequently be placed using a linear placement al-
gorithm that places all these atoms in a square. Using this method,
there is no need for springs at the lowest level of the atoms, which
would greatly reduce calculation complexity, since in practice, that is
the widest part of the graph with the largest amount of springs. Fur-
thermore, since the groups of atoms will be connected with springs
to other groups of atoms, instead of the atoms themselves, the spring
system will allow for more flexibility, because there is less tension on
the springs. This should result in a better layout with less unwanted
overlap.

2. Longer springs in larger fully connect graphs of springs
Since the springs are defined between the sibling categories of the
graph, i.e., the categories that share at least one supercategory, this re-
sults in a fully connected graph of springs between the siblings under
one supercategory. When there are many siblings in this fully connect
graph, the result after a number of iterations of the force algorithm
will be that the sibling categories will remain overlapping each other
in a circular shape. It should be possible to increase the lengths of the
springs when the number of siblings connected by such a fully con-
nected graph of springs is large to avoid this sort of unwanted overlap.

• Extend to general graphs
As stated previously, the visualization only works with hierarchical DAG
structures. To allow for a general graph, this graph has to be transformed
into a hierarchical DAG, according to the following. To transform an undi-
rected graph, a startnode has to be chosen and a ranking has to be applied.
Each node receives a rank, for instance the number of edges to the startn-
ode. Subsequently the undirected edges are transformed into directed edges,
while keeping the path from startnode to node equal to the rank of the node.
The resulting graph is a hierarchical DAG.

• Editing of structure
Currently, only editing of the attributes of the objects in the graph is al-
lowed. This could be extended by allowing the editing of the structure of
the graph. This means that it should be possible to create and remove cate-
gories, as well adding supercategory-subcategory relations. Springs have to
be added and removed on the fly while editing the structure, which would
require a more flexible force model.
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• Hardware acceleration
We have experimented a little bit with using hardware accelerated draw-
ing of rectangles to improve performance. Currently, we use the Microsoft
Windows GDI+ system to draw the rectangles on the screen. Our system
relies on transparency to denote overlap, and the GDI+ system uses, for ex-
ample, software transparency calculations. We have implemented OpenGL
hardware accelerated drawing, but unfortunately there was no noticeable
difference in drawing performance. The reason for this could be the fact
that the coordinate system with its zooming matrices was originally based
on the GDI+ system and was used again in the OpenGL implementation.
A speed-up can probably be expected when these zooming operations are
performed using OpenGL as well, since OpenGL has built-in functionality
for that.
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Appendix A

Our force directed algorithm

Pseudo-code for the force directed algorithm proposed in Chapter6 is shown
in FiguresA.1 throughA.4.
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1: constA { Strength of attraction}
2: constR { Radius of atom}
3: constC { Rate at which to diminish∆t }

4: procedure LAYOUT(Graph G)
5: { Add ghost categories to the graph}
6: G′ ← DEFINEGHOSTS(G)
7: Place the nodes ofG′ at random positions
8: { Define springs between the categories}
9: S ← DEFINESPRINGS(G′)

10: repeat
11: for all v ∈ V (G) do
12: Fv ← 0
13: for all (v, u) ∈ springs(v) do
14: { Calculate force vector resulting from spring}
15: Fv ← Fv + Auv · (|pu − pv| − xuv

0 )
16: end for
17: end for
18: { Move each nodev according to its force vectorFv }
19: for all v ∈ V (G) do
20: p′v ← pv + Fv ·∆t
21: end for
22: { Change each spring’s zero energy length}
23: for all (u, v) ∈ S do
24: xuv

0 ← CHANGESPRINGLENGTH((u, v))
25: end for
26: { Diminish time step}
27: ∆t′ ← C ·∆t
28: until ∆t below threshold
29: end procedure

Figure A.1: The force directed algorithm proposed in Chapter 6.
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30: function DEFINEGHOSTS(Graph G)
31: { Iterate over all pairs of categories}
32: for all u ∈ V (G) do
33: for all v ∈ V (G) do
34: if sub(u) ⊆ sub(v) then
35: { u is contained inv, so add ghost tou }
36: sub(u)← (sub)u ∪ ghost
37: end if
38: end for
39: end for
40: return G
41: end function

Figure A.2: The force directed algorithm proposed in Chapter 6 continued.

42: function DEFINESPRINGS(Graph G)
43: { Define springs between siblings}
44: S ← {(u, v)|u, v ∈ V (G) ∧ super(u) ∩ super(v) 6= ø}
45: for all (u, v) ∈ S do
46: { Set spring stiffness to resemble multiple springs}
47: Auv ← {#s|s ∈ super(v) ∩ super(u)} · A
48: if #super(u) = 1 ∧#super(v) > 1 then
49: { u is lonely category, so increase spring stiffness}
50: Auv ← 2 · Auv

51: end if
52: { Set initial springlength}
53: xuv

0 ← R · (√wu +
√

wv) + m
54: end for
55: return S
56: end function

Figure A.3: The force directed algorithm proposed in Chapter 6 continued.
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57: function CHANGESPRINGLENGTH(Spring (u, v))
58: if sub(u) ∩ sub(v) = ø then
59: { u andv share no subcategories}
60: return ru + rv + m
61: else
62: { u andv share subcategories}
63: return ru + rv − 2 · ro −m
64: end if
65: end function

Figure A.4: The force directed algorithm proposed in Chapter 6 continued.



Appendix B

Variable Editor

Currently, there exist two ways to create and/or modify a classification struc-
ture in a Cristal. One way is to program an application that communicates
with the Cristal library (.dll) to load a Cristal in memory, modify it program-
matically and save it to disk. The other way is to use the Variable Editor,
which is an editing tool, especially designed to create and/or modify Cristals.
In this appendix we give an overview of the Variable Editor.

Figure B.1: Screenshot of the Variable Editor.
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A screenshot of the Variable Editor is shown in FigureB.1. We continue by
giving an explanation of each part of the program.

Toolbar
The top of the window displays the toolbar with easy-access buttons.
Besides the standard actions such as loading, saving and searching, the
toolbar supports creating new hierarchies, levels and categories depending
on the selection in the listview on the left.

Hierarchy-tree
The left of the window displays the hierarchy-tree. Each object in the tree
has an icon associated with it, which can be one of the following:

Hierarchy Shared hierarchy
Level Shared level
Category Shared category

The tree displays a list of hierarchies. When a hierarchy is expanded, a list
of levels is displayed, followed by an icon of a tree. A list of levels can be
expanded to show the categories in that level, while below the tree-icon the
tree of categories is displayed.

As explained in Chapter2, a hierarchy contains a sequence of levels and
a tree of categories, but multiple hierarchies can share levels and categories
which results in complicated graph structures. The hierarchy-tree in the Vari-
able Editor, therefore, only shows the hierarchies, but denotes a shared level
or shared category with an additional ’s’ in the icon. A shared level is, thus,
a level that resides in multiple hierarchies and a shared category is a cat-
egory that resides in multiple levels (which implies it resides in multiple
hierarchies). The Variable Editor, therefore, displays multiple instances of
the same objects in the hierarchy-tree when they are shared.

The user can add or remove objects using the right-mouse button. Adding
an object pop-ups a new window in which the user can enter the values of
the attributes for the new object. Also, the user can select an object that is
already present from the list, to share this object in multiple hierarchies.
Removing an object is also done using the right-mouse button.

Attributes
The top-right of the window displays the attributes of the selected object.
The attributes are listed vertically while the different languages are listed
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horizontally. Each object has a number of standard attributes that are
displayed using a gray box in the attribute-window. The user can add or
remove attributes from objects in this window.

Category-list
The bottom-right of the window displays a list of categories. When a hier-
archy is selected on the left, this is a complete listing of all the categories
present in the selected hierarchy. When a level is selected, this is a listing
of the levels in the selected hierarchy. When a category is selected, this is a
listing of the supercategories of the selected category.



Appendix C

User experiment test set

This appendix lists the test sets used in the user experiment explained in
Chapter7.

C.1 Part one - Comparison

During the first part of the user experiment, the users got to see a particular
classification structure of a Cristal. The graph structure of version A of the
classification is shown in FigureC.1and FigureC.2shows version B. Note
that the participants never saw these graph structures. As can be seen in the
figures, we used two classifications with exactly the same structure, but with
different subjects. In fact, a number of category-names were shuffled.

The visualization of version A of the test classification in CristalView is
shown in FigureC.3and FigureC.4shows version B. Of course, the partici-
pants were free to navigate, zoom, click and drag the information set.

We asked the same type of questions for the two test sets (A and B), but the
questions were regarding different subjects, since the subjects were mixed.
The questions the participants had to answer are listed below. Note that the
user experiment was in Dutch, so the questions were in Dutch also:

Test set A

Category visualization:

1. Zoek de categorie ”Marianne” op. Tot welke supercategorie behoort
”Marianne”?
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Figure C.1: Graph structure of version A of the test set used in part one of the
user experiment. (Created with the twopi layout algorithm in Graphviz [25])
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Figure C.2: Graph structure of version B of the test set used in part one of the
user experiment. (Created with the twopi layout algorithm in Graphviz [25])
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Figure C.3: Visualization of version A of the test set used in part one of the user
experiment.
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Figure C.4: Visualization of version B of the test set used in part one of the user
experiment.
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2. Hoeveel vrouwen bevat de categorie ”Vrouwen”?

3. Zoek ”Truus” op. Wat voor pet heeft zij op haar hoofd?

4. Wie heeft/hebben er naast ”Truus” nog meer een blauwe pet op het
hoofd?

5. Zoek de categorie ”Opel” op. Wie hebben er een Opel ”Vectra”?

6. Zijn er nog meer mensen naast Jan en Harrie die een Opel Vectra
hebben? Zo ja, wie?

7. Hoeveel Opels staan er in dit Cristal?

8. Hoeveel Mannen hebben er een Peugeot?

9. Hoeveel Mannen zijn er in totaal?

10. Gemengde vragen: Heeft Mien twee petten tegelijk op?

11. Hoeveel Hoeden staan er in dit Cristal?

12. Wie hebben er allemaal een Donkergroene pet op?

Level visualization:

13. Welke soorten Huisdieren zijn er?

14. Welke hoofdcategorien Hoofddeskels zijn er in 2004?

15. Hoeveel Huisdieren hebben een Hoofddeksel op hun Kop?

16. Hoeveel Personen hadden een Auto in hun garage staan in 2004?

17. Welke Auto’s bestonden alleen in 2005?

Time visualization:

18. Zoek de Peugeot ”304” op. Heeft de ”304” een opvolger? Zo ja, welke?

19. Wat zijn alle opvolgers van de ”305”?

20. Wat is de voorganger van de ”Focus”?

21. Wat is er in de nieuwjaarsnacht van 2004 op 2005 met de ”Lichtgroene
pet” gebeurd?

22. Welke pet had Mien het eerst op?

Test set B

Category visualization:
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1. Zoek de categorie ”Fikkie” op. Tot welke supercategorie behoort
”Fikkie”?

2. Hoeveel honden bevat de categorie ”Honden”?

3. Zoek ”Bello” op. In wat voor Auto zit ”Bello”?

4. Wie zitten er naast ”Bello” nog meer in een 305?

5. Zoek de categorie ”Hoeden” op. Wie dragen er een ”Strohoed”?

6. Zijn er naast Vlekje en Sjaan nog meer huisdieren die een Strohoed
dragen? Zo ja, welke?

7. Hoeveel Hoeden staan er in dit Cristal?

8. Hoeveel Katten hebben er een Pet?

9. Hoeveel Katten zijn er in totaal?

10. Gemengde vragen: Zit ”Preston” in twee Auto’s tegelijk te spelen?

11. Hoeveel Opels staan er in dit Cristal?

12. Wie zitten er allemaal in een ”106”?

Level visualization:

13. Welke soorten Geslacht zijn er?

14. Welke merken Auto’s zijn er in 2004?

15. Hoeveel Personen hebben een Auto in hun Garage?

16. Hoeveel Huisdieren hebben een Hoofddeksel op hun kop in 2004?

17. Welke Hoofddeksels bestonden alleen in 2005?

Time visualization:

18. Zoek de ”Gele pet” op. Heeft de ”Gele pet” een opvolger? Zo ja,
welke?

19. Wat zijn alle opvolgers van de ”Blauwe pet”?

20. Wat is de voorganger van de ”Gekleurde gleufhoed”?

21. Wat is er in de nieuwjaarsnacht van 2004 op 2005 met de Peugeot
”105” gebeurd?

22. In welke Auto zat ”Preston” het eerst?
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C.2 Part two - Deficiencies

FigureC.5shows the visualization of a classification of the Netherlands we
used during the second part of the user experiment. The participants were
asked to write down all strange things they could see and find in the loaded
classification structure. Subsequently they were asked to write down the
changes they would have made when they would have created the classi-
fication structure themselves.

C.3 Part three - Survey

The third part of the user experiment consisted of more open and multi-
ple choice questions. English translations of the original Dutch questions
are added. AQ denotes a question, and anA denotes an answer, for both
question-sets.

The original questions:

• Q: Wat vond u van het programma? Denkt u dat u het gaat gebruiken
wanneer u inzicht wil krijgen in een bepaald Cristal?

• A: ......................................................................

• Q: Wat vindt u van het navigeren door de dataset? (omcirkel keuze)

• A: goed / voldoende / matig / onvoldoende / slecht

• Q: Vindt u het programma gemakkelijk te gebruiken? (omcirkel keuze)

• A: zeer gemakkelijk / gemakkelijk / neutraal / ongemakkelijk / zeer
ongemakkelijk

• Q: Vindt u dat het programma voldoende functionaliteit bevat? (om-
cirkel keuze)

• A: ruimschoots voldoende / voldoende / neutraal / onvoldoende / zeer
onvoldoende

• Q: Heeft u het idee dat u door het programma een beter begrip heeft
van de mogelijkheden van het Cristal model (voor zover dit eerst niet
het geval was)?

• A: veel beter / beter / hetzelfde / minder / veel minder

• Q: Wat had u graag verbeterd/veranderd/toegevoegd willen zien aan het
programma?

• A: ......................................................................
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Figure C.5: Visualization of classification of the Netherlands used in part two of
the user experiment.
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• Q: Extra opmerkingen kunt u hieronder kwijt.

• A: ......................................................................

English translation of the questions:

• Q: What did you think of the program? Do you think you will use the
program in case you want to get insight in a certain Cristal?

• A: ......................................................................

• Q: What is your opinion on navigating through the dataset? (circle
choice)

• A: good / sufficient / average / insufficient / bad

• Q: Do you think the program is easy to use? (circle choice)

• A: very easy / easy / neutral / not easy / very uneasy

• Q: Do you think that the program contains sufficient functionality? (cir-
cle choice)

• A: very much sufficient / sufficient / neutral / insufficient / very insuffi-
cient

• Q: Do you think you have gained a better understanding of the possi-
bilities of the Cristal model because of the program (when this wasn’t
already the case)?

• A: much better / better / the same / less / much less

• Q: What do you like to see improved/changed/added to the program?

• A: ......................................................................

• Q: Below there is room for additional remarks.

• A: ......................................................................
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