
 Eindhoven University of Technology

MASTER

White-box cryptography for digital content protection

Plasmans, Marjanne

Award date:
2005

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/672f9148-0546-41f2-8edd-79afb1c750fa

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

MASTER’S THESIS

White-Box Cryptography

for Digital Content Protection

by

Marjanne Plasmans

Supervisors: dr. ir. Bart van Rijnsoever, dr. ir. Peter Roelse,

prof. dr. ir. Henk van Tilborg, dr. Benne de Weger

Eindhoven, May 2005

Voor papa

Preface

This document is my Master’s thesis and is the result of the final project to obtain the degree Master
of Science in Applied Mathematics at the Eindhoven University of Technology (TU/e). This project
has been done at Philips Software Eindhoven in the Digital Rights Management (DRM) group.

I am grateful to Philips Software for giving me the opportunity to perform my project in an inspir-
ing work environment. I would like to thank my supervisors Bart van Rijnsoever, Peter Roelse, and
Benne de Weger for their guidance, support, and understanding throughout this project.

Finally, I would like to thank my friends and my family for their love and support. Most of all I
would like to thank my father, for everything.

Marjanne Plasmans
May 2005

iii

Abstract

The aim of this Master’s Thesis is to analyze how digital content for mobile phones can be protected
in an effective way in the context of OMA-DRM. The Open Mobile Alliance (OMA) provides spe-
cifications for content distribution for mobile phones [17].

We will analyze the problem in the white-box attack context where the attacker has total visi-
bility into software implementation and execution. First, we look at different techniques which are
available for software protection, and we analyze how they can be applied for OMA-DRM. From
these techniques we choose to focus on a relatively new technique: white-box cryptography. We
show how this technique can be applied to AES keys, by hiding the AES key in lookup tables. This
prevents an attacker from finding secret keys in the implementation. The result is a functionally
equivalent program in which the key is no longer visible. However, white-box cryptography in-
creases the amount of storage space for the white-box tables, and it causes a performance slowdown.

We will discuss an application of white-box cryptography in which we split the set of white-box
tables into a dynamic part and a static part. Each client has a unique set of static tables which can
only be used in combination with a unique set of dynamic tables which are transmitted to him. The
result is that whenever a key needs to be updated, no longer the whole set of tables needs to be
updated.

We will also analyze a new attack on a white-box AES implementation and we will look for
possibilities to circumvent the attack. The attack can be carried out if an attacker has access to the
complete set of white-box tables. In the application of white-box cryptography that we discuss,
the set of tables is not transmitted totally. Therefore, an attacker cannot perform the attack by just
eavesdropping on the communication line between the server and the client.

Finally, we will look for possibilities to apply white-box cryptography in the OMA-DRM con-
text. Because of the total size of the tables and the slowdown we recommend using white-box
cryptography only for keys which are fixed over a longer period of time. For example, white-box
cryptography can be used to update the private key. White-box cryptography can also be used to
store keys on the client’s device.

v

Contents

Preface iii

Abstract v

List of Abbreviations xi

1 Introduction 1

2 OMA-DRM 4
2.1 Introduction . 4
2.2 Rights Objects . 4
2.3 Content Encryption . 5
2.4 Protecting a Rights Object for a Device . 6
2.5 Protecting a Rights Object for a Domain . 8
2.6 Overview of the Keys . 10
2.7 Threats . 10

3 Software Protection Techniques 12
3.1 Introduction . 12
3.2 Software Tamper Resistance . 12

3.2.1 Aucsmith . 12
3.2.2 Horne . 13
3.2.3 Chang and Atallah . 14
3.2.4 Chen . 14

3.3 Software Obfuscation Through Code Transformations 15
3.3.1 Evaluation . 16
3.3.2 Layout Obfuscation . 17
3.3.3 Data Obfuscation . 17
3.3.4 Control Obfuscation . 19
3.3.5 Preventive Transformations . 22
3.3.6 Overlap . 22

3.4 Software Diversity . 24
3.5 The (Im)possibility of Obfuscation? . 24

vii

3.5.1 Introduction . 24
3.5.2 Obfuscation . 25
3.5.3 Result . 25
3.5.4 Problem . 26
3.5.5 Conclusion . 26

3.6 Using Software Protection Techniques for OMA-DRM 26
3.7 Conclusion . 27

4 White-Box Cryptography 28
4.1 Introduction . 28
4.2 Basic Idea . 28
4.3 A White-Box AES Implementation . 29

4.3.1 Step 1: Hiding the Key in S-Boxes . 30
4.3.2 Step 2: Inserting Mixing Bijections . 31
4.3.3 Step 3: Inserting External Encodings . 35

4.4 Size & Performance . 36
4.5 Security . 37

4.5.1 White-Box Diversity . 38
4.5.2 White-Box Ambiguity . 40

4.6 White-Box Cryptography for DES . 40
4.7 Conclusion . 41

5 Attack on a White-Box AES Implementation 42
5.1 Introduction . 42
5.2 Basic Idea of the Attack . 42
5.3 Step 1: Recovering the Non-Affine Part ofQr

i,j 44
5.4 Step 2: Recovering the Affine Part ofQr

i,j . 45
5.4.1 Determiningγ . 47
5.4.2 Determiningqo . 48

5.5 Step 3: Extracting the AES Round Keys . 48
5.6 Summary and Conclusion . 49

6 Using White-Box Cryptography in Practice 50
6.1 Introduction . 50
6.2 Splitting the White-Box Tables . 50
6.3 External Encodings . 53
6.4 Storage Problems . 56
6.5 Optimizing the Total Size of the Tables: . 56
6.6 Using White-Box Cryptography in the OMA-DRM Context 57
6.7 Conclusion . 60

7 Conclusion 61

A Overview of the White-Box Tables 63

viii

B Overview of Connecting White-Box Tables 64
References . 67

Bibliography 67

ix

x

List of Abbreviations

• AES: Advanced Encryption Standard

• CEK: Content Encryption Key

• D: Domain

• DRM: Digital Rights Management

• KDF: Key Derivation Function

• KEK: Key Encryption Key

• MAC: Message Authentication Code

• OMA: Open Mobile Alliance

• REK: Rights object Encryption Key

• RO: Rights Object

• ROAP: Rights Object Acquisition Protocol

xi

xii

Chapter 1

Introduction

Almost everybody has a mobile phone nowadays. Mobile phones keep getting smaller with im-
proved functionality. For years it has been possible to buy the latest ringtones for our mobile phones.
In the same way we can buy mp3 files and screensavers. The techniques keep getting better and bet-
ter, and it may be perfectly common to watch a soccer match on our mobile phone in the future. As
a result, it becomes more and more important to distribute digital content in a controlled manner.
This is made possible by Digital Rights Management (DRM) systems.

DRM allows an owner of electronic content to control the content and restrict the usage of the
content in various ways. This content can be games, photos, music, videos, ringtones etc.. The
provider of an mp3-file could for example allow an end user to listen to an mp3-file three times
before he decides to buy it. We focus on content for mobile phones. The Open Mobile Alliance
(OMA) provides specifications for content distribution for mobile phones (see [17]).

We consider three threat models:

• Black-Box Model:In the traditional black-box model, the attacker is restricted to observe
input and output of the algorithm, without any side-channels of information. A secret key
of a cryptographic algorithm is hidden in the black-box and is never exposed. The security
depends on the strength of the cryptographic algorithm.

• Grey-Box Model:Another model is the grey-box model where an attacker is also able to
monitor side effects of the program execution. For example, an attacker can monitor the
execution time, power consumption, and electromagnetic radiation.

• White-Box Model:In the white-box model, the attacker also has total visibility into software
implementation and execution. To prevent an attacker from finding the key, the key needs to
be hidden in the implementation.

When someone downloads digital content on a mobile phone, there are two main threats as-
suming that the server can be trusted (Figure 1.1): an attacker could eavesdrop messages which are
transmitted between the server and the end user, or the attacker could be the end user who tries to

1

2

derive information which is stored on his device. The attacker could for example be interested in
distributing content or secret keys to other people, or he could try to change the licenses. As a result,
it is important to send and store content securely. Because some people always try to get content
for free, we assume that the end users cannot be trusted. Therefore, we will use a white-box attack
model.

S e r v e r C l i e n t

t h r e a t 1
t h r e a t 2

Figure 1.1: Threats

The question is how digital content for mobile phones can be protected effectively against
threats. We want to protect content decryption by protecting the software and the decryption keys
which are used. Many different techniques are available for software protection:

1. Software Obfuscation Through Code Transformations:For protection against reverse engi-
neering. This prevents disclosure of sensitive information.

2. Software Tamper Resistance:For protection against program integrity threats. This can be
used for preventing attackers for modifying licences which give access to content.

3. Software Diversity:For protection against automated attack scripts and widespread malicious
software (e.g. viruses).

4. White-box Cryptography:For protecting secret keys in untrusted host environments. This
prevents disclosure of secret keys. Actually white-box cryptography is a special class of
software obfuscation.

5. Software Watermarking/Fingerprinting:For detecting and tracing violators who redistribute
software illegally.

6. Node Locking:For locking software on hardware. The software can only be used on this
particular hardware. This can be used for copy protection.

3

We will explore the first four techniques, and from these techniques we choose to focus on a
relatively new technique: white-box cryptography.

In chapter 2 the key management of OMA-DRM is described. In chapter 3 software obfusca-
tion, software tamper resistance, and software diversity techniques are outlined in general. White-
box cryptography is described more extensively in chapter 4, followed in chapter 5 by a description
of an attack on a white-box AES implementation. In chapter 6 the practical use of white-box cryp-
tography is discussed. Finally, the conclusion is given in chapter 7.

Chapter 2

OMA-DRM

2.1 Introduction

OMA-DRM delivers specifications for developing applications and services that are deployed over
wireless communication networks. It enables the distribution and consumption of digital content in
a controlled manner. OMA-DRM addresses the various technical aspect of this system by provid-
ing appropriate specifications for the content formats, protocols, and a rights expression language.
Presently, there are two versions of the OMA-DRM standard. Version two is a newer, cryptograph-
ically stronger version. In this section the key management of the second version of OMA-DRM is
described as in [17].

2.2 Rights Objects

A content owner can provide appropriate permissions to a client for his content. These permissions
are sent by the Rights Issuer to the client and are stored on the cient’s device in a Rights Object
which is managed by the DRM Agent (Figure 2.1). The DRM Agent is an entity residing on the
client’s device. The Rights Object is a file which describes permissions and constraints granted to
the DRM Agent when accessing content. For example, a Rights Object can give permission to use
specific content five times. The protocols between a Rights Issuer and a DRM Agent in a device are
defined in the Rights Object Acquisition Protocol (ROAP).

4

5

R i g h t s I s s u e r

C l i e n t
D R M A g e n tR i g h t s O b j e c t s

Figure 2.1: Transmitting Rights Objects

2.3 Content Encryption

DRM content is encrypted with a Content Encryption Key,KCEK . KCEK is a randomly generated
128-bit symmetric key. A piece of DRM content is encrypted once by the Rights Issuer, which
makes the encryption the same for each client. Therefore, each client who buys content needs the
same key for decryption. If someone buys content, the content andKCEK need to be transmitted
to the client. It is important thatKCEK is transmitted and stored securely, because if other people
know the key, they will be able to decrypt content without paying for it. Therefore,KCEK is sent
in encrypted form to the client. This is done by using the encryption algorithm AESWRAP. For
details on AESWRAP see [15]. The AESWRAP scheme uses AES for encryption. AES is a block
cipher which takes as input to the encryption and decryption algorithms a single 128-bit block. See
[11] for more details on AES. AESWRAP takes as input a key-encryption keyKEK and key ma-
terialK. K serves as plaintext and is encrypted withKEK:

AES WRAP(KEK,K)

KCEK is encrypted with the Rights Object Encryption Key (KREK) and it is stored in the
Rights Object:

C =AES WRAP(KREK ,KCEK)

After receivingC, the DRM Agent decryptsC usingKREK :

KCEK =AES UNWRAP(KREK , C)

Additional software checks the Rights Object to see if it is valid and not expired. If this is the
case, the client is allowed to access the content by decrypting it withKCEK .

6

2.4 Protecting a Rights Object for a Device

The Rights Issuer randomly generates two keys of 128 bits:KREK (Rights Objects Encryption
Key) andKMAC (Message Authentication Code key).KREK andKMAC are different for each
client. KREK is the wrapping key for the content encryption keyKCEK in Rights Objects.KMAC

is used for authentication of the message (Rights Object) carryingKREK .

The authentication of the message goes as follows: The Rights Issuer generates a Rights Ob-
ject. This Rights Object is hashed withKMAC with the MAC-algorithm. The output of the MAC-
algorithm is the MAC-value. The Rights Object, the MAC-value, andKMAC are sent the the client.
The client computes his own MAC-value over the Rights Object and compares this one with the
received one.

For example, the Rights Object can allow content access for five times. If an attacker changes
this value to fifty times, the calculated MAC-value over the Rights Object will no longer correspond
to the sent MAC-value. As a result, no access to the content is granted.

Is it possible to restore old Rights Objects? If a client for example receives a Rights Object
which allows him to access content 10 times, he could copy the Rights Object to another device,
and restore this Rights Object when has used the 10 times. The MAC value is still correct. To
prevent this from happening a MAC-value is calculated over all Rights Objects together. If a Rights
Object would be replaced with another one, the MAC-values are no longer the same.

KREK andKMAC need to be transmitted securely to a recipient device. This is done by using
AES WRAP and RSA.

For each encryption operation, an independent random valueZ is chosen. For the AESWRAP
scheme,KREK andKMAC are concatenated to form the key materialK:

C1 = RSA.ENCRYPT(PubKeyDevice, Z)
KEK = KDF(Z,Null, kekLen)

C2 = AES WRAP(KEK,KMAC |KREK)
C ′ = C1|C2

Where KDF is a key derivation function (see [20]). It is a simple key derivation function based
on a hash function.KekLen is set to the desired length ofKEK, i.e. 16 bytes, andNull is the
empty string.

The Rights Issuer sendsC ′ to the recipient device. After receivingC ′, the device splits it into
C1 andC2 and decryptsC1 using its private key, yieldingZ:

Z = RSA.DECRYPT(PrivKeyDevice, C1)

7

BecauseZ is known, the device is able to deriveKEK, and fromKEK unwrapC2 to yield
KMAC andKREK :

KMAC |KREK = AES UNWRAP(KEK,C2)

Now thatKREK is known,C can be unwrapped which yieldsKCEK , en withKCEK the con-
tent can be decrypted.

In Figure 2.2 the content decryption is summarized.C1, C2, C, and the encrypted content are
sent to the client. With its private key the client is able to decryptC1 to obtainZ. Z serves as input
to KDF which yields as outputKEK. With KEK the client can decryptC2 to obtainKREK and
KMAC . KREK is the decryption key forC which is used for obtainingKCEK . With KCEK the
content can be decrypted.

Figure 2.2: Content Decryption

8

2.5 Protecting a Rights Object for a Domain

If someone downloads an mp3-file, it would be nice to listen to it on different devices, for example
on an mp3-player and on a computer. To make this possible Domains are introduced. A Domain
is a set of Devices, which are able to share Rights Objects (the devices must be DRM compliant).
Devices in a Domain share a Domain key. This section describes how to provide a device with a
Domain key,KD.

KD is a 128-bit randomly generated AES key and is unique for each DomainD. KD is the
key-wrapping key used for protectingKREK andKMAC in a Rights Object issued to a Domain
D. KMAC is used for authentication of the message carryingKD. KD andKMAC need to be dis-
tributed securely. The same procedure as in the previous section is used, the only difference being
the replacement ofKREK with KD:

C1 = RSA.ENCRYPT(PubKeyDevice, Z)
KEK = KDF(Z,NULL, kekLen)

C ′
2 = AES WRAP(KEK,KMAC |KD)

C ′′ = C1|C ′
2

The Rights Issuer sendsC ′′ to the recipient device. After receivingC ′′, the device splits it into
C1 andC ′

2 and decryptsC1 using its private key, yieldingZ:

Z = RSA.DECRYPT(PrivKeyDevice, C
′
1)

BecauseZ is known now, the device is able to deriveKEK, and fromKEK unwrapC ′
2 to

yield KMAC andKD:

KMAC |KD = AES UNWRAP(KEK,C ′
2)

Now we will describe how the content is protected with a Domain key.KREK andK ′
MAC are

distributed under a Domain keyKD by using AESWRAP.KEK in AES WRAP is set toKD and
K is set to the concatenation ofK ′

MAC andKREK :

C∗ = AES WRAP(KD,K ′
MAC |KREK)

After receivingC∗, the device decryptsC∗ usingKD:

K ′
MAC |KREK = AES UNWRAP(KD, C∗)

Now thatKREK is known,C can be unwrapped which yieldsKCEK , en withKCEK the con-
tent can be decrypted.

9

In Figure 2.3 the content decryption with a Domain key is summarized.C1, C
′
2, C∗, C, and the

encrypted content are sent to the client. With its private key the client is able to decryptC1 to obtain
Z. Z serves as input to KDF which yields as outputKEK. With KEK the client can decrypt
C ′

2 to obtainKD andKMAC . KD is used for decryptingC∗ which results inKREK andK ′
MAC .

KREK is the decryption key forC which is used for obtainingKCEK . With KCEK the content can
be decrypted.

Figure 2.3: Content Decryption with a Domain key

10

2.6 Overview of the Keys

• KCEK (Content Encryption Key):KCEK is an AES-key which is generated by the Rights
Issuer for content encryption. This key is unique for a particular piece of content, and it is
generated once for each piece a content. This implies that for each piece of content, a different
KCEK needs to be stored.

• KREK (Rights object Encryption Key):KREK is an AES-key generated by the Rights Issuer
to protectKCEK in a Rights Object for a particular client. This key is chosen uniquely for
each Rights Object, thus every time a client buys content, a newKREK is generated. This
key does not need to be stored.

• KD (Domain key):KD is an AES-key generated by the Rights Issuer to protectKREK and
K ′

MAC for a particular Domain. This key is fixed over a long time, but the Rights Issuer can
decide to update this key. The key is unique for a particular Domain.

• KMAC (Message Authentication Code key):KMAC is an AES-key generated by the Rights
Issuer to authenticate the message carryingKREK andKD for a particular client. This key is
changed for each Rights Object.

• KEK (Key Encryption Key):KEK can be calculated with the Key Derivation Function. It
is an AES key for decrypting the message carryingKD andKMAC . This key is different for
each Rights Object.

• PrivKeyDevice/PubKeyDevice: PrivKeyDevice andPubKeyDevice are RSA keys which
are generated by a Certification Authority.PrivKeyDevice will be embedded on a device
while manufacturing the device. This key is generated once, and cannot be changed. Each
client had a uniquePrivKeyDevice/PubKeyDevice pair.

2.7 Threats

Some people always try to get content for free, and therefore we assume the end user cannot be
trusted. As already mentioned in the introduction two main threats exist: an attacker could eaves-
drop messages which are transmitted between the server and the client, or the attacker could be the
end user who tries to derive information which is stored on the device. By eavesdropping an attacker
cannot do anything (except a brute force attack), because all the messages are sent in encrypted form
to the client (assuming that these messages are encrypted properly). All the information an attacker
needs is available on the device, therefore the information on the device needs to be stored securely.
For OMA-DRM we are interested in two classes of threats:

1. Searching Keys:
An attacker can search for keys on the device and distribute them to other people who can use
the keys to decrypt content. Therefore, it is important that the keys are protected well. The
security of the system relies completely on the secrecy of the private key. Once someone is

11

able to extract the private key, he is able to deriveKD, KREK , KCEK , and to decrypt the
content. Therefore, it is important that the private key is not accessible to anyone. If the client
distributes his private key, everybody could decrypt each message that is sent to that person.

A technique for protecting keys is white-box cryptography. White-box cryptography can be
used for protecting secret keys in untrusted host environments. In§6.6 will be discussed
to which keys white-box cryptography can be applied effectively. Unfortunately these tech-
niques cannot be used for protection of the private key, because the techniques do not apply
to RSA.

2. Changing Software:
Another threat is that an attacker could change the software that checks the Rights Objects.
This software checks the rights in a Rights Object and decides whether or not content can be
accessed and for how many times. If an attacker changes this software, he could grant himself
unlimited access.

In chapter 3, we outline the following software protection techniques: software obfuscation,
software tamper resistance, and software diversity techniques.

Chapter 3

Software Protection Techniques

3.1 Introduction

There are several techniques to protect software (see [16]). In this chapter software tamper resis-
tance (§3.2), software obfuscation (§3.3), and software diversity (§3.4) are outlined. In§3.5 a theo-
retic result on software obfuscation is given, and in§3.6 we describe where the different techniques
can be used for protection in the OMA-DRM context.

3.2 Software Tamper Resistance

The main goal of making software tamper resistant is to protect software against program integrity
threats. First, the contributions of Aucsmith to this area are described, followed by the self-checking
technique of Horne et al.. After that, we describe the contributions of Chang and Atallah, and finally
the contributions by Chen et al..

3.2.1 Aucsmith

Aucsmith et al. proposed a self-checking technique in which small, embedded segments of code
verify the integrity of a program as the program is running. These embedded code segments (In-
tegrity Verification Kernels, IVK’s) check whether a running program has been altered. Aucsmith
et al. proposed a set of four design principles for their self-checking technology in [1]:

• Dispersion of secrets in space and time:Secret components are evenly distributed throughout
the workspace. This prevents the perpetrator from ”being lucky” and discovering the entire
secret components in a single attempt. Another transformation would be temporal changes
i.e. certain secrets are observed at certain times.

• Obfuscation and interleaving:Converting a structured program to a less readable state. The
general complexity of the program is increased by interleaving tasks and rewriting commonly
occurring code in more uncommon format.

12

13

• Installation unique code:Each code must have a unique component. This can protect against
automated attacks.

• Interlocking trust:Each segment does not only depend on itself but also on other segments
to effectively perform its tasks. Thus each segment of code would be made responsible for
maintaining and verifying the integrity of other segments.

All code segments are encrypted except the one that is being executed while the program is
running. After execution, the executed code segment becomes encrypted again while the next code
segment decrypts. Encryption and decryption require a lot of time. Therefore, this method should
only be applied to small portions of code segments. A drawback of this method, mentioned by Wang
in [18], is that the encryption and decryption processes of IVK are carried out on a host that is not
trusted. Although the key for encryption and decryption is only exposed shortly, it is possible that
an adversary could obtain the key and subsequently compromise the entire execution. Furthermore,
building the IVK requires considerable user intervention in the identification and isolation of the
critical code segments that need to be specially armored.

3.2.2 Horne

Horne et al. presented in [14] a self-checking technique, in which a program while running in a
potentially hostile environment, repeatedly checks itself to verify that it has not been modified. This
prevents both misuse and repetitive experiments for reverse engineering or other malicious attacks.
The self-checking technique consist of two kinds of components:

• Testers:
Each tester computes a hash of a section of the code and compares the computed hash value
to the correct value. An incorrect value triggers the response mechanism.

The entire executable code section will be covered with overlapping intervals, each of which is
tested by a single tester. The testers are randomly assigned to the intervals. The high overlap
plus the random assignment provide a high degree of security for the testing mechanism:
changing even a single bit requires disabling a large fraction of the testers to avoid detection.

• Correctors:
Each interval has its own corrector, and is tested by exactly one tester. A corrector can be set
to an arbitrary value, and is set in a way that the interval hashes to zero for the particular hash
function used by the tester testing the interval.

If copy-specific watermarks are used, an attacker might be able to locate the tester mechanism
by obtaining two different marked copies of the code and comparing them. The differences do
not only reveal the watermarks but also any changes needed in the self-checking mechanism
to compensate for different watermarks. To prevent this from happening correctors are used.
These correctors are separated from the testers and the response mechanism. If an attacker
knows the values of the correctors, the attacker will not be able to disable the rest of the
mechanism.

14

Horne at el. only present their techniques, but more experimental and theoretical research is
needed on the coverage and robustness of the self-checking mechanism.

3.2.3 Chang and Atallah

Chang and Atallah proposed in [5] a method in which software is protected by a set of guards
embedded within a program, each of which can do any computation . In addition to guards that
compute checksums of code segments (like Horne et al. proposed), they proposed the use of guards
that actually repair attacked code:

• Checksum code:Checksum a piece of program code at runtime and verify if it has been tam-
pered with. If the guarded code is found altered, the guard will trigger a response mechanism.

• Repair Code:Restore a piece of damaged code to its original form before it is executed or
used (as data). This can be done by overwriting tampered code with a clean stored copy. This
repairing action effectively eliminates the changes done to the code by an attacker, and allows
the program to run as if unmodified.

Guards can protect against diversity attacks, because guards can be grouped together in many
different ways. As a result, a software developer can have different copies of its software appli-
cations protected differently . Successful attacks against one of the copies would not work for the
others. Chang and Atallah claim that if configured properly, guards only cause slight impacts on the
performance of guarded programs. In an example in [5] they showed that the impact on a program
of around 300 KB is around 10 KB.

3.2.4 Chen

Most methods used in Software Tamper Resistance verify the shape of the code, and sometimes
critical data, before or during the runtime. This is done by computing a cryptographic checksum
on one or more segments of the code that is being protected. However, it is quite easy to detect the
verification routine, because of the the atypical nature of the operation, since most applications do
not read their own code segments. Spreading many smaller checks over time and space, repeating
atypical operations all over the code are solutions for this problem (see [6]).

Chen et al. proposed a technique called Oblivious Hashing (OH). The idea is to hash the ex-
ecution trace of a piece of code. The main goal is to blend the hashing code seamlessly with the
host code (software), making them locally indistinguishable. This technique can protect against
automatic attacks. Oblivious hashes introduce a number of unique issues:

• Pre-computation of correct hashes: An oblivious hash is ’active’ in the sense that the code to
be protected must run (or be simulated) in order for the hash to be produced.

• Security coverage over code paths: An oblivious hash depends on the exact path through a
program, as determined by input data. If execution does not reach some part of a program
during hash computation, that part is not hashed and thus unprotected.

15

• Unhashable data: Data that are too variable or not predictable (e.g. time of the day, user
identity, etc.) cannot be hashed obliviously, because they can cause oblivious hashes to vary
arbitrarily. As a result, only a portion of the host code executes deterministically with respect
to the input parameters. Therefore, ’unhashable’ expressions need to be determined first, so
they can be excluded from the hash computation. The authors experimented with some real-
world programs and showed that around 80% of the code can be obliviously hashed for a
majority of functions.

3.3 Software Obfuscation Through Code Transformations

The main goal of software obfuscating is to protect software against reverse engineering. By re-
verse engineering software, attackers can extract algorithms from an application and incorporate
them into their own programs. This is difficult to detect and pursue legally. For example in the
OMA-DRM context, secret key derivation functions are used which need to be protected against
reverse engineering.

The idea behind software obfuscation is to transform a programP into another programP ′

which is functionally equivalent to the original programP , but more difficult to understand. How-
ever, given enough time, a good programmer will always be able to reverse engineer any application.
But when this time is practically prohibitive, this may be acceptable [10].

Cohen discussed several obfuscation techniques in [9]. More recently Collberg et al. gave
an overview of different obfuscation techniques and proposed the following classification of code
transformations [10]:

• Layout Obfuscation: operates on the information in a program which is unnecessary for the
execution of the program.

• Data Obfuscation: operates on the data structures used in a program.

• Control Flow Obfuscation: operates on the flow of execution in a program.

• Preventive Transformation: prevents decompilers and deobfuscators from operating cor-
rectly.

In this chapter a global overview is given of the techniques discussed by Cohen and Collberg et
al.. A lot of the techniques are similar. The techniques are placed in one of the above four classes.

16

3.3.1 Evaluation

It is important to say something about the quality of the different obfuscation techniques. Collberg
et al. classified the different techniques according to:

• Resilience:The resilience of a transformation measures how well the transformation protects
against an automated attack (Figure 3.1). The resilience of a transformationT can be seen as
a combination of two measures:

– Deobfuscator effort:The execution time and space required for such an automated de-
obfuscator to be able to understand the obfuscated code.

– Programmer effort:The amount of time required to construct an automated deobfusca-
tor which is able to understand the obfuscated code.

I n t e r p r o c e s f u l l f u l l
I n t e r p r o c e d u r a l s t r o n g f u l l
G l o b a l w e a k s t r o n g
L o c a l t r i v i a l w e a k

P r o g r a m m e r e f f o r t

D e o b f u s c a t o r e f f o r t
P o l y n o m i a l t i m e E x p o n e n t i a l t i m e

Figure 3.1: Obfuscation Resilience

Collberg et al. measure resilience on a scale from trivial to one-way (trivial, weak, strong,
full, one-way). One-way transformations can never be undone. The effort of a deobfuscator
can be classified as either polynomial time or exponential time. Programmer effort, the effort
required to automate the deobfuscation of a transformation, is measured as a function of the
scopeof T . This is based on the intuition that it is easier to construct counter-measures against
an obfuscating transformation that only affects a small part of a procedure than against one
that affects an entire program [10].

17

The scope of a transformationT is defined as:

– Local: if it affects a single basic block of a control flow graph.

– Global: if it affects an entire control flow graph.

– Inter-procedural:if it affects the flow of information between procedures.

– Inter-process:if it affects the interaction between independently executing threads of
control.

• Cost: The ”cost” of a transformation is the execution time/space penalty which a transforma-
tion incurs on an obfuscated application. The cost is:

– Free: if executingP ′ requiresO(1) more resources thanP .

– Cheap:if executingP ′ requiresO(n) more resources thanP .

– Costly: if executingP ′ requiresO(np), p > 1, more resources thanP .

– Dear: if executingP ′ requires exponentially more resources thanP .

3.3.2 Layout Obfuscation

Layout transformations operate on information in a program which is unnecessary for the execution
of the program. The layout can be obfuscated in the following ways:

• Remove Comments (Collberg):When available comments can be removed. This is a one-
way transformation, because once the information is deleted it cannot be recovered. This
technique is free of cost.

• Scramble Identifiers Names (Collberg):Scrambling identifier names is also a one-way trans-
formation. Identifiers contain pragmatic information, and without it a program is more diffi-
cult to understand. This technique is also free of cost.

3.3.3 Data Obfuscation

In this section transformations will be described which obfuscate data structures. These transforma-
tions can be classified into three groups:Storage and Encoding, Aggregation, andOrderingof the
data.

• Storage and Encoding:Storage transformations attempt to choose unnatural storage classes
for data. For example converting a local variable into a global one. Similarly, data encoding
transformations attempt to choose unnatural encodings for common data types.

– Split Variables (Collberg):Boolean variables and other variables of restricted range can
be split into two or more variables. The level of security depends on the number of
variables in which the original variable is split.

18

– Promote Scalars to Objects (Collberg):Variables from a specialized storage class can
be promoted to a more general class. For example, in Java, an integer variable can be
promoted to an integer object. This technique has a strong resilience and it is free of
cost.

– Convert Static Data to Procedure (Collberg):Useful pragmatic information can be ex-
tracted from static data. This can be made more difficult by converting a static string
into a program that produces the string. This program could possibly produce other
strings as well. The security depends on the complexity of the program.

– Change Encoding (Collberg):An example of an encoding transformation is replacing
an integer variablei by i′ = c1 · i + c2. Herec1 andc2 are constants. This sort of
encoding will add little execution time and the security depends on the complexity of
the encoding function.

– Change Variable Lifetimes (Collberg):For example, a local variable can be changed into
a global variable, which can then be shared between independent procedure invocations,
which are not active at the same time. This technique has a strong resilience and it is
free of cost.

– Equivalent Instruction Sequences (Cohen):Instruction sequences can be replaced with
equivalent sequences. For example replacingx + 17 by x + 20− 3.

– Program Encodings (Cohen):Any sequence of symbols in a program can be replaced by
any other sequence of symbols, provided a method exists for undoing that replacement
for the purpose of interpretation. For example encryption-decryption, compression-
decompresssion.

– Build and Execute (Cohen):Instructions can be built prior to execution and then are
executed. This is a so called self-modifying code.

• Aggregation: These obfuscations alter how data is grouped together.

– Merge Scalar Variables (Collberg):Two or more scalar variables can be merged to-
gether into one new variable. For example two 16-bit variables can be merged into one
32-bit variable. This technique has a weak resilience, but it is free of cost. An attacker
only has to look at the set of arithmetic operations being applied to a particular variable
in order to guess that it actually consists of two merged variables.

– Modify Inheritance Relations (Collberg):In Java, classes are essentially abstract data
types that encapsulate data (instance variables) and control (methods). We write a class
asC = (V,M), whereV is the set ofC ’s instance variables andM its methods. Two
classesC1 andC2 can be composed by aggregation (C2 has an instance variable of
typeC1) as well as by inheritance (C2 extendsC1 by adding new methods and instance
variables). The techniques are free of cost.

19

– Restructure Arrays (Collberg):The following transformations can be used for obscuring
operations performed on arrays. These techniques have a weak resilience.

∗ Split an array into sub-arrays (free)

∗ Merge two or more arrays into one array (free)

∗ Fold an array (increasing the number of dimensions)(cheap)

∗ Flatten an array (decreasing the number of dimensions)(free)

• Ordering:

– Randomize the order of declarations in the source application (Collberg):

∗ Reorder instance variables. This technique has a one-way resilience, and is free of
cost.

∗ Reorder methods. This technique has a one-way resilience, and is free of cost.

∗ Reorder the elements in an array. This technique has a weak resilience and is free
of cost.

– Variable Substitutions (Cohen):Variables can be substituted to alter program appear-
ance. If the variables are placed pseudo-randomly throughout the program, this can
cause a great deal of diffusion.

3.3.4 Control Obfuscation

In this section transformations that attempt to obscure the control flow will be discussed. These
transformations can be classified as affecting theAggregation, Ordering, or Computationsof the
flow of control. We want the transformations to be not only as cheap as possible, but also resistant
to attacks from deobfuscators. To achieve this, many transformations rely on the existence of so
called opaque variables and opaque predicates.

A variableV is opaqueat a pointp in a program, ifV has a propertyq at p which is known at
obfuscation time, but difficult to deduce for a deobfuscator. A predicateP is opaqueat pointp in a
program, if its outcome is known at obfuscation time.

Ideally, the goal is to construct opaque predicates that require worst case exponential time to
break but only polynomial time to construct.

• Aggregation: Control aggregation obfuscations change the way in which program statements
are grouped together. Control aggregation transformations break up computations that logi-
cally belong together or merge computations that do not.

– Inline Method (Collberg): Replacing a procedure call with the statements from the
called procedure itself. The resilience is one-way and it is free of cost.

– Outline Statements (Collberg):Turning a sequence of statements into a subroutine. The
resilience is strong and it is free of cost.

20

– Clone Methods (Collberg):To understand the behavior of a subroutine, the body needs
to be examined. However, it is also important to look at the different environments in
which the routine is being called. To make this more difficult, different routines can
be called, while in fact this is not the case. The security depends on the quality of the
opaque predicate.

– Loop Transformations (Collberg):

∗ Loop blocking can be used to improve the cache behavior of a loop by breaking up
the iteration space so that the inner loop fits in the cache. The resilience is weak
and it is free of cost.

∗ Loop unrolling replicates the body of a loop one or more times. If the loop bounds
are known at compile time the loop can be unrolled in its entirety. The resilience is
weak and it is cheap.

∗ Loop fission turns a loop with a compound body into several loops with the same
iteration space. The resilience is weak and it is free of cost.

Applied in isolation, it is not really secure. With static analysis it is easy to reroll
an unrolled loop. However, when the transformations are combined, it is much more
difficult for a deobfuscator to restore the original form.

– Interleave Methods (Collberg):The idea of interleaving different methods declared in
the same class is to merge the bodies and parameter lists of the methods and add an extra
parameter (or global variable) to discriminate between calls to the individual methods.
Ideally the methods should be similar in nature to allow merging of common code and
parameters. The security depends on the quality of the opaque predicate.

– Intermixing Programs (Cohen):Instructions of two independent operations can be in-
termixed.

• Ordering: Control ordering transformations randomize the order in which computations are
carried out.

– Control ordering transformations (Collberg):The idea is to randomize the placement
of any item in the source application when possible. The resilience is one-way and it is
free of cost.

– Instruction Reordering (Cohen):Many instruction sequences can be reordered without
altering program execution.

– Adding and Removing Calls (Cohen):Programs that use subroutine calls and other
similar processes can be modified to replace the call and return sequences with in-line
code or altered forms of call and return sequences.

– Adding and Removing Jumps (Cohen:)Many program sequences can be modified by
placing series of jump instructions where previous instruction sequences were located,
relocating the previous instructions, and jumping back after sequences are completed.

21

• Computation Transformations: Computation obfuscations affect the control flow in a pro-
gram. Computation transformations insert new code, or make algorithmic changes to the
source application.

– Insert Dead or Irrelevant Code (Collberg):Hide the real control flow behind irrelevant
statements that do not contribute to the actual computations. For example code that will
never be executed can be inserted (dead code). The more predicates a piece of code
contains, the higher the perceived complexity.

– Reducible to Non-Reducible Flow Graphs (Collberg):These obfuscations introduce
code sequences at the object code level for which exist no corresponding high-level lan-
guage constructs. For example, the Java bytecode has agoto statement, which means
that the Java bytecode can express arbitrary control flow, whereas the Java language can
only express structured control flow.

– Remove Library Calls and Programming Idioms (Collberg):In programs written in Java
library calls are common. The library calls have well known semantics and fixed names,
which attackers can use to obtain information of a program. This problem can be solved
by using own versions of the standard libraries. The cost is not in execution time, but in
the size of the program.

A similar problem occurs with cliches (or patterns), common programming idioms that
occur frequently in a program. An attacker will look for these patterns to get some
information about the program. This problem can be prevented by using techniques
which identify common parts and replace them with less obvious ones. The resilience
is strong.

– Extend Loop Condition (Collberg):Here we want to obfuscate a loop by making the
termination condition more complex. The basic idea is to extend the loop condition with
an opaque predicate which will not affect the number of times the loop will execute. The
security depends on the quality of the opaque predicates.

– Table Interpretation (Collberg):The idea of table interpretation is to convert a section of
code into a code for another virtual machine. This new code is then executed by a virtual
machine interpreter included with the obfuscated application. A particular application
can contain several interpreters, each accepting a different language and executing a
different section of the obfuscated application. Table interpretation is costly because it
makes a program very slow. Table interpretation can therefore best be used for small
parts of code which need a high level of protection. However, the resilience is strong.

– Add Redundant Operands (Collberg):Once we have constructed some opaque variables
we can use algebraic laws to add redundant operands to arithmetic expressions. For
example we can changeY = X + 1 into Y = X + A/B, whereA/B is always 1.
Now A andB can take on different values during the execution of the program as long
as their quotient is 1.

22

– Parallelize Code (Collberg):The idea of parallelizing a program is to obscure the ac-
tual flow of control. This can be done by either introducing dummy processes which
perform no useful tasks or by splitting sequential sections of the application code into
multiple sections executing in parallel. This is costly because it causes a slowdown of
the program. However, the resilience is high.

– Garbage Insertion (Cohen):Any sequence of instructions that are independent of the
in-line sequence can be inserted into the sequence without altering the effective program
execution.

– Instruction Equivalence (Cohen):Applicable operation codes can be replaced with
equivalent operation codes.

– Simulation (Cohen):Any sequence of instructions can be replaced by an equivalent se-
quence for a different processor, and that processor can be simulated by an interpretation
mechanism.

3.3.5 Preventive Transformations

The goal of preventive transformation is to make known automatic deobfuscation attacks more
difficult, or to explore known problems in current deobfuscators or decompilers.

• Inherent:
Explore inherent problems with known deobfuscation techniques.

• Targeted:
Explore weaknesses in current decompilers and deobfuscators.

-Anti-Debugger Mutations (Cohen):They make a program resistant to a debugger.

3.3.6 Overlap

The techniques described by Cohen and Collberg et al. have different names, but show a lot of
similarities. The following table shows the similarities between the techniques.

23

Collberg Cohen

Layout Remove Comments

Scramble Identifiers Names

Data Storage Split Variables

& Encoding Promote Scalars to Objects

Convert Static Data to Procedure Build and Execute

Change Encoding Program Encoding

Change Variable Lifetimes

Equivalent Instruction Sequences

Aggregation Merge Scalar Variables

Modify Inheritance Relations

Restructure Arrays

Ordering Reorder instance variables Variable Substitutions

Reorder methods

Reorder arrays

Control Aggregation Inline Method

Outline Statements

Clone Methods

Loop Transformations

Interleave Methods Intermixing Programs

Ordering Control Ordering Transformations Instruction Reordering

Adding and Removing Calls

Adding and Removing Jumps

Computations Insert Dead or Irrelevant Code Garbage Insertion

Reducible to Non-Reducible Flow Graphs

Remove Library Calls and Programming

Idioms

Instruction Equivalence

Extend Loop Condition

Table Interpretation Simulation

Add Redundant Operands

Parallelize Code

Preventive Inherent

Targeted Anti-Debugger Mutations

24

3.4 Software Diversity

Genetic diversity is very important in biological systems. If there were no genetic diversity, then
the outbreak of a virus could infect a lot of people at the same time, and the virus could be spread
very fast. Computers, on the other side, are very homogeneous. This is advantageous in the sense
that it is cheap to produce massive clones of one design, and each copy of a program runs identi-
cally on different machines. This makes maintenance tasks and distribution much easier. Once a
computer can be infected with a virus, all computers with a similar configuration can be infected
too. However, if each configuration issued to a user were different from all others, but functionally
equivalent, then a virus which infects one configuration, would fail to infect another. A disadvan-
tage of software diversity is that it makes the testing of software also much harder.

Forest et al. proposed the following guidelines for software diversity in [12]:

• Preserve high-level functionality. The input/output behavior of programs should be identical
on different computers.

• Introduce diversity in places that will be most disruptive to known or anticipated intrusion
methods.

• Minimize cost, both run-time performance cost and the cost of introducing and maintaining
diversity.

• Introduce diversity through randomization.

This can be done by methods ranging from those that produce variability in the physical location
of executed instructions, the order in which instructions are executed, and the location of instructions
in memory run-time. See§3.3 for different techniques.

3.5 The (Im)possibility of Obfuscation?

3.5.1 Introduction

Is it possible to perfectly obfuscate a program which nobody can crack? Is it possible to claim in
general whether or not an obfuscator is good? Barak et al. dealt with these questions in [3]. The
main results will be described in this section. We want to know what these results imply for practical
use.

25

3.5.2 Obfuscation

Informally, an obfuscatorO is an (efficient, probabilistic) ”compiler” that takes as input a program
(or circuit)P and produces a new programO(P) satisfying the following two conditions [2]:

• Functionality: An obfuscated programO(P) should compute the same function as the origi-
nal programP .

• ”Virtual black box” property: Anything that can be efficiently computed fromO(P) can be
efficiently computed given oracle access toP .

This means that nothing can be computed from the obfuscated program, that cannot be com-
puted by only observing the input-output behavior of the program. For example letx be a
plaintext which is encrypted with an encryption functionE with key K: EK(x). If we look
at the implementation of this program, we will see the keyK. However, if we obfuscate this
program we will get:O(EK(x)). The keyK cannot be found inO(EK(x)).

3.5.3 Result

The main result of [3] is the following: There exists a familyF of functions which isinherently
unobfuscatablein the sense that there is some propertyπ : F → {0, 1} such that:

• Givenanyprogram (circuit) that computes a functionf ∈ F , the valueπ(f) can be efficiently
computed;

• Yet, given oracle access to a (randomly selected) functionf ∈ F , no efficient algorithm can
computeπ(f) much better than random guessing.

This result isstrongbecause it proves the existence of a family of programs which cannot be
obfuscated. These programs are strongly non-learnable which means that it is impossible to recover
its original source code by just executing it, but when looking at the implementation of the program
the original source code can be recovered. However, the result isweakin the sense that it only shows
that every obfuscator completely fails on some programs. It is not proven that every obfuscator will
fail on any given program. Some classes of programs may exist which are probably obfuscatable.
Customers are only interested in obfuscating their programs and it is not clear that this will not be
secure (see [2]).

The result raises some interesting questions, which are not answered yet (see [16]). For example
to what sort of programs does the result apply? Do obfuscators exist which are capable of obfus-
cating programs people are interested in? Can a more practical model be defined, allowing some
level of non-critical information to leak from the execution of a program, provided it is not useful
information to the attacker?

26

3.5.4 Problem

The security properties of obfuscation are not well-defined, and therefore obfuscation cannot have
a proven security. This means that there is no mathematical proof which shows that if someone can
break that implementation, then there is an efficient algorithm for a well known hard computational
problem. In the case of obfuscation someone can come up with an obfuscation algorithm and claim
that it is secure. People start using the algorithms because they think it is secure. After some time a
hacker breaks the algorithm, and then the creators of the algorithm change the algorithm and hope
it is secure. Because there is no definition of security, there is not a clearly stated conjecture of the
security properties of this algorithm.

3.5.5 Conclusion

The authors of the article hoped to find a formal definition for the security of software obfuscators,
and a construction that could be proven to meet this definition. Unfortunately, throughout their re-
search, whenever they came up with a definition, they eventually found a counterexample showing
that this definition could not be met.

Although we cannot prove whether or not an obfuscator is good, this does not mean that we
should not use obfuscation techniques. In practice we want to achieve a level of security such that
the cost to protect the application are less than the cost of the potential damage. It is also important
to consider the probability of manifestation of an attack. Moreover, the cost of setting up an attack
should be more than the benefit which can be gained from the attack. However, we always have to
remember that obfuscation is just a tool which can be used to increase security, but it is not perfect.
It should never be used alone, but always in combination with other techniques.

3.6 Using Software Protection Techniques for OMA-DRM

In this section we will look where we can apply the three described techniques in the OMA-DRM
context.

• Software Tamper Resistance:
Software tamper resistance techniques can be used to protect software which checks the
Rights Objects. When a client has extractedKCEK , additional software checks the Rights
Object to see whether the client is allowed to use the key to decrypt the content. The software
checks if the MAC value calculated over the Rights Object matches the transmitted MAC
value. This software could be changed in such a way that it no longer checks the MAC-values
for example. Software tamper resistance techniques can be used to prevent malignant people
from doing this.

27

Software tamper resistance techniques are already used at the start up of a mobile phone.
When a mobile phone is started up, a digital signature is made over the whole software. If the
software is changed when the telephone was turned off, the system will notice that immedi-
ately.

• Software Obfuscation:
In the OMA-DRM context, secret key derivation functions are used which need to be pro-
tected against reverse engineering. Another example is that OMA-DRM uses system times.
In order to prevent people from setting back the time, the algorithm which checks the system
time can be protected by obfuscation techniques.

• Diversity:
Diversity techniques can be used when applying obfuscation techniques for software pro-
tection. If different obfuscation techniques are used for each program, we have software
diversity.

3.7 Conclusion

Tamper resistance techniques are techniques for providing authenticity or integrity, but not for con-
fidentiality. Obfuscation techniques can be used for confidentiality. Obfuscation techniques make
programs more difficult to understand. However, it makes programs slower or larger than the orig-
inal program. Because no statements about the security of obfuscation can be made, it is recom-
mended to use obfuscation techniques in combination with other software protection techniques.
If obfuscation techniques are applied in a different way for each client we will also get software
diversity which prevents against automatic attacks.

In this chapter several obfuscating techniques have been discussed separately. In practice a
combination of different techniques can be used. More research is needed on the interaction between
the different techniques. In the next chapter we will discuss a technique which can be used for
protecting secret keys. This technique is called white-box cryptography.

Chapter 4

White-Box Cryptography

4.1 Introduction

In the context of OMA-DRM, it is realistic to analyze an algorithm in an untrusted host environ-
ment, where an application is subject to attacks from the host machine itself. Therefore, we will
use the white-box attack model where the attacker has total visibility into software implementation
and execution. Cryptographic algorithms are used for protecting content, but the secret keys in the
implementation are visible to the attacker in the white-box attack context. To prevent an attacker
from finding secret keys in the implementation, the keys need to be hidden. This can be done with
white-box cryptography.

In this chapter we start with describing a white-box implementation on AES as described by
Chow et al. in [8]. After that, we will outline a white-box implementation on DES briefly. We
focus on the implementation on AES because AES is used in OMA-DRM. The main goal of the
implementations is to prevent the extraction of secret keys from the program.

4.2 Basic Idea

In [8] a method is described for protecting an AES-key in a white-box environment. In the white-
box attack context the keys in an AES implementation are completely exposed to an attacker. In
this chapter we will describe a technique which hides the AES keys in the implementation.

Consider a basic round of AES (for details on the AES algorithm see [11]). Each round is split
into different components. These components will be encoded and represented by lookup tables.

Definition (Encoding):
Let X be a transformation fromm to n bits. Choose anm-bit bijectionF and ann-bit bijectionG.
Call X ′ = G ◦ X ◦ F−1 an encoded version ofX. F−1 is an input decoding andG is an output
encoding.

28

29

Each encoding is decoded in another table, which results into a functionally equivalent AES
computation. The idea is to make an implementation which consists entirely of encoded lookup
tables.

Here we will explain the basic idea with a simple model. Suppose we have as components the
following i mappingsX which need to be hidden:

X1 ◦X2 ◦ . . . ◦Xi

The bijectionsM1, . . . ,M2i are randomly chosen and are put around the components along with
their inverses:

M−1
1 ◦M1 ◦X1 ◦M2 ◦M−1

2 ◦M−1
3 ◦M3 ◦X2 ◦M4 ◦M−1

4 ◦ . . . ◦M−1
2i−1 ◦M2i−1 ◦Xi ◦M2i ◦M−1

2i

Parts are taken together and put into separate tables. Each table is composed out of different
mappings. Two mappingsF−1 andG are put around it, otherwise the first and the last table are
composed out of one mapping which is not secure.F andG−1 are also available to the user which
he needs to decrypt the message.

F−1 ◦M−1
1︸ ︷︷ ︸

table

◦M1 ◦X1 ◦M2︸ ︷︷ ︸
table

◦M−1
2 ◦M−1

3︸ ︷︷ ︸
table

◦M3 ◦X2 ◦M4︸ ︷︷ ︸
table

◦ . . . ◦M2i−1 ◦Xi ◦M2i︸ ︷︷ ︸
table

◦M−1
2i ◦G︸ ︷︷ ︸
table

The result is that the different components are no longer visible on their own. A similar tech-
nique was proposed by Paul Gorissen et al. in [13].

4.3 A White-Box AES Implementation

The input to the AES encryption and decryption algorithm is a single 128-bit block. This block is
represented by a4 × 4 matrix consisting of bytes. AES consists of 10 rounds for AES-128. Each
round updates a set of sixteen bytes which form the state of AES, thus each AES round processes
128 bits. AES-128 uses a key of 128 bits. This key serves as input for an algorithm which converts
the key into different round keys of 128 bits. A basic round consists of four parts:

• SubBytes

• ShiftRows

• MixColumns

• AddRoundKey

Before the first round an extraAddRoundKey operation occurs, and from round ten theMixColumns
operation is omitted. The only part that uses the key isAddRoundKey , the other three parts do
nothing with the key.

30

In the implementation we change the boundaries of the rounds, because we want to compose
theAddRoundKey step with theSubBytes step of the next round into one step. We let a round
begin withAddRoundKey andSubBytes followed byShiftrows and finallyMixColumns .

4.3.1 Step 1: Hiding the Key in S-Boxes

First, we want to hide the key by composing the SubBytes step and the AddRoundkey together into
one step. This makes the key no longer visible on its own. Because the key is known in advance, the
operations involving the key can be pre-evaluated. This means that the standard S-Boxes which are
used in the stepSubBytes can be replaced with key-specific S-Boxes. To generate key-specific
instances of AES-128, the key is integrated into theSubBytes transformations by creating sixteen
8× 8 (i.e. 8-bit input, 8-bit output) lookup tablesT r

i,j which are defined as follows:

T r
i,j(x) = S(x⊕ kr−1

i,j) i = 0, . . . 3, j = 0, . . . , 3, r = 1, . . . , 9,

whereS is the AES S-box (an invertible 8-bit mapping), andkr
i,j is the AES subkey byte at

positioni, j of the4×4 matrix which represents the round key for roundr. These T-boxes compose
theSubBytes step with the previous round’sAddRoundKey step. The round 10 T-boxes absorb
the post-whitening key as follows:

T 10
i,j (x) = S(x⊕ k9

i,j)⊕ k10
sr(ij) i = 0, . . . , 3, j = 0, . . . , 3,

wheresr(i, j) denotes the new location of celli, j after theShiftRows step.

In total we have10×16 = 160 T-boxes. However, the key can easily be recovered from T-boxes
becauseS−1 is publicly known:

T r
i,j(x) = S(x⊕ kr−1

i,j)
S−1(T r

i,j(x)) = S−1(S(x⊕ kr−1
i,j))

S−1(T r
i,j(x)) = x⊕ kr−1

i,j

kr−1
i,j = x⊕ S−1(T r

i,j(x))

The keykr−1
i,j can be calculated, by choosing an arbitraryx and calculatingx ⊕ S−1(T r

i,j(x)).
This makes additional encodings necessary. Linear transformations are used for diffusing the inputs
to the T-boxes. These linear transformations are called mixing bijections and can be represented as
8 × 8 matrices over GF(2). The mixing bijections are inverted by an earlier computation to undo
their effect. In the following section we explain the use of mixing bijections in more detail.

31

4.3.2 Step 2: Inserting Mixing Bijections

An AES state is represented by a4×4 matrix consisting of bytes. TheMixColumns step operates
on a column (four 8-bit cells) at a time. Consider a32× 32 matrixMC. If this is represented by a
table, this table would cost232 × 32 = 137438953472 bits = 16 GB. In order to avoid such large
tables the matrix is blocked into four sections.

MC is blocked into four32 × 8 sections,MC0,MC1,MC2,MC3. Multiplication of a 32-bit
vectorx = (x0, . . . , x31) by MC is done by four separate multiplications yielding four 32-bit vec-
tors(z0, . . . , z3) (Figure 4.1). This is followed by three 32-bitsxorsgiving the final 32-bit resultz:

MC · (x0, . . . , x31)T = (MC0‖MC1‖MC2‖MC3) · (x0, . . . , x31)T = MC0 · (x0, . . . , x7)T ⊕
MC1 · (x8, . . . , x15)T ⊕MC2 · (x16, . . . , x23)T ⊕MC3 · (x24, . . . , x31)T = z0⊕ z1⊕ z2⊕ z3 = z

3 2 x 8 m a t r i x M C 0 3 2 x 8 m a t r i x M C 1 3 2 x 8 m a t r i x M C 2 3 2 x 8 m a t r i x M C 3

z 0 z 1 z 2 z 3

x 1x 0 x 2 x 3 x 4 x 5 x 6 x 7 x 9x 8 x 1 0 x 1 1 x 1 2 x 1 3 x 1 4 x 1 5 x 1 7x 1 6 x 1 8 x 1 9 x 2 0 x 2 1 x 2 2 x 2 3 x 2 5x 2 4 x 2 6 x 2 7 x 2 8 x 2 9 x 3 0 x 3 1

Figure 4.1: MC blocking

The four tables together only cost4× 28 × 32 = 32768 bits= 4 KB.

The threexorswill be divided into 24 4-bitxorswith appropriate concatenation (e.g.
((z[0, 0], z[0, 1], z[0, 2], z[0, 3])+(z[1, 0], z[1, 1], z[1, 2], z[1, 3]))‖((z[0, 4], z[0, 5], z[0, 6], z[0, 7])+
(z[1, 4], z[1, 5], z[1, 6], z[1, 7]))‖ . . .). By using these strips and subdividedxors, each step is rep-
resented by a small lookup table. In particular, fori = 0, . . . , 3 thezi are computed using8 × 32
tables, while the 4-bitxorsbecome 248 × 4 tables. Input decodings and output encodings are put
around thexors. These encodings are randomly chosen non-linear4 × 4 bijections. The tables are
called type IV tables (Figure 4.2). The type IV tables take as input 4 bits from each of two previous
computations. The output encodings of those computations are matched with the input decodings
for the type IV tables to undo each other.

32

The choice for4× 4 non-linear bijections depended on the size of the tables. In this situation a
type IV table is only28 × 4 = 128 bytes. We need 24 tables which cost together3 KB. If we did
not divide thexorswe would need threexor tables which computed 32-bitxors. Ons such a table
would cost224 KB. This is way too large to store.

X O RX O R

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

4 - b i t
o u t p u t

e n c o d i n g

Figure 4.2: Type IV table

The T-boxes and the8 × 32 tables could be represented as separate lookup tables. Instead, we
compose them creating new8×32 tables computing theSubBytes andAddRoundKey transfor-
mations as well as part ofMixColumns . This saves both space (to store the T-boxes) and time (to
perform the table lookups).

Before splittingMC into MCi as above,MC will be left-multiplied by a32 × 32 mixing bi-
jectionMB chosen as a non-singular matrix with4× 4 submatrices of full rank. The use of mixing
bijections increases the number of possible constructions for a particular table.

MB ◦MC(x0, . . . , x31)T =
MB ◦ (MC0‖MC1‖MC2‖MC3)(x0, . . . , x31)T =

MB ◦MC0(x0, . . . , x7)T ⊕ . . .⊕MB ◦MC3(x24, . . . , x31)T

33

We put everything together in an8× 32 type II table surrounded by4× 4 input decodings and
4 × 4 output encodings (Figure 4.3). These output encodings and input decodings are non-linear
4× 4 bijections which must match the input decodings and output encodings of the type IV tables.
The type II tables are followed by type IV tables.

(3 2 x 3 2 m a t r i x M B) x (3 2 x 8 m a t r i x M C)

8 x 8 m i x i n g b i j e c t i o n

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g

T r
i , j

i

Figure 4.3: Type II table

In order to invertMB, an extra set of tables is used for calculatingMB−1. Let (x′0, . . . , x
′
31) be

the input toMixColumns , and let(z0, . . . , z31) be the output afterMixColumns . Let(z′0, . . . , z
′
31)

T

be the result after multiplication withMB. (z′0, . . . , z
′
31)

T serves as input to the type III tables.

MB−1 ◦MB ◦MC(x0, . . . , x31)T =
MB−1 ◦MB(z0, . . . , z31)T = MB−1(z′0, . . . , z

′
31)

T =
(MB−1

0 ‖MB−1
1 ‖MB−1

2 ‖MB−1
3)(z′0, . . . , z

′
31)

T =
MB−1

0 (z′0, . . . , z
′
7)

T ⊕MB−1
1 (z′8, . . . , z

′
15)

T ⊕MB−1
2 (z′16, . . . , z

′
23)

T ⊕MB−1
3 (z′24, . . . , z

′
31)

T

Note that we ignored the input encodings and the output decodings here. This is done because
the input decodings of the type III tables undo the output encodings of the type II tables.

In type III tables,MB−1 will be left-multiplied by the inverses of the four input mixing bijec-
tions of the next round’s type II tables, and split into four32× 8 blocks:

mb−1 ◦ (MB−1
0 (z′0, . . . , z

′
7)

T ⊕ . . .⊕MB−1
3 (z′24, . . . , z

′
31)

T) =
mb−1 ◦MB−1

0 (z′0, . . . , z
′
7)

T ⊕ . . .⊕mb−1 ◦MB−1
3 (z′24, . . . , z

′
31)

T

34

wheremb−1 has the following form:

mb−1 =


mb−1

0

mb−1
1

mb−1
2

mb−1
3



where themb−1
i ’s are the inverses of the8 × 8 mixing bijection for the next round’s type II

tables.

We put everything together in an8 × 32 type III table surrounded by4 × 4 non-linear input
decodings and4× 4 non-linear output encodings (Figure 4.4). These tables are followed by corre-
sponding type IV tables.

(3 2 x 3 2 i n v e r s e m i x i n g b i j e c t i o n) x (3 2 x 8 i n v e r s e M B)
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

i

Figure 4.4: Type III table

In Figure 4.5 we show what happens in one round of white-box AES for one strip of 32 bits.
One round consists of type II tables plus supporting type IV tables, followed by type III tables plus
supporting type IV tables. The type II tables have an input of 8 bits and and output of 32 bits:
(p[i, 0], . . . , p[i, 31]) for i ∈ 0, . . . , 3. The type III tables have an input of 8 bits and an output of 32
bits: (q[i, 0], . . . , q[i, 31]) for i ∈ 0, . . . , 3. The bits(q[8i], . . . , q[8i + 7]) serve as input bits for the
next round’s type II tables fori ∈ 0, . . . , 3.

35

p [0 , 0]
p [0 , 1]
p [0 , 2]
p [0 , 3]
p [0 , 4]
p [0 , 5]
p [0 , 6]
p [0 , 7]
p [0 , 8]
p [0 , 9]
p [0 , 1 0]
p [0 , 1 1]
p [0 , 1 2]
p [0 , 1 3]
p [0 , 1 4]
p [0 , 1 5]
p [0 , 1 6]
p [0 , 1 7]
p [0 , 1 8]
p [0 , 1 9]
p [0 , 2 0]
p [0 , 2 1]
p [0 , 2 2]
p [0 , 2 3]
p [0 , 2 4]
p [0 , 2 5]
p [0 , 2 6]
p [0 , 2 7]
p [0 , 2 8]
p [0 , 2 9]
p [0 , 3 0]
p [0 , 3 1]

p [1 , 0]
p [1 , 1]
p [1 , 2]
p [1 , 3]
p [1 , 4]
p [1 , 5]
p [1 , 6]
p [1 , 7]
p [1 , 8]
p [1 , 9]
p [1 , 1 0]
p [1 , 1 1]
p [1 , 1 2]
p [1 , 1 3]
p [1 , 1 4]
p [1 , 1 5]
p [1 , 1 6]
p [1 , 1 7]
p [1 , 1 8]
p [1 , 1 9]
p [1 , 2 0]
p [1 , 2 1]
p [1 , 2 2]
p [1 , 2 3]
p [1 , 2 4]
p [1 , 2 5]
p [1 , 2 6]
p [1 , 2 7]
p [1 , 2 8]
p [1 , 2 9]
p [1 , 3 0]
p [1 , 3 1]

p [2 , 0]
p [2 , 1]
p [2 , 2]
p [2 , 3]
p [2 , 4]
p [2 , 5]
p [2 , 6]
p [2 , 7]
p [2 , 8]
p [2 , 9]
p [2 , 1 0]
p [2 , 1 1]
p [2 , 1 2]
p [2 , 1 3]
p [2 , 1 4]
p [2 , 1 5]
p [2 , 1 6]
p [2 , 1 7]
p [2 , 1 8]
p [2 , 1 9]
p [2 , 2 0]
p [2 , 2 1]
p [2 , 2 2]
p [2 , 2 3]
p [2 , 2 4]
p [2 , 2 5]
p [2 , 2 6]
p [2 , 2 7]
p [2 , 2 8]
p [2 , 2 9]
p [2 , 3 0]
p [2 , 3 1]

p [3 , 0]
p [3 , 1]
p [3 , 2]
p [3 , 3]
 q [0 , 0] q [0 , 1] q [0 , 2] q [0 , 3] q [0 , 4] q [0 , 5] q [0 , 6] q [0 , 7] q [0 , 2 8] q [0 , 2 9] q [0 , 3 0] q [0 , 3 1]
p [3 . 4]
p [3 , 5]
p [3 , 6]
p [3 , 7]
p [3 , 8]
p [3 , 9]
p [3 , 1 0]
p [3 , 1 1]
 q [1 , 0] q [1 , 1] q [1 , 2] q [1 , 3] q [1 , 4] q [1 , 5] q [1 , 6] q [1 , 7] q [1 , 2 8] q [1 , 2 9] q [1 , 3 0] q [1 , 3 1]
p [3 , 1 2]
p [3 , 1 3]
p [3 , 1 4]
p [3 , 1 5]
p [3 , 1 6]
p [3 , 1 7]
p [3 , 1 8]
p [3 , 1 9]
 q [2 , 0] q [2 , 1] q [2 , 2] q [2 , 3] q [2 , 4] q [2 , 5] q [2 , 6] q [2 , 7] q [2 , 2 8] q [2 , 2 9] q [2 , 3 0] q [2 , 3 1]
p [3 , 2 0]
p [3 , 2 1]
p [3 , 2 2]
p [3 , 2 3]
p [3 , 2 4]
p [3 , 2 5]
p [3 . 2 6]
p [3 . 2 7]
 q [3 , 0] q [3 , 1] q [3 , 2] q [3 , 3] q [3 , 4] q [3 , 5] q [3 , 6] q [3 , 7] q [3 , 2 8] q [3 , 2 9] q [3 , 3 0] q [3 , 3 1]
p [3 , 2 8]
p [3 , 2 9]
p [3 , 3 0]
p [3 , 3 1]
 q [0] q [1] q [2] q [3] q [4] q [5] q [6] q [7] q [2 8] q [2 9] q [3 0] q [3 1]

} }
}}

} } }
t y p e I I t y p e I I t y p e I I t y p e I I

t y p e I I I

t y p e I I I

t y p e I I I

t y p e I I I

. . .

. . .

. . .

. . .

. . .
Figure 4.5: Part of the tables for one round

4.3.3 Step 3: Inserting External Encodings

Two encodingsF−1 andG are put around the white-box implementation. These encodings are
called the external encodings.F−1 is composed of non-linear input decodings and a linear bijection
U−1. G is composed of a linear bijectionV and non-linear output encodings.

The mixing bijectionsU−1 andV are randomly chosen as128 × 128 linear bijections which
consist of1024 4×4 submatrices of full rank.U−1 is inserted prior to the first AESAddRoundKey
operation. To undo the8 × 8 mixing bijections forT 1, U−1 will be left-multiplied by the inverted
input mixing bijections forT 1. The result is split into128 × 8 strips, and is followed by4-bit to
4-bit non-linear input decodings and output encodings (Figure 4.6). These output encodings have to

36

be decoded,xored together and reencoded to complete the implementation. The output encodings
of the last stage of type IV tables supportingU−1invert the input decodings of the type II tables for
round 1.

 (1 2 8 x 1 2 8 i n v e r s e m i x i n g b i j e c t i o n) x (1 2 8 x 8 m a t r i x U)

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g

- 1
i

Figure 4.6: Type Ia table

V is inserted after the last AESAddRoundKey operation.V is split into128× 8 strips and is
followed by 4-bit to 4-bit non-linear input decodings and output encodings (Figure 4.7).

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

T 1 0
i , j

8 x 8 m i x i n g b i j e c t i o n

1 2 8 x 8 m a t r i x V
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g

i

Figure 4.7: Type Ib table

See Appendix A for an overview of the white-box tables, and Appendix B for an overview of
how the white-box tables are connected.

4.4 Size & Performance

The AES implementation consists entirely of lookup tables. Sixteen type Ia tables are used for per-
forming the initial input mixing bijection followed by32×15 = 480 supporting type IV tables. Each
AES round is represented by a set of tables for each of the four 32-bit strips in an AES round. Each
strip of the first nine rounds consists of four type II and four type III tables, followed by3× 8 = 24
type IV tables supporting the type II tables and3 × 8 = 24 type IV tables supporting the type III
tables. The type II tables followed by the corresponding type IV tables representAddRoundKey ,
SubBytes andMixColumns . The type III tables followed by the corresponding type IV tables
represent the mixing bijections which undo the mixing bijections at the end of the previous type II
tables, and they undo the mixing bijections at the beginning of the type II tables for the next round.

37

ShiftRows is executed during the rounds by providing appropriately shifted data as input to the
type III tables. Sixteen type Ib tables are used for performing the output mixing bijection followed
by 32 × 15 = 480 supporting type IV tables. The size of the lookup tables in this implementation
is:

Type Ia:16× (28 × 128) = 524288 bits
Type IV supporting Type I:480× (28 × 4) = 491520 bits
Type II: 9× 16× (28 × 32) = 1179648 bits
Type IV supporting Type II:9× 4× 24× (28 × 4) = 884736 bits
Type III: 9× 16× (28 × 32) = 1179648 bits
Type IV supporting Type III:9× 4× 24× (28 × 4) = 884736 bits
Type Ib:16× (28 × 128) = 524288 bits
Type IV supporting Type Ib:480× (28 × 4) = 491520 bits

The total size of the lookup tables is:524288 bits +491520 bits +1179648 bits +884736 bits
+1179648 bits+884736 bits+524288 bits+491520 bits= 6160384 bits= 770048 bytes

The described implementation makes white-box attacks more difficult by representing the dif-
ferent encoding steps by lookup tables. Although the security improves, the implementations make
a program much larger and slower. The AES implementation of Daemen and Rijmen requires 4352
bytes for lookup tables [11], thus the expected increase in size is about177×. The performance
slowdown is approximately55× compared to a normal implementation of AES. However, this is
also dependent on the layout of the tables in memory [8]. In§6.5 we look for possibilities to use less
tables. Because of the increase in memory space and the performance slowdown, it is important to
consider carefully where to apply white-box cryptography.

Note that in the article an AES-encryption implementation is described. However, the decryp-
tion algorithm of AES can be written in the same way as the encryption algorithm. The difference
is that SubBytes, ShiftRows and MixColumns becomes InverseSubBytes, InverseShiftRows and In-
verseMixColumns.

4.5 Security

As with the different obfuscation techniques, it is difficult to claim something about the security.
However, it is possible to count the number of different possibilities for the tables of each type. This
enables us to say something about the possibility of a brute force attack. We start by giving the
number of different possible tables without looking at the underlying structure.

The type Ia tables and the type Ib tables have an input of 8 bits and an output of 128 bits. This
means that an upper bound for the number of possibilities for those tables is:228×128 = 232768.
The type II tables and the type III tables have an input of 8 bits and an output of 32 bits. An
upper bound for the number of different tables is228×32 = 28192. The type IV tables have an

38

input of 8 bits and an output of 4 bits. The upper bound for the number of possibilities for
those tables is228∗4 = 21024. We have 16 type Ia tables, 16 type Ib tables, 144 type II tables,
144 type III tables, 2688 type IV tables, and 16 type Ib tables. The total complexity becomes:
(232768)32 × (28192)288 × (21024)2688 = 26160384. This is much too high for a brute force attack to
be effective. However, if we look at the underlying structure, the actual number of different tables
can be much lower.

4.5.1 White-Box Diversity

We can also look at the number of distinct constructions which exist for the possible tables of a
type. This metric is called white-box diversity [8]. All encodings are assumed to be random and
independent. To obtain the white-box diversity the possible encoded steps need to be counted. If
constructing a table requiresn independent choices to be made, and thei’th choice hasci alterna-
tives, then the white-box diversity for the tables is:

n∏
i=1

ci

First, we calculate the number of constructions for the different parts of the tables:

• For each input decoding or output encoding of 4 bits to 4 bits there are16! possibilities.

• The number of nonsingulari× i matrices can be calculated as follows:

#nonsingulari× i matrices= (2i − 1)×
i−1∏
j=1

(2i − 1−
j∑

k=1

(
j

k

)
)

There are 20160 nonsingular4 × 4 matrices. Because there fit64 4 × 4 submatrices in a
128 × 8 matrix, an upper bound for the number of different constructions for the128 × 8
matrices is2016064. The actual number is lower because not every composition of non-
singular submatrices results in a non-singular matrix.

• The number of different constructions for the8× 8 mixing bijections is262.2.

• The number of possibilities for the T-boxes is28 = 256.

• There exist 20160 nonsingular4×4 matrices. Sixteen4×4 submatrices fit in a32×8 matrix.
The upper bound for the number of32 × 8 matrices is thus2016016. The actual number is
lower because not every composition of non-singular submatrices results in a non-singular
matrix.

39

Upper bounds of the white-box diversity for the different table types are:

Type Ia:(16!)2 × 2016064 × (16!)32 ≈ 22419.7

Type II: (16!)2 × 262.2 × 28 × 2016016 × 4× (16!)8 ≈ 2743.5

Type III: (16!)2 × 2016016 × 4× (16!)8 ≈ 2673.3

Type IV: (16!)2 × 16! ≈ 2132.8

Type Ib: (16!)2 × 262.2 × 28 × 2016064 × (16!)32 ≈ 22489.9

These upper bounds can be lowered if we consider the method that is used for generating large
non-singular matrices with4× 4 submatrices (see [19]). This method limits the number of possible
constructions, by constructing the matrix inductively. The first step is finding a4 × 4 non-singular
matrix. The second step is to construct a8 × 8 matrix, consisting of four4 × 4 sub-matrices. The
next step is to expand this matrix to a12 × 12 matrix, by adding a row of blocks and a column of
blocks to the8× 8 matrix. These rows and columns are chosen from the8× 8 matrix, which makes
them dependent on this matrix. We only have to add one4 × 4 block to create a12 × 12 matrix.
These steps can be repeated until we reach the size of the non-singular matrix we need.

An upper bound for the number ofi× i non-singular matrices consisting of4× 4 non-singular
submatrices can be calculated as follows:

#non-singulari× i matrices consisting of4× 4 submatrices= 201604 ·
i/4−1∏
j=2

20160j2

Figure 4.8 shows the construction of a non-singular32× 32 matrix. The white boxes are4× 4
nonsingular matrices which we can choose arbitrarily. The grey boxes are4×4 nonsingular matrices
which we choose from blocks that are chosen before:()

Figure 4.8: Generating a32× 32 matrix consisting of4× 4 submatrices

40

Now we have the following upper bounds of the white-box diversity:

Type Ia:(16!)2 × 222.2 × (16!)32 ≈ 21483.5

Type II: (16!)2 × 262.2 × 28 × 241.9 × 4× (16!)8 ≈ 2556.6

Type III: (16!)2 × 241.9 × (16!)8 ≈ 2486.4

Type IV: (16!)2 × 16! ≈ 2132.8

Type Ib: (16!)2 × 262.2 × 28 × 222.2 × (16!)32 ≈ 21596.9

4.5.2 White-Box Ambiguity

We discussed how many different constructions exist. However, some constructions produce the
same tables. Thus the number of different constructions is higher than the number of different ta-
bles. Therefore, the authors of [8] introduced another metric: the white-box ambiguity of a table
type. White-box ambiguity estimates the number of distinct constructions which produce exactly
the same table. They have found the following estimates:

Type Ia:2546.1

Type II: 2117

Type III: 2117

Type IV: 248.2

Note that they did not give separate estimates for the type Ib tables. They consider the type Ib
tables the same as the type Ia tables. The number of different tables can be calculated by dividing
the number of distinct constructions (white-box diversity) by the number of distinct constructions
which produce the same type of tables (white-box ambiguity):

Type Ia:21483.5/2546.1 = 2937.4

Type II: 2556.6/2117 = 2439.6

Type III: 2486.4/2117 = 2369.4

Type IV: 2132.8/248.2 = 284.6

Remember that we have 16 type Ia tables, 16 type Ib tables, 144 type II tables, 144 type III tables,
and 2688 type IV tables. The total complexity becomes:(2937.4)32 × (2439.6)144 × (2369.4)144 ×
(284.6)2688 = 2373898. This is still too much for a brute force attack.

4.6 White-Box Cryptography for DES

In [7] a technique is described of applying white-box cryptography to DES. DES consists of per-
mutations, S-Box lookups andxor operations. The idea is to apply encodings to each of these steps.
For S-Box lookups andxor operations, encoding each operation (along with its input and output)
is performed in the same way as for the white-box implementation on AES. Applying encodings to
the various permutations is more difficult. This is because these permutations are very simple, and

41

it is difficult to hide the information being manipulated. To make the encodings more difficult, the
DES permutations and the bitwisexor operations will be expressed as affine transformations. These
transformations are still very simple because the permutations in DES have very sparse matrices
(one or two 1-bits per row or column). In order to diffuse information over more bits, such a per-
mutationP can be represented byJ ◦ K, whereK is a mixing bijection andJ = PK−1, thereby
replacing a sparse matrix with two non-sparse ones. These matrices are represented by lookup
tables. The main idea is to make an implementation which consists entirely of look-up tables.

4.7 Conclusion

White-box cryptography can be used for hiding keys in an untrusted host environment. The result
is a functionally equivalent program in which the key is no longer visible. This prevents malignant
people for finding their own keys and distributing those keys. The advantage of distributing keys
compared to distributing content is that keys are usually much smaller than content and they can be
distributed more easily.

White-box cryptography also has some drawbacks. By using white-box cryptography more
memory is needed and it causes a slowdown of the program. Whenever a key needs to be updated,
the whole set of white-box tables needs to be updated too. This can be a problem if the amount of
storage space is limited. Another drawback is that the whole white-box implementation can be used
as a key. Moreover, the lack of both security metrics and security proof is also a drawback. More
research is needed on this area.

Recently, an attack on the described white-box AES implementation was published in [4] by
Billet et al.. They explain a technique for obtaining the key from the lookup tables. In the next
chapter this attack will be described in more detail.

Chapter 5

Attack on a White-Box AES
Implementation

5.1 Introduction

In the white-box attack context an attacker has total access to the implementation of cryptographic
algorithms. Moreover, he can observe or manipulate the dynamic execution of the algorithm or parts
of the algorithm. This makes it possible for an attacker to find keys easily. This can be prevented
using white-box cryptography by hiding the keys in lookup tables. In [8] Chow et al. described an
implementation of white-box cryptography for AES. Recently an attack on this implementation was
published by Billet et al. in [4]. In this chapter the attack will be described in more detail.

5.2 Basic Idea of the Attack

In the described white-box AES implementation, the round keys are hidden in lookup-tables. Be-
cause it is very difficult to extract the keys by local inspections of the tables, it is more convenient
to look at the input and the output of the composition of tables for a round. A round consists of type
II tables, type III tables and supporting type IV tables. This can be represented as follows:

mb−1 ◦MB−1︸ ︷︷ ︸
in Type III tables

◦MB(z0, . . . , z31)T︸ ︷︷ ︸
in Type II tables

= mb−1 ◦ (z0, . . . , z31)T =


mb−1

0 (z0, . . . , z7)T

mb−1
1 (z8, . . . , z15)T

mb−1
2 (z16, . . . , z23)T

mb−1
3 (z24, . . . , z31)T

 =


y0

y1

y2

y3


where(z0, . . . , z31) is the state of AES afterShiftRows andMixcolumns and

42

43

mb−1 =


mb−1

0

mb−1
1

mb−1
2

mb−1
3


Note that we ignored the input decodings of the type III tables and the output encodings of the

type II tables. This is because the input decodings of the type III tables undo the output encodings
of the type II tables.

Because we look at the composition of the tables,MB andMB−1 cancel each other. See§4.3.2
voor details on the mixing bijections. As shown above thexors supporting the type III tables are
no longer needed.

Each round of AES consists of four mappings between four input bytes and four output bytes.
These four mappings together form an encoded AES round. We put everything together in Figure
5.1 where one such mapping is shown. We assume that we can choose the input bits and we can
only observe the corresponding output bits.

Figure 5.1: One of the four mappings for a single AES round

HereP r
i,j is constructed as the composition of two 4-bit to 4-bit input decodings, and one 8-bit

to 8-bit mixing bijection of the type II tables.Qr
i,j is constructed as one 8-bit to 8-bit mixing bijec-

tion, and two 4-bit to 4-bit output encodings. The 8-bit to 8-bit mixing bijections are submatrices
of the32× 32 mixing bijection for a type III table. Remember that the mixing bijection plus output
encodings and input decodings for the next round and the mixing bijection for the next round cancel
each other out. Thus eachQr

i,j is the inverse ofP r+1
i,j .

44

The goal of the attack is to extract the AES round keys. The attack proceeds in three steps:

1. Recovering the non-affine parts ofQr
i,j for roundr = 1, ..., 9 (see Theorem 1). Since each

Qr
i,j is the inverse ofP r+1

i,j , the non-affine parts ofP r+1
i,j can also be recovered for round

r + 1, r = 1, ..., 9.

2. Recovering the affine parts of theQr
i,j ’s.

3. Extracting the AES round keys.

5.3 Step 1: Recovering the Non-Affine Part ofQr
i,j

We want to recover the non-affine part of theQr
i ’s in roundr = 1, ..., 9. Considery0 as a function

of (x0, x1, x2, x3) and fix x1, x2 andx3 to some constantsc1, c2 andc3. y0(x, c1, c2, c3) can be
written as follows:

y0(x, c1, c2, c3) = Qr
0,j(αT r

0,j(P
r
0,j(x))⊕ βc1,c2,c3)

and also:
y0(x, c1, c2, c3)−1 = (P r

0,j)
−1((T r

0,j)
−1α−1((Qr

0,j)
−1(x)⊕ βc1,c2,c3))

whereα is a constant independent ofc1, c2, andc3, andβc1,c2,c3 is another constant. Sincex
can only take28 = 256 values, it is possible to calculate all possibley0(x, c1, c2, c3)’s as well as
their inverses, and to produce lookup tables of these functions.

If we vary one constant, sayc3, we get the following (we drop ther’s andj’s to in order to make
it more readable):

y0(y0(x, c1, c2, c
′
3)
−1, c1, c2, c3) =

Q0(αT0(P0(P−1
0 (T−1

0 α−1(Q−1
0 (x)⊕ βc1,c2,c′3

))))⊕ βc1,c2,c3) =
Q0(αT0(T−1

0 α−1(Q−1
0 (x)⊕ βc1,c2,c′3

))⊕ βc1,c2,c3) =
Q0(Q−1

0 (x)⊕ βc1,c2,c′3
⊕ βc1,c2,c3) =

Q0(Q−1
0 (x)⊕ β)

whereβ = βc1,c2,c′3
⊕ βc1,c2,c3 .

Theorem 1Given a set of functionsS = {Q ◦ ⊕β ◦ Q−1}β∈GF(28) given by values, whereQ is a
permutation of GF(28) and⊕β is the translation byβ in GF(28) , one can construct a particular
solutionQ such that there exists an affine mappingR so thatQ = Q ◦R.

45

The proof of this theorem, and the algorithm to constructQ can be found in [1]. The theorem
enables us to compute the non-linear partQ

r
of Qr with time complexity224. Now we know that

an affine mappingRr exists such thatQr = Qr ◦Rr. SinceQr is the inverse ofP r+1 we have:

P r+1 ◦Qr(x) = x
P r+1 ◦Q

r ◦ (Rr)−1(x) = x

BecauseP r+1 ◦Qr must be the identity, we know thatP r+1 ◦Q
r

must beRr. Rr will be called
P̃ r+1, and(Rr)−1, the affine part ofQr, will be calledQ̃r. y also changes:

Qr(. . .) = y
Q

r ◦ (Rr)−1(. . .) = y
(Rr)−1(. . .) = (Qr)−1y

Q̃r(. . .) = ỹ

whereỹ = (Qr)−1y. We can constructQ according to Theorem 1, and therefore we also know
ỹ. The original problem of recoveringP andQ which are both non-linear is reduced to the problem
of recovering the affine mappings̃P andQ̃. Now we are in the same situation as in figure 5.1 except
for the fact thatP is changed tõP , Q is changed tõQ, andy is changed tõy. In order to improve
the readability wheneverP , Q, andy are mentioned, we actually meañP , Q̃, andỹ.

5.4 Step 2: Recovering the Affine Part ofQr
i,j

The functionsyi can be written as:

yi(x0, x1, x2, x3) = Qi(αi,0 · T0 ◦ P0(x0)⊕ αi,1 · T1 ◦ P1(x1)⊕ αi,2 · T2 ◦ P2(x2)⊕ αi,3 · T3 ◦ P3(x3))

However, we do not know the values of theα’s, because of theShiftrows step.

Proposition 1. For any pair (yi, yj) as introduced above, there exists a unique linear mappingL
and a constantc such that,

∀x0 ∈ GF(28), yi(x0, 00, 00, 00) = L(yj(x0, 00, 00, 00))⊕ c.

The proof of the proposition can be found in [1]. By using thatyi(x, 00, 00, 00) = Qi(αi,0 ·
T0(P0(x))⊕ ci) = Ai(αi,0 · T0(P0(x))⊕ ci)⊕ qi , andyj(x, 00, 00, 00) = Qj(αj,0 · T0(P0(x))⊕
cj) = Aj(αj,0 · T0(P0(x)) ⊕ cj) ⊕ qj , we can conclude thatL has the following form:L =
Ai ◦ Λαi,0/αj,0

◦A−1
j .

If we vary the second, third, or fourth variable, and if we keep the other variables fixed, we can
make an analogous statement.

46

Given two functionsyi andyj , the corresponding(L, c) can be determined by solving the linear
system of equations below:

x0 x1 x2 x3 x4 x5 x6 x7

x8 x9 x10 x11 x12 x13 x14 x15

x16 x17 x18 x19 x20 x21 x22 x23

x24 x25 x26 x27 x28 x29 x30 x31

x32 x33 x34 x35 x36 x37 x38 x39

x40 x41 x42 x43 x44 x45 x46 x47

x48 x49 x50 x51 x52 x53 x54 x55

x56 x57 x58 x59 x60 x61 x62 x63





yi,0

yi,1

yi,2

yi,3

yi,4

yi,5

yi,6

yi,7


⊕



c0

c1

c2

c3

c4

c5

c6

c7


=



yj,0

yj,1

yj,2

yj,3

yj,4

yj,5

yj,6

yj,7


whereyi,k stands for thek’th element inyi, andyj,k stands for thek’th element inyj , k =

0, . . . , 7. Because we knowyi andyj we can form a highly overdefined linear system of28 × 8
equations involving64 + 8 = 72 unknowns. According to Billet et al. [4], this equation can be
solved with a time complexity much lower than216.

Applying proposition 1 with(i, j) = (0, 1), L can be determined by solving the linear system
of equations.L has the following form:L = A0 ◦ Λα0,0/α1,0

◦ A−1
1 . If A0 is known and we know

the right values of theα’s, A1 can be determined. Using the same argument with(i, j) = (0, 2), A2

can be determined, and with(i, j) = (0, 3), A3 can be determined. Thus from the knowledge of the
linear part ofQ0, the linear parts ofQ1, Q2 andQ3 can be computed. Thus a linear set of equations
needs to be solved three times with a total time complexity of3 · 216. Now we only need to focus
on the determination ofQ0.

Qi is an affine mapping which can be decomposed into a linear and constant part:Qi(x) =
Ai(x) + qi. If we apply proposition 1 with(i, j) = (0, 1), we will getL0 = A0 ◦ Λα0,0/α1,0

◦A−1
1 .

Using a variant of proposition 1 with(i, j) = (0, 1), but where one variesx1 instead ofx0, we will
obtainL1 = A0 ◦ Λα0,1/α1,1

◦A−1
1 . Now we are able to compute:

L = L0 ◦ L−1
1 = A0 ◦ Λβ ◦A−1

0 , whereβ = α0,0α1,1/α0,1α1,0.

The valuesα stand for theMixColumns coefficients which take only the values 00, 01, 02,
and 03. It can be checked that only 16 values ofβ remain possible:

{20, 8d, 30, f6, 40, cb, 60, 7b, 50, 52, a4, 8f, f7, 8c, 46, f5}

We have the following situation. We are able to determineL and we know thatL has the fol-
lowing form: L = L0 ◦ L−1

1 = A0 ◦ Λβ ◦ A−1
0 . The correctβ can be found by determining the

characteristic polynomial ofL, and the characteristic polynomial forΛβ. These polynomials are the

47

same. If we knowβ, we are able to determineA0. Next will be described how to determineA0.

Proposition 2. Given an elementβ of GF(28) not contained in any subfield of GF(28) and its cor-
responding matricL = A0 ◦ Λβ ◦ A−1

0 , we can compute with time complexity lower than216, a
matrixA0 such that there exists a unique non-zero constantγ in GF(28), such thatA0 = A0 ◦ Λγ .

Next we will explain how to recoverγ in order to determineA0, the linear part ofQ0, and how
to determine the constant partq0 of Q0, to recoverQ0 completely.

5.4.1 Determiningγ

Proposition 3.There exist unique pairs(δi, ci)i=0,...,3 of elements in GF(28) δi being non-zero, such
that

P ∗
0 : x → (S−1 ◦ Λδ0 ◦A

−1
0)(y0(x, 00, 00, 00)⊕ c0),

P ∗
1 : x → (S−1 ◦ Λδ1 ◦A

−1
0)(y0(00, x, 00, 00)⊕ c1),

P ∗
2 : x → (S−1 ◦ Λδ2 ◦A

−1
0)(y0(00, 00, x, 00)⊕ c2),

P ∗
3 : x → (S−1 ◦ Λδ3 ◦A

−1
0)(y0(00, 00, 00, x)⊕ c3),

are affine mappings. Any pair (δi, ci) can be computed with time complexity224. Moreover, those
mappings are exactlyP ∗

i (x) = Pi(x)⊕ ki.

Now we show how we got this result forP ∗
0 :

y0(x, 00, 00, 00) = Q0(αT (P0(x))⊕ c)
y0(x, 00, 00, 00) = A0(αT (P0(x))⊕ c)⊕ c′

y0(x, 00, 00, 00) = A0(αT (P0(x))⊕A0(c)⊕ c′

y0(x, 00, 00, 00) = A0(αT (P0(x))⊕ c0

y0(x, 00, 00, 00)⊕ c0 = A0(αT (P0(x))
y0(x, 00, 00, 00)⊕ c0 = A0 ◦ Λγ(αT (P0(x)))
A
−1
0 (y0(x, 00, 00, 00)⊕ c0) = Λγ(αT (P0(x))

Λγ−1A
−1
0 (y0(x, 00, 00, 00)⊕ c0) = αT (P0(x))

Λα−1γ−1A
−1
0 (y0(x, 00, 00, 00)⊕ c0) = S(P0(x)⊕ k)

S−1Λα−1γ−1A
−1
0 (y0(x, 00, 00, 00)⊕ c0) = P0(x)⊕ k

S−1Λδ0A
−1
0 (y0(x, 00, 00, 00)⊕ c0) = P0(x)⊕ k

For each possible pair of(δi, ci) the corresponding mapping can be tested in order to check
whether or not it is affine. There are216 possible pairs, from which four unique pairs(δi, ci) with
δ−1
i = γ · α0,i remain after the testing. Since two of the fourα0,i’s are 01 and the other ones are 02

and 03, we know that two of the fourδ’s are the same, and for thoseδ’s we know that:δ−1 = γ ·01,
and thusγ = δ−1. Now thatγ is known, we are able to determineA0 = A0 ◦ Λγ .

48

5.4.2 Determiningqo

Now that we knowA0, we only need to determine the constantqo of the affine mappingQ0 to
recoverQ0 completely. Definec4 = y0(00, 00, 00, 00) = A0(

⊕3
i=0 α0,i · Ti ◦ Pi(00))⊕ q0

c0 = y0(x, 00, 00, 00)⊕A0(α0,0 · T0(P0(x))),
c1 = y0(00, x, 00, 00)⊕A1(α0,1 · T1(P1(x))),
c2 = y0(00, 00, x, 00)⊕A2(α0,2 · T2(P2(x))),
c3 = y0(00, 00, 00, x)⊕A3(α0,3 · T3(P3(x))),

which holds for eachx, thus also forx = 00:

q0 = A0(
⊕3

i=0 α0,i · Ti ◦ Pi(00)) + c4

= A0(α0,0 · T0(P0(00)))⊕A1(α0,1 · T1(P1(00)))⊕A2(α0,2 · T2(P2(00)))⊕A3(α0,3 · T3(P3(00))) + c4

= c0 ⊕ y0(00, 00, 00, 00)⊕ c1 ⊕ y0(00, 00, 00, 00)⊕ c2 ⊕ y0(00, 00, 00, 00)⊕ c3 ⊕ y0(00, 00, 00, 00)⊕ c4

= c0 + c1 + c2 + c3 + c4

Thus the constant part ofQ0 is q0 = c0 + c1 + c2 + c3 + c4. At this point, we have determined
Q0 completely.

5.5 Step 3: Extracting the AES Round Keys

The final step is the extraction of the round keys. According to Proposition 3:

P ∗
i,j(x) = Pi,j(x)⊕ ki,j

Therefore we also know:

P ∗r+1
i,j (Qr

i,j(x)) = P r+1
i,j (Qr

i,j(x))⊕ kr+1
i,j

P ∗r+1
i,j (Qr

i,j(x)) = x⊕ kr+1
i,j

Thuskr+1
i,j = P ∗r+1

i,j (Qr
i,j(x)) ⊕ x can be calculated for a certain round. However, we do not

know the right order of the bytes. The algorithm which generates round keys of AES calculates a
round key by using the round key of the previous round as input of the algorithm. This implies that
we only need to findQ’s for two consecutive round. In order to check the right order of the bytes,
we need to calculateki,j for the next round, and use the algorithm to compare bytes and put them
in the right order. Thus recovering one round key correctly, enables us to recover each round key.

49

5.6 Summary and Conclusion

The goal of the attack described in [4] is to extract the AES keys. The attack will only work if
all tables of the white-box AES implementation are available to an attacker. The attacker must be
able to choose the input and observe the output of these tables. If these conditions are satisfied an
attacker is able to find the key.

In order to find the key an attacker must know what theP ’s and theQ’s are (see§5.2). Because
Q is the inverse ofP for the next round, we focus on determining theQ’s. In the first part of the
attack the non-affine part of theQ’s for round 1 to 9 can be recovered. This can be done with a time
complexity of224. At the same time the non-affine parts of theP ’s for round 2 to 10 are recovered.
In the second step the affine part of theQ’s which consist of a linear part and a constant can be
recovered. IfP andQ are determined completely, the AES round keys can be determined. The total
complexity of the attack is4 · 4 · 224 = 228.

If the attacker only knows the type II tables, the attack will not work. The attack works because
the type II tables and the type III tables are considered as one entity. In this way the mixing bi-
jections in the middle cancel each other. This implies that theMixColumns matrix is no longer
obfuscated by a mixing bijection. TheMixColumns matrix is publicly known, and because of
some specific characteristics of this matrix the attack works. If this matrix is obfuscated the attack
will not work.

No general statement can be made about the possibility of the existence of a strong white-
box implementation. However, the attack shows that the described implementation is not a strong
one. More research is needed on the possibilities of constructing better white-box implementations.
Nevertheless the described white-box AES implementation is not useless. In the next chapter we
look for possibilities to use the AES implementation in such a way that the attack cannot be carried
out.

Chapter 6

Using White-Box Cryptography in
Practice

6.1 Introduction

In this chapter we will look for possibilities to use white-box cryptography for AES in a secure
way. We discuss an application of white-box cryptography in which we split the set of white-box
tables into a dynamic part and a static part in§6.2. The result is that whenever a key needs to be
updated, no longer the whole set of tables needs to be updated. In§6.3 different possibilities for
using external encodings are described. We discuss what the best possibility is. In§6.4 we discuss
the problem of the storage space and in§6.5 we look for possibilities to use less tables to save
storage. Finally, in§6.6 we look for possibilities to use white-box cryptography for OMA-DRM.

6.2 Splitting the White-Box Tables

We want to be able to update the key which is hidden in the white-box tables. This can be done by
splitting the tables. The part of the tables which is dependent on the key is sent to the client and the
other part of the tables which is not dependent on the key is stored on the client’s device. When we
want to update the key, only part of the tables needs to be sent to the client. Therefore, less data
needs to be transmitted. The tables that are sent by the server to the client can be updated and are
called the dynamic tables. The tables that are stored on a clients’s device cannot be updated and
are called the static tables. If an attacker taps the ciphertext plus part of the tables, he is not able to
decrypt the ciphertext, because he also needs the other tables. The idea to make part of the tables
dynamic was proposed by Paul Gorissen et al. in [13].

The following needs to be considered:

• It is important that each client receives different static tables to ensure that each client uses a
unique combination of static and dynamic tables. If this is not ensured, then someone could

50

51

tap the dynamic tables which were sent to another client and use these dynamic tables in
combination with his own static tables to decrypt the content.

• It is important that the static tables cannot be copied. Otherwise a client could publish his
static tables and his dynamic tables which together could be used for decrypting content.
This can be done by locking the static tables on the device (nodelocking).

However, the question remains which tables need to be transmitted and which tables can be
stored.

There are five types of tables: type Ia, II, III, IV, and Ib. The tables that are dependent on the key
are the type II and the type Ib tables. We want to be able to update this key, therefore these tables
cannot be fixed on the client’s device. The least amount of data a server needs to send are the tables
which are dependent on the keys and those are the type II and type Ib tables.

There are several possibilities for partitioning the set of tables into a set of dynamic tables and
a set of static tables:

1. Dynamic tables: II, Ib (208 KB)
Static tables: Ia, III, IV(544 KB)

2. Dynamic tables: Ia, II, Ib (272 KB)
Static tables: III, IV (480 KB)

3. Dynamic tables: II, III, Ib (352 KB)
Static tables: Ia, IV (400 KB)

4. Dynamic tables: II, IV, Ib (544 KB)
Static tables: Ia, III (208 KB)

5. Dynamic tables: Ia, II, III, Ib (416 KB)
Static tables: IV (336 KB)

6. Dynamic tables: II, III, IV, Ib (688 KB)
Static tables: Ia (64 KB)

7. Dynamic tables: Ia, II, IV, Ib (608 KB)
Static tables: III (144 KB)

8. Dynamic tables: Ia, II, III, IV, Ib (752 KB)
Static tables: -

Partition 8 is the original situation in which all the tables are sent to the client. If an attacker has
access to all the tables, the attack can be executed. Therefore, it is not recommended to transmit all
the tables over the line.

52

The server wants to send the least amount of data. Therefore, the server only wants to send
tables which it wants to update, like the tables which are dependent on the key or the tables which
represent the external encodings. Two partitions remain:

• Dynamic tables: II, Ib (208 KB)
Static tables: Ia, ,III, IV (544 KB)
(see Figure 6.1)

T y p e I a , I I I , I V

T y p e I I , I b
W h i t e - b o x

E (c o n t e n t) c o n t e n t

Figure 6.1: One of the four mappings for a single AES round

• Dynamic tables: Ia, II, Ib (272 KB)
Static tables: III, IV (480 KB)
(see Figure 6.2)

W h i t e - b o x

E (c o n t e n t) c o n t e n t
 T y p e I I I , I V

T y p e I a , I I , I b

Figure 6.2: One of the four mappings for a single AES round

The static keys can be seen as personalization keys, which are unique for each client. The choice
between the two possible partitions depends on the choice for the external encodings. This will be
explained in§6.3.

53

6.3 External Encodings

In §6.2 two possible partitions of the set of tables into a set of dynamic tables and a set of static
tables remained. The choice between these two possible partitions depends on the choice for the
external encodings which will be discussed in this section.

Suppose a ciphertextC corresponding to a plaintextP is sent to a client who wants to obtainP .

The white-box tables which are used to decryptC are represented byG ·AESd · F−1 , whereG

andF−1 are the external encodings andAESd represents the decryption with AES in the white-box
implementation. Note,AESe represents the encryption with AES in the white-box implementation.

There are four possibilities for the external encodings:

1. C = F ·AESe ·G−1(P) ⇒ G ·AESd · F−1 → P

In the first case the server sends the ciphertextC = F · AESe · G−1(P) plus the white-box

tables G ·AESd · F−1 to the client. The ciphertext serves as input to the white-box tables.

The client can use the white-box tables to decrypt the ciphertext to obtain the plaintextP .

The server will put the information concerningG in the dynamic tables. Moreover, the infor-
mation concerningF can also be put in the dynamic tables. This implies that the server can
send the same ciphertext to each client, or send a different ciphertext to each client by varying
F andG. This can be seen as personalization.

If the server wantsF , G−1, and the key to be dynamic, it has to send both the type Ia and the
type Ib tables plus the type II tables:

Dynamic tables: Ia, II, Ib (272 KB)
Static tables: III, IV (480 KB)

The advantage of this method is thatF andG can be varied. A possible disadvantage of this
method is thatP comes available to the client, which he can distribute. However, in caseP
is very large, this may not be convenient. In that case it becomes more interesting to extract
the key, because the key can be distributed more easily than a large plaintext. With the key
people can decrypt the content themselves.

54

2. C = F ·AESe(P) ⇒ G ·AESd · F−1 → G(P) ⇒ G−1 → P

In the second case the server sends the ciphertextC = F ·AESe(P) plus the white-box tables

G ·AESd · F−1 to the client. The ciphertext serves as input to the white-box tables. The

client can use the white-box tables to decrypt the ciphertext to obtainG(P). On the client’s
deviceG−1 is stored in a renderer which is assumed to be non-accessible. The decryption of
G(P) is done in the renderer andP will never be exposed.

The server can put the information concerningF in the dynamic tables. This implies that the
server can send the same ciphertext to each client, or send a different ciphertext to each client
by varyingF for each client.G−1 is stored on a client’s renderer and is fixed.G−1 should
be different for each client. Otherwise a client could publishG(P) on the internet. Someone
who downloadsG(P) is able to calculateG−1 ◦ G(P) = P by using his ownG−1. This
implies that the server needs to know for each client what kind ofG he has.

If the server wantsF and the key to be dynamic, it has to send both the type Ia and the type
Ib tables, plus the type II tables. AlthoughG is fixed, the tables which representG need to be
updated because those tables also contain the key.

Dynamic tables: Ia, II, Ib (272KB)
Static tables: III, IV (480 KB)

The advantage of this method is thatF can be varied. The disadvantage is the assumption
that the renderer is completely secure. This assumption does not fit in the white-box attack
model where we assume that the implementation is completely visible to the attacker.

3. C = AESe ·G−1(P) ⇒ F → F ·AESe ·G−1(P) ⇒ G ·AESd · F−1 → P

In the third method the server sends the ciphertextC = AESe · G−1(P) plus the white-box

tables G ·AESd · F−1 to the client. The client encrypts the ciphertext with a storedF .

The new ciphertext serves as input to the white-box tables. The client can use the white-box
tables to decrypt the ciphertext to obtain the plaintextP .

If the server wantsG and the key to be dynamic, it has to send the type Ib tables plus the type
II tables:

Dynamic tables: II, Ib (208 KB)
Static tables: Ia, III, IV (544 KB)

55

The advantage of this method is that the server has to send less data. However, it is not a good
idea to use the local encryption because it weakens the security.

SupposeF is hidden well, and we have 128 linearly independent ciphertextsC1, . . . C128 such
thatF ·Ci is known for eachi. Then, we can also determineF · ei for eachi ∈ {1, . . . , 128}
with ei thei-th unit vector. However,F · ei is thei-th column ofF which implies thatF can
be determined. Thus, if local encryption is used, then it is not safe to assume thatF can be
kept secret. If the client knowsF , then also the mixing bijections of the type Ia tables and the
type II tables can be determined. This will probably make it easier to extract the keys from
the tables. More research is needed to determine if knowledge of the bijections will make it
easier to extract the keys from the tables.

4. C = AESe(P) ⇒ F → F ·AESe(P) ⇒ G ·AESd · F−1 → G(P) ⇒ G−1 → P

In the fourth method the server sends the ciphertextC = AESe(P) plus the white-box tables

G ·AESd · F−1 to the client. The client encrypts the ciphertext with a storedF . The new

ciphertext serves as input to the white-box tables. The client can use the white-box tables to
decrypt the ciphertext to getG(P). On the client’s deviceG−1 is stored on a renderer which
is assumed to be non-accessible. The decryption ofG(P) is done in the renderer andP will
never be exposed.

F andG are fixed. Therefore, the server only has to send the type Ib tables plus the type II
tables to update the key:

Dynamic tables: II, Ib (208 KB)
Static tables: Ia, ,III, IV (544 KB)

The advantage of this method is that the server has to send less data. However, it is not a good
idea to use the local encryption because it weakens the security (see method three). Another
advantage is that the sever sends the same ciphertextC = AESe(P) to each client. This is
also a disadvantage because once an attacker has found the AES key, he could publish it and
everybody could use that key to decrypt the ciphertext. In the other methods the ciphertext is
personalized for each user which prevents this from happening.

Method one and two are the best methods and three are four are weaker variants which should
not be used. The choice between the first and the second method depends on the assumption of
security. If a secure renderer can exist the second method is better becauseP is never available to
the client. However, the idea of a secure renderer contradicts the idea of a white-box attack model
which we use throughout this document. Thus, using the first method is recommended.

56

6.4 Storage Problems

The use of white-box cryptography can cause some storage problems because the size of the im-
plementation can be too large. The total size of the tables might be too large to send or to store on
a mobile phone. On a mobile phone, each time DRM content is accessed the content needs to be
decrypted with the AES key. If white-box cryptography is used, then each time content is accessed,
the white-box tables will be used. In case of one key this does not have to be a problem, but when
a large amount of content is stored in encrypted form, they can cost too much memory space. The
static part of the tables is the same for each piece of content and costs 480 KB of memory space,
whereas the dynamic part is different for each piece of content and costs 272 KB of memory space.
For example, if we use white-box cryptography forKCEK , for each new content an extra 272 KB
needs to be stored on the device.

If the part of the memory space taken by the tables is relatively small compared to the part of
the memory space taken by the content (think of broadcasting a movie), then this is not a problem.
Otherwise, it seems best to use white-box cryptography only for keys that remain constant over a
longer period of time.

6.5 Optimizing the Total Size of the Tables:

Because the total size of the tables might be too large to send or to store on a particular device, we
look for possibilities to decrease the total size of the tables.

It is possible to use less tables, for example by using some tables more than once. However, this
weakens the security. For each type of table we will look for possibilities to reduce the total size the
tables:

• Type Ia: The external encoding is represented by a128 × 128 matrix U−1. This matrix is
invertible and rows8i + 1 to 8i + 8 form a block of the external encoding fori ∈ 0, . . . , 15.
Each of these blocks is represented by a type Ia table.U−1 is invertible and thus the 32 blocks
are different. This implies that no two type Ia tables coincide. Thus we cannot store less type
Ia tables.

• Type II: The type II tables are dependent on the key and they are all different. Thus we cannot
store less type II tables.

• Type III: The type III tables represent mixing bijections which are chosen randomly for each
table. However, it is also possible to keep the mixing bijections the same inside a round.
Another radical possibility is use only one32 × 32 mixing bijection and one8 × 8 mixing
bijection for all rounds. The32× 32 bijection which is the result of the product of the mixing
bijections can be represented by four tables. Thus it suffices to use only four type III tables.
The total size is:4× 28 × 32 = 32768 bits= 4 KB.

57

• Type IV: We can choose to keep the type IV tables the same. Then only one type IV table is
needed.28 × 4 = 1024 bits.

• Type Ib: The type Ib tables are dependent on the key and they are all different. Thus we
cannot store less type Ib tables.

As shown above, only the number of the type III and type IV tables can be reduced. Thus the
size of the dynamic tables stays unaffected. Reducing the size of the static type III and type IV
tables as indicated, implies that we can reduce the total size of the static tables from480 KB to
32768 + 1024 = 33792 bits = 4224 Bytes. However, if a lot of encrypted content is transmitted,
then the amount of memory space taken by the static tables will be relatively small compared to
the amount of memory space taken by the dynamic tables. To store the static tables we need4224
bytes, whereas for each key we want to store we need an extra272 KB for the dynamic tables. In
that case, reducing the size of the static tables will not be significant.

If an attacker knows that only four type III tables and one type IV tables are used, he can try
to determine the type IV table with a brute force attack. There are284.6 possible construction for a
type IV table. However, with knowledge of the type IV table the attacker cannot do anything. The
type III tables are more interesting. However, there are2369.4 possible construction for a type III
table which is too much for a brute force attack.

6.6 Using White-Box Cryptography in the OMA-DRM Context

In a white-box attack context, an attacker has full access to the decryption software and has control
over the execution environment. This enables him to find the keys, which he can distribute over the
internet. In this section we look for possibilities for applying white-box cryptography in the context
of OMA-DRM to protect keys. For more details on the keys see chapter 2. The following keys will
be considered:

• KCEK : The content is encrypted withKCEK . If someone knowsKCEK , he is able to de-
crypt the content. He could also publishKCEK to enable other people to decrypt the content.
Therefore, it is important thatKCEK cannot easily be extracted. HidingKCEK in white-box
tables is the best way to prevent unauthorized people for decrypting the content.KCEK can
be hidden in white-box tables as follows:

1. The first possibility is to send WBKCEK
to the client instead ofC =

AES WRAP(KREK ,KCEK), where WBKCEK
are the dynamic white-box tables in

which KCEK is hidden. KREK was used for encryptingKCEK , but nowKCEK is
protected by the white-box tables. Therefore,KREK is no longer needed, and can be
removed fromC∗.

58

2. Another possibility is to sendC =AES WRAP(KREK ,WBKCEK
) instead ofC =

AES WRAP(KREK ,KCEK), where WBKCEK
are the dynamic white-box tables in

whichKCEK is hidden. NowKREK is needed to obtain the white-box tables. The dy-
namic white-box tables together with the static white-box tables are needed to decrypt
the content.

3. It is also possible to sendC =AES WRAP(KREK ,AESK(KCEK) instead ofC =
AES WRAP(KREK ,KCEK), where AESK(KCEK) is the AES-encryption ofKCEK

with a keyK which is unique for each client. We also have to send WBK which are
the dynamic white-box tables in which the keyK is hidden. In this wayKCEK can be
stored in encrypted form with keyK.

4. Another possibility is to storeKCEK in encrypted form instead of decrypted form on
the device. We encryptKCEK with a unique keyK. This keyK is stored in white-
box tables and never visible. Whenever we needKCEK , we can decrypt the encrypted
KCEK with the white-box tables. After that, we can decrypt the content. An advantage
is that we only have to store one set of white-box tables. Another advantage is that
the specifications of OMA-DRM are still respected, because there are no specifications
which state how keys need to be stored.

• KREK : KREK is used for encryptingKCEK . If somebody knowsKREK he is able to
calculateKCEK . KREK could also be hidden in white-box tables. However, with these
tables we are able to obtainKCEK , and distributeKCEK . Therefore, it is better to hide
KCEK in white-box tables thanKREK . For a user who wants to have illegal content it is
more convenient to obtainKCEK thanKREK because this needs one calculation step less.

• KMAC : KMAC is used for integrity checking. It is not used for encryption. Therefore, it is
not necessary to apply white-box cryptography toKMAC .

• KD : If somebody knowsKD he is able to calculateKREK , and then alsoKCEK . KD

could also be hidden in white-box tables, and these tables could be used for obtainingKREK ,
KCEK , and the content.KCEK becomes visible, and can be distributed. Therefore, it is not
enough protecting onlyKD.

• KEK : KEK cannot be protected with white-box cryptography becauseKEK can be
calculated with KDF.

• KPrivate: Currently,KPrivate is stored on the client’s device by the manufacturer of the de-
vice and cannot be updated. Suppose, it would be possible to updateKPrivate. This can be
accomplished if each client has a unique AES-key which is hidden in white-box tables and
stored on the device. The server is able to updateKPrivate by sending the new private key,
which is encrypted with the client’s unique AES-key. The client can use the white-box tables
for decryption (Figure. 6.3).

59

Figure 6.3: UpdatingKPrivate

The difference with the original situation is thatKPrivate can be updated. However, the
unique AES-key is fixed and hidden in the tables. Once the unique AES-key is found, the
private keyKPrivate can be calculated. The problem changes from protectingKPrivate to
protecting the unique AES-key. The static white-box tables are the most important secrets
now. The advantage is that this AES-key is hidden, whereas in the original case,KPrivate

was not hidden. A disadvantage is that the server needs to send more data.

Summarizing, we found five possibilities for hiding keys: four possibilities for hidingKCEK

and one possibility for hidingKPrivate. However, not each possibility does fit in the OMA-DRM
specifications.

The first two possibilities for hidingKCEK cost too much storage, because for each piece of
content new white-box tables need to be stored. The possibilities do also not fit in the OMA-DRM
specifications. IfKCEK is hidden as described in the third and the fourth possibility, then only one
set of white-box tables needs to be stored which contains the unique keyK. The storage space is no
longer a problem, but the third possibility does not fit in the OMA-DRM specifications. Therefore,
we recommend the fourth possibility. However, the slowdown can still be a problem. In the fifth
possibility whereKPrivate is updated, we only have to store one set of white-box tables which hide
KUnique. Therefore, we do not have a storage problem, and the slowdown is also not a problem
becauseKPrivate does not need to be updated regularly.

60

6.7 Conclusion

In this chapter we looked for possibilities to use white-box cryptography for AES in a secure way.
We recommended to split the set of white-box tables into a static part and a dynamic part. In this
way each client has a unique set of static tables which can only be used in combination with a unique
set of dynamic tables. The security also increases by sending a different ciphertext to each client.

We suggested different possibilities for applying white-box cryptography for OMA-DRM. Be-
cause of the total size of the tables and the slowdown we recommended using white-box cryptogra-
phy only for keys which are fixed over a longer period of time. For example, white-box cryptography
can be used to update the private key. White-box cryptography can also be used to store keys on the
client’s device.

Overall, we can say that white-box cryptography ensures that the keys are no longer visible.
Nevertheless, we are still able to publish the decrypted content. For example we can put a lot of
effort in hiding a key which can be used to decrypt an encrypted ringtone, but as soon as the ringtone
is decrypted on our mobile phone we could tap it and distribute it on the internet. The same can be
said in the case of broadcasting an encrypted movie or a soccer match via a satellite. However, for
instance in case of a soccer match, people want to see it live. In this situation people would be more
interested in obtaining the key. If they have the key, they could tap the encrypted soccer match and
use the key for decryption and watch the soccer match live. In this case it is more valuable to have
the key, which implies that it is very important to protect the key securely by for example white-box
cryptography.

Chapter 7

Conclusion

The aim of this Master’s Thesis was to analyze how digital content for mobile phones can be pro-
tected in an effective way in a white-box attack context. We started by analyzing several software
protection techniques and looked for possibilities to apply these techniques in the context of OMA-
DRM. From these techniques we chose to focus on a relatively new technique: white-box crypto-
graphy. In the white-box attack context, the attacker has total visibility into software implemen-
tation and execution. To prevent an attacker from finding secret keys, the keys can be hidden in
the implementation with white-box cryptography. The result is a functionally equivalent program
in which the key is no longer visible. However, white-box cryptography increases the amount of
storage space for the white-box tables, and it causes a performance slowdown.

We discussed two drawbacks of white-box cryptography. The first drawback is that whenever
the key needs to be updated, the whole set of white-box tables needs to be updated too. We solved
this problem by splitting the set of tables into a dynamic part and a static part. Each client has a
unique set of static tables which can only be used in combination with a unique set of dynamic
tables which are sent to him. Because only the dynamic tables are dependent on the key, the server
only has to update the dynamic tables when it wants to update the key. This is also a way to obtain
software diversity, because each client needs a unique combination of static and dynamic tables for
decryption. A second drawback is that the whole white-box implementation can be used as a key.
If an attacker knows to the complete white-box implementation, he can use the white-box tables to
decrypt the content. Therefore, it is important that the static tables cannot be copied. This can be
done by locking the static tables on the hardware (nodelocking). More research is needed on the
possibility of locking the static tables on hardware.

After we started to analyze an implementation on white-box cryptography for AES, an attack
on this implementation was published. We analyzed the attack and we looked at its implications.
The attack can be carried out by an attacker if he has access to all the white-box tables. Therefore,
it is important that an attacker does not have access to all the white-box tables. The attack enables
the attacker to find the hidden AES keys. In the original situation proposed in [8] the whole set of
tables is transmitted to the client whenever a key needs to be updated. An attacker can eavesdrop
the transmitted tables and extract the keys. In the new situation the set of tables is not transmitted

61

62

totally. Therefore, the positive part is that in the new situation an attacker cannot perform the attack
by just eavesdropping on the communication line between the server and the client. For the static
tables the attacker has to look on the device. More research is needed on the possibility of con-
structing a white-box implementation for which the attack does not work.

Finally, we looked for applications of white-box cryptography in the context of OMA-DRM.
Because of the total size of the tables and the slowdown we recommended using white-box cryp-
tography only for keys which are fixed over a longer period of time. For example, white-box cryp-
tography can be used to update the private key. More research is needed on the possibility of a
white-box implementation for hiding RSA keys. White-box cryptography can also be used to store
keys on the client’s device. In the future, the size of the tables and the slowdown, might no longer
be a problem. Mobile phones will be able to store more data, and process information faster. In that
case, white-box cryptography can also be used effectively for storing keys which change regularly,
like the content encryption key.

Appendix A

Overview of the White-Box Tables

 (1 2 8 x 1 2 8 i n v e r s e m i x i n g b i j e c t i o n) x (1 2 8 x 8 m a t r i x U)

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

(3 2 x 3 2 m a t r i x M B) x (3 2 x 8 m a t r i x M C)

8 x 8 m i x i n g b i j e c t i o n

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g

T 1
i , j

(3 2 x 3 2 i n v e r s e m i x i n g b i j e c t i o n) x (3 2 x 8 i n v e r s e M B)
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g

X O RX O R

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

4 - b i t
o u t p u t

e n c o d i n g

{T y p e
I a

{T y p e
I I

{T y p e
I V

{T y p e
I I I

4 - b i t
i n p u t

d e c o d i n g
4 - b i t
i n p u t

d e c o d i n g

T 1 0
i , j

8 x 8 m i x i n g b i j e c t i o n

1 2 8 x 8 m a t r i x V
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g
4 - b i t
o u t p u t

e n c o d i n g

{T y p e
I b

- 1

i

i

i

i

63

64

65

Appendix B

Overview of Connecting White-Box
Tables

66

where

−mb = mb−1 =

mb−1
1.1

mb−1
1.2

mb−1
1.3

mb−1
1.4

mb−1
2.1

mb−1
2.2

mb−1
2.3

mb−1
2.4

mb−1
3.1

mb−1
3.2

mb−1
3.3

mb−1
3.4

mb−1
4.1

mb−1
4.2

mb−1
4.3

mb−1
4.4



Bibliography

[1] D. Aucsmith,Tamper Resistant Software and Implementation, Proc. 1st International Infor-
mation Hiding Workshop (IHW), Cambridge, U.K. 1996, Springer LNCS 1174, pp. 317-333
(1997).

[2] B. Barak,Can We Obfusacate Programs?, http://www.math.ias.edu/ boaz/Papers/obfinfor-
mal.html.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K. Yang,On
the (Im)possibility of Obfuscating Programs,pp 1-18, Advances in Cryptology - Crypto 2001,
Springer LNCS 2139 (2001)

[4] O. Billet, H. Gilbert, C. Ech-Chatbi,Cryptanalysis of a White-box AES Implementation, SAC
2004.

[5] H. Chang, M. Atallah,Protecting Software Code by Guards, Proc. 1st ACM Workshop on
Digital Management (DRM 2001), Springer LNCS 2320, pp.160-175 (2002).

[6] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, M. Jacubowski,Oblivious Hashing:
A stealthy Software Integrity Verification Primitive, Proc. 5st Information Hiding Workshop
(IHW), Netherlands (October 2002), Springer LNCS 2578, pp.400-414.

[7] S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot,A White-Box DES implementation for DRM
Applications, pp. 1-15, Proceedings of DRM 2002 - 2nd ACM Workshop on Digital Rights
Management (DRM 2002), Springer LNCS 2696 (2003).

[8] S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot,White-Box Cryptography and an AES
implementation, pp. 250-270, Proceedings of the Ninth Workshop on Selected Areas in Cryp-
tography (SAC 2002), Springer LNCS 2595 (2003).

[9] F. Cohen,Operating System Protection Through Program Evolution, Computers and Security
12(6), 1 Oct. 1993, pp. 565-584.

[10] C. Collberg, C. Thomborson, and D. Low.A Taxonomy of Obfusacting Transformations. Tech-
nical Report 148, Department of Computer Science, University of Auckland, July 1997.

[11] J. Daemen, V. Rijmen,AES Proposal: Rijndael, http://csrc.nist.gov/encryption/aes/rijndael/
Rijndael.pdf, 1999.

67

68

[12] S. Forest, A. Somayaji, D. H. Ackley,Building Diverse Computer Systems, pp.67-72, Proc.
6th Workshop on Hot Topics in Operating Systems, IEEE Computer Society Press, 1997.

[13] P. Gorissen, J. Trescher,Key Distribution in Unsafe Evironments, Philips Research Laborato-
ries Eindhoven, to be published.

[14] B. Horne, L. Matheson, C. Sheehan, R. Tarjan,Dynamic Self-Chacking Techniques for
Improved Tamper Resistance, Proc, 1st ACM Workshop on Digital Rights Management
(DRM2001), Springer LNCS 2320, pp.141-159 (2002).

[15] National Institute of Standards and Technology (NIST).AES Key Wrap Specification, Novem-
ber 2001. Available at csrc.nist.gov/encryption/kms/key-wrap.pdf

[16] P.C. van Oorschot,Revisiting Software Protection, In Proc. of 6th International Information
Security Conference (ISC 2003), pages 1-13. Springer-Verlag LNCS 2851, 2003. Bristol, UK,
October 2003.

[17] Open Mobile Alliance,DRM Specification V2.0, Open Mobile Alliance Ltd, 2004, La Jolla
(CA), USA.

[18] C. Wang,A security Architecture for Sirvivability Mechanisms, Ph. D. thesis, University of
Virginia (Oct. 2000).

[19] J. Xiao, Y. Zhou,Generating Large Non-Singular Matrices over an Arbitrary Field with
Blocks of Full Rank, Cryptology ePrint Archive (http://eprint.iacr.org), no. 2002/096.

[20] Draft ANSI X9.44,Public Key Cryptography for the Financial Services Industry - Key Estab-
lishment Using Integer Factorization Cryptography, Draft 6, 2003.

	Preface
	Abstract
	List of Abbreviations
	Introduction
	OMA-DRM
	Introduction
	Rights Objects
	Content Encryption
	Protecting a Rights Object for a Device
	Protecting a Rights Object for a Domain
	Overview of the Keys
	Threats

	Software Protection Techniques
	Introduction
	Software Tamper Resistance
	Aucsmith
	Horne
	Chang and Atallah
	Chen

	Software Obfuscation Through Code Transformations
	Evaluation
	Layout Obfuscation
	Data Obfuscation
	Control Obfuscation
	Preventive Transformations
	Overlap

	Software Diversity
	The (Im)possibility of Obfuscation?
	Introduction
	Obfuscation
	Result
	Problem
	Conclusion

	Using Software Protection Techniques for OMA-DRM
	Conclusion

	White-Box Cryptography
	Introduction
	Basic Idea
	A White-Box AES Implementation
	Step 1: Hiding the Key in S-Boxes
	Step 2: Inserting Mixing Bijections
	Step 3: Inserting External Encodings

	Size & Performance
	Security
	White-Box Diversity
	White-Box Ambiguity

	White-Box Cryptography for DES
	Conclusion

	Attack on a White-Box AES Implementation
	Introduction
	Basic Idea of the Attack
	Step 1: Recovering the Non-Affine Part of Qri,j
	Step 2: Recovering the Affine Part of Qri,j
	Determining
	Determining qo

	Step 3: Extracting the AES Round Keys
	Summary and Conclusion

	Using White-Box Cryptography in Practice
	Introduction
	Splitting the White-Box Tables
	External Encodings
	Storage Problems
	Optimizing the Total Size of the Tables:
	Using White-Box Cryptography in the OMA-DRM Context
	Conclusion

	Conclusion
	Overview of the White-Box Tables
	Overview of Connecting White-Box Tables
	References

	Bibliography

